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Abstract

Nonparametric Bayesian Models for Machine Learning

by

Romain Jean Thibaux

Doctor of Philosophy in Computer Science

and the Designated Emphasis in Communication, Computation and Statistics

University of California, Berkeley

Professor Michael I. Jordan, Chair

This thesis presents general techiques for inference in various nonparametric Bayesian

models, furthers our understanding of the stochastic processes at the core of these

models, and develops new models of data based on these findings. In particular, we

develop new Monte Carlo algorithms for Dirichlet process mixtures based on a general

framework. We extend the vocabulary of processes used for nonparametric Bayesian

models by proving many properties of beta and gamma processes. In particular, we

show how to perform probabilistic inference in hierarchies of beta and gamma pro-

cesses, and how this naturally leads to improvements to the well known näıve Bayes

algorithm. We demonstrate the robustness and speed of the resulting methods by

applying it to a classification task with 1 million training samples and 40,000 classes.

Professor Michael I. Jordan, Chair Date
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Chapter 1

Introduction

Bayesian statistics frames any problem of data analysis as one of updating beliefs

about the world given observations. Our beliefs are represented by a probability distri-

bution over possible models of the world, and probabilistic inference is the mechanism

by which our beliefs are updated.

This approach has the advantage of being automatic. In principle, once we have

stated our initial beliefs, any data can be observed and any question can be answered

unambiguously. For this promise to be realized however, a number of challenges

must be overcome, in particular: 1) What language can we use to express the set of

models we consider? This language should allow us to describe extremely large sets of

models. Indeed however certain we are that a model is incorrect, we want to be able

to consider it if evidence strongly points in its direction. 2) What language can we

use to represent our beliefs? We need a compact way to state our preferences among

this large set of models. 3) How can we efficiently perform the computations implied

by probabilistic inference?

In this thesis we make some progress on these questions, by placing ourselves

in the framework of nonparametric Bayesian inference, a field dedicated to placing
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Chapter 1. Introduction

probabilities on spaces larger than can be described by a finite dimensional vector,

and using them to represent our beliefs over large sets of models. For example, the

Gaussian process places a probability on the space of continuous functions, and the

Dirichlet process on the space of discrete distributions. Both have been used as the

backbone of many types of models.

Because Dirichlet processes have been studied for a long time, they are very well

understood. In Chapter 2 we take advantage of this abundant theory to derive in-

ference algorithms for the Dirichlet process, and propose a general method to derive

similar algorithms in other contexts.

Finite dimensional (parametric) models are usually based on a small vocabulary

of finite dimensional distributions such as the Gaussian, Poisson, Beta, Gamma, etc.

which represent a compromise between expressivity and tractability. Many other

distributions have been studied, but since they are less convenient mathematically

and computationally, they are used only sparingly. Similarly, nonparametric Bayesian

models are based on a small set of processes: mainly the Gaussian, Dirichlet and

Poisson processes. The list is far from being as complete and as well studied as in the

parametric case however. In Chapter 3 we introduce the theory of Lévy processes,

a family to which several of these processes belong. In particular we focus on beta

and gamma processes, surveying some of their known properties and exhibiting many

new ones, as well as establishing links with existing models used in machine learning.

Finally in Chapter 4 we build on these tools to create hierarchies of beta and

gamma processes, with associated inference algorithms, and show how they can be

used to build good “näıve Bayes” classifiers. We present some empirical results for

text and image classification.

2



Chapter 2

Monte Carlo Methods for the

Dirichlet Process

2.1 Introduction

For the line of research based on DP mixtures to realize its potential, challenging com-

putational issues must be faced. The underlying computational problem is one faced

by many (generalized) clustering methods. In particular, DP mixtures attempt to

find partitions of the data; as a Bayesian methodology they aim to find a distribution

over partitions of the data. Historically, the first step towards computationally-viable

inference procedures for DP mixtures came from the realization that the DP induces

an exchangeable distribution over partitions—this led to the development of a Gibbs

sampler for DP mixtures [Escobar and West, 1995]. The basic idea is that exchange-

ability allows the conditional probability associated with the assignment of a data

point to be obtained by exchanging the data point with the final data point. The

prior for the final data takes the form of a Pólya urn model, which is readily sampled.

Exchangeability is but one aspect of the DP probability model. A rich literature
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Chapter 2. Monte Carlo Methods for the Dirichlet Process

in stochastic process theory has studied distributions on various clustering-related

combinatorial objects, including partitions, permutations and cycles, and has explored

stochastic processes that converge to these distributions (see, e.g., [Pitman, 2002a]).

This literature would seem to provide fertile ground for the development of Bayesian

inference procedures that exploit aspects of the DP model beyond exchangeability.

Indeed, the Gibbs sampler is too slow for large-scale applications of DP mixtures;

the reassignment of any single data point is often highly improbable even in a subop-

timal configuration. The most effective algorithms have been based on procedures—

known as “split-and-merge” algorithms—that reassign multiple data points at each

step [Jain and Neal, 2000; Dahl, 2003]. Currently, however, there is no theoretical

guide to the development of such algorithms. Their correctness is assured by placing

them within a Metropolis-Hastings procedure, but the specific choices of moves in

existing algorithms are based on intuitions. It would be desirable to find theoretical

support for those intuitions and to obtain a broader picture of the space of reasonable

algorithms.

We make the following contributions. We provide a general probabilistic founda-

tion to exploit the stochastic process literature when designing inference procedures.

We show that the specific split-and-merge algorithms of [Jain and Neal, 2000] and

[Dahl, 2003] can be justified within this theoretical framework, and we show that the

same framework generates new algorithms which are competitive with and comple-

mentary to the existing algorithms.

This chapter is organized as follows. We frame the problem by introducing Dirich-

let process mixtures and the Split-Merge algorithm (Sec. 2.2). We outline a general

method to derive efficient algorithms from stochastic processes on a larger space

(Sec. 2.3). Before we can use this method, we need to review the many properties

of a particular such space with a direct relationship to Dirichlet processes: the space

of virtual permutations [Kerov et al., 1993] (Sec. 2.4 and 2.5). We then apply the
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method to a Fragmentation-Coagulation process on these virtual permutations, ob-

taining a natural derivation of Split-Merge (Sec. 2.6). Applying the method instead to

a different process called Ebb-Flow, we derive a new variant of Split-Merge (Sec. 2.7).

Finally we discuss in less detail several other variants (Sec. 2.8) and compare these

algorithms experimentally (Sec. 2.9).

2.2 Split and Merge

For other introductions to Dirichlet process mixtures and the Split-Merge algorithm,

see [Neal, 1998] and [Jain and Neal, 2000].

2.2.1 Dirichlet Process Mixtures

We consider n observations y1:n = (y1, . . . yn) drawn from a mixture distribution.

Each observation t belongs to a mixture component – or cluster – Ci. Each cluster is

characterized by a parameter ηi, drawn from a prior H, and observations from this

cluster are i.i.d. f(.|ηi). We also call ct the cluster that observation t belongs to, so

ct = i ⇐⇒ t ∈ Ci, and let |c1:n| be the number of clusters implied by c1:n. We also

note ni = |Ci| the size of cluster i. Since the label i of each cluster is unidentifiable,

we identify any two vectors c1:n equal up to relabelling of the clusters. For instance,

(1, 1, 2, 1, 3, 3) = (2, 2, 4, 2, 7, 7).

In other words we consider these equivalent vectors as different names for the common

partition of 1:n that they induce. All formulas involving c1:n could be rewritten to
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only involve partitions, though at great cost in readability. In summary:

ηi
ind∼ H

yi
ind∼ f(.|ηci

)

We restrict ourselves to f and H being conjugate exponential families:

f(y|η) = h(y) exp
[
ψ(η)TT (y)− A(η)

]
H(η) = exp

[
µTψ(η)− νA(η)−B(µ, ν)

]
For a cluster A ⊂ {1, . . . n} we also define the marginal distribution:

q(yA) =

∫
f(yA|η)H(η)dη (2.1)

∝ exp

[
B(µ+

∑
l∈A

T (yl), ν + |A|)−B(µ, ν)

]

The last part of the model is the prior distribution of c1:n. Our goal in the rest of the

chapter will be to obtain the posterior distribution of c1:n given the n observations

y1:n. Let c1:n be distributed according to the Chinese Restaurant Process, which can

be iteratively constructed from its conditionals:

cn+1|c1:n ∼

 cn+1 = i w.p. ni

n+α

cn+1 = |c1:n|+ 1 w.p. α
n+α

(2.2)

The Chinese Restaurant Process is an instance of an urn model. A draw from an urn

((ni)i≤k;α) returns i with probability ni/(α+
∑

i ni) or returns k+1 with probability

α/(α +
∑

i ni), and the urn is updated so that ni is incremented by 1. The Chinese

Restaurant Process is an urn started at (;α), and we will encounter other types of
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urns.

The distribution (2.2) is exchangeable: the probability of c1:n does not depend on

the ordering. In particular, the conditional distribution of ct given c1:n\{t} is the same

as that of cn given c1:n−1. Applying Bayes’ rule to (2.2), we obtain:

cn+1|c1:n, y1:n+1 ∼

 cn+1 = i w.p. ∝ niq(yCi∪{n+1})

cn+1 = |c1:n|+ 1 w.p. ∝ αq(y{n+1}).
(2.3)

This formula allows us to sample any ct from its conditional posterior distribution.

The Gibbs sampler [Neal, 1998] resamples each ct in turn using (2.3), and in the limit

yields independent samples from the posterior.

2.2.2 Split and Merge

The above Gibbs sampler can mix very slowly if two cluster parameters are similar;

the chain cannot easily move from a configuration where the clusters are merged to

one where they are separate. This motivated Jain and Neal [Jain and Neal, 2000] to

propose a Markov chain where clusters are split and merged in one step. Here we

present the simplified version by Dahl [Dahl, 2003], and discuss the original method

in Sec. 2.6.

First, choose two data points r and s at random among 1:n. If r and s belong

to two different clusters, simply merge the two clusters while leaving all the other

clusters unchanged. If r and s belong to the same cluster Cm, split it into two in the

following way.

Initialize the two clusters to Ci = {r} and Cj = {s}.

Sequentially allocate each remaining element t of Cm to either Ci or Cj with

probability proportional to |Ci|q(yCi∪{t}) and |Cj|q(yCj∪{t}) respectively.
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Accept the move with the appropriate Metropolis-Hastings probability to ensure

convergence to the posterior.

Figure 2.1: Composing a permutation with a transposition (rs) merges the clusters of r
and s, or splits their common cluster.

Where does this algorithm come from? Any distribution can be used as a pro-

posal for Metropolis-Hastings, so why this particular form? One hint comes from the

similarity between this algorithm and the effect of composing a permutation with the

transposition (rs) exchanging two elements r and s. Indeed a permutation consists

of a set of cycles. If r and s belong to different cycles, these are merged, otherwise

their common cycle is split in two (see fig. 2.1).

In fact we show (Sec. 2.6), that Split-Merge can be directly derived from this

composition operation. Not only does this justify the form of the proposal, but it

provides us with a general method to mechanically derive such algorithms. First we

describe this method in general terms (Sec.2.3), before showing how Split-Merge can

be naturally derived in this way (Sec. 2.6). Then we apply the same method to other

operations as well as deriving several new algorithms (Sec. 2.7 and 2.8).

