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Abstract

There is a growing trend towards systems in
multiple distributed locations that generate
massive amounts of data. Distributed in-
ference algorithms enable these systems to
combine noisy observations without commu-
nicating them to a central location. How-
ever, the design and implementation of dis-
tributed algorithms is very challenging. We
propose a combination of overlays and declar-
ative programming to simplify the design of
distributed inference algorithms. We demon-
strate the effectiveness of our approach on a
number of inference algorithms and evaluate
the implementation on a suite of datasets in
a real network deployment.

1 INTRODUCTION

There is a growing trend towards systems in multiple
distributed locations that generate massive amounts
of data. A key problem in these systems is probabilis-
tic inference. To perform this task, the nodes in a
physical network need to collaborate, in order to esti-
mate desired quantities from noisy observations. For
example, routers in a network may combine similar-
ity measurements of IP’s sending patterns to identify
which IP addresses send spam. Distributed inference
algorithms eliminate the centralized point of failure,
distribute the computation across several nodes, and
avoid the need to share sensitive data. (Kearns, Tan,
& Wortman, 2008)

Distributed inference is a challenging task. First, it is
difficult to design distributed algorithms: nodes need
to coordinate to distribute the computation across the
network, and can only access a portion of the model
at a time. The algorithms need to be network-aware:
in real settings, link qualities change over time, nodes
can enter and leave the network, and interference can

disconnect parts of the network. The second major
challenge is that programming distributed systems is
itself difficult. In conventional implementations, high-
level algorithm description needs to be translated into
a series of low-level communication protocols, coded
in low-level languages, such as C++. Such process
is very error-prone and difficult to debug. Addressing
these challenges is key to designing robust and efficient
distributed inference algorithms.

In this paper, we propose a novel formulation that
uses a combination of overlays and declarative pro-
gramming (Loo & Hellerstein, 2007) to simplify the
design of inference algorithms. An overlay is a dis-
tributed algorithm that creates and maintains a global
data structure on a physical network. Examples of
overlays include distributed hash tables, DeBruijn
graphs, and data aggregation structures. Overlays
are often described with a set of constraints on an
underlying graph structure; these constraints can be
effectively expressed in declarative programming lan-
guages, such as Overlog (Loo & Hellerstein, 2007).
The combination of overlays and declarative program-
ming allows the algorithm designer operate on a higher
level of abstraction that rises above low-level message
passing protocols.

There have been a few distributed inference algo-
rithms that utilize overlays. For example, Schmidt
and Aberer (2006) proposed to use distributed hash
tables to perform content-based addressing in loopy
belief propagation. Paskin, Guestrin, and Mcfadden
(2005) described a robust architecture for distributed
junction tree inference in sensor networks. However,
each of these approaches were a point solution and, to
our knowledge, have never been reproduced. Further-
more, it is difficult to adapt existing algorithms to a
new communication pattern. We demonstrate the ef-
fectiveness of our approach on a number of algorithms.
We show that it is simple to implement existing algo-
rithms, such as loopy belief propagation and junction
tree inference. Furthermore, we show how the conver-
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Figure 1: Overlays in distributed inference: (a) a
graphical model, (b) physical network, (c) a set of over-
lays that aid in the computation.

gence of existing inference algorithms can be improved
using a data aggregation overlay. We complement ex-
isting randomized schemes (Elidan, Mcgraw, & Koller,
2006) with an analysis of their convergence.

We evaluate our implementations on a suite of applica-
tions that include standard benchmark examples (El-
idan et al., 2006) as well as applications more specific
to distributed systems. We evaluate the implementa-
tion on Emulab (White, Lepreau, Stoller, Ricci, Gu-
ruprasad, Newbold, Hibler, Barb, & Joglekar, 2002),
a large testbed that simulates realistic network condi-
tions, such as communication delays. We demonstrate
that our implementations achieve similar performance
as the corresponding low-level distributed algorithms
and are comparable to idealized centralized algorithms
that does not perform global coordination.

2 THE DISTRIBUTED INFERENCE
PROBLEM

2.1 Distributed inference

One method to approximate the marginals {p(yi; x)}
is loopy belief propagation (Murphy, Weiss, & Jor-
dan, 1999) 1. Loopy belief propagation is an iterative
method that can be viewed as passing messages on the
underlying Markov network. A message from variable
s to variable t is computed as

µs,t(yt)←
∑
ys

ψs × ψs,t ×
∏

r∈NG(s)\t

µr,s(ys), (1)

where the product is taken over all neighbors r of vari-
able s in the Markov network, other than t. At con-

1We discuss other inference methods in the later parts
of the paper.

vergence, the node marginals can be approximated as

p(ys) ≈
1
Zi

ψs(ys;xs)×
∏

r∈NG(s)

µr,s(ys).

