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ABSTRACT
In this work we present new in-network techniques for
communication-efficient approximate query processing
in wireless sensornets. We use a model-based approach
that constructs and maintains a spanning tree within
the network, rooted at the basestation. The tree main-
tains compressed summary information for each link
that is used to “stub out” traversal during query pro-
cessing. Our work is based on a formal model of the
in-network tree construction task framed as an opti-
mization problem. We demonstrate hardness results for
that problem, and develop efficient approximation algo-
rithms for subtasks that are too expensive to compute
exactly. We also propose efficient heuristics to accom-
modate a wider set of workloads, and empirically evalu-
ate their performance and sensitivity to model changes.

1. INTRODUCTION
Query processing has received significant attention in

recent research on wireless sensor networks (“sensor-
nets”) [13]. As is well known, communication is one of
the most expensive operations in a sensornet [2], so var-
ious query processing techniques have been proposed to
minimize communication. Model-based data acquisition
is a particularly promising approach to address this is-
sue [6]. It uses historical information gathered from the
network to predict rough query answers from a prob-
abilistic model, and decides which data is worth gath-
ering from the network at query time to augment that
model sufficiently to meet a desired accuracy bound.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
.

Given a chosen set of data to gather, path planning al-
gorithms [17] compute an efficient distributed strategy
to retrieve the data needed to augment the model. This
model-based approach relies upon information stored at
a central location. Centralized models can make ac-
curate predictions – assuming that the centrally main-
tained model is accurate – but suffer from unexpected
events like node and link failures in the network. Given
the distributed nature of sensornets, a natural advance
upon the early model-based work is to move this pro-
cessing into the network.

In this model-based setting, the focus is on providing
approximate answers to queries. Approximate queries
are well suited to sensornet settings because perfect ac-
curacy is both hard to achieve, and typically unneces-
sary. Physical sensors provide a spatially discrete and
thus approximate view of the continuous physical phe-
nomena they are used to monitor. Physical sensing also
induces measurement errors, due to device imperfec-
tions, calibration problems, and physical stresses like
dirt and heat. As a result, most users of sensornet ap-
plications understand that total accuracy of reported
values is unnecessary. Approximate queries allow some
uncertainty in the reported result, typically character-
ized by two parameters: a window w of accuracy for the
answer and a confidence limit δ that is expected to be
satisfied. An example of such a query is the following:
“Return the temperature at each sensor node, within
±1◦C with 95% confidence”. Our focus will be on these
“SELECT *” queries, that return a reading from each of
the sensors in a field.

Our work adopts a model-based approach to approx-
imation [6], but moves the implementation to an in-
network setting, where the models can stay more eas-
ily up-to-date, pre-processing of routing paths at query
runtime can be eliminated, and failures on routing paths
are no longer crucial. We propose the use of a carefully
designed in-network spanning tree to minimize the com-
munication required to return a robust estimate of the



value reported by each sensor node. This tree is rooted
at a base station, with Gaussian models stored at each
node in the tree, one per child of the node. Queries
are answered by traversing to a depth in the tree where
the summaries provide sufficient information to answer
a query within a specified window of accuracy.

We break this problem into individual tasks which we
discuss in the corresponding sections. First, we provide
a formal definition of the problem of optimal in-network
summaries. Second, we present an efficient Gaussian-
based compression scheme that is geared towards mini-
mizing erroneous reporting of values, which can be op-
timized based on query workload. Third, we present
query traversal algorithms that utilize the compression
scheme to make routing decisions and give value esti-
mates with limited communication. Our work is grounded
in formal hardness results for the optimal in-network
summary problem, along with approximation algorithms
for a basic query processing scenario. Given this formal
basis, we expand the set of scenarios we consider to a
more practical setting, using a set of intuitive heuris-
tics. We conclude with an experimental evaluation of
the sensitivity of our approach to changes in the data
and query workload.

1.1 Paper Outline
This paper is organized as follows: In Section 2 we de-

fine our in-network summaries, discuss their optimality
and move on to Section 3 to talk about how they should
be compressed to meet storage constraints. Section 4
discusses how sensornet queries can benefit from a given
in-network summary scheme to run more efficiently, and
our query traversal algorithm is evaluated against an
optimal strategy. In Section 5, we use the results of
Sections 2, 3 and 4, to explore the space of in-network
summaries, formally define the problem of finding the
optimal one, and give hardness results and approxima-
tion algorithms. The algorithms are extended to a dis-
tributed setting and are evaluated against their central-
ized versions. Section 5.4 further expands the results to
optimize the summary structure for a variety of work-
loads, and an evaluation of the scheme is given against
a larger workload range. Finally, Section 6 presents an
evaluation of the sensitivity of in-network summaries to
changes in the underlying data.

1.2 Related Work
The idea of Semantic Routing Trees was proposed in

[15] as an overlay index in the network, to allow for
routing decisions to those leaves relevant to the query.
Our in-network summaries go further, maintaining sum-
maries of the data at different tree levels to allow for re-
duction in communication. The use of summaries for
query processing has been examined in different set-

tings. GHTs ([19]) propose storing and retrieving net-
work information using Geometric Hash Tables, and
Distributed Quadtrees ([5]) overlay quadtree structures
over WSNs to satisfy distance sensitive spatial queries.

Our in-network summaries aim on using models dis-
tributed in the network to make query processing more
cost efficient. The same objective was tackled by cen-
tralized approaches: In [6], the BBQ system is pre-
sented, which proposes a model-driven scheme to pro-
vide approximate answers to queries posed in a sensor
network, satisfying some information guarantees. [17,
18] also focus on a centralized approach, where all the
decisions and planning are performed at a basestation
node, and heuristics are given to cope with unexpected
network behavior.

The TinyDB system [16], which is largely used for
data collection in sensor networks, uses spanning trees
for the data retrieval, but does not rely on any other
in-network data to optimize queries. Maintaining data
in the network is the focus of distributed storage ([7]).
Several different coding schemes are developed for stor-
ing information in the network, but the goal in this case
is to make the data resilient to failures and not to op-
timize query execution. A similar tactic is employed by
the SPIN protocol [10, 12], which disseminates data in
the network, so that a user posing a query at different
locations can immediately get back results.

In terms of data gathering, directed diffusion ([11])
is a data centric approach that sets up gradients from
data sources to the basestation, forming paths of infor-
mation flow, which also perform aggregation. Rumor
Routing ([4]), uses long lived agents that create and
redirect paths to events they encounter.

In this work we will focus on “select *” type queries,
but there has been significant work on in-network aggre-
gation. TAG ([14]) implements simple aggregates using
the initializer, merging and evaluator functions. Aggre-
gation in adversarial settings is examined in [9].

2. OPTIMAL IN-NETWORK SUMMARIES
In this section we focus on the type of data summaries

that we need to maintain to optimize queries in a sen-
sornet setting and give a definition of optimality for that
scheme. We then define the problem of data compres-
sion and treat it from the standpoint of the query work-
load.