2.3 Method

A fundamental operation of Bayesian statistics is posterior inference, where we want

to compute the posterior P (x|y) over a quantity of interest x ∈ X given a prior P (x),

8
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and a likelihood P (y|x). However usually the space of x is too large for the posterior

to be computed by enumerating and normalizing P (x)P (y|x). We can get an estimate

of the posterior with Markov chain Monte Carlo, but how can we design fast mixing

Markov chains for P (x|y)? Since the prior usually has a much more symmetrical

structure than the posterior, finding good Markov chains for P (x) is usually much

easier, so we consider how to transform them into Markov chains for P (x|y).

2.3.1 Metropolis-Hastings

For a Markov kernel K, we note K(x̄, x) the transition probability from the current

state x̄ to the next state x. In many cases we will be interested in kernels K mixing

to the prior that are P -reversible, that is

∀ x, x̄ P (x)K(x, x̄) = P (x̄)K(x̄, x),

because this property provides a quick proof that P is stationary for K. In principle,

we can apply the Metropolis-Hastings algorithm, which transforms K into a reversible

Markov process M(K) with any prespecified stationary distribution which we take to

be the posterior. To sample from M(K), one samples from K and accepts the move

from x̄ to x with probability min(1, R(x̄, x)) where

R(x̄, x) =
K(x, x̄)P (x|y)
K(x̄, x)P (x̄|y)

=
P (y|x)
P (y|x̄)

by P -reversibility. (2.4)

What we have won by starting from a P -reversible kernel rather than any other

kernel is that we only need to compute the likelihood. It is usual when using

Metropolis-Hastings to need the posterior only up to a multiplicative constant, but

(2.4) does not even require the prior. However, simply using Metropolis-Hastings in

9
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this fashion will usually result in a very slow chain. Since any distance between K

and M(K) is paid for by waiting, we want to start from a K whose stationary distri-

bution is as close to the posterior as possible. Let K̂ be a modification of K, with the

same pattern of non-zero transition probabilities (we discuss in the next section how

to build K̂). Applying Metropolis-Hastings to K̂ gives us the following acceptance

ratio:

R(x̄, x) =
K̂(x, x̄)P (x|y)
K̂(x̄, x)P (x̄|y)

=
K̂(x, x̄)

K(x, x̄)

K(x̄, x)

K̂(x̄, x)

P (y|x)
P (y|x̄)

by P -reversibility. (2.5)

Observe that expression (2.5) only involves the ratio between K and K̂, and that we

only need to be able to compute the likelihood, not the posterior or the prior.

2.3.2 Likelihood reweighting

To really take advantage of eq. (2.5), we want to design a kernel K̂ that is a simple

modification of K, yet whose stationary distribution is as close to P (x|y) as possible.

We consider the following transformation, which we call likelihood reweighting:

∀x̄ ∈ B K̂(x̄, x) =
1

Z(x̄)
K(x̄, x)P (y|x) (2.6)

where Z(x̄) =
∑

x

K(x̄, x)P (y|x)

If K happens to be a Gibbs kernel for P , then K̂ has a stationary distribution exactly

equal to P (x|y). A Gibbs kernel relies on a decomposition of x into variables, and

resamples ones of these variables from its conditional distribution given all other

variables. If we call B these other variables, then K(x̄, x) = P (x|B(x) = B(x̄)) and

K̂(x̄, x) = P (x|B(x) = B(x̄), y), which is P (x|y)-reversible.

10
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If K is not a Gibbs kernel, there is no guarantee, but we can still use likelihood

reweighting as a heuristic. In the end, the acceptance ratio corrects for any discrep-

ancies and ensures that M(K̂) converges exactly to P (x|y). Our experience is that

this likelihood reweighting is usually very beneficial.

Often likelihood reweighting itself is intractable and must be approximated, how-

ever since exact likelihood reweighting is only a heuristic, a good approximation is all

we need.

2.3.3 Auxiliary variables

Distributions on discrete structures such as partitions, trees, or walks often simplify

greatly in the limit of infinite size or infinite time when rescaling appropriately. Even

though the mathematics involved is typically more advanced, the limit objects enjoy

additional symmetries and simple closed forms while their finite counterparts often

involve intractable combinatorics. This simplicity makes it easier to discover or study

stochastic processes acting on these spaces.

In particular, we are interested in cases where the limit object X contains the

finite object x as one of its parts, i.e. x is completely determined given X. For

example an infinite tree X induces a finite tree x over any finite subset of its points.

In this case any family of consistent distributions P (x) converges to a limit P (X)

as x gets large. The distribution P (x) can then be interpreted as the marginal on

x of P (X). If a Markov process K acts on X and yields samples from P (X), it

automatically provides samples from P (x).

Since X is infinite, an algorithm cannot manipulate it explicitly. To obtain instead

a process on x only, we must project K onto x by interleaving an operation Γ that

resamples X from P (X|x). Γ ensures that we “forget” X between two applications of

K. We can then view G◦Γ as a Markov process on x that first generates an auxiliary

11
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variable X, performs a step of K on X, which modifies x, and then throws X away.

It turns out that we can often marginalize out X in this sequence and remove the

need to generate X even temporarily.

The overall method is summarized in fig. (2.2).

.

.

Figure 2.2: A method to derive MCMC algorithms mixing to the posterior on x from a
stochastic process K mixing to the prior on X. On the left is the equilibrium distribution
at each step.

2.4 Virtual Permutations

We will apply the above method to several Markov kernels to derive posterior inference

algorithms for Dirichlet process mixtures, where the hidden variable x corresponds

to the clustering vector c1:n. We are faced with a choice of several auxiliary variables

X: partitions of 1, and permutations. We choose to introduce and review the most

general auxiliary variable, the space of virtual permutations, which subsumes both of

these. The Markov chains we will consider are each most naturally described in one

of these spaces, though they have natural counterparts in the others.

2.4.1 The space S∞

Let SA be the space of permutations of A ⊂ N. If A = 1:n we simply write Sn for S1:n.

We note |A| the size of A. Following [Kerov et al., 1993], for any two sets A ⊂ B we

12
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define the projection πB
A that maps a permutation ωB ∈ SB to ωA ∈ SA by removing

from the cycles of ωB all elements of B \A. When B is clear from context we simply

write πB
A as πA. For example:

(1365)(247)(8)
π1:57−→ (135)(24)

Two permutations are called coherent if one is the projection of the other. A virtual

permutation is a coherent set of permutations ω = (ω1:N)N ∈ S∞. It can be thought

of as a permutation of N. In particular, ω induces a permutation on any finite subset

of N by projection from 1:N for N large enough.

Although infinite ω has cycles, that is a partition of N into clusters, which we note

Ci, and for each cluster a cyclic order1. We use the same notations Ci and c as that

of Sec. 2.2.1 to represent the partition of N. We also note cA and Ci
A their restriction

to a subset A of N. In the common case that A = 1:n we still use the shorter notation

ni = |Ci
1:n|.

8 9
2

7

4

5

6

1
3

8 9274 561 3

Figure 2.3: A virtual (infinite) permutation ω and its stick representation, with 9 data
points highlighted. ω1:9 = (81364)(729)(5). pi is the relative length of cluster Ci.

As is shown in fig. (2.3), one can think of ω as having infinitely many cycles, each

isomorphic to a continuous circle, on which the elements of N form a dense subset.

1Contrary to the finite case, this cyclic order will in general not admit a successor function.
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The projection of ω on ω1:n can be read from the positions of the elements 1:n on

the cycles. More pathological cases where this picture is inaccurate are possible, but

we now define a probability distribution over this space which will ensure they occur

with probability 0.

2.4.2 The µα Distribution

Let α > 0 and µα be the distribution on S∞ defined by its coherent marginals on SA

for each finite A ⊂ N:

µα(ωA) =
α|ωA|

(α)|A|
(2.7)

where (α)n = α(α+1) . . . (α+n−1). In particular µ1 induces the uniform distribution

on every SA, while α > 1 encourages permutations with more clusters, and α < 1

less. This distribution is exchangeable (or central) since it does not depend on the

identity of the elements of A. This implies that we can take A = 1:n in all subsequent

formulas without loss of generality.

Permutations with the same number of cycles, and in particular permutations with

the same partition, have the same probability. The marginal of µα on the space of

partitions can therefore be obtained by counting the number of permutations inducing

a given partition.

µα(c1:n) =
α|c1:n|

(α)n

∏
i

(ni − 1)! (2.8)

We can marginalize further by counting the number of partitions having the same

set of cluster sizes. Let mj be the number of clusters of c1:n of size j, and |m| =

14
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|c1:n| =
∑

j m
j. We obtain the Ewens Sampling Formula2, ESF(α) [Ewens, 1972]:

µα(m) =
α|m|

(α)n

n!
∏
j≤n

(
1

j

)mj

1

mj!

We can also compute its conditionals. From (2.7) we get µα(ω1:(n+1)|ω1:n):

 n+ 1 inserted after t ∈ 1:n w.p. 1
n+α

(n+ 1) is a cycle by itself w.p. α
n+α

(2.9)

and from (2.8) or (2.9) we get that µα(cn+1|c1:n) is equal to the Chinese Restaurant

Process (2.2), which we repeat for convenience:

cn+1|c1:n ∼

 cn+1 = i w.p. ni

n+α

cn+1 = |c1:n|+ 1 w.p. α
n+α

(2.10)

Eq. (2.9) extends (2.10) to permutations, and justifies the name Chinese Restaurant

Process since elements inserting themselves into cycles can be thought of as customers

sitting around circular tables. The connection shows that both permutations of 1:n

and virtual permutations of N are valid auxiliary variables for the model of Sec. (2.2.1)

since µα(ω) and µα(ω1:n) recover the Chinese Restaurant Process as one of their

marginals.

Eq. (2.10) also shows that ni

n+α
follows a bounded martingale. Indeed it is bounded

by 0 and 1, and its expectation after increasing n by 1 is

ni + 1

n+ α

ni

n+ α
+

ni

n+ α

n− ni + α

n+ α
=

ni

n+ α
, i.e. its current value.

Therefore it converges almost surely as n→∞ to a random limit pi called the relative

2The ESF is also known as the Multivariate Ewens Distribution
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cluster size. Applying (2.10) to N \ {t} leads to:

µα(ct = i|cN\{t}) = µα(ct = i|p) = pi (2.11)

p = (pi)i is thus the hidden variable conditionally on which the exchangeable dis-

tribution of c becomes i.i.d., in agreement with de Finetti’s theorem, and is another

valid auxiliary variable for our model. Since we have identified the vectors c1:n equal

by relabelling, p is really a set of values.

It is known that p is saturated, that is
∑

i pi = 1 almost surely. What is more the

martingale followed by ni

n+α
is equal to posterior inference on pi when giving it a Beta

distribution. Therefore:

pi|c1:n ∼ Beta(ni, n− ni + α) (2.12)

However the joint distribution of p as a set of values is not convenient. Instead we

use the vector p↓ = (p↓i )i∈N of values of p ranked in decreasing order. p↓ has the

Poisson-Dirichlet distribution PD(α) [Kingman, 1975].

