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Abstract

Term-level verification is a formal technique that seeks to verify RTL hardware descriptions by ab-
stracting away details of data representations and operations. The key to making term-level verification
automatic and efficient is in deciding what to abstract. We investigate this question in this paper and
propose a solution based on the use of type qualifiers. First,we demonstrate through case studies that
only selective term-level abstraction can be very effective in reducing the run-time of formal tools while
still retaining precision of analysis. Second, the term-level abstraction process can be guided using
lightweight type qualifiers. We present an annotation language and type inference scheme that is applied
to the formal verification of the Verilog implementation of achip multiprocessor router. Experimen-
tal results indicate type-based selective term-level abstraction is effective at scaling up verification with
minimal designer guidance.

1 Introduction

Register-transfer-level (RTL) descriptions are often themost authoritative models of a system. It is therefore
essential for formal verification tools to operate at the RTL. Most formal verification tools however, turn the
RTL model into a bit-level model upon which a bit-level technique such as finite-state model checking [10]
is invoked. Employing techniques such as predicate abstraction on the RTL (e.g., [18]) helps to scale the
analysis further for verifying control-dependent properties. However, for proving data-dependent proper-
ties including equivalence or refinement checking, bit-level techniques run into state-space explosion and
predicate abstraction requires far too many predicates, necessitating additional abstraction.

Term-level modelingseeks to make formal verification of data-intensive properties tractable by abstracting
away details of data representations and operations, viewing data as symbolicterms. Term-level abstraction
has been found to be especially useful in microprocessor design verification, using techniques such as term-
level bounded model checking, correspondence checking, refinement verification, and predicate abstraction
of term-level models [11, 17, 21, 22]. The precise functionality of operations of units such as instruction
decoders and the ALU are abstracted away usinguninterpreted functions, and decidable fragments of first-
order logic are employed in modeling memories, queues, counters, and other common constructs (e.g., as
performed in the UCLID verification system [9]). Efficient SAT-based decision procedures for fragments of
first-order logic are used as the computational engines for term-level verifiers.

Simply abstracting all Boolean signals to Boolean variables and all bit-vector signals to terms results in too
abstract a model, in which properties of bit-wise and finite-precision operators are obscured. Dealing with
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this “precision gap” is a significant hurdle to the wider adoption of term-level verification, since manual
abstraction is tedious and error-prone. Thus, the central problem in using term-level abstraction is to decide,
in a sound manner,what to abstract.

Contributions. We propose the use of selective term-level abstraction based on type qualifiers, optionally
guided by designer-provided annotations in the RTL. Our approach complements the use of fast SAT-based
decision procedures for word-level and term-level reasoning. We demonstrate our approach on the RTL
description of a chip multiprocessor router. The presentedapproach is lightweight, requiring very little work
on the part of the designer, with very few annotations sufficing to reduce the verification time substantially.
The light annotation burden is made possible by use of automated type inference. These rules check that
the designer-specified term abstractions can be applied safely, and infer all the signals to which the term
abstraction can be propagated. Experimental results indicate that type-based selective term-level abstraction
can be very effective at scaling up verification.

Outline. In Section 2, we review background material and related work. We describe the type annotation
language in Section 3 along with an automatic technique for transforming annotated Verilog code to a
combined word-level (bit-vector) and term-level model forthe UCLID verifier [9]. Experimental results
on the Verilog design of a chip multiprocessor router [23] demonstrate how our approach can speed up
verification.

2 Background and Related Work

Word-level modelingof designs involves representing control signals as Boolean variables, data as bit-vector
variables, and memories as arrays of bit-vector variables.Verification of a word-level model can be per-
formed in two ways. The first method is to turn all bit-vector variables into a vector of Boolean variables
of the defined size, thus creating an entirely bit-level netlist. Standard finite-state model checking tech-
niques [12] can be used on the resulting netlist.