Our workload consists of“SELECT *”style queries that
request the approximate values of multiple sensors, with-
out aggregation. The approximation bounds are defined
by an accuracy window w and confidence limit δ. For
a query that has parameters (w, δ), and cardinality k,
then on expectation, δk true answers will be within ±w
of the reported answers. Depending on the values of w
and δ, a query can range from being very loose to very



strict in terms of accuracy. The smaller the window,
and the higher the confidence, the stricter the query
becomes, demanding more accurate results.

In order to answer queries in a sensor network setting
using information residing in the network, we introduce
“in-network summaries”, or “spanning summary trees”.
An in-network summary is a spanning tree of the net-
work, in which every node stores a model of the data in
each of the subtrees it points to. As the subtrees become
smaller in the lower levels of the hierarchy, the models
become finer and more precise. A query using that hi-
erarchy can explore the structure starting from the root
and going only as deep as is necessary to provide an-
swers of good quality. We want to optimize this tree
structure with the objective of minimizing the commu-
nication cost of answering queries. The guarantee that
we want to achieve is that for n data nodes the query
will produce at least δn answers that are within w dis-
tance of their actual value.

Definition 1. An in-network summary (or spanning
summary tree) over a network graph G(V,E) is a span-
ning tree T (V,E′), E′ ⊆ E, augmented with models Mv,
∀v ∈ V . Mv is stored in the node p that is the parent of
v, i.e., (p, v) ∈ E.

We are given a network graph G(V,E) and a query
workload W = {Qi(wi, δi)}. We will use Mv to sym-
bolize the model information kept for node v. Then the
optimization problem of finding the optimal in-network
summary can be defined as follows:

Given: GraphG(V,E), query workloadW = {Qi(wi, δi)}
Find: Tree T = G′(V,E′) and models Mv, ∀v ∈ V ,

such that the average communication cost required
to retrieve values to respond to Qi ∈ W is mini-
mized

Our design choices for the in-network summaries should
preserve the following requirements:

Compactness: Due to storage limitations at the sensor
level summary models Mv need to be small.

Informativeness: The summaries should be as infor-
mative as possible so that queries can be answered
by accessing as few of them as possible.

Accuracy: The summaries should not lead to inaccu-
rate query answers, i.e. the confidence bounds re-
turned by examining summaries should correctly
reflect the probability of the answers falling within
the accuracy window.

3. MODEL COMPRESSION
To get started, in this section we focus on one part

of the in-network summary problem: the construction

of models at each node. For this discussion, we assume
temporarily that the structure of the tree T is given,
and we want to pick the best model Mv, ∀v ∈ T . We
will revisit the structure of T in Section 5.

Many models could be maintained in a spanning sum-
mary tree, but in keeping with prior work we assume
a gaussian (normal) model. For the modeling of in-
put readings gaussian models are typically appropriate,
since they successfully capture the nature of noisy mea-
surements of physical phenomena ([3]). Therefore, for
all leaves in T the model Mv will be a gaussian distribu-
tion based on observations of that node’s measurements.
Now, when a data summary needs to represent multi-
ple sensors, a natural extension is to use gaussian mix-
tures, which can be of restricted size to comply with the
storage limitations that sensor nodes have. A gaussian
k-mixture refers to a mixture of k gaussians.

Assuming for simplicity that T has fixed fanout F ,
data resides at the leaves represented by the single gaus-
sian distributions, and every internal node keeps F pairs
of (childptr, gaussian k-mixture), then our “data struc-
ture” closely resembles a database index. Given a spec-
ified spanning tree T , we can imagine “bulk loading” the
models Mv with a bottom-up construction, combining
gaussian mixtures as we climb up the hierarchy. In this
approach, mixtures high in the tree will be quite large.
Since we need to keep the size restricted, we need to
have a method for compressing the mixtures, otherwise
called “collapsing”.

In the problem of compression, our input is a mixture
(set) of l gaussian distributions, and our output a k-size
mixture, k < l. The parameter k is dictated by the
amount of storage space assigned to the model on every
node, and it is not required to be the same on each one of
them. We will first address the problem for the simple
case of k = 1, assuming that the summary hierarchy
keeps a single gaussian distribution as a model of all the
sensors in each subtree. In Section 5.5 we will revisit the
compression model and explore generalizations to larger
k.

During query execution, the only information that we
have for a certain subtree is its collapsed distribution. In
the case of a single-gaussian compression model (k = 1)
the answers that this summary in the tree can provide
is to report the mean µ of the summary as the answer
for all nodes represented by the subtree. Intuitively, our
goal is:

Given: A set of distributions S = {N(µi, σ2
i )}

Find: Distribution N(µ, σ2) that maximizes informa-
tiveness and accuracy over the original set S.

In the above description, informativeness and accuracy
are not clearly defined. Before we can proceed, we need
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Figure 1: Two distributions (dashed lines) representing values
of 2 sensor nodes, that happen to have no overlap. Collapsing
using KL divergence produces a distribution (solid line) that con-
tains significant mass in an interval that the original distributions
contained almost none.

to formalize these concepts in a way that captures the
approximation guarantees we provide for queries.

To understand the meaning of these terms in this con-
text, some intuition is useful. Consider the following
natural but misleading example. A common approach
in collapsing gaussian mixtures is to minimize some dis-
tance function (e.g. KL divergence) of the collapsed dis-
tribution from the original mixture. While intuitively
this might seem to capture the quality of the compres-
sion, such an approach can actually lead to very bad
decisions for our problem.

In the example of Figure 1 we want to collapse the 2
distributions depicted by dashed lines into one. If our
objective is the minimization of a metric like KL diver-
gence, the result would be the solid line in Figure 1.
The resulting distribution minimizes the distance from
the original ones, but has the following pitfall: it falsely
reports some significant mass on the interval [45 − 60]
where the original distributions contained almost none.
In our setting this can in some cases lead to false query
results for both of the original sensors involved. A query
with a large window may not suffer from this side effect,
but one with a window small enough to fit in the prob-
lematic interval (e.g. width 10) could produce erroneous
results. Thus we have loss of accuracy.

Looking at the case above, we would have gotten bet-
ter results had we just kept one of the original distribu-
tions intact and tossed the other one. In that case we
would have known that at least one of the nodes would
always be reported correctly. The important observa-
tion here is that whether the answer would be wrong –
and how wrong – depends on the specific query. This

observation suggests that the collapsing be targeted to a
specific query workload. This is the approach we follow
below.

Alternatively, one can argue that in order to avoid loss
of accuracy, the variance of the collapsed gaussian could
be adjusted so that it will not contain any “fake” mass.
But such an approach would result in an extremely wide
and flat distribution, which would be too close to the x-
axis of Figure 1 to be visible. Such high uncertainty
would be useless in query execution, as this summary
could not produce answer estimates that would fall in a
plausible query’s accuracy window. In this case we have
loss of informativeness.

