
A Delay Tolerant Networking and System Architecture
for Developing Regions

Michael Demmer

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2008-124

http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-124.html

September 25, 2008

Copyright 2008, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

A Delay Tolerant Networking and System Architecture for Developing Regions

by

Michael Joshua Demmer

B.S. (Brown University) 1998

A dissertation submitted in partial satisfaction of the
requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

GRADUATE DIVISION
of the

UNIVERSITY OF CALIFORNIA, BERKELEY

Committee in charge:
Professor Eric Brewer, Chair

Professor Scott Shenker
Professor AnnaLee Saxenian

Fall 2008

A Delay Tolerant Networking and System Architecture for Developing Regions

Copyright 2008

by

Michael Joshua Demmer

1

Abstract

A Delay Tolerant Networking and System Architecture for Developing Regions

by

Michael Joshua Demmer

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Eric Brewer, Chair

Technology has shown significant potential in developing countries, as appropriate de-

signs matched with real world need can effectively bridge information gaps, provide greater trans-

parency, and improve communication efficiency. Unfortunately, many developing regions environ-

ments have a lack of affordable network connectivity. Even where there is connectivity, networks

are often characterized by frequent, lengthy, and unpredictable link outages, along with limited

bandwidth and congested usage. These challenged network conditions, along with the desire to ex-

tend the reach of the network, motivate a different approach to developing applications that is more

tolerant of intermittent network characteristics.

To address these issues, we have developed an overall system framework aimed at easing

the development and deployment of applications in challenged network environments. Our ap-

proach is built on a robust implementation of the Delay Tolerant Networking architecture, a generic

store-and-forward overlay network that uses medium-term storage within the network to buffer

2

messages during link outages. We present an approach to data routing in these environments that

achieves effective results by leveraging the fact that many intermittent network topologies still have

an underlying topological stability. We extend the DTN architecture to include a publish/subscribe

session layer, providing a more natural fit for many applications and a more robust and efficient

framework for communication. Finally, we leverage this framework in TierStore, a distributed

shared storage system that eases the adaptation of existing storage-oriented applications and the

development of new ones.

In this dissertation, we present the design rationale for these contributions, describe and

evaluate our implementation efforts, and discuss ways in which our system framework can ease the

burden of application development and make deployments more robust.

Professor Eric Brewer
Dissertation Committee Chair

i

For my loving wife Rachel

ii

Contents

List of Figures v

List of Tables vii

1 Introduction 1
1.1 Potential Benefits of Technology in Developing Regions 3
1.2 Network Connectivity Challenges . 6
1.3 Our Approach . 9
1.4 Dissertation Outline . 12

2 Background 13
2.1 Store and Forward Networking . 13
2.2 Caching and Replication . 16
2.3 Consistency vs. Availability . 18
2.4 Offline Applications . 20
2.5 Design Themes . 22

3 Implementing the Delay Tolerant Networking Architecture 25
3.1 Delay Tolerant Networking Overview . 28
3.2 Implementation Structure . 32
3.3 Daemon / Router Interface . 37
3.4 Bundle State Management . 39
3.5 Endpoint Identifiers . 42

3.5.1 Links and Adjacencies . 43
3.6 Convergence Layer Interface . 45
3.7 Application Interface . 47
3.8 Simulator Framework . 50
3.9 Evaluation . 52

3.9.1 Overhead Comparison . 54
3.9.2 Intermittency Tolerance . 58

3.10 Conclusions . 64

iii

4 Delay Tolerant Link State Routing 65
4.1 Routing Protocol Design Space . 68

4.1.1 Standard Approaches . 68
4.1.2 MANET Routing . 70
4.1.3 DTN Routing . 71

4.2 DTLSR Design . 73
4.2.1 Features of Link State . 73
4.2.2 Modifying Standard Link State . 76

4.3 The DTLSR Protocol . 77
4.3.1 Messages and Flooding . 78
4.3.2 Update Frequency / Expiration . 80
4.3.3 Calculating Best Paths . 81
4.3.4 Administrative Areas . 83
4.3.5 Local Advertisements . 84

4.4 Evaluation . 85
4.4.1 Protocols Compared . 87
4.4.2 Simulation Scenario . 88
4.4.3 Delivery Results . 89
4.4.4 Delay Results . 91

4.5 Conclusions . 93

5 A Publish / Subscribe Session Layer for Delay Tolerant Networks 94
5.1 Motivations . 98
5.2 Design Considerations . 101

5.2.1 Service Model and Session Names . 101
5.2.2 Application Roles . 102
5.2.3 Sequence Identifiers and Obsolete Messages 105
5.2.4 Group Membership and Bundle State . 107

5.3 Implementation Details . 110
5.3.1 Session Service Interface . 110
5.3.2 Sequence Identifiers and Vector Clocks 112
5.3.3 Session Membership Protocol . 114

5.4 Related Work . 116
5.5 Conclusions . 117

6 TierStore: A Distributed Filesystem for Challenged Networks in Developing Regions 119
6.1 TierStore Design . 122
6.2 Related Work . 124
6.3 TierStore in Detail . 127

6.3.1 System Components . 129
6.3.2 Objects, Mappings, and Guids . 129
6.3.3 Versions . 130
6.3.4 Persistent Repositories . 132
6.3.5 Updates . 133
6.3.6 Immutable Objects and Deletion . 135

iv

6.3.7 Publications and Subscriptions . 138
6.3.8 Update Distribution . 139
6.3.9 Views and Conflicts . 140
6.3.10 Manual Conflict Resolution . 143
6.3.11 Automatic Conflict Resolution . 145
6.3.12 Object Extensions . 146
6.3.13 Security . 147
6.3.14 Metadata . 148

6.4 TierStore Applications . 149
6.4.1 E-mail Access . 149
6.4.2 Content Distribution . 151
6.4.3 Offline Web Access . 152
6.4.4 Data Collection . 153
6.4.5 Wiki Collaboration . 154

6.5 Evaluation . 155
6.5.1 Microbenchmarks . 156
6.5.2 Multi-node Distribution . 157
6.5.3 Ongoing Deployments . 160

6.6 Conclusions . 160

7 Conclusions and Future Work 162
7.1 Dissertation Review . 162
7.2 Design Themes . 164
7.3 Application Examples . 165

7.3.1 Voice Message Phone . 166
7.3.2 Educational Content Distribution . 167
7.3.3 Microfinance Transaction Log Synchronization 168
7.3.4 Remote Medical Consultation . 169

7.4 Future Research Opportunities . 170
7.4.1 Rethinking the Networking API . 171
7.4.2 Exposing Network Reachability . 173
7.4.3 Link Predictions and Erasure Coded Reliability 174
7.4.4 TierStore SQL Interface . 176

7.5 Closing Summary . 178

Bibliography 179

v

List of Figures

1.1 Several projections of the world map based on various metrics, to illustrate the con-
nectivity disparity between industrialized nations and developing regions [134]. . . 2

3.1 Major components in the DTN implementation and interactions between them. . . 33
3.2 Example of Bundle, BundleList, and BundleMapping linkages. 41
3.3 Emulab experiment setup showing the end-to-end and hop-by-hop configurations. . 54
3.4 Total time required for the different protocols to transfer 10MB of data split into on

varying file sizes in a fully connected scenario. 56
3.5 Network overhead added by the different protocols on varying file sizes in a fully

connected scenario. 57
3.6 Link uptime patterns for the intermittent connectivity Emulab experiments. Each

link was up for one minute and then down for three minutes. 59
3.7 Total transfer time required for the different protocols under various intermittent

network scenarios. 61
3.8 Network overhead added by the different protocols on varying file sizes in the inter-

mittent connected scenarios. 62

4.1 Example illustrating a three node network with no contemporaneous end-to-end path. 76
4.2 Format of the LSA messages used in the DTLSR protocol. 78
4.3 Map of the Aravind wireless network used as a basis for the simulation experiments. 86
4.4 Results showing the message delivery percentage for various routing algorithms on

the simulated Aravind network. 90
4.5 Results showing the percentage of a message’s lifetime that it spent in the network

for various routing algorithms on the simulated Aravind network. 92

6.1 Block diagram showing the major components of the TierStore system. Arrows
indicate the flow of information between components. 128

6.2 Contents of the TierStore update messages. 134
6.3 Flowchart of the decision process when applying MAP updates. 136
6.4 Examples of a name conflict (top) and a location conflict (bottom) and how the

default conflict handler presents them through the filesystem. 142
6.5 Update sequence demonstrating a name conflict and a user’s resolution. 144

vi

6.6 Network model for the TierStore emulab experiments. 157
6.7 Total network traffic consumed when synchronizing educational content on an Em-

ulab simulation of a challenged network in developing regions. 158

vii

List of Tables

3.1 Definition of key terms in the DTN architecture. 29
3.2 Application interface exported by the DTN implementation. 48

6.1 Microbenchmarks for various file system operations for local Ext3, loopback-mounted
NFS, pass-through FUSE layer and TierStore. Runtime is in seconds averaged over
five runs, with the standard error in parenthesis. 156

viii

Acknowledgments

This dissertation would not be possible without the guidance, support, insights, and com-

panionship of many individuals, to whom I give my deepest thanks and appreciation.

Eric Brewer has been a wonderful advisor and a source of inspiration throughout my

graduate studies. Between providing timely advice whenever I needed it and giving me the space to

explore my own ideas and interests, his guidance and support have been invaluable.

Kevin Fall was essentially my second advisor for my research work and through various

internship stints at the Intel Research lab. He introduced me to the research problems that form the

core of my dissertation, and I have greatly enjoyed our collaboration and thoughtful debates.

Scott Shenker is an individual whose ability to cut to the heart of a problem and provide

timely insights are remarkable. I am thankful to have had the opportunity to work with him over the

past couple of years and for his advice on my post graduate pursuits.

Anno Saxenian helped me appreciate and understand the social science perspective of my

dissertation work, and I have enjoyed our interactions in the classroom and in her feedback as a

member of my thesis committee.

Bowei Du was my closest collaborator and a co-author for much my research work.

Through our collaboration I have learned a great deal about myself and I appreciate having had

the opportunity to work with him as much as I have.

The other members of the TIER research group, Divya, Jen, Joyojeet, Matt, Melissa,

Michael, Paul, Rabin, Renee, R.J., Sonesh, and Sergiu, have been great companions over the past

several years. I could not have asked for a better group of people to work, travel, eat, drink, and

play with, and I wish all of them the very best going forward.

ix

In addition to the above-mentioned individuals, I also had the opportunity to work with

Teemu Koponen, Sushant Jain, and David Andersen. I appreciate having had the opportunity to

work with all of my collaborators and look forward to opportunities to do so in the future.

My Berkeley forerunners and former Badness 2000 teammates, Andrew, Mark, and Noah,

offered helpful advice as well as great times both on and off the softball field. I hope that our paths

will continue to cross in the years to come.

Steve McCanne provided me not only with three fantastic employment opportunities be-

fore and after graduate school, but also the advice and encouragement that got me to Berkeley in

the first place. I appreciate his confidence in me and look forward to continuing our collaboration

in the years to come.

Finally, my family’s constant love, support, and faith in me throughout my time at Berke-

ley were essential, both in congratulating me on my successes and in encouraging me during my

setbacks. I could not have done this alone and give them all my deepest love and sincerest gratitude.

1

Chapter 1

Introduction

Despite the remarkable speed with which access to the Internet and the corresponding

growth in online services has spread across the world in the past decade, this spread has been

far from uniform. Comparing the prevalence of access to information technology across regions,

one finds marked distinctions between generally industrialized (and “wired”) countries and a large

number of developing nations that lack connectivity and access to technology. Indeed, as shown

in Figure 1.1, the map of the world looks quite different depending on the measures used to define

the area of a country. In these projections, the area of various countries is adjusted to be based on

to various metrics, including the familiar land area, as well as population, internet usage, access

to electricity, personal computer ownership, and cellphone penetration. The marked distinctions

between the population projection and the various technologically related projections represents

a clear visual indication of the disparity in access to information technology. In particular, large

swaths of Africa, Southeast Asia, and South America show a distinct lack of Internet access, reliable

access to electric power, or personal computer use, as compared to more industrialized countries.

2

(a) Land Area (b) Population

(c) Electricity Access (d) Cellular Subscribers (2002)

(e) Internet Users (2002) (f) Personal Computers

Figure 1.1: Several projections of the world map based on various metrics, to illustrate the connec-

tivity disparity between industrialized nations and developing regions [134].

3

As a direct consequence of this disparity in access, a significant portion of the world’s

population lack the efficiency and knowledge benefits that come from access to information tech-

nology [12]. More concretely, news reports, election data, market prices, and weather forecasts are

in some cases communicated only via word of mouth or other slow or unreliable means. This inef-

ficiency can cause critical distribution gaps and/or delays in obtaining potentially life saving infor-

mation. Also, commercial transactions and other record keeping are often done using paper, which

can result in transcription and data entry errors, inaccurate recording, and a lack of transparency.

Some transactions such as obtaining government services often must be conducted in person, which

in some cases requires a lengthy and potentially arduous journey to an urban center from a rural

region. More generally, these and other challenges stem primarily from the limited communica-

tion infrastructure and continue to be barriers to development, causing unnecessary burdens and

inefficiencies in many people’s daily lives.

1.1 Potential Benefits of Technology in Developing Regions

However, in spite of these challenges, a variety of simple information systems have shown

real impact in developing regions contexts. One example of an effective effort is the Tanzania Es-

sential Health Interventions Project (TEHIP) [25]. In this effort, improved data collection related

to causes of child deaths and a reallocation of resources contributed to a 40% reduction in child

mortality (from 16% to 9%). In another example, the TracNet project [36] uses voice-based inter-

faces over cell phones to disseminate and collect information related to HIV/AIDS treatment and

prevention in Rwanda. This project, developed in partnership with Voxiva [126], has shown early

success in helping to provide important information access to many Rwandans currently receiving

4

anti-retroviral therapy while providing more insights into the overall treatment efforts in the country

to public health professionals and researchers.

Yet in many cases, infrastructure and communications challenges impede the success and

reach of promising efforts. In one specific example that we encountered during field research,

CARE [18] is an organization that supports microfinance groups in Rwanda. Under the CARE

system, individuals organize into community groups that loan small amounts of cash to members,

often without collateral. In Rwanda as of June 2006, approximately 1,200 community groups were

organized into 17 sub-associations, all under the umbrella of support from CARE [27]. Each group

creates monthly reports to chronicle the members’ transactions that are aggregated by the inter-

group associations, and then copies are sent to CARE and to the banks that provide the underlying

financing for the loans. All of the record keeping and monthly calculations for these loans are done

on paper, and CARE employees report that there are significant errors every month that require

administrative intervention. This burden limits the growth potential of the overall effort, as the

current CARE staff is insufficient to handle even the current load of errors, let alone expanding to

include more groups.

Many of these errors could be eliminated by moving to a computer-based record man-

agement system. Under this alternative model, daily transactions would instead be entered into a

computing device, such as a cell phone, handheld computer, or a workstation at the group head-

quarters. These transactions would be replicated to the inter-group association each month, where

the necessary tabulation and aggregation would be automatically performed by computer, with the

resulting reports distributed to CARE, banks, and other interested parties. Moving to this alternative

approach should reduce the errors in the data, allowing CARE to support more microfinance groups

5

with the same level of staff and funding investment and thus increase the benefits of the effort.

Also, by increasing the transparency and accountability in the data logging, this system could help

to incentivize other banks to participate more readily in the microfinance system.

In another field research investigation, we found a similar potential application for tech-

nology in the realm of agricultural production, specifically with regards to Fair Trade certified coffee

production [40, 124]. Under the Fair Trade system, coffee farmers organize into small cooperatives

that help to certify and market coffee beans, typically to the gourmet coffee market. In most coop-

eratives, each farmer’s compensation is proportional to the amount of beans that the farmer grows

in a given year. The accounting and recording of the amounts of coffee that each farmer grows are

typically entered on paper, though there is occasionally some computer-based record keeping at the

cooperative headquarters.

This limited record keeping prevents the group administrators from tracking individual

farmers’ contributions throughout the processing and aggregating stages of the coffee production.

This lack of insight into the production process prevents the adoption of alternative incentives that

could more directly reflect the individual farmers’ contribution to the revenue of the cooperative,

which is based on both the quantity and the quality of the coffee beans. Instead, with the adoption of

a better system for tracking the particular contributions, one could base the farmers’ incomes on the

quality of their production, not just the quantity, and therefore incentivize better quality production

and increase the overall income for the whole cooperative [35].

Beyond these two examples, a variety of other information distribution services can also

improve the lives of people in developing regions. Basic email and web connectivity can help

bridge the information gap and provide an ability to communicate with relatives and other contacts

6

at much lower cost. Collaboration applications such as Wikis can help form online communities

and distribute dynamic content, such as wikipedia [131]. Census surveys and epidemiology could

be conducted more accurately and at lower cost by using computerized tabulation and transmission.

These examples are just a few of the wide range of other potential applications for technology can

improve the quality of life for people in developing countries.

1.2 Network Connectivity Challenges

Yet in their current form, all these applications depend on good quality network connectiv-

ity, which, as illustrated by Figure 1.1, is not available to much of the world’s population, especially

in rural regions. Although the specific reasons for a lack of connectivity do vary from place to place,

several general challenges tend to be broadly applicable [12].

Many countries lack an widespread existing fixed-line telephone infrastructure with which

they could provide wired Internet connectivity, such as DSL, cable modems, or dialup. Indeed,

the fixed-line telephone penetration rate in Africa was less than 2% in 2006 [62]. In other cases,

such as in rural Cambodia, dialup or in some cases broadband connectivity is available, yet it is

often of intermittent quality, with outages due to congestion or power problems [27, 38]. Although

deployments of wide-area fiber optic or other broadband networks have been occurring in some

cases, the rates charged to consumers to use these networks remain high to overcome the significant

capital outlay required for deployment, which can put the cost of network access out of the reach of

affordability for many people.

Cellular networks are certainly growing rapidly world wide, but also typically lack eco-

nomic sustainability in rural areas, which contain many of the world’s poorest people. As a case in

7

point, Grameen Telecom [51] is perhaps the most successful and well known cellular provider that

focuses on the needs of rural environments. Their successful deployments in Bangladesh rely on

individual franchisees who purchase a phone (typically using a microfinance loan) and then sell ac-

cess to other people in their village to pay for the cost of the device purchase. Through this system,

over 50,000 remote villages in Bangladesh have access to phones where none existed before. Yet

the Grameen system cannot afford to deploy purely rural base stations to cover these areas. Instead,

they must leverage the higher density areas of Bangladesh, such as those near road or rail lines,

to provide the necessary population to justify the cost of a base station installation. Essentially,

these high density areas cover the cost of the station which thereby happens to cover the more rural

villages.

Finally, satellite based solutions have global reach, but remain prohibitively expensive. In

addition to the high costs of the equipment itself, the ongoing subscription fees are typically more

than US$6000 per Mb/s per month in Africa for VSATs [127], or US$2800 per Mb/s per month

for a full C-band 54 MHz transponder [90]. Due to the high underlying costs required to launch

and maintain a satellite in orbit, it is highly doubtful that these costs will decline significantly in the

future.

These connectivity barriers have few quick fixes, and therefore it is unlikely that the no-

table gap in connectivity between industrialized and developing regions will be bridged soon using

current technologies. However, some novel approaches to address these challenges have drawn re-

cent research and commercial interest. One promising approach is to deploy network backbones

based on point-to-point long distance wireless (WiLD) links [91, 112] using commodity radio hard-

ware with modified protocols and software. Research suggests that these networks can provide sig-

8

nificant cost/benefit savings as compared to existing wired or wireless network technologies [79].

For example, the Akshaya project [84] has built such a network that successfully provides network

connectivity throughout the state of Kerala in India at a fraction of the cost of deploying fiber optic

or similar fixed-line networking. However one limitation of these networks is that broadcast inter-

ference and low quality power infrastructure can cause periods of high data loss and/or total loss

of connectivity [113, 114]. This means that users of these systems may not be able to access the

network at all times.

An alternative approach for rural connectivity has been pursued by the Daknet project

from MIT [92] and its derivative company, First Mile Solutions [46]. This system routes e-mail

and web searches via SMTP over intermittently connected mobile links. They hire drivers to carry

laptops on motorbikes and drive to and from remote villages; when the moto pulls into town, it

establishes a local-area network association with a server in the village and exchanges SMTP mes-

sages back and forth as needed. This “sneakernet” approach thus uses the physical transport between

locations as the network backbone, which provides intermittent connectivity, albeit with an unusu-

ally long round trip time. Similarly, in the Wizzy Digital Courier system [133] in South Africa,

educational content is delivered to schools over dialup connections in which calls are deferred un-

til nighttime, when the telephone rates are cheaper. Finally, Ca:sh [4] uses PDAs to gather rural

health care data, also relying on physical device transport to overcome the lack of connectivity.

These projects demonstrate the value of information distribution applications in developing regions,

yet they all essentially started from scratch and thus use ad-hoc solutions with little leverage from

previous work.

9

1.3 Our Approach

A key observation from these more novel approaches to network connectivity is that in

some cases, it may be more economical and practical to focus on intermittent connectivity as op-

posed to always-on, end-to-end connectivity. Furthermore, many applications that are potentially

useful in developing region environments have an inherent tolerance for disconnection, meaning

that the basic operation of the application does not require immediate feedback or tight coordina-

tion among a group of participants.

Essentially, this means that these applications can be made to work while disconnected,

and therefore are good potential candidates for intermittent networks. As one example, we have been

investigating the development of a cellphone system that primarily uses voice messages instead of

synchronous calls and thereby has the potential to lower the cost of deployment and increase the

reach of connectivity into rural regions [58]. The key advantage of such a system is that it exploits

people’s inherent tolerance for communication delay to help make the technology more economical

to deploy and operate.

Yet adapting applications to operate in intermittent network environments is challenging.

One significant reason for this is that applications are typically written to rely upon the high quality

networks that characterize the wired Internet in the industrialized world. Many applications are

unable to gracefully handle conditions where an end-to-end connection cannot be made, instead

returning an error to the user and forcing them to retry an operation manually. Even when an end-

to-end network connection can be made, long or variable round trip times and/or high packet loss

can limit the performance of protocols such as TCP or SCTP and therefore have an adverse effect

on the performance of applications that use these protocols. Also, unpredictable outages, such as

10

an interruption of a large download that is almost fully complete, require special handling in each

application to avoid wasting bandwidth and re-transmitting the same data. Finally, using sneakernet-

based connectivity requires mechanisms to detect when a network connection has come (and gone),

new approaches to data routing to deal with the disconnected network, and systems to store data

while in transit in the network.

The central goal of this dissertation is to provide a networking and systems framework

that overcomes these challenges and can be used to support applications in intermittent network

environments, thus simplifying their development and improving the reliability and robustness of

deployment. Although various techniques have previously been used to handle some of these issues

in an ad-hoc manner, our goal is to develop a general-purpose unified framework to address these

challenges, and thereby leverage our development efforts for a variety of applications in a range of

deployment scenarios. Specifically, we present the following contributions:

• Implementing the Delay Tolerant Networking Architecture

We developed a robust and extensible implementation of the Delay Tolerant Networking

(DTN) architecture [19, 41]. DTN is a newly proposed network architecture aimed at “chal-

lenged network environments”. In this work, we focused on providing both a framework for

experimentation as well a stable and robust underlying platform for application deployment

in intermittent network environments. We describe the structure and major design character-

istics of this implementation, along with a performance analysis to demonstrate its viability

as a deployment framework for applications in developing regions.

• Delay Tolerant Link State Routing

We designed and developed a new routing algorithm for Delay Tolerant Networks in devel-

11

oping regions environments called Delay Tolerant Link State Routing (DTLSR). In many

environments that experience intermittent connectivity (and hence have a desire to use DTN),

their topology has an underlying stability that we can exploit when designing the routing pro-

tocol. By making small, yet crucial, modifications to classical link state routing, we are able

to develop a practical algorithm that functions well in intermittent environments by leverag-

ing predicted future uptime when searching for routing paths. We describe our complete and

fully implemented protocol, along with simulation results that show its benefits.

• A Publish / Subscribe Session Layer for Delay Tolerant Networks

The basic DTN architecture offers a sender-initiated unicast communication model that is

insufficient or inconvenient to meet the needs of many applications. To address these lim-

itations, we defined extensions to the DTN Bundle Protocol to support a session layer that

more naturally supports receiver-driven applications and multicast communication, as well

as ways in which applications can convey ordering relationships among transmissions and a

modification to the message expiration protocols that supports in-network deletion of obsolete

messages.

• TierStore: A Distributed Filesystem for Challenged Networks in Developing Regions

TierStore is a distributed filesystem that simplifies the development and deployment of ap-

plications in challenged network environments, such as those in developing regions. For

effective support of bandwidth-constrained and intermittent connectivity, it uses the DTN

publish/subscribe-based multicast session layer as the implementation of its replication pro-

tocol. On top of this networking base, TierStore provides a standard filesystem interface

and a single-object coherence approach to conflict resolution which, when augmented with

12

application-specific handlers, is both sufficient for many useful applications and simple to rea-

son about for programmers. These properties enable easy adaptation and robust deployment

of applications even in highly intermittent networks. We describe the design and implemen-

tation of the TierStore system and demonstrate the flexibility and bandwidth savings of our

prototype with initial evaluation results.

1.4 Dissertation Outline

The remainder of this dissertation proceeds as follows. Chapter 2 presents additional

background information and a discussion of the overall design themes that apply to our contribu-

tions. Chapter 3 describes our work on the DTN reference implementation. Chapter 4 describes the

DTLSR routing algorithm design and evaluation. Chapter 5 discusses the DTN session layer design

and implementation. Chapter 6 describes the TierStore distributed storage system. Finally, Chapter

7 presents a discussion of existing and future application deployment efforts, a discussion of future

research opportunities related to our work, and high level conclusions.

13

Chapter 2

Background

To begin the discussion of ways to improve application performance and ease develop-

ment in challenged networks, in this chapter we present some background information to further

motivate our approach and lay the foundation for our contributions. In particular, we begin with a

discussion of existing techniques used to handle intermittent network connectivity and offline op-

eration of applications. We then continue with a discussion of the overall design themes that apply

throughout our work to frame the subsequent description of our techniques.

2.1 Store and Forward Networking

One of the earliest and perhaps most well-known ways of handling intermittent network

connectivity is to base operations on a store-and-forward model of communication, as opposed to a

circuit switched or packet switched mode of operation. In store-and-forward networking, messages

are forwarded between a set of cooperating hosts, which in most cases have some form of long-term

persistent storage. When a host receives a message, it determines how to route the message further,

14

and then determines whether or not it has connectivity to the chosen next hop destination(s). If

it does, the message is forwarded onward, as it would be in a packet switched design. However

if it does not have connectivity, instead of dropping the message, it may elect to store it until the

connectivity becomes available, which it checks via some periodic or on-demand retry procedure,

so that when the network becomes available, the forwarding operation is resumed.

There is a rich history of store-and-forward networking used for various applications.

Originally, these networks were primarily motivated by the widespread use of dialup modems as

an interconnection medium. Because the modems were not connected all of the time, the networks

were designed to be store-and-forward, allowing the nodes to connect with one another according

to local policies or schedules. Using the store-and-forward model, a network of point-to-point links

could then fully interconnect the nodes, without requiring an end-to-end path between nodes at any

given time.

One of the earliest such networks was BITNET (originally “Because It’s There NET”,

later “Because It’s Time NET”) [10, 53]. BITNET was comprised of a set of cooperating universities

connected over dialup links and leased lines, using the IBM RSCS protocol to communicate. Several

applications were used on BITNET, but one of the most widely used was Listserv, which combined

e-mail lists and file sharing support, and eventually outlasted the network itself after having been

ported from IBM mainframes to the UNIX operating system.

Another popular early approach was Unix to Unix CoPy (UUCP) [122], a suite of proto-

cols and programs that provide remote command execution, transfer of e-mail and file data, chat,

and other applications over intermittently connected (typically dialup) links. When using UUCP for

e-mail [59], users would often specify a destination address that specified a chain of hosts for their

15

mail to pass through, essentially employing a form of source routing for messages to reach their

desired destination. These hosts would then use store-and-forward operation to batch messages and

wait for connectivity to peer nodes.

With the development and adoption of the Internet protocols, e-mail became predom-

inantly distributed via SMTP [70], originally primarily using the sendmail [22] implementation,

though other mail transport agents were developed subsequently. SMTP also follows the store-and-

forward network design, however it typically does not use the source routing or multi-hop intermit-

tent forwarding used in UUCP. Specifically, in SMTP, e-mail addresses are specified as a username

and fully qualified domain name, so messages are most often delivered from a sending node di-

rectly to the destination. In some configurations, clients use a statically configured “smart host”

relay node, from which it proceeds directly to the destination, but the network does not generally

consist of a set of intermittently connected hosts at its core, as the UUCP network does. However,

it does expect and accommodate disconnection at the edges, as hosts will periodically retry delivery

of messages stored in the local outgoing mail queue. Essentially, this design reflects the fact that the

core of the Internet architecture tends to be fully connected, so the SMTP architecture moved away

from the source routing and hop-by-hop store-and-forward model of UUCP in favor of a simpler

endpoint-queuing and point-to-point delivery model.

In some senses, the Delay Tolerant Network Architecture [19, 41] that we use as the basis

of our work derives from the legacy of these systems. Like many of these historical approaches,

DTN is a store-and-forward network abstraction that can use multiple underlying transport tech-

nologies to distribute data between nodes. However, as we discuss in more detail in Chapter 3,

DTN is designed to be a general-purpose network architecture, as opposed to being targeted for a

16

specific application or set of applications as most prior systems were. As such, DTN has support for

a rich design space of routing algorithms and distribution protocols, as opposed to more ad-hoc so-

lutions for specific problems. In general, our work with the DTN architecture is aimed at providing

a general-purpose networking framework that can tolerate intermittent connectivity for a large set

of current and future applications, whereas these and other prior approaches tend to focus on more

application specific technologies.

2.2 Caching and Replication

Caching and replication are other general system design techniques that can be used to

improve application performance under intermittent and/or constrained network scenarios. Broadly,

caching is a technique in which a subset of some overall data set is retrieved and stored in a manner

that makes it more efficient to access and/or modify again in the future. In the context of networked

systems, caching typically refers to situations in which a node retrieves an object or data item from

a remote location using some network protocol, then maintains a stored copy locally for efficient

access again in the future.

Caching is widely used in many networked applications. For example, most web browsers

include a simple cache of recently accessed HTML pages, images, and other downloaded objects.

The HTTP protocol specification [45] defines mechanisms in which a client can issue a query to

determine if the cached web object is the most recently modified version of that object, or if a newer

object is available. Thus the browser can make use of this verification to determine whether or not it

can display the object that is in cache, or whether it needs to download it again over the (potentially

slow) network. In other cases, proxy caches are deployed in the network fabric to perform this kind

17

of network acceleration on behalf of multiple clients in an aggregated manner.

Replication is a similar technique, only instead of storing objects on demand after they

have been accessed, they are proactively distributed according to some policy. Some replication

systems are organized in a one to many relationship, in which one node has the authoritative copy

of some data or always generates the set of changes to shared state, and then distributes that state to

a set of passive replicas. In other cases, all nodes participate in the replication system in a federated

manner, exchanging updates and data with one another. As we discuss in more detail below, this

latter design requires care in handling multiple updates to ensure that the resulting shared state is

consistent.

An example of a widespread replication-based system is USENET [80]. USENET was a

widely used Internet discussion and news forum that could use UUCP, bulletin board systems such

as Fidonet [44], and eventually TCP/IP services using NNTP [42] over the Internet. The USENET

system design comprised a set of servers, statically arranged into a distribution network. Each

stored a set of news articles, organized into various topics, and servers periodically connected to

each other to exchange articles using a simple flooding algorithm [60]. Each server stored the entire

set of messages so that clients could obtain mail from a reachable server even in cases where the

peer to peer links between servers were not active.

A general design challenge relating to caching or replication based systems is that nodes

must be able to determine whether or not a cached object is still valid. Various techniques can be

used for this purpose, including liveness validation (whereby a client sends a query to determine if a

cached copy is still valid), leases (in which a client obtains a time-bounded assurance that a cached

object is valid), and/or invalidation protocols (in which a client is actively notified when an object

18

that it has cached becomes invalid). Each design has various advantages and disadvantages, and the

resulting performance is generally based on the access and modification patterns to the underlying

data. For example, invalidation-based systems require that some origin server track all copies of

the cached data to be able to properly send invalidations, yet they avoid the burden of periodic

freshness checks or lease expirations that characterize the other approaches. Furthermore, these

cache coherence protocols become more challenging and burdensome in cases where networks may

be intermittently connected, as systems must deal with the correctness and performance implications

that occur when nodes cannot communicate due to a network partition.

2.3 Consistency vs. Availability

The cache coherency design challenge is related to a broader design tradeoff between

availability and consistency in the presence of network partitions. In this context, availability con-

notes whether a component in a distributed system can access a resource at some arbitrary time,

regardless of the current network conditions. Consistency describes the degree to which different

nodes in the system agree on the value of shared system state, in the presence of concurrent mod-

ifications and other operations. Partitions are defined a lack of network connectivity between one

set of nodes and another, such that a node in one set cannot communicate with a node in the other

within some reasonable delay bound. A well-known principle, called the “CAP theorem” [48, 50],

states that a system with distributed access to objects cannot have both high availability and tight

consistency in the presence of network partitions. Thus if network partitions cannot be avoided, as

is the case in many developing country environments, then system designers must trade off between

availability and consistency.

19

For example, suppose a user wants to access a shared object at some node that happens

to be disconnected from other nodes in the network. Also assume that the node does not know for

certain that the shared object is up to date (i.e. the node does not have an active lease on the object

or some other assurance). At the time of access, the system must make a choice: it can either return

the cached copy of the shared object, or it could block the request until the network partition is

healed and it can therefore validate that the object is current. Neither choice is necessarily the better

one, as it depends on the requirements and goals of the system. In the former case, the focus on

high availability would mean that the user could retrieve the object without needing to wait for the

partition to heal or consume network bandwidth, yet it might not have the most recent or the correct

version of the object. In the latter case, the user would always be assured of having the most recent

copy of any object that it obtains, yet it might take some time to retrieve the data, depending on the

duration of the network partition.

As we discuss throughout the remainder of this dissertation, our contributions tend to

favor availability over consistency. The main rationale for this choice is that in the developing

regions environments that we target, network partitions may last for a considerable amount of time.

Thus in these cases, simply blocking access to data while waiting for a partition to heal would often

result in a poor user experience and a failure to deliver on the needs of an application. At the same

time, many interesting applications do not necessarily depend on strong consistency for their key

purposes. In particular, some applications have relatively simple data distribution patterns that do

not have tight timeliness requirements or coherence bounds. Thus by focusing on ways to make

data more available, we can offer a more robust user experience for environments that happen to be

intermittently connected.