Alternatively, we can use the vector p̃ = (p̃i)i∈N obtained by drawing the values pi

without replacement with probabilities given by the pi’s themselves. This operation

is called a size-biased permutation. p̃ has the Griffiths-Engen-McCloskey distribution

GEM(α), which arises from the following stick-breaking process3:

pi = Vi

i−1∏
j=1

(1− Vj) where Vi ∼ Beta(1, α)

We note P the space of positive vectors with sum 1, to which p↓ and p̃ belong.

3For this reason GEM(α) is sometimes called the Stick-Breaking distribution, even though other
stick-breaking schemes exist. Stick-breaking processes are also known as Residual Allocation Models
(RAM).
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2.5 Natural Markov kernels on Sn, S∞ and P

2.5.1 The cyclic reshuffle kernel

Let ∆ be the kernel ∆(ω̄, ω)
def
= P (ω|c = c̄) that resamples ω given c. In other words,

∆ resamples the cyclic order of each cluster uniformly at random, leaving clusters

unchanged. It is a Gibbs kernel for any µα, as is clear from (2.7).

2.5.2 The transposition kernel

Let R(rs)(ω, ω
′)

def
= δω◦(rs)(ω

′) be the kernel that composes (deterministically) ω with a

fixed transposition (rs). R(rs) is involutary, with the effect discussed in Sec. 2.2.2 and

illustrated in fig. (2.1): if r and s belong to different clusters of ω, these are merged,

otherwise their common cluster is split in two.

The uniform distribution µ1(ω1:n) is stationary for R(rs) on Sn and we can obtain

µα using Metropolis-Hastings, i.e. accepting split moves only with probability α (if

α < 1), or merge moves w.p. 1
α

(if α > 1). This can be checked using (2.7). Since

this is true for any n, µ1(ω) is also stationary for R(rs) on S∞.

2.5.3 Fragmentation-Coagulation

We can define the kernel Rn which draws a pair (rs) uniformly at random among 1:n

then applies R(rs). If we extend the definition of R(rs) to allow r and s to be any point

on the closure of a cycle of ω (the continuous circles in fig. 2.3), we can also define

R∞ which selects r and s uniformly at random on the cycles and applies R(rs).

Since µ1 is invariant for any R(rs), it is also invariant for any Rn and R∞, and µα

is invariant if we accept split moves with probability min(1, α) and merge moves with

probability min(1, 1/α). [Tsilevich, 1998] uses such random transpositions to study

properties of µ1, showing that it is the only saturated stationary distribution for all
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Rn.

Since R∞’s effect on p depends on ω only through p, p follows a Markov chain,

called Fragmentation-Coagulation [Mayer-Wolf et al., 2002]:

◦ Pick two clusters i and j at random with probabilities given by p

◦ If i 6= j, merge the two clusters into a new cluster pm = pi + pj

◦ If i = j, split the cluster into Upi and (1− U)pi where U ∼ U[0, 1]

This chain is also a chain on p↓ if we re-rank at each step, in which case it mixes

to PD(1), or to PD(α) when adding Metropolis-Hastings acceptance probabilities

as above [Diaconis et al., 2004]. We will see that this chain and the Split-Merge

algorithm are not just very similar, they are essentially the same.

2.5.4 Ebb-Flow

[Gnedin and Kerov, 2001] show that GEM(α) is the unique stationary distribution

for the following chain, whose equilibrium is reversible [Pitman, 2002b]:

Draw W ∼ Beta(1, α)

p|p̄ ∼

 (W, p̄1 −W, p̄2, p̄3, . . .) if W < p̄1

(p̄1 + p̄2, p̄3, p̄4, . . .) otherwise

They call this chain split-and-merge but to avoid confusion in this article we will call

it “Ebb-Flow” (interpreting W as the level of the tide leaving a mark on the beach,

then a higher mark can be set only after all lower marks have been erased).

By itself Ebb-Flow mixes exceeding slowly since clusters with a large index must

wait for a very unlikely event (a series of very high “tides”) before being modified.

There is an easy fix however which is to interleave a size-biased permutation (SBP),

which leaves GEM(α) invariant and ensures that each cluster i has probability pi of

moving to the front. Since the ordering is lost at each iteration, Ebb-Flow composed
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with SBP induces a Markov chain on p↓, if we rank between each iteration.

This Markov chain mixes to PD(α). However, contrary to Fragmentation-Coagulation,

it does so for any α without wasting time rejecting moves. Since for α = 1 the two

chains are identical, Ebb-Flow appears to be a better way to extend Fragmentation-

Coagulation to α 6= 1 than is Metropolis-Hastings. Ebb-Flow also exemplifies the

advantages of introducing the limit spaces P and S∞: contrary to Fragmentation-

Coagulation, Ebb-Flow has no known counterpart on Sn.

We can extend Ebb-Flow to a Markov chain on c in a natural way: when splitting,

allocate each element of C̄1 to C1 or C2 with probabilities W/p̄1 and (p̄1 −W )/p̄1,

otherwise merge the two clusters C̄1 and C̄2, maintaining all other clusters constant.

We call Q this kernel on c. Its equilibrium is also reversible.

2.6 The Split-Merge algorithm

Any of the previous Markov chains are possible starting points to apply the method

of Sec. 2.3. In fact, any composition of them leaves µα invariant and is also a valid

starting point.

In this section, we consider S(rs) = R(rs) ◦ ∆. If r and s are in the same cluster

Cm, and if U is the proportion of the cycle between r and s (clockwise) after applying

∆, we have U ∼ U[0, 1]. Applying R(rs) then cuts the cycle at r and s, forming two

cycles of size pi = Upm and pj = (1 − U)pm. Conditionally on U , each element of

Cm is sent to Ci or Cj with probability U or 1 − U , except for r and s which are

sent deterministically to Ci and Cj respectively. Marginalizing U , elements are sent

to Ci and Cj with probabilities given by an urn started at (1, 1; 0). If r and s are in

different clusters, the two clusters are merged, deterministically.

As the above description shows, S(rs)’s effect on c1:n only depends on c1:n∪{r,s},

therefore S(rs) induces a Markov kernel on c1:n∪{r,s}, which we also call S(rs).
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2.6.1 Approximate likelihood reweighting

For simplicity we assume that r and s do not belong to 1:n and since the merge

move is trivial we turn to the split move. Let cr = cs = m, and Cm the cluster we

split. Without loss of generality (by exchangeability) we rename the data points so

that Cm
1:n = 1:d. To simplify notations, we write S(rs)(c1:n∪{r,s}) for the transition

probability S(rs)(c̄1:n∪{r,s}, c1:n∪{r,s}) since c̄1:n∪{r,s} is fixed throughout. Conversely,

we write S(rs)(c̄1:n∪{r,s}) for the reverse transition probability S(rs)(c1:n∪{r,s}, c̄1:n∪{r,s}).

Since S(rs) only modifies c1:d, we concentrate on S(rs)(c1:d). Reweighting exactly by

the likelihood would yield the following distribution:

S(rs)(c1:d|y1:d) =
d∏

t=1

S(rs)(ct|c1:(t−1), y1:d)

from which we might hope to sample iteratively. Alas, S(rs)(ct|c1:(t−1), y1:d) is in-

tractable. We thus resort to approximating it by dropping some of the dependencies

on y. We define

Ŝ(rs)(c1:d)
def
=

d∏
t=1

S(rs)(ct|c1:(t−1), y1:t) (2.13)

This approximation allows us to allocate points to Ci and Cj incrementally. Consis-

tent with our notation, let Ci
1:(t−1) be the set of elements already allocated to cluster

i among the first t− 1 elements of Cm. Using (2.1) we get:

S(rs)(ct|c1:(t−1), y1:t) ∝ S(rs)(ct|c1:(t−1))P (y1:t|c1:t)

∝

 (|Ci
1:(t−1)|+ 1)q(yCi

1:(t−1)
∪{t})

(|Cj
1:(t−1)|+ 1)q(yCj

1:(t−1)
∪{t})

(2.14)
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since S(rs)(ct = i|c1:(t−1)) is the expectation of U |c1:(t−1) ∼ Beta(|Ci
1:(t−1)|+1,|Cj

1:(t−1)|+

1). The probability for the reverse (merge) move is

S(rs)(c1:n, c̄1:n) = Ŝ(rs)(c1:n, c̄1:n) = 1.

2.6.2 Metropolis-Hastings

Applying (2.5), the Metropolis-Hastings acceptance ratio to correct for the error is

R(c̄1:n, c1:n) where, for a split move:

R(c̄1:n, c1:n) =
Ŝ(rs)(c̄1:n)

S(rs)(c̄1:n)

S(rs)(c1:n)

Ŝ(rs)(c1:n)

P (y|c1:n)

P (y|c̄1:n)

= α
q(yCi

1:n
)q(yCj

1:n
)

q(yCm
1:n

)

ni!nj!

(nm+1)!

1

Ŝ(rs)(c1:n)
(2.15)

where the last term is computed iteratively as we sample c1:d. Expression (2.15) is for

r and s non data points. If we take them among 1:n, the only difference is that the

first two choices (the placement of r and s) are deterministic. In particular this leads

to replacing the ratio of factorials in (2.15) by
(ni−1)!(nj−1)!

(nm−1)!
, giving the acceptance

probability for the Split-Merge algorithm of [Dahl, 2003]. Choosing r and s among

1:n or not makes little difference in practice.

The original Split-Merge algorithm of [Jain and Neal, 2000] uses a more complex

proposal distribution. Even though the authors do not motivate their proposal, it

is clearly an attempt to approximate S(rs)(c1:d|y1:d). Rather than using (2.13), they

introduce an auxiliary variable ĉ1:n approximately drawn from S(rs)(c1:d|y1:d) using

Gibbs sampling, and define:

S̃(rs)(c1:d)
def
=

d∏
t=1

S(rs)(ct|c1:(t−1), c(t+1):n = ĉ(t+1):n, y1:n) (2.16)
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It is unclear which of the two approximations is more accurate, but since likelihood

reweighting is only a heuristic, it makes more sense to follow the simpler and somewhat

faster proposal of [Dahl, 2003].

2.6.3 Projection

We note S∗(rs) the kernel obtained after applying MH. S∗(rs) is a kernel on c1:n∪{r,s}, so

once we obtain samples from the posterior on c1:n∪{r,s} we can simply drop r and s if

they do not belong to 1:n to obtain samples of c1:n. To mix well we should alternate

the pair (rs) at every iteration. For instance we can cycle through all pairs of 1:n or

pick one at random.

Alternatively we can pick r and s uniformly at random in the closure of the cycles

of ω, in which case they will not belong to 1:n. To do this, in principle we should first

generate ω from µα(ω|c1:n). Since ω is independent of y1:n given c1:n, this operation

leaves the posterior invariant. Then we should pick r and s uniformly at random

along the cycles. However we can do this operation in one step by marginalizing out

ω. This results in drawing cr and cs from an urn started at ((ni)i;α).

2.7 Split-Merge variant via the Ebb-Flow chain

In the previous section, we derived the Split-Merge algorithm from the Fragmentation-

Coagulation chain, or rather its counterpart the transposition kernel. However we

remarked that when mixing to the prior µα, the Fragmentation-Coagulation chain

will need to reject some moves. At equilibrium, split and merge moves must be

accepted with the same frequency, from which we can show that the rejection rate is

|1 − α|/(1 + α), which approaches 1 for α large or small. This motivates us to look

at a the Ebb-Flow chain, which does not need to reject when mixing to the prior.
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2.7.1 Approximate likelihood reweighting

As in the previous section, we abbreviate Q(c̄, c) to Q(c) since c̄ is fixed throughout.