Now that we gave an intuition of what informativeness
and accuracy mean in this definition, we can proceed to
give an appropriate compression scheme.

3.1 Simple Collapsing
During compression we want to preserve as much in-

formation from the original distributions as possible.
This means that the new distribution should contain
as much “real mass” as possible, and this will happen
if it is centered at the location that contains the most
mass from the underlying distributions. This location
however depends on the window in which we compute
the mass. In Figure 1, if the window used is fairly large,
then the location that maximizes the total mass will be
centered somewhere in between the two original distri-
butions. On the other hand, if the window is small, then
the location that maximizes the total mass would be
centered at the narrowest of the original distributions.
Therefore, compression of a given set of distributions
will have a different result depending on the window
assumed.

This also directly translates to query answers. In or-
der to better understand our requirements for the col-
lapsing, we need to take a look at how the collapsed
distribution will be used to answer a given query. As-
sume a collapsed distribution N(µ, σ2). Q(w, δ) is a
query with error allowance inside a window w and con-
fidence requirement δ. Q can be answered in a satis-
factory way by distribution N , if the mass of N in the
interval [µ − w, µ + w] is greater or equal to the confi-
dence requirement δ, i.e. M[µ−w,µ+w] ≥ δ. In that case
the query will report the value µ for both nodes.

As it is obvious from Figure 1, if we choose N as
depicted by the solid line, then for small values of w
the query may apparently pass the mass test, but the
response will be wrong, as neither of the original nodes
has value µ ± w with δ confidence. However, if the
window w is large enough, the distribution N may be
sufficient to answer Q without problems. In order to
make sure that that answer will be correct based on the
query requirements we need to make sure that the mass



of the collapsed distribution in the interval [µ−w, µ+w]
is the same as the total mass of the original distributions
in the same interval. This observation leads directly to
a simple approach for collapsing.

The two requirements that we have for collapsing are
that it should not introduce “fake mass” (high accu-
racy), and it should retain as much “real mass” as possi-
ble (high informativeness). Of course that optimization
makes sense for a specific choice of window, and it gives
the guarantee that queries with the same window will
get accurate response. Mathematically, the problem we
want to solve is as follows:

Given: One dimensional function f representing a prob-
ability distribution (in our case a gaussian)

Find: z such that the mass of f in the interval [z −
w, z + w] is maximized.

max
z

∫ z+w

z−w
f(x)dx (1)

Once the optimal location for z is chosen, this be-
comes the mean of the collapsed distribution. The vari-
ance of the new distribution will be calculated based
on the mass of the original distributions in the same
interval:∫ µ+w

µ−w
N(µ, σ2)dx =

∑
i

∫ µ+w

µ−w
Ni(µi, σ2

i )dx

3.1.1 Location Of Maximum Mass
The solution to the maximization given in equation

(1) cannot always be determined analytically. One ap-
proach is to numerically evaluate it through the use of
sliding windows: given window w, “slide” the interval
[zi−w, zi +w] across the x-axis calculating the mass of
the distribution for every location zi and pick the one
with the maximum value. Obviously the quality of the
result will depend on the fineness of the discretization
D = {zi} used for the sliding.

Another approach is to use gradient ascent with the
means of the original distributions as starting points.
The reason to try this is that for continuous functions ,
the optimal location of the window is required to contain
at least one local maximum. (It is easy to show that if
it doesn’t, sliding the window to one direction would
increase the contained mass.) However this approach
is not guaranteed to find the optimal solution either,
and one can construct adversarial examples where that
happens. In Figure 2 we compare the two approaches of
sliding window and gradient ascent, which are shown to
perform equivalently, with the sliding window algorithm
winning by a small margin.

For this experiment we used real data from the In-
tel Berkeley Lab deployment [6] to compute gaussian
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Figure 2: Comparison of the sliding window and gradient ascent
algorithms

models for 54 nodes, and used them to compare the two
algorithms for different window sizes. The discretization
used for the sliding window algorithm was a D = {zi}
where zi+1 − zi = 0.001 In conclusion, the sliding win-
dow technique with a modest discretization produces
equivalent results as gradient ascent, when at the same
time being a lot more computationally efficient.

3.2 Tail-aware Collapsing
One thing to note is that the compression algorithm

described in Section 3.1 suffers from accuracy problems
in the case of recursive collapsing. Recursively apply-
ing simple collapsing to compress distributions with one
another, we run the risk of introducing “fake mass” and
thus reducing accuracy. Even though simple collapsing
does guarantee that the mass inside window w of its
mean ([µ − w, µ + w]) is accurate (i.e. corresponds to
real mass from the original distributions), there is no
guarantee for parts of the interval I ⊂ [µ− w, µ+ w].

The same is true for the tails of the distribution: the
intervals [−∞, µ−w]∪ [µ+w,∞]. Recursively collaps-
ing distributions can therefore cause errors due to the
introduced fake mass.

Even though the mass inconsistencies inside subinter-
vals of [µ − w, µ + w] are not simple to deal with, the
possibly problematic tails are easy to fix with tail-aware
collapsing. Tail-aware collapsing performs compression
exactly the same way as simple collapsing, but simply
disregards any mass that exists in the tails of the dis-
tributions. Note however, that this approach can err
in the opposite direction: it avoids the introduction of
fake mass through the tails, but may disregard real mass
that may have actually existed in the tails. Therefore,
compared to simple collapsing, tail-aware is more con-



servative.

4. QUERY TRAVERSAL
In the previous section we discussed optimal com-

pression of a set of input distributions based on an ex-
pected query workload. Sensor nodes organized in a tree
structure can create an in-network summary by recur-
sively performing compression bottom up, from leaves
to root. In this section, we focus on the problem of
routing queries using an in-network summary, making
routing decisions at each node based on the local model
Mv. First we will discuss what the optimal traversal
would be for query Q(w, δ) on tree T = G(V,E). A
traversal is a connected component of G that contains
the basestation. Since G is a tree, every connected com-
ponent in it will also be a tree. The optimal traversal
is the traversal of minimum total cost that can satisfy
query Q on expectation, as defined in Definition 2

Definition 2 (Query Satisfaction). In a net-
work of n nodes, a response R = {r1 . . . rn} to a query
Q(w, δ) is said to satisfy Q if the actual values of at least
δn nodes fall in their respective interval [ri−w, ri +w].

Due to linearity of expectations, assuming that the
underlying distributions are correct, then the query will
be satisfied if

∑
i

∫ ri+w

ri−w fi(x)dx ≥ δn. So the optimal
traversal problem can be defined as follows:

Given: tree T = G(V,E) and node models Mv, ∀v ∈ V

Find: G′(V ′, E′), E′ ⊆ E, such that
∑
eMass(Mu, w) ≥

δn, where e = (u, v) with u ∈ V ′ and v ∈ V \V ′

In the above problem statement, Mass(Mu, w) is the
maximum mass that can be contained inside window w
from model Mu. In the case where the mixture model is
compressed down to a single gaussian, Mass(Mu, w) =∫ µ+w

µ−w f(x)dx, where f is the normal probability density
function.