20

As one example of how we follow this design principle, the TierStore system that we

discuss in Chapter 6 follows an optimistically consistent design. In this approach, users can both

access and modify shared state while potentially disconnected, thus providing high availability re-

gardless of the network conditions. Due to the principles of the CAP theorem, this means that the

system makes a corresponding tradeoff in consistency. More specifically, it is possible for two users

to make modifications to the system that are incompatible with each other, resulting in a conflict.

The idea of optimistic consistency is that the system allows conflicts to occur (thus allowing for

the corresponding increase in availability) and then provides mechanisms whereby the conflicts can

be subsequently resolved through interventions after the fact. The core benefits of this design are

maximized in cases where most operations do not conflict, even when nodes are disconnected, as

optimistic consistency can provide significant performance improvements over other approaches.

2.4 Offline Applications

Another simple and common mechanism to handle intermittent connectivity, especially in

the Internet context, is to structure applications to be able to operate while “offline”, or disconnected

from the network. Although this design also applies to peer-to-peer or federated systems, it is

typically used in a client / server manner. In this model, application clients maintain a cached or

replicated copy of some server state, and users can access and/or modify this state when the client is

disconnected, often using a special offline mode of operation identified in the user interface. Then

when network connectivity is restored, the user actions are reflected at the server state, and/or a

newer copy of the content is refreshed and downloaded.

One of the most widely used examples of this design is that of modern e-mail client soft-

21

ware. Most current e-mail clients support offline operation, in which the client application caches

users’ message, mailbox, and folder data for access and modification while offline. This design

allows users to mark messages as previously read, file messages between folders and mailboxes, as

well as review and search through old e-mail data, all without requiring network connectivity. Al-

though clients cannot retrieve newly arriving messages while they are offline, the server will store

these messages so they become available the next time clients have connectivity. The common client

protocols used to access e-mail are POP [83] and IMAP [24], both of which support mechanisms

whereby clients can only download a subset of the messages (typically ones that they do not have

in cache), and IMAP also supports later modification of shared server state based on client oper-

ations [78]. Also, the simple consistency model of the underlying application means that in most

cases, offline operation does not need to worry about consistency, and simple policies can handle

the potential conflicts that may occur during offline operation, as the server can always assert that it

has the authoritative shared system state.

In a less widely used example of this design, the World Wide Web Offline Explorer (WW-

WOFFLE) [135] supports offline browsing of web pages, typically intended for dialup links or

other disconnected client hosts. WWWOFFLE implements a proxy server that can store a persis-

tently cached copy of web objects, either on-demand in response to client activity, or proactively by

crawling a set of sites for later access while offline. Unmodified web browsers that are configured

to use the cache as a proxy then can access all the downloaded data even while disconnected, as

well as register interest in additional data to be downloaded when connectivity is restored. Unlike

the e-mail example, however, the use of WWWOFFLE requires changes to the object freshness

semantics of the web. In particular, because it can cache objects for a longer period of time than is

22

specified by the content server, when users access web pages through the offline cache, they may

be viewing a stale or out of date version of the web site. Again, this is an example where the WW-

WOFFLE application design favors availability over consistency, allowing the offline access to the

web objects at the potential expense of returning a stale document.

2.5 Design Themes

The consistency tradeoff discussed above is an example of one of the key design themes

of this dissertation, that we leverage storage resources to avoid consuming network bandwidth. In

many distributed system designs, there is a basic tradeoff between the use of storage and the use

of the network. A system may retain some data in long-term storage, with the belief that it may

become useful in the future and therefore avoid reacquiring it, or the system could discard the data,

conserving storage resources, and requesting the data again if it is needed in the future. In general,

our designs treat network connectivity as a scarce, constrained, and potentially unavailable resource,

and storage as a more prevalent and less expensive one. Part of the justification for this design is that

computing trends have contributed to the decline in the price of storage, thus many systems have

more than adequate storage at affordable cost. At the same time, network connectivity can be quite

expensive, and intermittent network conditions can mean that the network may not be available at

a given time when it may be needed. Thus as we discuss below, our solutions make heavy use of

caching and replication, and a focus on availability over consistency, to use storage and try to avoid

unnecessary consumption of potentially scarce network resources.

A second design theme is that system designs must be able to handle intermittency at

multiple points in the network. Consider again the distinction between the assumptions of UUCP

23

e-mail and SMTP e-mail. In the former design, the network was assumed to be intermittently con-

nected throughout, thus even the simple (and ultimately cumbersome) source routing mechanisms

reflected this multi-hop disconnection. In contrast, the typical lack of multi-hop routing in SMTP

reflects the fact that most of the time, it is used in a fully connected Internet environment. Yet for

the developing regions environments that we target, disconnection can occur at multiple points in

the network for various reasons. Thus our approach eschews the “online or offline” model of the

above-mentioned applications, relying instead on mechanisms that can proactively convey enough

information to be able to handle multiple points of disconnection efficiently.

The final design theme is that to operate effectively in intermittent network environments,

then we need to have mechanisms to handle network outages at all system layers. In particular,

because outages may last for a considerable amount of time, the lower layers of the system stack

cannot simply abstract the outage away from the higher-level components. In contrast, TCP is

able to offer a reliable virtual circuit abstraction over a potentially lossy packet switched network

because the expected packet loss and round trip times are both low, so retransmissions can handle

losses that occur, often without the application even knowing that it ever occurred.. Yet because of

the unpredictable timing and duration of network outages in developing country scenarios, a system

cannot completely pretend that the problem does not exist, since applications cannot depend on

being able to exchange data with high probability at any point in time, since the network may not

be available. Thus application designs need to reflect the fact that the network is not always an

immediately available resource, and in some cases need to be able to inform users when operations

cannot be completed in a desired amount of time. At the same time, it is burdensome for applications

to properly handle network outages and the resulting data management and consistency issues that

24

occur. It is therefore beneficial for the lower layers of the system to provide useful mechanisms

to help applications to tolerate periods of disconnection, efficiently distribute data, and handle the

conflicts that may result from operating in an opportunistically consistent manner. Thus our system

designs reflect this need to tolerate intermittent network connectivity at all layers of the protocol

stack.

As we discuss in the following chapters, our contributions follow these three design prin-

ciples in our efforts to provide an effective platform for application deployment in challenged net-

work environments.

25

Chapter 3

Implementing the Delay Tolerant

Networking Architecture

In this chapter, we present the first major contribution of this dissertation, which describes

our implementation of the Delay Tolerant Networking (DTN) architecture [19, 41]. As will emerge

from the following discussion, DTN has several characteristics that make it attractive as a base

platform for developing applications in challenged network environments. In addition, many of

these characteristics and the novel design approaches of the DTN architecture have implications for

how they can be implemented to create a robust platform. Here we describe the system that we

developed to embody the DTN architecture, highlighting particular characteristics of the design that

differentiate DTN from other more traditional systems.

Some of the material presented in this chapter was previously published as “Implementing Delay Tolerant
Networking” in Intel Research Berkeley Technical Report IRB-TR-04-020, in collaboration with Eric Brewer,
Kevin Fall, Melissa Ho, Sushant Jain, and Rabin Patra [29].

26

We have several distinct goals for this implementation. The first goal is to serve as a

platform for research and experimentation. The relative novelty of the DTN architecture means that

there are a wide range of research problems related to designing and operating protocols for DTNs.

For example, several research projects, both our own and others, have investigated the areas of

routing [5, 13, 32, 63, 64, 108], reliability using custody transfer, forwarding policy decisions based

on classes of service [105], and multicasting [116, 138]. This goal places a premium on flexibility

and extensibility, allowing researchers to easily experiment with, modify, and extend the operation

of the system to meet their research needs and to better understand the problem space.

A second, related goal is to complete a reference implementation for the DTN architecture

and associated protocols. Much of the DTN protocol specification and architecture description has

been conducted under the auspices of the “Delay Tolerant Networking Research Group,” a part

of the Internet Research Task Force (IRTF) [120, 129]. In general, the purpose of a reference

implementation is to allow individuals that are interested in the area to not only read the relevant

documents (e.g. Internet Drafts and RFCs), but also to inspect the code and experiment with its

operation. This allows researchers to better understand the implemented protocols and mechanisms

by examining a functional system, as well as to verify the correctness of other implementations for

interoperability purposes. Also, the process of flushing out and implementing protocols helps to

clarify and expose problems in their specifications and design, and helps to provide insights that can

be used to redesign the mechanisms. To meet this goal places a premium on accessibility, clarity,

and correctness in implementing the specified protocols.

Our third goal is to support real-world deployments of DTN networks in various types of

“challenged” network environments, specifically including developing countries. To meet this goal

27

requires that the implementation be robust and stable, as well as have decent enough performance

to be used for actual applications with real users. Also, to run in a wide range of situations, the

implementation should have flexible dependencies on external packages and subsystems, allowing

it to be ported or adapted to many different deployment platforms. Thus to meet the deployment

goals, we place a premium on stability and robustness.

We felt that to resolve these competing interests required not only a reference implemen-

tation of the DTN architecture, but one with a particular focus and implementation philosophy: To

accommodate the research interests, the platform should put a premium on a well-designed, modular

software structure. Yet to accommodate the deployment interests, the platform should have flexible

dependencies, adequate performance, and most of all, should be a stable and robust implementation.

To this end, our effort takes a somewhat non-traditional approach to the term “reference implemen-

tation.” In particular, it aims to provide not only protocol verification in a traditional sense, but also

internal structures and methodologies that clearly embody the DTN architecture.

In particular, we pay careful attention to the routing component, providing a rich toolbox

of modular structures and primitives along with a simulation environment to support protocol ex-

perimentation. This focus stems from our belief that designing efficient, robust routing algorithms

for disconnected environments is the most challenging open problem related to DTN. Overall, we

feel that our approach to a reference implementation has been a success, and through this process,

we have learned several general lessons about how to structure clear implementations of complex

novel system architectures.

In the remainder of this chapter, we describe our implementation in more detail, guiding

the discussion by the ways in which we aimed to meet one or more of these goals in the implementa-

28

tion. First, in Section 3.1, we give some background and a brief overview of the DTN architecture,

specifically highlighting ways in which it differs from the Internet architecture. Section 3.2 de-

scribes the overall structure of our implementation, including the core modules and information

flow between them. We then present more detail on the framework for routing (Section 3.3), the

internal representation of bundle state (Section 3.4), the representation of endpoints and next hop

adjacencies (Section 3.5.1), and the convergence layer interfaces (Section 3.6). Section 3.7 de-

scribes the exported interface to applications, and Section 3.8 describes the integrated simulation

environment used for prototyping algorithms and operation. Finally, Section 3.9 presents a brief

performance evaluation of the system, and Section 3.10 concludes.

3.1 Delay Tolerant Networking Overview

We begin by summarizing the key attributes of the DTN architecture, highlighting ways

in which it differs from the Internet architecture and particular characteristics that provide benefits

in the challenged network environments of developing regions. Table 3.1 defines some of the key

terms of the architecture that are used throughout this discussion.

DTN is a message-based store-and-forward overlay network architecture. Unlike IP net-

works that are based on fixed-length packets, DTN operates on application-defined data units (ADUs)

[20] called Bundles. Each bundle contains arbitrary application content in its payload, along with

addressing and an extensible set of other protocol blocks. Unlike most IP-based protocols in which

metadata is stored in protocol headers, bundle metadata may appear either before or after the pay-

load, hence the term “block” is used instead of header. These blocks contain the address and policy

information used for routing, as well as information relating to reliability protocols and security

29

Bundle

DTN Node

Endpoint

Endpoint ID (EID)

Link

Contact

Registration

Convergence
Layer

Custody Transfer

Application-defined payload and metadata

Entity that communicates using the Bundle Protocol (BP)

Collection of one or more DTN nodes

Unique name of an endpoint, encoded as a URI

Internal representation of a network adjacency

Time interval during which a link can be used to transmit data

Handle for applications to send / receive bundles

Module to map the Bundle Protocol to an underlying network
technology or protocol

Hop by hop reliability framework used in the Bundle Protocol

Table 3.1: Definition of key terms in the DTN architecture.

management. The blocks are extensible, both for purposes within the infrastructure, as well as for

applications to attach additional content.

DTN can leverage persistent storage resources within the network to buffer bundle data

while it is in transit. This is unlike most typical routers which buffer data only in volatile memory

while it is being processed. In the DTN environment, storage is used to wait for connectivity to

be restored to some destination before transmitting a message, or to save the state of the system in

case of a power outage. In part as a consequence of this buffering design, bundles have a real-time

expiration lifetime parameter that is set when the bundle is generated and controls how long the

bundle should remain in the network before it is either delivered or proactively deleted to reclaim

resources. This design allows the application to set a validity interval for transmitted messages, and

is used as one way for the system to cope with the fact that it may take a potentially long amount of

time for the message to reach its destination.

This storage is also leveraged for DTN’s reliability mechanism called custody transfer.

The idea of custody transfer is that responsibility for delivery of a bundle can be transferred between

30

nodes in the network (custodians), as the bundle proceeds along its path to the eventual destination.

This means that once a node has accepted custody of a message, it has a responsibility to expend

additional resources to both reliably store a copy of the bundle as well as to route the bundle to its

destination, potentially requiring multiple transmissions, until either the bundle is delivered or some

other node takes custody. In contrast, in the Internet architecture, responsibility for reliable delivery

exists at the endpoints, due to the expectation that the network tends to be connected most of the

time and that latencies are minimal. However, the expectation of intermittent outages and poten-

tially long end-to-end latencies in DTN environments means that in many cases, the performance

improvements gained by custody transfer justify its complexity (and thus falls within the suggested

principals espoused by the “end-to-end argument” [101]). Also in some cases, other nodes within

the network are more capable of executing a reliable delivery than the originating source node,

which may be constrained (or in the extreme case, about to fail permanently).

DTN is designed to interoperate in “radically heterogeneous” environments. The archi-

tecture is one of an overlay network that leverages a potentially wide range of underlying network

systems that themselves may have quite differing characteristics. To accommodate this disparity,

the architecture defines a convergence layer as the adaptation mechanism needed to leverage some

underlying network transport technology for bundle transmission. The characteristics of these con-

vergence layers can vary widely in terms of their approach to reliability, tolerance of message loss,

and performance. The different convergence layer implementations may also use varied structures

for addressing, thus rather than picking a particular addressing format, DTN uses a general-purpose

naming and addressing framework based on Uniform Resource Identifiers (URIs) [8]. In this de-

sign, a set of (zero or more) DTN nodes can be named with a URI called an Endpoint Identifier

31

(EID), and all routing and policy management is performed on the EID strings. The EIDs have

no pre-determined or defined format other than the basic URI syntax, allowing a range of existing

and newly defined naming schemes to be used within the DTN framework, in some cases without

modification. This fact, plus the generality of the URI syntax, helps to integrate DTN with many

existing name and number schemes as well as making the system flexible and adaptable.

Basing the system on names (rather than addresses) helps to support “late binding” of

names to addresses. In contrast, in the Internet architecture, a name is first proactively resolved

(typically using an infrastructure like DNS) into a fixed-length address, and then communication

proceeds using the resolved address. For environments that may be disconnected or have long

latencies however, this separation of resolution from data transfer would inhibit performance, and

in some cases, the intended destination may change location (or address) while a message is in

transit. Thus by including the destination name within a bundle’s metadata and routing on this

endpoint identifier string itself, DTN enables a more flexible name resolution mechanism that need

not precede the message transfer.

As an (intended) result of this flexibility, DTN has applicability to a wide range of en-

vironments. In mobile ad-hoc networks such as DieselNet [137], nodes deployed on bus routes

move around an urban environments, periodically encountering each other and exchanging buffered

data. In deep-space environments [14], network links experience extremely long latency due to the

propagation delay of a radio signal, thus highly interactive protocols like TCP do not function well.

DTN has also been proposed for use in nautical environments, bridging ships, autonomous under-

water vehicles, and buoys for various data distribution and collection purposes [77]. Finally, many

developing region contexts, including the DakNet and Wizzy Digital Courier examples from above

32

can benefit from use of the DTN framework.

These major design characteristics help the DTN architecture to meet two simultaneous

goals: First, the design provides good performance in challenged network environments that may

experience long delays and/or intermittency, while not severely impacting performance on good

quality networks. Second, the design aims to interconnect a wide range of existing environments

and network technologies into a single overall network architecture that can exploit the benefits of

the underlying systems. As we discuss in more detail in the following sections, our implementation

reflects these goals as well as our own goals discussed above.

3.2 Implementation Structure

Our implementation is written primarily in C++, and as of July 2008, consists of approx-

imately 62,500 non-comment lines of original source code1, comprising 339 C++ classes, ignoring

automatically generated code and an additional 11,000 lines of test code and scripts. To aid porta-

bility, we also wrote a library called oasys consisting of object-oriented wrappers around system

functions. These wrappers provide abstractions for network sockets, threads, synchronization prim-

itives, I/O event handlers, implement a debug logging subsystem, and offer various other utility

classes and structures, comprising another 33,000 lines of code in 257 classes, and 7,800 lines of

test code. The implementation is multi-threaded for ease of implementation and performance isola-

tion between components.

The system uses standard POSIX interfaces and UNIX system designs. It therefore runs

on several variants of Linux, current versions of Mac OS X, as well as Solaris and BSD systems.

1Generated using David A. Wheeler’s ’SLOCCount’.

33

Bundle
Daemon

Bundle
Router

Contact
Manager

Fragmentation
Manager

Links

Storage
Manager

Persistent
Databases

RPC API
Server

Console /
Configuration

TCP Files BluetoothUDP Convergence
Layers

Figure 3.1: Major components in the DTN implementation and interactions between them.

Most external library dependencies are configurable, which aids in adaptation to these and other

platforms and environments. We also leverage the C++ Standard Template Library [107] for most

internal data structures.

Figure 3.1 is a block diagram enumerating the major components of our implementation.

Here we briefly describe the functionality of each component to give a sense of the overall operation

of the system, before turning to a design discussion of certain critical modules and interfaces.

34

Bundle Processing Modules

Bundle Daemon The Bundle Daemon (BD) implements the core processing engine of a DTN

node. As such, virtually all components communicate through the BD. The BD exports an internal

event queue interface through which other components (potentially running in separate threads)

can post events and requests to the daemon thread for processing. These events cover a variety of

purposes, including bundle transmission/delivery/reception events, link open/close/available events,

application registration addition/deletion events, and various storage-related and other bookkeeping

events. The daemon in turn dispatches commands to other components via specific interfaces.

It is also responsible for implementing mandatory aspects of the Bundle Protocol, including the

management of custody signals and administrative status reports.

Bundle Router The Bundle Router implements all route selection, scheduling, forwarding, and

storage decision making. Essentially, the router is responsible for all policy-related decision making,

and as such, it has a larger role than a traditional router has in an IP context. As we discuss in

further detail below, virtually all events that occur in the system are forwarded from the Bundle

Daemon event queue to the router, allowing it to base decision making on input from a variety of

sources. Because we expect several different varieties of routing policies (algorithms) to be used in

experimentation and in different deployment environments, each router is instantiated as a virtual

subclass of a core interface.

Links Links are internal structures used to represent next-hop adjacencies in the overlay topology.

We implement three varieties of links: Always On links are used for connections that should be

maintained open whenever possible, and will be re-opened if a transport connection breaks. On

35

Demand links are opened whenever a routing decision indicates that a bundle should be transmitted

over the link, and are closed again when the link becomes idle. Opportunistic links are opened

in response to some external event such as discovery of a nearby node, but are not automatically

reopened if the connection fails.

Convergence Layers Each link is bound to a specific convergence layer, which is the adapter logic

between the DTN bundling protocol and various underlying transports, similar to drivers within an

operating system. At the most basic level, they perform data plane functions: a particular layer must

be able to transmit and/or receive bundles over a single hop adjacency in the overlay topology. In

some cases they also process signalling information required by the bundle router, such as failed

connections and restarts, or participate in neighborhood discovery.

Storage Manager and Persistent Databases Persistent storage is used to hold the contents of

bundles during the store-and-forward process, as well as other metadata about the operation of the

system. For portability, the system can use a variety of underlying technologies to implement the

database, including both simple files and database systems such as Berkeley DB [87]. The payload

data for bundles is always maintained in simple files, and we implemented some simple caching

mechanisms for open file descriptors and file content data to improve performance when accessing

the persistent data store.

Fragmentation Manager The fragmentation module is responsible for fragmenting and reassem-

bling bundle fragments. In the DTN architecture, fragmentation can be used proactively in cases

where a large bundle cannot fit into a particular contact, or in cases where more reliability is ob-

tained by splitting the bundle into separate components and transmitting on multiple paths. Also,

36

reactive fragmentation occurs when a link is interrupted in the middle of a transfer, and allows a

bundle transfer to continue where it left off and avoid redundantly transmitting data. Our current

implementation does implements this kind of reactive fragmentation but does not have support for

proactive fragmentation.

Management Modules

Contact Manager The Contact Manager is responsible for keeping track of which links are cur-

rently available, any historical information regarding their connectivity or performance, and any

known future schedules of when connectivity may be available. Currently, the implementation is

fairly simple, though we expect that future enhancements may introduce additional functionality

and processing logic.

Console / Configuration The console/configuration module provides a command line interface

and an event loop for testing and debugging of the implementation, as well as a structured mech-

anism to set initial configuration options. We use an embedded Tcl [11] interpreter to parse and

execute user commands and settings. This approach has proven to be invaluable for rapid prototyp-

ing and automated testing.

API Server DTN applications are written to use a thin library that communicates with the system

via an inter-process communication protocol. Most of this interaction relates to sending and receiv-

ing application messages and manipulating message demultiplexing bindings, called registrations.

The API server runs as a simple processing thread that communicates via the event interface to the

core of the system on behalf of various application clients.

37

3.3 Daemon / Router Interface

Now we turn to describe some components in more detail, starting with the design of

the internal interface to the Bundle Router component. The problem of determining an appropriate

algorithm for bundle forwarding in an intermittent network is challenging and largely open. We

therefore aimed to design an interface that is both modular, to enable specific solutions for partic-

ular environments, as well as highly expressive, to cover the wide range of factors that a particular

algorithm may need to consider. To accommodate this diversity, various router algorithms can be

implemented as individual C++ classes that extends the base BundleRouter class interface. This

allows a particular routing algorithm to be selected dynamically based on a configuration file setting,

enabling deployment of the implementation in various operational settings. Also, one of the imple-

mented router modules (the ExternalRouter) exposes an XML-based IPC interface, allowing the

router logic to be implemented in an external process.

Because the Bundle Router module is responsible for virtually all policy-related deci-

sions, it requires detailed information regarding the evolving state of the system so that it can react

appropriately. Thus as mentioned above, virtually all system events are forwarded from the Bundle

Daemon to the Bundle Router for optional processing. The router can take actions based on these

events, including scheduling bundle transmissions on links or cancelling previous transmissions,

opening and closing links, and adding/removing bundles from the persistent storage. The Bundle

Daemon and other components of the system translate these high-level actions into particular opera-

tions, allowing the router modules to evolve independently from the details of the core system. This

separation between policy and function allows for easy extension, modification, and replacement of

the potentially complex router module.

38

This interface helps to allow the routing algorithm to be implemented largely in isolation

from the rest of the system. Given that we expect the bulk of DTN experimentation to be done in the

context of routing algorithms, this isolation is useful for rapid prototyping. Also, as we will discuss

further in Section 3.8, this design enables us to construct a simulation environment that exposes an

identical interface as the deployed system does, so that we can more easily prototype and evaluate

different algorithms.

To further explore the rationale behind this design, it is worthwhile to compare the tasks

required of a DTN router as compared to a traditional IP router. For most IP router implementations,

routing protocols maintain a routing information base (RIB) that stores information about a set of

reachable and next-hop nodes, and often a system-wide forwarding information base (FIB) stores

the current best route for each destination. Packet arrivals trigger lookups in the FIB structure,

resulting in forwarding or a drop, and the job of the routing algorithm is generally confined to

maintaining the RIB/FIB based on the set of reachable networks. This information is generally

confined to the set of connected next-hop peers and some static or dynamic state indicating reachable

networks via the next-hop peers. Also, once a forwarding decision has been made for a packet, the

packet may live in an in-memory queue for some time, but by then it has been “forgotten” by the

routing and forwarding components.

Although a DTN router also requires reachability state, a number of of other factors come

into play. Given the store-and-forward nature of DTN, routers may need to consider its own storage

state and perhaps the storage state of a peer node when making forwarding decisions. Unroutable

messages are often not dropped immediately, but rather queued in persistent storage until either

they expire, an appropriate next-hop peer becomes available, or additional storage pressure requires

39

deleting the bundle. To maintain custody of messages, a router may need to buffer the message for

some time after it has been transmitted. Finally, the uncertain nature of some networks may cause

the router to maintain historical contact state and make future predictions about contact arrivals for

scheduling purposes.

Due to this wide range of inputs, it is clear that a traditional RIB/FIB design for a router is

insufficiently expressive for many cases. For instance, a routing algorithm that implements simple

flooding has no need for a table at all, yet it does need to record whether or not a bundle that is

in queue has been forwarded to a peer, and if not, it queues it for transmission. Yet some routing

algorithms may still want to use a table-driven matching structure for their decisions. Thus in

addition to the basic BundleRouter interface, we also designed a TableBasedRouter class to be

used as a utility base class for other routing algorithms. In this latter case, derived classes can install

Endpoint Identifier patterns into the routing table to direct bundle traffic to various peers. The base

class then takes care of effecting these decisions, by queueing bundles onto next hop links (or taking

them off again) in response to changes in the routing table and/or other message arrivals. This design

helps coalesce the common behavior that several different algorithms can use into a single location

for implementation efficiency and robustness. We leverage this functionality for both the simple

StaticRouter as well as the DTLSRRouter that we discuss in more detail in Chapter 4.

3.4 Bundle State Management

Given that the primary function of the DTN implementation is to forward bundles, one of

the most basic design choices is how to represent and manipulate bundles and lists of bundles within

the system. In this section, we describe the data structures and operations used to manage bundles

40

safely and efficiently in the system.

For performance and efficiency reasons, we separate the bundle metadata from the data

payload and use a C++ class (called Bundle) to represent the metadata. This class includes fields

to represent the source/destination/custodian/report-to EIDs, class of service identifier, status report

request flags, and fragment information, as parsed out from the various bundle protocol blocks [103]

received off the network, or as specified by a local application. All Bundle object instances are

maintained in volatile memory during the router’s operation, and a copy of the object data is spooled

to persistent storage to survive reboots. To maintain the in-memory representation effectively, we

use a simple reference counting mechanism, implemented using smart pointer classes. The payload

data is stored in a simple UNIX file, and a simple data block caching and open file descriptor

management layer enables efficient access to the file data.

Each bundle object also has a ForwardingLog that records the processing history of the

bundle. This log includes information as to when and how the bundle was received, which peers

it was transmitted to, whether it was delivered to local applications, as well as custody transfer

information. Currently the ForwardingLog is in-memory only but it could also be serialized to disk

for more accurate processing after a restart.

Bundles may need to be temporarily stored for various purposes within the system, in-

cluding waiting for a link to open for transmission, waiting for a custody timer to elapse, a route

to be configured, etc. We designed the BundleList class to be an efficient way to store, add, and

remove bundles for these various purposes. In contrast, most routing systems use a simple FIFO

queue to store packets or messages — this is natural given a typical in-order forwarding flow. Yet in

many cases a DTN router will amend a previous routing decision, requiring the removal of a bundle

41

Bundle
Lists

0x10af2c0
(Pending Bundles)

0x102a080
(Link 1)

0x1020110
(Custody Bundles)

Bundle 1 Bundle 2 Bundle 3

bundle list: 0x10af2c0
list position: 1

bundle list: 0x102a080
list position: 2

bundle list: 0x1020110
list position: 2

BundleMappings

Figure 3.2: Example of Bundle, BundleList, and BundleMapping linkages.

from a given list and potentially rescheduling it on another.

Thus our implementation of a BundleList uses an STL doubly linked list of references

to bundles. The references ensure that adding a Bundle to a list is sufficient to ensure that the bundle

object will not be deleted from the system. The fact that it is doubly linked means that insertion and

removal can be done in constant time at any list location. Furthermore, each bundle also contains an

STL vector of BundleMappings, or “backpointers” that indicate which list(s) the bundle is currently

queued on. The mapping object stores the STL list iterator for the given list, so that the mapping can

be used to remove or reorder a bundle on a list in constant time. A simple locking protocol ensures

that the data structures remain in sync. Figure 3.2 shows a visual depiction of these data structures

and linkages. Note that both the bundle list and list position fields in the bundle mapping structures

are actually C++ pointers back to the BundleList and list iterator objects.

42

These mappings simplify many tasks within the DTN router by concisely enumerating

the lists on which a particular bundle is stored and thereby avoiding the need to scan a potentially

large set of lists. For example, when a bundle’s expiration timer elapses, the handler routine simply

examines the expiring bundle’s list of mappings to easily locate and remove the bundle from all lists

where it is queued. Without the mappings, this action would have to enumerate through all bundles

on all lists in the system to make sure that the appropriate entries are removed.

3.5 Endpoint Identifiers

As mentioned above, DTN Endpoint Identifiers (EIDs) are URIs that identify a set of zero

or more DTN nodes. Each DTN node must have a unique EID for its administrative use (i.e. one

that identifies an endpoint containing only the given node). Applications that communicate using a

node’s services may use EIDs that are similar in structure to the node’s EID, or they may use other

EIDs that might be quite different. The bundle protocol specification mandates support for a single

scheme dtn, only to the extent that the null EID dtn:none must be recognized. In our deployments

however, we have typically used a naming convention of dtn://nodename/service?parameters

in which each node (i.e. an instantiation of the reference implementation) has a distinct EID to

which various applications append their own service tags.

As mentioned above, the generalized URI format accommodates a diversity in naming

mechanisms for different DTN deployment domains, yet it does not define a specific set of scheme

identifiers or scheme-specific-formats for use in DTNs. Instead, the architecture is intended to han-

dle both existing and novel naming schemes through extension, and as long as the scheme conforms

to the requirements for well-formatted URIs, it can be used. Our implementation accommodates

43

this flexibility by defining a set of C++ classes that implement various naming schemes. All EIDs

are checked to make sure they are well-formatted URIs, and if so, the scheme portion of the URI

is extracted and looked up in a table to find a scheme implementation class. That class can then

define additional requirements on the format of EIDs, as well as provide other functions for pattern

matching and/or extracting lower-layer addresses.

For the table-driven routing functionality mentioned above in in Section 3.3, we lever-

age the scheme implementation to perform pattern-matching on entries of the routing table. In

particular, when using the dtn: scheme, entries in the routing table pattern match against desti-

nation EIDs using standard UNIX “glob” rules, i.e. the wildcard syntax used to match file and

directory names in a typical UNIX shell and other utilities. For example, if a node has a route

pattern in its routing table of dtn://apple.dtnrg.org/*, then a bundle with a destination EID of

dtn://apple.dtnrg.org/granny smith would match the route entry, while another destination

EID of dtn://orange.dtnrg.org/valencia would not. Thus the above route pattern can be used

to match all services using the dtn scheme on the node named ’apple.dtnrg.org’, allowing for simple

aggregation rules for statically allocated or advertised routes within the network. The wildcarding

also allows a router to forward bundles with EIDs in non-recognized schemes using simple string

matching rules, or via a “catch-all” default route of *:*.

3.5.1 Links and Adjacencies

The implementation also takes a non-traditional approach to representing adjacencies. In

the DTN routing literature, the network model is most often considered as a time-varying multi-

graph, in which DTN nodes are the vertexes and communication opportunities (Contacts) are edges

that come and go between the nodes. In some cases, a node may have intermittent contacts with a

44

large number of peers, for example in a highly dynamic mobile environment, while in others there

are stable peering relationships that have intermittent network connections. In our implementation,

the Link class represents a connection to a peer node that may and is bound to a particular conver-

gence layer (discussed below). Currently, a link object exists for the lifetime of the system, whether

a connection opportunity exists (i.e. the link is up) or not (i.e. the link is down). Whenever a link is

up, meaning that data can be sent on the link, a new Contact object is created to represent the new

communication opportunity. To avoid shuffling messages back and forth between contact objects

when there is intermittent connectivity, we maintain a queue of outgoing and in-flight bundles on

each Link object that can store bundles that are pending transmission, even if the link is down.

An interesting question arises when we consider how to model a mobile router. In the

context of DTN, a mobile router is a device (often called a Data Mule [106]) that is capable of

store-and-forward operation and that moves over path through the network, offering its services to

move data from point to point. In many cases, the mule does not have any processing power, as it

may be a simple storage device such as a USB key, though in others it may be a small device such

as a laptop or a cellphone. Regardless, the mule represents a data carrying entity with a prescribed

route, rather than a typical router that happens to be mobile. Although the DTN architecture and

routing literature [64] embraces the concept of data mules, it discusses them as edges in the DTN

network multigraph, which would correspond to Links in our taxonomy. This is in many senses

both intuitive and appropriate, as the mule can be thought of as an intermittent communication link

between two nodes, albeit one with a particularly high delay (and possibly high capacity).

However, a mobile router generally also has finite storage which needs to be considered

when determining how to route data, and is inadequately captured by a traditional link metric such

45

as the bandwidth-delay product. In fact, this common networking concept is a stretch to apply

to a mule, as the mule storage is potentially shared among multiple users, each of which could

encounter the mule at different points in time and therefore experience a different delay, yet the

mule’s maximum storage capacity is likely to be a predetermined constant. Given that a mule may

also may make active forwarding decisions when it comes into contact with other DTN routers, in

this way it functions more like a node that provides transit connectivity to other parts of the network.

In our implementation, we take this latter approach, and support the mule concept in a few

ways. First, if the mobile device has processing power, then it can simply run the protocol imple-

mentation, making opportunistic contacts with nodes as it is carried around the physical space, and

routing messages accordingly. In cases where the device has no processor, we serialize a router’s

metadata and payload data to the mobile storage device. Then when the device is attached to a

running system, we instantiate a new copy of the DTN router implementation, pointing at the con-

figuration and data storage on the mobile disk. This new copy can communicate over loopback or

other short-range networking to any other DTN nodes that are in range, and once all forwarding is

complete, will automatically re-serialize to the mobile disk and complete operation. This approach

has proven to be a quite natural and effective way of implementing the mule concept.

3.6 Convergence Layer Interface

Structuring systems with layers is a common established networking and systems design

technique. The Internet is one example, as IP can be layered atop many underlying link protocols,

such as Ethernet, ATM, and 802.11 wireless. Layering abstractions serve to merge a set of disparate

capabilities into a common minimal capability interface, and to isolate the higher layers from the

46

differences between and the complexities of the lower layers. As mentioned above, the DTN archi-

tecture defines a convergence layer as the mechanism necessary to run the bundling protocol over a

particular underlying network or transport protocol such as TCP, UDP, Bluetooth, etc, and perhaps

an associated application or session layer protocol that uses these transports. A natural comparison

can be made with the above example of IP and its various link-layer options.