Recently, however, efficient SAT-based decision procedures have been developed for finite-precision bit-
vector arithmetic (e.g., [6, 8, 13, 15]). These procedures reason at a level of abstraction higher than the
bit level by the use of word-level simplification rules and abstraction-refinement techniques. Verification
methods such as bounded model checking [4] and predicate abstraction [16] are thus performed efficiently
at the word level (e.g., [18]). However, since most word-level techniques are ultimately based on bit blasting
to SAT, it is often necessary to raise the level of abstraction still higher to speed up verification.

Term-level modeling offers a higher level of abstraction. There are three elements of term-level modeling:
data abstraction, function abstraction, and memory abstraction. Data abstraction involves treating bit-
vector expressions as abstract terms that are interpreted over a suitable domain (typically a subset ofZ).
In function abstraction, bit-vector operators and modulescomputing bit-vector values are treated as “black-
box,” uninterpreted functions constrained only by functional consistency: that they must evaluate to the same
values on the same arguments. Finally, in memory abstraction, memories and data structures are modeled in
a suitable theory of arrays or memories, such as by the use of specialread andwrite functions [11].

In essence, term-level modeling involves representing thesystem in fragments of first-order logic rather than
in propositional logic. The subset of first-order logic commonly used today includes acombination of three
first-order theories:the theory of equality and uninterpreted functions (EUF), integer linear arithmetic, and
a suitable theory of arrays. UCLID [9] is a system for the term-level modeling and verification of systems
represented in this subset of first-order logic, with arraysbeing modeled with restricted lambda expressions.
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UCLID now also supports the theory of finite-precision bit-vector arithmetic [8], thus allowing a combina-
tion of term-level and word-level modeling, which we exploit in this paper. The verification techniques of
particular interest to us in this paper are bounded model checking and checking an implementation design
refines its specification. An instance of the latter is correspondence checking of pipelined processors [11].

The Reveal system automatically generates term-level models from Verilog [2]. The underlying logic for
term-level modeling in Reveal is CLU, which originally formed the basis for the UCLID system [9], and
which is a strict subset of the afore-mentioned combinationof theories. Reveal uses a counterexample-
guided abstraction-refinement (CEGAR) approach [1, 3]. It starts by completely abstracting a Verilog de-
scription to CLU. Next, it attempts to verify correctness ofthe abstracted design. If the verification succeeds,
it terminates. However, if the verification fails, Reveal checks whether the counterexample is spurious using
a bit-vector decision procedure. If the counterexample is spurious, a set of bit-vector facts are derived and
used on the next iteration of term-level verification. If not, the system terminates, having found a bug.

The CEGAR approach has shown very promising results [2]. In some cases, however, several abstraction-
refinement iterations are needed to infer fairly straightforward properties of data, thus imposing a significant
overhead. For instance, in one of our examples, a chip multiprocessor router [23], the header field of a packet
must be extracted and compared several times to determine whether the packet is correctly forwarded. If any
one of these extractions is not modeled precisely at the word-level, a spurious counterexample results. Thus,
the translation is complicated by the need to instantiate relations between individually accessed bit fields of
a word modeled as a term using special uninterpreted functions to represent concatenation and extraction
operations.

Our approach to term-level abstraction is distinct from that of Andraus and Sakallah, yet complementary.
We propose the use of type annotations provided by the designer to guide the creation of an initial sound
abstraction. If the designer-provided annotations are incorrect, a type checker emits warnings and avoids
performing the specified abstractions. A CEGAR approach canthen be employed on the output of the
proposed type-based approach.

Johannesen presented an automated bitwidth reduction technique which was used to scale down design sizes
for RTL property checking [19, 20]. A static data-flow technique is used to partition the datapath signals
based on the usage of the individual bits. Bits that are used in a symmetric way are abstracted to take
the same value, while preserving satisfiability. As with theapproach we present, one is able to compute a
satisfying assignment for the original circuit from a satisfying assignment of the reduced circuit.

More recently, Bjesse presented a technique which is an extension to Johannesen’s work [5]. The main
difference is that Bjesse includes the partitioning of the initial states, ensures that the current- and next-state
partitions correspond, and bitblasts operators such as inequalities which are left untouched in Johannesen’s
work.