4.1 DP Traversal
We will solve the optimal traversal problem using a

dynamic programming algorithm. Every node will keep
a DP table (in our case it’s just a vector) which will hold
information on forwarding decisions based on assigned
budget. For example, if v is the root of subtree Tv and
CTv

is the cost of traversing the entire subtree Tv, then
v will keep a vector of length CTv

where every entry will
be the maximum mass that can be collected by assigning
the corresponding budget to that subtree. For a tree of
fanout F , children u1, . . . , uF of node v and a budget
assignment B = {b1, . . . , bF } among the F children, the

DP function for computing the entry Jv(c) will be:

Jv(c) = max
B

F∑
i=1,bi>0

Jui
(bi) +

F∑
i=1,bi=0

Mass(Mv, w)|Tui
|

(2)
where |Tui

| corresponds to the number of nodes rep-
resented by the subtree of node ui. The second sum-
mation in (2) gives a mass estimate for the unvisited
children (bi = 0) based on the model of node v. Also,∑
i bi = c−

∑
i s.t. bi>0 w(v,ui), where w(v,ui) the weight

of the edge (v, ui), and the sum subtracted in this for-
mula adjusts the available budget by the cost of reach-
ing those children of v with non-zero budget assign-
ments. The weight of each (v, ui) edge can be simply de-
fined as the number of hops needed to reach that child.
Along with the DP vector, the choice of best budget
assignment for each cell should also be kept. At the
leaves of the tree, the DP vector is a single element,
J(0) = Mass(Mv, w).

Algorithm 1 gives the outline of this dynamic program
implemented for the case where F = 2, a binary tree,
and unit edge weights. The code can be easily extended
to the more general case of fanout F or even unrestricted
fanout.

Algorithm 1 DPConstruct(v,w,B)
1: if B < 0 then
2: return 0
3: end if
4: if B == 0 then
5: J(B) = Mass(Mv, w)
6: else
7: for k = 0 . . . B do
8: lMass(k) = DPConstruct(u1, w, k − 1)
9: rMass(k) = DPConstruct(u1, w,B − k − 1)

10: end for
11: J(B) = maxk(lMass(k) + rMass(k))
12: leftBudget(B) =argmaxk(lMass(k) + rMass(k)) −

1
13: rightBudget(B) = B − leftBudget(B)− 1
14: end if

With the DP in place, routing decisions can easily be
made depending on the δ parameter of the query. Given
δ we can compute the desirable mass as δn, where n is
the total number of nodes in the network. Using the
DP table at the root, we can find the smallest bud-
get that achieves that mass, say bi, and the values of
leftBudget(bi) and rightBudget(bi) will give the bud-
get assignments for the left and right child respectively.
The traversal descends until the budget is exhausted.
The DP vector for each node is equal to the number of
nodes in that node’s subtree, so if n are all the nodes in
the tree, the space needed would be O(n). Constructing
the DP vector for each node has complexity O(n2), so
the whole algorithm has complexity O(n3).

The described DP approach can compute the optimal



traversal solution for a query of window w, on a tree
model compressed using the same window. One problem
is that the DP tables can become large at nodes high
in the hierarchy, which could violate our limited storage
principle.

As an alternative, we proceed to propose a simple
greedy traversal algorithm that makes decisions locally
at every node, without the requirement of keeping extra
information, like the DP tables.

4.2 Greedy Algorithm
Our Greedy descent algorithm is quite straightfor-

ward. Basically the query is initiated at the root of
the tree, and every node makes a decision of whether to
descend or not based on the satisfiability of the query
by the local model:∫ µ+w

µ−w
f(x)dx ≥ δ (3)

If the model at the current node satisfies (3), then no
descent is necessary. Otherwise the query is forwarded
to the node’s children. In this simple version of the al-
gorithm, if a decision is made to forward, then all of the
children will receive the query. One could extend this
to a scheme where children are given different priorities
and forwarding can happen selectively. This however
would require extra communication, as decisions to for-
ward might depend on traversal results on other sub-
trees, and cannot be made only locally. Hence we adopt
the simple policy of forwarding the query to all children
or none.

Algorithm 2 GreedyDescend(nodei,w,δ)

1: Compute I =
R µ+w

µ−w f(x)dx

2: if I ≥ δ then
3: return µi
4: else
5: GreedyDescend(childreni,w,δ)
6: end if

Note that Algorithm 2 is more conservative than the
DP approach, as it applies the satisfiability definition
on every subtree and not just the global tree. The al-
gorithm will terminate the recursion at a set of nodes
each of which satisfy the query according to Definition 2
in their local subtree. If ki is the number of nodes rep-
resented by every subtree i where the recursion termi-
nated, then in total at least δ

∑
i ki = δn have accurate

within w values, which in turn means that globally the
query is always satisfied. So every solution of the greedy
algorithm is guaranteed to satisfy query Q, but the sat-
isfiability definition only requires it to hold globally and
not for every subtree, and that is why Algorithm 2 is
conservative.

We evaluate the performance of the greedy algorithm
comparing it with the DP solution for different sizes of
the window w, and against different values of the con-
fidence parameter δ depicted on the x-axis. Both al-
gorithms in this case are executed on the same binary
tree with data gathered from the Intel Berkeley Lab de-
ployment [1]. To construct the initial leaf distributions,
data from one hour is analyzed, and nodes are grouped
together in the tree based on spatial proximity. The
results are given in Figures 3 and 4. As we pointed
out, the greedy algorithm demonstrates a more conser-
vative behavior in terms of cost, which also results in a
smaller number of reported errors, but stays a compet-
itive alternative, without requiring maintaining state in
the nodes.

5. THE TREE CONSTRUCTION PROBLEM
In the previous sections we discussed methods for per-

forming compression and query traversal. However, the
algorithms were applied over a predefined tree, and even
though compression is optimally done given a specific
workload expectation (i.e. a set window), the way the
nodes are grouped has a big effect on the quality of com-
pression. Grouping of dissimilar nodes into the same
subtree will inevitably lead to bad compression. There-
fore a bad tree topology can lead to bad performance.
In this section we will discuss the problem of finding the
optimal tree for a specific query workload.

We will solve the problem for the case of graphs with
unit edge weights. From a practical perspective, a com-
munication link between two nodes is considered to ex-
ist if the nodes have a packet loss rate bounded by a
threshold.