However, in the case of DTN, the task of determining an interface to define this layering

turns out to be slightly more challenging, due to the qualitatively different capabilities of the under-

lying technologies. For example, suppose we compare the TCP convergence layer protocol that we

developed [34] with a Digital Fountain [15] style UDP-based convergence layer. In the case of TCP,

the convergence layer provides reliable, point-to-point, acknowledged delivery between two con-

nected peers, and can detect node outages or other link interruptions. On the other hand, the Digital

Fountain CL simply provides a means of sending data, relying on probabilistic guarantees to deal

with packet losses, but providing no means for the sender to detect these losses. An even greater

disparity could be found between straightforward point-to-point convergence layers and those that

used multicast transports or existing multi-party networks such as peer-to-peer overlays to transfer

data.

To deal with the differences between transport mechanisms, the only required functional-

ity that convergence layer modules must implement are is that they have some capacity to transmit

one or more bundles. Yet if we were to adopt a strict layering model, then more capable layers

would be constrained to this relatively weak capability. Instead, we deliberately expose variations

in capabilities to higher layers by allowing the convergence layer to manipulate a set of link char-

acteristics and options. This lets the routing framework take advantage of functionality such as

47

reliable acknowledged transfer, parallel transmission of multiple messages, or perhaps prioritized

delivery based on variable service classes. These distinctions can also be used as another input into

the routing decision function. For example, when determining the best next-hop path for a message,

the router can know which links offer reliable service and can access capacity and delay estimates

for use in guiding a forwarding decision. At the same time, the convergence layer module can make

use of the services provided by other components in the system to perform additional functions,

such as detection of neighbors, storage capacity queries, examination of the list(s) of resident bun-

dles, etc. Thus although our design is structured with a layering concept, the boundaries between

the components are deliberately blurred, allowing cross-layer interactions to improve capabilities

and performance.

3.7 Application Interface

We now turn to describe the interface that is exposed by the DTN router implementation

for applications to take advantage of its services. Clearly at a minimum, this interface needs to

support asynchronous transmission and reception of bundle messages. As shown in Table 3.2, the

dtn send and dtn recv functions serve this purpose, yet the API also includes some additional

mechanisms beyond data transmission and reception that are used to manage interactions with the

intermittent network environment.

One unusual aspect of the functions exposed by the interface stems from the fact that in

many DTN environments, the lifetime of a communication session can outlast the lifetime of either

of the participating applications and/or of their associated DTN routers. As such, unlike in tradi-

tional networked systems, when an application expresses intent in receiving a set of bundles, that

48

Task API Function Signature Description

IPC
Operations

handle ! dtn_open()
Open a new IPC channel to the

router, returning a handle.

status ! dtn_close(handle) Close a connection to the router.

Registration
Operations

endpoint_id ! dtn_build_local_eid(handle, service_tag)
Construct an EID based on the

local node!s configured identity.

reg_id ! dtn_register(handle, eid, flags, expiration, Register to receive bundles for

the given EID. init_passive, script)

status ! dtn_unregister(handle, registration_id) Delete an existing registration.

reg_id ! dtn_find_registration(handle, endpoint_id)
Find an existing registration for

the given EID.

status ! dtn_change_registration(handle, reg_id,

Modify the parameters of an

existing registration.

 endpoint_id, flags,

 expiration,

 passive, script)

Binding
Operations

status ! dtn_bind(handle, registration_id)
Bind a registration identifier to

the current handle.

status ! dtn_unbind(handle, registration_id)
Unbind a registration identifier

from the handle.

Bundle
Data

Operations

bundle_id ! dtn_send(handle, registration_id,

Transmit a bundle with the given

parameters, using an in-memory

or file-based payload.

 source, destination, reply_to,

 priority, delivery_options,

 expiration, payload_location,

 payload_data_or_file,

 sequence_id, obsoletes_id)

status ! dtn_cancel(handle, bundle_id) Cancel transmission of a bundle.

bundle_info ! dtn_recv(handle, payload_location, Receive a bundle, waiting no

more than the specified timeout. timeout)

session_info ! dtn_session_update(handle, timeout)
Receive a session update or

timeout.

Event
Polling

Operations

file_descr ! dtn_poll_fd(handle)
Obtain a file descriptor for use in

an application event loop.

status ! dtn_begin_poll(handle, timeout)
Begin a polling period for events

on the channel.

status ! dtn_cancel_poll(handle) Cancel a polling period.

Table 3.2: Application interface exported by the DTN implementation.

49

request is encapsulated in a Registration and stored persistently as part of the router’s state so it can

last across system and application failures. This design requires that the last hop router agree to store

bundles for which an application has registered, even if the application is not available to receive

them. Applications can query the system for existing registrations using dtn find registration,

and can selectively attach and detach from registrations through the dtn bind and dtn unbind

calls. In addition, the system exposes mechanisms by which an application can register to have an

external process executed as a result of a message arrival, to serve as a trigger for a sleeping process.

The API functions are implemented using a lightweight IPC protocol that runs over TCP

on a loopback interface. Applications can use these services by linking with a thin client library

that offers stub implementations of the various API functions. The dtn open call creates an IPC

channel and returns an opaque handle, which is then used for all additional API functions. Those

calls then dispatch over the IPC layer to the appropriate procedure handler that runs as a separate

thread within the DTN router process. The rationale behind this design is that it provides an easy to

use API for new applications, and does not impose complex requirements, such as multithreading

or heavyweight external libraries, that would make it challenging to integrate with existing applica-

tions. To avoid unnecessary overhead, large bundle payloads can be passed back and forth between

the router and application using files. Also, all potentially blocking functions have configurable

timeout values, and we have hooks to allow applications to integrate the DTN API operations into

an existing event loop based on poll() or select().

We also implemented SWIG [6, 115] wrappers for the API functions. SWIG is a frame-

work that allows C function implementations and structures to be easily exported to various other

programming languages. Using SWIG, we have exported the DTN API functions to Python [55] and

50

Tcl [11], and have written applications in both languages. These scripting language exports have

significantly aided rapid prototyping of DTN applications and helped integration of DTN services

to existing applications and frameworks.

3.8 Simulator Framework

Simulation is a widely used and well accepted methodology for prototyping and eval-

uating networked systems. Many simulation platforms such as NS-2 [121] and Qualnet [99] are

commonly used, however neither provides explicit structures or interfaces specifically focused on

DTN concepts. More recently, the Opportunistic Network Environment (ONE) Simulator [68] has

been developed with a specific focus on DTN support. However, the ONE simulator, as with other

simulation environments, suffers from an API mismatch with a deployment framework. This has

the effect that once a routing protocol or other algorithm is implemented and verified in simulation,

it must then be reimplemented (and re-verified) using the interfaces and structures of the intended

deployment environment. For example, the task of implementing a new TCP algorithm in and en-

vironment like NS-2 is quite different than implementing it within a Linux or BSD kernel. This

transition can introduce a significant source of errors, since even once the original algorithm has

been shown to be sound in simulation, the implementation for deployment may introduce bugs and

subtle misbehaviors that only appear in a real execution environment.

To remedy these issues, we constructed a simulation framework in which the same proto-

col code can be executed either in a simulated environment or in an actual deployment. This avoids

the above-mentioned problems when transitioning between simulation experiments for development

and deployment results, and enables a smooth transition back and forth. Using this environment, a

51

new protocol feature or modification to a routing algorithm can be prototyped in simulation, then

tested in deployment. If problems are found, they can be easily reconstructed in simulation for

diagnosis and debugging.

More specifically, our simulator (called dtnsim) runs as a single-threaded UNIX process

based around a discrete event loop. Referring back to Figure 3.1, we instantiate a separate copy of

the Bundle Daemon, Bundle Router, Fragmentation Manager, and Contact Manager components

for each simulated DTN node. We also create in-memory versions of the Persistent Storage module

to avoid unnecessary and performance-limiting interactions with the local disk. The main simulator

event loop iterates through the simulated nodes, executing any pending events or deferred action

timers in each one, then continuing on to the next. Through simple overrides of system functions

(such as gettimeofday()) the vast majority of the system code does not need specialization for

simulation purposes.

We also implement a SimConvergenceLayer class to model the transmission of bundles

from one simulated node to another. Even though the transmission occurs within a single process

address space, the convergence layer goes through the steps of generating the “on-the-wire” repre-

sentation of a bundle and re-parsing that representation in the destination node. The module also has

support to model various bandwidth and delay characteristics on a link, and integrates with a Con-

nectivity Manager that can simulate link outages. Finally, to avoid unnecessary memory pressure,

simulations can use “null payload” bundles that look to the rest of the system as if they have a data

payload, but in fact no actual data exists in memory, nor needs to be transferred between simulated

nodes.

This simulation environment has proven to be quite useful for debugging the internals of

52

the DTN system as well as for prototyping of routing algorithms such as DTLSR (discussed in the

next chapter). In the future, we plan to extend the system to include more elaborate connectivity

models, as well as exploring a blend of simulation and live-node experimentation, as is done by the

ONE Simulator and other environments.

3.9 Evaluation

In this section, we present an evaluation of this implementation to demonstrate its viability

as a potential deployment platform as well as to explore some of the benefits of the use of the Bundle

Protocol for intermittent network environments. To that end, we ran several experiments on the

Emulab [130] testing environment to explore the performance of DTN in various simulated network

conditions, comparing it to traditional data forwarding approaches.

For these experiments, we set up a five node Emulab cluster in a linear topology. Each

pair of nodes was connected using symmetric links at 128kbps bandwidth, with no packet loss. We

configured no added link delay, however the underlying packet routing and traffic shaping overhead

resulted in an end-to-end latency of approximately 50 milliseconds between the first and last node.

We generated source files containing random data and then measured the time and bandwidth con-

sumed by each of the following four protocols to transfer all of the file data reliably from the first

node to the last in the topology.

For the simple-ftp case, we wrote a simple file transfer application in Tcl that used TCP

to transfer file data between a client and a server. We decided to write our own protocol because

existing file transfer mechanisms either were too complicated (e.g. protocols like rsync or scp that

require multiple round trips for authentication or synchronization of state) or were not reactive

53

enough to network outages. Our protocol simply transmits the name and length of the file in plain

text, followed by the file data, and the server acknowledges each successful transfer. File data is

pipelined on the network channel, but no persistent buffering is done at internal nodes, so transfers

can only occur when there is an available end-to-end network path.

In the dtn-files case, we used the dtnsend and dtnrecv applications to send the file data

through the overlay network as DTN bundles. This means that each file was sent as a single bundle,

so the choice of file size has an impact on the amount of overhead and the granularity of forwarding

operations. However, in the presence of link outages, these bundles could be reactively fragmented

and reassembled in the network.

In the dtn-tunnel case, we combined simple-ftp and DTN, configuring the dtntunnel ap-

plication at both the client and server to proxy the simple-ftp protocol traffic. In other words, the

simple-ftp client communicates with a dtntunnel instance on the first node using loopback TCP,

which then takes the received TCP data and sends it through the network as DTN bundles. These

bundles arrive at a dtntunnel instance running on the last node in the linear topology, which in

turn connects to the simple-ftp server over loopback which to receive the file data. The acknowl-

edgements then flow in over the reverse path.

In the sendmail case, we used an installation of sendmail [22] to transfer each file as the

body of an email message. Although we did not modify the sendmail source code, we did set the

per-node configuration to be more aggressive when dealing with link outages. Specifically, we set

the interval for scanning the mail queue to be every 5 seconds (instead of once per hour), the host

status timeout to also be 5 seconds, and set the SingleThreadDelivery option to limit the load on

each host and avoid performance problems resulting from multiple parallel network connections.

54

E2E

HOP

Figure 3.3: Emulab experiment setup showing the end-to-end and hop-by-hop configurations.

We ran all protocols in two configurations, illustrated in Figure 3.3. In the first (end-

to-end), we ran the above-mentioned protocol daemons only at the end hosts, and intermediate

hops simply performed IP forwarding. In the second case (hop-by-hop), all five nodes ran protocol

daemons. Specifically, for dtn-files and dtn-tunnel, we ran the DTN router at each node, configured

with static route entries to forward all bundle traffic to the next hop node in the topology. For

simple-ftp, we ran a simple user-space packet proxy [109] to forward TCP connections between

user-space processes on each host, but all application traffic still flowed between the first node and

the last node. Finally, for sendmail, we configured each next hop as a “smart relay” so that it would

forward mail in a chain from one node to another.

3.9.1 Overhead Comparison

In this first set of experiments, we set out to compare the performance of the various pro-

tocols on a continuously connected network to understand the overhead imposed by each protocol.

To examine these effects on a per-message basis, we generated source files of various sizes, rang-

ing from 10 Kilobytes to 1 Megabyte, and then measured the total time and bandwidth required to

transfer all the file data through the linear topology.

Figure 3.4 shows the time required, including both the time consumed while transmitting

55

the file data and additional protocol overhead, as well as time spent waiting for a response during

which the network was (at least partially) idle. The graph shows the comparison of the four protocols

described above, as well as the theoretical limit on an idealized network with zero latency and no

protocol overhead, calculated simply as the total data size divided by the link bandwidth (which in

this case was (10,485,760 * 8) / 128,000 = 640 seconds).

Figure 3.5 shows the network overhead as a percentage of the total bandwidth. Specifi-

cally, we measured the total amount of network data transferred over each link, divided that by the

number of links, and then compared the resulting average to the total size of all data files. Thus the

measurement conveys the relative amount of overhead applied by both the application protocol as

well as the TCP / IP / Ethernet headers. Both figures show results in each of the hop-by-hop and

end-to-end configurations.

Several conclusions can be drawn from this experiment. As expected, the simple-ftp

protocol has the lowest bandwidth overhead and close to ideal transfer times, due to the fact that

it is a very simple wrapper around the underlying TCP services. However reassuringly, in both

the dtn-files and dtn-tunnel case, the bundle protocol also has acceptably low overhead and is able

to make efficient use of the available network resources, including pipelining multiple message

transmissions. Although it does have slightly more overhead than the simple-ftp protocol, this extra

overhead is understandable since it includes full routing and other bundle metadata information in

each message. The sendmail protocol has the worst performance, due primarily to the high per-

message overhead imposed by the email headers.

In addition, both dtn-files and sendmail demonstrate the consequences of the store and

forward mode of operation. In particular, in both protocols, a node must wait to receive a full

56

0!

200!

400!

600!

800!

1000!

1200!

1400!

theory! simple-ftp! dtn-files! dtn-tunnel! sendmail!

T
o

ta
l
T

ra
n

s
fe

r
T

im
e

(S

e
c
o

n
d

s
)!

10K!

50K!

100K!

500K!

1M!

Hop by Hop Configuration!

0!

200!

400!

600!

800!

1000!

1200!

1400!

theory! simple-ftp! dtn-files! dtn-tunnel! sendmail!

T
o

ta
l
T

ra
n

s
fe

r
T

im
e

(S

e
c
o

n
d

s
)!

10K!

50K!

100K!

500K!

1M!

End to End Configuration!

Figure 3.4: Total time required for the different protocols to transfer 10MB of data split into on

varying file sizes in a fully connected scenario.

57

0%!

2%!

4%!

6%!

8%!

10%!

12%!

14%!

16%!

18%!

20%!

simple-ftp! dtn-files! dtn-tunnel! sendmail!

N
e

tw
o

rk
 O

v
e

rh
e

a
d

 P
e

rc
e

n
ta

g
e
!

10K!

50K!

100K!

500K!

1M!

Hop by Hop Configuration!

0%!

2%!

4%!

6%!

8%!

10%!

12%!

14%!

16%!

18%!

20%!

simple-ftp! dtn-files! dtn-tunnel! sendmail!

N
e

tw
o

rk
 O

v
e

rh
e

a
d

 P
e

rc
e

n
ta

g
e
!

10K!

50K!

100K!

500K!

1M!

End to End Configuration!

Figure 3.5: Network overhead added by the different protocols on varying file sizes in a fully con-

nected scenario.

58

message before it can begin transferring it to the next hop in the chain. This lag means that it takes

some time before the network can be fully utilized, which induces a performance limitation in the

hop by hop configuration that is evident on the larger files. Because the dtn-tunnel and simple-ftp

protocols use small message sizes regardless of the size of the original file, they do not suffer from

this symptom. This effect could be remedied with the use of proactive fragmentation in the dtn-files

configuration, resulting in comparable performance to the smaller message size experiments.

3.9.2 Intermittency Tolerance

In our second set of experiments, we induced various patterns of interruption to the links

in the experiment to compare the performance of the various protocols on an intermittent network.

We ran experiments on four patterns of link disruption, illustrated in Figure 3.6. For all

patterns, each link was up for one minute, then down for three. The difference between the patterns

relates to the relative offsets of the disruption period. In the aligned experiment, all four links were

brought up and down at the same time. In the shift experiment, we moved the start offset phase for

each link forward 10 seconds, shortening the amount of time that an end-to-end path exists. The

figure illustrates this effect by shading the periods when there is an end-to-end path. In the offset

experiment, the first and third links were brought up simultaneously while the second and fourth

links were down, then the pattern reverses. Finally, in the sequential experiment, the links were

brought up in order, one after another. Neither of these latter two cases ever has an end-to-end path.

We fixed the message size at 50K since the previous set of experiments showed that size

to have the most time/bandwidth parity between the various protocols. Also, to reflect the fact that

the disruption patterns reduce the overall network availability by one fourth, we reduced the total

file size to 2.5 Megabytes (i.e. 50 files of size 50KB).

59

Time

Link 0-1

Link 1-2

Link 2-3

Link 3-4

Co
nn

ec
tiv

ity
Aligned

Time

Link 0-1

Link 1-2

Link 2-3

Link 3-4

Co
nn

ec
tiv

ity

Shift

Time

Link 0-1

Link 1-2

Link 2-3

Link 3-4

Co
nn

ec
tiv

ity

Offset

Time

Link 0-1

Link 1-2

Link 2-3

Link 3-4

Co
nn

ec
tiv

ity

Sequential

Figure 3.6: Link uptime patterns for the intermittent connectivity Emulab experiments. Each link

was up for one minute and then down for three minutes.

60

Figures 3.7 and 3.8 show the total transfer time and bandwidth overhead of the protocols

on these various configurations, again in both the hop-by-hop and end-to-end modes. As in the

previous graphs, we also plot the theoretical best time to transfer all the data. We derived these

values by running a simple discrete event simulation that assumed zero latency, full pipelining,

infinite storage at each node, and no network overhead. We also re-plot the results from the previous

experiment on the fully connected network for comparison.

In the case of the aligned experiment, the transfer time graphs show that for the different

protocols, their relative performance roughly mimics that of the fully connected scenario. However,

almost all of the protocols have a notable performance gap of at least 220 seconds (more than 40%)

as compared to the theoretical best time. The one exception is that in the dtn-files protocol in the

end-to-end configuration, the gap is≈ 20 seconds. Although initially puzzling, further investigation

showed that the overhead imposed by the various protocols, although small, was enough to require

one additional link up/down cycle over the theoretical best, adding the 180 seconds of downtime as

well as the additional time to transfer the data. In the end-to-end dtn-files case, the protocol was

able to complete the transfer in the same number of cycles as the theoretical best, thus it only added

a small amount of time delay.

Examining the bandwidth consumed by each protocol, we see an interesting inversion

from the fully-connected scenario, in that the simple-ftp (and correspondingly dtn-tunnel) have the

most overhead, followed by dtn-files, and then sendmail. The main reason for this is that these

protocols are more aggressive at transmitting data without waiting for acknowledgements on each

transfer, thus each time a link goes down, a significant amount of data is discarded from the kernel

network buffers.

61

0!

200!

400!

600!

800!

1000!

1200!

1400!

1600!

1800!

2000!

Connected! Aligned! Shift! Sequential! Offset!

T
o

ta
l
T

ra
n

s
fe

r
T

im
e

(S

e
c
o

n
d

s
)!

theory!

simple-ftp!

dtn-files!

dtn-tunnel!

sendmail!

Hop by Hop Configuration!

0!

200!

400!

600!

800!

1000!

1200!

1400!

1600!

1800!

2000!

Connected! Aligned! Shift! Sequential! Offset!

T
o

ta
l

T
ra

n
s

fe
r

T
im

e

(S
e

c
o

n
d

s
)!

theory!

simple-ftp!

dtn-files!

dtn-tunnel!

sendmail!

End to End Configuration!

Figure 3.7: Total transfer time required for the different protocols under various intermittent network

scenarios.

62

0%!

10%!

20%!

30%!

40%!

50%!

60%!

70%!

80%!

90%!

Connected! Aligned! Shift! Sequential! Offset!

N
e
tw

o
rk

 O
v
e
rh

e
a
d

 P
e
rc

e
n

ta
g

e
!

simple-ftp!

dtn-files!

dtn-tunnel!

sendmail!

Hop by Hop Configuration!

0%!

5%!

10%!

15%!

20%!

25%!

30%!

Connected! Aligned! Shift! Sequential! Offset!

N
e
tw

o
rk

 O
v
e
rh

e
a
d

 P
e
rc

e
n

ta
g

e
!

simple-ftp!

dtn-files!

dtn-tunnel!

sendmail!

End to End Configuration!

Figure 3.8: Network overhead added by the different protocols on varying file sizes in the intermit-

tent connected scenarios.

63

The shift scenario shows the advantage of the store-and-forward approach. In this case,

the connectivity periods only overlap for half of the total uptime, thus the theoretical best time

to transfer in the end-to-end configuration is 1240 seconds, as opposed to 520 in the hop-by-hop

configuration. The various store-and-forward protocols, including both DTN variants and sendmail,

demonstrate this advantage, as they are able to achieve over double the performance when running in

hop-by-hop mode. The simple-ftp case always requires an end-to-end path, so its performance is no

better in the hop-by-hop scenario, and is actually slightly worse due to the longer latency imposed

by the application-level connection proxies. These effects are also pronounced in the bandwidth

overhead comparison, as the simple-ftp protocol wastes much more bandwidth than the others in

the hop-by-hop scenario.

The sequential and offset configurations show similar results. Because neither one ever

includes a fully connected end-to-end path, the simple-ftp protocol and all protocols in the end-to-

end configuration cannot transfer any data at all. Yet dtn-files can still transfer all data within 4% of

the theoretical best time. Furthermore, dtn-tunnel completes as expected, showing that the simple-

ftp protocol can be proxied over an intermittent network using the tunneling support. However,

because it requires end-to-end protocol exchanges (unlike dtn-files and sendmail which require only

hop-by-hop exchanges) the protocol takes longer to complete since the reverse path messages must

wait for additional link up/down cycles to be delivered and complete the exchange.

In general, these results demonstrate the value of the store-and-forward approach for un-

correlated outages. They also demonstrate that the DTN implementation functions robustly and

performs well on a variety of network conditions. Thus the data support our goal of creating a

platform for deployments of real world applications.

64

3.10 Conclusions

To conclude, the core goals of the DTN implementation espoused above are to provide a

framework for research and experimentation, to serve as a reference implementation of the protocol

and architecture for the DTN research community, and to be a platform for real-world deployments.

As a result, the implementation strikes a balance between flexibility, clarity, and robustness. Al-

though it is still very much a work in progress, our results have thus far been encouraging, and as

we discuss in the following chapters, the implementation serves as the base platform for various

additional techniques and approaches that we have developed to support applications in challenged

networks.

65

Chapter 4

Delay Tolerant Link State Routing

In this chapter, we discuss the design and development of Delay Tolerant Link State Rout-

ing (DTLSR), a routing protocol intended for use in intermittent network environments such as those

found in developing country settings. Perhaps ironically, one of the challenges in developing a ro-

bust DTN routing algorithm is the large scope of environments in which the DTN architecture is

applicable, some of which are mentioned above in Section 3.1. Although these and other environ-

ments can all gain advantages from the use of the DTN architecture, they display a wide range of

network connectivity and node characteristics, thus making it challenging to design a single routing

approach that will be likely to function well in each case. However, the DTN architecture does not

specify or mandate that any one specific protocol needs to be used for routing in all environments,

specifically due to the fact that the notable differences between various settings are likely to motivate

The DTLSR algorithms and the material presented in this chapter was co-authored with Kevin Fall. Some
of this work was previously published as “DTLSR: Delay Tolerant Routing for Developing Regions”, in the
Proceedings of the SIGCOMM Workshop on Networked Systems in Developing Regions Workshop (NSDR)
in August 2007 [32].

66

vastly distinct routing mechanisms and approaches. This fact means that the design and selection

of a routing protocol for particular DTN environment(s) can (and should in many cases) leverage

assumptions about the target environment.

For example, deep space networks are typically characterized by highly predictable net-

work contact opportunities, as satellites or other bodies follow a regular path of orbit and therefore

come into radio range according to a stable periodic schedule. A routing algorithm could effectively

take these schedules into account and create a predictive plan for when and where to move data that

is likely to be effective, given that the contact schedule is reliable. In contrast, in a highly dynamic

environment comprised of mobile nodes, a predictive approach is unlikely to be successful, since

the prior history of where a node may have been does not necessarily indicate where it is going

to be in the future. Instead, other approaches that are reactive in nature and/or employ message

replication are likely to be more effective at delivering messages in a dynamic environment.

In this work, we restrict our focus to a particular set of network characteristics that we

found to be typical of rural areas in developing regions. Specifically, these observations are based

on our research group’s experiences deploying and investigating the use of wireless networks in

countries such as India, Cambodia, Rwanda, Uganda and Ghana. Although these and other de-

veloping regions environments experience intermittent connectivity due to a variety of reasons, in

many cases they share an important characteristic: that the network topology has an underlying

stability. In other words, any dynamics in the network generally result from occasional link failures

due to power outages, congestion, or interference, as opposed to unpredictable node mobility. This

means that the set of neighbors for any node tends to be small and does not change frequently, two

characteristics which we can leverage when designing a routing algorithm.

67

To take one example, a common technology deployment scenario involves a small number

of fixed computers in an information center or kiosk, connected to the Internet using a dialup modem

or a satellite link. In prior work, we examined two such scenarios: the Cambodia Information

Centers and the Busy Internet Cafe in Ghana [38]. Both cases experience network outages due to

a variety of causes, including unmanageable congestion, signal loss, and unreliable power supplies,

and these outages create a network partition between a subset of the network (the computers in the

center) and the rest of the Internet or extended LAN. Yet once the outage is repaired, the topology

remains essentially the same as it was before the loss of connectivity, since no nodes have actually

changed their physical or logical connections. Similar network dynamics exist in long distance

wireless (WiLD) networks [91]. In these cases, interference and/or unreliable power can cause

temporary link outages, but the physical placement of towers and directional antennas means that

neighbor relationships between routers are fixed over the long term, even if connectivity between

them fluctuates.

Even in cases where connectivity is provided by ferrying data (i.e. Daknet-style data

mules), the network dynamics that result from the node mobility have a significant predictability, as

the mobile routes are typically known in advance. Because the vehicles travel on the same path each

time, and visit the same set of end points, they have a contact regularity that does not really fit into

the mobile ad-hoc networking (MANET) model of a mobile node, which is generally characterized

as having more random mobility. Indeed, from the perspective of a DTN routing algorithm, a link

to a mobile node that regularly arrives once per day is essentially indistinguishable from an dialup

link that regularly connects and disconnects according to the same schedule.

Thus, in contrast to highly mobile or unstructured environments, many networks in devel-

68

oping regions have a comparatively stable and predictable underlying topological structure. Despite

periodic link outages, the relationships between nodes change rarely, and the network topology is in

fact more akin to classical wired networks than to MANETs with random node mobility patterns. In

this work we leverage this insight to develop a simple and effective routing protocol for these types

of intermittent networks in developing regions.

4.1 Routing Protocol Design Space

To begin designing our routing protocol, we first examine existing approaches on which

we can base our designs. In general, our goal is to develop a protocol that simultaneously provides

good performance for the above-mentioned environments, yet also avoids unneeded complexity.

Thus in our effort, we first examine well-known standard distributed routing approaches, then turn

to more recent MANET routing protocols, and finally discuss contemporary DTN routing protocols

on which we can draw to help guide our developments. In the following discussion, we point out

the ways in which we can leverage existing protocols and mechanisms whenever possible, only

augmenting them where we believe the benefit to be substantial.

4.1.1 Standard Approaches

Standard well-known distributed algorithms for routing include distance vector, path vec-

tor, and link state. In distance vector routing protocols (e.g. RIP [57]), nodes advertise a list of

(destination, distance) tuples to all their neighbors. Upon receiving an advertisement from a neigh-

bor, a node calculates its distance to the neighbor from which the advertisement was received, and

adds that computed distance value to each of the distances in the advertisement. The node then

69

compares these newly received values with the route distances that are in its current routing table.

If it finds that any of the new routes are better (i.e. lower distance) than routes that it is currently

using, then the node replaces its own route to use the new next hop neighbor. It then re-advertises

its table to include the new route distance. Path vector routing (e.g. BGP [136]) uses essentially

the same approach, only the advertisements consist of a list of (destination, distance, path) tuples,

which helps to simplify loop detection by including the full path. For the purposes of the rest of

this discussion, distance vector and path have fundamentally the same characteristics, so we discuss

distance vector without loss of generality.

A node’s correct distance vector or path vector operation depends on the correctness of

routing tables present at its neighbors. Because nodes provide only their chosen next hop (or in

path vector routing, their chosen path) for each destination, selecting an appropriate path requires

the use of a common routing metric at all participants in the routing graph. Failure to use the same

metric can lead to loops or dead-ends. Still, distance vector routing is popular due to its simplicity.

Early versions computed a single shortest path for each destination based only on the node hop

count, though more sophisticated variants (e.g. EIGRP [3]) include alternate metrics and multi-path

routing. Other concerns with distance vector routing generally include scalability and convergence

time problems. In particular, because changes are propagated by (re)announcing an entire routing

table, these changes need to be processed by each node (taking some time) and then re-advertised

(taking some more time).

In link state routing protocols like OSPF [81], each node learns the whole network topol-

ogy and independently computes its preferred next hop(s). In this approach, when a link becomes

available or goes down, a node transmits a link state announcement (LSA) to communicate the new

70

state of the link as well as other optional information relating to a node’s state (e.g. buffer occu-

pancy, location, etc.). LSAs are flooded throughout the network so that all nodes eventually become

aware of the entire network topology. This means that nodes can base routing decisions on all avail-

able paths in the network, not just the single chosen next-hop/path for a given destination. Although

atypical in practice, the use of some form of source routing [98] could mean that a node could make

a full path decision based on the observed link state information, even if other nodes along the path

might have made different decisions. The major drawbacks of link state routing are mostly issues

of scalability, as each node must store the full network graph and recompute paths after link state

modification. A common technique to improve scalability is to divide the network into sub-regions

(such as in OSPF areas [81]), using different protocol instances in each region and an inter-region

protocol to span the divisions.

4.1.2 MANET Routing

Mobile ad-hoc network (MANET) routing targets situations in which mobile nodes act

as routers. Despite the mobility in the environment, these approaches generally assume that some

network path exists between any sender and receiver at all times. Thus the goal of the routing

algorithm is to find the path through the mobile network.

MANET routing schemes fall broadly into two major categories: proactive and reactive.

Proactive protocols such as OLSR [21] and DSDV [94] compute and maintain route tables at all

times, as is typically done by traditional protocols on fixed-node networks. On the other hand,

reactive protocols such as AODV [93] and DSR [65] only compute a route to a destination when

traffic for the destination is ready to be sent. Comparing the two approaches, proactive protocols

must in some cases consume a large amount of network resources to maintain the routing tables,

71

even though many routes may not be needed by any application traffic. This mean that reactive

protocols can save network resources by not advertising routes that are never used, however initial

traffic for a new destination must in some cases be delayed while the route discovery process takes

place on-demand.

Distance vector, link state, and source routing approaches have all been used in MANET

contexts. In each case, the goal of the routing protocol is to determine an immediately available path

from source to destination. In areas where node coverage is dense, this is an appropriate goal, since

some path is likely to exist, and the challenge is to find it. For rural areas in developing regions,

however, a path may or may not exist, thus the protocol needs to be able to gracefully handle the

case where one does not. Thus while MANET routing tends to focus on selecting paths from many

options, we are instead interested in efficiently making effective use of the few paths that may be

available.

4.1.3 DTN Routing

In cases where an end-to-end path does not exist between a source and destination, nei-

ther standard nor MANET routing protocols will suffice. As a result, a number of proposals for

DTN routing have recently surfaced. These schemes do not assume that an end-to-end network path

necessarily exists at a given instant, but rather that such paths(s) exist over time, allowing a store-

and-forward network framework to deliver messages using those paths. In addition, the algorithms

take into account the fact that routing information is not assumed to be 100% accurate, given the un-

certainty involved with predicting node contacts in an intermittent environment and the potentially

significant propagation delays inherent in the network. This means that in many cases, the routing

algorithm may provide only a probabilistic chance of successfully delivering a message. In some

72

cases, message replication is used to enhance delivery probability. Due to the richness and apparent

novelty of the DTN routing problem, it has been a very active area of research. Although numerous

routing designs have been proposed, few have been used in practice. Here we briefly discuss a few

that have.

The simplest design for a DTN routing protocol is flooding or epidemic routing. In this

scheme, as nodes come into contact with each other, they exchange the set of known messages. As

additional nodes become reachable due to mobility or link availability, additional copies are made

and distributed. Some protocols include mechanisms for purging unnecessary copies of messages

from the network once a message is delivered. Because of the high overhead of this strategy, they

are generally deemed to be too expensive for practical use, although they have been used for small

networks (e.g. in Zebranet [67]).

The Prophet routing protocol [74] modifies the epidemic strategy by estimating the like-

lihood that a potential next hop will be able to successfully deliver a packet to the destination,

based on its previous behavior. The protocol only replicates a message if this probability exceeds

a threshold, which helps to limit the replication overhead by selecting the most promising node(s)

for replication. Prophet has been used in a real deployment to provide basic Internet access (web,

email) for Reindeer herders in northern Sweden [37].

Maxprop [13] and RAPID [5] are two protocols that have been used in the context of

DieselNet [137], an experimental network in Amherst, MA. This network includes a set of mobile

nodes (on city buses) that follow routes throughout the city and communicate with each other and

with fixed nodes deployed throughout the environment. The protocols rely on distributed algorithms

that optimize delivery using constrained replication, taking into account the limited node storage and

73

bandwidth resources of the network. As is the case with MANET protocols, Prophet and the two

DieselNet approaches assume a fairly random connectivity graph, unlike the networks we typically

see in developing regions, and the protocols reflect this assumption in their structure.

