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Abstract

Third order surface analysis is an important aspect of shape interrogation and design. We
present a novel parameterization-independent exposition of the geometric behavior of a surface
point up to third order. Unlike existing algebraic expositions, our work produces an intuitive
explanation of the third order surface behavior, analogous to the principal curvatures and di-
rections that describe second order behavior. We extract four parameters that provide a quick
and concise understanding of the third order surface behavior at any given point. Our shape
parameters can be used to characterize different third order surface shapes without having to
use tensor algebra.

1 Introduction

Surface analysis (also known as shape interrogation) is a useful tool for understanding the geometric
behavior of a surface near a given point. In the general case of a smooth surface, one can analyze
the geometry up to a given order by performing a Taylor expansion of the surface near a given
point. As an example, the zeroth order surface analysis yields the position of that point. The first
order analysis adds the tangent plane, the second order the curvature tensor, and the third order a
rank-3 tensor that describes the derivatives of curvature. The higher the order of surface analysis,
the more information about the shape is extracted.

a b c d

Figure 1: Up to second order, we can intuitively classify a surface point as (a) flat, (b) parabolic,
(c) hyperbolic, and (d) elliptic.

Surface analysis using Taylor expansion produces shape information that is compactly stored
in tensors. Extracting this information from the tensors requires us to formulate an input query
in the tensor’s coordinate system. For instance, in order to compute the normal curvature in a
given direction at a surface point, we first express the direction as a vector in the point’s tangent
plane, provide the same vector as both inputs to the quadratic, second fundamental form (a rank-2
curvature tensor), and re-scale the result by the area metric (multiply by the inverse of the first
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fundamental form). We perform a similar sequence of operations to extract various derivatives
of surface curvature; we need to provide three directions to the rank-3 tensor that encapsulates
the curvature derivative information. Extracting precise shape information at a surface point thus
requires us to understand how to query the shape tensors at that point.

Figure 2: Left: Second order frame comprised of principal directions and their associated principal
curvatures. The angle φ indicates the rotation of the frame from the user provided x-axis. The
entire second order behavior is described by three numbers: κ1, κ2 and φ.
Right: Third order frame comprised of four directions: one indicating the peak of the first Fourier
component and the other three indicating equally spaced peaks of the third Fourier component.
Angle α indicates the rotation of the frame from the user provided x-axis, and angle β indicates the
rotation of the third Fourier component from the first Fourier component. The entire third order
behavior is described by four numbers: F1, F3, α and β. The cubic surface in pink is super-imposed
on the original quadratic surface in blue to show the undulatory third order behavior. All directions
are in the tangent plane of the point.

However, most people, in particular novices to linear algebra, are more apt to extract shape
information from simple geometric primitives. For instance, up to second order we can easily
classify a surface point as flat, elliptic, hyperbolic or parabolic (see Fig. 1), without having to query
the curvature tensor. We can perform this intuitive classification by focusing on the principal
curvatures κ1 and κ2. When the product κ1κ2 (also known as the Gaussian curvature) is positive,
negative, or zero, the surface is elliptic, hyperbolic, or parabolic, respectively. In the special case
where κ1 and κ2 are equal, the surface point is umbilic. Of course, when both κ1 and κ2 are zero,
the surface is flat. Euler’s theorem tells us that the principal directions (e1 and e2) corresponding
to the principal curvatures (κ1 and κ2 respectively) are mutually orthogonal. Therefore, we can
completely describe the second order shape of a surface point by three intuitive parameters: the
two principal curvatures (κ1 and κ2) and the angle φ made by the e1 principal direction with an
arbitrary direction in the tangent plane (see Fig. 2). These three parameters encapsulate exactly
the same information as that in the second fundamental form, but are more accessible to novices
and to visual and geometrical thinkers. We believe that this geometrical analysis results in a more
intuitive and widespread understanding of second order shape behavior.

For many surface design tasks, geometric analysis only up to second order is not sufficient be-
cause it ignores a significant amount of shape behavior. Therefore, we need to study and understand
higher order shape behavior. As one step towards that goal, we focus on third order analysis. We
have not been able to find an intuitive description for third order surface behavior in the literature.



Most of the third order shape knowledge is expressed using the algebra of rank-3 tensors. As a
result, a thorough understanding of third order surface behavior is typically limited to those people
who are comfortable with tensor algebra.