While conceptually, we could collect all the features x
to a centralized location, a distributed version of the
inference algorithm (1) has several advantages: it elim-
inates the centralized point of failure, and distribute
the computation across several nodes.

In general, each network node is assigned a portion of
the probabilistic model, and the nodes collaborate to
compute marginal distribution over one or more vari-
ables. We assume a networking model where each node
can communicate to a subset of other nodes, but the
communication costs between nodes can vary.

2.2 Challenges

Distributed inference is a challenging task. Dis-
tributed algorithms are difficult to design. In the con-
text of distributed inference, this difficulty arises due
to the following three facts: The algorithms need to
use a decentralized representation of the prob-
abilistic model and perform global coordination
to distribute the computation and the parts of the
model across several nodes. The algorithms need to
be network-aware, responding to changes in the link
quality and perform robustly in the presence of com-
munication delays.

A core challenge in distributed algorithms is that
programming distributed systems is itself difficult.
Conventionally, the high-level, compact description of
these algorithms needs to be translated manually into
a set of low-level communication protocols, executed
in a low-level programming language. Such transla-
tion is often time-consuming and error-prone, and re-
sults in programs that are very difficult to debug. In
this paper, we examine how declarative languages sim-
plify the implementation of distributed inference algo-
rithms with faster convergence and lower bandwidth
consumption.

3 DECLARATIVE SPECIFICATION
OF OVERLAYS

Several distributed datastructures have been proposed
in recent literature, including distributed hash tables,
approximate hypercubes, and DeBruijn graphs. The
datastructures are robust to changes in the network
topology, responding to nodes entering and leaving the
network. Our approach is to describe the distributed
datastructure and the inference algorithm logic with
a declarative programming language. In this paper,



BP1: (s, t) ∈ update(n) `
. s ∈ variables(n), (s, t) ∈ edges(n).

BP2: (s, t,
∏
µr,s) ∈ incoming(n) `

. (s, t) ∈ update(n), µr,s ∈ msg(n), r 6= s.

BP3: µs,t ∈ msg(m) `
. (s, t, φ) ∈ incoming(n), ψs, ψst ∈ pot(n),
. (t,m) ∈ locations(n),
. µs,t =

∑
ys
φ× ψs × ψst.

Figure 2: Loopy belief propagation’s message compu-
tation (1) in a declarative-style program. The defini-
tion of periodic updates was omitted for brevity.

we focus on P2 http://p2.cs.berkeley.edu. P2
takes specifications in a declarative query language,
and uses database query optimization techniques to
compile them into dataflow programs that resemble a
mixture of traditional relational query plans and net-
work routers.

To illustrate the declarative style of programming dis-
tributed inference algorithms, we begin with a simple
example that implements loopy belief propagation (1)
in the case where the variables are partitioned across
the nodes of the network, and the nodes have a global
knowledge of this assignment. This distributed algo-
rithm is very simple: nodes communicate exactly along
the edges of Markov random network, and do not per-
form any global coordination. We will consider more
interesting examples in the following sections.

The corresponding program is shown in Figure 2. The
program is written in Overlog, which is an extension of
the traditional recursive query language Datalog, en-
hanced with aggregation functions and periodic events.
Overlog programs consist of a set of declarative rules.
The right-hand-side of the rule represents a conjunc-
tive predicate over relations in a database, and the
left-hand side represents the deduction from that pred-
icate. For example, the rule BP1 can be read as “if
there is a variable s in the relation of variables stored
at node n, and if there is a tuple (s, t) in the rela-
tion of the MRF edges stored at node n, then there
is an (s, t) tuple in the relation of updates to be per-
formed at that node.” Overlog provides constructs for
periodically updating the derived facts. These con-
structs resolve the apparent circular definition of the
msg relation and simplify the definition of iterative al-
gorithms like loopy belief propagation. Comparing the
program in Figure 2 with the update equation (1), we
see that there is almost a one-to-one correspondence
between the algorithm description and its distributed
implementation.