Our work, developed concurrently with and independent of Bjesse’s [5], is different from that work and
Johannesen’s [19,20] in that our abstraction is not limitedto merely reducing bitwidths of variables. Instead,
we encode the different partitions of the circuit in different logical theories. In this paper, we use two
theories: finite-precision bit-vector arithmetic (BV) andthe logic of equality with uninterpreted functions
(EUF), but the ideas are not restricted to BV and EUF. The use of logical theories allows us to use one of
several techniques to encode abstracted variables, not just a single procedure; e.g., we are able to use for
EUF the technique of positive equality [7] that encodes somevariables into the SAT problem with constant
values. Furthermore, neither Johannesen’s nor Bjesse’s reduction technique has a way to incorporate user
insight for abstraction. In our work, we allow the user to usetype qualifiers to convey his/her intuition as
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to how the circuit should be abstracted. If the computed abstraction does not coincide with the designer’s
intuition, our tool will warn the user and generate suitablefeedback. The output from our tool can guide the
user to write annotations or rewrite the RTL in a way that substantially reduces verification effort. As we
will see with an example in this paper, sometimes a small rewrite of the original code can achieve a large
reduction in verification time.

3 Type Qualifiers for Term-Level Abstraction

We propose the use oftype qualifiersto guide the process of abstracting to the term-level. Type qualifiers are
widely used in the static analysis of software [14], from finding security vulnerabilities to the detection of
races in concurrent software, to enable programmers to easily guide the analysis. Even standard languages
such as C and Java have keywords such as “const” that qualify standard types such asints.

In our case, type qualifiers indicate what can and cannot be abstracted to a fragment of first-order logic
supported by the term-level verifier. Their widespread effectiveness in software leads us to believe that they
would be effective in incorporating a designer’s insights for abstraction, without placing an undue burden on
the designer. The simplest form of type qualifier specifiesdata abstraction. In data abstraction, we specify
that part of a bit-vector signal must be treated as an uninterpretedterm. The designer can also indicate that
a module is to be treated asuninterpreted, which is function abstraction. Finally, memories and data
structures such as queues can also be abstracted by use of UCLID-style lambda expressions [9].

Our approach is depicted in Figure 1. We start with Verilog RTL, the specification to be verified, and, option-

RTL

UCLID
model

v2ucl

UCLID

SAT engine

Counterexample
Valid/

Spec.

User provided
type annotations

type checker
warnings

Verilog

Figure 1:Overview of Term-Level Abstraction. The dashed lines indicate optional input and output.

ally, with designer-provided type qualifier annotations. The Verilog-to-UCLID abstraction toolV2UCL then
performs type inference and type checking. If the designer-provided annotations are inconsistent, warnings
are generated, which indicate to the designer what she needsto fix. Otherwise,V2UCL automatically creates
a hybrid term and bit-vector UCLID model, with the specification included in it. The designer can now run
UCLID (which uses off-the-shelf SAT engines) and evaluate whether the design satisfies its specification.

The type qualifiers are currently specified in Verilog insidecomments, similar to javadoc notation. Rather
than using a formal notation for the type qualifiers, we will use this the comment-style notation throughout
the paper.
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We next describe below the three forms of abstraction and howthey are implemented inV2UCL. We illus-
trate the different kinds of abstraction with code snippetsfrom the Verilog description of a chip multipro-
cessor (CMP) router design. We begin with a quick overview ofthis design.

3.1 CMP Router

The chip multiprocessor router design [23] is part of the on-chip interconnection network that connects
processor cores with memory and with each other. The design comprises over 1000 lines of Verilog. The
original router design has five input ports and five output ports, which we reduced to two input/output ports
for this case study. The router’s function is to direct incoming packets to the correct output port. Each packet
is made up of smaller components, calledflits. There are three kinds of flits: ahead flit, which reserves an
output port, one or morebody flits, that contain the data payload, and atail flit , which signals the end of the
packet. Figure 2 depicts the structure of a flit: the lower 8 bits (the header) determine the type of flit and its
destination, while the top 24 bits store data.

type = 10 for head flit, 01 for tail flit, 00 for body flit

data dest

type

2624 bits

Figure 2:Anatomy of a flit. Each flit is 32 bits long.