Contribution In this report, we provide an intuitive, geometric description of third order sur-
face behavior. Our description is similar in its intuitive nature to the readily accessible second
order description using principal curvatures and directions. We extract four shape parameters that
completely describe the third order shape behavior at a surface point. Our shape parameters are
independent of any coordinate system and are obtained by decomposing the third order shape
function into its Fourier components.

2 Previous Work

While not as commonly studied as second order surface behavior, third order surface behavior has
been studied for selective applications. In computer graphics, the most common application is to
convey shape information via line drawings such as suggestive contours [2] or other salient mesh
features [10]. Rusinkiewicz [9] describes how the construction of the rank-3 tensor can be used to
interrogate the derivatives of normal curvature in arbitrary directions. These curvature derivatives
provide shape information that is perceptually important to the visual system. While the rank-3
tensor yields precise curvature derivative information, it does not provide an easy-to-understand
qualitative description of the third order shape information.

In computer-aided geometric design, third order surface energies are optimized to produce
smooth surfaces. Moreton and Séquin [7] introduced the “Minimum Variation Surface” (MVS) en-
ergy that minimizes the derivatives of principal curvatures along the respective principal directions,
and Joshi and Séquin [4] enhanced the original MVS formulation by adding cross derivative terms.
Mehlum and Tarrou [6] formulated a more complete energy by measuring inline normal curvature
variation over all directions at a surface point; Gravesen and Ungstrup [3] further enhanced the
work of Mehlum and Tarrou by considering curvature variation for all surface curves (not just
normal section curves). Gu and Zhang [11] minimize the variation of mean curvature of a surface
by solving the corresponding (sixth order) Euler-Lagrange equation.

Designing such energies typically requires understanding some aspect of third order surface
behavior. For instance, Mehlum and Tarrou [6] formulate an expression that provides the arc-length
derivative of the normal curvature in a given direction. They introduce four parameterization-
dependent third order shape parameters, P , Q, S, T . These terms essentially encode the normal
components of parametric surface derivatives. While useful for computing the energy values, these
parameters do not easily provide a qualitative description of the third order shape at a given point.

Umbilic points (surface points with equal principal curvatures) have received a special amount
of third order analysis — understanding the behavior of a surface near umbilics is useful for manu-
facturing thin shell parts [5] and studying geometrical optics [1]. As a result, numerous researchers
have explored the exact geometric nature of umbilic points. A common method of characterizing
an umbilic point is Darboux’s classification according to the pattern of lines of curvature near the
point (star, monstar and lemon — see [1] for a visual description and [8] for a detailed description).
Maekawa et al. [5] analyze the local surface geometry near an umbilic point in order to compute
curvature lines that pass through that point. The initial setup for the surface analysis near the
umbilic point is similar to ours, but further analysis focuses on the umbilic classification and lacks
the intuitive, qualitative description we seek.

In a nutshell, previously, researchers have extensively studied specific aspects of third order



surface behavior corresponding to particular applications, but an intuitive, purely geometric de-
scription is missing. Informally speaking, the “algebra of third order behavior” has been studied
sufficiently; the “geometry of third order behavior” needs to be brought up to a corresponding level
of understanding. We hope that the following exposition serves as a significant step towards that
goal.

3 Third Order Parameters for Polynomial Height Field

In order to introduce the intuition behind the necessary mathematical concepts, we will initially
focus our attention on an idealized, smooth surface patch centered at a given point. Consider the
surface near a point that is described fully by a height field above the tangent plane at that point:
a function of the two independent variables x and y:

z(x, y) = C0x
3 + C1y

3 + C2x
2y + C3xy

2 (1)
+ Q0x

2 +Q1y
2 +Q2xy

+ L0x+ L1y +K

We will assume that the directions corresponding to x and y are mutually orthogonal and that first
order and constant parameters (L0, L1, K) are zero. This assumption is an over-simplification and
is not valid for a general surface patch. However, we found it easier to first develop an intuition for
the third order parameters using this idealized patch. In Section 6 we describe how to extract the
third order shape parameters for a general surface patch.