4 DISTRIBUTED NORMALIZATION

A concern with synchronous iterative algorithms, such
as loopy belief propagation, is that they update mes-
sages indiscriminately, rather than focusing on the im-
portant messages that need to be updated to obtain
fast convergence. In the distributed setting, where
bandwidth and power consumption are often the lim-
iting factors, updating the messages indiscriminately
can be especially costly. The paper by Elidan et al.
(2006) proposed an effective centralized solution that
updates messages in the order, given by a lower-bound
on the difference between the current message and
the fixed point. In this section, we describe a sim-
ple randomized approximation of this algorithm. Our
algorithm is similar in spirit to (Schiff, Antonelli, Di-
makis, Chu, & Wainwright, 2007), but uses an overlay
to compute an implicit normalization constant in the
algorithm, and we derive approximation bound that
relates our solution to the one in (Elidan et al., 2006).

The message passing update (1) can be viewed as
an operator fs,t that takes a set of messages µ =
{µq,r : (q, r) ∈ E} and computes a new set of messages
µ′ =

{
µ′q,r

}
that differ exactly on the message µs,t.

When fs,t is a contraction operator, that is,∥∥fs,t(µ)− µ∗
∥∥ ≤ α∥∥µ− µ∗

∥∥
for some message norm ‖·‖ and a constant α < 1, it
can be shown that the residual rs,t , ‖µ−fs,t(µ)‖ is
a lower bound on the distance between µ and the fixed
point µ∗. Elidan et al. (2006) use this intuition to for-
mulate a greedy heuristic that updates messages µs,t
in the order, given by the residual rs,t. To compute
the order of updates efficiently, the algorithm main-
tains a priority queue over the residuals and updates
the queue in constant time (for Markov networks with
bounded degree).

The problem with the above approach is that it re-
quires a global priority queue and blocks the compu-
tation of the nodes while the node with the leading
residual performs the update. Instead, we wish to
obtain a local algorithm that attains a similar per-
formance, without maintaining a globally controlled
priority queue.

A simple strategy, proposed by (Schiff et al., 2007) is
to delay messages with smaller residuals. This strat-
egy can be implemented by performing a sequence of
independent Bernoulli trials. At each iteration, the
message µs,t’ is transmitted with probability given by

ps,t =
∥∥µ′s,t − µs,t∥∥ρ (2)

for a suitably chosen constant ρ ≥ 0 (here, µs,t is the
last transmitted message). Effectively, the messages



with larger residuals rs,t = ‖µ′s,t − µs,t‖ will be trans-
mitted more often.2

The algorithm, as described so far, has a significant
drawback: as the messages get closer to the fixed point,
the transmission probabilities {ps,t} decrease through-
out the network. Therefore, the algorithm will eventu-
ally stop making progress and will never converge. In
order to ensure convergence, we need to multiply the
update probability in (2) with a suitably chosen nor-
malization term λ. This term is not known a priori;
rather, it is periodically estimated from the current set
of residuals {rs,t}. The nodes can employ a number
of data aggregation techniques to estimate the sum∑
rρs,t. For example, the aggregate can be computed

by forming spanning tree over the network nodes and
computing the sum recursively using a dynamic pro-
gramming algorithm. As we demonstrate in Section 7,
the resulting algorithm offers substantial improvement
over the naive implementation in Figure 2.

We conclude this section by relating the proposed ran-
domized algorithm to the solution (Elidan et al., 2006).
Let Ks,t denote the number of iterations before the
message is sent. The key observation is that, as the pa-
rameter ρ increases, the ordered statistics mins,tKs,t,
converges to the maximum residual.

5 VARIABLE LOCALIZATION

As mentioned in the introduction, one of the challenges
present in distributed systems is the lack of global
knowledge. In particular, when sending a message in
loopy belief propagation, a node may not know a pri-
ori where the target variable t is located (in the pro-
gram in Figure 2, this knowledge was captured by the
location relation). The key observation here is that
the variable location can be looked up using a dis-
tributed hash table, such as Chord (Stoica, Morris,
Karger, Kaashoek, & Balakrishnan, 2001). This obser-
vation was made by (Schmidt & Aberer, 2006); here,
we briefly discuss this approach, and refer the reader
to related work for a more detailed description of the
overlay.

