Abstracting RTL Designs to the Term Level

Bryan Brady
Randal Bryant
Sanjit A. Seshia

ST NEFLELEL]

.Il

h,
Y
4

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2008-136
http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-136.html

October 20, 2008

Copyright 2008, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Abstracting RTL Designs to the Term Level

Bryan A. Brady Randal E. Bryant Sanjit A. Seshia
UC Berkeley Carnegie Mellon University UC Berkeley
bbrady@eecs.berkeley.edu randy.bryant@cs.cmu.edu sseshia@eecs.berkeley.edu

October 15, 2008

Abstract

Term-level verification is a formal technique that seeksddfy RTL hardware descriptions by ab-
stracting away details of data representations and opegatiThe key to making term-level verification
automatic and efficient is in deciding what to abstract. Wegtigate this question in this paper and
propose a solution based on the use of type qualifiers. Missjemonstrate through case studies that
only selective term-level abstraction can be very effecitivreducing the run-time of formal tools while
still retaining precision of analysis. Second, the terweleabstraction process can be guided using
lightweight type qualifiers. We present an annotation lagguand type inference scheme that is applied
to the formal verification of the Verilog implementation ofthip multiprocessor router. Experimen-
tal results indicate type-based selective term-levelrabsbn is effective at scaling up verification with
minimal designer guidance.

1 Introduction

Register-transfer-level (RTL) descriptions are oftenrtteest authoritative models of a system. It is therefore
essential for formal verification tools to operate at the RWlbst formal verification tools however, turn the
RTL model into a bit-level model upon which a bit-level teaque such as finite-state model checking [10]
is invoked. Employing techniques such as predicate aliigtnaon the RTL (e.g., [18]) helps to scale the
analysis further for verifying control-dependent promert However, for proving data-dependent proper-
ties including equivalence or refinement checking, bieldechniques run into state-space explosion and
predicate abstraction requires far too many predicategsséating additional abstraction.

Term-level modelingeeks to make formal verification of data-intensive praoggtiractable by abstracting
away details of data representations and operations, Mipdata as symbolierms Term-level abstraction
has been found to be especially useful in microprocessagmgsrification, using techniques such as term-
level bounded model checking, correspondence checkifigemeent verification, and predicate abstraction
of term-level models [11, 17,21, 22]. The precise functiiypaf operations of units such as instruction
decoders and the ALU are abstracted away usimgterpreted functionsand decidable fragments of first-
order logic are employed in modeling memories, queues,teosinand other common constructs (e.g., as
performed in the UCLID verification system [9]). Efficient $hased decision procedures for fragments of
first-order logic are used as the computational enginesfar-ievel verifiers.

Simply abstracting all Boolean signals to Boolean varigialed all bit-vector signals to terms results in too
abstract a model, in which properties of bit-wise and fipiteeision operators are obscured. Dealing with

this “precision gap” is a significant hurdle to the wider atiop of term-level verification, since manual
abstraction is tedious and error-prone. Thus, the centohlem in using term-level abstraction is to decide,
in a sound mannewhat to abstract

Contributions. We propose the use of selective term-level abstractiondbaséype qualifiers optionally
guided by designer-provided annotations in the RTL. Ouraggh complements the use of fast SAT-based
decision procedures for word-level and term-level reaspniWe demonstrate our approach on the RTL
description of a chip multiprocessor router. The preseapgmtoach is lightweight, requiring very little work
on the part of the designer, with very few annotations suifj¢o reduce the verification time substantially.
The light annotation burden is made possible by use of autmihigpe inference. These rules check that
the designer-specified term abstractions can be applietlysahd infer all the signals to which the term
abstraction can be propagated. Experimental resultsataltbat type-based selective term-level abstraction
can be very effective at scaling up verification.

Outline. In Section 2, we review background material and related wivk describe the type annotation
language in Section 3 along with an automatic technique riorsforming annotated Verilog code to a
combined word-level (bit-vector) and term-level model foe UCLID verifier [9]. Experimental results
on the Verilog design of a chip multiprocessor router [23indastrate how our approach can speed up
verification.

2 Background and Related Work

Word-level modelingf designs involves representing control signals as Booleaables, data as bit-vector

variables, and memories as arrays of bit-vector variabl&sification of a word-level model can be per-

formed in two ways. The first method is to turn all bit-vectariables into a vector of Boolean variables
of the defined size, thus creating an entirely bit-levelisietlStandard finite-state model checking tech-
niques [12] can be used on the resulting netlist.