There are four main modules of the router, as shown in Figure 3. The first module, called theinput controller,

input
port 0

input
port 1

output port 0

output port 1

req

resp

alloc

select

flit 0

flit 1

INPUT
CONTROLLER

BUF0

BUF1

ENCODERARBITER

CROSSBAR

Figure 3:Chip multiprocessor router block diagram. There are four main modules: the input controller,
the arbiter, the encoder, and the crossbar.

buffers incoming flits, determines their destination port,and interacts with anarbiter module in order to
reserve an output port. In Peh’s design, the reservation of an output port is performed on receipt of a head
flit. Thereafter, all body flits and tail flits are directed to the output port without incurring any further latency.
The arbiter is fair, assigning priorities to input ports based on a simple round-robin scheme. The remaining
modules are theencoderandcrossbar, which contain logic to copy flits to the output port from the input
port that has been assigned that output port.

We modified the crossbar implementation for this case study.The original implementation forwarded every
bit of a flit individually, thereby eliminating any scope forperforming data abstraction. We rewrote it to a
word-level crossbar in a few minutes and then checked its equivalence with the bit-level version using the
SMV model checker. We believe that this rewriting can be automated and will return to discuss this point in
Section 5.
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3.2 Data Abstraction

The term abstraction of a bit-vector Verilog signalfoo of width w is specified as follows:

/ * @term [ w1 : w′

1
] [ w2 : w′

2
] ...[ wk : w′

k
] * /

<stype> [ w − 1: 0] foo;

where<stype> is input , output , wire , or reg , and the ranges[ w1 : w′

1
], [ w2 : w′

2
], ..., [ wk :

w′

k
] are non-overlapping sub-ranges of[ w − 1: 0] .

In our experience, it is often the case thatk = 1, meaning that either the entire word is abstracted as a term,
or a single part of the word is abstracted.

The / * @term ... * / qualifier is always associated with an underlying logic of term-level abstraction.
Thus, theterm qualifier associates a set of allowed (legal) operations with each abstracted term, where that
set of operations is the set of function symbols in the associated logic.

For our current implementation, the/ * @term ... * / qualifier specifies that the abstracted term is inthe
logic of equality and uninterpreted functions(EUF). In other words, the only legal operations on that term
are copying, tests for equality or disequality, or as arguments to uninterpreted functions. This is not an
inherent restriction of the type qualifier approach; we planto consider other fragments of first-order logic in
the future.

Given the Verilog RTLM, optionally annotated with type qualifiers as given above, and a specificationS,
V2UCL performs an automatic analysis in the following steps:

1. Compute Equivalence Classes:Partition the set of signals and their extracted portions into equivalence
classes such that signals that appear together in assignments, relational comparisons, or functional
operations inM or S end up in the same equivalence class.

2. Compute Maximal Term Abstraction:For each equivalence class, we compute the maximal term
abstraction (defined in Section 3.2.2) that is common to all signals in that equivalence class.

3. Check Type Annotations for Consistency:If the designer has provided any type annotations, we check
those for consistency with the computed abstraction. If thedesigner’s annotations are more abstract,
an error message is generated. If they are less abstract, thetool uses the automatically inferred ab-
straction, unless the bit-vector portion to be extracted istoo small (currently heuristically set to 4
bits).

4. Create UCLID Model: Signals that have associated term abstractions are encodedin the UCLID
model with combinations of term and bit-vector variables, and a hybrid UCLID model is generated
and verified.

We describe each of these stages in more detail in Sections 3.2.1-3.2.4 below.

3.2.1 Compute Equivalence Classes

This step is performed by computing equivalence classes of bit-vector expressions defined in the RTL with
the goal of giving signals in the same equivalence class the same term abstraction.
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We first pre-process the input file to identify all bit-vectorexpressions appearing in the Verilog. Each of
these will be termed anode. Some nodes are signals.

Then the process of constructing equivalence classes begins.