Reweighting Q goes essentially as for the Fragmentation-Coagulation kernel in eq.

(2.13). However Q(ct=1|c1:(t−1)) is now E(W/p̄1|W < p̄1, c1:(t−1)) which has no nice

expression4.

We must then resort to a slightly poorer approximation. Again by exchangeability

we can assume without loss of generality that C1
1:n = 1:d. Q̂ decomposes as follows

using the independence of c and y1:n given c1:n:

Q̂(c) = Q(c|c1:d)Q̂(c1:d|p)Q̂(p)

We approximate Q̂(c1:d|p) sequentially as in eq. (2.13), except we now condition on

p:

Q̃(c1:d|p)
def
=

d∏
t=1

Q(ct|c1:(t−1), y1:t, p)

where

Q(ct|c1:(t−1), y1:t, p) ∝ Q(ct|p)P (y1:t|c1:t)

∝

 p1q(yC1
1:(t−1)

∪{t})

p2q(yC2
1:(t−1)

∪{t})
(2.17)

As for Q̂(p), we simply drop the dependence of p on y1:n by setting Q̃(p) = Q(p).

4Some closed but numerically unstable forms exist.
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2.7.2 Metropolis-Hastings

Again we apply (2.5) to obtain the acceptance ratio. The factors Q(c|c1:d) and Q(p),

common to Q and Q̂, simplify.

a(c̄, c) =
P (y|c1:n)

P (y|c̄1:n)

Q(c1:n|p)
Q̃(c1:n|p)

=
q(yC1

1:n
)q(yC2

1:n
)

q(yCm
1:n

)

p
|C1

1:n|
1 p

|C2
1:n|

2

p̄
|C̄1

1:n|
1

1

Q̃(c1:n|p)

where Q̃(c1:n|p) is given by (2.17). We note Q∗ the kernel obtained when using the

above acceptance ratio. The posterior P (c|y1:n) is invariant for Q∗.

2.7.3 Size-biased permutation

As we announced when introducing the Ebb-Flow chain, we must alternate Q∗ and

a size-biased permutation kernel SBP . Clusters are chosen with probability pi. To

project SBP onto c1:n we resample c|c1:n, and in particular pi|c1:n, given by (2.12).

Marginalizing out pi, clusters are chosen with probability E(Beta(ni, n− ni + α)) =

ni/(n+α). Note that an empty cluster (ni = 0) may be chosen. Finally this operation

leaves c1:n and therefore the likelihood invariant, so SBP ∗ = SBP .

2.7.4 Projection

We now project Q∗’s action onto c1:n, by composing Q∗ with the Gibbs kernel that

resamples c given c1:n and the ordering. Now however eq. (2.12) does not apply since

we operate on the clusters in size-biased order. pi given c1:n and the ordering has the

posterior GEM distribution [Ishwaran and James, 2001]:

pi = V̂i

i−1∏
j=1

(1− V̂j) where V̂i ∼ Beta(ni, α+
∑
j>i

ni)
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In fact since Q∗’s action on c1:n depends on c only through p1 and (if we merge) p2,

we need not sample (pi)i>2. This leads, to summarize, to the following algorithm:

Pick a cluster w.p. ∝ (n1, . . . , nk;α), change labels to call it cluster #1

Pick a cluster w.p. ∝ (n2, . . . , nk;α), change labels to call it cluster #2

Sample from the GEM posterior:

V̂1 ∼ Beta(n1 + 1, n− n1 + α) p1 = V̂1

V̂2 ∼ Beta(n2 + 1, n− n1 − n2 + α) p2 = (1− V̂1)V̂2

With probability
∫ 1

p1
Beta(1,α)(W )dW = (1− p1)

α

Consider merging

Otherwise

Increment the name of all other clusters to leave room for a new, empty cluster

2

Consider splitting

Let m be the merged cluster, let 1 and 2 denote the two parts of the split

Initialize C1 := C2 := ∅ and Q̃ := 1

For each s ∈ Cm

Compute q1 :=
∫
f(ys|η)H(η|yC1)dη. And q2.

Compute (q̃1, q̃2) ∝ (p1q1, p2q2)

If splitting, Draw cs ∈ {1, 2} with prob. (q̃1, q̃2)

If cs = 1, Let C1 := C1 ∪ {ls} and Q̃ := q̃1Q̃

Similarly if cs = 2

End For each

Let Q1 :=
∫
f(yC1|η)H(η)dη . Idem for Q2 and Qm
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Let a =
Q1Q2

Qm

p
|C1|
1 p

|C2|
2

p̄
|Cm|
1

1

Q̃

Accept Split with probability min(1, a)

Or Accept Merge with probability min(1, 1
a
)

2.8 The Exchange algorithm

In the previous section, we derived a Split-Merge variant based on the Ebb-Flow chain.

The derivation exemplified how the method of Sec. 2.3 can derive an algorithm that

would be very difficult to propose based on intuition alone. Nonetheless, the resulting

algorithm is very similar to Split-Merge.

Split-Merge was based on R(rs) ◦ ∆. In this section, we apply the method to

T(rs) = R(rs) ◦∆ ◦R(rs), which randomizes the cyclic order and acts on c as follows. If

r and s are in different clusters C̄i and C̄j, they are merged and re-split into two new

clusters Ci and Cj initialized to {r} and {s} and filled with the remaining elements

of C̄i ∪ C̄j according to a (1, 1; 0) urn. If r and s are in the same cluster, nothing

happens.

2.8.1 Metropolis-Hastings

Since the transition probability of T(rs) starting from r and s in different clusters C̄i

and C̄j is the same as that of S(rs) starting from r and s in the same cluster C̄i ∪ C̄j,

likelihood reweighting has the same effect for both kernels. The Metropolis-Hastings

acceptance ratio becomes

R(c̄1:n, c1:n) =
T̂(rs)(c̄1:n)

T(rs)(c̄1:n)

T(rs)(c1:n)

T̂(rs)(c1:n)

P (y|c1:n)

P (y|c̄1:n)

=
q(yCi

1:n
)q(yCj

1:n
)

q(yC̄i
1:n

)q(yC̄j
1:n

)

ni!nj!

n̄i!n̄j!

T̂ (c̄1:n)

T̂ (c1:n)
(2.18)
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where T̂(rs) is computed the same way as Ŝ(rs) in (2.14).

Since the Exchange algorithm can never change the number of clusters, it should

be used only in combination with another kernel such as Split-Merge or Gibbs sam-

pling.

2.8.2 Other possibilities

[Tsilevich, 1998] considers the action of any finite permutation g on S∞. Taking

g = (rst) leads to an algorithm with 3-way split, 3-way merge, and cut-reattach

moves. Such complex moves could in principle improve mixing in difficult cases, but

preliminary results do not point to an advantage.

We can take this to the extreme however and start from the kernel that samples ω

from µα. The Chinese Restaurant Process gives us such a sample and therefore mixes

in one step. Then applying approximation (2.13) recovers the Predictive Recursion

algorithm of [Newton and Zhang, 1999]: sample c1:n by sequentially sampling ct+1

from (2.3), i.e. its conditional distribution given c1:t and y1:t+1. It differs from the

Gibbs sampler in that when sampling ct we ignore the dependency on yt+2:n, and

while one step of the Gibbs sampler samples one ct, predictive recursion samples c1:n.

Another idea is to compose to the right and left with the same transposition (rs).

This simply exchanges the role of r and s. If we pick r among the data points 1:n

and s among non-data points, we obtain the Gibbs sampling algorithm [Neal, 1998],

showing that it too can be derived from permutations.

2.9 Experimental Comparisons

Although when mixing to the prior Ebb-Flow rejects less moves than Split-Merge,

this may or may not translate into an advantage when mixing to the posterior, for
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the following reasons:

1) Ebb-Flow can propose a trivial split where one of the two clusters is empty, thus

wasting computation.

2) If the partition implied by the likelihood is atypical according to the prior, the

prior may not be a good guide in choosing which clusters to split or merge.

3) A good rejection rate does not directly translate into a good mixing rate, which

also depends on the correlation between successive moves.

Therefore it is instructive to compare Split-Merge and Ebb-Flow experimentally.

While we cannot draw general conclusions from these simple datasets, they give some

qualitative assessment of the effects above.

First we compare Split-Merge, Ebb-Flow, and the Gibbs sampling algorithm on

the model of [Jain and Neal, 2000]. Each cluster is represented by a vector θ of

dimension d = 6, and observations from this cluster are Binary vectors y such that

each yh is independently 1 or 0 with probability θh. The conjugate prior on θ is

a product of independent Beta(1,1). For this experiment, 100 data points are split

evenly into 5 clusters with predefined θ. The prior parameter α is set to 1 so that

points (2) and (3) above are not a concern. We ran each algorithm for 5 minutes5 and

compared their performance in Table 2.9. Both Ebb-Flow and Split-Merge are much

faster than Gibbs sampling, and point (1) does not appear to affect performance.

Algorithm Autocorr. time #iterations

Gibbs Sampling >40 s 694×100
Split-Merge 1 s 24688
Ebb-Flow 1 s 22614

Second we explored the behavior of Split-Merge and Ebb-Flow when α 6= 1. We

used the same Beta-Bernoulli model but in dimension 20, sampled 500 data points

5Simulations were run in Matlab 6.5 on a Pentium M 1.3GHz.
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from a DP(α = 40) mixture and obtained 89 clusters. Since the dataset is drawn

from the prior, point (2) is not a concern. We ran each algorithm for 20 minutes.

Ebb-Flow and Split-Merge still mix at about the same rate, the different factors

affecting performance apparently cancelling each other. We do observe that Ebb-Flow

accepts many more move (27%) than Split-Merge (4%), which was the goal. However

when α > 1 Ebb-Flow tends to focus on the larger clusters, therefore iterations of

Ebb-Flow are a little slower (33ms) than those of Split-Merge (19ms), and they are

also a little more correlated.

2.10 Conclusion

We introduced a method to derive MCMC algorithms, and showed how it applied to

a variety of Markov chains for Dirichlet Process mixtures. In the process we recovered

several known state of the art methods as well as new algorithms. Our method is not

entirely automatic since it relies on a good choice of initial Markov chain for the prior,

and on a tractable surrogate for likelihood reweighting. However it greatly reduces

the role of creativity and intuition to derive very reasonable algorithms.

While we have focused narrowly on Dirichlet process mixtures, our method could

potentially be applied more generally. The properties of the Dirichlet process are well

understood, and we take advantage of them, but other models rely on nonparametric

priors whose symmetry and limit properties could be exploited, such as Kingman’s

coalescent [Kingman, 1982] and Dirichlet Diffusion Trees [Neal, 2003]. In fact, our

work provides further encouragement to study the properties of these objects.
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Chapter 3

Lévy Processes

3.1 Introduction

Let X1:n denote a set of observations {X1, . . . , Xn}. Various processes have been

used as the distribution of a hidden parameter B in a model where observations

Xi are drawn identically and independently given B, leading to an exchangeable

sequence of random variables. In principle, to sample X1:n, we could first sample

B, then sample each Xi|B independently. In practice, if B is a measure, it can’t be

represented exactly. Instead, if the distributions of B and Xi|B are conjugate, we can

consider increasing values of n, and sample each new value Xn+1 from the posterior

distribution Xn+1|X1:n. We call this a posterior sampling process. Not only do such

processes arise as natural models of data, but they play a very important role in the

analysis of their parent process. For example the conjugacy of Dirichlet processes to

multinomial sampling yields the Chinese restaurant process, which forms the basis of

many algorithms.