In a distributed hash table (DHT), each node is asso-
ciated with a key, and nodes form a graph based on
their keys. For example, in Chord, the nodes form a
ring; the keys of the nodes along the ring form an or-
dered set of ranges. The object is then placed on a
node, whose key immediately precedes the key of the
object. In our case, each object consists of the variable
identifier and the address of the node that carries the
variable. Upon start, each node registers its local vari-
ables in the DHT. Before a message µs,t is sent, the

2Here, it is assumed that the residual rs,t ≤ 1.

node looks up the location of variable t in the DHT.
The overlay and the variable lookup is very simple
to implement in a declarative framework: the imple-
mentation of Chord in Overlog is only 250 lines long,
compared to thousands lines of C++ for the original
version.

6 DISTRIBUTED TRIANGULATION

In the previous two sections, we saw how overlays can
be constructed bottom-up and used as subroutines to
simplify the design of distributed loopy belief propaga-
tion algorithms. The overlays depended entirely on the
network connectivity; for example, the DHT was con-
structed independently of the variables stored in it. In
this section, we examine the distributed triangula-
tion problem (Paskin et al., 2005), where the structure
of the overlay is determined by both the network con-
nectivity and the probabilistic model. We briefly re-
view the distributed architecture (Paskin et al., 2005),
and show that the architecture can be naturally ex-
pressed in a declarative framework.

The architecture (Paskin et al., 2005) computes the
triangulation as follows. Each node n begins with a
set of local variables Ln; this is the union of argu-
ments in node n’s factors. The network nodes form a
network junction tree, that is, a spanning tree over
the network communication graph such that each node
is associated with a clique Cn ⊇ Ln, and the cliques
{Cn} are triangulated. Specifically, for each pair of
nodes m, n:

X ∈ Cm, X ∈ Cn =⇒ X ∈ Ck (3)

for all nodes k on the (unique) path between m and n.

The distributed algorithm (Paskin et al., 2005) con-
sists of four layers:

1. Spanning tree formation: The nodes form a
spanning tree. The spanning tree responds to
changes in network connectivity and node failures.

2. Junction tree formation: The nodes compute
a set of minimal cliques {Cn} that satisfy the run-
ning intersection property (3).

3. Optimization: The architecture performs local
search in the space of spanning trees in order to
minimize the communication and computational
complexity.

4. Inference: The inference messages are computed
using standard equations. For example, for the
sum–product algorithm, we compute the message



C: i ∈ clique(n) `
. (m, i), (k, i) ∈ reachable(n), m 6= k ∨
. i ∈ local(n).

R1: (n, i) ∈ reachable(m) `
. i ∈ local(n), m ∈ nbr(n).

R2: (n, i) ∈ reachable(m) `
. (k, i) ∈ reachable(n), m ∈ nbr(n), m 6= k.

Figure 3: Implementing distributed triangulation in
Overlog. The statement (k, i) ∈ reachable(n) repre-
sents the fact that the variable i is in the subtree rooted
at node n, towards k.

µm,n as

µm,n(xSm,n) ,∑
xCn−Sm,n

ψm(xCm
)

∏
k∈NT (m)\n

µk,m(xSk,m
),

where ψm(xCm) is the product of potentials as-
signed to node m, Sm,n , Cm ∩ Cn is the sep-
arator between two nodes in the junction tree,
and NT (m) are node m’s neighbors in the tree.

These layers are executed in parallel: for example, if
an edge in the spanning tree is added or removed, the
junction tree layer updates the clique at each node, and
the inference layer recomputes the inference messages.

In the original TinyOS implementation of Paskin
et al. (2005), the three layers had to explicitly handle
changes in the underlying architecture, listening to lo-
cal events indicating the change, such as edge addition
and deletion. Such complex interleaving of the infer-
ence and networking layers can be naturally expressed
in a declarative language. For example, the clique at
node n of the network junction tree is computed as

Cn = Ln
⋃ {

i : i ∈ Rn,m ∩Rn,k,m 6= k
}
,

where Rn,m is the set of all variables in the subtree
rooted at node n, towards node m. This equation di-
rectly maps to rule C in the declarative implemen-
tation in Figure 3. The reachable variables relation
Rm,n is naturally expressed recursively with R1 (the
base case) and R2 (the recursive case). The P2 run-
time responds to any changes to the preconditions, and
recomputes the reachable sets and cliques as necessary.