The metric we wish to minimize is communication
cost during query execution. Assume TOPT is an opti-
mal tree that produces the minimum possible cost when
traversed by query Q(w, δ). A traversal of TOPT using
the greedy algorithm (Algorithm 2) will stop at nodes
on various levels that all satisfy inequality (3). Define
the cut C as the set of nodes at which Alg 2 stops. Note
that there is no path from root to leaf in tree TOPT that
does not “hit” the cut C. The structure of the tree be-
low the cut, i.e. all nodes that have an ancestor in C, is
irrelevant to the cost of query Q, as the query traversal
will never descend that far.

A further observation shows that in the case of trees
with constant fanout, the structure above the cut is ir-
relevant as well. This is derived from Theorem 1:

Theorem 1. In a tree with fixed fanout F , the cost
to traverse from the root to cut, i.e. the cost to reach all
nodes in the cut from the root, is F

F−1 (|C| − 1), where
|C| is the size of the cut.

Proof. First we will prove that the size of a cut Ck
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Figure 3: Evaluation of cost of Greedy against optimal cost found by the DP algorithm. The “Simple” and “Tail-aware” schemes refer
to the type of compression deployed (Section 3)
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Figure 4: Comparison of the proportion of correct responses for the greedy and the optimal cost traversal chosen by the DP algorithm.
The “Simple” and “Tail-aware” schemes refer to the type of compression deployed (Section 3)

is |Ck| = (k− 1)F − (k− 2), where k integer. What this
implies is that depending on the fanout, cuts cannot be
of any size. For example a tree of fanout 3 cannot have
a cut of size 2.1 In this discussion Ck will be a cut of
size order k. This doesn’t mean that Ck is of size k,
but rather that it is one order bigger than a cut of order
k − 1. The exact size as we will shortly prove is given
by

|Ck| = (k − 1)F − (k − 2) (4)

The proof will be done by induction.

• For k=1 the cut only contains the root and it has
size |C1| = (1− 1)F − (1− 2) = 1.
• Assume that for order k a cut Ck has (k − 1)F −

(k − 2) nodes.
• We will now show that a cut Ck+1 has kF −(k−1)

nodes:
Every cut of order k can be transformed into a cut
of order k+ 1 by replacing a node in the cut by its
F children. That would increase the cardinality of
the cut by F . Since all cuts of order k have the
same number of nodes, then all cuts of size k + 1
that are constructed this way will also have the
same number of nodes. The only way that a cut

1Remember that with the greedy algorithm, two nodes that
are in the same cut cannot be in an ancestor-descendant
relationship, as the greedy algorithm forwards the query to
either all children or none

Ck+1 may not have the same cardinality would be
if there is no cut of order k that can produce Ck+1

with the above method. That means that Ck+1

does not contain any F nodes that are siblings,
otherwise these could be replaced by their parent
to form a cut of order k. Now let us see if that is
possible. Assume that node v ∈ Ck+1 is the deep-
est node in the cut, i.e. the path from root to v
is the longest path from root to the cut. v’s sib-
lings is nodes u1 . . . uF−1. If ∃ui /∈ Ck+1 then this
means that there is a node in Ck+1 that is deeper
than node v because there is no path from root to
leaf that does not cross Ck+1. This is impossible
because we assumed that v is the deepest node in
the cut. Therefore ui ∈ Ck+1 and thus there is a
cut of order k that can produce Ck+1. That means
that Ck+1 has the same cost as any other cut of
order k+ 1. Now, since |Ck+1| = |Ck|+ (F −1) we
can derive that |Ck+1| = kF − (k − 1). QED

Using the exact same type of induction we can show
that the cost to traverse to a cut of order k is (k −
1)F . Solving equation (4) in terms of k and replacing
to the cost formula, we get that the cost is equal to
F (|C|−1)

F−1 .

5.1 Optimal Tree Problem
Theorem 1 shows that if C is the cut that the greedy

algorithm picks for query Q(w, δ), then the structure



of the spanning summary tree above and below the cut
are irrelevant to the cost of answering the query. That
means that knowing what the cut is would be sufficient
to determine query cost. Every node in the cut acts as
a representative for a whole subtree, so the cut really is
a set of connected components each of which contains
a representative node with model Mv that can satisfy
query Q.

With that observation, the Optimal Tree Problem
with respect to query Q(w, δ), is the problem of find-
ing a tree that responds to Q using Algorithm 2 with
minimum communication cost, and is formally defined
as follows:

Definition 3 (Optimal Tree Problem).
Given: Graph G(V,E) with the cost function c : E →
R+ and query Q(w, δ)
Find: Set of components S = {C1 . . . Ck} such that

• ∀i Ci is connected in G.
• ∀i 1

|Ci|
∑
j∈Ci

Massj(Ci) ≥ δ.
• ∪Ci = V and Ci ∩ Cj = ∅ for i 6= j

• With the objective to minimize the cost of the min-
imum cost subtree T of G that contains at least one
vertex from each component Ci.

In the above definition Massj(Ci) represents the total
mass that node j contributes to component Ci.

The objective of the Optimal Tree Problem (4th bul-
let) is exactly the Group Steiner Tree Problem which
is defined as follows: we are given a graph G(V,E),
with the cost function c : E → R+ and sets of ver-
tices g1, g2, . . . , gk ⊂ V . The sets g1, g2, . . . , gk are called
groups. The objective is to find the minimum cost sub-
tree T of G, that contains at least one vertex from each
set gi. In our case, apart from the GSTP component we
also have the problem of finding the clusters that would
lead to the tree with the best cost.

Since the Group Steiner Tree Problem is NP-hard, the
Optimal Tree Problem is also hard. The GST problem
has a polylogarithmic approximation [8], so we will at-
tempt to address the selection of components Ci as a
separate problem.

5.2 Optimal Clustering
From Definition 3, the division of nodes into the com-

ponents Ci can be viewed as a clustering problem. Each
cluster will correspond to a subtree rooted at a node cho-
sen by the query cut. According to the definition, each
cluster is of limited diameter (the mass inside appro-
priately centered window w should satisfy confidence δ)
and using the intuition provided by Theorem 1, to find
the optimal clustering we should try to minimize the
number of clusters, or in other words find the minimum
size cut for the specific query.

Even though this subproblem is also hard, we will
provide a greedy algorithm that approximates the opti-
mal solution by a logarithmic factor. The pseudocode
is given in Algorithm 3.

Algorithm 3 GreedyClustering(V,w, δ)
1: Clusters = ∅
2: Pick discretization D = {z1, . . . , zk}
3: repeat
4: for z ∈ D do
5: Sz = ∅
6: for vi ∈ V do
7: Massz(vi) =

R z+w
z−w fi(x)dx //fi the model of

node vi
8: end for
9: while

P
vi∈Sz

Massz(vi) ≥ δ|Sz| do

10: v∗ =argmaxiMassz(vi)
11: remove v∗ from Massz
12: if

P
vi∈Sz∪{v∗}Massz(vi) ≥ δ|Sz| then

13: Sz = Sz ∪ {v∗}
14: else
15: break;
16: end if
17: end while
18: end for
19: S∗z =argmaxi|Szi |
20: Clusters = Clusters ∪ S∗z
21: V = V \S∗z
22: until V = ∅

Proposition 1. Algorithm 3 provides a factor log(n)
approximation to the optimal clustering, which mini-
mizes the number of clusters.