In the previous chapter we explored inference techniques for Dirichlet process mix-

tures. While mixtures have found many natural applications, many other applications
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exhibit structure that cannot be expressed in that way. As an alternative to the multi-

nomial representation underlying classical mixture models, factorial models associate

to each data point a set of latent Bernoulli variables. The factorial representation has

several advantages. First, the Bernoulli variables may have a natural interpretation

as “featural” descriptions of objects. Second, the representation of objects in terms of

sets of Bernoulli variables provides a natural way to define interesting topologies on

clusters (e.g., as the number of features that two clusters have in common). Third,

the number of clusters representable with m features is 2m, and thus the factorial

approach may be appropriate for situations involving large numbers of clusters.

As in the mixture model setting, it is desirable to consider nonparametric Bayesian

approaches to factorial modeling that remove the assumption that the cardinality of

the set of features is known a priori. An important first step in this direction has been

provided by Griffiths and Ghahramani [Griffiths and Ghahramani, 2006], who defined

a stochastic process on features that can be viewed as a factorial analog of the Chinese

restaurant process. This process, referred to as the Indian buffet process, involves the

metaphor of a sequence of customers tasting dishes in an infinite buffet. Let Zi be a

binary vector where Zi,k = 1 if customer i tastes dish k. Customer i tastes dish k with

probability mk/i, where mk is the number of customers that have previously tasted

dish k; that is, Zi,k ∼ Ber(mk/i). Having sampled from the dishes previously sampled

by other customers, customer i then goes on to taste an additional number of new

dishes determined by a draw from a Poisson(α/i) distribution. Modulo a reordering

of the features, the Indian buffet process can be shown to generate an exchangeable

distribution over binary matrices (that is, P (Z1, . . . Zn) = P (Zσ(1), . . . Zσ(n)) for any

permutation σ).

Given such an exchangeability result, it is natural to inquire as to the underlying

distribution that renders the sequence conditionally independent. Indeed, de Finetti’s

theorem states that the distribution of any infinitely exchangeable sequence can be
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written

P (Z1, . . . Zn) =

∫ [ n∏
i=1

P (Zi|B)

]
dP (B),

where B is the random element that renders the variables {Zi} conditionally inde-

pendent and where we will refer to the distribution P (B) as the “de Finetti mixing

distribution.” For the Chinese restaurant process, the underlying de Finetti mixing

distribution is known—it is the Dirichlet process. As we have seen in the previous

chapter, identifying the de Finetti mixing distribution behind a given exchangeable

sequence is important; it greatly extends the range of statistical applications of the

exchangeable sequence and offers more angles of attack to design inference algorithms.

It also gives an important tool in the theoretical analysis of the sequence.

Soon after the Indian buffet process, another exchangeable process called the

infinite gamma-Poisson process was proposed [Titsias, 2008] to generate feature vec-

tors with arbitrary integer counts rather than binary indicators. Again, de Finetti’s

theorem implies the existence of a distribution for a hidden variable conditionally on

which this sequence becomes independent, and finding this distribution would greatly

increase our ability to use and extend this model.

In this chapter, we identify the de Finetti mixing distribution behind the Indian

buffet process and the infinite gamma-Poisson process. As expected, establishing this

connection allows us to develop many analogs for the beta and gamma process to the

tools we used in the previous chapter for the Dirichlet process.

We show that these advances can be understood within the general framework

of Lévy processes, a framework that includes beta processes, gamma processes and

many additional stochastic processes of interest. We use the framework to show

that the conjugacy of the beta process [Hjort, 1990] to Bernoulli sampling recovers

the Indian buffet process as a posterior sampling process. This allows us to derive
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a size-biased construction for the beta process and to generate an interesting new

model based on the conjugacy to geometric sampling (Sec. 3.3). Similarly we show

that the conjugacy of gamma processes to Poisson sampling [Wolpert and Ickstadt,

1998b] recovers the gamma-Poisson model of Titsias [Titsias, 2008] and leads to a

size-biased construction for the gamma process. We also establish an alternative

posterior sampling process for the gamma process by taking advantage of its conjugacy

to continuous Poisson sampling, leading to a second size-biased construction for the

gamma process (Sec. 3.4). For the beta process, most of this research first appeared

in [Thibaux and Jordan, 2007]. Other properties of the Indian buffet process are also

found in [Teh et al., 2007].

The unified point of view of Lévy processes also allows us to construct various

kinds of nonparametric Bayesian hierarchies and corresponding inference algorithms

(Sec. 4.1). This in turn allows us to study highly-flexible, large-scale generative proba-

bilistic models. To illustrate the scalability of our methods, we study the performance

of classifiers based on hierarchies of beta and gamma processes on a classification task

with 1 million training samples and 40,000 classes, taken from the 80-million tiny im-

ages dataset of Torralba, Fergus and Freeman [Torralba et al., 2007] (Sec. 4.5).

But first, we begin with an introduction to Lévy processes, random measures

that give independent mass to disjoint sets, and whose properties are at the core of

essentially all current nonparametric Bayesian methods (Sec. 3.2).

3.2 Lévy processes

Definition. A positive random measure B on a space Ω (e.g., R) is a Lévy process,

or independent increment process, if the masses B(S1), . . . B(Sk) assigned to disjoint

subsets S1, . . . Sk of Ω are independent1. Up to a constant that we can always remove,

1Positivity is not required to define Lévy processes but greatly simplifies their study, and positive
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a positive Lévy process is discrete2, that is it can be written

B =
∑

i

piδωi
(3.1)

where δω is a unit point mass (or atom) at ω, for a set of random locations ωi and

random positive weights pi. Equivalently, B(S) =
∑

i:ωi∈S

pi for all S ⊂ Ω. In particular,

B({ωi}) = pi.

A point ω ∈ Ω such that P (B({ω}) > 0) > 0 corresponds to an atom of B whose

location is constant. It is called a fixed point of discontinuity. Let D be the set of all

fixed points of discontinuity of B. By the definition of Lévy processes, the restrictions

of B to D and Ω \ D are independent. Therefore B decomposes into a sum of two

independent Lévy processes

B
d
= C +D (3.2)

where C has no fixed point of discontinuity, and the support of D is D, which is

countable. If we note BS the restriction of B to S, then C = BΩ\D and D = BD. On

singletons {ω}, we slightly abuse notation and write Bω for B({ω}).

Lévy measure. The Lévy-Khinchine theorem [Khinchine, 1934; Lévy, 1937]

implies that a positive pure-jump Lévy process is uniquely characterized by its Lévy

measure3 (or compensator), a measure on Ω× (0,∞).

For a process C with no fixed point of discontinuity, its Lévy measure ν has the

following elegant interpretation. To draw C, draw a set of points (ωi, pi) ∈ Ω× (0,∞)

from a Poisson process with base measure ν, and define C as in (3.1). If, as is the

Lévy processes are sufficient here. On Ω = R, positive Lévy processes are also called subordinators.
See Jacod and Shiryaev [Jacod and Shiryaev, 1987] for a complete treatment.

2A random discrete measure is also called a pure-jump process.
3Homogeneous Lévy processes have a Lévy measure of the form ν = Λ ⊗ ν′ where Λ is the

Lebesgue measure on Ω and ν′ is a measure on (0,∞), usually also called the Lévy measure.
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case for the beta and gamma processes, ν(Ω × (0,∞)) = ∞ the Poisson process

generates infinitely many points, making (3.1) a countably infinite sum. The inverse

Lévy measure algorithm [Wolpert and Ickstadt, 1998b] is a general method to draw

from this Poisson process by generating atoms in decreasing order of weights.

A process D with fixed discrete support D can be written simply as D =
∑
ω∈D

pωδω

where each pω is drawn from some distribution on [0,∞). The Lévy measure still

exists, but no longer corresponds to a Poisson process. Its support is D× (0,∞), and

it determines the distribution of pω via:

P (pω ∈ A) = ν({ω} × A) ∀ A ⊂ (0,∞) and P (pω = 0) = 1− ν({ω} × (0,∞)).

To specify a Lévy process, rather than writing its full Lévy measure, it is enough

and often more convenient to specify its Lévy measure outside of fixed points of

discontinuity, and the distribution of mass at these fixed points.

3.3 Beta process

Definition. A beta process [Hjort, 1990] B ∼ BP(c, B0) is a positive Lévy process

whose Lévy measure depends on two parameters: a function c called the concentration

function or the concentration parameter when it is constant, and a fixed measure B0

over Ω, called the base measure. We also call γ = B0(Ω) the mass parameter.

If B0 is continuous, the Lévy measure of the beta process is

ν(dω, dp) = c(ω)p−1(1− p)c(ω)−1dpB0(dω) (3.3)

on Ω × [0, 1]. As a function of p, it is a degenerate beta distribution, justifying the

name. Atoms of B0 correspond to fixed points of discontinuity, which are also beta
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distributed:

Bω ∼ Beta(c(ω)Bω
0 , c(ω)(1−Bω

0 )) which imposes Bω
0 < 1 for all ω.

In the special case where B0 is continuous and c = 1, (3.3) takes a simpler form

and we can generate the weights pi of the atoms of B via the following stick-breaking

construction [Teh et al., 2007]:

Vi
i.i.d.∼ Beta(α, 1) pi =

i∏
k=1

Vi

B is then defined as in (3.1) with atom locations ωi drawn i.i.d. from B0/γ.

3.3.1 Conjugacy and the Indian buffet process

We now introduce the Bernoulli process, whose conjugate prior is the beta process.

This conjugacy extends the conjugacy between the Bernoulli and beta distributions.

Definition. Let B be a measure on Ω. We define a Bernoulli process with hazard

measure B, written X ∼ BeP(B), as the Lévy process with Lévy measure

µ(dp, dω) = δ1(dp)B(dω). (3.4)

If B is continuous, X is simply a Poisson process with intensity B: X =
∑N

i=1 δωi

where N ∼ Poi(B(Ω)) and ωi are independent draws from the distribution B/B(Ω).

If B is discrete, of the form B =
∑

i piδωi
, then X =

∑
i biδωi

where the bi are

independent Bernoulli variables with the probability that bi = 1 equal to pi. In

summary, a Bernoulli process is similar to a Poisson process, except that it can give
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weight at most 1 to singletons, even if the base measure B is discontinuous4.

Conjugacy. Consider the following model

B ∼ BP(c, B0) (3.5)

Xi|B
i.i.d.∼ BeP(B) i = 1, . . . n

Applying theorem 3.3 of Kim [Kim, 1999] to the beta and Bernoulli processes, the

posterior distribution of B after observing X1:n is still a beta process with modified

parameters.