Recently, however, efficient SAT-based decision proceslwe/e been developed for finite-precision bit-
vector arithmetic (e.qg., [6, 8, 13, 15]). These proceduszsan at a level of abstraction higher than the
bit level by the use of word-level simplification rules andstbction-refinement techniques. Verification
methods such as bounded model checking [4] and predicateaetian [16] are thus performed efficiently
at the word level (e.g., [18]). However, since most worcelgechniques are ultimately based on bit blasting
to SAT, it is often necessary to raise the level of abstracsiill higher to speed up verification.

Term-level modeling offers a higher level of abstractiomefie are three elements of term-level modeling:
data abstraction function abstraction and memory abstraction Data abstraction involves treating bit-
vector expressions as abstract terms that are interpretrdacsuitable domain (typically a subsetZy.

In function abstraction, bit-vector operators and moduat@sputing bit-vector values are treated as “black-
box,” uninterpreted functions constrained only by funeéibconsistency: that they must evaluate to the same
values on the same arguments. Finally, in memory abstraatiemories and data structures are modeled in
a suitable theory of arrays or memaries, such as by the uggofadread andwrite functions [11].

In essence, term-level modeling involves representingystem in fragments of first-order logic rather than
in propositional logic. The subset of first-order logic coomty used today includes@mbination of three
first-order theories:the theory of equality and uninterpreted functions (EURgger linear arithmetic, and

a suitable theory of arrays. UCLID [9] is a system for the téenrel modeling and verification of systems
represented in this subset of first-order logic, with arfagisg modeled with restricted lambda expressions.

2

UCLID now also supports the theory of finite-precision béetor arithmetic [8], thus allowing a combina-
tion of term-level and word-level modeling, which we explini this paper. The verification techniques of
particular interest to us in this paper are bounded modaikthg and checking an implementation design
refines its specification. An instance of the latter is cqroeslence checking of pipelined processors [11].

The Reveal system automatically generates term-level mdiaen Verilog [2]. The underlying logic for
term-level modeling in Reveal is CLU, which originally foed the basis for the UCLID system [9], and
which is a strict subset of the afore-mentioned combinatibtheories. Reveal uses a counterexample-
guided abstraction-refinement (CEGAR) approach [1, 3]tdtts by completely abstracting a Verilog de-
scription to CLU. Next, it attempts to verify correctnesghd abstracted design. If the verification succeeds,
it terminates. However, if the verification fails, Reveaécks whether the counterexample is spurious using
a bit-vector decision procedure. If the counterexamplgisisus, a set of bit-vector facts are derived and
used on the next iteration of term-level verification. If ribie system terminates, having found a bug.

The CEGAR approach has shown very promising results [2]omescases, however, several abstraction-
refinement iterations are needed to infer fairly straigftord properties of data, thus imposing a significant
overhead. For instance, in one of our examples, a chip modgssor router [23], the header field of a packet
must be extracted and compared several times to determiegh&rtihe packet is correctly forwarded. If any

one of these extractions is not modeled precisely at thevewl, a spurious counterexample results. Thus,
the translation is complicated by the need to instantid&gioms between individually accessed bit fields of
a word modeled as a term using special uninterpreted furectio represent concatenation and extraction
operations.

Our approach to term-level abstraction is distinct front hfaAndraus and Sakallah, yet complementary.
We propose the use of type annotations provided by the dastgrguide the creation of an initial sound
abstraction. If the designer-provided annotations areriect, a type checker emits warnings and avoids
performing the specified abstractions. A CEGAR approachthan be employed on the output of the
proposed type-based approach.

Johannesen presented an automated bitwidth reductiomidgeehwhich was used to scale down design sizes
for RTL property checking [19, 20]. A static data-flow teciumé is used to partition the datapath signals

based on the usage of the individual bits. Bits that are use Symmetric way are abstracted to take

the same value, while preserving satisfiability. As with #pproach we present, one is able to compute a
satisfying assignment for the original circuit from a sigiisg assignment of the reduced circuit.

More recently, Bjesse presented a technique which is am&rie to Johannesen’s work [5]. The main
difference is that Bjesse includes the partitioning of thigal states, ensures that the current- and next-state
partitions correspond, and bitblasts operators such gsi@tiéies which are left untouched in Johannesen’s
work.