Proposition 1 is easily derived when one notices that
Algorithm 3 is equivalent to greedy Set Cover. In prac-
tice the algorithm behaves a lot better than this guar-
antee, with results always close to the best solution.
The graphs from those experiments were omitted due
to space constraints.

We observe that in practice, the greedy clustering
performs extremely well. It is important to note how-
ever that Algorithm 3 may violate one of the condi-
tions of Definition 3, that each cluster has to be con-
nected. Greedy Clustering greedily adds nodes to each
fixed cluster center, which are the intervals given by the
discretization. For a fixed center, the weight of every
vertex is constant and independent of which other ver-
tices join the same cluster. If we do not require that each
cluster is connected, then by picking vertices from the
one with the highest weight and decreasing we will get
a cluster with the largest cardinality for that interval.
However, if we enforce the connectivity requirement, the
problem of picking the set of vertices of the highest car-
dinality that forms a valid cluster, becomes NP-hard as
we proceed to show.

Maximum Connected Subgraph of Limited Di-
ameter Problem:



Given: Graph G(V,E), vertex weight Wu for vertex u,
maximum diameter D 2

Find: G′(V ′, E′) s.t:

• G′ is connected

• 1
|V ′|

∑
u∈V ′Wu ≤ D

• with the objective to maximize |V ′|

Theorem 2. The Maximum Connected Subgraph of
Limited Diameter Problem (MCSLD) is NP-hard

Proof. The hardness result is based on a fairly natu-
ral reduction from set cover. Assume that there exists a
polynomial algorithm that solves MCSLD. We will show
that we would then be able to solve any instance of Set
Cover in polynomial time.

Assume an instance of Set Cover, with a set of sets
C = {C1, . . . , Ck}. Each Ci is a set containing some
elements {sj}. We will transform it into an instance of
MCSLD as follows: Construct a graph G by creating a
node for each Ci, a node for each element si and one
extra node, let’s call it H. Connect H with all the
Cis. Connect each Ci with all the elements si that are
contained in Ci. Give all the si and vertex H a vertex
weight of 1

n+1 , where n the total number of elements si.
Assign to each Ci a vertex weight of A >> 1.

We will call the MCSLD algorithm on graph G with
D = 1+A. If the algorithm returns a solution, then this
is equivalent to a set cover of size 1, as the only way to
get a connected component with total cost at most 1+A
is to include exactly one of the Ci. It is equally easy to
see that when MCSLD is called with D = 1 + rA, its
solution is equivalent to a set cover of size r. Therefore
calling MCSLD at most k times, which is polynomial
in terms of the input of Set Cover, would give us the
optimal solution to Set Cover. But since Set Cover is
NP-hard, then MCSLD has to be hard as well.

The reason why we require each component/cluster to
be connected is because the participating nodes should
be able to form a tree. To address the connectedness
issue, we can follow either of 2 approaches: (a) aug-
ment the clusters chosen by the greedy algorithm with
extra communication nodes to force connectedness, or
(b) adjust the greedy algorithm so it only augments the
clusters from accessible nodes. The problem with option
(b) is that the algorithm will no longer have the loga-
rithmic guarantee. Option (a) may be more appealing
in most cases, as the extra cost for intra-cluster com-
munication would only have to be inflicted once during
the cluster formation and determination of the common
model, and does not inflict extra cost during query time.
2With vertex weight Wu being the mass of u’s distribution
outside the window interval, then D would be 1− δ

In Figure 5 we see a comparison based on communica-
tion cost between the different approaches. The greedy
with Intra-Cluster cost, has higher cost than the Con-
nected Greedy for some choices of window size, but as
we mentioned the fact that the extra cost cost is only
inflicted during cluster formation should be taken into
consideration.

5.3 Distributed Clustering
Greedy clustering is a good way to approximate the

minimum number of clusters, but Algorithm 3 provides
a centralized approach. In this section we will give a
distributed clustering algorithm, and we will experimen-
tally compare it with the centralized one.

Algorithm 4 Distributed Expanded Neighborhood
1: Basestation broadcasts clustering msg
2: Each node picks a random wait time.
3: if wait time passes without cluster requests then
4: node initiates clustering
5: end if
6: repeat
7: node randomly selects v from neighbor table
8: if d ≤ Dmax then
9: node sends cluster request to v

10: Augment neighbors table with neighbors of v
11: else
12: Remove v from neighbors
13: end if
14: until no more neighbors

The reason for introducing Algorithm 4 is because a
centralized approach has the overhead of communicat-
ing all the nodes’ data to a centralized location to per-
form the clustering. Also a distributed approach will be
more suitable for performing selective reclustering lo-
cally if the hierarchical summary needs to be updated.
Algorithm 4 basically initiates at a single node level
where a cluster of size 1 is created. The node looks
up neighbors on its neighborhood table and attempts to
augment its cluster size by inviting them to join the clus-
ter. Once a new neighbor joins, the current neighbor-
hood is augmented by the newcomer’s neighbors. The
cluster stops growing when no more neighbors can be
added without exceeding the maximum allowed cluster
diameter Dmax. Note that the algorithm is distributed
but requires some bookkeeping and messages to com-
municate neighborhood tables. Hence we also consider
a much simpler version of greedy clustering, using a ran-
dom walk to pick new nodes, instead of selecting from
the total neighborhood. Basically the difference with al-
gorithm 4 is that a new node can only be selected from
the neighbors in the network connectivity graph of the
last node that was added to the cluster. The advantage
of this approach is that it does not require communicat-
ing any neighborhood tables.

In Figure 6 we demonstrate comparison experiments
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Figure 5: Comparing the different clustering approaches, based on the communication cost for varied parameters of window size and
confidence for the query workload.

between the 2 centralized approaches, greedy cluster-
ing and centralized greedy, and the 2 distributed ap-
proaches, expanded neighborhood and random walk. The
simulation experiments were performed using Matlab,
and real data from the Intel Berkeley Lab deployment.
The objective of all the algorithms is to create a mini-
mum cardinality clustering. An important thing to re-
member in these graphs is that centralized greedy can
usually achieve better results because it doesn’t enforce
the connectivity requirement, whereas all the other al-
gorithms do. It is possible that centralized greedy does
not always give the best result, as it is not optimal, but
has a logarithmic approximation guarantee.

From these experiments we observe that the results of
distributed clustering are very comparable to the cen-
tralized ones, especially to connected greedy. On aver-
age the distributed expanded neighborhood and random
walk heuristics performed within a factor of 1.4 and 2.8
respectively of the centralized greedy algorithm which
has a guaranteed logarithmic factor approximation of
the optimal solution.