Finally, in work that is most closely related to ours, Seth et al. [104] propose an architec-

ture for connecting rural kiosks in developing regions. Their approach uses a combination of DTN

routing over regular bus routes, and proxies connected to the Internet that use a distributed hash

table for mobile node location. The authors suggest that one limitation in their current system is the

lack of a deployable DTN routing framework, for which this work can serve as a complementary

component.

4.2 DTLSR Design

Although this range of routing approaches offers several starting points from which we

could base a design for DTLSR, we believe that a modified standard link state approach offers the

greatest flexibility and suitability for our needs. In this section, we discuss some features of link

state that make it attractive as a base design for DTLSR, then discuss the modifications that we

made to the basic algorithm.

4.2.1 Features of Link State

Link state announcements (LSAs), by definition, convey the connectivity status of nodes

in the network. When aggregated, the current set of LSAs provides a complete picture of the topol-

ogy. Therefore, collecting and examining LSAs over time gives a time evolution of the network

topology and connectivity graph, which is precisely the information needed to compute DTN paths

74

over time and multi-path routes. It is also useful to make predictions about future link uptimes

based on past history, even for links that are not used in any actual routing paths. In addition, LSAs

can easily carry additional information that may be of interest. For example, LSAs could include

buffer occupancy information in the medium-term storage used by the DTN forwarding protocols.

That way a shortest path computation can be weighted based on both link availability and buffer

occupancy, as suggested in prior work on DTN routing [64].

Although MANET-style link state routing approaches may be useful for the connected

components of a network topology graph, there are two main reasons why we do not choose to base

our design on protocols such as OLSR [21]. First, these protocols are typically designed for large

scale with many nodes, which is not characteristic of the types of networks we find in developing

areas, which tend to have smaller numbers of nodes in sparser deployments. More importantly,

the protocols are designed for networks with end-to-end connectivity at all times. Therefore, these

protocols are both more complicated than we require in terms of scaling, and yet insufficient to

select routes over time, as we desire for DTN routing.

Turning to the DTN routing approaches, much of the existing work is targeted at sup-

porting opportunistic connectivity and involves message replication. Given that our scenarios do

not typically involve much node mobility, and that the mobility that does exist is relatively periodic

(e.g. buses), the benefit of replication seems limited. Also, message replication has a well-known

cost in terms of network and storage resources, both of which may be constrained. Thus, even

though algorithms such as RAPID or MaxProp may be adequate for our target networks, a simpler

and more efficient approach is to modify a standard link-state algorithm.

In choosing link state as the basis for a DTN routing algorithm, we inherit some other

75

appealing properties of link state routing. For example, in connected portions of the network, LSAs

are propagated relatively quickly, leading to fast convergence times. Also, the size of each LSA

message is limited, as the size of most networks we have found to date are small (significantly

fewer than 100 nodes). This means that LSAs can be efficiently and rapidly distributed throughout

the network.

Furthermore, if we were to augment nodes with an ability to forward data based on tags

or full source routes, then link state would enable a network to support multiple forwarding paths

simultaneously based on varied routing metrics (e.g. based on message size, priority, message

content). Following this approach, a node could calculate multiple paths through the network using

the link state database, and for each path, tag a message or set of messages accordingly, perhaps to

flow on different routes for different metrics. This feature would be notably more complicated to

implement in an approach like distance vector, since all nodes would have to agree on the metrics

to use for the various routes.

Link state also has two practical features that are of interest in field deployments. First,

because nodes build an entire topology picture, remote management and network configuration is

simpler relative to other schemes, as the entire network topology can be obtained by interrogating a

single node. Also, the control network carrying LSAs need not necessarily be the same network that

carries message data. This separation can be useful in scenarios where low-bandwidth information

can be cost-effectively and efficiently transferred by other means (e.g. by SMS), yet data traffic

cannot.

76

A B C A-B

B-C
time

c
o
n
n
e
c
ti
v
it
y

Figure 4.1: Example illustrating a three node network with no contemporaneous end-to-end path.

4.2.2 Modifying Standard Link State

Yet simply adopting an off-the-shelf link state routing algorithm is insufficient to solve our

target problem. Consider the example network fragment shown in Figure 4.1, and the associated

time/connectivity graph. In this case, there is no point in time in which there is a fully available end-

to-end path between nodes A and C. However, the store-and-forward operation of DTN can clearly

forward a message from A to B, then queue it at node B, waiting for the B-C link to become active.

Because conventional data packet forwarding drops messages when there is no next hop route,

conventional routing protocols would not consider this path to be viable. Instead, when links are

down, they are removed from consideration for routing (i.e. partitions imply prior failure). Thus,

a traditional route computation would never discover the fact that with store/forward, a message

could be conveyed from A-B-C just fine.

Our goal is to modify standard link state routing to take advantage of the fact that that

even though a link may not be available currently, it may become available in the future. The

routing algorithm can leverage this prediction to find a viable path over time, incorporating both

the links that are currently available as well as those that will (likely) become available in time to

be useful for the message transfer. For our networks of interest, the future probability a link may

become available is likely to be related to its past history. Thus we first need to modify the shortest

77

path computation to take this prediction into account when discovering viable paths.

A second challenge is that we need a distribution mechanism for LSAs that handles the

fact that the network may be partitioned. In particular, we may need to queue LSAs within the

network, waiting for a link to open, so that nodes on the other side of a partition can be properly

informed of a link state change. Otherwise, a partition might mean that portions of the network

are never fully informed about the link states on the other side of the partition. However, since

the link state may change again while an LSA is still queued at a network partition, we also need

a mechanism to expire stale LSAs within the network to avoid unnecessary recomputation. In the

next section, we discuss the details of our proposed protocol and how we achieve these goals.

4.3 The DTLSR Protocol

As mentioned above, DTLSR is modelled closely on classic link state algorithms. At a

high level, as the connectivity state changes, link state announcements are flooded throughout the

network. Each node maintains a graph representing its current view of the state of the network,

and uses a shortest path computation to find routes for messages. In our implementation, we use

a multi graph structure (since nodes may be connected via one or more links) implemented using

STL data structures, and use Dijkstra’s algorithm to implement the shortest path computation. The

data structures and algorithm implementation have a parameterized link weight function to enable

experimentation and comparison with other approaches.

78

LSA sequence number

Link 1 State

Link 2 State

...

Link N State

seqno

peer eid

link identifier

elapsed time

link state

cost

estimated delay (ms)

estimated bandwidth (bps)

queue count

queue length

Figure 4.2: Format of the LSA messages used in the DTLSR protocol.

4.3.1 Messages and Flooding

Link State Announcement (LSA) messages convey the network connectivity for a node

in the system. Figure 4.2 shows the format of LSA messages, each of which contains a sequence

number and a vector of link state information. The per-link information includes the next hop des-

tination EID, a unique per-node identifier for the link, the time elapsed since the last LSA update,

the link state (up or down), configurable link cost, measured (or configured) bandwidth and latency

estimates, and bundle queue occupancy information, including both a count of bundles in the queue

as well as the total size of all bundle application data units. In our current implementation, we in-

clude the full set of link information in each LSA update, and do not separate the vector of current

neighbors from the details about each neighbor, as some other approaches (like OSPF) do. LSAs

are transmitted through the network as DTN bundles. Thus to identify which node’s links are repre-

sented in an LSA, we can examine the metadata information in the bundle structure that identifies,

among other things, the source EID of the DTN node or application that generated the bundle.

79

Unlike some classical approaches, we do not rely on the link state announcements to

determine the next-hop neighborhood relationships. Because DTN is an overlay network, the dif-

ferent transports (called convergence layers) may have protocol-specific mechanisms for discover-

ing nearby nodes. This means that the convergence layers is responsible for issuing upcalls to the

routing layer when connectivity is detected (or lost) between nodes. The routing layer is thus re-

sponsible only for distributing this connectivity information throughout the network, not necessarily

for discovering neighbors. Thus DTLSR relies on the convergence layer to provide an indication if

a link is available (or closed) rather than depending on the reception of an LSA to determine this

fact. This design also helps DTLSR to cope more naturally with unidirectional links, over which

LSAs are never received.

To efficiently distribute these messages throughout the network, we implemented a con-

strained flooding algorithm within the DTN bundle forwarding layer. The goal of this algorithm

is to flood the LSAs throughout an administrative area (discussed below in Section 4.3.4) effec-

tively and efficiently , queueing the update messages in case there are any partitions. In our cur-

rent implementation, LSA messages are sent as bundles with a wildcard destination of the form

dtn://*/dtlsr?area=xyz. As mentioned above in Section 3.5.1, the bundle protocol uses URIs

for naming, and our implementation supports a simple wildcard pattern matching mechanism when

using the ’dtn’ scheme, following a convention of dtn://nodename/service?parameters. In this

way, the bundle is forwarded to all adjacent nodes (due to the * wildcard), where it is delivered to

the router application (due to the dtlsr service). The nodes then examine the destination EID of

all arriving LSA messages to determine whether the sender is in the same or a different area. If the

areas match, the bundle is then forwarded on to all other peer nodes, eventually reaching all nodes

80

in the area. If the areas do not match, then the bundle is not forwarded onward, as discussed further

below.

4.3.2 Update Frequency / Expiration

In traditional link state routing, nodes are responsible for both determining reachability to

their immediate neighbors and for implementing a flooding protocol to distribute LSAs throughout

the network. Thus when a new link is established or a partition is healed, nodes on either side of

the link learn of each others’ reachability when they receive acknowledgments for their queries (e.g.

the OSPF HELLO protocol). If a node A fails to hear enough HELLO responses from its neighbor

node B after some time, A infers that the link between A and B is down and updates its link state

tables accordingly.

In contrast, DTLSR operates in a DTN, where nodes are assumed to have long-term stor-

age they can use for store-and-forward operations on messages even when some links are down.

Thus a traditional scheme that relies on protocol timeouts and declares that a link is down might fail

to handle long-term link outages effectively. As mentioned above, a path may be a valid DTN route

even if it does not provide current connectivity to a particular destination, and the lack of recent

reception of messages from a neighbor does not imply that the link to that neighbor is necessarily

down.

Thus, the first major distinction between our algorithm and conventional LS approaches

is that in DTLSR, LSAs are sent with very long lifetimes (on the order of hours or even days), and

all nodes maintain a persistent cached copy of the most recently received LSA from all other nodes

in the area. In this way, nodes will queue all LSA updates in case of a network partition. When a

link is established to a neighbor, the flooding process checks whether or not each cached message

81

needs has already been sent to (or received from) that neighbor, and if not, the LSA is sent to the

neighbor.

This feature means that a node does not need to periodically rebroadcast LSAs to ensure

propagation to all nodes. Regardless of what the network connectivity state is when an LSA is gen-

erated, all eventually reachable nodes will receive all LSAs, though it may take some time to wait for

partitions to heal. Therefore a DTLSR node only needs to generate an LSA when it determines that

there is some new information to convey that could affect the route weight computations (described

below). In our current implementation, we only send LSAs in response to link state changes, and

all LSAs have a lifetime of one year. We also implemented a simple damping mechanism to avoid

repeatedly sending bursts of LSAs when topology changes do occur. In this way, multiple link state

modifications may be batched into a single LSA update.

4.3.3 Calculating Best Paths

Calculation of shortest (or “best”) paths using conventional LS routing is straightforward.

If a path is currently available between two nodes, then metrics such as hop count work adequately

for many situations. The challenge for DTLSR is determining how to utilize paths that may not be

available at the time when a node needs to make a routing decision, but which may be available

before a message expires. Building on conclusions from prior work on DTN routing [64], we

chose to focus on minimizing the expected delay for all messages as a proxy for maximizing the

overall delivery rate. However, because a node may have an incomplete or inaccurate view of the

network, we modify this approach and instead aim to achieve the minimum estimated expected

delay (MEED), introduced by Jones, et al. [66].

When computing paths, a DTLSR node can use local knowledge about link connectivity,

82

queueing, and traffic, the current snapshot of the state of the rest of the network as obtained from the

set of most recent LSAs, and historical data conveyed in LSAs or recorded and calculated locally.

From this information, the node calculates an estimate for the delay that it would take to forward

a message using a particular path, and then selects the path with the minimum delay. Although

historical information may be of value in accurately predicting the expected delay in some scenarios,

in our current prototype, we use a simple heuristic that relies only on the most recent network

snapshot.

In this heuristic, we distinguish between links thought to be available from those thought

to be down when calculating paths. For available links, the delay to send a message on a link

includes the time to first drain the link queue, then the latency incurred by the transmission of the

message on the link, as we assume simple FIFO forwarding queues are used at all nodes in the

network. Thus based on estimates of the number of messages in the queue (queue count) and the

total size of all messages in the link queue (queue length), the per-message latency of the link

(latency) and the bandwidth of the link (bandwidth), we calculate the estimated delay as:

delay i f open = queue count× latency+
queue length
bandwidth

For unavailable links, we estimate the delay based on a simple heuristic that captures the

belief that links which have been down for a long time are likely to remain down for a long time,

while links that have only recently become unavailable are likely to come back again after a short

delay. Thus we calculate the estimated delay as the maximum of the result of the above equation (i.e.

the estimated delay if the link were open) and the current duration of the outage (outage duration),

capped at 24 hours:

delay i f down = min(max(delay i f open,outage duration),24×60×60)

83

These heuristics allow us to easily include a time dimension when computing the best

path. Thus the key distinction between DTLSR and conventional LS routing with respect to best

path computation is that in DTLSR, even links to currently unreachable nodes are eligible compo-

nents of best paths. In fact, they may be preferred over links that are currently open but have a large

backlog of bundles already queued on them, hence a long propagation delay. In contrast, classical

link state routing removes unavailable links from path consideration, and thus can only compute

paths that are available at the time of route computation.

4.3.4 Administrative Areas

Borrowing a similar idea from OSPF [81], each node in the system is assigned to an

administrative area. A DTLSR instance operates only within a single area. Areas help to both

constrain the size of the network graph and limit the scope of announcement messages. Nodes that

have neighbors in other areas learn the set of endpoint identifiers reachable via the other area, as

they receive LSAs from the nodes in the area. When receiving LSAs from another area, instead

of forwarding the LSAs onward, the nodes instead announce themselves as a gateway to those

endpoint identifiers by adding “virtual links” to the LSA message generated by the node. These

virtual links convey the connectivity to nodes in the given area, and the node including estimated

costs and bandwidth information based on the paths computed by the routing functions.

For example, suppose an access network of WiLD links is connected via a single gateway

node to an intermittently connected set of villages that communicate using mobile bus routers. In

this case, all paths that bridge the two networks must pass through single gateway node. Propa-

gating the (potentially many) link state announcements across the gateway link is unnecessary and

potentially wasteful of crucial network resources, since all paths from the WiLD network to the

84

bus network must use the single gateway link and vice-versa. Thus the node at the bridge between

the networks would maintain two routing graphs, one for the WiLD network and one for the bus

network. When generating an LSA to transmit into the WiLD network, the gateway would include

links to all EIDs reachable in (or through) the bus network, calculating estimates for the latency,

bandwidth, and queue occupancy based on the full path information through the network. Similarly,

the gateway would announce reachability for the WiLD network EIDs into the bus network.

4.3.5 Local Advertisements

Multiple applications may use the services of a single DTN node via its IPC-based ap-

plication interface (Section 3.7). For those applications that want to receive bundle traffic, DTLSR

needs to distribute enough information throughout the network such that bundles that are destined

for those applications are appropriately routed to the DTN node to which the application is attached.

However, the generality of the DTN naming structure means that applications have a great degree

of freedom in choosing the EIDs that they use for communication. Although in some cases, they

may choose EIDs that derive from the administrative EID used by their attached node, in others

they may not. For example if a DTN node is assigned the EID dtn://apple.dtnrg.org, then an

application can select a unique service name and attach it to the node’s unique identifier. In this way,

it would use dtn://apple.dtnrg.org/pippin for its bundle traffic, but it need not, and could in

fact could use EIDs in other schemes, such as mailto:someone@somewhere.com. DTLSR needs

a mechanism to distribute routes so that application traffic is appropriately routed in both of these

cases.

To handle the former case, any time an LSA is received from a node whose administrative

EID (i.e. the source EID of the LSA bundle) is in the dtn: scheme (e.g.dtn://nodename, we

85

use the wildcard pattern matching mechanism and install a route for dtn://nodename/*. Thus

without any additional mechanism, any application traffic that follows the convention of using a

node’s administrative EID, augmented with a service demultiplexer, will be appropriately routed.

To handle the case where application EIDs are not derived from the node EID, we aug-

ment the LSA advertisement with additional “links” to represent the interaction with each attached

application. For these simulated links, we set the LSA parameters in such a way that the cost of the

link (i.e. the estimated delay) is zero. This way we have no need for an additional mechanism to

set up routes to locally attached applications, as the same shortest path algorithm can be effectively

used. In fact, this approach is also effective at properly routing traffic for applications that migrate

(slowly) from one DTN node to another. In this case, an LSA would indicate that the old “link”

is down, since the connection between the application and the first DTN node is no longer active.

Then when a new connection is made at another DTN node, it would also generate a new LSA to

represent the new attachment point for the application.

4.4 Evaluation

We implemented the DTLSR protocol in C++ as a routing algorithm in the DTN imple-

mentation described above. All communication, for both application traffic and LSAs, is performed

using DTN bundles. Using bundles to carry LSAs allows the algorithms and protocols studied to

be deployed in a variety of operating environments, thanks to the DTN implementation’s support

of various underlying transport protocols. This decision also allows us to compare the behavior of

DTLSR with conventional LS routing approaches, and to evaluate the various heuristics by using

different values for the DTN bundle lifetime field and the weight computation.

86

Figure 4.3: Map of the Aravind wireless network used as a basis for the simulation experiments.

More specifically, using short data bundle lifetimes (relative to link down times) emulates

Internet-style forwarding, since the bundles will not be queued for long in the DTN node storage

during link outages. In contrast, sending messages with long lifetimes uses DTN’s long-term store-

and-forward capability to queue messages and wait for a partition to heal.

Also, we added support to the implementation to allow selection of different link weight

functions used for route computation. In this evaluation, we compared two functions: the first,

called LSR in this discussion, assigns a constant weight to links that are up and an infinite weight

to links that are down. This function emulates the behavior of classic link state routing approaches

based on hop count that do not locate paths that include links that are down. The second (DTLSR)

is the weight function described above in Section 4.3.3 that estimates the delay for each link based

87

on link characteristics, queue occupancy, and downtime estimates.

4.4.1 Protocols Compared

In the following discussion, we describe various algorithms using the notation FN[Eapp
lsa].

FN is one of the two weight functions (LSR or DTLSR) mentioned above. The Eapp superscript

parameter describes the lifetime of application messages used in the scenario. Modifying this pa-

rameter allows us to select Internet-style forwarding or DTN-style store-and-forward operation.

The Elsa subscript expresses the lifetime of LSA messages. This parameter allows us to explore the

efficacy of the LSA caching design. The following discussion compares four algorithms:

The LSR[E30sec
5sec] algorithm is most akin to classical link state routing and Internet style

forwarding. LSA messages have a short lifetime of five seconds. They are broadcast after each link

state change and also periodically every five minutes. The periodic broadcast is needed to distribute

LSAs that failed to reach all nodes due to network partitions. As mentioned above, the LSR weight

function only chooses paths that are known to be up, so this algorithm will only be able to route to

the currently connected component of the network. Furthermore, the lifetime on each application

message is set to 30 seconds, so a message is only delivered successfully if the system finds a

connected end-to-end path from the source to the destination at the time when the message was sent

or soon thereafter. We expect this algorithm to do poorly, as it cannot take advantage of the DTN

long-term store-and-forward capability.

In the LSR[E12hr
5sec] algorithm, we use the same LSR weight function and LSA parameters

as the previous algorithm, but increase the application message lifetime to twelve hours. These

parameters exercise the DTN store-and-forward mechanisms, but still use traditional routing ap-

proaches that require a fully connected end-to-end path. In this scenario, though, a router may

88

queue application messages at the source for some time, waiting for a route to be found. However,

application messages are only forwarded if the router finds an available end-to-end path.

In the LSR[E12hr
1yr] algorithm, we use the same weight function as before, but adopt the

changes described in Section 4.3.2 by increasing the LSA lifetime to one year (essentially infinite

for the purposes of these experiments). Nodes store the most recent LSA received from all other

nodes, so when a partition is repaired, LSA updates that were queued on one side of the partition are

immediately forwarded to the node(s) on the other side of the partition. We therefore only need to

send new LSAs when link state changes occur, and remove the periodic five minute LSA broadcast.

Finally, the DTLSR[E12hr
1yr] algorithm also sends LSAs with a one year lifetime, but uses

the DTLSR weight function that computes the expected delay of the link, as described in Section

4.3.3. This algorithm demonstrates the core value of our approach, as it may select paths that include

links that are down at the time of route selection but are believed to come up again in the future,

before the application message expires.

4.4.2 Simulation Scenario

As discussed above in Section 3.8, the DTN implementation can be deployed in the field

as a routing daemon, and also compiled into a single process discrete event simulator. For this eval-

uation, we used the simulation capability to run experiments modeled on a long-distance wireless

network that our research group has deployed to connect remote rural vision centers with the Ar-

avind Eye Hospital in Tamil Nadu, India [114]. Figure 4.3 depicts a map of this network, including

the distances between the five centers, each of which is connected to the central hospital in Theni

using wireless relay nodes. The goal of this set of experiments is to compare the performance of

DTLSR to a traditional link state routing algorithm on varied network connectivity scenarios.

89

In the simulations, we fixed the bandwidth for each wireless link at 1Mbps and 10ms

latency. We then bring the wireless links up and down randomly so that we achieve a desired average

uptime percentage. We then vary this percentage for the different experiments to simulate a range

of connectivity scenarios. We configured a simulated traffic generator to send a 64KB application

message once per hour from each center to all other centers. All message activity, including both

application messages and LSA updates, was logged at each hop. We then calculated the end-to-end

delay for each message that was delivered successfully. We simulated one month of operation for

each experiment.

In addition to the experiments on the simulated wireless links, we also ran experiments in

which we simulated bus nodes that travelled between the hospital at Theni to each of the vision cen-

ters. The parameters were set such that the drive takes two hours, the bus lingers at each center for

five minutes to transfer data in and out of the center, and when connected, the bandwidth between a

bus and a center is 100Mbps with negligible latency. We assume buses always reach their destina-

tions, and have no storage limit. Thus, in this scenario, if a router were to always forward messages

using the buses, all messages would ultimately be delivered, but only after a relatively long delay.

Also, only the DTLSR algorithm can take advantage of these links, as discussed in Section 4.2.2.

We therefore only plot results for the buses using the DTLSR algorithm, as the other schemes have

identical results with or without the buses.

4.4.3 Delivery Results

Figure 4.4 shows the message completion ratio, defined as the percentage of the transmit-

ted application messages that arrived before they expired or the simulation time ended, as we varied

the average uptime of the wireless links.

90

0%

20%

40%

60%

80%

100%

0% 20% 40% 60% 80% 100%

Link Uptime Percentage

M
es

sa
g
e

C
o
m

p
le

ti
o
n
 R

at
io

LSR[E30sec
5sec]

LSR[E12hr
1yr]

LSR[E12hr
5sec]

DTLSR[E12hr
1yr]

DTLSR[E12hr
1yr]

(with bus)

Figure 4.4: Results showing the message delivery percentage for various routing algorithms on the

simulated Aravind network.

As expected, LSR[E30sec
5sec] exhibits poor performance when the link quality is low, but

improves exponentially with increased link uptime percentage. This result is expected, because the

probability of delivering a message using this algorithm depends on all links along the path being

up at the same time. In this experiment, routing cannot use the DTN store-and-forward capability

effectively because application messages expire too soon.

In the LSR[E12hr
5sec] experiment, application messages can be queued for relatively long pe-

riods of time at the source node. This approach successfully delivers a large percentage of messages

when the average link uptime is at least 60%, because the probability is quite high that an end-to-end

path will be found before a particular message expires. However, the delivery ratio declines sharply

as the link uptime percentage declines below 60%, resulting in a very low message completion rate

91

with a link uptime percentage of 20% or less.

The LSR[E12hr
1yr] algorithm shows virtually identical delivery results, though it requires

much less LSA traffic to update its routing state since LSAs are not sent periodically with high

frequency (results not shown).

In DTLSR[E12hr
1yr], we demonstrate the core value of the DTLSR algorithm, as it can lever-

age its estimate of when a down link may come up in the future, so that it need not wait for all links

along the path to be up in order to find a path. Instead, it predictively forwards messages along the

expected best path. Thus, as shown in the figure, DTLSR exhibits much better performance when

link quality degrades, delivering close to 80% of all messages even with only 30% link uptime.

Finally, when we add the buses to the environment, DTLSR recognizes when the wireless

network is performing poorly and shifts traffic to the buses instead. This results in high message

completion ratios regardless of the wireless link uptime percentage. The initial decline in per-

formance of DTLSR with buses between 0% and 10% link uptime percentage is the result of an

imperfect route prediction algorithm; when the wireless network is very bad, DTLSR sometimes

makes the wrong decision to use a wireless link as opposed to waiting for the bus. However, overall

the heuristic seems to perform fairly well.

4.4.4 Delay Results

As mentioned above, in this experimental scenario, the routing algorithm could have

achieved 100% delivery by using the buses all the time. However, this choice would have a negative

effect on the average message delay, since it would never use the low latency wireless links, even

in cases where the link quality was good. Thus in Figure 4.5, we show the average time that each

application message remained in the system, as a function of its lifetime. In other words, messages

92

0%

20%

40%

60%

80%

100%

0% 20% 40% 60% 80% 100%

Link Uptime Percentage

A
ve

ra
g
e

D
el

iv
er

y
D

el
ay

 /
 L

if
et

im
e

LSR[E30sec
5sec]

LSR[E12hr
1yr]

LSR[E12hr
5sec]

DTLSR[E12hr
1yr]

DTLSR[E12hr
1yr]

(with bus)

Figure 4.5: Results showing the percentage of a message’s lifetime that it spent in the network for

various routing algorithms on the simulated Aravind network.

delivered shortly after they were generated would spend only a small fraction of their lifetime in the

network, while expired messages spent 100% of their lifetime in the network. This metric allows us

to capture the delays accurately to also reflect messages that never got delivered.

These results roughly mirror the message completion ratio. This result validates our be-

lief that reducing the delay of messages in the system also results in a better delivery ratio. This

result also demonstrates that in the scenario when the buses are included, DTLSR makes the “right”

decision about whether to forward messages to the bus or to the wireless network, since the average

message delay is strictly lower in all connectivity scenarios when the buses are used. Were the sys-

tem to have only used the buses, all messages would be delivered, but the average delay would have

been much higher. Specifically, the average time to reach Theni from any center (and vice versa)

93

is three hours, thus on average all messages would spend approximately 47% of their twelve hour

lifetime in the network. In contrast, when a path is found on the wireless network, the latencies are

on the order of seconds instead of hours. Thus the heuristics chosen to base a routing metric on de-

lay can accurately capture the decision between an intermittent low-latency link and a high-latency

reliable data mule.

4.5 Conclusions

In conclusion, the DTLSR routing protocol adapts a traditional link state routing approach

to the needs of intermittent networks in developing regions. The key insight of our approach is that

because the underlying topology is often stable, fairly minor changes to a classic algorithm result in

an effective routing system for intermittent networks.

We are encouraged by the success with which a simple weighting heuristic can capture

the path selection criteria for these networks. To continue this investigation, we plan to explore

more sophisticated weight functions along with richer state conveyed in LSA messages that more

accurately account for buffer occupancy and message queueing. Additionally, we plan to explore

tradeoffs in determining when to send new LSAs.

Most importantly, DTLSR fills a crucial need for deployment purposes in developing

regions, as it can provide the base routing layer for applications in these domains that can handle a

range of underlying link outage causes.

94

Chapter 5

A Publish / Subscribe Session Layer for

Delay Tolerant Networks

In this chapter, we begin to look at existing applications and the ways in which they could

be deployed in intermittent environments. As mentioned above, the DTN architecture and bundle

protocol can offer performance advantages in these environments, so a natural goal is to look at

ways in which applications can be adapted to use the DTN architecture. In some cases, this pro-

cess is straightforward, as the application structure and interactions easily map to the basic bundle

protocol service model, yet in others, this adaptation is more challenging. For some cases, the ap-

plications cannot be adapted to use DTN because they are simply incompatible with the demands

of an intermittent network environment, perhaps because they have requirements for low-latency

The material presented in this chapter is based on “The Design and Implementation of a Session Layer for
Delay-Tolerant Networks”, which was co-authored with Kevin Fall. At the time of this writing, that paper is
currently under review for publication.

95

interactions or require tight coordination among multiple parties. However, there are also several

applications that could potentially be used in intermittent environments, yet three key limitations in

the DTN service model and bundle protocol contribute to make the applications difficult to adapt

and/or inefficient to deploy. In this work, we aim to remedy these challenges by adding a few im-

portant capabilities to the DTN architecture that can help to make applications easier to adapt and

deploy.

The first limitation that we consider is that in the basic DTN architecture, each bundle

sent by an application is treated independently by the network logic. Thus there is no way for an

application to convey that a group of messages are related. Put another way, the DTN architecture

has no concept of a communications session that may span multiple individual bundles. This limi-

tation constrains the expressiveness for applications that may want to convey inter-bundle ordering

information to other communicating parties. It also means that the network cannot make routing

or provisioning decisions based on knowledge of the relationships among multiple bundles, which

might be useful for more efficient operation of the network. For example, knowing that a particular

application will periodically transmit messages according to a predictable schedule would allow a

routing algorithm to forecast the demand on network resources and make provisioning decisions

accordingly.

The second limitation (in part a consequence of the first) is that bundle communication is

purely sender-initiated. As such, there is no general-purpose mechanism for an application to re-

quest a particular piece of content or bundle transmission. This means that when mapping request-

oriented applications from Internet protocols (such as HTTP GET) to DTN protocols, one must

construct proxy applications that first send a request as one application-defined bundle, then send a

96

corresponding reply in another bundle. This not only places an unnecessary burden on the applica-

tion developer, but more importantly, the network cannot treat the request/response bundle pair as

related, since it is unaware of this communication pattern. In contrast, knowledge of this commu-

nication pattern would improve the flexibility and efficiency of the network in various ways. For

example, knowing that a content request will be followed by a response in the opposite direction

would allow a routing algorithm to set up dynamic forwarding state such that the response can be

routed back to the requester. Alternatively, a similarly-aware reliability mechanism could validate

the entire request/response interaction as a single transaction instead of as separate messages, thus

providing a more useful primitive to the application developer.

The third limitation is the lack of a well-defined protocol and architecture to support

efficient group-based “multicast” communication. Although there has been some prior work on

various semantic models for multicast communication in DTNs to take into account the potentially

long propagation delays between group membership operations [138], as well as other work on

the requirements to support custody transfer in a multicast environment [117], there is as of yet

no specification for a group membership protocol or a fully defined service model for multicast

communication in DTN environments. This limitation can lead to clear inefficiencies in bandwidth-

constrained environments where multiple downstream clients may be interested in the same content,

but the current protocols require separate bundle transmissions for each destination endpoint.

In the remainder of this chapter, we discuss our approach to remedy these limitations by

proposing several additions to the bundle protocol and the DTN architecture that support session-

based communication. Our approach uses a publish/subscribe based group membership service

model and inter-node membership protocol. We describe our implementation of these mechanisms

97

as extensions to the DTN reference implementation. Specifically, this chapter discusses the follow-

ing contributions:

• We present a framework for applications to designate multiple bundle transmissions to be part

of the same communication session, including a flexible means to express the logical ordering

of the individual bundles on that session, and a proposal for group naming semantics based

on URI endpoint identifiers.

• We use this mechanism of bundle ordering to allow applications to designate that a transmis-

sion of a bundle should render some set of previously transmitted bundles obsolete, allowing

the network to purge those messages from the system before their lifetime has expired, even

if they have yet to be delivered.

• We introduce the notion of a session custodian, which is a DTN application that commits to

storing and making available bundles that comprise a communication session, and describe

protocols by which the network and the custodian interact to meet the needs of session clients.

• We describe a new publish/subscribe service model for DTN communication, whereby ap-

plications can register as publishers, subscribers, and/or custodians for the session. We also

discuss the design and implementation of a practical implementation of a multicast group

membership protocol that meets the needs of this service model in ways that are more appro-

priate to DTN environments than existing IP or application-level multicast approaches are.

• Finally, we discuss ways in which these mechanisms can efficiently support several applica-

tions in DTN environments, including content syndication, periodic data transmission, and

distributed shared storage systems.

98

The remainder of this chapter proceeds as follows. In Section 5.1 we motivate our work

through a description of several application use cases. We present the design considerations and our

rationale for specific additions in Section 5.2, followed by a discussion of implementation details in

Section 5.3. We present a brief discussion of related work in Section 5.4 and conclude in Section 5.5.

5.1 Motivations

We begin with several motivating examples of application use-cases that share two key

characteristics: First, the traditional protocols used to implement the applications fail to perform

well in challenged network environments. In particular, the frequent intermittency, limited network

bandwidth, and/or long and variable latency of these environments essentially breaks the commonly

held assumption that two hosts can communicate with relatively low latency at any time. When

that assumption does not hold, the protocols used to implement these applications do not function

well (or function at all). Yet secondly, the existing sender-initiated unicast service model of the

basic DTN bundle protocol is insufficient or inconvenient to implement these applications. This

latter characteristic motivates the addition of a session layer and associated mechanisms to ease the

adaptation of the applications to use DTN and improve their efficiency.

The first example we consider is the case of syndicated content distribution. In well-

connected Internet environments, content providers often distribute information using protocols

such as RSS [132] or ATOM [85] over HTTP. In these protocols, clients periodically fetch an XML

document that contains a list of current items for a particular content feed (identified by a URL).

Each item within a feed is contains a unique identifier, a title and summary, a link to additional

information, and timestamp information that indicates when the item was published and optionally

99

when it was updated (i.e. re-published with new content). A client-side application periodically re-

trieves the XML document over HTTP, then compares the downloaded list of items with its locally

cached state to display any new or updated articles to the user.

Yet these syndicated protocols perform poorly in cases where networks are intermittent,

as the network may not be available when a client wants to fetch the current list of items. One way

to remedy the problem using DTN would be to deploy a gateway proxy at a well-connected site that

periodically refreshes the current list and proactively distributes it to all interested clients. Yet this

proxy would require some means of knowing which endpoints are interested in which content feeds,

either through manual configuration or through a custom subscription protocol. Also, in many cases

only one item out of several on the feed is updated, resulting in inefficiencies when retransmitting

the whole XML document. Finally, in cases where multiple clients may share a constrained network

link, unicast-only transmission means that it is wasteful to transmit the same information multiple

times over the constrained link.

Instead, we show how a multicast-enabled DTN session layer can provide an alternative

protocol to provide efficient content syndication in a DTN context that overcomes these challenges.