Our work, developed concurrently with and independent @&sBg’s [5], is different from that work and
Johannesen’s [19,20] in that our abstraction is not limitetherely reducing bitwidths of variables. Instead,
we encode the different partitions of the circuit in diffierdogical theories. In this paper, we use two
theories: finite-precision bit-vector arithmetic (BV) atitk logic of equality with uninterpreted functions
(EUF), but the ideas are not restricted to BV and EUF. The @isegical theories allows us to use one of
several techniques to encode abstracted variables, rda giagle procedure; e.g., we are able to use for
EUF the technique of positive equality [7] that encodes swam@bles into the SAT problem with constant
values. Furthermore, neither Johannesen’s nor Bjess#gtien technique has a way to incorporate user
insight for abstraction. In our work, we allow the user to tigge qualifiers to convey his/her intuition as

to how the circuit should be abstracted. If the computedratisbn does not coincide with the designer's
intuition, our tool will warn the user and generate suitdbkedback. The output from our tool can guide the
user to write annotations or rewrite the RTL in a way that tafiglly reduces verification effort. As we
will see with an example in this paper, sometimes a smallitewef the original code can achieve a large
reduction in verification time.

3 Type Qualifiers for Term-Level Abstraction

We propose the use bfpe qualifierdo guide the process of abstracting to the term-level. Tyadifiers are
widely used in the static analysis of software [14], from fingdsecurity vulnerabilities to the detection of
races in concurrent software, to enable programmers ttyepsde the analysis. Even standard languages
such as C and Java have keywords such as “const” that quiifdard types such aats.

In our case, type qualifiers indicate what can and cannot beaabed to a fragment of first-order logic
supported by the term-level verifier. Their widespreadatifeness in software leads us to believe that they
would be effective in incorporating a designer’s insiglusabstraction, without placing an undue burden on
the designer. The simplest form of type qualifier specifiag abstraction In data abstraction, we specify
that part of a bit-vector signal must be treated as an uprgegdterm. The designer can also indicate that
a module is to be treated aainterpreted, which isfunction abstraction Finally, memories and data
structures such as queues can also be abstracted by use tididFle lambda expressions [9].

Our approach is depicted in Figure 1. We start with Verilod-Re specification to be verified, and, option-

Verilog
RTL
v2ucl

Spec. ted SAT engine
User prO\//ided
type annotations
yP UCLID .

type checker model —— UCLID Valid/
warnings Counterexample

Figure 1:Overview of Term-Level Abstraction. The dashed lines indicate optional input and output.

ally, with designer-provided type qualifier annotationbeMerilog-to-UCLID abstraction tool2ucL then
performs type inference and type checking. If the desigmevided annotations are inconsistent, warnings
are generated, which indicate to the designer what she teéslsOtherwisey2ucL automatically creates

a hybrid term and bit-vector UCLID model, with the specifioatincluded in it. The designer can now run
UCLID (which uses off-the-shelf SAT engines) and evaluakethier the design satisfies its specification.

The type qualifiers are currently specified in Verilog instenments, similar to javadoc notation. Rather
than using a formal notation for the type qualifiers, we wileuhis the comment-style notation throughout
the paper.

N

We next describe below the three forms of abstraction andtheware implemented m2ucL. We illus-
trate the different kinds of abstraction with code snippgeim the Verilog description of a chip multipro-
cessor (CMP) router design. We begin with a quick overviethisf design.

3.1 CMP Router

The chip multiprocessor router design [23] is part of thechip interconnection network that connects
processor cores with memory and with each other. The desigipigses over 1000 lines of Verilog. The
original router design has five input ports and five outputgarhich we reduced to two input/output ports
for this case study. The router’s function is to direct inaagrpackets to the correct output port. Each packet
is made up of smaller components, calféts. There are three kinds of flits: leead flit which reserves an
output port, one or morkody flits that contain the data payload, antha flit, which signals the end of the
packet. Figure 2 depicts the structure of a flit: the lowert8 {ithe header) determine the type of flit and its
destination, while the top 24 bits store data.

‘ data ‘ dest ‘ ‘ ‘

type
24 bits <—6 2=

type = 10 for head flit, 01 for tail flit, 00 for body fli

Figure 2:Anatomy of a flit. Each flitis 32 bits long.