First, each bit-vector node is placed in its own singleton equivalence class. Denote the equivalence class
containingvi by E(vi).

Next, equivalence classes are merged according to the following rules, applied to expressions in both the
Verilog RTLM and the specificationS to be verified:

1. Assignment:If vi is assigned the value ofvj in a combinational or sequential assignment, then we merge
E(vi) andE(vj).
If vi is assigned the value ofvj or vk conditioned on the value of a Boolean signal, then we merge classes
E(vi), E(vj), andE(vk).

2. Relational Comparison:If vi andvj are compared by a relational operator for equality or relative order-
ing, then we mergeE(vi) andE(vj).

3. Other Operations:If vi1 , vi2 , . . ., vin appear as operands to the same word-level arithmetic or bit-wise
operator, we merge the equivalence classesE(vij ) for 1 ≤ j ≤ n.

Note that it is important to include the specificationS also in the analysis, since, e.g., arithmetic operations
might be performed on a node in theS even if it is not performed in the RTL.

3.2.2 Compute Maximal Term Abstraction

For each equivalence class, we compute themaximal term abstractioncommon to all signals in that equiv-
alence class. The maximal term abstraction for a signalv with range[w − 1 : 0] is a sequence of non-
overlapping sub-intervals [w1 : w′

1
], [w2 : w′

2
], . . . , [wk : w′

k] of [w − 1 : 0] such that the fanouts of those
extractions ofv do not appear in any bit-vector arithmetic operation, but those of the extractions[w,w1],
[w′

1
, w2], . . ., [w′

k, 0] do (and hence the latter intervals cannot be abstracted to terms).

The first step is to filter out equivalence classes that cannotbe abstracted. For each equivalence class, if
any element is used with a bit-vector operator excluding extraction or concatenation, or is compared with a
bit-vector constant, or compared with non-equality relational comparison (such as<), we will not abstract
any signals in that equivalence class, since that operationcannot be modeled in equality logic.

At this point, the only equivalence classes remaining will contain nodes whose fanouts go into assignments,
conditional assignments, equality (equals, not equals), or extraction/concatenation operators. If any of these
classes have signals of different bit-width, we remove thatclass from further consideration.

The next step will determine if a consistent term abstraction exists for each remaining equivalence class.
The main challenge is in dealing with extractions and concatenations.

Let us first consider concatenations. Our approach is to treat concatenations like extractions, by tracking
the sub-intervals that make up the result of a concatenation. For example, if we had the assignmenty =

{y1,y2 }, with y1 being 8 bits andy2 being 4 bits, we treaty as if it had ranges [11:4] and [3:0] extracted
from it.

Next we compute how extractions refine the bit-range of each signal.

For each equivalence classE , let the bit-width of any signal in that class bew. For each bit-vector signal
in E , vj , let Ij be the set of all ranges extracted fromvi. Thus,Ij is a set of sub-intervals of the range
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[w − 1 : 0].

We take the intersection of all sub-intervals in all setsIj . That results in a maximally refined partitionRE

of the interval[w − 1 : 0].

If the transitive fanout of any extraction inIj appears in a non-equality comparsion or a bit-vector arithmetic
operation (other than concatenation), we remove all intervals contained in it fromRE .

The remaining intervals inRE are guaranteed to appear only under equality logic operations. These intervals
then make up the maximal term-level abstraction for classE .

3.2.3 Check Type Annotations for Consistency

Finally, we check designer-provided type annotations against the computed maximal term-level abstraction.

If the intervals that make up the designer’s term-level abstraction are contained within intervals of the com-
puted maximal abstraction, the computed abstraction is more abstract, so the tool uses it.

However, if some interval in the designer provided annotation overlaps partially with an interval in the
computed maximal abstraction, an error message is generated. The error message indicates the problematic
annotation along with the extracted portion of the signal that is inconsistent with the annotation.

3.2.4 Create UCLID Model

Signals that have associated term abstractions are encodedin the UCLID model in a straightforward way.