The basic operation of this protocol follows a publish/subscribe model: clients issue a subscription

request for the feed that they want to retrieve, named by its URL. Publishers periodically inject

new items into the network and update existing items. Each item is sent through the network and

delivered as an individual message within a long-lived session that represents the particular content

feed. For efficiency, only new or updated items are transmitted through the network, and the set

of current items is cached so that updates can be delivered when a client requests them, even if the

network does not happen to be available at that time. A client-side proxy maintains a list of the

100

current items on the feed, and reconstructs an XML document upon request to deliver to legacy

clients.

As a second example, consider an application that distributes regularly updated infor-

mation such weather forecasts, commodity prices, or traffic reports to a set of clients that may

be intermittently connected. As in the syndication example, this application would benefit from a

multicast service model to better utilize constrained network links. Furthermore, this application

exposes a design challenge relating to the frequency at which messages are generated. If messages

are generated too often, then a network outage in the middle of the network could cause several

updates to queue up on one side of the network partition, waiting for connectivity to be restored.

Even though the earlier updates are in fact superseded by the more recent information conveyed in

the later transmissions, the network has no way of knowing this, thus the redundant updates would

consume valuable network bandwidth when the partition heals and they are transmitted to the des-

tination. As we discuss below, using our proposal, the application could tag individual updates

such that prior transmissions are proactively purged from the in-network storage in the event of

a network partition or a bottleneck link. This revocation helps to free up resources and improves

delivery efficiency.

Finally, in the case of distributed shared storage systems, existing protocols like NFS rely

heavily on continuously available low-latency connectivity. As we discuss further in Chapter 6, we

have designed an alternative approach called TierStore that provides an optimistically consistent

shared filesystem as a framework for building information distribution applications in challenged

networks. TierStore uses our proposed session layer as its mechanism for efficient distribution of file

system updates to a set of subscribed nodes, as well as the group membership protocol for dynamic

101

maintenance of a distribution tree among intermittently connected peers.

5.2 Design Considerations

With the above motivating examples in mind, we now turn to describe the design charac-

teristics of our session layer proposal, as well as the rationale for these decisions.

5.2.1 Service Model and Session Names

We define a session as a group of bundles that have some application-defined relationship

among them. Applications determine how to allocate and define sessions, map bundles to sessions,

and designate the relationship among multiple bundles on a session. Each session is named with a

URI, as sessions are are used as endpoint identifiers (EIDs) in the bundle protocol (see Section 3.5).

Thus any legitimate URI can be used as the name of a session, making the system flexible as it is able

to use a variety of naming formats, both new and existing. This design simplifies the construction

of application proxies for use in DTN environments, as these proxies can, in many cases, simply

use the same identifiers that were used by the application protocol.

Sessions may be used by applications for both single destination (unicast) or multiple

destination (multicast) communication, and the structure or format of endpoint identifiers does not

necessarily differ between the two classes. Although the bundle protocol specification [103] does

define a per-bundle flag that indicates whether or not its destination endpoint is a singleton (i.e.

unicast communication), our implementation complies with this flag but does not depend on it. This

naming design differs from that used for addresses in IP multicast [2], as there is no need to “carve

out” a portion of the endpoint identifier space for multicast-specific use in DTNs. This is possible

102

primarily because DTN EIDs are non-topological, thus routing algorithms need not necessarily treat

multicast endpoints as distinct from unicast ones. Another way to look at it is that unicast sessions

can be treated by the network as just a simplified case of multicast communication with one member

in the destination group.

Our design also differs from existing approaches with respect to the lifetime of bundles.

In IP, a transmitted packet (either unicast or multicast) exists within the network until it is either

forwarded and delivered to its destination(s), or until its time to live (TTL) expires. The existing

DTN service model is similar, in that a bundle exists in the network until it is either delivered to

its destination(s), or its lifetime expires. We modify this design somewhat, and instead each router

that is subscribed to a session caches a copy of each bundles on the session for its entire lifetime,

even if it has been forwarded or delivered to one or more destinations. As we will discuss below,

this decision helps the system adapt to intermittent network conditions more robustly as it enables

a “late joining” application to receive session bundles that were transmitted some time in the past,

even if upstream network connectivity is not currently available.

5.2.2 Application Roles

As we discussed above in Section 3.7, DTN applications leverage the services of a DTN

router (and thereby use the bundle protocol) using an API that is exported over an IPC protocol.

Using this API, applications can send bundles and use various functions to register for and receive

bundles, as well as specify various options for bundle transmission and registration creation. Al-

though we discuss the specifics of the API used for session management in more detail below (Sec-

tion 5.3.1), one modification used to support the session layer is that when making a registration

request, an application can optionally select to act in one or more roles related to a communications

103

session. These three roles are:

• Publisher applications generate bundles that are part of the session and transmit them into the

network to make them available for distribution.

• Subscriber applications receive bundles that were generated by publishers and use the con-

veyed data for some application-specific purpose.

• Custodian applications are responsible for receiving published bundles and making them

available to new subscribers, using a combination of storage and computation resources to

meet this need.

The first two roles are familiar concepts, as our session service model follows a classic

publish/subscribe style of communication [39]. In particular, as in many publish/subscribe systems,

publishers and subscribers need not be aware of each other’s identity. Instead they communicate

by publishing content to the session and consuming content from the session, using the conceptual

session as the communications intermediary. Also, subscribers and publishers need not interact with

the network at the same time, as one application can publish a bundle to a session and another can

later subscribe to retrieve the bundle (assuming that its lifetime has not expired), thus the system

provides temporal decoupling. This means that a publishing application depends on some entity

within the network to store transmitted bundles until they expire (or are rendered obsolete) so that

the messages can be delivered to subscribers who arrive later. In particular, if a publisher selects

a long lifetime for the bundle(s) that it sends on a session, then as long as a subscriber joins the

session before the lifetime elapses, then it should receive the published bundle(s).

The custodian role is designed to enable this temporally decoupled communication pat-

tern. When an application registers as a custodian for a session EID (or a set of EIDs), it obtains

104

notifications when the first publisher and subscriber applications register on the session, even if

those registrations occur at other nodes in the network. The custodian also receives a copy of the

bundles that are published to the session. The custodian is thereby responsible for storing these

published bundles and making them available to subscribers that may join later. In this way, the

custodian acts similarly to a broker in a classic publish/subscribe system design, as it matches

publishers with subscribers and conveys the relevant messages (bundles) between the two. As we

discuss below however, routers in the network also cache session data on behalf of downstream

subscribers, simplifying this process.

The custodian mechanism also allows an application to generate content “on-demand” in

response to requests that occur at client nodes in the network. For example, when implementing a

service to proxy HTTP requests over DTN, a proxy application could register as a custodian for a

range of EIDs, say http:*. Then when some other node wants to request a particular content URL

(e.g.http://www.dtnrg.org/), it would register as a subscriber for that URL, awaiting delivery

of the web object from the session. This subscriber registration would trigger a notification to the

custodian to indicate that there is a new subscriber interest, at which point the custodian would

download the requested web content and publish it to the session, where it would flow through the

network and be delivered to the requesting application. Note that this and other examples throughout

this chapter assume the use of the endpoint identifier pattern matching mechanism described in

Section 3.5.1.

As mentioned in Section 3.1, the DTN architecture defines the term custodian as a node

that (temporarily) assumes responsibility for reliable delivery of a bundle. In this work, we de-

liberately reuse the term in the context of the session layer, even though the term has this prior

105

significance in the DTN community. Our rationale for this decision is that in both contexts, the

essential responsibility of the custodian is to take responsibility for reliable delivery of a bundle,

committing to expend storage and network resources accordingly. The main difference between the

two contexts is the duration of the responsibility commitment. Specifically, in traditional custody

transfer based reliability with unicast delivery semantics, storage of a bundle is only required until

some other node accepts the custody responsibility or the bundle is delivered. In the context of the

session layer, the bundle may need to be delivered to multiple parties, some who may not be known

at the time that a bundle is transmitted. As a result, the custodian node must commit to storing the

bundle (or agreeing to regenerate its contents) for its full lifetime duration or until some other node

renders the bundle obsolete. Thus the core responsibility of the custodian is the same in either

5.2.3 Sequence Identifiers and Obsolete Messages

In addition to being able to designate that multiple bundles are part of the same communi-

cation session, it is important for applications to be able to express the logical ordering relationships

among those bundles. In particular, knowing the order in which messages were generated allows

a receiving application to discern causality relationships properly. For example, if an application

transmits modifications to a shared database (i.e. deltas), applying these deltas in the wrong order

may corrupt the database, thus it is critical to know the proper order to apply them when receiv-

ing these updates. Using the arrival order of the set of bundles is potentially inaccurate, due to

in-network reordering or multiple path routing.

Of course, one simple way to determine the bundle generation order would be to examine

and compare the creation timestamp that is part of the basic bundle protocol. For multiple message

transmissions from the same node, comparing the creation timestamps is sufficient to convey trans-

106

mission order, assuming monotonically increasing local clocks. For multiple senders, DTN nodes

are expected to have (at least loose) time synchronization, so some information can be gleaned by

comparing the timestamps of two messages from different sources, even if the timestamps alone do

not guarantee that a receiver node can determine the correct total order of message generation.

However, some applications may require a richer mechanism to express ordering relation-

ships. For example, in the example of content syndication presented above, different items on the

same feed have no causality relationship with each other. Hence the network could deliver them in

any order, and the application is free to display them independently. On the other hand, if a partic-

ular item is published and then subsequently updated, there is an important causality relationship

between the two transmissions, thus the receiving application needs to be able to determine this

relationship to determine which is the more recent update. In other cases, e.g. multi-party commu-

nication in a distributed system, it is critical for nodes to determine the set of other messages that

had been received and processed before a node sent a new message, so as to determine the causal-

ity relationship between the events, as discussed by Lamport [73]. Thus neither of these examples

can be effectively conveyed through the use of sender timestamps, even if there were tight time

synchronization among nodes.

To accommodate these needs, our session layer allows applications to attach a sequence

identifier to bundles that are generated. This sequence identifier is a general-purpose mechanism to

define the logical order of one bundle as compared to another. Our goal in designing this mechanism

is to support a range of use cases, including sequential sequence numbers assigned by a single sender

(as used in TCP), real-time timestamps with a hash-based validator (as used in HTTP 1.1 [45]), as

well as richer semantic identifiers used in multi-sender distributed systems contexts. As we discuss

107

in more detail in Section 5.3.2, we adopt a generalized mechanism based on vector clocks [76] to

support this range of use-cases.

Another important use of the sequence identifiers is to enable in-network deletion of ob-

solete messages. Recall the example above in which an application periodically broadcasts updates

to an information source such as a weather forecast, and wants to avoid the potential buildup of

many redundant messages in a queue in case of a network partition. For this and other examples,

we allow applications to specify an optional obsoletes identifier for each bundle, in addition to the

sequence identifier. The obsoletes identifier allows the application to designate that a set of other

bundles should be rendered obsolete by the existence of the new bundle. When a DTN router queues

a bundle in storage, waiting for a network link to become available, it can examine the bundle’s ob-

soletes identifier and compare it with the sequence identifiers of other bundles that are part of the

same session and may be queued on the same link. If the identifiers match, then the router can

(and should) delete the obsolete bundle(s) from storage and avoid unnecessarily transmitting them.

Thus by using the obsoletes identifier, applications can transmit updated information at a rate that

is most appropriate for the application’s needs, without worrying about potential downstream queue

buildup.

5.2.4 Group Membership and Bundle State

The final component in our design discussion relates to the group membership protocol

that is used to implement the session service model. Fundamentally, the goals of this protocol are

similar to those used to implement IP multicast (e.g. PIM [1, 43] or DVMRP [128]), that is to build

a distribution tree within the network with sufficient forwarding state to deliver packets (or bundles)

to all subscribers. Nodes can join and leave the distribution tree using the service interface, and

108

the routing algorithm maintains the best path(s) through the network to deliver data to subscribed

nodes. Nodes communicate their interest in joining sessions (and leaving them) through protocol

messages, described in more detail below in Section 5.3.3. However, the intermittent connectivity,

highly variable round trip times and/or constrained bandwidth links that characterize challenged

network environments each contribute to ways in which traditional IP multicast protocol designs

are ineffective, and our design differs from these traditional approaches in several important ways.

First, all nodes that are members of the distribution tree for a session cache a copy of all

bundles on the session until their lifetime expires (or they are made obsolete), even if the bundles

have been delivered to all current downstream subscribers. In contrast, IP multicast routers typically

discard packets once they have been delivered to the current set of subscribers. The reason for this

decision is that a node may receive a notification that some other node downstream has a subscrip-

tion interest. To meet the needs of the session service model, the node needs to forward all bundles

that are part of the session and have not yet been delivered to the new subscriber. If the node did

not have a copy of the bundles cached, it would need to forward the subscription request upstream

towards a custodian. However, the node’s upstream link might be unavailable at the time when the

subscription request is received and then forwarded upstream. This could introduce a potentially

long delay before the session messages are delivered to the subscriber. By keeping a copy of all the

session bundles in its storage cache, the node can immediately start transmitting the cached session

content when it receives a subscription request, regardless of the current state of connectivity to

other nodes in the system.

This design decision is distinct, but related, to the above discussion on the role of session

custodians. In particular, custodians need to store a copy of each session bundle until they expire, re-

109

gardless of whether or not there are any subscribers for the session. Non-custodian nodes may elect

to discard bundles once there are no subscribers for the session, though they must then reacquire the

bundles if a new subscription interest is detected.

A second significant characteristic of our protocol is that it does not treat a link outage as

an event that needs to alter the distribution tree. In other words, at any point in time, the session

distribution tree may include links that happen to be down, under the expectation that those links will

come back up in the future. In contrast, a typical IP or application-level multicast group membership

protocol treats a link outage as an unexpected event that means the link should no longer be used for

group communication. Because DTN links are expected to have connectivity fluctuations between

being available and not available, not using links that happen to be down would require potentially

frequent and unnecessary recomputation of the distribution tree. Instead, by maintaining a tree that

potentially includes links that are currently down, but expected to be up shortly, then we can reduce

the burden on the network that results from a link outage. This decision follows a similar rationale

to the design of Delay Tolerant Link State Routing (DTLSR), as discussed in Chapter 4.

To deal with the fact that a link may be down for a considerable (long) time, each node

conveys a subscription lifetime interval when it joins the distribution tree, and it periodically updates

its subscriptions before this interval elapses. That way if an upstream node has not heard from a

downstream subscriber when the interval lapses, the subscriber is pruned from the distribution tree.

The specific interval length is controlled by a configuration parameter, but is typically fairly long to

be able to span any expected link outages. Because of this length, downstream nodes can proactively

unsubscribe from groups that they are no longer interested in, before the subscription interval timer

lapses.

110

Finally, it is of course possible that network conditions change such that the distribution

tree should be altered for more efficient delivery. In particular, the routing algorithm may discover

a better upstream path to join the distribution tree, so the node decides to use this path instead of

its current one. Because it was already a member of the session, the node already has a copy of all

the bundles that it has previously received for the session, and it would be inefficient for the new

upstream node to unnecessarily retransmit these session bundles to the new subscriber. Thus as we

discuss in more detail below, we include summary information in each subscription request message

that describes the set of bundles that are already cached for the session. This allows the upstream

node to elide unnecessary transmission of cached bundles to the new subscriber.

5.3 Implementation Details

We now turn to briefly describe the details of our implementation of the various aspects

of the session layer and specific ways that we built our extensions into the DTN implementation

described in Chapter 3.

5.3.1 Session Service Interface

As described in Section 3.7, the DTN implementation exposes functionality to applica-

tions through an IPC-exported API, and to support the session layer, we added extensions to the

basic interface. First, we modified the dtn register call, used by applications to indicate interest

in receiving bundles that are destined for a particular endpoint identifier. Specifically, we added

options to indicate select one or more of the session application roles (publisher, subscriber, custo-

dian), and convey the session URI as the EID that is passed to the registration call.

111

The bundle protocol agent monitors these application registrations and then engages the

relevant group membership and routing protocols to set up the forwarding state needed to meet

these roles for local applications. For subscriber applications, if the node is already a member of

the distribution tree for the session, then any cached bundles for the named session are immediately

queued for delivery to the application. If the node is not a member of the session, then it sends a

subscription message to join the tree, as described below.

For publisher applications, the act of registration does not immediately affect the for-

warding state, but is used to inform the bundle protocol agent that future bundle transmission(s)

from that registration should be treated as part of a session. Specifically, the application passes

the session registration identifier to the dtn send API call, used to publish new bundles into the

network. To communicate the session information to other nodes in the network, we defined a new

bundle protocol extension block called the session block. This block contains the endpoint identifier

of the session, encoded for efficiency using the dictionary mechanisms defined in the bundle pro-

tocol specification [103]. This encoding enables efficient transmission of the session EID in cases

where it is the same as (or shares components with) the URIs used in the bundle’s destination and/or

source EIDs.

For custodian applications, we added a new API call (dtn session update) to notify the

applications of new subscriber and/or publisher interest in a particular session EID. As implied by

the example in Section 5.2.1, when an application registers as a custodian, it can supply an endpoint

identifier pattern that covers a range of session endpoint identifiers, using the glob-based wildcard

syntax offered by the implementation. Thus a custodian application, upon receiving notification of

subscription interest in a particular session EID that matches the wildcard pattern, would then create

112

a new registration to transmit and/or receive bundles on the specific session.

5.3.2 Sequence Identifiers and Vector Clocks

To implement the sequence identifier mechanism for bundles, we adopt a format based

on logical vector clocks [76]. Vector clocks are commonly used in distributed systems to express

causality relationships between events in a system that does not rely on fine-grained global time

synchronization.

In a standard vector clock distributed system, time is expressed as a vector of (node,

counter) tuples, and an entry exists in the vector for each node in the system. Each node maintains

a vector clock that represents its notion of the “current” time. Whenever an event occurs at a node,

the node monotonically advances the counter in its own column in the clock and includes a copy of

this clock in any message that it sends to other nodes. Upon receiving a message, a node updates

its local vector clock such that each column in the vector is the maximum of the old value and the

corresponding entry from the arriving message.

In this way, causality between two events E1 and E2 can be determined. If at least one

entry in E1’s vector clock is greater than the corresponding entry in E2, and no entry in E2 is greater

than the corresponding entry in E1, then E1 must have occurred after E2 was observed. In contrast,

if one entry in E2 is greater than its counterpart in E1, yet another entry in E1 is greater than

that in E2, then the two events occurred concurrently, without knowledge of each other. Thus, for

example, the clock <(A,5)(B,3)(C,6)> is more recent (i.e. greater) than <(A,3)(B,3)(C,2)>, whereas

<(A,5)(B,3)(C,6)> is concurrent with <(A,4)(B,5)(C,7)>. Two clocks are said to be equivalent if and

only if all entries match. Also, our implementation uses the common optimization in which rows

may be omitted from the vector for efficiency, and are assumed to have a counter value of zero.

113

This sequencing mechanism is particularly useful in DTN systems where nodes may be

disconnected from each other for relatively long periods of time. In these contexts, it is often signif-

icantly more important for applications to know whether one bundle was generated with knowledge

of the other bundle, as opposed to simply whether the bundle was generated before the other in a

global time context. The use of vector clocks is an effective way of conveying the causality rela-

tionships that are important to many distributed applications.

We make one additional modification to the standard vector clock algorithms to increase

its flexibility to meet application needs. For example, HTTP 1.1 strong validators [45] consist of

a (timestamp, entity validator) pair, in which the timestamp marks the time when the object was

generated, and the validator is an implementation-defined content identifier (such as a hash of the

content itself). The timestamps are compared when determining which object is more recent, but the

entity tag is also compared for equality. For example, the tag could be used to determine whether a

cached object at a client is equivalent to a server object, and is also needed to properly handle cases

where an object may be updated multiple times within a single timestamp granularity. To enable

this type of validator to be expressed in a vector clock, we allow an application to designate that

some columns of the vector contain unordered values. These values are ignored when comparing

the vectors for order, but checked when comparing them for equality, and thus enable a natural

expression of strong validators and other similar uses within the general vector clock mechanism.

We implement sequence identifiers using another bundle protocol extension block called

the sequence identifier block to encode a vector clock and attach it to the bundle. Each column in

the clock contains a URI and an integer value counter. We again use the dictionary mechanisms

to efficiently encode the URI elements and we use Self-Describing Numeric Values (SDNVs) to

114

encode the counters, as described in the bundle protocol specification [103]. To implement the

message obsoleting feature, we add a second optional extension block (the obsoletes identifier block)

to the bundle using the same vector clock encoding format as the sequence identifier block.

5.3.3 Session Membership Protocol

Finally, we implemented the group membership mechanisms using a new administrative

protocol between DTN routers that uses bundles to convey subscription messages. This protocol

is responsible for constructing and maintaining the session distribution tree, notifying custodian

applications when a subscriber or publisher has registered for the session, and properly forwarding

session bundles to all subscribers along the distribution tree.

To implement this protocol, we first defined a new EID scheme dtn-session, in which

the scheme-specific-part contains another embedded EID that identifies a session. Routers use this

scheme for two new types of administrative bundles: SUBSCRIBE and UNSUBSCRIBE, anal-

ogous to join/leave packets in IGMP [16]. Thus when a DTN application registers as a sub-

scriber for a session to which the bundle protocol agent is not already subscribed (e.g. feed://

www.dtnrg.org/hg/DTN2/rss-log.xml), the agent generates a new SUBSCRIBE message with

a destination EID in the dtn-session scheme (e.g. dtn-session:feed://www.dtnrg.org/hg/

DTN2/rss-log.xml).

To set up the forwarding state, the router needs to notify an upstream node that there is

a new subscriber, thus it forwards the SUBSCRIBE message in the direction of a custodian for the

given feed. The mechanism by which the custodian routes are distributed through the network de-

pends on the particular routing algorithm in use in a particular deployment, and is is not mandated

by this group membership protocol. For example, when using DTLSR, the router implementation

feed://www.dtnrg.org/hg/DTN2/rss-log.xml
feed://www.dtnrg.org/hg/DTN2/rss-log.xml
dtn-session:feed://www.dtnrg.org/hg/DTN2/rss-log.xml
dtn-session:feed://www.dtnrg.org/hg/DTN2/rss-log.xml

115

detects the local custodian registrations and injects a new route advertisement (in the dtn-session:

scheme) into the network in response, as described in Section 4.3.5. Thus appropriate routing state

is distributed through the network so that subscription bundles are properly routed to the custodian,

just as any other local registrations would be. The key design advantage from using a new naming

scheme for the subscription messages is that the system can leverage existing, largely unmodified

routing implementations to distribute routes towards custodians, without requiring those implemen-

tations to understand the specific use of the session URLs.

When a node receives a downstream subscription request, it also checks whether or not

it is already subscribed. If it is, then it adds the new subscriber to the distribution tree and then

determines which of the cached session messages need to be transmitted to the new subscriber.

If the downstream node was not previously subscribed to the session, then all currently cached

messages are then transmitted to the new subscriber. However if the node was previously subscribed

(implying that it is either refreshing its subscription or changing its upstream link to the session),

then it includes a set of one or more sequence identifiers in the SUBSCRIBE bundle to summarize the

set of messages that it has previously received. This allows the upstream node to elide transmission

of bundles that are already known at the destination, avoiding unnecessary bundle transmissions.

If the subscription request is forwarded upstream and encounters no previously subscribed nodes,

then it eventually arrives at a node where an application has registered as a custodian for the session.

This arrival triggers a notification to the custodian application of the new subscriber, at which point

the application would transmit all the session bundles to the network where they would be delivered

to the subscriber (and cached along the way).

Once all subscriber applications have closed their registrations, and there are no other

116

downstream subscriber nodes, a node leaves the distribution tree by generating an UNSUBSCRIBE

message and transmitting it upstream. Also, as mentioned previously, routers periodically refresh

their subscriptions by generating new SUBSCRIBE bundles and sending them upstream. The node

indicates its desired subscription interval (i.e. how long before it will transmit a subscription refresh

message) through the bundle lifetime parameter used on the subscription bundle. Thus once a

node receives a subscribe message, it creates a timer for the remaining lifetime of the subscription

bundle. If that timer expires before a new subscription bundle is received, then the downstream node

is assumed to be unexpectedly disconnected and is removed from the distribution tree.

5.4 Related Work

Here we briefly survey related work that we drew from in designing this session layer

proposal. We modeled the service model and structure of the application interface on the wide range

of publish/subscribe systems [39] that have been proposed in the literature and are used in practice.

We also drew upon the existing literature on IP multicast when designing the service model and

group membership protocol for the session layer. As noted above, IP multicast protocols assume

that networks are available as needed, thus protocols for reliability and for message delivery to late

joiners are based on retransmissions. In contrast, our protocols rely more on caching and place a

higher premium on network transmissions to accommodate constrained bandwidth environments.

Although the distributed systems literature has several examples of systems based on

vector clocks to represent causal ordering, our implementation was based primarily on our prior

work in designing the TierStore distributed storage service, which we discuss in more detail in

Chapter 6.

117

In the context of multicast in DTNs, Zhao et al. [138] proposed a taxonomy of seman-

tic models for multicast communication as well as some simulation results of classes of multicast

routing algorithms. Their new semantic models examine group membership based on different tem-

poral constraints, intended to take into account the potentially lengthy delays between nodes. Our

sequence identifiers and obsoletes identifiers serve a similar purpose, except that rather than rely-

ing solely on time as a discriminator, our identifiers are more flexible, and can be used for other

application-defined ordering purposes.

Additionally, Symington et al. [116, 117] explored the challenges involved with providing

custody transfer service for bundles sent to a multicast endpoint. In particular, they consider several

implementation challenges that result when a node that does not accept custody still needs to branch

the transmission to multiple downstream nodes. Although some of these concerns would need to be

addressed in our session model, the fact that all subscribed nodes keep a cached copy of the bundles

to comprise the session mean that many of their proposed mechanisms are either unnecessary or

inappropriate and require reinvestigation.

5.5 Conclusions

In conclusion, the addition of a session layer to the DTN service model and the bundle

protocol helps to make it it easier to develop and deploy applications that use DTN services in chal-

lenged network environments. Specifically, by allowing applications to design their interactions

around the notion of a communications session that may span multiple message transmissions, we

allow a more natural expression of application needs and save developer effort by avoiding the need

to implement ad-hoc mechanisms for these ends. By offering a generic mechanism to implement

118

request-oriented interactions, the session layer enables easy construction of simple proxies for con-

tent requesting protocols such as the web or RSS. The sequence identifier and obsoleting features

allow applications to naturally express their ordering and lifetime requirements of transmitted bun-

dles, and allow frequent transmission of updated content without the performance implications that

can result from downstream queue buildup. Finally, the fully implemented multicast group mem-

bership protocol helps to improve performance in network environments that include one or more

constrained network links and enables efficient distribution of data to multiple subscribers.

We are currently implementing several example applications that leverage these session

layer protocols and can help to evaluate their efficacy and robustness. One example is a syndica-

tion proxy to distribute RSS/ATOM content using the design presented above. In addition, we are

working on a simple set of web proxy tools to enable persistently cached copies of web objects that

are periodically refreshed at a well-connected site. Finally, as we describe in the next chapter, the

TierStore distributed storage system exercises the session layer to propagate system state updates

throughout the network.

119

Chapter 6

TierStore

A Distributed Filesystem for Challenged Networks in

Developing Regions

We now take a step up from the details of networking techniques and present TierStore, a

distributed storage system that we designed to meet the needs of applications running in challenged

network environments. In particular, even with the use of the DTN protocols, the DTLSR routing

algorithm, and the session layer modifications discussed in the previous chapters, many applications

are still difficult or inconvenient to adapt to challenged network environments. The goal of TierStore

is to provide an alternative programming abstraction based on shared storage that can help ease

the demands of porting existing applications for operation in challenged network environments or

The design and implementation of the TierStore system is the result of a multi-year collaboration with Bowei
Du and Eric Brewer. Some of the material in this chapter was previously published in the Proceedings of the
6th USENIX Conference on File and Storage Technologies (FAST), February 2008 [30]. A condensed version
of this work also appeared in the June 2008 issue of USENIX ;login:, Volume 33, Number 3 [31].

120

developing new ones, while leveraging the benefits of the DTN architecture.

The key premise that motivates our approach is that some applications are fundamentally

more storage-centric than network-centric. In other words, these applications tend to have designs

that center around objects, files, and/or folders, rather than packets, messages, or protocols. To the

extent that the applications include a networking component, it is typically tasked with relatively

straightforward replication and/or migration of application data between locations, not complicated

multi-node interactions or detailed protocol message exchanges. Thus although the data replication

may be an important aspect of the application, the details of how the data is transferred are not.

In addition, these transfer protocols are relatively straightforward to implement in well-connected

environments, but doing so in a highly intermittent environment, even with the use of DTN services,

often presents a notable burden to the application programmer. By using TierStore instead, applica-

tions interact with a shared storage interface, thus can be more easily written and adapted, leaving

the details (and complexity) of managing data replication to the internals of the system.

A second motivation for this work is that many applications of interest need to be able to

access and modify shared data while disconnected. Using the CAP terminology discussed above in

Section 2.3, this means that in the presence of partitions, this system should favor availability at the

(necessary) expense of consistency. In many environments that we want to target, network partitions

may exist for a considerable amount of time, at times approaching multiple days of downtime. Thus

it is highly undesirable to block application access for the duration of an outage. Perhaps more

importantly however, many applications of interest can be effectively deployed without the support

of strong consistency from a distributed storage system. By focusing on availability, we can offer

a system with better performance and a user experience when running on challenged networks,

121

avoiding the implementation complexity and potential pitfalls of a stronger consistency design.

The final premise for this work is that for many challenged network environments, effi-

cient data distribution is necessary for good application performance. Because some network links

may be highly constrained, it is important to avoid unnecessary transmissions over those links. Thus

the system needs to support fine-grained control over where data is replicated, to avoid unnecessar-

ily sending data to locations where users have no need for the data to be. In addition, the system

should avoid redundantly transmitting the same data multiple times by using multicast-style data

replication techniques.

The TierStore system accomplishes these three goals by offering a distributed shared stor-

age abstraction based on named objects and containers to hold those objects. Background mecha-

nisms and protocols take care of replicating the shared data between locations, which insulates the

application programmer from the details of the network transfers and all interactions with the DTN

services. As we discuss further below, this approach simplifies caching and replica management,

allows for offline access to application state, and helps with bandwidth efficiency and reliability.

Also, there are common challenges to effecting robust transmissions over intermittent networks that

we are able to solve once for a wide range of applications, including handling message reordering

or delay, loss of application state, and management of user interest in portions of a namespace.

The remainder of this chapter proceeds as follows: Section 6.1 describes the high level

design characteristics of the system, which sets the context for a comparison with related work in

Section 6.2. Section 6.3 describes the details of how the system operates. Section 6.4 discusses

some initial applications we have developed, to demonstrate the system’s flexibility and ease of

programming. Finally, Section 6.5 presents some early evaluation results of the system, and we

122

conclude in Section 6.6.

6.1 TierStore Design

To begin, we lay out the high level design attributes of TierStore and a discussion of ways

in which these choices help achieve our goals. TierStore implements a standard UNIX filesystem

interface, consisting of files with arbitrary application content, organized a hierarchical directory

structure. The filesystem can be accessed or modified at multiple nodes in the network at any

time. Any modifications to the shared filesystem state are both immediately applied locally and

also encoded as update messages that are lazily distributed to other nodes in the network. Using a

standard filesystem abstraction helps with application portability, since applications can use well-

known and existing APIs to access and modify data.

The filesystem layer implements traditional NFS-like semantics, including close-to-open

consistency, hard and soft links, and standard UNIX group, owner, and permissions. As such,

many interesting and useful applications can be deployed on a TierStore system without (much)

modification, as they often already use the filesystem for communication of shared state between

application instances. For example, several existing implementations of e-mail, log collection, and

wiki packages are already written to use the filesystem for shared state and have simple data dis-

tribution patterns. Thus these applications are therefore straightforward to deploy using TierStore

in intermittent network environments. Also, many these applications are either already conflict-free

in the ways that they interact with shared storage or can be easily made conflict-free with simple

extensions.

Based in part on these observations, TierStore implements a single-object coherence pol-

123

icy for conflict management, meaning that only concurrent updates to the same file are flagged as

conflicts. We have found that this simple model, coupled with application-specific conflict resolu-

tion handlers, is both sufficient for many useful applications and easy to reason about for program-

mers. It is also a natural consequence from offering a filesystem interface, as UNIX filesystems do

not naturally expose a mechanism for multiple-file atomic updates.

When conflicts do occur, TierStore exposes all information about the conflicting update

through the filesystem interface. This allows either automatic resolution by application-specific

handler scripts or manual intervention by a user at some later time. For more complex applications

for which single-object coherence is insufficient, the base system is extensible to allow the addition

of application-specific meta-objects (discussed in Section 6.3.12). These objects can thus be used

to group a set of user-visible files that need to be updated atomically into a single TierStore object.

To effectively replicate system updates in intermittent environments, TierStore integrates

tightly with the DTN implementation described in Chapter 3. It uses the bundle protocol for all

inter-node messaging, and the multicast services of the DTN session layer to maintain a distribution

tree and limit redundant update transmissions over low-bandwidth links. To allow for out of order

and/or duplicate delivery of messages, TierStore update messages are idempotent and have flexible

ordering dependencies, which eases the burden on the session layer implementation.

To distribute data efficiently in constrained network environments, TierStore allows the

shared data to be partitioned into fine-grained publications, currently defined as disjoint subtrees of

the filesystem namespace. Nodes can then subscribe to receive updates to only their publications

of interest, rather than requiring all shared state to be replicated. This model maps quite naturally

to the needs of real applications that typically include some internal partitioning that determines

124

where data should be distributed. For example, users’ mailboxes and folders, portions of web sites,

or specific regions of data collection are often not required to be distributed to all nodes, only a

subset of nodes in the system.

6.2 Related Work

Several existing systems offer distributed storage services that target constrained or chal-

lenged network environments. Here we briefly contrast them with the TierStore approach, and

discuss why none fully satisfies our design goals.

One general approach for system design has been to adapt traditional network file systems

such as the Sun Network File System (NFS) [102] or the Andrew File System (AFS) [61] for use

in constrained network environments. For example, the Low-Bandwidth File System (LBFS) [82]

implements a modified NFS protocol that leverages a persistent data cache on each node and trans-

mits hashes of previously transmitted data instead of redundantly sending the data again. This

approach can significantly reduce the bandwidth requirements of the protocol, with corresponding

advantages for bandwidth constrained environments. However, LBFS maintains NFS’s focus on

consistency rather than availability in the presence of partitions. Thus even though it addresses the

bandwidth problems, it is unsuitable for intermittent connectivity, since access to the shared data is

blocked when the network is unavailable.