B|X1:n ∼ BP (c+ n,Bn) (3.6)

where Bn =
c

c+ n
B0 +

1

c+ n

n∑
i=1

Xi =
c

c+ n
B0 +

∑
j

mn,j

c+ n
δωj

(3.7)

Here ωj are the locations of the atoms of X1:n, and mn,j =
∑n

i=1Xi({ωj}) is the

number of Xi’s with an atom at location ωj.

Censoring. Lévy processes are conjugate to censoring since we can partition

Ω into regions that have been observed at the same times. Thus (3.6) holds more

generally when n is a piecewise constant function counting the number of observations

at each point.

Sampling. Marginally, we can show that X1 ∼ BeP(B0). Indeed, since both X1

and B are Lévy processes, marginally X1 gives independent mass to disjoint sets and

is therefore a Lévy process. Moreover since X1 gives mass 0 or 1 to singletons it is a

Bernoulli process. All we need to characterize the distribution of X1 is therefore its

hazard measure, which is also its expectation. Since E(X1) = E(E(X1|B)) = E(B) =

B0, X1 is indeed the Bernoulli process with hazard measure B0. In particular, we can

4Some authors (e.g. [Kim, 1999]) call Poisson process what we call Bernoulli process. We reserve
the term Poisson process for the Lévy process whose marginals are Poisson.
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easily sample X1 (that is, without first sampling B).

SamplingXn+1 reduces to the case ofX1 sinceXn+1|X1:n is also a Bernoulli process

whose hazard measure is drawn from a beta process, namely (3.6). Therefore

Xn+1|X1:n ∼ BeP (Bn)

If B0 is continuous, the two terms of (3.7) are the continuous and discrete parts of

Bn, so using (3.2) we get that Xn+1|X1:n
d
= C + D where C ∼ BeP

(
c

c+n
B0

)
and

D ∼ BeP
(∑

j
mn,j

c+n
δωj

)
. Therefore to sample Xn+1|X1:n we include an atom at ωj

with probability mn,j/(c + n), and add a Poi(cγ/(c + n)) number of new atoms at

locations independently drawn from B0/γ. This posterior sampling process is the

two-parameter version of the Indian buffet process [Griffiths and Ghahramani, 2006;

Griffiths and Ghahramani, 2005], proving that the beta process is the de Finetti

mixing distribution for the Indian buffet process [Thibaux and Jordan, 2007].

Note that in the above derivation, we sample Xn+1 by averaging over C and

D. If instead we average over C and sample D we obtain the following size-biased

construction [Thibaux and Jordan, 2007]:

B =
∞∑

n=0

Kn∑
j=1

pn,jδωn,j

where Kn
ind∼ Poi(

cγ

c+ n
), pn,j

ind∼ Beta(1, c+ n) and ωn,j
i.i.d.∼ B0/γ.(3.8)

3.3.2 The beta process is also conjugate to the Geometric process

The previous model is based on the conjugacy between the Bernoulli and beta dis-

tribution, but the beta distribution is also conjugate to the geometric distribution.

This leads to a different but related posterior sampling process.
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Definition. Let B be a measure on Ω. We define a geometric process with hazard

measure B, written X ∼ GeoP(B), as the Lévy process with Lévy measure

µ(dp, dω) = (1−B(dω))
∞∑

k=1

δk(dp)B(dω)k. (3.9)

Definition (3.9) says that for each atom piδωi
of B, X has an atom Niδωi

where

Ni ∼ Geom(1−pi). The beta process is also conjugate to the geometric process, with

posterior

B|X1:n ∼ BP

(
cn,

c

cn
B0 +

1

cn

n∑
i=1

Xi

)
where cn = c+

n∑
i=1

Xi + n. (3.10)

Eq. (3.10) can be obtained from (3.6) by the construction of the geometric distribution

from repeated Bernoulli trials. This model can be useful as a model of data, as we

show in experiments (Sec. 4.5).

3.4 Gamma process

Definition. A gamma process B ∼ ΓP(c, B0) over a space Ω with base measure B0

and concentration function5 c is a Lévy process whose Lévy measure is a degenerate

gamma distribution

ν(dω, du) = c(ω)
e−c(ω)u

u
duB0(dω)

when B0 is continuous, and whose fixed points of discontinuity, corresponding to

atoms of B, are gamma distributed with shape c(ω)B0({ω}) and rate c(ω). From

now on we restrict ourselves to c being a constant. In this case B can equivalently

5An alternative parameterization is to call α = cB0 the shape measureshape measure and β = c
the rate function to emphasize the connection to the gamma distribution.
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be defined as the Lévy process with marginals

B(U) ∼ Gamma(cB0(U), c) ∀ U ⊂ Ω (3.11)

3.4.1 A first size-biased construction for the gamma process

Conjugacy. Let X1:n be drawn i.i.d. from a Poisson process with base measure B.

Wolpert and Ickstadt [Wolpert and Ickstadt, 1998a] show that the conjugacy of the

Poisson and gamma distribution extends to this more general setting, and use it to

derive a Monte Carlo inference algorithm.

B|X1:n ∼ ΓP (c+ n,Bn) where Bn =
c

c+ n
B0 +

1

c+ n

n∑
i=1

Xi. (3.12)

The model of Ihler and Smyth [Ihler and Smyth, 2007] samples a Poisson(γ) number

of points from a Dirichlet process G ∼ DP(αG0), with a Gamma(a, b) prior on γ.

Because a Dirichlet process is a renormalized gamma process, their measure γG is a

gamma process whenever α = a.

Sampling. From (3.11), the total mass of B is B(Ω) ∼ Gamma(cB0(Ω), c) and

since X1(Ω)|B ∼ Poi(B(Ω)), marginally the total mass X1(Ω) of X1 has a negative

binomial distribution X1(Ω) ∼ NB(cB0(Ω), c/(c+ 1)). To draw the location of those

atoms, observe that X1 given X1(Ω) and B is a set of X1(Ω) independent draws

from B/B(Ω), itself is a renormalized gamma process, i.e. a Dirichlet process, with

concentration parameter α = cB0(Ω) and base measure B0/B0(Ω). Therefore we can

draw the locations of the atoms of X1|X1(Ω) by drawing X1(Ω) samples from the

Chinese restaurant process.

This leads to the following posterior sampling process when separating (3.12) into
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its continuous and discrete parts. To sample Xn+1|X1:n, independently sample

Xn+1({ωj}) ∼ NB(mn,j, (c+ n)/(c+ n+ 1)) (3.13)

for each location ωj of the atoms of X1:n, and add a NB(cB0(Ω), (c+ n)/(c+ n+ 1))

distributed additional mass, partitioned according to the Chinese restaurant pro-

cess with concentration cB0(Ω), and located independently at random according to

B0/B0(Ω). This is the infinite gamma-Poisson model of Titsias [Titsias, 2008], which

he derives as the limit of a finite model6. This alternative derivation demonstrates

that the gamma process is in fact the de Finetti mixing distribution conditionally on

which the exchangeable sequence X1:n becomes independent.

In the above construction, if instead of (3.13) we sampleB({ωj}) ∼ Gamma(mn,j, c+

n) we have a size biased construction for B, a method to build the atoms of B in

the order in which they are discovered by X1:n. However we can derive a more ele-

gant size-biased construction from the conjugacy of gamma processes to continuous

Poisson sampling. We now turn to this alternate point of view.

3.4.2 A second size-biased construction for the gamma process

Continuous Sampling. Rather than observations being indexed by discrete indices,

we consider observations arriving along a continuous time. Let Λ be the Lebesgue

measure on R+, thought of as time, and let

N ∼ PP(B × Λ).

This model subsumes the model presented above where we sample X1:n from Xi
i.i.d∼

6The distribution of X1|X1(Ω) is never specified in [Titsias, 2008], resulting in a missing factor
in Eq. (16) since the probability of a row depends on the full configuration of new features, not just
on their sum.
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PP(B) since we can recover X1:n from N by letting Xi = N(. × [i − 1, i]). It is

based on the following conjugacy. Let b ∼ Gamma(α, β) and x ∼ Poi(λb), then

b|x ∼ Gamma(α+ x, β + λ).

Let (Ti, Zi) be the atoms of N ranked by Ti. Since the base measure of N is

a cross product, the times Ti and locations Zi form independent Poisson processes

T ∼ PP(B(Ω)Λ) and Z ∼ PP(B/B(Ω)). In particular, once B/B(Ω) is marginalized

out, the locations Zi are drawn from a Chinese restaurant process with concentration

parameter cB0(Ω).

Since T1|B ∼ Exp(B(Ω)), the marginal distribution of T1 is

P (T1 = t) =

∫
P (T1 = t|B(Ω))dP (B(Ω))

= α
βα

(β + t)α+1
for t ≥ 0

where α = cB0(Ω) and β = c. We can sample from this distribution by the inverse

cdf method:

T1
d
= β(U−1/α − 1) (3.14)

where U ∼ Uniform([0, 1]).

Since B(Ω)|Tn ∼ Gamma(cB0(Ω)+n, c+Tn), we can sample Tn+1−Tn|Tn from (3.14)

with α = cB0(Ω) + n and β = c+ Tn.

Size-biased construction. Let N∗ be obtained from N by keeping only the

earliest atom at each location, and let (T ∗
i , ω

∗
i ) be the atoms of N∗ ranked by their

time T ∗
i . Conditioned on the gamma process B, which we know can be written

B =
∑

i

piδωi
,
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we have Ti|B ∼ Exp(pi). Since the Poisson construction of Lévy processes states that

the set of pairs (ω∗i , pi) is drawn from a Poisson process with base measure the Lévy

measure, the set of triplets (T ∗
i , ω

∗
i , pi) is also drawn from a Poisson process, with

base measure ueutdtν(dω, du) = ce(c+t)uduB0(dω). This implies in particular after

marginalizing out ω and u, and looking at the conditional distribution of pi given T ∗
i

that

T ∗ ∼ PP

(
cB0(Ω)

c+ t

)
(3.15)

pi|T ∗
i ∼ Gamma(1, c+ T ∗

i ) = Exp(c+ T ∗
i ).

We can draw T ∗ by drawing T ∗
n+1−T ∗

n |T ∗
n from (3.14) with α = cB0(Ω) and β = c+T ∗

n .

Finally, atom locations Z∗
i are i.i.d. samples from B0/B0(Ω). We remark that since a

Dirichlet process is a renormalized gamma process, and since this construction discov-

ers features in the same order as the Chinese restaurant process, the set (Z∗
i , pi/

∑
j pj)

is a draw from a DP(cB0(Ω), B0/γ) and the sequence (pi/
∑

j pj) is a draw from the

stick-breaking construction of the Dirichlet process.

This size-biased construction is more natural since it does not rely on the Dirichlet

process or Chinese restaurant process, which artificially introduces coupling between

parts of the space that are in fact independent. As we will see, a size-biased construc-

tion offers more than simply a way to sample from a gamma process. Nonetheless,

even if the goal is only to obtain a sample, this method may provide a simpler al-

ternative to the very general inverse Lévy measure algorithm used by Wolpert and

Ickstadt [Wolpert and Ickstadt, 1998b]. In particular, we do not need to invert the

exponential integral function.