7 EXPERIMENTAL RESULTS

In this section, we present the experimental results
of running our algorithm on several datasets. In addi-
tion to the sensor calibration, presented in Section 7.2,

we also tested our algorithms on a suite of challeng-
ing problems used in (Elidan et al., 2006) that are not
specific to the distributed inference domain. All exper-
iments were performed on the Emulab testbed (White
et al., 2002), which simulate realistic network condi-
tions, including packet delays and network partitions.

7.1 Belief propagation: Synthetic data

In the first set of experiments, we evaluate the con-
vergence of different methods, presented in this paper,
as a function of the number of updates and the band-
width of the algorithm used.

We generated a set of random Ising grid models, where
each edge has the potential f(xi, xj) = exp(βi,j) when
xi = xj and f(xi, xj) = exp(−βi,j) when xi 6= xj . To
make the inference task more challenging, we set some
of the potentials to be attractive while other repulsive,
and sampled the βi,j uniformly in the range [−C;C]
for two choices of parameter C. Similar models have
been employed for testing loopy belief propagation al-
gorithms in the past.

Figure 4 shows the residual as a function of the number
of updates performed by the algorithm. For compari-
son, we also include the convergence of two centralized
algorithms: an algorithm that updates the messages
in a round-robin order (labeled as asynchronous)
and the residual belief propagation algorithm (Elidan
et al., 2006). We see that the distributed algorithms
perform as well and, in some cases better than the
centralized algorithms they seek to emulate. This be-
havior can attributed to a hypothesis that the residual
belief propagation is perhaps too greedy in selecting
which messages to update next; in this case, adding
randomness to the algorithm helps. Clearly, we need a
global coordination step is missing from the algorithm;
the convergence of the algorithm effectively stops after
some time.

Figure 5 shows the convergence of the distributed algo-
rithms as a function of bandwidth consumed. We see
that the global coordination, required by the exponen-
tial scheme, increases the communication complexity
of the solution only mildly.

7.2 Junction tree inference

We evaluate junction tree inference on the sensor cal-
ibration dataset (Paskin & Guestrin, 2004). In our
Overlog implementation 3, the link quality information
is provided externally, rather than being estimated ex-
plicitly from the configuration messages. The paper
(Paskin et al., 2005) described two ways to optimize
the junction tree; we implemented the simpler heuris-

3The overlog code is listed in appendix A
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Figure 4: The convergence (residual) of four loopy be-
lief propagation methods we implemented for (a) C =
1 and (b) C = 5. The curves labeled asynchronous
and residual refer to the corresponding centralized
algorithms.

tic advocated that assigns each edge of the communi-
cation network a score based on the link quality and
number of shared local variables. This heuristic giving
preference to strong links with many shared variables
often performs very well in practice.

Figure 6 shows the quality of the junction tree (mea-
sured in terms of the expected cost of performing in-
ference on the tree), as a function of the bandwidth
used in maintaining the data structure.

Table 1 illustrates the conciseness of the implementa-
tion compared to hand-coded Lisp implementation of
Paskin et al. (2005).
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Figure 5: The convergence (residual) of four loopy bp
methods as a function of the bandwidth used. (a)
C=1, (b) C=5.

Protocol Lisp Overlog
spanning tree 848 lines (9452) 274 lines (2589)
triangulation 457 lines (5812) 105 lines (1092)
sum–product 574 lines (6040) 131 lines (1144)

Table 1: The number of lines and the program size (in
gzip-bytes) of different modules in Overlog and Lisp.

8 DISCUSSION

We propose a novel combination of network over-
lays and declarative programming to simplify the de-
sign and implementation of distributed inference al-
gorithms. We demonstrate the effectiveness of our ap-
proach on a number of distributed inference algorithms
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Figure 6: An example run for a small network with 10
nodes. Partition occurrs at time 25, and the commu-
nication is restored at time 40

and complement existing randomized schemes with a
new analysis of their convergence. We demonstrate
our results on simulated and real data, evaluated on a
real network deployment.