As a first step, we convert the cubic height function z(x, y) into polar coordinates zp(r, θ),
where r =

√
x2 + y2 and θ = tan−1(y/x). We then extract the parameters affecting only the

second (quadratic) and third (cubic) order behavior of the surface into separate equations:

zpq(r, θ) = r2[Q0 cos2 θ +Q1 sin2 θ +Q2 cos θ sin θ] (2)

zpc(r, θ) = r3[C0 cos3 θ + C1 sin3 θ + C2 cos2 θ sin θ + C3 cos θ sin2 θ] (3)

Previous work follows a similar setup up to this step. At this point, people solve for the extremal
values of θ by solving the quadratic equation dzpq (r,θ)

dθ = 0 and cubic equation dzpc (r,θ)
dθ = 0 (e.g.

see [6], [5]). The roots of the quadratic equation yield the principal curvature directions. The
number of real roots of the cubic equation (1 or 3) and their distribution with respect to each other
is used to classify umbilic points or to study maxima of curvature variation. We have obtained a
more intuitive understanding of the third order behavior by decomposing the functions zpq and zpc

into their Fourier components.

4 Fourier Analysis of Quadratic Height Function

As an introductory exercise, we analyze the Fourier components of the quadratic height function
and show how the amplitudes and phase shifts of the Fourier components yield the well-known
second order shape parameters. The Fourier components of the functions that comprise zpq(r, θ)
can easily be extracted:

cos2 θ = 0.5 + 0.5 cos 2θ (4)
sin2 θ = 0.5− 0.5 cos 2θ (5)

cos θ sin θ = 0.5 sin 2θ (6)



Therefore, zpq can be expressed as a constant term plus a linear combination of the Fourier compo-
nents cos2θ and sin2θ, which can be further simplified as an equation using a single phase-shifted
cosine function. That is,

zpq(r, θ) = r2[F0 + F2 cos(2(θ + φ))] (7)

where F0 represents the mean value of zpq , and F2 represents the amplitude of the cosine component
that gets added to the mean. The cosine term is a symmetric function that produces four equally
spaced extremal values in the range [0, 2π). The maxima and minima correspond to the well-known
principal curvatures and the mutually orthogonal principal directions. The angle φ is the phase shift
that is computed with respect to an arbitrary, user-provided direction (usually the x-axis or the
u-direction). Therefore, the entire second order shape information can be compactly described in a
parameterization-independent manner by three terms (F0, F2 and φ). By computing κ1 = F0 +F2

and κ2 = F0 − F2 we get the three familar terms: κ1, κ2, φ.

5 Fourier Analysis of Cubic Height Function

Similar to the quadratic height function, we extract the Fourier components of the functions that
make up zpc(r, θ):

cos3 θ = 0.75 cos θ + 0.25 cos 3θ (8)
sin3 θ = 0.75 sin θ − 0.25 sin 3θ (9)

cos2 θ sin θ = 0.25 sin θ + 0.25 sin 3θ (10)
cos θ sin2 θ = 0.25 cos θ − 0.25 cos 3θ (11)

Figure 3: Third order height function from Eqn. 3 (thick black) is a sum of two cubic sinusoidal
height functions: cosθ (solid red) and cos3θ (dashed blue)

The cubic shape function zpc can then be expressed as a linear combination of two Fourier
components, cosθ and cos3θ:

zpc(r, θ) = r3[F1 cos(θ + α) + F3 cos(3(θ + δ))] (12)

where F1 and F3 are the amplitudes of the Fourier components, and α and δ are the phase shifts
from an arbitrary, user-provided direction (the x-axis in our case). Fig. 3 illustrates this linear
combination for a fixed value of r. Fig. 4 illustrates the combination of these Fourier components
to form the cubic surface.



a b c d

Figure 4: The third order surface is a combination of two sinusoidal functions (cosθ and cos3θ)
which are the Fourier components of the third order shape function. We show (a) the original
cubic surface, (b) only the first Fourier component, (c) only the third Fourier component, and
(d) the original cubic surface sandwiched between constituent Fourier components with twice their
original amplitudes. (d) clearly shows that the cubic surface is the average of the twice the Fourier
components, and therefore is equal to the sum of the Fourier components.

Figure 5: The first and third Fourier components of the third order shape function — all third
order surface behavior can be expressed as properly scaled and rotated combinations of these two
shapes.