From (3.15), we can derive a non-trivial fact. Let m(t) = N∗(Ω × [0, t]) be the
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number of unique features discovered after time t. Then

mt ∼ Poi

(∫ t

0

cB0(Ω)

c+ t

)
= Poi

(
cB0(Ω) log

(
1 +

t

c

))
(3.16)

Non-constant concentration. We can extend this construction to sample from

any gamma process, even with non-constant c, by reducing it to the constant case. If

c is piecewise constant we can sample each piece separately. Otherwise, let B′
0 = cB0,

that is B′
0(A) =

∫
A
c(ω)B0(dω). Draw a gamma process ΓP(1, B′

0) as a set of pairs

(ω∗i , pi). The set of pairs (ω∗i , cpi) is a draw from ΓP(c, B0)
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Näıve Bayes Classification with

Infinitely Many Features

4.1 Hierarchies of Lévy processes

We introduce hierarchies of Lévy processes in the context of the näıve Bayes tech-

nique, where they arise naturally. Näıve Bayes is a simple, commonly used and

surprisingly effective type of classifier. Using the vocabulary of text classification,

for each category j ≤ n we are given nj documents xij as training data, and want to

classify a new document y into one of these categories. Documents are represented by

a list of features xω
ij, and näıve Bayes assumes that features are independent given the

category. The goal is then to estimate these category-specific feature distributions so

that we can apply Bayes’ rule to classify a new document.

Smoothing. The simplest approach is maximum likelihood, but if one feature

does not appear in one category, maximum likelihood gives this value an unreasonable

zero probability. A radical, often-used method to handle this problem is to discard

all such features. This may discard a great deal of data. Instead, we can add a small
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constant, usually 1, to all feature value counts. This is called Laplace smoothing

and it allows the use of all features. Unfortunately it can seriously deteriorate our

probability estimates.

Hierarchical Bayes. The goal of smoothing is to fall back to a reasonable default

when evidence is weak. The problem with Laplace smoothing is that its default is

some fixed arbitrary distribution, such as the uniform. Instead, the default should be

that the feature value is independent of the class. If aω
j is a parameter representing the

distribution of xω
ij, then aω

1:n should be shrunk towards equality rather than towards

a fixed value. Hierarchical Bayesian smoothing achieves this by introducing a hidden

random variable bω on which aj depends. For instance

bω ∼ Gamma(c0b
ω
0 , c0)

aω
j |bω ∼ Gamma(cjb

ω, cj) (4.1)

xω
ij|aω

j ∼ Poi(aω
j )

where b0 represents our prior for the mean of xij.

Infinite feature sets. In many applications, the set of features is effectively

infinite. Nonetheless for any document only a finite number of features is non-zero.

For this, the sum of bω0 for all features must be finite. If all features are equally likely

a priori, this implies that bω0 = 0 and that (4.1) is in fact a slice of the following

hierarchy of Lévy processes over the space of features

B ∼ ΓP(c0, B0)

Aj|B ∼ ΓP(cj, B) (4.2)

Xij|Aj ∼ PP(Aj).
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For instance the above model can represent documents as a vector of counts for each

word. If the geometric distribution is a better fit than the Poisson to the feature

counts, we can use instead

B ∼ BP(c0, B0)

Aj|B ∼ BP(cj, B) (4.3)

Xij|Aj ∼ GeoP(Aj), or Xij|Aj ∼ BeP(Aj) if our features are binary.

We will assume that the concentrations c0 and cj of all processes in the hierarchy

are piecewise constant. In each case, we can more generally arrange categories as the

leaves of a tree whose internal nodes are beta or gamma processes.

4.2 Inference in hierarchies of Lévy processes

Let X denote (Xi,j)i=1,...nj ,j=1,...n. To classify a new document Y , we compute its

probability Pj = P (Xnj+1,j = Y |X) under each category. Since restrictions of the

entire hierarchy to disjoint sets are independent, Pj can be obtained as a product over

any partition of Ω. In particular, let D = {ω : Xω 6= 0 or Bω 6= 0} be the (finite) set

of known features, that is features that are known to have non-zero probability either

a priori or because we have observed them at least once. Then

Pj = P (X
Ω\D
nj+1,j = Y Ω\D|XΩ\D)

∏
ω∈D

P (Xω
nj+1,j = Y ω|Xω).

4.2.1 Known features

Each factor in the product over D corresponds to inference in a slice, that is model

(4.1) or its equivalent for (4.3). Observe that this is simply inference in a tree of 1

dimensional random variables. Not only is inference in a tree generally easy, but the
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absence of dependency between features means that inference can be run in parallel.

Given the posterior distribution P (Aω
j |Xω) we can compute

P (Xω
nj+1,j = Y ω|Xω) =

∫
P (Xω

nj+1,j = Y ω|Aω
j )P (Aω

j |Xω)dAj. (4.4)

The posterior of the hidden variables given the data has no closed form, but we

can obtain samples from it via Gibbs sampling, allowing us to compute (4.4) by

Monte Carlo integration. We can sample Aω
j from its conditional distribution using

conjugacy, and we can sample Bω or any other node in a larger hierarchy using

adaptive rejection sampling [Gilks and Wild, 1992] since its conditional distribution

is log concave. Indeed it is proportional to ef(Bω) where

f(b) = (c0B
ω
0 − 1) log b+ (c0B

ω
0 − 1) log(1− b)

+
n∑

j=1

[
cjb logAω

j + cj(1− b) log(1− Aω
j )− log Γ(cjb)− log Γ(cj(1− b))

]
or f(b) = (c0B

ω
0 − 1) log b− c0b+

n∑
j=1

[
cjb logAω

j + cjb log cj − log Γ(cjb)
]
.

In both cases, the concavity of − log x − log Γ(x) implies that f is concave. See

[Thibaux and Jordan, 2007] for an alternative method using gamma upper bounds.

4.2.2 Unknown features

The last factor P (X
Ω\D
nj+1,j = Y Ω\D|XΩ\D) is the probability of observing new features,

those features of Y that do not appear in the training data. In particular, if Y has

many unknown features, it is more likely to come from a category with little training

data. Usually the impact of this factor on the likelihood is so small that it does not

change the classification decision; this is the case in all our experiments. Discarding

this factor, which is almost always implicitely done in practice, amounts to censoring
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Chapter 4. Näıve Bayes Classification with Infinitely Many Features

by only observing Y D.

In some cases however this may lead to throwing away important data, in par-

ticular when there are large differences between the number of training examples

available for each category. Besides, computing this factor is of theoretical interest

because it involves the size-biased constructions presented above, and illustrates the

ways in which the independence property of Lévy processes can be exploited. We

now examine how to compute it.

We assume that the concentration of all processes in the hierarchy is constant

on Ω \ D. If they are only piecewise constant we can decompose the factor as a

product over each piece. To further simplify notations we also assume without loss

of generality that D = ∅, that is we assume that not a single feature appears in the

training data, and that B0 is continuous. The case D 6= ∅ reduces to this since the

restriction of our hierarchy to Ω \ D is itself a hierarchy of Lévy processes, with top

level base measure B0 − BD
0 , which is continuous, and with observations XΩ\D = 0

and Y Ω\D.

Let X̂nj+1,j represent the number and mass of the atoms of Xnj+1,j, that is X̂nj+1,j

is the equivalence class of Xnj+1,j under change of atom locations. Since the concen-

trations are constant, the conditional distribution Xnj+1,j|X̂nj+1,j gives to each atom

a location drawn independently from B0/B0(Ω), and since this conditional distribu-

tion is the same for each category it only affects P (Xnj+1,j = Y |X = 0) by a constant

that we can ignore for the purpose of classification. Thus we only need to compute

P (X̂nj+1,j = Ŷ |X = 0). The idea is then to obtain samples from the posterior process

Aj|X = 0 and use Monte Carlo integration to compute

P (X̂nj+1,j = Ŷ |X = 0) =

∫
P (X̂nj+1,j = Ŷ |Aj)P (Aj|X = 0).

The size biased constructions of beta and gamma processes give us an explicit
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prior distribution for the entire hierarchy. Indeed once we generate the atoms (ω, bω)

of the top level process B, the atoms of all other processes have the same locations

and follow the slice distribution given bω. All these atoms are also given an ordering,

therefore it makes sense to talk about the ith atom.

But before we consider how to sample from Aj|X = 0, which is the subject of

Sec. 4.3 and 4.4, observe that the first factor P (X̂nj+1,j = Ŷ |Aj) is combinatorial in

nature. Since the association between the atoms of Aj and those of Ŷ is unknown,

we must sum over all associations, which is intractable. Fortunately, we can use the

independence property of Lévy processes to simplify this calculation. Let S1, . . . SN

be a partition of Ω into N regions of equal base measure mass B0(Si) = B0(Ω)/N ,

such that each region Si contains a single atom of Y . Such a partition exists since B0

is continuous, and by independence we have

P (Xnj+1,j = Y |X = 0) =
N∏

i=1

P (XSi
nj+1,j = Y Si|XSi = 0).

Therefore without loss of generality we can assume that Y has a single atom, greatly

simplifying our problem. Let (ai
j)
∞
i=1 be the mass of the atoms of Aj, (xi

nj+1,j)
∞
i=1 the

mass of the corresponding atoms of Xnj+1,j, and y the mass of the unique atom of Y .

Then,

P (X̂nj+1,j = Ŷ |Aj) =
∏
i∈N

P (xi
nj+1,j = 0|ai

j)
∑
i∈N

P (xi
nj+1,j = y|ai

j)

P (xi
nj+1,j = 0|ai

j)
.

If we truncate our process the sum and product become finite and the computational

complexity is linear in the truncation level. Since the weights of beta and gamma

processes decrease exponentially, the truncation can be small. Additionally, since

concentrations are constant and we have chosen regions Si of equal prior mass, the

posterior over Aj is the same over each region except for the distribution of the
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location, therefore we can reuse our samples. All we need now is a method to obtain

samples from the posterior Aj|X = 0. We do not have a general method for all

Lévy processes, so in the next sections we develop specialized algorithms that rely on

specific properties of beta and gamma processes.

4.3 Posterior hierarchical beta process

For hierarchies of beta processes, observe that the size biased construction of the

beta process groups atoms of B by level and each level is independent. Since the

observation X = 0 entails no data association ambiguity between levels, posterior

inference can take place separately in each level. In each level n, the posterior over

Kn is

Kn|X = 0 ∼ Poi

(
cγ

c+ n
qn

)
(4.5)

where qn is the probability that observations from an atom of level n are 0. We can

compute qn by sampling from the prior in the slice model of level n, that is the slice

model where, at the top level, bω ∼ Beta(1, c + n). Therefore to sample from B and

Aj given X = 0, for each level n we draw Kn from (4.5), then we draw Kn samples

from the posterior slice model of level n given xω = 0, using Gibbs sampling. In

particular we want samples of aω
j . The atoms of Aj are the union of all these atoms

for all levels. In practice of course we truncate Aj by only considering a finite number

of levels.