The proposed approach offers fundamentally new op-
portunities. It enables algorithms that, in addition to
local coordination, have a global coordination compo-
nent. The global coordination can be performed with-
out forcing the algorithm designer to think about low-
level networking. The declarative specification of the
algorithm is very transparent and is easier to debug.
In the process of writing this paper, we have found
multiple bugs in existing distributed algorithms, and
we were able to correct these errors very quickly. We
believe that, by simplifying the design and implemen-
tation of the algorithms, it will be easier to evaluate
new algorithms on real systems, in realistic conditions.
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A Junction Tree Inference

Here we provide the full Overlog specification for junction tree inference. The rules for setting the running
intersection property are described in Figure 7 while the inference rules are present in Figure 8. The Overlog for
spanning tree (used by junction tree) is in Figure 9 & 10. For a detailed explanation of the distributed spanning
tree algorithm please refer (Paskin et al., 2005). All the base relations in the Overlogs have been highlighted
in italic font. The three layers: spanning tree, running intersection property (junction tree) and inference work
together and get updated in case of node/link failures and additions.

jtUpdate(@Node, Time) :-
. periodic(@Node, E, JT EPOCH),
. Time := f timerElapsed().

jtNbrUpdate(@Node, Nbr) :-
. jtUpdate(@Node),
. edge(@Node, Nbr).

reachvars(@Node, Node, Vars) :-
. localVars(@Node, Vars).

reachvarsIncoming(@Node, Node, Vars) :-
. reachvars(@Node, Nbr, Vars),
. Node == Nbr.

/* Union of incoming reachvar message. Localvars are included*/
reachvars(@Target, Node, a UNION<Vars>) :-
. jtNbrUpdate(@Node, Target),
. reachvarsIncoming(@Node, Nbr, Vars),
. Nbr != Target.

/* Incoming message. The message is deleted when the edge gets deleted. */
reachvarsIncoming(@Node, Nbr, Vars) :-
. reachvars(@Node, Nbr, Vars),
. edge(@Node, Nbr).

/* Compute the clique at each node */
cliqueRIP(@Node, a UNION<Vars>) :-
. jtUpdate(@Node),
. reachvarsIncoming(@Node, Nbr1, Vars1),
. reachvarsIncoming(@Node, Nbr2, Vars2),
. Nbr1 != Nbr2,
. Vars := Vars1 & Vars2.

clique(@Node, Vars) :-
. cliqueRIP(@Node, RipVars),
. localVars(@Node, LocalVars),
. Vars := RipVars | LocalVars.

/* Compute the separator. */
separator(@Node, Nbr, Vars) :-
. reachvarsIncoming(@Node, Nbr, NbrVars),
. clique(@Node, MyVars),
. Node != Nbr,
. Vars := MyVars & NbrVars.

Figure 7: Overlog for Running Intersection Property.



incoming(@Node, Node, Factor) :-
. localFactor(@Node, Factor).

/************************************
One round of updates
************************************/

jtinfUpdate(@Node, Time) :-
. periodic(@Node, E, JTINF EPOCH),
. started(@Node),
. Time := f timerElapsed(),
. /* Each node must have a local factor. */
. incoming(@Node, Node, ).

nbrUpdate(@Node, Nbr) :-
. jtinfUpdate(@Node, ),
. edge(@Node, Nbr).

/* Update the separator set. */
separator set
separatorSet(@Node, Nbr, a mkList<Var>) :-
. nbrUpdate(@Node, Nbr),
. separator(@Node, Nbr, Var).

/* Calculate the factors whose product forms the messge. */
msgFactors(@Node, TargetNbr, a mkList<F>) :-
. nbrUpdate(@Node, TargetNbr),
. /* includes the local factor */
. incoming(@Node, Nbr, F),
. Nbr != TargetNbr.

/* Compute the message. */
message(@Nbr, Node, NewF) :-
. msgFactors(@Node, Nbr, MessageFactors),
. separatorSet(@Node, Nbr, Retain),
. FProd := f product(MessageFactors),
. NewF := f marginal(FProd, Retain).

/* The incoming message. Message is deleted on edge deletion*/
incoming(@Node, Nbr, Factor) :-
. message(@Node, Nbr, Factor),
. edge(@Node, Nbr).

/*********************************
Calculate beliefs
*********************************/
beliefFactors(@Node, a mkList<Factor>) :-
. jtinfUpdate(@Node, Time),
. incoming(@Node, , Factor).

belief(@Node, Factor) :-
. beliefFactors(@Node, BeliefFactors),
. Factor := f product(BeliefFactors).

factorCount(@Node, Count) :-
. beliefFactors(@Node, Factors),
. Count := f size(Factors).

Figure 8: Overlog for Junction Tree Inference.



/* Update each node’s own root pulse time. */
pulse(@Node, MYID, Time) :-
. started(@Node),
. periodic(@Node, E, ROUTING EPOCH),
. Time := f timerElapsed().