Suppose that the inferred type qualifier for signalfoo , corresponding to the maximal term abstraction at the
end of the above steps is:

/ * @term [ w1 : w′

1
] [ w2 : w′

2
] ...[ wk : w′

k
] * /

<stype> [ w − 1: 0] foo;

The Verilog signalfoo is transformed into at most2k + 1 UCLID signals, of whichk areTERMvalued
and the rest remain as bit-vector with the number and widths of these bit-vector variables determined by the
quantitiesw,w1, w

′
1
, . . . , wk, w

′

k.

Equalities between bit-vector variablesvi andvj are transformed into a conjunction of equalities between
their corresponding sub-ranges, some of which might be abstracted to terms and others to bit-vectors.

The following code snippet from the CMP router illustrates the data abstraction algorithm. The... indi-
cates code irrelevant to the discussion herein.

input [31:0] flitin;
...
wire [2:0] destx,desty;
...
assign desty = flitin[4:2];
assign destx = flitin[7:5];
...
assign vc_req_feed = (˜renable) ? 5’b00000 :
(currx < destx) ? 5’b00100 :
(currx > destx) ? 5’b01000 :
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(curry < desty) ? 5’b00001 :
(curry > desty) ? 5’b00010 :
5’b10000;
...
assign enable = (flitin[1:0] == 2’b10);

The extracted portions of signalflitin are flitin[1:0] , flitin[4:2] , and flitin[7:5] . The
relevant equivalence classes are{flitin }, {flitin[1:0] }, {flitin[7:5], destx, currx }, and
{flitin[4:2], desty, curry }. Sincedestx , desty , currx , andcurry all appear under< and>

comparisons, andflitin[1:0] is compared to a bit-vector constant, none of the latter three equivalence
classes can be term-abstracted.

ConsiderE = {flitin}. Then,Ij = {[7 : 5], [4 : 2], [1 : 0]}. None of these intervals inIj intersect with
each other, so the maximally refined setRE = {[31 : 8], [7 : 5], [4 : 2], [1 : 0]}. The last three elements of
this set cannot be abstracted (as reasoned above), so the only remaining interval inRE is [31 : 8].

Thus, the output maximal term abstraction of signalflitin is / * @term [31:8] * / .

3.3 Function Abstraction

The abstraction of functional blocks byV2UCL is at present rather rudimentary.

Given a module, the designer can annotate the module declaration with the annotation/ * @uninterpreted

* / to indicate to the translator to abstract away the internal logic in the module and simply treat it as abit-
vector uninterpreted function, which maps the input bit and bit-vector types to the output bit or bit-vector
type.

Note that this treats all module instantiations in a uniformway. An alternative would be to abstract specific
instantiations while leaving others unabstracted, but we have not yet explored this option.

Note that treating a module as an uninterpreted function does not imply that the bit-vector inputs or outputs
of the module are abstracted asterm s. Separate annotations will be need to be inferred to perform additional
data abstraction.

3.4 Memory Abstraction

Array-typed signals representing memories, queues, and similar data structures are modeled in UCLID
using a restricted class of lambda expressions, as described in Section 2. The main challenge in automatic
translation of such signals from Verilog to UCLID is in handling the initialization. For example, the array
of input buffers is initialized and updated in Verilog as follows:

if (reset)
begin

for (i=0; i<‘NUMBUFFERS; i=i+1)
buffers[i] <= ‘NAF;

end
else

begin
/ * updates to head and tail of queue * /
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buffers[head] <= nxt_buffers_head;
buffers[tail] <= nxt_buffers_tail;

end

The corresponding lambda notation in UCLID is compact in itsinitialization (the signalreset is the ini-
tialization signal for the whole router design). The logic for nxt buffers head andnxt buffers tail

take care of the cases where the buffer is full or empty.

init[buffers] := Lambda(i). NAF;
next[buffers] := Lambda(i).

case
i = head : nxt_buffers_head;
i = tail : nxt_buffers_tail;
default : buffers(i);

esac;

If a Verilog array typed signal has a single initialization value (such asbuffers above), the designer indi-
cates it by annotating that signal’s declaration with that initialization value, facilitating an easy translation
to UCLID.