We can consider the two phase shifts α and δ independently of each other. However, we found
it more instructive to consider the direction corresponding to the (single) maximum of F1cos(θ+α)
as a “third order principal direction”. Then, the phase shift δ can be expressed as α + β, where
β is the phase shift with respect to the third order principal direction. Therefore, we get our final
equation for describing the cubic behavior of the surface:

zpc(r, θ) = r3[F1 cos(θ + α) + F3 cos(3(θ + α+ β))] (13)

We use the terms from Eqn. 13 as our four parameterization-independent, geometrically intuitive
shape parameters (illustrated in Fig. 2). These parameters can easily be extracted from the original



third order parameters C0, C1, C2, C3 (Eqn. 3) of the polynomial height field:

F1 =

√
(3C0 + C3)2 + (3C1 + C2)2

4
(14)

F3 =

√
(C0 − C3)2 + (C2 − C1)2

4
(15)

α = tan−1

(
3C1 + C2

3C0 + C3

)
(16)

β =
1
3

tan−1

(
C2 − C1

C0 − C3

)
− α (17)

Similarly, given our third order parameters F1, F3, α and β, we can extract the parameterization-
dependent third order parameters for the idealized surface patch:

C0 = F1 cos(α) + F3 cos(β) (18)
C1 = F1 sin(α)− F3 sin(β) (19)
C2 = F1 sin(α) + 3F3 sin(β) (20)
C3 = F1 cos(α)− 3F3 cos(β) (21)

6 Computing Fourier Components for a General Surface Patch

In this section we describe how to compute the third order shape parameters for a point on a
general surface patch. Unlike the approach taken in Section 3, we can no longer ignore the effect of
low order shape parameters (namely: first order and second order parameters) on the third order
shape parameters. Therefore, we cannot extract parameterization independent shape parameters
simply by analyzing a polynomial height field. Instead, we need to perform a Fourier analysis of
the function that denotes the arc-length derivative of normal curvature. The Fourier coefficients
can then be combined as above to yield the required shape parameters.

Consider that we have a bi-variate tensor product surface patch (e.g. a bi-cubic b-spline patch)
parameterized by u, v. Given a point (u, v) in parameter space, let S(u, v) denote the 3D position
of the point, n denote the unit normal, and Su(u, v), Sv(u, v), Suu(u, v), etc. denote the 3D
parametric surface derivatives with respect to u and v. Our task is to efficiently and exactly
compute the F1, F3, α and β parameters for any point u, v on the patch.

First, compute the parameterization-dependent third order shape parameters P , Q, S, and T
introduced by Mehlum and Tarrou [6]:

P = Suuu · n + 3Suu · nu (22)
Q = Suuv · n + 2Suv · nu + Suu · nv (23)
S = Suvv · n + 2Suv · nv + Svv · nu (24)
T = Svvv · n + 3Svv · nv (25)

Then, use the formula from [6] that expresses the arc-length derivative of normal curvature as
a function of the angle θ from any given reference direction:

κ′n(θ) =
1
σ3

[PG3/2 sin3(θ) + 3QGE1/2 sin2(θ) cos(θ + ψ)

+ 3SEG1/2 sin(θ) cos2(θ + ψ) + TE3/2 cos3(θ + ψ)]
(26)



where θ is measured from the u direction, E, F and G are coefficients of the first fundamental
form (the metric tensor), and σ =

√
F 2 − EG is the area element at the point of analysis. ψ denotes

the complement to the angle between the u and v directions and is given by tan(ψ) = F/
√
EG.

(In the polynomial height field setup of Section 3, the coordinate axes were mutually orthogonal
and therefore ψ was zero.)

Eqn. 26 can be written as an expression similar to Eqn. 3:

κ′n(θ) = A cos3(θ + ψ) +B sin3(θ) + C sin(θ) cos2(θ + ψ) +D sin2(θ) cos(θ + ψ) (27)

where the coefficients A, B, C, and D can easily be written as functions of P , Q, S, T and E,
F , G:

A =
TE3/2

σ3
, B =

PG3/2

σ3
(28)

C =
3SEG1/2

σ3
, D =

3QGE1/2

σ3
(29)

As described in Section 5, we can perform a Fourier analysis of the sinusoidal functions in
Eqn. 27:

cos3(θ + ψ) = 0.75 cos(ψ) cos(θ)− 0.75 sin(ψ) sin(θ) (30)
+ 0.25 cos(3ψ) cos(3θ)− 0.25 sin(3ψ) sin(3θ)

sin3(θ) = 0.75 sin(θ)− 0.25 sin(3θ) (31)
cos2(θ + ψ) sin(θ) = −0.25 sin(2ψ) cos(θ)− 0.25(cos(2ψ)− 2) sin(θ) (32)