There are four main modules of the router, as shown in Figuiféd first module, called thiaput controller,

input
port 0

req

BUFO alloc
ARBITER ——=| ENCODER
res
. BUF1 P
input

port 1

i select

INPUT flit 0
CONTROLLER output port (
CROSSBAR

output port
flit 1 puLp

Figure 3:Chip multiprocessor router block diagram. There are four main modules: the input controller,
the arbiter, the encoder, and the crossbar.

buffers incoming flits, determines their destination parid interacts with amarbiter module in order to
reserve an output port. In Peh’s design, the reservatiom olugput port is performed on receipt of a head
flit. Thereatfter, all body flits and tail flits are directed betoutput port without incurring any further latency.
The arbiter is fair, assigning priorities to input ports é@®n a simple round-robin scheme. The remaining
modules are thencoderand crossbar which contain logic to copy flits to the output port from thmgiit
port that has been assigned that output port.

We modified the crossbar implementation for this case stiidg.original implementation forwarded every
bit of a flit individually, thereby eliminating any scope fperforming data abstraction. We rewrote it to a
word-level crossbar in a few minutes and then checked its/algmce with the bit-level version using the
SMV model checker. We believe that this rewriting can be @uatied and will return to discuss this point in
Section 5.

3.2 Data Abstraction

The term abstraction of a bit-vector Verilog sigrab of width w is specified as follows:

[~@term [wy :w)] [we:wh] ..[wrp:w,] */
<stype> [w — 1: 0] foo;

where<stype> isinput , output , wire , orreg, and the rangepw; : w}], [w2 : wh], ..., [wy,

w}] are non-overlapping sub-ranges]af — 1: 0] .

In our experience, it is often the case that 1, meaning that either the entire word is abstracted as a term,
or a single part of the word is abstracted.

The/~@term ... =/ qualifier is always associated with an underlying logic afrtdevel abstraction.
Thus, theerm qualifier associates a set of allowed (legal) operationk eaich abstracted term, where that
set of operations is the set of function symbols in the aasedilogic.

For our current implementation, thie @term ... =/ qualifier specifies that the abstracted term ishia
logic of equality and uninterpreted functiofEUF). In other words, the only legal operations on that term
are copying, tests for equality or disequality, or as argus¢o uninterpreted functions. This is not an
inherent restriction of the type qualifier approach; we ptaoonsider other fragments of first-order logic in
the future.

Given the Verilog RTLM, optionally annotated with type qualifiers as given abowel a specificatiors,
v2ucL performs an automatic analysis in the following steps:

1. Compute Equivalence Classdzartition the set of signals and their extracted portiotsédguivalence
classes such that signals that appear together in assitgymelational comparisons, or functional
operations inM or § end up in the same equivalence class.

2. Compute Maximal Term Abstractiorf-or each equivalence class, we compute the maximal term
abstraction (defined in Section 3.2.2) that is common toigtiads in that equivalence class.

3. Check Type Annotations for Consistentfithe designer has provided any type annotations, we check
those for consistency with the computed abstraction. Ifdésigner’'s annotations are more abstract,
an error message is generated. If they are less abstradgdheses the automatically inferred ab-
straction, unless the bit-vector portion to be extractetbéssmall (currently heuristically set to 4
bits).

4. Create UCLID Model: Signals that have associated term abstractions are encodbd UCLID
model with combinations of term and bit-vector variablesd a hybrid UCLID model is generated
and verified.

We describe each of these stages in more detail in Sectigris3.2.4 below.

3.2.1 Compute Equivalence Classes

This step is performed by computing equivalence classegt-sebtor expressions defined in the RTL with
the goal of giving signals in the same equivalence classahmgserm abstraction.

We first pre-process the input file to identify all bit-vecexpressions appearing in the Verilog. Each of
these will be termed aode Some nodes are signals.

Then the process of constructing equivalence classesdegin

First, each bit-vector node is placed in its own singletoniaence class. Denote the equivalence class
containingu; by &(v;).

Next, equivalence classes are merged according to thevioljorules, applied to expressions in both the
Verilog RTL M and the specificatio8§ to be verified:

1. Assignmentif v; is assigned the value of in a combinational or sequential assignment, then we merge
E(UZ) andé’(vj).
If v; is assigned the value of or v;, conditioned on the value of a Boolean signal, then we me@gsek
E(Ui), 5(1)j), andé’(vk).