Coda [69] extends AFS to support disconnected operation. In Coda, clients register for

a subset of files to be “hoarded”, i.e. to be made available when offline. Modifications to these

files that are made while disconnected are merged with the server state when the client reconnects.

However, due to its AFS heritage, Coda has a client-server model that imposes restrictions on the

125

network topology. Thus it is not amenable to cases in which there may not be a clear client-server

relationship between the systems, and where intermittency might occur at multiple points in the

network. This limits the deployability of Coda in many real-world environments.

Protocols such as rsync [125], Unison [96] and OfflineIMAP [86] can efficiently replicate

file or application state for availability while disconnected. These approaches provide pairwise

synchronization of data between nodes, so they require manual configuration of ad-hoc mechanisms

for multiple-node replication. More fundamentally, in an application environment where a shared

data store is updated by multiple parties at various times, no single node has the correct state that

should be replicated to all others. Instead, it is the collection of each node’s updates (additions,

modifications, and deletions) that needs to be replicated throughout the network to bring everyone

up to date. Capturing these update semantics through pairwise synchronization of system state is

challenging and in some cases impossible. Thus in general, point-to-point synchronization systems

are insufficient to capture the needs of many applications.

Bayou [95, 119] uses an epidemic propagation protocol among mobile nodes with a strong

consistency model. When conflicts occur, it will roll back updates and then roll forward to reapply

them and resolve conflicts as needed. However, this flexibility and expressiveness comes at a cost:

applications need to be rewritten to use the Bayou shared database, increasing the programmer

burden when adapting existing systems. Also, the system correctness requires data to be fully

replicated at every node, which can result in inefficient operation when not all nodes need access

to the full shared database. It also assumes that rollback is always possible; yet in a system with

human users, rollback might require undoing the actions of the users as well which is in some

cases impossible. More fundamentally, Bayou is designed for complex distributed applications with

126

multiple writers modifying shared state in disconnected environments. We believe that this complex

focus necessarily limits system usability, and a simpler approach based on a filesystem interface is

more useful and robust. Thus TierStore sacrifices the expressiveness of Bayou’s semantic level

updates in favor of the simplicity of a named object replication system.

PRACTI [7] is a replicated storage system that uses a Bayou-like replication protocol,

enhanced with summaries of aggregated metadata to enable multi-object consistency without full

content database replication, and a flexible consistency policy. However, the invalidation-based

protocol of PRACTI implies that for strong consistency semantics, it must retrieve invalidated ob-

jects on demand. Since these requests may block during network outages, PRACTI either performs

poorly in these cases or must fall back to simpler consistency models, thus no longer providing arbi-

trary consistency. Also, as in the case of Bayou, PRACTI requires a new programming environment

with special semantics for reading and writing objects, increasing the burden on the application

programmer.

Dynamo [26] implements a key/value data store with a goal of maximum availability dur-

ing network partitions. It supports reduced consistency and uses many techniques similar to those

used in TierStore, such as version vectors for conflict detection and application-specific resolution.

However, Dynamo does not offer a full hierarchical namespace, which is needed for some appli-

cations, and it is targeted for data center environments, whereas our design is focused on a more

widely distributed topology.

Haggle [111] is a clean-slate design for networking and data distribution targeted for

mobile devices. It shares many design characteristics with DTN, including a flexible naming frame-

work, multiple network transports, and late binding of message destinations. The Haggle system

127

model incorporates shared storage between applications and the network, but is oriented around

publishing and querying for messages, not providing a replicated storage service. Thus applications

must be rewritten to use the Haggle APIs or adapted using network proxies.

Finally, the systems that are closest to TierStore in design are optimistically concurrent

peer-to-peer file systems such as Ficus [89] and Rumor [56]. Like TierStore, Ficus implements a

shared file system with single-object coherence semantics and automatic resolution hooks for update

conflicts. However the Ficus log-exchange protocols are not well suited for long latency links, since

they require multiple round trips for synchronization. Also, update conflicts must be resolved before

the file is available for reading or modification, which can degrade availability in cases where an

immediate resolution to the conflict is not possible. In contrast, TierStore allows nodes to continue

to access and modify conflicted files, allowing the resolution to occur at an arbitrary point in the

future. Rumor is an external user-level synchronization system that builds upon the Ficus work. It

uses Ficus’ techniques for conflict resolution and update propagation, thus making it unsuitable in

our target environment.

6.3 TierStore in Detail

This section describes the implementation of TierStore, beginning with a brief overview

of the system components of TierStore, shown in Figure 6.1. Then we delve into more detail as the

section progresses.

128

DTN Network

Object / Metadata /
Version Repositories

View Resolver

FUSE / NFS

Subscription
Manager

Update
Manager

TierStore Daemon

Filesystem Interface

Conflict Management

Persistent Storage

Replication

Applications

Figure 6.1: Block diagram showing the major components of the TierStore system. Arrows indicate

the flow of information between components.

129

6.3.1 System Components

As discussed above, TierStore implements a standard filesystem abstraction, i.e., a per-

sistent repository for file objects and a hierarchical namespace to organize those files. Applications

interface with TierStore using one of two filesystem implementations, either FUSE [49] (Filesys-

tem in Userspace) or an implementation of the NFS protocol [102]. Typically we would deploy

NFS over a loopback mount, though a single TierStore node could export its shared filesystem to a

number of users in a well-connected LAN environment over NFS, for example to accommodate an

information center in a remote location.

File and system data are stored in persistent storage repositories that lie at the core of the

system. Read access to data passes through the view resolver that handles conflicts and presents

a self-consistent filesystem to applications. Modifications to the filesystem are encapsulated as

updates and forwarded to the update manager where they are applied to the persistent repositories

and forwarded to the subscription manager. The subscription manager uses the DTN network to

distribute updates to and from other nodes. Updates that arrive from the network are forwarded to

the update manager where they are processed and applied to the persistent repository in the same

way that local modifications are.

6.3.2 Objects, Mappings, and Guids

TierStore objects derive from two basic types: Data objects are regular files. They contain

arbitrary user data, with the exception that symbolic link files have a well-defined internal format.

Containers implement filesystem directories. They contain a set of mappings that enumerate the

files or other containers that are stored within the directory in the namespace.

130

Each mapping is a tuple of (guid, name, version, view, publication id). The guid uniquely

identifies an object, independently from the object’s location in the filesystem. In this way, guids

are similar to inode numbers in the UNIX filesystem, though they have global scope. Each node in a

TierStore deployment is configured with a unique identity by an administrator, and guids are defined

as a tuple (node, time) of the node identity where an object was created and a strictly increasing local

time counter. The name is the user-specified filename within a directory (i.e. container). The

version defines the logical time when the mapping was created in the history of system updates, and

the view identifies the node the created the mapping (not necessarily the node that originally created

the object). Versions, views, and publications are discussed further below.

6.3.3 Versions

Each TierStore node maintains a local update counter that it increments after every new

object creation and every modification to the filesystem namespace (i.e. rename or delete). This

counter is used to uniquely identify the operation in the history of modifications made at the local

node, and the most recent value for the update counter is persistently serialized to disk to survive

reboots.

A collection of update counters from multiple nodes defines a version vector, a specific

type of vector clock, as discussed above in Section 5.3.2. The version vector is used to track the

logical ordering of updates for a file or mapping in the global sequence of modifications to the

shared data store. Although each vector conceptually has a column for all nodes in the system, we

elide the entries for nodes whose counters do not affect particular mapping, and all non-existent

entries are implicitly equal to zero. This approach helps to limit the length of the transmitted (and

stored) vectors, and is important for properly characterizing the update’s sequence as compared to

131

other operations in the system.

When constructing a version vector for a new mapping, we take the local node’s update

counter and merge it with the version vector(s) from any other relevant mappings that relate the new

mapping in the logical update order. Because of the single-object coherence model, the relevant

mappings include any existing mappings for where the particular object is located in the namespace,

and/or the mapping(s) that exist in the particular location in the namespace where the new mapping

exists. Thus a newly created file that is mapped into an unused location in the namespace has only

a single entry in its mapping version vector, in the column of the creating node, containing the

update counter for the mapping. If a second node were to subsequently update the same file, say by

renaming it to a new location, then the new mapping’s version vector would include the old version

in the creating node’s column, plus the newly incremented update counter from the second node. If

there were some existing object in the new location, the new mapping would also include all other

columns from that other object’s version vector to properly capture the operation history. Thus the

new vector would fully subsume the old one(s) in the version sequence, and is used by the system

to determine which mappings should be removed and which should be retained.

We expect TierStore deployments to be relatively small-scale (at most hundreds of nodes

in a single system), which keeps the maximum length of the vectors to a reasonable bound. Further-

more, most of the time, files are updated at an even smaller number of sites, so the size of the version

vectors should not be a performance problem. We could, however, adopt techniques similar to those

used in Dynamo [26] to truncate old entries from the vector if this were to become a performance

limitation.

We also can use the version vectors to detect missing updates. The subscription manager

132

records a log of the versions for all updates that have been received from the network. Since each

modification causes exactly one update counter to be incremented, the subscription manager can

detect missing updates by looking for holes in the version sequence. Although the DTN session

protocols retransmit lost messages to ensure reliable delivery, a fallback repair protocol detects

missing updates and can request them from a peer.

6.3.4 Persistent Repositories

The core of the system contains a set of persistent repositories for system state. The object

repository is implemented using regular UNIX files, named with the object guid. For data objects,

each entry simply stores the contents of the given file. For container objects, each file stores a log

of updates to the mapping set within the container, periodically compressed to truncate redundant

entries. We use a log instead of a more traditional vector- or list-based design for mappings to

enable better performance on modifications to large directories.

Each object (data and container) has a corresponding entry in the metadata repository,

which is also implemented using files named with the object guid. These entries contain the filesys-

tem metadata for the object, such as the user/group/mode/permissions attributes, that is typically

stored in an inode in a traditional UNIX filesystem. However, unlike a traditional filesystem design,

they also contain a vector of all the mappings where the object is located in the filesystem hierarchy.

Typically, an object exists in only one container, but it may exist in more than one location in the

case of hard links or conflicts, discussed below.

This design means that mapping state is duplicated: individual container data files contain

the list of mappings that comprise the objects contained within the container, and the metadata

entry for each object identifies the container(s) in which the object is mapped. The reason for this

133

duplication stems from its efficiency in performing common operations. Knowing the vector of

objects stored in a container is needed for efficient directory listing and path traversal, while storing

the set of mappings for an object is needed to update the object mappings without knowing its

current location(s) in the namespace, which simplifies the replication protocols.

To deal with the fact that these two repositories might be out of sync after a system crash,

we use a write ahead log for all updates. Because update operations are idempotent (as discussed

below), we simply replay uncommitted updates after a system crash to ensure that the system state

is consistent. We also implement a simple write-through cache for both persistent repositories to

improve read performance on frequently accessed file and metadata state.

6.3.5 Updates

The filesystem layer translates application operations that modify the state of the data

store (e.g. write, rename, creat, unlink, etc) into two types of update messages: CREATE

and MAP, the format of which is shown in Figure 6.2. As mentioned above, when the operations

generate updates, they are first stored and applied locally in the node’s persistent repository, and

also forwarded to the distribution layer to be sent over the network to other nodes.

CREATE updates add new objects to the system but do not make them visible in the

filesystem namespace. Each CREATE update is a tuple (object guid, object type, version, publication

id, filesystem metadata, object data). These updates have no dependencies, so they are immediately

applied to the persistent database upon reception. They are also idempotent since the binding of a

guid to object data never changes (see the next subsection).

MAP updates bind objects into the filesystem namespace. Each MAP update contains the

guid of a particular object and a vector of the mapping tuples that specify the location(s) where

134

MAP

guid

name
container guid

view
version

name
container guid

view
version
.
.
.

source

CREATE

object data

ctime
mtime

gid
uid

mode

version
type
guid

File
Metadata

File
Contents

TierStore
Metadata

Mapping 1

Mapping 2

TierStore
Metadata

publication id

Figure 6.2: Contents of the TierStore update messages.

the object should be mapped into the namespace. This vector is the same one that is stored in the

persistent repository along with the object metadata, yet it is distributed separately so that updates

to the namespace (e.g. rename, link, unlink) do not require retransmission of the file data or

metadata.

Because TierStore implements a single-object coherence model, MAP updates can be ap-

plied as long as a node has previously received CREATE updates for the object and the container(s)

where the object is to be mapped. This dependency is easily checked by looking up the relevant

guid(s) in the metadata repository it does not depend on other MAP messages having been received.

If the necessary CREATE updates have not yet arrived, the MAP update is put into a deferred update

queue for later processing when the other updates are received. In particular, if a node makes sev-

135

eral modifications to files, generating separate MAP updates, they can be applied in any order with

respect to each other. Again, this flexibility stems from the simplicity of the single-object coherence

model.

Another important design decision related to MAP messages is that they contain no in-

dication of any obsolete mapping(s) to remove from the namespace. That is because each MAP

message implicitly removes all older mappings for the given object and for the given location(s)

in the namespace, computed based on the logical version vectors. As described above, the current

location(s) of an object can be easily looked up in the metadata repository using the object guid.

This design helps to improve the robustness of the system, since each mapping can be examined

and properly applied even if received out of order.

Thus, as shown in Figure 6.3, to process a MAP message, TierStore first looks up the

object and container(s) using their respective guids in the metadata repository. If they both exist,

then it compares the versions of the mappings in the message with those stored in the repository. If

the new message contains more recent mappings, TierStore applies the new set of relevant mappings

to the repository. If the message contains only old mappings, it is discarded. In case the versions are

incomparable (i.e. updates occurred simultaneously), then there is a conflict and both conflicting

mappings are applied to the repository to be resolved later (see below). Therefore, MAP messages

are also idempotent, since if a stale message is received that contains only obsolete mappings, they

are ignored in favor of the more recent ones that are already in the repository.

6.3.6 Immutable Objects and Deletion

These two message types are sufficient because TierStore objects are immutable. To im-

plement a file modification, we first copy the file object, apply the change to the object, and then

136

Object
and Container(s)

Exist?
Add Update to

Deferred Queue

Get Current Mappings

Update
Version More

Recent?

Discard
Update

Discard Old
Mapping(s)

Install New Mapping

No

No

Yes

Update Arrives

Yes

Neither

Figure 6.3: Flowchart of the decision process when applying MAP updates.

install the modified copy in place of the old one (with a new CREATE and MAP update pair). Thus

the binding of a guid to particular file content is persistent for the life of the system. This model has

been used by other systems such as Oceanstore [100], for the advantage that write-write conflicts

are handled as name conflicts (two objects being put in the same namespace location). This allows

us to use a single mechanism to handle both types of conflicts. It also simplifies the repository

management and helps to provide the idempotence property for messages.

An obvious disadvantage of this design is the need to distribute whole objects, even for

small changes. To address this issue, the filesystem layer only “freezes” an object (i.e. issues a

CREATE and MAP update) after the application closes the file, not after each call to write. In

137

addition, we plan to integrate other well-known techniques, such as sending deltas of previous

versions or encoding the objects as a vector of segments and only sending modified segments (as

in LBFS [82]). However, when using these techniques, care would have to be taken to avoid round

trips in long-latency environments.

When an object is no longer needed, either because it was explicitly removed with unlink

or because a new object was mapped into the same location through an edit or rename, we need to be

careful to not immediately delete it for two reasons. First, some other node may have concurrently

mapped the object into a different location in the namespace, so we need to hold onto the object

data to be able to resolve the conflict at a later point. Second, we need to record the version vector

of the operation that removed the mapping, so that any stale update messages that are received out

of order do not make the file “reappear” erroneously. Thus each time an object is removed, we add a

mapping for the object into a special trash container to keep it around, and also add an anti-mapping

into the container where the object used to exist. The anti-mapping records the version vector of

the operation that removed the mapping and the old name of the mapping, so that we can properly

detect the situation where a stale update arrives.

In our current prototype, objects are periodically removed from the trash container after a

configurable (typically long) interval (e.g. multiple days), after which we assume no more updates

will arrive to the object. This simple method has been sufficient for our uses in practice, though

a more sophisticated distributed garbage collection such as that used in Ficus [89] would be more

robust.

138

6.3.7 Publications and Subscriptions

One of the key design goals for TierStore is to enable fine-grained sharing of applica-

tion state. To that end, TierStore applications divide the overall filesystem namespace into disjoint

covering subsets called publications. Our current implementation defines a publication as a tu-

ple (container, depth) that includes any mappings and objects in the subtree that is rooted at the

given container, up to the given depth. Any containers that are created at the leaves of this sub-

tree are themselves the root of new publications. By default, new publications have infinite depth;

custom-depth publications are created through a special administrative interface. Publications can

be uniquely identified with the guid of the container object that is the root of the container.

TierStore nodes then create subscriptions to an arbitrary set of publications. Once a node

is subscribed to a publication, it receives and transmits updates for the objects contained in that

publication among all other subscribed nodes. The subscription manager component handles reg-

istering and responding to subscription interest, and informing the DTN session layer to set up

forwarding state accordingly. It interacts with the update manager to be notified of local updates

for distribution and to apply updates received from the network to the data store.

Because nodes can subscribe to an arbitrary set of publications and thus receive a subset of

updates to the whole namespace, each publication defines a separate version vector space. In other

words, the combination of (node, publication id, update counter) is unique across the system. This

means that a node knows when it has received all updates for a given publication when the version

vector space is fully packed, i.e. has no holes. To bootstrap the system, all nodes have a default

subscription to the special root container “/” with a depth of 1. This way, whenever any node creates

an object (either a data file or a container) in the root directory, the object is distributed to all other

139

nodes in the system. However, because the root subscription is at depth 1, all subdirectories within

the root directory are themselves the root of new publications. Thus application state is partitioned

by default into separate publications based on the directory layout below the root.

To subscribe to these other publications, users or administrators create a symbolic link

in a special /.subscriptions/ directory that points to the root container of a publication. This

operation is detected by the Subscription Manager, which then sets up the appropriate subscription

state. Removing the symbolic link is similarly interpreted as a signal to unsubscribe from the con-

tainer. This design allows applications to manage their interest sets without the need for a custom

administrative interface to control subscriptions and publications.

6.3.8 Update Distribution

To deal with intermittent or long-delay links, the TierStore update protocol is biased heav-

ily towards avoiding round trips. Thus unlike systems based on log exchange (e.g. Bayou, Ficus, or

PRACTI), TierStore nodes proactively generate updates and send them to other nodes when local

filesystem operations occur, relying on the DTN session layer to eventually replicate the updates to

all subscribed nodes.

As mentioned above, TierStore integrates closely with the DTN implementation and uses

the bundle protocol and the DTN session layer for all inter-node messaging. The system is designed

with minimal demands on the networking stack: simply that all updates for a publication eventually

propagate to the subscribed nodes. In particular, TierStore can handle duplicate or out-of-order

message arrivals using the versioning mechanisms described above.

This design allows TierStore to take advantage of the intermittency tolerance and multiple

transport layer features of DTN. In contrast with systems based on log-exchange, TierStore does not

140

assume there is ever a low-latency bidirectional connection between nodes, so it can be deployed

on a wide range of network technologies including sneakernet or broadcast links. Using DTN also

naturally enables potential future optimizations such as routing smaller MAP updates over low-

latency, but possibly expensive links, while sending large CREATE updates over less expensive but

long-latency links, or configuring different publications to use different DTN priorities.

However, for low-bandwidth environments, it is also important that updates be efficiently

distributed throughout the network to avoid overwhelming low-capacity links. Thus we use the

DTN session layer for multicast distribution of updates. Each publication is mapped to a DTN

session using the naming scheme tierstore://updates/<publication guid>, and nodes need

only subscribe to the publications that they are actually interested in. Furthermore, we leverage

the sequence identifier and obsoletes identifier mechanisms to purge unneeded old objects from the

system when they are obsoleted by newer updates.

In this simple scheme, when an update is generated, TierStore forwards it to DTN session

stack for transmission to each peer that is subscribed in the distribution tree. DTN queues the

update in persistent storage, and ensures reliable delivery through the use of custody transfer and

retransmissions. Arriving messages are cached by the session layer and re-forwarded to the other

peers so updates eventually reach all nodes in the system.

6.3.9 Views and Conflicts

As mentioned above, each mapping contains a view that identifies the TierStore node

that created the mapping. During normal operation, the notion of views is hidden from the user,

however views are important when dealing with conflicts. A conflict occurs when operations are

concurrently made at different nodes that affect the same file or location in the namespace. Because

141

the two operations were performed without knowledge of one another, there is no way to determine

which should take precedence. This is captured by the fact that the version vectors for the two

operations will be incomparable, i.e. neither is greater than the other. In TierStore’s single-object

coherence model, there are only two types of conflicts: a name conflict occurs when two different

objects are mapped to the same location by different nodes, while a location conflict occurs when

the same object is mapped to different locations by different nodes.

Because all mappings are tagged with their respective view identifiers, a container may

contain multiple mappings for the same name, but in different views. The job of the View Resolver

(see Figure 6.1) is to present a coherent filesystem to the user, in which two files can not appear in

the same location, and the same file (typically) does not appear in multiple locations. Hard links

are an obvious exception to this latter case, in which the user deliberately maps a file into multiple

locations, so the view resolver is careful to distinguish hard links from location conflicts.

The default policy to manage conflicts in TierStore appends each conflicting mapping

name with .#X, where X is the identity of the node that generated the conflicting mapping. This

approach retains both versions of the conflicted file for the user to access, similar to how CVS han-

dles an update conflict. However, locally generated mappings retain their original name after view

resolution and are not modified with the .#X suffix. This means that the filesystem structure may

differ at different points in the network, yet also that nodes always “see” mappings that they have

generated locally, regardless of any conflicting updates that may have occurred at other locations.

Figure 6.4 shows an example of the the two types of conflicts can occur and how the default conflict

resolution handler presents the conflicts through the filesystem interface.

Although it is perhaps non-intuitive, we believe this to be an important decision that aids

142

Node A Node B

$ echo "red" > /tierstore/foo $ echo "blue" > /tierstore/foo

Wait for updates to propagate...

$ ls /tierstore $ ls /tierstore
foo foo.#B foo foo.#A
$ cat /tierstore/foo $ cat /tierstore/foo
red blue
$ cat /tierstore/foo.#B $ cat /tierstore/foo.#A
blue red

$ echo "hello" > /tierstore/foo

Wait for updates to propagate...

$ cat /tierstore/foo $ cat /tierstore/foo
hello hello
$ mv /tierstore/foo /tierstore/bar $ mv /tierstore/foo /tierstore/baz

Wait for updates to propagate...

$ ls /tierstore $ ls /tierstore
bar baz.#B baz bar.#A
$ cat /tierstore/bar $ cat /tierstore/baz
hello hello
$ cat /tierstore/baz.#B $ cat /tierstore/bar.#A
hello hello

Figure 6.4: Examples of a name conflict (top) and a location conflict (bottom) and how the default

conflict handler presents them through the filesystem.

143

the portability of unmodified applications, since their local file modifications do not “disappear” if

another node makes a conflicting update to the file or location. This also means that application state

remains self-consistent even in the face of conflict, and most importantly, is sufficient to handle con-

flicts for many applications. Still, conflicting mappings would persist in the system unless resolved

by some user action. Resolution can be manual or automatic; we describe both in the following

sections.

6.3.10 Manual Conflict Resolution

For unstructured data with indeterminate semantics (such as the case of general file shar-

ing), conflicts can be manually resolved by users at any point in the network by using the standard

filesystem interface to either remove or rename the conflicting mappings. Figure 6.5 takes the ear-

lier example of triggering a name conflict and shows the details of how the update messages flow

and what each filesystem presents to the user at each step. We also show how the conflict is resolved

by one node renaming the conflicting file. In the figure, the diagram at the top shows the message

exchange, while each row in the table at the bottom shows the actions that occur and the nodes’

respective views of the filesystem at each step of the interaction. In step 1, nodes A and B make

concurrent writes to the same file /foo. generating separate create and mapping updates (C1, M1,

C2, and M2). Each node also applies the updates locally, so the filesystem view reflects the changes.

In step 2, these updates are exchanged, causing both nodes to display conflicting versions of the file

(though in different ways). In step 3, node A resolves the conflict by renaming /foo.#B to /bar,

which generates a new mapping (M3). Finally, in step 4, M3 is received at B and the conflict is

resolved such that both nodes now share the same view of the filesystem.

One design challenge stems from the fact that when using the filesystem interface, appli-

144

A
M1

B
C2

M2: guid2, "/foo"
 view B, version (B,1)

M3: guidA002, "/bar"
 view A, version (A,2)(B,1)

M3

M1: guid1, "/foo",
 view A, version (A,1)

C1 M2

C1: guidA001, "red" C2: guidB001, "blue"

1

2

4

1

2

3

Node A Node B

Step Action FS View Action FS View

write(/foo, “red”)
/foo ! “red”

write(/foo, “blue”)
/foo ! “blue”

send C1, M1 send C2, M2

receive C2, M2

/foo ! “red”
receive C1, M1

/foo ! “blue”

/foo.#B ! “blue” /foo.#A ! “red”

rename(/foo.#B, /bar) /foo ! “red” /foo ! “blue”

send M3 /bar ! “blue” /foo.#A ! “red”

/foo ! “red”
receive M3

/foo ! “red”

/bar ! “blue” /bar ! “blue”

1

2

3

4

Figure 6.5: Update sequence demonstrating a name conflict and a user’s resolution.

145

cations do not necessarily include all the context necessary to infer user intent. More specifically,

an important policy decision determines whether operations should implicitly resolve conflicts or

let them linger in the system. Taking the example from Figure 6.5, once the name conflict occurs

in step 2, suppose that instead of renaming the conflicted file (in which the intent is fairly clear),

the user were instead to write new contents to /foo or rename /foo again. The system would

have two options: it could take replace both conflicting mappings with the newly created one, or it

could replace only a single mapping, the one in the node’s local view, leaving the other (conflicting)

mapping in place.

The current policy in TierStore is the latter, i.e. we leave conflicting mappings in the

system unless they are explicitly resolved by the user, by remapping the conflicted name, as shown

in the example. The benefit of this policy is that it is the most conservative and (we believe) the

most intuitive as well, since individual file modifications do not implicitly affect multiple files. The

drawback of this policy is that conflicting mappings may persist indefinitely if not resolved, yet we

believe this is an acceptable price to pay for a more intuitive solution.

6.3.11 Automatic Conflict Resolution

Application writers can also configure a custom per-container view resolution routine that

is triggered when the system detects a conflict in that container. The interface to these resolvers

consists of a single function with the following signature:

resolve(local view, locations, names)→ resolved mappings

The operands are as follows: local view is the local node identity, locations is a list of

the mappings that are in conflict with respect to location and names is a list of mappings that are

146

in conflict with respect to names. The function returns resolved mappings, which is the list of

non-conflicting mappings that should be visible to the user. The only requirements on the imple-

mentation of the resolve function are that it be deterministic based on its operands and that the

resulting output mappings have no conflicts.

In fact, the default view resolver implementation described above is implemented as a re-

solve function that appends the node-specific suffix to present a set of non-conflicting mappings. In

addition, the maildir resolver described below in Section 6.4.1 is another example of a custom view

resolver that safely merges mail file status information encoded in the maildir filename. Finally,

another built-in view resolver detects identical object contents that are mapped into the same name

location but with conflicting versions, and automatically resolves them, rather than presenting them

to the user as vacuous conflicts.

An important feature of the resolve function is that it creates no new updates, rather it

takes the updates that exist and presents a self-consistent file system to the user. This avoids prob-

lems in which multiple nodes independently resolve a conflict, yet the resolution updates themselves

conflict [52]. Although a side effect of this design is that conflicts may persist in the system indefi-

nitely, they are often eventually cleaned up since modifications to resolver-merged files will obsolete

the conflicting updates. In general, the storage penalty incurred by keeping conflicted mappings is

a small price to pay for the simplicity of this approach.

6.3.12 Object Extensions

Another way to extend TierStore with application-specific support is the ability to reg-

ister custom types for data objects and containers. The current implementation supports C++ ob-

ject subclassing of the base object and container classes, whereby the default implementations of

147

file/directory access and modification functions can be overridden to provide alternative semantics.

For example, we have been exploring the use of this extension to implement a conflict-

free, append-only “log object”. In this case, the log object would in fact be implemented within

the system as a container, though it would present itself to the user as if it were a normal file. If a

user appends a chunk of data to the log (i.e. opens the file, seeks to the end, writes the data, and

closes the file), the custom type handlers would create a new data object for the appended chunk of

content, and add it to the log object container with a unique name (perhaps just the object guid itself).

Then, reading from the special log object would simply concatenate all data objects that exist in the

container, using the partial order of the objects’ version vectors, coupled with some deterministic

tiebreaker. In this way multiple locations can concurrently append data to a file without worrying

about conflicts, and the system would transparently merge updates into a coherent file.

6.3.13 Security

Although we have not focused on security features within TierStore itself, security guar-

antees can be effectively implemented at complementary layers.

Though TierStore nodes are distributed, the system is designed to operate within a single

administrative scope, similar to how one would deploy an NFS or CIFS share. In particular, the

system is not designed for untrusted, federated sharing in a peer-to-peer manner, but rather to be

provisioned in a cooperative network of storage replicas for a particular application or set of appli-

cations. Therefore, we assume that configuration of network connections, definition of policies for

access control, and provisioning of storage resources are handled via external mechanisms that are

most appropriate for a given deployment. In our experience, most organizations that are candidates

to use TierStore already follow this model for their system deployments.

148

For data security and privacy, TierStore supports the standard UNIX file access-control

mechanisms for users and groups. For stronger authenticity or confidentiality guarantees, the system

can of course store and replicate encrypted files as file contents are not interpreted, except by an

application-specific automatic conflict resolver that depends on the file contents.

At the network level, TierStore leverages the recent work in the DTN community on

security protocols [118] to protect the routing infrastructure and to provide message security and

confidentiality.

6.3.14 Metadata

Currently, our TierStore prototype handles metadata modification operations such as chown,

chmod, or utimes by applying them only to the local repository. In most cases, these filesystem op-

erations occur before the file is “frozen” and updates are generated for an object, so the intended

modifications are properly conveyed along with the metadata fields in the CREATE message for

the given object. However if a metadata update occurs long after an object was created, then the

effects of the operation are not known throughout the network until another change is made to the

file contents.

Because applications that we have used so far do not depend on propagation of metadata,

this shortcoming has not been an issue in practice. However, we plan to add a new META update

message to contain the modified metadata, as well as maintain a new metadata version vector in each

object. The use of a separate version vector space for metadata is preferable so that metadata opera-

tions can proceed in parallel with mapping operations and, thereby not trigger false conflicts. Also,

conflicting metadata updates would be resolved by a deterministic policy (e.g. take the intersection

of permission bits, the later modification time, etc).

149

6.4 TierStore Applications

In this section we describe the initial set of applications we have adapted to use TierStore,

showing how the simple filesystem interface and conflict model allows us to leverage existing im-

plementations extensively.

6.4.1 E-mail Access

One of the original applications that motivated the development of TierStore was e-mail,

as it is the most popular and fastest-growing application in developing regions. In prior work, we

found that commonly used web-based e-mail interfaces are inefficient for congested and intermittent

networks [38]. These results, plus the desire to extend the reach of e-mail applications to places

without a direct connection to the Internet, motivate the development of an improved mechanism

for e-mail access.

It is important to distinguish between e-mail delivery and e-mail access. In the case of

e-mail delivery, one simply has to route messages to the appropriate (single) destination endpoint,

perhaps using storage within the network to handle temporary transmission failures. Existing pro-

tocols such as SMTP or a similar DTN-based variant are adequate for this task. For e-mail access

however, users need to receive and send messages, modify message state, organize mail into fold-

ers, delete messages, etc, all while potentially disconnected, and perhaps at different locations. To

accomplish these tasks, existing access protocols like IMAP [24] or POP [83] require clients to

make a TCP connection to a central mail server. Although this model works well for good-quality

networks, in challenged environments users may not be able to get or send new mail if the network

happens to be unavailable or is too expensive at the time when they access their data.

150

In the TierStore model, all e-mail state is stored in the filesystem and replicated to any

nodes in the system where a user is likely to access their mail. An off-the-shelf IMAP server (in our

case courier [23]) runs at each of these endpoints and uses the shared TierStore filesystem to store

users’ mailboxes and folders. Each user’s mail data is grouped into a separate publication, and via

an administrative interface, users can instruct the TierStore daemon to subscribe to their mailbox.

We use the maildir [9] format for mailboxes, which was designed to provide safe mail-

box access without needing file locks, even over NFS. In maildir, each message is stored in a

uniquely named independent file, so that when a mailbox is replicated using TierStore, most op-

erations are trivially conflict free. For example, a disconnected user may modify existing message

state or move messages to other mailboxes while new messages are simultaneously arriving without

conflict. Also, message files are created once when a message arrives, and are not modified again,

which is an ideal match for the read-only object model that TierStore implements. In contrast, a

format like mbox that stores a number of messages in a single file would be significantly more prone

to update conflicts.

However, even when using maildir, it is possible for conflicts to occur in the case of user

mobility. For example, if a user accesses mail at one location and then moves to another location

before all updates have fully propagated, then the message state flags (i.e. replied, seen, draft, etc.)

may be out of sync on the two systems. In the maildir format, these flags are encoded as characters

which are appended to the message filename. Thus if one update sets a certain state, while another

concurrently sets a different state, the TierStore system will detect a conflict on the message object,

specifically a location conflict in which the same file is mapped into conflicting filesystem names.

To handle this case most cleanly for users, we wrote a simple view resolver that computes

151

the union of the state flags for a message, and presents this unified name through the filesystem

interface. In this way, the fact that there was an underlying conflict in the TierStore namespace

is never exposed to users, and the state is safely resolved. Any subsequent state modifications or

message renaming would then subsume the conflicting mappings and clean up the underlying (yet

invisible) conflict.

Another type of conflict that could occur is that a user could could file a message into a

folder on one host, then move to another host and file the same message into a different folder. If

the user arrives at the second host before the first update does, then when the two updates eventually

reach each other, the system will detect a location conflict for the message. In this case, the use of

multiple views allows the conflict to persist until the user can reconcile it, with the side effect that

the message will appear to be in different locations on different nodes. However, an enhanced mail

application could identify the conflict and present a dialog to the user prompting resolution.

6.4.2 Content Distribution

TierStore is a natural platform to support content distribution applications. At a publisher

node, an administrator can arbitrarily manipulate files in a shared repository, dividing the content

into separate publications by content type or other classifications. Replicas would be configured

with read-only access to the publication to ensure that the application is trivially conflict-free (since

all modifications only occur at one location). The distributed content can then be served by a

standard web server or simply accessed directly through the filesystem.