5.4 Building Trees for Varied Workload
In Section 5 we have discussed the problem of con-

structing the optimal tree for a specific query. We con-
nected the problem with a clustering problem, we showed
hardness results and gave approximation algorithms and
heuristics. In this section we will extend our approach
to the setting of a more varied query workload. We will
assume a baseline confidence δ, and query workload that
includes various different windows {w1, . . . , wk}

A natural but heuristic way to extend our approach
to account for the case of different windows would be to
recursively cluster in decreasing order of window size.
Clustering will start with the largest window size which
represents the less strict query in the workload. The
clusters produced are further divided into smaller clus-
ters using the next largest window in the set, and the
process continues in that fashion until the smallest win-

dow size in our set. This algorithm, sketched in Algo-
rithm 5 produces a tree in which every level corresponds
to a different window size, from larger in the higher parts
of the hierarchy, to smaller in the deeper levels. This
also complies with the intuition that models high in the
hierarchy present a coarse view of the data, while mov-
ing into deeper levels provides more detail.

Algorithm 5 TreeConstruction(G,wRange)
1: sort(wRange)
2: G(k+1) = G;
3: for i = k downto 1 do
4: w = wRange(i)
5: G(i) = cluster(G(i+1),w)
6: Connect G(i) with G(i+ 1)
7: end for

Since the tree construction approach for multiple val-
ues of windows that we are proposing is heuristic, we
want to experimentally evaluate its performance by com-
paring its communication cost for queries of the different
window sizes, versus a tree that was geared only towards
the specific window at hand. We design a single tree for
window sizes 0.5, 1, 1.5 and 2, and confidence 0.9, as
well as 4 other trees each one geared towards a single
one of the previous window values. The communica-
tion cost of a query workload of windows [0.5,1,1.5,2]
on the first tree is evaluated against the corresponding
cost of the tree specifically designed for that window.
The results are shown in Figure 7.

We observe that Algorithm 5 approximates well the
best single clustering solution.

Notice that the tree construction is not specific to the
type of clustering we use, and any of the algorithms
that we proposed can be used for the clustering process,
centralized or greedy.

Figure 8 presents experiments on a tree designed for
a workload of window sizes 0.5, 1, 1.5 and 2, and confi-
dence of 0.9 using Algorithm 3. The hierarchy is eval-
uated for a query workload of varied confidence and
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Figure 6: Comparison of the distributed and centralized clustering algorithms.
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Figure 7: Comparing the performance of a tree produced by
Algorithm 5 with the performance that a single window optimal
clustering would give.

window sizes ranging from 0.5 to 2 with a step of 0.1
(windowRange=[0.5, 0.6, . . . , 1.9, 2]). The communica-
tion cost behavior resembles a step function, because
depending on the strictness of the query (confidence
and accuracy window) the traversal usually picks for
the most part one level of the hierarchy. Queries with
windows that match the ones used in the design space
descend to the cluster level corresponding to that win-
dow size, or higher, if their confidence in less than what
the hierarchy was designed for. In the error graph the
horizontal lines represent the respective confidence lim-
its.

In Figure 9 we perform the same experiments on trees
constructed using the other 3 clustering approaches, cen-
tralized connected greedy (Algorithm 3), distributed ex-
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Figure 8: Query experiments on an in-network summary created
using the set of window sizes [0.5 1 1.5 2].

panded neighborhood (Algorithm 4) and random walk.
The distributed algorithms are somewhat outperformed
by the centralized approach, but they still beat tra-
ditional data gathering approaches like TinyDB ([16])
which gathers data along a spanning tree. The TinyDB
cost is constant and independent of the query parame-
ters.

5.5 Enriched Models
Our analysis up to this point focused on Single Gaus-

sian Model (SGM) compression schemes, which have
minimal requirements of storage space from the nodes.
In this section we will evaluate the performance of SGMs
against more complex models which preserve more infor-
mation by utilizing extra space. The size of each model
is represented by the parameter k (for SGMs k = 1),
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Figure 9: Query experiments on trees constructed by different
clustering algorithms

and the amount of space that each model uses is pro-
portional to k.

We will compare 3 different types of models against
SGMs:

k-mixture: A k-size mixture is maintained instead of
a size 1 mixture. The compression of a mixture
of size l to size k is performed by clustering the
l distributions of the original mixture into k sets
using a modified k-means algorithm. Then each
set is compressed to a single gaussian as described
in Section 3.1.

Virtual nodes: The l-size mixture is reduced to a set
of k mixtures in the same fashion as in the k-
mixture model and SGMs are computed for each
set. Note the difference with the previous approach:
there, a single k-mixture represents all of the nodes
in the subtree, whereas here in the virtual nodes
approach each separate SGM represents only that
portion of the nodes used to construct it. Essen-
tially this is equivalent to splitting each node into
k virtual nodes where an SGM is maintained for
each one. Note that this approach requires some
extra bookkeeping space to record the actual sen-
sor nodes represented by each virtual node.

SGMs on multiple windows: In this case the extra
space is used to maintain additional SGMs for dif-
ferent window sizes than the ones that the tree was
designed for. Depending on the query window the
appropriate model is used at every node.

The generalized models described above are evaluated
against simple SGM compression on a tree built for a

design workload of window sizes [0.5, 1, 1.5, 2] and con-
fidence of 0.9. The models are then tested on a query
workload of a finer range and the results are depicted in
Figure 10. The results depicted are for enriched mod-
els of size k = 4. Experiments with larger k were also
performed, with no change in the results.

An initially surprising observation is that enriched
models demonstrate minimal to none performance gains.
Specifically, k-size mixtures are not any better than a
size 1 mixture, and the same goes for virtual nodes.
Even though this may initially seem counterintuitive,
the reasoning behind this is the criterion used during
tree construction. Nodes are divided into clusters en-
suring that the total mass contributed by the partici-
pating nodes to the interval of the design window size
is enough to satisfy the confidence that the tree was de-
signed for. Also, the design of SGMs ensures that this
mass is preserved in the resulting compressed model.
A more elaborate model is therefore not necessary, as
a SGM is perfectly sufficient to represent that infor-
mation. Thus it is natural that those approaches pro-
vide no gain for queries of equal or less confidence than
the tree was designed for. We observe some minimal
gains on queries of higher confidence – we can now re-
ceive some benefit from the additional information – but
still the gains are not significant. These results are ac-
tually evidence of the quality of our tree construction
method. Basically queries have requirements for nor-
mal error bounds and thus a normal distribution is the
appropriate model when the underlying nodes are clus-
tered based on its properties.