2. Relational Comparisonlf v; andv; are compared by a relational operator for equality or netadrder-
ing, then we mergé€ (v;) and&(v;).

3. Other Operations:If v;,, vi,, ..., v;, appear as operands to the same word-level arithmetic ovibd-
operator, we merge the equivalence clasdes;) for 1 < j <n.

Note that it is important to include the specificatiSralso in the analysis, since, e.g., arithmetic operations
might be performed on a node in tleeven if it is not performed in the RTL.

3.2.2 Compute Maximal Term Abstraction

For each equivalence class, we computentizimal term abstractioaommon to all signals in that equiv-
alence class. The maximal term abstraction for a signalth range[w — 1 : 0] is a sequence of non-
overlapping sub-intervalsd; : wil, [wa : wh], ..., [wy : wy] of [w — 1 : 0] such that the fanouts of those
extractions ofv do not appear in any bit-vector arithmetic operation, boséhof the extractionBo, w1],
[w],wa], ..., [wy, 0] do (and hence the latter intervals cannot be abstractedns)e

The first step is to filter out equivalence classes that cabedabstracted. For each equivalence class, if
any element is used with a bit-vector operator excludingagekibn or concatenation, or is compared with a
bit-vector constant, or compared with non-equality relal comparison (such as), we will not abstract
any signals in that equivalence class, since that operaéinnot be modeled in equality logic.

At this point, the only equivalence classes remaining vatitain nodes whose fanouts go into assignments,
conditional assignments, equality (equals, not equatsxivaction/concatenation operators. If any of these
classes have signals of different bit-width, we remove thas from further consideration.

The next step will determine if a consistent term abstractgists for each remaining equivalence class.
The main challenge is in dealing with extractions and cartations.

Let us first consider concatenations. Our approach is té tazcatenations like extractions, by tracking
the sub-intervals that make up the result of a concatenattam example, if we had the assignment
{y1,y2 }, with y1 being 8 bits ang2 being 4 bits, we treat as if it had ranges [11:4] and [3:0] extracted
from it.

Next we compute how extractions refine the bit-range of eaptab

For each equivalence cla&s let the bit-width of any signal in that class be For each bit-vector signal
in &, v, let I; be the set of all ranges extracted fram Thus, I; is a set of sub-intervals of the range

7

[w—1:0].

We take the intersection of all sub-intervals in all sBtsThat results in a maximally refined partitidge
of the intervallw — 1 : 0].

If the transitive fanout of any extraction iy appears in a non-equality comparsion or a bit-vector agtion
operation (other than concatenation), we remove all iatereontained in it fronR¢.

The remaining intervals ik¢ are guaranteed to appear only under equality logic opesatibhese intervals
then make up the maximal term-level abstraction for cfass

3.2.3 Check Type Annotations for Consistency

Finally, we check designer-provided type annotationsreggdihe computed maximal term-level abstraction.

If the intervals that make up the designer’s term-levelralosion are contained within intervals of the com-
puted maximal abstraction, the computed abstraction i®rabstract, so the tool uses it.

However, if some interval in the designer provided annotatverlaps partially with an interval in the
computed maximal abstraction, an error message is gedeidte error message indicates the problematic
annotation along with the extracted portion of the signat th inconsistent with the annotation.

3.2.4 Create UCLID Model

Signals that have associated term abstractions are engotted UCLID model in a straightforward way.
Suppose that the inferred type qualifier for sigioal , corresponding to the maximal term abstraction at the
end of the above steps is:

[@term [wy:w)] [we:wh] ..[wg:w,] */
<stype> [w — 1: 0] foo;

The Verilog signalfoo is transformed into at mofk + 1 UCLID signals, of whichk are TERMvalued
and the rest remain as bit-vector with the number and widtkisese bit-vector variables determined by the
quantitiesw, wy, w, .. ., Wi, W)

Equalities between bit-vector variablesandv; are transformed into a conjunction of equalities between
their corresponding sub-ranges, some of which might beadist to terms and others to bit-vectors.