/* Insert the default pulse for a root we have never heard. */
pulse(@Node, RootId, Pulse) :-
. config(@Node, , , RootId, Pulse),
. notin pulse(@Node, RootId, ).

/* Update the pulse for the current parent. */
pulse(@Node, RootId, Pulse) :-
. config(@Node, Nbr, , RootId, Pulse),
. parent(@Node, Nbr).

/* Update the root for the current parent. */
root(@Node, RootId) :-
. config(@Node, Nbr, , RootId, Pulse),
. parent(@Node, Nbr).

/***********************************************************************************
Update the internal state and configurations by selecting the new best parent.
************************************************************************************/

/* Run a single update. */
updateparent(@Node) :-
. periodic(@Node, E, ROUTING EPOCH).

/* The cost of changing a parent. */
newparent(@Node, a max<InvCostParent>) :-
. updateparent(@Node),
. config(@Node, Nbr, NbrParent, NbrRootId, NbrPulse),
. pulse(@Node, NbrRootId, OldPulse),
. parent(@Node, OldParent),
. root(@Node, OldRootId),
. NbrRootId <= OldRootId, /* Neighbor has a better root */
. Nbr != OldParent, /* Neighbor is not already my parent */
. NbrPulse > OldPulse, /* Neighbor is not my descendant. */
. NbrParent != Node, /* Neighbor is not my child: avoid cycles */
. link(@Node, Nbr, , PReceive),
. Cost := 1.0 / PReceive + ROUTING SWITCH COST,
. InvCostParent := f cons(1.0 - Cost, Nbr).

/* The cost of keeping the parent */
newOldparent(@Node, NewParent, a max<InvCostParent>) :-
. newparent(@Node, NewParent),
. config(@Node, Nbr, NbrParent, NbrRootId, NbrPulse),
. parent(@Node, Nbr),
. NbrRootId < MYID,
. NbrParent != Node,
. link(@Node, Nbr, , PReceive),
. Cost := 1.0 / PReceive,
. InvCostParent := f cons(1.0 - Cost, Nbr).

Figure 9: Spanning Tree Overlog.



/* Local node is the root since no parent has a lower root. */
bestparent(@Node, Node) :-
. newOldparent(@Node, NewParent, OldParent),
. f size(NewParent) == 0,
. f size(OldParent) == 0.

/* Select the best parent. */
bestparent(@Node, Parent) :-
. newOldparent(@Node, NewParent, OldParent),
. CostParent := f max(NewParent, OldParent),
. f size(CostParent) > 0,
. Parent := f last(CostParent).

/* Additional info about the parent. */
bestParentInfo(@Node, Parent, RootId, Pulse) :-
. bestparent(@Node, Parent),
. config(@Node, Parent, , RootId, Pulse).

bestParentInfo(@Node, Node, MYID, Pulse) :-
. bestparent(@Node, Parent),
. Parent == Node,
. pulse(@Node, MYID, Pulse).

/* Update the parent, the root, and the pulse. */
parent(@Node, Parent) :-
. bestParentInfo(@Node, Parent, , ).

root(@Node, RootId) :-
. bestParentInfo(@Node, , RootId, ).

pulse(@Node, RootId, Pulse) :-
. bestParentInfo(@Node, , RootId, Pulse).

/* Send a configuration message describing Node’s state to all neighbors. */
config(@Nbr, Node, Parent, RootId, Pulse) :-
. bestParentInfo(@Node, Parent, RootId, Pulse),
. linkEnabled(@Node, Nbr).

configBroadcast(@Base, Node, Parent, RootId, Pulse) :-
. bestParentInfo(@Node, Parent, RootId, Pulse),
. Base := BASE ADDR.

/* Establish bidirectional edges, used by upper levels. */
edge(@Node, Parent) :-
. parent(@Node, Parent).

edge(@Parent, Node) :-
. parent(@Node, Parent).

/**********************************************************************
Maintain a relation of active links.
**********************************************************************/
config inserted(@Node, Nbr) :-
. config(@Node, Nbr, Parent, RootId, Pulse).

/* Update the link age. */
link(@Node, Nbr, PSend, PReceive, Time) :-
. config inserted(@Node, Nbr),
. link(@Node, Nbr, PSend, PReceive, ),
. Time := f timerElapsed().

Figure 10: Spanning Tree Overlog.