+ 0.25 sin(2ψ) cos(3θ) + 0.25 cos(2ψ) sin(3θ)
cos(θ + ψ)sin2(θ) = 0.25 cos(ψ) cos(θ)− 0.75 sin(ψ) sin(θ) (33)

− 0.25 cos(ψ) cos(3θ) + 0.25 sin(ψ) sin(3θ)

By grouping coefficients, we express the arc-length derivative of normal curvature as a sum of
first order and third order sinusoidal functions:

κ′n(θ) = F1cos cos(θ) + F1sin sin(θ) + F3cos cos(3θ) + F3sin sin(3θ) (34)

where

F1cos = 0.25(3A cos(ψ)− C sin(2ψ) +D cos(ψ)) (35)
F1sin = 0.25(−3A sin(ψ) + 3B − C(cos(2ψ)− 2)− 3D sin(ψ)) (36)
F3cos = 0.25(A cos(3ψ) + C sin(2ψ)−D cos(ψ)) (37)
F3sin = 0.25(−A sin(3ψ)−B + C cos(2ψ) +D sin(ψ)) (38)

Finally, we can combine the sine and cosine functions to formulate the arc-length derivative of
normal curvature as a sum of phase-shifted sinusoidal functions of the angle θ:

κ′n(θ) = F1 cos(θ + α) + F3 cos(3(θ + α+ β)) (39)

where the parameterization independent third order shape parameters can be expressed in closed-
form as:

F1 =

√
F 2

1cos + F 2
1sin

4
, F3 =

√
F 2

3cos + F 2
3sin

4
(40)

α = tan−1

(
−F1sin

F1cos

)
, β =

1
3

tan−1

(
−F3sin

F3cos

)
− α (41)



To summarize: in order to compute the third order shape parameters for any point u, v on a
general surface patch, we need to compute the parameterization dependent third order (P , Q, S,
T ) and first order (E, F , G) parameters. Algebraic manipulation of these parameters yields the
coefficients (F1cos, F1sin, F3cos, F3sin) of the four sinusoidal components of arc-length derivative of
normal curvature. These four coefficients then readily yield the required F1, F3, α and β parameters.

7 Qualitative Description of the Fourier Components

a b c

d e f

Figure 6: Sequence of third order shape edits: Starting from a purely second order surface
patch where F1 and F3 are zero (a), we increase the amplitude F1 of the first Fourier component
(b), rotate it about the z-axis by increasing the value of α (c), and increase the amplitude F3 of
the third Fourier component (d). (e) shows the same shape as (d) but with the third order frame
indicating the directions of α and β. Finally, we rotate only the third Fourier component about
the z-axis by increasing the value of β (f). The blue surface is the best-fitting (and unchanged)
quadratic surface at the point of analysis.

The shapes of the first and third Fourier components are shown in Fig. 5. Both functions
are anti-symmetric with respect to π, which leads to their combination being anti-symmetric as
well (zpc(r, θ) = −zpc(r, π + θ)) — a fact pointed out separately by Berry and Hannay’s study of
umbilics [1] and Mehlum and Tarrou’s study of normal curvature variation [6].

In the range [0, 2π), the first Fourier component has one maximum and minimum. The shape of
this component is similar to that of the height field z = x3 +xy2 and can be understood as a lateral
extrusion of the cubic curve z = x3 in the y direction, enhanced by a linear component whose slope
increases as the square of y (see Fig. 5). When F1 is zero, the first Fourier component is flat and the
angle α cannot be uniquely determined (in this case, we set α to zero). We consider such a point
a third order equivalent of the umbilic. Unlike the umbilic where the normal curvature is equal in
all directions, at the third order equivalent of the umbilic the normal curvature derivative does not



necessarily behave the same — it is influenced by the non-zero third Fourier component. In fact,
as shown by [6], the only situation when the normal curvature derivative is equal in all directions
is when it is zero, meaning the surface is flat in third order (i.e. both F1 and F3 are zero).

In the range [0, 2π), the third Fourier component has three equally spaced maxima and minima.
The shape of this component is similar to that of the height field z = x3 − 3xy2. This is the well-
known “monkey saddle”, with three peaks and troughs, each π/3 radians apart. The angle β
denotes the rotation of the third Fourier component with respect to the α direction given by the
first Fourier component. As shown in Fig. 6, given a fixed α and F1, we can vary β and F3 to
change the undulatory behavior of the third order height function. When F3 is zero, β cannot be
uniquely determined, so we set it to zero.