The following code snippet from the CMP router illustrathe tlata abstraction algorithm. The indi-
cates code irrelevant to the discussion herein.

input [31:0] flitin;
wire [2:0] destx,desty;

assign desty
assign destx

= flitin[4:2];

= flitin[7:5];

assign vc_req_feed = (‘renable) ? 5’b00000 :
(currx < destx) ? 5’b00100 :

(currx > destx) ? 5’b01000 :

(curry < desty) ? 5’b00001 :
(curry > desty) ? 5’b00010 :
5'h10000;

assign enable = (flitin[1:0] == 2'b10);

The extracted portions of signéltin are flitin[1:0] , flitin[4:2] , andflitin[7:5] . The
relevant equivalence classes dfttin ~ }, {flitin[1:0] }, {flitin[7:5], destx, currx }, and
{flitin[4:2], desty, curry }. Sincedestx , desty , currx , andcurry all appear undex and >

comparisons, anflitin[1:0] is compared to a bit-vector constant, none of the latteletleaivalence
classes can be term-abstracted.

Consideré = {flitin}. Then,I; = {[7 : 5],[4 : 2],[1 : 0]}. None of these intervals ify; intersect with
each other, so the maximally refined $&t = {[31 : 8],[7 : 5],[4 : 2],[1 : 0]}. The last three elements of
this set cannot be abstracted (as reasoned above), so yheworining interval inR¢ is [31 : 8].

Thus, the output maximal term abstraction of sidfiith is/+@term [31:8] */.

3.3 Function Abstraction

The abstraction of functional blocks m2ucL is at present rather rudimentary.

Given a module, the designer can annotate the module dectavath the annotation * @uninterpreted
=/ to indicate to the translator to abstract away the inteiogiklin the module and simply treat it ad#-
vector uninterpreted functigrwhich maps the input bit and bit-vector types to the outpubbbit-vector

type.

Note that this treats all module instantiations in a unifavay. An alternative would be to abstract specific
instantiations while leaving others unabstracted, but swesmot yet explored this option.

Note that treating a module as an uninterpreted functios doeimply that the bit-vector inputs or outputs
of the module are abstractedtasn s. Separate annotations will be need to be inferred to peréaiditional
data abstraction.

3.4 Memory Abstraction

Array-typed signals representing memories, queues, anillasidata structures are modeled in UCLID
using a restricted class of lambda expressions, as dedartigection 2. The main challenge in automatic
translation of such signals from Verilog to UCLID is in haimgj the initialization. For example, the array
of input buffers is initialized and updated in Verilog asldwls:

if (reset)
begin
for (i=0; i<'NUMBUFFERS; i=i+1)
buffers[i] <= ‘NAF;
end
else
begin
[* updates to head and tail of queue */

buffers[head] <= nxt_buffers_head,;
buffers[tail] <= nxt_buffers_tail;
end

The corresponding lambda notation in UCLID is compact inrt8alization (the signaleset is the ini-
tialization signal for the whole router design). The logic fixt _buffers _head andnxt _buffers _tail
take care of the cases where the buffer is full or empty.

initfbuffers] := Lambda(i). NAF;
next[buffers] := Lambda(i).
case
i = head : nxt_buffers_head;
i = tail : nxt_buffers_tail;
default : buffers(i);
esac;

If a Verilog array typed signal has a single initializatioalwe (such asuffers above), the designer indi-
cates it by annotating that signal’'s declaration with tidtalization value, facilitating an easy translation
to UCLID.

4 Case Study: CMP Router

We present experimental results with the CMP router deségeribed earliet.
Two UCLID models were created from the CMP router design.

The first model is a purely bit-vector model. The only abgteacperformed in this translation is the model-
ing of input buffers as UCLID-style queues based on lambgaessions [9]; apart from this, the translation
process is a straightforward transliteration of VerilogtdCLID model with purely Boolean and bit-vector
datatypes.

The environment of the router was manually modeled in UCLIBe environment injects one packet onto
each input port, with the destination of the packets modeiedn uninitialized (symbolic) destination field
in the respective head flit; this models scenarios of havaukets destined for different output ports as well
as for the same output port (resulting in contention to belves by the arbiter). Bounded model checking
(BMC) was used to check that starting from a reset state ditmeir correctly forwards both packets to their
respective output ports within a fixed number of cycles tlegeshds on the length of the packet. The packet
with higher priority has its flits directed to its output péam cycle7 onward. If both packets are headed for
the same output ports, the lower priority packet must wadit ati flits of the other packet have been copied
to the output. This property was verified successfully by U using purely bit-vector reasoning. Note
that a purely term-level model of the router generates sparcounterexamples as the correctness depends
on routing logic that performs bit extractions and compmarsson the flit header.