For the special case of hierarchies of beta processes with Bernoulli observations,

[Thibaux and Jordan, 2007] show how this method can in fact be used to compute

P (Xnj+1,j = Y |X = 0) without first partitioning the space to isolate the atoms of Y .
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4.4 Posterior hierarchical gamma process

We will take an entirely different route for hierarchies of gamma processes. Neither

of the two size biased constructions lead to easy posterior inference. Instead we will

use a remarkable property of hierarchies of gamma variables. Consider the following

slice model (4.6), where we omit the location ω.

b ∼ Gamma(c0b0, c0)

aj|b ∼ Gamma(cjb, cj) (4.6)

xij|aj ∼ Poi(aj)

Then we have the following surprising result: the posterior of b and (aj) given x = 0

is a hierarchy of gamma distribution. Note that this is not true for other values of

x. To prove this, we prove by induction on the depth of the hierarchy that the log

likelihood of x = 0 is a linear function of the top level variable. To initialize the

induction, we look at a 1 level hierarchy where we use conjugacy

logP (x1:nj ,j = 0|aj) = −ajnj

and aj|b, x1:nj ,j = 0 ∼ Gamma(cjb, ĉj) (4.7)

where ĉj = cj + nj

At the next level, which is the general case for a larger hierarchy,

P (x = 0|b) =
∏

j

P (x1:nj ,j = 0|b)

P (x1:nj ,j = 0|b) =

∫
P (x1:nj ,j = 0|aj)p(aj|b)daj

=
c
cjb
j

Γ(cjb)

∫
a

cjb−1
j e−ĉjajdaj =

(
cj
ĉj

)cjb
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Therefore

logP (x = 0|b) = −b
∑

j

cj log
ĉj
cj

b|x = 0 ∼ Gamma(c0b0, ĉ0)

where ĉ0 = c0 +
∑

j

cj log
ĉj
cj
. (4.8)

Using the definition of gamma processes by marginals and reasoning on partitions,

this result immediately extends to processes. The posterior of B and (Aj) givenX = 0

is a hierarchy of gamma processes. The base measure of a child is its parent scale by

a factor cj/ĉj rather than the parent itself as in our original hierarchy. Therefore to

obtain samples from Aj|X = 0 we compute the coefficients ĉj recursively up the tree

using (4.8), sample the top level process B from its posterior using the size biased

construction (3.15), and sample the rest of the hierarchy under each atom of B using

(4.7). This method generates exact samples from the posterior, contrary to Gibbs

sampling which only approaches the posterior as the Markov chain mixes.

Rao-blackwellization. In each of these methods to sample from the posterior

process, the mass of the atoms of Aj are independent given X = 0 and given the mass

of the atoms of B. More generally, the slices below each atom of the top level process

are independent given their number per level Kn in the case of beta processes, or

given the times T ∗
i in the case of gamma processes. Therefore we get a more efficient

estimator if we integrate ai
j in closed form using conjugacy:

P (X̂nj+1,j = Ŷ |Bj) =
∏
i∈N

P (xi
nj+1,j = 0|bij, x1:nj ,j = 0)

×
∑
i∈N

P (xi
nj+1,j = y|bij, x1:nj ,j = 0)

P (xi
nj+1,j = 0|bij, x1:nj ,j = 0)

.
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4.5 Image application

The 80 Million Tiny Images dataset [Torralba et al., 2007] is a large collection of 32x32

pixel images, obtained by entering a list of keywords in several search engines and

resizing the resulting images. Keywords were obtained by selecting all non-abstract

English words listed in the Wordnet [Fellbaum, 1998] database and provide a noisy

label for the images it returned. We focus on a publicly available subset of this

dataset1 from which we obtain a classification task with 44278 categories and 986,944

training examples selected at random. Understanding this dataset has implications for

human vision since Torralba, Fergus and Freeman [Torralba et al., 2007] demonstrate

that humans are able to understand scenes and recognize objects even on such small

images, but that 32x32 is near the limit where this is possible.

It is also an interesting and challenging dataset for machine vision since its large

size and the small size of the images makes many techniques inapplicable. For example

Lazebnik, Schmid and Ponce [Lazebnik et al., 2006] use a one-vs-all support vector

machine (SVM) to classify images into up to 101 categories. This method become very

expensive in large datasets with large numbers of classes; in contrast, in our method

we only need to sum the sufficient statistics for each class, after which our training

time only depends on the number of classes, not the number of training examples.

Note also that in our dataset each category contains fewer than 20 training examples,

resulting in a set of extremely unbalanced classification tasks for the SVM.

Given the specificity of each category in this dataset (“rheumatologist,” “vertebral

artery,” etc.), measuring classification performance by the number of exact matches is

an overly strict measure of the quality of an algorithm. Instead we rely on the Wordnet

database, which provides semantic relationships between words. In particular, the

hypernym relationship forms a directed acyclic graph, which can be reduced to a

1This subset is available at http://people.csail.mit.edu/torralba/tinyimages/
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tree rooted at “entity.” Torralba, Fergus and Freeman [Torralba et al., 2007] used

this tree to perform classification into broader categories corresponding to internal

nodes of the tree. Instead we propose to classify at the most specific level, but to

use the number of hypernyms in common (not counting the root) between two words

as a measure of similarity. We call hypernym score the average hypernym similarity

between the prediction and the truth on test data.

Motivated by the relationship between color and category observed in [Torralba

et al., 2007], we extract for each image a very simple set of color features. We first

convert the image to HSV color space, then split this space into 8 Value levels, split

each Value level i into i Saturation levels, and each Saturation level (i, j) into j Hue

levels, resulting in 120 coarse colors, roughly corresponding to human perception of

similarity. Our 120 features count the number of pixels of each color.

We compared several näıve Bayes models, differing only in the method employed

to estimate the feature distributions for each category. In the model of eq. (4.2),

feature counts have a Poisson distribution whose intensity parameters are drawn

from a hierarchy of gamma processes. In particular, eq. (4.2) refers to a flat hierarchy

where all categories share a common parent. Alternatively, we can arrange the gamma

process hierarchy to mirror the Wordnet tree. This prior expresses our intuition that

semantic similarity is reflected to some extent in visual similarity and we expect

such sharing of statistical strength to mitigate the considerable noise in the labels.

Finally we also build models using the same two structures but for a hierarchy of

beta processes with geometric observations. We compare the performance of these 4

models on a test set of 1000 images chosen at random. The concentration parameter

was chosen to be c = 10 throughout the hierarchy.

From Table 4.1 we see that the hierarchical methods (“Wordnet”) yield better

performance than the flat methods (“Flat”). Note also that even though these meth-

ods are far from classifying images at the most precise level, they do extract some
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Table 4.1: Performance of each method on the 80 Million Tiny Images dataset

Method Hypernym Score

Baseline (random) 1.861
Gamma-Poisson Flat 2.273
Gamma-Poisson Wordnet 2.313
Beta-Geometric Flat 2.397
Beta-Geometric Wordnet 2.447

meaningful information even based on these rudimentary features. Training and test-

ing took about 13 hours on a Sun X2200 M2 server, and this time was further reduced

by a factor of six by attributing 20 features to each of 6 machines.

4.6 Conclusion

Bayesian methods tend to rely on combinations of a few dozen well understood dis-

tributions such as the Gaussian, the gamma, or the Poisson. These distributions

are canonical in the sense that they arise naturally in a variety of contexts and they

have simple properties that form the basis of many inference algorithms. Similarly

nonparametric Bayesian methods rely on a small set of processes, and much work has

gone into clarifying their properties and how they can be used for inference. However

so far the lion’s share of this effort has focused on only two objects, the Gaussian

process and the Dirichlet process. This work furthers our theoretical understanding

of the properties of two other processes: the beta process and the gamma process.

Our application of these techniques to a large dataset shows that nonparametric

Bayesian methods are not necessarily associated with hard inference problems. The

ease with which our method can be parallelized also should make this method a

natural choice for the largest datasets.
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Conclusion

This thesis provides general tools for the analysis and the application of nonparametric

Bayesian methods. One goal has been to clarify the field, to ensure that progress in

one of these models can be understood from a more general point of view and applied

to all the other models. Indeed we were able to transfer much of the theory of

Dirichlet processes to beta and gamma processes. We have also shown how a deeper

understanding of Dirichlet processes (via virtual permutations), of the Indian buffet

process (via the beta process), and of the infinite gamma-Poisson process (via the

gamma process) leads to new models and new algorithms.

The flexibility of nonparametric Bayesian methods comes at the cost of math-

ematical sophistication, yet it leads to algorithms that are neither computationally

more difficult nor harder to program than their parametric counterparts. In fact,

the infinite limit often makes explicit difficulties already present but hidden in the

finite case, leading to better algorithms. For example, hierarchical Dirichlet processes

[Teh et al., 2006] came about because multiple draws from a Dirichlet process with

continuous base measure share no atom, preventing any sharing. This phenomenon is

hidden in the case of a finite Dirichlet, manifesting itself as a very strong disincentive
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for sharing.

Therefore the advantage of nonparametric methods is two-fold. The first advan-

tage and the primary motivation for their development is their flexibility: not having

to specify the number of clusters or features, allowing new structures to emerge with

more data, reducing the burden on the model designer. The second is simplicity.

The objects at the core of these methods are mathematically advanced, but they are

mathematically simple. To quote David Aldous refering to the continuous random

tree, “the infinite limit is a good warm-up for the finite case”.

This simplicity manifests itself in the many fascinating properties that we have

exploited in this work. Some properties, such as the stick-breaking construction of the

Dirichlet process or the fragmentation-coagulation process, are more elegant versions

of similar properties of the finite case. Some properties however, such as the ebb-flow

process or the second size-biased construction of the gamma process, have no known

finite counterpart. This suggests that the limit object is fundamentally simpler. This

provides a motivation for nonparametric Bayesian methods even when parametric

methods seem sufficient.
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prozesse. Mathematische Annalen, 109:604–615, 1934.

[Kim, 1999] Y. Kim. Nonparametric Bayesian estimators for counting processes. The
Annals of Statistics, 27(2):562–588, 1999.

[Kingman, 1975] J. F. C. Kingman. Random discrete distributions. Journal of the
Royal Statistical Society, Series B, (37):1–22, 1975.

[Kingman, 1982] J. F. C. Kingman. The coalescent. Stochastic Processes Appl.,
(13):235–248, 1982.

[Lazebnik et al., 2006] S. Lazebnik, C. Schmid, and J. Ponce. Beyond bag of fea-
tures: spatial pyramid matching for recognizing natural scene categories. In IEEE
Conference on Computer Vision and Pattern Recognition, 2006.
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näıve Bayes, 45
negative binomial, 40

partition, 5
permutation, 8, 13
Poisson-Dirichlet, 16
posterior, 8
posterior inference, 8
predictive recursion, 27
prior, 8

Rao-Blackwellization, 53
rate function, 39
reversibility, 9

shape measure, 39
size-biased construction, 38, 42
size-biased permutation, 16
stationarity, 9
stick-breaking construction, 36
stick-breaking process, 16
support vector machine, 54

transposition, 8

urn model, 6

virtual permutation, 12

Wordnet, 54

62


	Introduction
	Monte Carlo Methods for the Dirichlet Process
	Introduction
	Split and Merge
	Method
	Virtual Permutations
	Natural Markov kernels on Sn, S and P
	The Split-Merge algorithm
	Split-Merge variant via the Ebb-Flow chain
	The Exchange algorithm
	Experimental Comparisons
	Conclusion

	Lévy Processes
	Introduction
	Lévy processes
	Beta process
	Gamma process

	Naïve Bayes Classification with Infinitely Many Features
	Hierarchies of Lévy processes
	Inference in hierarchies of Lévy processes
	Posterior hierarchical beta process
	Posterior hierarchical gamma process
	Image application
	Conclusion

	Conclusion
	Bibliography
	Index