As we discuss further in Section 6.5.2, using TierStore for content distribution is more

efficient and easier to administer than traditional approaches such as rsync [125]. In particular,

TierStore’s support for multicast distribution provides an efficient delivery mechanism for many

152

networks that would require ad-hoc scripting to achieve with point-to-point synchronization solu-

tions. Also, the use of the DTN overlay network enables easier integration of transport technologies

such as satellite broadcast [72] or sneakernet and opens up potential optimizations such as sending

some content with a higher priority.

6.4.3 Offline Web Access

Although systems for offline web browsing have existed for some time, most operate un-

der the assumption that the client node will have periodic direct Internet access, i.e. can get “online”,

to download content that can later be served when “offline”. However, for poorly connected sites

or those with no direct connection at all, TierStore can support a more efficient model in which

selected web sites are crawled periodically at a well-connected location, and the cached content is

then replicated.

Implementing this model in TierStore turned out to be quite simple. We configured the

wwwoffle proxy [135] to use TierStore as its filesystem for its cache directories. By running web

crawls at a well-connected site through the proxy, all downloaded objects are put in the wwwoffle

data store, and TierStore replicates them to other nodes. Because wwwoffle uses files for internal

state, if a remote user requests a URL that is not in cache, wwwoffle records the request in a file

within TierStore. This request would in turn be replicated to the well-connected node, that detects

the pending request and crawls the requested URL, again storing the results in the replicated data

store.

This application is also generally conflict free, as wwwoffle names all the files in its

cache directories using a hash of the URL. Thus all operations on distinct URLs will result in non-

conflicting updates to the cache directories. Conflicts may occur if different nodes either download

153

the same objects or if offline users request the same URL. However a simple deterministic conflict

resolver handles these cases by merging identical requests or choosing the fresher copy of a down-

loaded URL. Finally, we defined separate publications for the individual web sites that are crawled,

which allows administrators at different nodes to select sites of interest. We also have a top-level

subscription of depth 1 on the root /wwwoffle/http directory. This allows us to present a sim-

ple HTML interface to make the offline nodes aware of the list of web sites that are available for

replication, without needing to subscribe to all of them.

We ran an early deployment of TierStore and wwwoffle to accelerate web access in the

Community Information Center kiosks in rural Cambodia [17]. For this deployment, the goal was

to enable accelerated web access to selected web sites, but still allow direct access to the rest of the

Internet. Therefore, we configured the wwwoffle servers at remote nodes to always use the cached

copy of the selected sites, but to never cache data for other sites, and at a well-connected node, we

periodically crawled the selected sites. Since the sites changed much less frequently than they were

viewed, the use of TierStore, even on a continuously connected (but slow) network link, was able to

accelerate the access.

6.4.4 Data Collection

Data collection represents a general class of applications that TierStore can support well.

The basic data flow model for these applications involves generating log records or collecting survey

samples at poorly connected edge nodes and replicating these samples to a well-connected site.

Although at a fundamental level, it may be sufficient to use a messaging interface such

as e-mail, SMS, or DTN bundling for this application, the TierStore design offers a number of key

advantages. In many cases, the local node needs to have access to the data after it has been collected,

154

thus some form of local storage is necessary anyway. Also, there may be multiple destinations

for the data; many situations exist in which field workers operate from a rural office that is then

connected to a larger urban headquarters, and the pub/sub system of replication allows nodes at all

these locations to register data interest in any number of sample sets.

Furthermore, certain data collection applications can benefit greatly from fine-grained

control over the units of data replication. For example, consider a census or medical survey being

conducted on portable devices such as PDAs or cell phones by a number of field workers. Although

replicating all collected data samples to every device will likely overwhelm the limited storage

resources on the devices, it would be easy to set up publications such that the list of which samples

had been collected would be replicated to each device to avoid duplicates.

Finally, this application is trivially conflict free. Each device or user can be given a distinct

directory for samples, and/or the files used for the samples themselves can be named uniquely in

common directories.

6.4.5 Wiki Collaboration

Group collaboration applications such as online Wiki sites or portals generally involve a

set of web scripts that manipulate page revisions and inter-page references in a back-end infrastruc-

ture. The subset of common wiki software that uses simple files (instead of SQL databases) are

generally easy to adapt to TierStore.

For example, PmWiki [97] stores each Wiki page as an individual file in the configured

wiki.d directory. The files each contain a custom revision format that records the history of updates

to each file. By configuring the wiki.d directory to be inside of TierStore, multiple nodes can

update the same shared site when potentially disconnected. Of course, simultaneous edits to the

155

same wiki page at different locations can easily result in conflicts. In this case, it is actually safe

to do nothing at all to resolve the conflicts. Even with no resolution, the wiki would still be in a

self-consistent state at all locations. However, users would no longer easily see each other’s updates

(since one of the conflicting versions would be renamed as described in Section 6.3.9), limiting the

utility of the application.

Implementing a mechanism to resolve these types of conflicts is also straightforward.

PmWiki (like many wiki packages) contains built-in support for managing simultaneous edits to the

same page, by presenting a user with diff output and asking for confirmation before committing the

changes. Although this mechanism is intended for “true” concurrent editing, we can leverage it to

support conflicting edits that occurred at disconnected locations. To do this, we would implement

a conflict resolver that simply renames the conflicting modification files in such a way that the web

scripts prompt the user to manually resolve the conflict at a later time.

6.5 Evaluation

We now present some initial evaluation results to demonstrate the viability of TierStore as

a platform. First we ran some microbenchmarks to demonstrate that the TierStore filesystem inter-

face has competitive performance to traditional filesystems and thus should not impose a significant

performance limitation for local application operation. Then we describe experiments where we

show the efficacy of TierStore for a content distribution application in a simulation of a challenged

network. Finally we discuss ongoing deployments of TierStore in real-world scenarios.

156

CREATE READ WRITE GETDIR STAT RENAME
Local 1.72 (0.04) 16.75 (0.08) 1.61 (0.01) 7.39 (0.01) 3.00 (0.01) 27.00 (0.2)
FUSE 3.88 (0.1) 20.31 (0.08) 1.90 (0.8) 8.46 (0.01) 3.18 (0.005) 30.04 (0.07)
NFS 11.69 (0.09) 19.75 (0.06) 42.56 (0.6) 8.17 (0.01) 3.76 (0.01) 36.03 (0.03)

TierStore 7.13 (0.06) 21.54 (0.2) 2.75 (0.3) 15.38 (0.01) 3.19 (0.01) 38.39 (0.05)

Table 6.1: Microbenchmarks for various file system operations for local Ext3, loopback-mounted

NFS, pass-through FUSE layer and TierStore. Runtime is in seconds averaged over five runs, with

the standard error in parenthesis.

6.5.1 Microbenchmarks

This set of experiments compares TierStore’s filesystem interface with three other sys-

tems: Local is the Linux Ext3 file system; NFS is a loopback mount of an NFS server running in

user mode; FUSE is a fusexmp instance that simply passes file system operations through the user

space filesystem daemon to the local file system. All of these benchmarks were run on a 1.8 GHz

Pentium 4 with 1 GB of memory and a 40GB 7200 RPM EIDE disk, running Debian 4.0 and the

2.6.18 Linux kernel.

For each filesystem, we ran several benchmark tests: CREATE creates 10,000 sequentially

named empty files. READ performs 10,000,000 16 kilobyte read() calls at random offsets of a

one megabyte file. WRITE performs 10,000,000 16k write() calls to append to a file; the file

was truncated to 0 bytes after every 1,000 writes. GETDIR issues 1,000 getdir() requests on a

directory containing 800 files. STAT issues 1,000,000 stat calls to a single file. Finally, RENAME

performs 10,000 rename() operations to change a single file back and forth between two filenames.

Table 6.1 summarizes the results of our experiments. Run times are measured in seconds,

averaged over five runs, with the standard error in parentheses. The goal of these experiments is

to show that existing applications, written with standard filesystem performance in mind, can be

157

Root

Cities Towns
Villages

fiber
100Mb/s, 0ms

satellite
128kb/s, 300ms

 modem
56kb/s, 10ms

Figure 6.6: Network model for the TierStore emulab experiments.

deployed on TierStore without worrying about performance barriers. These results support this

goal, as in many cases the TierStore system performance is as good as traditional systems. The

cases where the TierStore performance is worse are largely due to inefficiencies in the way that we

interact with FUSE and the lack of optimizations on our backend persistent storage.

6.5.2 Multi-node Distribution

In another set of experiments, we used the Emulab [130] environment to evaluate the

TierStore replication protocol on a challenged network similar to those found in developing regions.

To simulate this target environment, we set up a network topology consisting of a single root node,

with a well-connected “fiber” link (100 Mbps, 0 ms delay) to two nodes in other “cities”. We then

connect each of these city nodes over a “satellite” link (128 kbps, 300 ms delay) to an additional

node in a “village”. In turn, each village connects to five local computers over “dialup” links (56

kbps, 10 ms delay). Figure 6.6 shows the network model for this experiment.

To model the fact that real-world network links are both bandwidth-constrained and in-

termittent, we ran a periodic process to randomly add and remove firewall rules that block transfer

158

0

50

100

150

200

250

0% down 10% down 25% down 0% down 10% down 25% down

T
ra

ff
ic

 (
in

 M
B

)
Rsync e2e Rsync hop TierStore

Single Subscription Multiple Subscriptions

Figure 6.7: Total network traffic consumed when synchronizing educational content on an Emulab

simulation of a challenged network in developing regions.

traffic on the simulated dialup links. Specifically, the process ran through each link once per second,

comparing a random variable to a threshold parameter chosen to achieve the desired downtime per-

centage, and turning on the firewall (blocking the link) if the threshold was met. It then re-opened a

blocked link after waiting 20 seconds to ensure that all transport connections closed.

We ran experiments to evaluate TierStore’s performance for electronic distribution of ed-

ucational content, comparing TierStore to rsync [125]. We then measured the bandwidth required

to transfer 7MB of multimedia data from the root node to the ten edge nodes. We ran two sets of ex-

periments, one in which all data is replicated to all nodes (single subscription), and another in which

portions of the data are distributed to different subsets of the edge nodes (multiple subscriptions).

The results from our experiments are shown in Figure 6.7.

We compared TierStore to rsync in two configurations. The end-to-end model (rsync e2e)

is the typical use case for rsync, in which separate rsync processes are run from the root node to

each of the edge nodes until all the data is transferred. As can be seen from the graphs, however,

159

this model has quite poor performance, as a large amount of duplicate data must be transferred over

the constrained links, resulting in more total traffic and a corresponding increase in the amount of

time to transfer. As a result, TierStore uses less than half of the bandwidth of rsync in all cases.

This result, although unsurprising, demonstrates the value of the multicast-like distribution model

of TierStore to avoid sending unnecessary traffic over a constrained network link.

To offer a fairer comparison, we also ran rsync in a hop-by-hop mode, in which each node

distributed content to its downstream neighbor. In this case, rsync performs much better than the

end-to-end case, as there is less redundant transfer of data over the constrained link. Still, TierStore

can adapt better to intermittent network conditions as the outage percentage increases. This is

primarily because rsync has no easy way to detect when the distribution is complete, so it must

repeatedly exchange state even if there is no new data to transmit. This distinction demonstrates

the benefits of the push-based distribution model of TierStore as compared to state exchange when

running over bandwidth-constrained or intermittent networks.

Finally, although this latter mode of rsync essentially duplicates the multicast-like dis-

tribution model of TierStore, it is significantly more complicated to administer and cannot react to

changes in the underlying network topology as the distribution tree is statically defined. In TierStore,

edge nodes simply register their interest for portions of the content, and the multicast replication oc-

curs transparently, with the DTN session layer taking care of re-starting transport connections when

they break and detecting changes in the underlying connectivity patterns. In contrast, multicast dis-

tribution with rsync required end-to-end statically configured synchronization processes, configured

with aggressive retry loops at each hop in the network, making sure to avoid re-distributing partially

transferred files multiple times, which was both tedious and error prone.

160

6.5.3 Ongoing Deployments

We are currently working on several TierStore deployments in developing countries. One

such project is supporting community radio stations in Guinea Bissau, a small West African country

characterized by a large number of islands and poor infrastructure. For many of the islands’ resi-

dents, the main source of information comes from the small radio stations that produce and broad-

cast local content. TierStore is being used to distribute recordings from these stations throughout

the country to help bridge the communication barriers among islands. Because of the poor infras-

tructure, connecting these stations is challenging, requiring solutions like intermittent long-distance

WiFi links or sneakernet approaches like carrying USB drives on small boats, both of which can be

used transparently by the DTN transport layer.

The project is using an existing content management system to manage the radio programs

over a web interface. This system proved to be straightforward to integrate with TierStore, again

because it was already designed to use the filesystem to store application state, and replicating

this state was an easy way to distribute the data. We are encouraged by early successes with the

integration and are currently in the process of preparing a deployment for some time in the next

several months.

6.6 Conclusions

The goal of TierStore is to provide an alternative storage-focused abstraction for appli-

cation development and deployment in challenged network contexts, and our initial results support

the success of the system in this goal. In particular, the fact that we could easily port several off

the shelf applications to the TierStore system validates the easy adaptation benefit of providing a

161

standard filesystem interface. Furthermore, the notable performance improvement observed when

using TierStore in an intermittent network environment validates the benefits of building such the

system to use the intermittency-tolerance and efficient distribution features of the DTN network

technologies.

Furthermore, the design of TierStore is a clear embodiment of the main themes of this

dissertation. At a basic level, we based our design on replication as opposed to RPC-based access to

file data to be able to leverage storage resources (in this case the replicated file state) to avoid con-

suming potentially expensive bandwidth. Furthermore, our design of a simple conflict management

and resolution scheme stems from the need to operate while disconnected, yet avoid having compli-

cated user interactions or confusing behavior when the network partitions heal. Finally, all levels of

the system, from the basic protocol exchanges to the user-exposed conflict resolution mechanisms,

must be aware of the fact that the network can be intermittently connected and that actions may

need to be taken to handle this fact.

162

Chapter 7

Conclusions and Future Work

We conclude this dissertation by restating the main goals and contributions of our work,

followed by a brief discussion of future research opportunities to further our goals.

7.1 Dissertation Review

Our central goal in this work is to explore ways that networking and system infrastruc-

ture can aid development and deployment of applications in developing regions. Our approach is

based on three key premises: First, in many developing countries, there is a large unmet demand for

information and communication technology applications with the potential to significantly impact

and provide real world benefits to many individuals. Second, one of the key barriers to deploying

applications in these environments is the fact that the underlying networks are intermittent, render-

ing traditional system designs and existing implementations ineffective in many cases. Finally, we

believe that these intermittent network characteristics are likely to persist for some time, motivating

the need for novel approaches to networking and data management that can provide appropriate ab-

163

stractions to help deal with disconnections and thereby aid application design and implementation.

We approach this problem from several fronts. At the networking layer, we provide a ro-

bust implementation of the Delay Tolerant Networking (DTN) architecture, a general-purpose store-

and-forward overlay network that can operate effectively in intermittent network environments.

DTN provides the foundational framework for our other contributions, as it is able to accommo-

date a variety of connectivity mechanisms effectively as well as handle the fact that links might

come up and down periodically during the normal operation of a network. Through our experiences

implementing these protocols and mechanisms, we gained a deeper understanding of the effects of

intermittency on system design, and produced a robust implementation that supports current and

future research, as well as real-world deployments.

To extend the utility of this core DTN implementation, we addressed the challenge of

data routing in intermittent network environments that typify many developing regions, we de-

signed a new routing algorithm called Delay Tolerant Link State Routing (DTLSR). Recognizing

that in many cases, the network topology may have an underlying stability that we can exploit when

designing the routing protocol, we make small modifications to a classical approach that yields

effective results. Furthermore, the combination of DTLSR along with the robust DTN implementa-

tion provides a fully functional base system that we can leverage as a building block for application

deployment and experimentation.

We then turned to examine the issues involved with adapting existing applications to in-

termittent network environments. First, we identified that many prospective applications are not

accommodated easily by the existing DTN service model due to its relatively limited unicast, inde-

pendent transmission data model. We therefore designed a new session layer for the DTN architec-

164

ture based on the publish / subscribe design paradigm. This session layer provides a programming

interface that can meet the communication needs of applications effectively and naturally, including

mechanisms to deal with multicast data distribution as well as a message ordering and an in-network

deletion framework that handles data management during network outages in an elegant way.

Although this session layer is effective at meeting the needs of several interesting applica-

tions, others are more naturally handled using a different approach. For these cases, we developed

a system called TierStore that leverages the DTN framework to provide a distributed shared storage

service. TierStore provides a natural fit for applications that are largely data-driven as opposed to

protocol-driven. By implementing a standard filesystem interface and offering a straightforward

single-object coherence policy for consistency, TierStore offers a robust and flexible way for ap-

plications to structure their data, while helping to adapt existing application code easily without

requiring much modification.

7.2 Design Themes

These contributions share several common design patterns and themes, as we briefly dis-

cussed in Section 2.5. In particular, in many instances we leverage storage resources to avoid

consuming network bandwidth. The basic DTN store-and-forward networking model, the DTLSR

link-weight algorithm, the bundle retention policy in the DTN session-layer implementation, and

the replication-oriented design of TierStore are all examples where we apply this general principle.

The rationale for this design is straightforward: storage is often more available and inexpensive than

the network, thus we leverage it to provide benefits to applications.

In addition, our designs handle intermittency at each hop in the network. In many cases,

165

existing applications and systems can adapt to partitions between edge client devices and the rest

of the network, as this type of partition is common with mobile devices such as laptop computers.

However, networks in developing regions often experience outages within the core network fabric

itself, and in more novel sneakernet architectures, the entire network may be constructed of inter-

mittent links. Again, the fact that DTN is a store-and-forward network embodies this design theme,

as does the fact that the session layer and TierStore are implemented to assume that application

access and/or modification of data may need to be handled while a network partition exists. In other

words, all of our designs reflect a general inclination towards availability at the potential (necessary)

expense of consistency.

Finally, the above designs can react to network outages at all system layers. The ability

(or inability) for two parties to communicate at a given time is a fundamental property that affects

essentially all aspects of many networked system interactions. Indeed, the fact that our contributions

themselves multiple system layers embodies this principle. Specifically, the convergence layers used

to adapt the DTN bundle protocol to a particular network transport, the connectivity graph model

used by DTLSR, the focus on offline data availability in TierStore, and finally the designs of the

prototype applications that we developed all take into account the fact that networks may not be

fully connected during many operational periods. Thus all aspects of our architecture, from the

lowest to the highest layers, are designed with network intermittency in mind.

7.3 Application Examples

One of the challenges with designing a new application framework is the inherent diffi-

culty in assessing its success, as there tend to be few avenues of comparison with existing systems.

166

However, one way in which we can assess the relative success of our framework is through an ex-

amination of the applications that we have developed and a demonstration of ways in which those

application designs were aided by the contributions presented in this dissertation.

7.3.1 Voice Message Phone

Although cellular phone access has demonstrated a remarkably fast and broad penetration

into developing regions, many rural and urban poor still remain unable to use phones due to a

combination of lack of coverage and unaffordable rates. To combat both of these fronts, we have

been developing a phone system designed to be “voice message mostly,” meaning that although the

phone can make normal calls, its normal usage is to send and receive asynchronous voice messages.

This approach can extend the effective coverage range of a phone by queueing messages

on the device and leveraging user mobility to transfer them in and out of connectivity. The system

also allows for intermittent connectivity between the base stations without necessarily impacting the

user experience. Also, because the system has control over the scheduling of message transfers, it

can smooth out the network traffic, allowing deployments to scale with respect to the average load

as opposed to the peak, potentially making coverage in remote areas affordable and/or reducing

airtime charges.

We have built an initial prototype implementation of the system, using a Nokia N810

tablet platform running Linux, which made it trivial to use the DTN reference implementation com-

piled for the ARM architecture. Using the DTN API exported to Python, our first prototype was

The voicemail phone project is joint work with Omar Bakr, Eric Brewer, Kurtis Heimerl, RJ Honicky, and the
late Richard Newton. The rationale for and design characteristics of the project were previously published in
“A message oriented phone system for low cost connectivity” in the Proceedings of the 6th Workshop on Hot
Topics in Networks (HotNets), November 2007 [58]. The development of the prototype application and pilot
study in Uganda is currently being led by Kurtis Heimerl.

167

written in a few weeks using only a few hundred lines of Python source code. Yet even this sim-

ple implementation included the core disconnection tolerance features required for the application,

including queueing of messages on the phone or on the various base stations, dynamic routing of

messages between nodes using DTLSR, and some simple scheduling for connectivity management.

The fact that we could leverage DTN as the networking layer meant that most of our initial attention

could be focused on the user interface aspects of the application, without worrying as much about

the demands of a robust message transfer and delivery mechanism. In the future, we plan to inte-

grate the session layer to handle cases where a user moves regularly between multiple base stations

by caching a copy of all user messages at both locations so that they can be retrieved when a user

moves into connectivity range.

We are currently conducting an initial pilot deployment in 10 villages in Uganda, with a

total of 200-250 users to continue to refine the idea and gain some insights into how readily users

adopt the asynchronous voice communication model.

7.3.2 Educational Content Distribution

One of the challenges of providing good education in rural environments in developing

regions is the cost of distributing educational materials. Due to limited transportation infrastructure

and low budgets, new books and workbooks are often unaffordable, requiring students to use old

materials of deteriorating quality and decreasing relevance, or to go without materials at all. Also,

although some of these materials exist in electronic form, the limited network infrastructure in many

countries makes it challenging to transfer materials to the remote regions using traditional protocols.

The development of the educational content distribution system and the arrangements and research for the
pilot deployment in Senegal have been conducted primarily by Bowei Du and Assane Gueye.

168

In response, we have been evaluating and developing an electronic content distribution

system for educational content. For this application, we plan to use the TierStore system to imple-

ment a content distribution application targeted for this educational environment. The filesystem

interface allows us the choice of a range of existing tools and provides flexibility in the choice of

programming language and environment. The idea is that by leveraging TierStore and DTN for the

replication management, development of the system can be focused on the user interface and the

content management components, helping to reduce the development challenges. We are in the pro-

cess of evaluating the needs and scope for this type of system in a number of locations in Senegal,

and aim to deploy a pilot system sometime within the next year.

7.3.3 Microfinance Transaction Log Synchronization

Opportunity International [88] is an organization that supports microfinance projects in

several developing countries. To manage their projects, they maintain detailed logs and records of

all transactions to ensure their validity and provide oversight. In a typical deployment, transactions

are logged using a local database installed in-country, and a snapshot is generated nightly and trans-

ferred via rsync [125] back to the headquarters in the US. However, in some deployments, e.g. those

in Mozambique and Malawi, intermittent network connectivity means that the synchronization pro-

cess often fails before completion because the TCP connection breaks. On occasion, this can result

in several days going by without a successful transfer, reducing the accuracy of oversight and the

efficacy of deployment management.

We have been experimenting with the use of the DTN implementation and the dtntunnel

application to help make the synchronization operations more robust to network failures. The ap-

plication configuration is straightforward: the system continues to use the same rsync process to

169

transfer data, only instead of a direct TCP connection over the intermittent link, the remote side

communicates with a dtntunnel instance which then sends the data over the wide area as DTN bun-

dles to another dtntunnel instance which then unpacks the bundles and connects to the rsync server.

Although we have demonstrated success in initial experiments, field deployment has been delayed

due to security concerns with the DTN implementation. Specifically, the current DTN code base

does not include any key management features as part of the implementation of the DTN security

protocols [118], and the sensitive nature of the transaction data means that deployment requires

external security mechanisms, which are currently being evaluated.

7.3.4 Remote Medical Consultation

In many developing countries, various forms of telemedecine can help overcome the

shortage of trained medical personnel and limited transportation infrastructure and provide im-

proved health care to the population. Some colleagues of ours have been pursuing development

and a pilot study of a particular telemedecine project in Ghana, focused on asynchronous remote

medical consultation [75]. In this approach, a web-based case management and referral system was

installed in medical clinics in remote village locations as well as in a main hospital. Using this

system, case workers enter patient case information into the remote installations, and the system

synchronizes this data to the hospital. There, specialists review the data and perform the required

diagnosis and consultation, entering the results back into the system where they are again synchro-

nized to the remote location.

Due the fact that network connectivity between the hospital and the remote clinics can be

The remote medical consultation project was conducted by Paul Aoki, Melissa Ho, and Rowena Luk. A
description of the project was published in “Asynchronous Remote Medical Consultation for Ghana”, in the
proceedings of CHI 2008 [75].

170

intermittent, the system was designed around asynchronous networking solutions. In particular, the

usability of the system required a high degree of interactivity for the systems in the local clinics,

meaning that a traditional centralized web-based system was unlikely to be effective, since system

would be unavailable when the network connectivity is down. The distributed system design meant

the remote installations could interact with the local database without depending on the network

connection, relying on the opportunistic synchronization to and from the specialists in the hospital

when the network link is available.

The system was originally designed to use TierStore as its data synchronization mecha-

nism. However, integration issues and system instability meant that the pilot deployment in Ghana

used a simple ad-hoc mechanism to replicate the case data. Also, in this case, the filesystem-based

interface of TierStore was not a particularly good fit for the system, as it used a relational database

as its backend data store. We are currently evaluating the addition of a SQL-based interface for

TierStore (discussed below) and/or the use of alternative DTN-based mechanisms for future de-

ployments and continuations of the project.

7.4 Future Research Opportunities

We now discuss several related research opportunities, both currently under way as well

as open for future exploration, that complement the contributions presented in this dissertation.

171

7.4.1 Rethinking the Networking API

Today, the vast majority of wide-area Internet applications communicate using TCP/UDP

services either directly using a variant of the Berkeley Sockets API, or indirectly using middleware

or HTTP libraries that reflect the same fundamental design assumptions as Sockets. Yet in the (20+)

years since the development of Sockets, the Internet has spread widely, increased in diversity, and

the key applications that use the network have changed substantively. Specifically, most Internet

applications today are primarily concerned with access to content and services, not necessarily with

communication to a particular host/port on the network. Also, the Internet is no longer primarily

comprised of workstations connected to high speed wired networks, and instead includes a great

diversity of devices and access technologies, including embedded devices, lossy wireless networks,

store-and-forward sneakernets, mobile phones, etc.

Many novel networking systems have been developed to help improve the operation

of content-oriented applications in these various operating domains, including the DTN architec-

ture described above, the Internet Indirection Infrastructure (i3) [110], the Data-Oriented (and Be-

yond) Network Architecture [71], the Data-Oriented Transfer (DOT) [123] service, Haggle [111],

NUTSS [54], Structured Streams [47], and others. Yet in order to provide their key benefits, all

these systems require applications to use a different API than Sockets (or HTTP), because the exist-

ing interfaces are too constraining to fully express applications’ needs and gain the benefits of the

novel networking approach.

The main drawback to the Sockets API is that it forces a tight coupling between an appli-

The rationale for and initial design efforts on a new network API are the result of collaboration with Teemu
Koponen, Scott Shenker, Kevin Fall, Eric Brewer, and David Andersen. An preliminary version of the work
appeared as “Towards a Modern Communications API” in the Proceedings of the 6th Workshop on Hot Topics
in Networks (HotNets), November 2007 [33].

172

cation client of the API and a particular network technology (or set of technologies) that implement

the API services. Specifically, a Sockets application must select an addressing family in advance,

resolve and address a particular communications endpoint, and choose a specific transport protocol

for data transfer. The API also requires that communicating entities remain actively involved with

the network session, as there is no (clean) concept of a persistent cache or storage repository in the

network model. Instead, because user libraries and the operating system can only hold a limited

amount of data in temporary buffers, applications must continuously interact with the network stack

to send and/or receive data. In a nutshell, Sockets requires applications to interact with the network

in an imperative style, selecting specific mechanisms to accomplish their needs, and as a result,

limits the flexibility of the network stack to meet these needs.

To address these limitations, we have begun to research the design and development of a

new network API for general-purpose communication. Our goal is to develop an interface that is

natural and easy to use for the majority of (if not all) networked applications. At the same time, we

want to make it easier to develop and deploy novel and potentially disruptive network technologies

to support these applications, in a way that is largely transparent to the application developer. For

example, a successful interface would allow an application that has an inherent tolerance for de-

layed connectivity to use DTN services in challenged network scenarios or traditional TCP-based

protocols in well-connected networks, without requiring the application to be rewritten, modified,

or even recompiled.

To meet this goal, we believe applications should be able to express their intent or re-

quirements to the network using a more declarative networking interface. As such, we have based

our designs around the publish/subscribe design paradigm [39]. Then the underlying system can

173

select the most suitable mechanism(s) to provide the desired service, based on availability and lo-

cal conditions. This design introduces a level of indirection to decouple applications from details

about the underlying network, including the transport protocols, choice of particular endpoints, and

temporal dependencies on the data. To achieve this aim, the API must provide a sufficiently rich set

of abstractions to be able to support a wide range of applications. The API must support latency-

tolerant and interactive applications, high-performance and performance-agnostic applications, and

a variety of message, reliability, and ordering semantics. At the same time, the API abstractions

should be implementable in a variety of network settings using a range of protocols, without forc-

ing particular choices into the applications. In particular, the development and widespread use of

this new networking API would help make it easier to adapt applications to developing country en-

vironments, since it would allow the use of novel networking approaches to deal with challenged

conditions without requiring rewriting the original applications.

7.4.2 Exposing Network Reachability

One of the consequences of adding layers of abstraction between applications and the

network is that by design, some details of the network connectivity are hidden from the application.

In some cases, this obscurity can be helpful, as it means the application developer need not be

burdened with fluctuations in the network connectivity if it does not care about them (i.e. if the

application’s network requirements are disruption-tolerant). In particular, applications that use DTN

services are (deliberately) isolated from knowing whether or not a node has network connectivity

to some set of peers, since in the DTN design, the network stack handles outages by buffering data

in storage until connectivity is available. However, in some cases, an application may need to react

to the presence or lack of presence of another party with which it can communicate within some

174

tolerable delay. Ideally, the application could request notification of when the other party (or parties)

are in communication range, yet still not need to react to every time the network comes up and down

if it is not relevant.

One approach that we have been pursuing to address this issue is to extend the DTN

session layer with a generic framework for differentiated service classes [28]. Unlike the traditional

quality of service systems focused on the Internet architecture, our goal is not to provide guaranteed

service classes for real-time applications. Indeed, in an intermittent and often unpredictable network

environment, the notion of a service guarantee seems misguided. Instead, the goal of the DTN

session layer is precisely to enhance the communications interface between DTN applications and

the network implementation. To that end, an application can request a certain desired level of

service, and the network layer promises to either fulfill the request or return an error indication

if/when the network conditions are insufficient to meet the application’s request. This service class

framework can thus serve as the basis for applications to be notified of the aspects of the network

conditions that they care about in an efficient manner, as opposed to being notified every time a

link goes up or down, which might have little or no corresponding effect on the application’s data

requirements.

7.4.3 Link Predictions and Erasure Coded Reliability

A running theme throughout much of this discussion is that in many environments, links

may experience unexpected outages due to various external factors, and thus systems must be able

to prepare for unexpected link interruptions and subsequent reestablishment. At the same time,

many subsystems and components could benefit from predictive knowledge of when a link is likely

to be available (or unavailable) in the future, and what its characteristics (i.e. packet loss, delay,

175

bandwidth) are likely to be at that point. Two examples of this need from the work described

above are the link-weight metric used by DTLSR, and the session refresh timer used by the session

layer. In both of these cases, our current approach relies on a simplistic heuristic and/or manual

configuration, which may not be effective in many circumstances.

One way to approach this challenge would be to augment the DTN implementation with

a generic link measurement and prediction engine. This mechanism would monitor link activity

and availability to build a probabilistic model of future link behavior. If augmented with certain

assumptions about the environment, such as the expected periodicity of the link and/or assumptions

about the causes of link outages, this subsystem could be used to inform other components of the

probability that a link may be available again in the future. This knowledge would then lead to more

accurate predictions and better corresponding behavior in the systems that rely on the prediction.

This estimation engine could be leveraged to enable an alternative approach to reliable

data transmission based on forward error correction and erasure coding. Specifically, rather than

relying on retransmissions to correct for transmission errors or lost messages, this approach would

divide bundles into erasure coded fragments that would be transmitted over multiple independent

paths. That way, as long as some configurable subset of the fragments arrived, the original bundle

could be reconstructed and delivered. In prior work [63], we found that using this approach to era-

sure coding with an appropriate path allocation algorithm can achieve a high probability of bundle

delivery without imposing an undue processing overhead on the network.

This approach could be naturally integrated into the DTN implementation in conjunction

with the DTLSR algorithm. Specifically, one challenge of using erasure coding is the need to

discover multiple independent paths through the network from a sender to a receiver, such that

176

the chance of correlated loss of a number of erasure code fragments is low. When using DTLSR,

implementing this path selection algorithm is straightforward: a node iteratively chooses paths using

a weight function that biases for both link delivery probability and path independence from other

previously chosen paths, continuing the process until enough paths are chosen to achieve a desired

delivery probability. This approach would also require a mechanism for source routing or some

other mechanism to implement these decisions.

7.4.4 TierStore SQL Interface

Although many useful applications can be adapted to use the TierStore filesystem inter-

face easily, as we discussed previously, one major class of applications for which this adaptation is

more challenging are those that use relational databases to store their data instead of plain files. In

these cases, simply putting files that store the database contents in TierStore and thereby replicating

them is insufficient, since it would fail to allow concurrent modification to unrelated portions of

the database, and would require transfer of the entire database after each change. One the other

hand, although there is a rich research literature on the topic of distributed databases that support

fine-grained concurrent updates in a distributed network environment, in most instances these sys-

tems strive to maintain the strict atomicity and consistency guarantees of a single-site database, and

depend on end-to-end connectivity between instances to perform state synchronization. As a result,

they tend to perform quite poorly or fail completely in an intermittent network scenario, and cannot

leverage a store-and-forward transport mechanism like DTN.

For applications that depend on complex transactional updates to a shared data store sys-

tem, this complexity is in many cases unavoidable, since the core operation of the application de-

pends on consistent frequent updates to the shared database. As a result, these applications are

177

unlikely to be able to adapt well to intermittent environments. However, many applications actu-

ally have fairly weak consistency requirements, even though they use a database for their back end.

For example, web-based applications such as wikis or digital photograph repositories have limited

channels for users to update the system, and control concurrent access through mechanisms in the

user interface, rather than relying on the atomicity and isolation features of the underlying database

for safety. In these cases, the database backend is used primarily for programmer convenience and

language flexibility, not for the transactional guarantees. Thus there is no essential reason why

these applications could not be implemented in an intermittent network, since at their core, they can

tolerate periods of reduced consistency and do not require tight coordination of function between

instances. Although some support for conflict resolution would need to be added to the systems,

fundamentally, the applications could still operate properly while disconnected.