7.1 Expressing Cross Derivatives Using Third Order Shape Parameters

Eqn. 39 gives an expression for the inline derivative of curvature (κ′n) — the change of curvature is
analyzed along the line for which normal curvature is measured. Alternately, we can consider cross
derivatives of curvature (κ×n ), where the change of curvature is analyzed in a direction perpendicular
to the line along which the normal curvature is measured. For example, Joshi and Séquin [4]
introduced the MVScross functional that contains cross derivative terms in principal directions:
dκ1/de2 and dκ2/de1. Here we use our third order parameters F1, F3, α, and β to obtain an
expression for the cross derivative of normal curvature.

Suppose we are given a surface point with normal curvature κn(θ) in a direction given by angle
θ in the tangent plane. The cross derivative κn(θ)× is a directional derivative of κn(θ) along the
direction denoted by θ + π/2. We can show that the cross derivative is given by the formula:

κn(θ)× =
F1

3
cos((θ + π/2) + α)− F3 cos(3((θ + π/2) + α+ β)) (42)

= −F1

3
sin(θ + α)− F3 sin(3(θ + α+ β))

The above Eqn. 42 is similar to the Eqn. 39 which expresses the normal curvature derivative
(κ′n) using the third order shape parameters. There are three differences: (1) the F1 component is
reduced to a third of its original value, (2) the F3 component switches sign and (3) the angles are
shifted by π/2 radians.

The derivation for Eqn. 42 proceeds as follows: we can express the third order surface informa-
tion at the point of analysis by the idealized cubic height field function, similar to Sec. 3.

z(x, y) = C0x
3 + C1y

3 + C2x
2y + C3xy

2 (43)

We can use this description in a small neighborhood around a surface point where the first
fundamental form is the identity matrix and the second fundamental form is zero.

Suppose we are interested in the cross derivative κ×ny
= dκn(π/2)

dx = d
dx

d2z
dy2

= d3z
dy2dx

= 2C3. We

will show how this cross derivative is closely related to the inline curvature derivative κ′nx
= dκn(0)

dx

= d3z
dx3 = 6C0.
Consider the situation when F1 is non-zero and F3 is zero. Without loss of generality, we

can define the x-y coordinate system around such a surface point such that C0 = C3 6= 0 and
C1 = C2 = 0 (the x direction is along the maximal direction of the F1 component). In this case,
d3z
dxdy2

= 1
3
d3z
dx3 , which implies that the value of the cross derivative of normal curvature is equal to

one third the value of the inline derivative of normal curvature, where both curvature derivatives



Figure 7: Arrows indicate the directions of maximum cross derivative of curvature for a surface with
only (a) F1 component (single direction of maximum cross derivative) and (b) F3 component (three
directions of maximum cross derivative, each π/3 radians apart). Notice that along the direction
of maximum cross derivative, the curvature of the red curves undergoes maximum change. The
directions of high cross curvature derivative correspond to regions of the pink curve (a sample of
the surface at a fixed radius) with high curvature.

are in the same direction. For a general direction denoted by θ, the cross derivative in the direction
φ = θ + π/2 of the normal curvature κn(θ),

dκn(θ)
deφ

=
1
3
dκn(φ)
deφ

(44)

=
1
3
F1 cos(φ+ α) =

1
3
F1 cos(θ + π/2 + α) (45)

= −1
3
F1 sin(φ+ α) (46)

Now consider the situation when F1 is zero and F3 is non-zero. Without loss of generality, we
can define the x-y coordinate system around such a surface point such that C0 = −3C3 6= 0 and
C1 = C2 = 0 (the x axis is along one of the maximal directions of the F3 component). In this case,
d3z
dxdy2

= − d3z
dx3 which implies that the value of the cross derivative of normal curvature is equal to

the negative value of the inline derivative of normal curvature, where both curvature derivatives
are in the same direction. For a general direction denoted by θ, the cross derivative in the direction
φ = θ + π/2 of the normal curvature κn(θ),

dκn(θ)
deφ

= −dκn(φ)
deφ

(47)

= −F3 cos(3(φ+ α+ β)) = −F3 cos(3(θ + π/2 + α+ β)) (48)
= −F3 sin(3(θ + α+ β)) (49)

Just like the inline curvature derivative function κ′n, we can express the cross curvature derivative
function κ×n as a sum of its first and third order Fourier components. By combining the Eqn. 46
and 49, we get the expression for Eqn. 42.