The second model was a hybrid bit-vector and term UCLID motiebenerate this model2ucL was able
to automatically abstract every signal that stores a flitgifine term abstractioh- @term [31:8] */. No
designer guidance was needed.

The abstraction tool and experimental data presented fienade available at http://www.eecs.berkeley.edu/ yvadcl .

10

The times to generate both types of UCLID models from Verdog within a second (approximately the
same).

Experimental Results. We ran experiments with both models for increasing packad. siRecall that
a packet comprises several flits.) For the bit-vector mod€&LID uses its built-in bit-vector decision
procedure. For the hybrid model, UCLID reasons in equatigyid for the term-abstracted signals and with
bit-vector arithmetic for the rest. There were no unintetgd functions in this model, but buffers were
modeled using lambda expressions.

Figure 4 compares the verification run-times for the bitteemodel with those for the hybrid model. We
plot two curves for each type of model: one for the time takernhe SAT solver (MiniSat), and another
for the time taken by UCLID to generate the SAT problem. We s@ that, for the pure bit-vector model,

250 T T I T T T T T T T T T

BV-DP ---x---
HYBRID-SAT ---%---
HYBRID-DP_ -8

Runtime(s)

4 8 12 16 20 24 28 32 36 40 44 48
Flits/Packet

Figure 4:Comparing run times of hybrid and pure bit-vector models for increasing packet size. The
time for the SAT solver is indicated by “SAT” and the time tangeate the SAT problem by “DP.”

the time taken by the SAT solver scales exponentially wittkpasize, whereas that for the hybrid model
increases much more gradually. Using the hybrid versiotieaeb a speed-up of about 16X in SAT time.
The improvement in time to encode to SAT is more modest.

To evaluate whether the improvement was entirely due toctemuin SAT problem size, we plotted the
ratio of speedup in SAT time along with the ratio of reductiorproblem size. These plots are shown in
Figure 5. We can see that the speedup in time does not trackdbetion in problem size (which is largely
constant for increasing packet size), indicating that tigtraction is assisting the SAT engine in other ways.

11

18
SAT ——

vars ——-x-—-
Clauses ------

16

12

BV to Hybrid Ratio

4 8 12 16 20 24 28 32 36 40 44 48
Flits/Packet

Figure 5: Comparing reduction in run-time (denoted “SAT”) vs. reduction in SAT problem size
(“Vars/Clauses”), going from pure bit-vector to hybrid mod els, for increasing packet sizeThe curves
for number of variables and number of clauses coincide.

5 Conclusions

We conclude from our experiments that selected term-lebsfraction on the original model can greatly
reduce verification time. Designers can guide such termtlalstraction through type annotations in the
RTL, which, along with type checking, provides an automagiound technique to generate a selectively
term-abstracted model.

As mentioned earlier in the paper, we found it necessary toually rewrite a bit-level crossbar in the router
Verilog to the word level. The original version was implerteshentirely using bit-level multiplexors that
copy a 32-bit input packet to the output, where each datat irmpa multiplexor was a single bit of a packet.
In rewriting this module at the word-level, the main insigked was that the select inputs to all multiplexors
were the same. We believe that some such “lifting” of desfgm® the bit-level to the bit-vector level can be
automated. For example, the fact that the control inputsh(as the select inputs) to all bit-level modules are
the same can indicate that those modules can be merged imt@devel implementation without sacrificing
soundness.

For future work, it will also be interesting to combine oupéybased approach with a CEGAR approach.

References

[1] Z. S. Andraus, M. H. Liffiton, and K. A. Sakallah. Refinentestrategies for verification methods based on
datapath abstraction. Proceedings of ASP-DAQages 19-24, 2006.

[2] Z. S. Andraus, M. H. Liffiton, and K. A. Sakallah. CEGAR4®d formal hardware verification: A case study.
Technical Report CSE-TR-531-07, University of Michiganayw2007.

12

[3] Z.S. Andraus and K. A. Sakallah. Automatic abstractiad aerification of Verilog models. IRroceedings of
the 41st Design Automation Conference (DAG3ges 218-223, 2004.