4 Case Study: CMP Router

We present experimental results with the CMP router design described earlier.1

Two UCLID models were created from the CMP router design.

The first model is a purely bit-vector model. The only abstraction performed in this translation is the model-
ing of input buffers as UCLID-style queues based on lambda expressions [9]; apart from this, the translation
process is a straightforward transliteration of Verilog toa UCLID model with purely Boolean and bit-vector
datatypes.

The environment of the router was manually modeled in UCLID.The environment injects one packet onto
each input port, with the destination of the packets modeledby an uninitialized (symbolic) destination field
in the respective head flit; this models scenarios of having packets destined for different output ports as well
as for the same output port (resulting in contention to be resolved by the arbiter). Bounded model checking
(BMC) was used to check that starting from a reset state, the router correctly forwards both packets to their
respective output ports within a fixed number of cycles that depends on the length of the packet. The packet
with higher priority has its flits directed to its output portfrom cycle7 onward. If both packets are headed for
the same output ports, the lower priority packet must wait until all flits of the other packet have been copied
to the output. This property was verified successfully by UCLID using purely bit-vector reasoning. Note
that a purely term-level model of the router generates spurious counterexamples as the correctness depends
on routing logic that performs bit extractions and comparisons on the flit header.

The second model was a hybrid bit-vector and term UCLID model. To generate this model,V2UCL was able
to automatically abstract every signal that stores a flit using the term abstraction/ * @term [31:8] * / . No
designer guidance was needed.

1The abstraction tool and experimental data presented here is made available at http://www.eecs.berkeley.edu/˜bbrady/v2ucl .
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The times to generate both types of UCLID models from Verilogare within a second (approximately the
same).

Experimental Results. We ran experiments with both models for increasing packet size. (Recall that
a packet comprises several flits.) For the bit-vector model,UCLID uses its built-in bit-vector decision
procedure. For the hybrid model, UCLID reasons in equality logic for the term-abstracted signals and with
bit-vector arithmetic for the rest. There were no uninterpreted functions in this model, but buffers were
modeled using lambda expressions.

Figure 4 compares the verification run-times for the bit-vector model with those for the hybrid model. We
plot two curves for each type of model: one for the time taken by the SAT solver (MiniSat), and another
for the time taken by UCLID to generate the SAT problem. We cansee that, for the pure bit-vector model,
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Figure 4:Comparing run times of hybrid and pure bit-vector models for increasing packet size. The
time for the SAT solver is indicated by “SAT” and the time to generate the SAT problem by “DP.”

the time taken by the SAT solver scales exponentially with packet size, whereas that for the hybrid model
increases much more gradually. Using the hybrid version achieves a speed-up of about 16X in SAT time.
The improvement in time to encode to SAT is more modest.

To evaluate whether the improvement was entirely due to reduction in SAT problem size, we plotted the
ratio of speedup in SAT time along with the ratio of reductionin problem size. These plots are shown in
Figure 5. We can see that the speedup in time does not track thereduction in problem size (which is largely
constant for increasing packet size), indicating that the abstraction is assisting the SAT engine in other ways.
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5 Conclusions

We conclude from our experiments that selected term-level abstraction on the original model can greatly
reduce verification time. Designers can guide such term-level abstraction through type annotations in the
RTL, which, along with type checking, provides an automatic, sound technique to generate a selectively
term-abstracted model.

As mentioned earlier in the paper, we found it necessary to manually rewrite a bit-level crossbar in the router
Verilog to the word level. The original version was implemented entirely using bit-level multiplexors that
copy a 32-bit input packet to the output, where each data input to a multiplexor was a single bit of a packet.
In rewriting this module at the word-level, the main insightused was that the select inputs to all multiplexors
were the same. We believe that some such “lifting” of designsfrom the bit-level to the bit-vector level can be
automated. For example, the fact that the control inputs (such as the select inputs) to all bit-level modules are
the same can indicate that those modules can be merged into a word-level implementation without sacrificing
soundness.

For future work, it will also be interesting to combine our type-based approach with a CEGAR approach.
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