7.2 Expressing Normal Curvature Derivatives in Arbitrary Directions Using
Third Order Shape Parameters

The inline and cross derivatives are only two of the infinitely many directions in which we can
compute directional derivatives of normal curvature. Given a surface point and a normal curvature
κn(θ) measured along a direction given by θ, we should be able to compute the directional derivative
dκn(θ)/deψ for an arbitrary direction eψ. Note that at any surface point, up to third order, we
can define a rank-3 tensor that takes 3 directions as input: two (equal) directions to query the
curvature tensor and specify the normal curvature and a third direction to specify the direction of
normal curvature derivative (see [9], [3]). We now show that the normal curvature derivatives in
all other directions are simple linear combinations of inline and cross curvature derivatives.

Recall the rule of directional derivatives: suppose f is a scalar function over a domain spanned
by directions x̂ and ŷ. Let the direction m also be spanned by the x-y basis (m = mxx̂ + myŷ).
Then, the directional derivative ∂f

∂m = m · (∂f∂x x̂ + ∂f
∂y ŷ).

Let the direction of the inline derivative be along the x axis, and the direction corresponding
to the cross derivative be along the y axis. A vector along an arbitrary direction given by angle ψ
can be written as cos(ψ)x̂ + sin(ψ)ŷ. Therefore, using the above rule, given the inline and cross
derivatives of normal curvature: κn(θ)′ and κn(θ)×, we can express the directional derivative of
κn(θ) as:

dκn(θ)
deψ

= (cos(ψ)x̂ + sin(ψ)ŷ) · (κn(θ)′x̂ + κn(θ)×ŷ)

= κn(θ)′ cos(ψ) + κn(θ)× sin(ψ) (50)

where ψ is computed as the offset angle from the direction of θ.

7.3 Application: Classification of Umbilics

As one example, we show how to use our third order shape parameters to characterize the surface
behavior near umbilic points (points with equal principal curvatures). As mentioned before, generic
umbilic points on surfaces are classified according to the pattern made by lines of curvature as they
pass through the point. Since the surface behavior up to second order is uniform in all directions,
we need a third order analysis to classify umbilics. As presented by [1], based on the pattern
of lines of curvature near the point, there are three types of generic (stable) surface umbilics:
lemon, monstar and star (see Fig. 8). The pattern of lines of curvature depends on the number
of real, distinct roots of the cubic equations zpc(r, θ) = 0 (zpc from 3) and dzpc (r,θ)

dθ = 0. The
roots can be obtained by computing the discriminants of the two cubic equations (the third order
height function and dzpc (r,θ)

dθ = 0). Computing the roots is useful if one needs to find the exact
location of the lines of curvature, but the discriminants and roots by themselves do not provide
a quick geometric understanding of how the surface behaves near the umbilic point. Instead, our
third order shape parameters offer a more intuitive explanation of when and how different types of
umbilics are formed. When the first Fourier component dominates the overall third order behavior,
we get only one maximum and minimum for zpc(r, θ). In that case, we have the lemon type of
umbilic. When the third Fourier component is strong enough that its derivatives (slope) exceed
those of the first component, we get three distinct maxima and minima (six real roots for the
equation dzpc (r,θ)

dθ = 0) and obtain the monstar umbilic. If the third Fourier component dominates
the third order height function and creates six zero crossings (instead of two), we get the star type
of umbilic. Fig. 8 compares the network of curvature lines to the number of zeros and extrema of
the third order height function evaluated along a small circle around the umbilic point.



lemon monstar star

Figure 8: Curvature lines near the three types of umbilic points with the graphs of corresponding
third order height functions (thick black). The top row of figures is from [1]. The number of
extrema (two or six) and zero crossings (two or six) of the height function together determine
the type of the generic umbilic point. Notice how the first Fourier component (red) dominates
the overall third order behavior for the lemon umbilic, while the third Fourier component (blue)
creates local extrema in the monstar umbilic and additional zero crossings of the height function
in the star umbilic.

8 Summary

We have presented an intuitive analysis of third order surface behavior in terms of Fourier compo-
nents of the third order height function. We hope our exposition will be useful as a tool for studying
and characterizing third order geometry. In the next chapter, we will use our understanding of third
order surface behavior to define aesthetic functionals built from the fundamental building blocks
F1 and F3.
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