[4] A. Biere, A. Cimatti, E. M. Clarke, M. Fuijita, and Y. Zhu. ygbolic model checking using SAT procedures
instead of BDDs. IrDesign Automation Conference (DAQP99.

[5] P. Bjesse. A practical approach to word level model civeglof industrial netlists. In A. Gupta and S. Malik,
editors, Computer-Aided Verificatignvolume 5123 ofLecture Notes in Computer Scienqeages 446—458.
Sprinter-Verlag, 2008.

[6] R. Bruttomesso, A. Cimatti, A. Franzen, A. Griggio, Z. e, A. Nadel, A. Palti, and R. Sebastiani. A lazy
and layered SMT(BV) solver for hard industrial verificatiproblems. InComputer Aided Verification (CAY)
LNCS 4590, pages 547-560, 2007.

[7] R. E. Bryant, S. German, and M. N. Velev. Processor veiiin using efficient reductions of the logic of
uninterpreted functions to propositional logisCM Transactions on Computational Log(1):1-41, January
2001.

[8] R.E.Bryant, D. Kroening, J. Ouaknine, S. A. Seshia, @ic8Btan, and B. Brady. Deciding bit-vector arithmetic
with abstraction. IrlProceedings of Tools and Algorithms for the Constructiod Analysis of Systems (TACAS)
volume 4424 ot ecture Notes in Computer Scienpages 358-372. Springer, 2007.

[9] R. E.Bryant, S. K. Lahiri, and S. A. Seshia. Modeling amdifying systems using a logic of counter arithmetic
with lambda expressions and uninterpreted functions. Briaksma and K. G. Larsen, editoRfoc. Computer-
Aided Verification (CAV'02)LNCS 2404, pages 78-92, July 2002.

[10] J. R. Burch, E. M. Clarke, K. L. McMillan, and D. L. Dill. &uential circuit verification using symbolic model
checking. In28th Design Automation Conferend®91.

[11] J. R. Burch and D. L. Dill. Automated verification of piped microprocessor control. In D. L. Dill, editor,
Computer-Aided Verification (CAV '94)NCS 818, pages 68-80. Springer-Verlag, June 1994.

[12] E. M. Clarke, O. Grumberg, and D. A. Pelddodel CheckingMIT Press, 2000.

[13] B. Cook, D. Kroening, and N. Sharygina. Cogent: Accerdteorem proving for program verification. In
Computer-Aided Verification (CAVpages 296-300, 2005.

[14] J. S. FosterType Qualifiers: Lightweight Specifications to Improve Bafe Quality PhD thesis, University of
California, Berkeley, 2002.

[15] V. Ganesh and D. Dill. A decision procedure for bit-vaastand arrays. I€omputer Aided Verification (CAY)
LNCS 4590, pages 519-531, 2007.

[16] S. Graf and H. Saidi. Construction of abstract statehsawith PVS. In O. Grumberg, editdProc. 9th In-
ternational Conference on Computer Aided Verification (&Y, volume 1254, pages 72—83. Springer Verlag,
1997.

[17] W. A. Hunt. Microprocessor design verificatiodournal of Automated Reasonirtg(4):429-460, 1989.

[18] H. Jain, D. Kroening, N. Sharygina, and E. Clarke. WanEll predicate abstraction and refinement for verifying
RTL Verilog. In Proceedings of the 42nd Design Automation Conference (Pgegjes 445-450, 2005.

[19] P. Johannesen. BOOSTER: Speeding up RTL property amgok digital designs through word-level abstrac-
tion. In Computer Aided Verificatiqr2001.

[20] P. JohannesenSpeeding up hardware verification by automated data pattirgea PhD thesis, Christian-
Albrechts-Universitat zu Kiel, 2002.

[21] S. K. Lahiri and R. E. Bryant. Deductive verification afv@anced out-of-order microprocessors.Piroc. 15th
International Conference on Computer-Aided Verificati@AY), volume 2725 oLNCS pages 341-354, 2003.

[22] P. Manolios and S. K. Srinivasan. Refinement maps fociefit verification of processor models. Design,
Automation, and Test in Europe (DATBpRges 1304-1309, 2005.

[23] L.-S. PehFlow Control and Micro-Architectural Mechanisms for Extiing the Performance of Interconnection
Networks PhD thesis, Stanford University, August 2001.

13