To help handle these applications, TierStore could be augmented with a simple SQL in-

terface as a parallel alternative to the existing filesystem interface. This design would still use the

same single-object coherence mechanism that we described above, only in this case each object

would represent a single row in a database table instead of a single file. In other words, each time an

application updates one or more records in the database, we would generate a new TierStore update

for each modified row, tagged with the appropriate logical version vector and distributed over the

intermittently connected DTN overlay as is done in the file-based variant. Conflicts would therefore

only occur if two applications modified the same record at the same logical time. Conflict resolu-

tion could be handled by adding a hidden column to each table in the database to store the version

and view of each update, and special administrative queries could reveal the view information and

then resolve any conflicts that occured. Thus the addition of this mechanism would thus extend the

178

utility of the TierStore service to SQL-based applications that have loose consistency requirements

and help them to be used more efficiently and effectively in intermittent environments,

7.5 Closing Summary

This dissertation presents a system architecture aimed at supporting applications in the

intermittent network environments that characterize many developing regions. Our contributions

span multiple layers and aspects of the system architecture, starting with the implementation of the

store-and-forward Delay Tolerant Networking overlay architecture. Using this implementation as

our base framework, we addressed the challenges of data routing and provide a new abstraction for

multi-party communication via publish / subscribe sessions in a DTN environment. We then build

on these contributions in the TierStore distributed shared storage system that provides a natural

framework for adapting and developing storage-focused applications in intermittent environments.

Through both the current pilot projects described above as well as potential future ini-

tiatives, we sincerely hope that this framework can play an important role in the development and

deployment of applications that can in turn provide tangible real world benefits to individuals in

developing countries.

179

Bibliography

[1] A. Adams, J. Nicholas, and W. Siadak. Protocol Independent Multicast - Dense Mode (PIM-

DM): Protocol Specification (Revised). RFC 3973, January 2005. http://www.ietf.org/

rfc/rfc3973.txt.

[2] Z. Albanna, K. Almeroth, D. Meyer, and M. Schipper. IANA Guidelines for IPv4 Mul-

ticast Address Assignments. RFC 3171, August 2001. http://www.ietf.org/rfc/

rfc3171.txt.

[3] Bob Albrightson, JJ Garcia-Luna-Aceves, and Joanne Boyle. EIGRP - A Fast Routing Pro-

tocol Based on Distance Vectors. In Proceedings of Networld / Interop, May 1994.

[4] Vishwanath Anantraman, Tarjei Mikkelsen, Reshma Khilnani, Vikram S Kumar, Rao Machi-

raju, Alex Pentland, and Lucila Ohno-Machado. Handheld computers for rural healthcare,

experiences in a large scale implementation. In Proceedings of the 2nd Development by

Design Workshop (DYD02), 2002.

[5] Aruna Balasubramanian, Brian Levine, and Arun Venkataramani. DTN Routing as a Re-

source Allocation Problem. In Proceedings of the ACM Symposium on Communications

Architectures & Protocols (SIGCOMM), August 2007.

http://www.ietf.org/rfc/rfc3973.txt
http://www.ietf.org/rfc/rfc3973.txt
http://www.ietf.org/rfc/rfc3171.txt
http://www.ietf.org/rfc/rfc3171.txt

180

[6] David M. Beazley. SWIG: An Easy to Use Tool For Integrating Scripting Languages with C

and C++. In Proceedings of the Fourth Annual USENIX Tcl/Tk Workshop, 1996.

[7] Nalini Belaramani, Mike Dahlin, Lei Gao, Amol Nayate, Arun Venkataramani, Praveen Yala-

gandula, and Jiandan Zheng. PRACTI replication. In Proceedings of the 3rd ACM/Usenix

Symposium on Networked Systems Design and Implementation (NSDI), San Jose, CA, USA,

May 2006.

[8] T. Berners-Lee, R. Fielding, and L. Masinter. Uniform Resource Identifier (URI): Generic

Syntax. RFC 3986, January 2005. http://www.ietf.org/rfc/rfc3986.txt.

[9] D.J. Bernstein. Using maildir format. http://cr.yp.to/proto/maildir.html.

[10] Bill Steward et al.. Living Internet, 2000. http://www.livinginternet.com/.

[11] Brent Welch and Ken Jones and Jeff Hobbs. Practical Programming in Tcl and Tk . Prentice

Hall, Upper Saddle, NJ, June 2003. Fourth Edition.

[12] Eric Brewer, Michael Demmer, Bowei Du, Melissa Ho, Matthew Kam, Sergiu Nedevschi,

Joyojeet Pal, Rabin Patra, Sonesh Surana, and Kevin Fall. The Case for Technology in

Developing Regions. IEEE Computer, 38(6):25–38, June 2005.

[13] John Burgess, Brian Gallagher, David Jensen, and Brian Levine. MaxProp: Routing for

vehicle-based disruption-tolerant networks. In Infocom, 2006.

[14] Scott Burleigh, Adrian Hooke, Leigh Torgerson, Kevin Fall, Vint Cerf, Bob Durst, Keith

Scott, and Howard Weiss. Delay-tolerant networking: An approach to interplanetary internet.

IEEE Communications Magazine, 41(6):128–136, June 2003.

http://www.ietf.org/rfc/rfc3986.txt
http://cr.yp.to/proto/maildir.html
http://www.livinginternet.com/

181

[15] John W. Byers, Michael Luby, Michael Mitzenmacher, and Ashutosh Rege. A Digital Foun-

tain Approach to Reliable Distribution of Bulk Data. SIGCOMM Computing Communica-

tions Review, 28(4):56–67, 1998.

[16] B. Cain, S. Deering, I. Kouvelas, B. Fenner, and A. Thyagarajan. Internet Group Management

Protocol, Version 3. RFC 3376, October 2002. http://www.ietf.org/rfc/rfc3376.txt.

[17] Cambodia Community Information Centers. http://www.cambodiacic.info.

[18] CARE USA. http://www.care.org.

[19] Vint Cerf, Scott Burleigh, Adrian Hooke, Leigh Torgerson, Robert Durst, Keith Scott, Kevin

Fall, and Howard Weiss. Delay-Tolerant Networking Architecture. RFC 4838, April 2007.

http://www.ietf.org/rfc/rfc4838.txt.

[20] David Clark and David Tennenhouse. Architectural Considerations for a New Generation

of Protocols. In Proceedings of the ACM Symposium on Communications Architectures &

Protocols (SIGCOMM), Philadelphia, PA, USA, 1990.

[21] T. Clausen and P. Jacquet. Optimized link state routing protocol (OLSR). RFC 3626, October

2003. http://www.ietf.org/rfc/rfc3626.txt.

[22] Bryan Costales, Eric Allman, George Jansen, and Gregory Shapiro. Sendmail. O’Reilly and

Associates, fourth edition, 2007.

[23] Courier Mail Server. http://www.courier-mta.org.

[24] M. Crispin. Internet Message Access Protocol - Version 4rev1. RFC 2060, December 1996.

http://www.ietf.org/rfc/rfc2060.txt.

http://www.ietf.org/rfc/rfc3376.txt
http://www.cambodiacic.info
http://www.ietf.org/rfc/rfc4838.txt
http://www.ietf.org/rfc/rfc3626.txt
http://www.courier-mta.org
http://www.ietf.org/rfc/rfc2060.txt

182

[25] Don de Savigny, Harun Kasale, Conrad Mbuya, and Graham Reid. In Focus: Fixing

Health Systems. International Research Development Centre, 2004. http://www.idrc.ca/

tehip/.

[26] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati, Avinash

Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall, and Werner Vogels.

Dynamo: Amazon’s Highly Available Key-value Store. In Proceedings of the 21st ACM

Symposium on Operating Systems Principles (SOSP), Stevenson, WA, 2007.

[27] Michael Demmer. Personal field research in Rwanda, Cambodia, and Brazil. 2004-2006.

[28] Michael Demmer. DTNServ: The Case for Service Classes in Delay Tolerant Networks. In

Proceedings of the 2008 IEEE International Conference on Intelligent Computer Communi-

cation and Processing, August 2008.

[29] Michael Demmer, Eric Brewer, Kevin Fall, Sushant Jain, Melissa Ho, and Rabin Patra. Im-

plementing Delay Tolerant Networking. Technical Report IRB-TR-04-020, Intel Research

Berkeley, December 2004.

[30] Michael Demmer, Bowei Du, and Eric Brewer. TierStore: A Distributed File System for

Challenged Networks in Developing Regions. In Proceedings of the 6th USENIX Conference

on File and Storage Technologies (FAST), pages 35–48. USENIX, February 2008.

[31] Michael Demmer, Bowei Du, and Eric Brewer. TierStore: A Distributed File System for

Challenged Networks in Developing Regions. USENIX ;login:, 33(3), June 2008.

[32] Michael Demmer and Kevin Fall. DTLSR: Delay Tolerant Routing for Developing Regions.

http://www.idrc.ca/tehip/
http://www.idrc.ca/tehip/

183

In Proceedings of the SIGCOMM Workshop on Networked Systems in Developing Regions

Workshop (NSDR), August 2007.

[33] Michael Demmer, Kevin Fall, Teemu Koponen, and Scott Shenker. Towards a Modern Com-

munications API. In Proceedings of the 6th Workshop on Hot Topics in Networks (HotNets),

November 2007.

[34] Michael Demmer and Joerg Ott. Delay Tolerant Networking TCP Convergence Layer Pro-

tocol. Internet Draft draft-irtf-dtnrg-tcp-clayer-01.txt, February 2008. Work in

Progress.

[35] Michael Demmer, Joyojeet Pal, Adam Gouttierre, Eric Brewer, and Cyprien Semushi. TIER

Research Group Final Report: Ricoh Innovations ORIGINS Project. Unpublished Report,

August 2006.

[36] J. Donner. Innovations in Mobile-Based Public Health Information Systems in the Devel-

oping World: An example from Rwanda. Presented at ”Mobile Technology and Health:

Benefits and Risks”, 2004.

[37] Avri Doria, Maria Uden, and Durga Prasad Pandey. Providing Connectivity to the Saami No-

madic Community. In Proceedings of the 2nd Development by Design Workshop (DYD02),

2002.

[38] Bowei Du, Michael Demmer, and Eric Brewer. Analysis of WWW Traffic in Cambodia and

Ghana. In Proceedings of the 15th international conference on the World Wide Web (WWW),

2006.

184

[39] Patrick Eugster, Pascal Felber, Rachid Guerraoui, and Anne-Marie Kermarrec. The Many

Faces of Publish/Subscribe. ACM Computing Surveys, 35(2):114–131, June 2003.

[40] Fair Trade Labeling Organization (FLO). Delivering opportunities. 2004-2005 Annual Re-

port.

[41] Kevin Fall. A Delay-Tolerant Network Architecture for Challenged Internets. In Proceedings

of the ACM Symposium on Communications Architectures & Protocols (SIGCOMM), 2003.

[42] C. Feather. Network News Transfer Protocol (NNTP). RFC 3977, October 2006. http://

www.ietf.org/rfc/rfc3977.txt.

[43] B. Fenner, M. Handley, H. Holbrook, and I. Kouvelas. Protocol Independent Multicast

- Sparse Mode (PIM-SM): Protocol Specification (Revised). RFC 4601, August 2006.

http://www.ietf.org/rfc/rfc4601.txt.

[44] FidoNet. http://www.fidonet.org.

[45] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and T. Berners-Lee.

Hypertext Transfer Protocol (HTTP/1.1). RFC 2616, June 1999. http://www.ietf.org/

rfc/rfc2616.txt.

[46] First Mile Solutions. http://www.firstmilesolutions.com.

[47] Bryan Ford. Structured Streams: a New Transport Abstraction. In Proceedings of the ACM

Symposium on Communications Architectures & Protocols (SIGCOMM), Kyoto, Japan, Au-

gust 2007.

http://www.ietf.org/rfc/rfc3977.txt
http://www.ietf.org/rfc/rfc3977.txt
http://www.ietf.org/rfc/rfc4601.txt
http://www.fidonet.org
http://www.ietf.org/rfc/rfc2616.txt
http://www.ietf.org/rfc/rfc2616.txt
http://www.firstmilesolutions.com

185

[48] Armando Fox and Eric Brewer. Harvest, yield and scalable tolerant systems. In Proceedings

of the 7th Workshop on Hot Topics in Operating Systems (HotOS), 1999.

[49] Fuse: Filesystem in Userspace. http://fuse.sf.net.

[50] Seth Gilbert and Nancy Lynch. Brewer’s conjecture and the feasibility of consistent, avail-

able, partition-tolerant web services. SIGACT News, 33(2):51–59, 2002.

[51] Grameen Phone. http://grameenphone.com.

[52] Michael B. Greenwald, Sanjeev Khanna, Keshav Kunal, Benjamin C. Pierce, and Alan

Schmitt. Agreeing to Agree: Conflict Resolution for Optimistically Replicated Data. In

Proceedings of the International Symposium on Distributed Computing (DISC), 2006.

[53] David Alan Grier and Mary Campbell. A Social History of Bitnet and Listserv, 1985-1991.

IEEE Annals of the History of Computing, 22(2):32–41, 2000.

[54] Saikat Guha and Paul Francis. An End-Middle-End Approach to Connection Establishment.

In Proceedings of the ACM Symposium on Communications Architectures & Protocols (SIG-

COMM), Kyoto, Japan, August 2007.

[55] Guido van Rossum. Python Reference Manual, February 2008. Release 2.5.2.

[56] Richard G. Guy, Peter L. Reiher, David Ratner, Michial Gunter, Wilkie Ma, and Gerald J.

Popek. Rumor: Mobile Data Access Through Optimistic Peer-to-Peer Replication. In Pro-

ceedings of ACM International Conference on Conceptual Modeling (ER) Workshop on Mo-

bile Data Access, pages 254–265, 1998.

http://fuse.sf.net
http://grameenphone.com

186

[57] C. Hedrick. Routing information protocol. RFC 1058, June 1988. http://www.ietf.org/

rfc/rfc1058.txt.

[58] R.J. Honicky, Omar Bakr, Michael Demmer, and Eric Brewer. A message oriented phone

system for low cost connectivity. In Proceedings of the 6th Workshop on Hot Topics in

Networks (HotNets), November 2007.

[59] M. R. Horton. UUCP mail interchange format standard. RFC 976, February 1986. http://

www.ietf.org/rfc/rfc976.txt.

[60] M.R. Horton and R. Adams. Standard for interchange of USENET messages. RFC 1036,

December 1987. http://www.ietf.org/rfc/rfc1036.txt.

[61] John H. Howard. An Overview of the Andrew File System. In Proceedings of the USENIX

Winter Technical Conference, January 1998.

[62] International Telecommunications Union. World Telecommunications/ICT Development Re-

port, 2006. http://www.itu.int/ITU-D/ict/publications/wtdr_06/index.html.

[63] Sushant Jain, Michael Demmer, Rabin Patra, and Kevin Fall. Using Redundancy to Cope

with Failures in a Delay Tolerant Network. In Proceedings of the ACM Symposium on Com-

munications Architectures & Protocols (SIGCOMM), 2005.

[64] Sushant Jain, Kevin Fall, and Rabin Patra. Routing in a Delay Tolerant Network. In Proceed-

ings of the ACM Symposium on Communications Architectures & Protocols (SIGCOMM),

September 2004.

http://www.ietf.org/rfc/rfc1058.txt
http://www.ietf.org/rfc/rfc1058.txt
http://www.ietf.org/rfc/rfc976.txt
http://www.ietf.org/rfc/rfc976.txt
http://www.ietf.org/rfc/rfc1036.txt
http://www.itu.int/ITU-D/ict/publications/wtdr_06/index.html

187

[65] D. Johnson, D. Maltz, and J. Broch. DSR The Dynamic Source Routing Protocol for Multihop

Wireless Ad Hoc Networks, chapter 5, pages 139–172. Addison-Wesley, 2001.

[66] Evan Jones, Lily Li, and Paul Ward. Practical routing in delay-tolerant networks. In Proceed-

ings of the 2005 ACM SIGCOMM Workshop on Delay-Tolerant Networking (WDTN), pages

237–243, 2005.

[67] Philo Juang, Hide Oki, Yong Wang, et al. Energy-Efficient Computing for Wildlife Tracking:

Design Tradeoffs and Early Experiences with ZebraNet. In Proceedings of the 10th Inter-

national Conference on Architectural Support for Programming Languages and Operating

Systems, October 2002.

[68] Ari Keränen and Jörg Ott. Increasing Reality for DTN Protocol Simulations. Technical

report, Helsinki University of Technology, Networking Laboratory, July 2007.

[69] James J. Kistler and M. Satyanarayanan. Disconnected Operation in the Coda File System.

In Proceedings of the 13th ACM Symposium on Operating Systems Principles (SOSP), 1991.

[70] J. Klensin. Simple Mail Transfer Protocol. RFC 2821, April 2001. http://www.ietf.org/

rfc/rfc2821.txt.

[71] Teemu Koponen, Mohit Chawla, Byung-Gon Chun, Andrey Ermolinskiy, Kye Hyun Kim,

Scott Shenker, and Ion Stoica. A Data-Oriented (and Beyond) Network Architecture. In

Proceedings of the ACM Symposium on Communications Architectures & Protocols (SIG-

COMM), Kyoto, Japan, August 2007.

[72] Dirk Kutscher, Janico Greifenberg, and Kevin Loos. Scalable DTN Distribution over Uni-

http://www.ietf.org/rfc/rfc2821.txt
http://www.ietf.org/rfc/rfc2821.txt

188

Directional Links. In Proceedings of the SIGCOMM Workshop on Networked Systems in

Developing Regions Workshop (NSDR), August 2007.

[73] L. Lamport. Time, Clocks and the Ordering of Events in a Distributed System. Communica-

tions of the ACM, 21(7):558–565, July 1978.

[74] Anders Lindgren, Avri Doria, and Olov Schelén. Probabilistic routing in intermittently con-

nected networks. In Proceedings of the 1st International Workshop on Service Assurance

with Partial and Intermittent Resources (SAPIR), August 2004.

[75] Rowena Luk, Melissa Ho, and Paul M. Aoki. Asynchronous Remote Medical Consultation

for Ghana. In Proceedings of the ACM Conference on Human Factors in Computing Systems

(CHI 2008), April 2008.

[76] F. Mattern. Virtual Time and Global States of Distributed Systems. In Proceedings of the

Workshop on Parallel and Distributed Algorithms, October 1989.

[77] Phil McGillivary, Kevin Fall, and Andrew Maffei. Wireless Communications Advances for

Maritime Use. Sea Technology, 48(5):10–16, May 2007.

[78] A. Melnikov. Synchronization Operations for Disconnected IMAP4 Clients. RFC 4549, June

2006. http://www.ietf.org/rfc/rfc4549.txt.

[79] Shridhar Mubaraq Mishra, John Hwang, Dick Filippini, Tom Du, Reza Moazzami, , and

Lakshminarayanan Subramanian. Economic analysis of networking technologies for rural

developing regions. In First Workshop on Internet and Network Economics, December 2005.

http://www.ietf.org/rfc/rfc4549.txt

189

[80] Mark Moraes and Gene Spafford. Usenet Software: History and Sources. http://

www.faqs.org/faqs/usenet/software/part1/, 1999.

[81] J. Moy. OSPF version 2. RFC 2328, April 1998. http://www.ietf.org/rfc/

rfc2328.txt.

[82] Athicha Muthitacharoen, Benjie Chen, and David Mazieres. A Low-Bandwidth Network

File System. In Proceedings of the 18th ACM Symposium on Operating Systems Principles

(SOSP), 2001.

[83] J. Myers and M. Rose. Post Office Protocol - Version 3. RFC 1939, May 1996. http://

www.ietf.org/rfc/rfc1939.txt.

[84] Sergiu Nedevschi, Joyojeet Pal, Rabin Patra, and Eric Brewer. A Multi-disciplinary Approach

to Studying Village Internet Kiosk Initiatives: The case of Akshaya. In Proceedings of Policy

Options and Models for Bridging Digital Divides, March 2005.

[85] M. Nottingham and R. Sayre. The Atom Syndication Format. RFC 4287, December 2005.

http://www.ietf.org/rfc/rfc4287.txt.

[86] OfflineIMAP. http://software.complete.org/offlineimap.

[87] Michael A. Olson, Keith Bostic, and Margo Seltzer. Berkeley DB. In Proceedings of USENIX

Annual Technical Conference, FREENIX Track, June 1999.

[88] Opportunity International. http://www.opportunity.org.

[89] T. W. Page, R. G. Guy, J. S. Heidemann, D. Ratner, P. Reiher, A. Goel, G. H. Kuenning, and

http://www.faqs.org/faqs/usenet/software/part1/
http://www.faqs.org/faqs/usenet/software/part1/
http://www.ietf.org/rfc/rfc2328.txt
http://www.ietf.org/rfc/rfc2328.txt
http://www.ietf.org/rfc/rfc1939.txt
http://www.ietf.org/rfc/rfc1939.txt
http://www.ietf.org/rfc/rfc4287.txt
http://software.complete.org/offlineimap
http://www.opportunity.org

190

G. J. Popek. Perspectives on optimistically replicated peer-to-peer filing. Software—Practice

and Experience, 28(2):155–180, February 1998.

[90] Partnership for Higher Education in Africa. Securing the linchpin: More bandwidth at lower

cost, 2006.

[91] Rabin Patra, Sergiu Nedevschi, Sonesh Surana, Anmol Sheth, Lakshminarayanan Subrama-

nian, and Eric Brewer. WiLDNet: Design and Implementation of High Performance WiFi

Based Long Distance Networks. In Proceedings of the 4th ACM/Usenix Symposium on Net-

worked Systems Design and Implementation (NSDI), April 2007.

[92] Alex (Sandy) Pentland, Richard Fletcher, and Amir Hasson. DakNet: Rethinking Connectiv-

ity in Developing Nations. IEEE Computer, 37(1):78–83, January 2004.

[93] C. Perkins, E. Belding-Royer, and S.Das. Ad hoc On-Demand Distance Vector (AODV)

Routing. RFC 3561, July 2003. http://www.ietf.org/rfc/rfc3561.txt.

[94] Charles E. Perkins and Praving Bhavwat. Highly Dynamic Destination-Sequenced Distance

Vector (DSDV) for Mobile Computers. In Proceedings of the ACM Symposium on Commu-

nications Architectures & Protocols (SIGCOMM), pages 234–244, August 1994.

[95] Karin Petersen, Mike J. Spreitzer, Douglas B. Terry, Marvin M. Theimer, and Alan J. Demers.

Flexible Update Propagation for Weakly Consistent Replication. In Proceedings of the 16th

ACM Symposium on Operating Systems Principles (SOSP), 1997.

[96] Benjamin C. Pierce and Jerome Vouillon. What’s in Unison? A Formal Specification and

Reference Implementation of a File Synchronizer. Technical Report MS-CIS-03-36, Univ.

of Pennsylvania, 2004.

http://www.ietf.org/rfc/rfc3561.txt

191

[97] PmWiki. http://www.pmwiki.org/.

[98] J. Postel. Internet Protocol. RFC 791, September 1981. http://www.ietf.org/rfc/

rfc791.txt.

[99] QualNet Simulator. http://www.qualnet.com.

[100] Sean Rhea, Patrick Eaton, Dennis Geels, Hakim Weatherspoon, Ben Zhao, and John Kubia-

towicz. Pond: the OceanStore Prototype. In Proceedings of the 2nd USENIX Conference on

File and Storage Technologies (FAST), March 2003.

[101] Jerome H. Saltzer, David P. Reed, and David D. Clark. End-to-end arguments in system

design. ACM Transactions on Computer Systems, 2(4):277–288, November 1984.

[102] Russel Sandberg, David Goldberg, Steve Kleiman, Dan Walsh, and Bob Lyon. Design and

Implementation of the Sun Network Filesystem. In Proceedings of the USENIX Summer

Technical Conference, Portland, OR, 1985.

[103] Keith Scott and Scott Burleigh. Bundle Protocol Specification. RFC 5050, November 2007.

http://www.ietf.org/rfc/rfc5050.txt.

[104] A. Seth, D. Kroeker, M. Zaharia, S. Guo, and S. Keshav. Low-cost communication for

rural internet kiosks using mechanical backhaul. In Proceedings of the ACM International

Conference on Mobile Computing and Networking (Mobicom), pages 334–345, 2006.

[105] A. Seth, M. Zaharia, S. Keshav, and S. Bhattacharyya. A policy-oriented archi-

tecture for opportunistic communication on multiple wireless networks. Unpublished

http://www.pmwiki.org/
http://www.ietf.org/rfc/rfc791.txt
http://www.ietf.org/rfc/rfc791.txt
http://www.qualnet.com
http://www.ietf.org/rfc/rfc5050.txt

192

Manuscript. Available at http://blizzard.cs.uwaterloo.ca/keshav/home/Papers/

data/06/ocmp.pdf, 2006.

[106] Rahul C Shah, Sumit Roy, Sushant Jain, and Waylon Brunette. Data MULEs: Modeling a

Three-tier Architecture for Sparse Sensor Networks. In SNPA, 2003.

[107] Silicon Graphics, Inc. Standard Template Library Programmer’s Guide. http://

www.sgi.com/tech/stl/table_of_contents.html.

[108] Thrasyvoulos Spyropoulos, Konstantinos Psounis, and Cauligi S. Raghavendra. Spray and

wait: an efficient routing scheme for intermittently connected mobile networks. In Proceed-

ings of the 2005 ACM SIGCOMM Workshop on Delay-Tolerant Networking (WDTN), 2005.

[109] Daniel Stoedle. Packetproxy. Yellow Lemon Software, http://www.cs.uit.no/

˜daniels/PacketProxy/index.html.

[110] Ion Stoica, Daniel Adkins, Shelley Zhuang, Scott Shenker, and Sonesh Surana. Internet

indirection infrastructure. In Proceedings of the ACM Symposium on Communications Ar-

chitectures & Protocols (SIGCOMM), August 2002.

[111] Jing Su, James Scott, Pan Hui, Eben Upton, Meng How Lim, Christophe Diot, Jon Crowcroft,

Ashvin Goel, and Eyal de Lara. Haggle: Clean-slate Networking for Mobile Devices. Tech-

nical Report UCAM-CL-TR-680, University of Cambridge, Computer Laboratory, January

2007.

[112] Lakshminarayanan Subramanian, Sonesh Surana, Rabin Patra, Sergiu Nedevschi, Melissa

Ho, Eric Brewer, and Anmol Sheth. Rethinking Wireless in the Developing World. In Pro-

ceedings of the 5th Workshop on Hot Topics in Networks (HotNets), November 2006.

http://blizzard.cs.uwaterloo.ca/keshav/home/Papers/data/06/ocmp.pdf
http://blizzard.cs.uwaterloo.ca/keshav/home/Papers/data/06/ocmp.pdf
http://www.sgi.com/tech/stl/table_of_contents.html
http://www.sgi.com/tech/stl/table_of_contents.html
http://www.cs.uit.no/~daniels/PacketProxy/index.html
http://www.cs.uit.no/~daniels/PacketProxy/index.html

193

[113] Sonesh Surana, Rabin Patra, and Eric Brewer. Simplifying Fault Diagnosis in Locally Man-

aged Rural WiFi Networks. In Proceedings of the SIGCOMM Workshop on Networked Sys-

tems in Developing Regions Workshop (NSDR), August 2007.

[114] Sonesh Surana, Rabin Patra, Sergiu Nedevschi, Manuel Ramos, Lakshminarayanan Subra-

manian, Yahel Ben-David, and Eric Brewer. Beyond Pilots: Keeping Rural Wireless Net-

works Alive. In Proceedings of the 5th ACM/Usenix Symposium on Networked Systems

Design and Implementation (NSDI), 2008.

[115] SWIG 1.3 Documentation, April 2008.

[116] Susan Symington, Robert Durst, and Keith Scott. Custodial Multicast in Delay Tolerant

Networks: Challenges and Approaches. Technical report, MITRE, 2007.

[117] Susan Symington, Robert Durst, and Keith Scott. Delay-Tolerant Networking

Custodial Multicast Extensions. Internet Draft, draft-symington-dtnrg-bundle-

multicast-custodial-03.txt, November 2007. Work in Progress.

[118] Susan Symington, Stephen Farrell, and Howard Weiss. Bundle Security Protocol Specifi-

cation. Internet Draft draft-irtf-dtnrg-bundle-security-04.txt, September 2007.

Work in Progress.

[119] Douglas B. Terry, Marvin M. Theimer, Karin Petersen, Alan J. Demers, Mike J. Spreitzer,

and Carl H. Hauser. Managing Update Conflicts in Bayou, a Weakly Connected Replicated

Storage System. In Proceedings of the 15th ACM Symposium on Operating Systems Princi-

ples (SOSP), 1995.

[120] The Delay Tolerant Networking Research Group. http://www.dtnrg.org.

http://www.dtnrg.org

194

[121] The Network Simulator (NS-2). http://www.isi.edu/nsnam/ns/.

[122] The UUCP Project: History. http://www.uucp.org/history/.

[123] Niraj Tolia, Michael Kaminsky, David G. Andersen, and Swapnil Patil. An Architecture for

Internet Data Transfer. In Proceedings of the 3rd ACM/Usenix Symposium on Networked

Systems Design and Implementation (NSDI), San Jose, CA, USA, May 2006.

[124] Transfair USA. http://www.transfairusa.org.

[125] A. Tridgell and P. MacKerras. The rsync algorithm. Technical Report TR-CS-96-05, Aus-

tralian National University, June 1996.

[126] Voxiva. http://www.voxiva.com/.

[127] VSAT Systems. Satellite internet service plans. http://www.vsat-systems.com/

satellite-internet-service.

[128] D. Waitzman, C. Partridge, and S.E. Deering. Distance Vector Multicast Routing Protocol.

RFC 1075, November 1988. http://www.ietf.org/rfc/rfc1075.txt.

[129] Abel Weinrib and Jon Postel. IRTF Research Group Guidelines and Procedures. RFC 2014,

October 1996. http://www.ietf.org/rfc/rfc2014.txt.

[130] Brian White, Jay Lepreau, Leigh Stoller, Robert Ricci, Shashi Guruprasad, Mac Newbold,

Mike Hibler, Chad Barb, and Abhijeet Joglekar. An Integrated Experimental Environment

for Distributed Systems and Networks. In Proceedings of the 5th USENIX Symposium on

Operating Systems Design and Implementation, December 2002.

[131] Wikipedia. http://www.wikipedia.org/.

http://www.isi.edu/nsnam/ns/
http://www.uucp.org/history/
http://www.voxiva.com/
http://www.vsat-systems.com/satellite-internet-service
http://www.vsat-systems.com/satellite-internet-service
http://www.ietf.org/rfc/rfc1075.txt
http://www.ietf.org/rfc/rfc2014.txt

195

[132] Dave Winer. RSS 2.0 Specification, July 2003. http://cyber.law.harvard.edu/rss/

rss.html.

[133] Wizzy Digital Courier. http://www.wizzy.org.za/.

[134] worldmapper.org. All maps c© Copyright 2006 SASI Group (University of Sheffield) and

Mark Newman (University of Michigan). Used with permission.

[135] WWWOFFLE: World Wide Web Offline Explorer. http://www.gedanken.demon.co.uk/

wwwoffle/.

[136] T.Li Y. Rekhter. RFC 1771: A border gateway protocol 4 (BGP-4), March 1995. http://

www.ietf.org/rfc/rfc1771.txt.

[137] Xiaolan Zhang, Jim Kurose, Brian Neil Levine, Don Towsley, and Honggang Zhang. Study

of a Bus-based Disruption-Tolerant Network: Mobility Modeling and Impact on Routing.

In Proceedings of the ACM International Conference on Mobile Computing and Networking

(Mobicom), pages 195–206, September 2007.

[138] Wenrui Zhao, Mostafa Ammar, and Ellen Zegura. Multicasting in Delay Tolerant Networks:

Semantic Models and Routing Algorithms. In Proceedings of the 2005 ACM SIGCOMM

Workshop on Delay-Tolerant Networking (WDTN), 2005.

http://cyber.law.harvard.edu/rss/rss.html
http://cyber.law.harvard.edu/rss/rss.html
http://www.wizzy.org.za/
http://www.gedanken.demon.co.uk/wwwoffle/
http://www.gedanken.demon.co.uk/wwwoffle/
http://www.ietf.org/rfc/rfc1771.txt
http://www.ietf.org/rfc/rfc1771.txt

	List of Figures
	List of Tables
	Introduction
	Potential Benefits of Technology in Developing Regions
	Network Connectivity Challenges
	Our Approach
	Dissertation Outline

	Background
	Store and Forward Networking
	Caching and Replication
	Consistency vs. Availability
	Offline Applications
	Design Themes

	Implementing the Delay Tolerant Networking Architecture
	Delay Tolerant Networking Overview
	Implementation Structure
	Daemon / Router Interface
	Bundle State Management
	Endpoint Identifiers
	Links and Adjacencies

	Convergence Layer Interface
	Application Interface
	Simulator Framework
	Evaluation
	Overhead Comparison
	Intermittency Tolerance

	Conclusions

	Delay Tolerant Link State Routing
	Routing Protocol Design Space
	Standard Approaches
	MANET Routing
	DTN Routing

	DTLSR Design
	Features of Link State
	Modifying Standard Link State

	The DTLSR Protocol
	Messages and Flooding
	Update Frequency / Expiration
	Calculating Best Paths
	Administrative Areas
	Local Advertisements

	Evaluation
	Protocols Compared
	Simulation Scenario
	Delivery Results
	Delay Results

	Conclusions

	A Publish / Subscribe Session Layer for Delay Tolerant Networks
	Motivations
	Design Considerations
	Service Model and Session Names
	Application Roles
	Sequence Identifiers and Obsolete Messages
	Group Membership and Bundle State

	Implementation Details
	Session Service Interface
	Sequence Identifiers and Vector Clocks
	Session Membership Protocol

	Related Work
	Conclusions

	TierStore: A Distributed Filesystem for Challenged Networks in Developing Regions
	TierStore Design
	Related Work
	TierStore in Detail
	System Components
	Objects, Mappings, and Guids
	Versions
	Persistent Repositories
	Updates
	Immutable Objects and Deletion
	Publications and Subscriptions
	Update Distribution
	Views and Conflicts
	Manual Conflict Resolution
	Automatic Conflict Resolution
	Object Extensions
	Security
	Metadata

	TierStore Applications
	E-mail Access
	Content Distribution
	Offline Web Access
	Data Collection
	Wiki Collaboration

	Evaluation
	Microbenchmarks
	Multi-node Distribution
	Ongoing Deployments

	Conclusions

	Conclusions and Future Work
	Dissertation Review
	Design Themes
	Application Examples
	Voice Message Phone
	Educational Content Distribution
	Microfinance Transaction Log Synchronization
	Remote Medical Consultation

	Future Research Opportunities
	Rethinking the Networking API
	Exposing Network Reachability
	Link Predictions and Erasure Coded Reliability
	TierStore SQL Interface

	Closing Summary

	Bibliography