The only actual gains that we observe from an en-
riched model approach come from our 3rd design: SGMs
for multiple windows. This approach keeps several SGMs
for multiple windows from the design workload. The
gains that we observe from this approach are not due
to modeling improvements, i.e. better representation of
the underlying data, but due to better tuning to the de-
sign workload. Our simple SGM hierarchy attempts to
minimize the average communication cost for the given
query workload. In the case of multi-window SGMs the
benefit arises from keeping models of several window
sizes on higher levels, and thus giving the opportunity
to queries to terminate higher in the tree than they were
initially expected to.

In sight of this observation we also want to evaluate
our intuitive decision to assign window sizes to tree lev-
els in decreasing order from root to leaves. We exhaus-
tively enumerate all the possible assignments of window
sizes from the design workload to different tree levels,
and we compute their average communication cost on
queries from that workload. As Figure 11 shows, the in-
tuitive choice of decreasing window sizes along the tree
levels is also the right one. The experiment was repeated



0.5 1 1.5 2
0

5

10

15

20

25

30
Confidence = 0.80

Query Window Size

C
om

m
un

ic
at

io
n 

C
os

t

0.5 1 1.5 2
0

5

10

15

20

25

30
Confidence = 0.85

Query Window Size
C

om
m

un
ic

at
io

n 
C

os
t

0.5 1 1.5 2
0

5

10

15

20

25

30
Confidence = 0.90

Query Window Size

C
om

m
un

ic
at

io
n 

C
os

t

0.5 1 1.5 2
0

10

20

30

40

50

60

70
Confidence = 0.95

Query Window Size

C
om

m
un

ic
at

io
n 

C
os

t

 

 

Single−guassian model (SGM)
k−mixture (k=4)
Virtual nodes (k=4)
SGM for multiple windows (k=4)

Figure 10: Evaluation of SGMs and enriched models

with several different design workloads, with the same
result.
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Figure 11: Evaluation of window assignments across tree levels

6. SENSITIVITY ANALYSIS
In this section we evaluate the sensitivity of our tree

construction algorithms to different parameters using
simulation experiments. As with all the previous ex-
periments, these are also done using real data from the
Intel Berkeley Lab deployment.

Our first set of experiments examine how the value
chosen for the confidence parameter during tree con-
struction affects the cost during query execution. We
built 2 trees for different confidence limits, 0.9 and 0.95,
on the same data, and executed on them the same work-
load of queries which have a confidence requirement of
0.95. The results of this experiment are in Figure 12.
We observe that the tree built on 0.9 confidence has
similar performance to the tree that was built for a 0.95
workload, so the baseline parameter δ used in the tree
construction does not have a big impact.

Another parameter that could potentially affect per-
formance is the choice of window sizes used for the tree
construction. In our second set of experiments, we com-
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Figure 12: Comparison of hierarchies built on different confi-
dence. The query workload is of confidence 0.95.

pare the communication performance during query eval-
uation on two different trees built using different ranges
of window sizes. An interesting observation on Figure 13
is that the tree constructed using the full window range
does not always perform better in terms of communi-
cation cost. The reason for that is that the hierarchy
is forced to have more levels, and to get to a specific
one, e.g. the 0.5 level, a query has to be forwarded
across more levels on the full range tree. Another rea-
son is that our heuristic of clustering for largest windows
first, while natural, can damage the chances of smaller
window sizes to form good clusters. That means that
the strategy of including all of the possible windows of
the expected workload in the tree construction may not
always be the best choice. It would be interesting to
explore how to optimize the window range for the tree
design, and incorporating that range as a parameter in
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Figure 13: Comparing tree construction with a few vs a broader
range of windows

the optimization may require revisiting our tree con-
struction heuristic.

In our final performance experiments, we wish to eval-
uate the performance of in-network summaries over time.
Data is taken for 48 hours, starting around midday of
the first day. The in-network summary is built based
on data from the first hour, for window sizes 0.5, 1, 1.5
and 2, and confidence 0.9. The evaluation is done using
queries with the same parameters.

First we want to see how the hierarchical summary
responds to having its models updated every hour, but
without changing the structure of the tree. That means
that when the distributions of values change at the leaf
level, those are propagated to the rest of the levels up-
dating the models, but it is all done on the initial tree
structure, without allowing any regrouping of nodes based
on the new models. The results are given in Figure 14.

The case of model updates is compared with the case
of full tree reconstruction at every time step. We ob-
serve that even in the full reconstruction case we get
bad performance when variance of the underlying data
is high, as happens around timestep 20 and timestep 40.
For the case of model updates without restructuring of
the tree, we can see that even though for large windows
the results are reasonable, for small windows they are
very disappointing. An important observation though is
that performance seems to deteriorate at different times
for the different window sizes. From observation of the
experimental results, larger sizes seem to be able to fol-
low the changes until about 40 hours later , clusters with

window size 1 seem to become unusable after about 6
hours, and the smallest window clusters seem to not be
able to be reused at all.

Our solution is to augment the model updates with
escalated clustering. What this means is that clusters
of different sizes get restructured with different frequen-
cies: clusters corresponding to small window size will
need to get reclustered more frequently, whereas those
of larger window size much less often. In Figure 15 esca-
lated restructuring is performed every hour, 6 hours and
24 hours, for clusters of size 0.5, 1, and 1.5 respectively.
The choice of reclustering frequencies at this point is
ad hoc and primarily based on observations of the be-
havior of Figure 14, but the purpose of this experiment
is really to demonstrate that escalated reclustering pro-
vides big performance benefits. An interesting part of
future work would be to discuss how to automatically
derive the appropriate frequencies or determine on the
fly when reclustering is necessary.

From Figure 15 we observe that now the in-network
summary follows closely the best result. Note that at
time 42 and afterwards though, the model deteriorates.
This is because it coincidentally happens that the size 1
clusters get updated on a moment with high variance
of the underlying data, and thus the resulting clusters
are bad and cannot be useful to queries even when the
underlying data recovers. To deal with that an easy
solution would be to detect data of high variance, and
avoid performing restructuring during those times.

7. CONCLUSIONS
In this paper we introduced in-network summaries to

improve the efficiency of approximate query processing
in sensornets. Summaries can be used to make routing
decisions and provide answers to queries without pay-
ing the communication cost to access the whole network,
and without requiring centralized planning and model
maintenance. We formally defined the problem of op-
timal summary construction, and broke it into several
different components that we addressed. We presented
efficient compression schemes for the summaries which
are optimized based on query workload, and provided
traversal algorithms that utilize the summary structures
to produce query results. We related the problem of tree
optimization to a clustering problem which proved to
be NP-hard, and gave a centralized approximation al-
gorithm and distributed heuristics. We experimentally
evaluated our algorithms using data from a real world
deployment and performed comparisons across multi-
ple parameters. Finally we tested the sensitivity of our
scheme to variations of the design decisions and varia-
tions of the data, and we showed that it is quite robust
to changes.
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Figure 14: Time progression of in-network summaries with model updates.
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Figure 15: Time progression of in-network summaries with model updates and escalated restructuring.
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