
VHDL Code Generation in the Ptolemy II Environment

Man-Kit Leung
Terry Esther Filiba
Vinayak Nagpal

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2008-140

http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-140.html

October 28, 2008

Copyright 2008, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

VHDL Code Generation in the Ptolemy II Environment

Terry Filiba, Man-Kit Leung, Vinayak Nagpal

December 18, 2006

Abstract

It is becoming increasingly popular to describe real
time signal proessing systems targetted for FPGA
or ASIC implementation using structural signal flow
graphs. We have implemented support for genera-
tion of synthesizeable as well as testbench VHDL code
from Ptolemy II models. A helper based approach bor-
rowing heavily from the existing Ptolemy II C code
generation framework is used. This work demon-
strates the extensibility of the helper based code-
generation approach and sets the stage for future re-
search in synthesis of efficient hardware descriptions
from heterogenous visual models.

1 Introduction

The use of Field Programmable Gate Arrays (FP-
GAs) is becoming increasingly common in modern
embedded systems, bridging the design space be-
tween software and hardware by presenting a layer
of configurable logic which is often termed gateware.
There is increasing demand for design environments
which allow modeling, simulation and synthesis of
software, gateware as well as hardware components
simultaneously in a unified framework. Commercial
tools that synthesize gateware from high level actor
oriented structural descriptions have been popular
among system designers for some time. For exam-
ple, the user community of the BEE2 (Berkeley Em-
ulation Engine) FPGA platform liberally harnesses
the Xilinx System Generator toolkit integrated with
Mathworks Simulink for designing digital signal pro-
cessing subsystems.

We believe that the Ptolemy II heterogeneous sys-

tems modeling framework can provide a richer en-
vironment for hardware-gateware-software co-design.
Ptolemy II supports multiple well defined models
of computation, it has a structured language for
higher order components and the software frame-
work is available in the public domain. Ptolemy II
already supports software code generation in the C
programming language. In this project we have com-
plemented that with support for VHDL code gener-
ation.

With this work we aim to eventually provide an
improved visual modeling and design environment for
the FPGA based real time signal processing commu-
nity.

2 Related work

It has long been realized that DSP applications
are more intuitively described using visual signal
flow graphs. Commercial tools like Xilinx System
Generator (XSG) [3] provide a library of Simulink
blocks which can be used as primitives for building
DSP hardware. The library consists of multiplexors,
adders, registers, memories etc and each can be pa-
rameterized for implementation on Xilinx FPGA’s.
It allows designers to perform bit and cycle accurate
simulations of their system and later translate the
design to Xilinx compatible gateware. For transla-
tion XSG internally calls Xilinx Core-Gen, a software
tool that allows generating high level components like
multipliers and memories with desired specification
to directly map onto lower level Xilinx primitives.
This approach limits its use to Xilinx FPGAs. It is
non-trivial to re-target a XSG translated design to
another FPGA family or an Application Specific In-

1

tegrated Circuit (ASIC). Other commercial tools like
Synplify DSP also based on Simulink provide simi-
lar features but can translate designs into platform
independent specifications. All such systems use exe-
cution semantics closer to the Synchronous Reactive
(SR) domain in Ptolemy II. This is a natural out-
come of the fact that synchronous logic is best de-
scribed by SR semantics when all clock domains in a
design differ by integer multiples of a base frequency.
Truly asynchronous boundaries can be modelled us-
ing Discrete Event semantics which underly hardware
description languages like Verilog and VHDL. As de-
signs get larger and span many clock boundaries the
designer may need more flexibility with the expres-
siveness and abstraction of modeling semantics. For
example, parts of the system which are synchronous
and are timing or resource critical may need to be
modelled using SR semantics, while asynchronous in-
terfaces may need DE semantics. At the top level of
the system and for components that do not need a
lot of optimization, higher level semantics like that
of Synchronous Data Flow (SDF) may be preferable.
SDF semantics implicitly infer queues between actors
to take care of differences in firing rates (clock speeds)
between blocks. Translation from SDF to gateware
is non trivial and there has been previous work in
attempting this using Ptolemy Classic [5].

The introduction of VHDL code-generation in
Ptolemy II will set the stage for further research
in the area of improved heterogeneous design envi-
ronments for gateware and hardware designers. In
this work we claim generation of behavorial Register
Transfer Level (RTL) VHDL which is independent
of implementation platforms and can be targeted to
ASICs as well. Our code-generation framework bor-
rows heavily from the existing C code-generation in-
frastructure in Ptolemy II.

3 Ptolemy II

Ptolemy II (PTII) is a software framework developed
to study modeling, simulation, and design of concur-
rent, real-time systems [4]. It supports compositional
and hierarchical modeling. It is based on an actor-
oriented language, in which actors are block compo-

nents that communicate with each other through port
connections. While the placement of actors and their
interconnects gives structural syntax to a model, the
execution semantics of a model is defined by its direc-
tor. A director represents the model of computation
(MoC) that governs the communication between ac-
tors.

3.1 Domain (Model of Computation)

A Ptolemy II domain is the implementation of a
specific model of computation. The terms domain
and MoC will be used interchangeably throughout
the paper. The Dataflow (DF) domain is a com-
mon communication semantics, where actors are fired
whenever input tokens are present. Input buffers
are used to prevent overflow. DF is generally con-
sidered as a timeless domain. The concept of time
is abstracted to simply describe the partial order of
token arrival to buffers. On the other hand, the
Synchronous/Reactive (SR) domain makes use of
a very different abstraction of time, which is rep-
resented by discrete intervals separated with clock
ticks. All actors are required to fire and produce one
output token every tick of the clock. Their outputs
need to follow a fixed-point semantics, meaning that
outputs may not change their values until the next
clock tick. For further details of the PTII domains,
please refer to the Ptolemy II documentation[4].

Given that every domain offers a particular kind
and degree of abstraction, part of a designer’s job
is to choose the appropriate domain for a model.
A properly chosen domain simplifies design com-
plexity. Furthermore, composing multiple domains
in the same model gives designers a very powerful
tool in specifying designs. This is called, heteroge-
neous modeling[2], and has been a main focus of the
Ptolemy II framework.

3.2 Code Generation

Building code generation support in Ptolemy II aims
to automate the process of targeting simulation mod-
els to actual application platforms[5]. The PTII code
generation framework takes a helper-based approach,

2

in which a set of helper components are used to gen-
erate code for the PTII actors. Each helper has a
one-to-one correspondence to a actor. As a logi-
cal separation between their domains of relevance,
helpers are code generation components while actors
are simulation components. The code generation pro-
cess is an interaction between the code-Gen kernel
and a set of helpers. The kernel stitches together
code blocks harvested by the helpers. Each helper
has a code template that contains code blocks writ-
ten in the target language and macros. The macro
language allows code block parameterization. A de-
tailed explanation of the code generation framework
and the macro language can be found in the Ptolemy
II documentation[4].

The logic behind a helper-based framework is based
on separation of concerns to reduce generality. This
means having a light-weight kernel and a library of
helper classes that spread out complexity. The ar-
chitecture allows incremental and rapid development
because helpers classes contains simple logic and code
blocks that are mutually exclusive. As another the-
ory of the helper framework, a different set of helpers
implies code generation of a different target language.
Currently, the code generation framework only sup-
ports C code generation; thus, adding VHDL code
generation would prove this hypothesis.

4 System Implementation

Our goals are to, first, generate VHDL code from
Ptolemy II models and, second, ensure bit-and-
cycle consistency between Ptolemy II simulation and
VHDL implementation. Along with that, our VHDL
code generator primarily targets DSP applications,
which operate on specific set of primitive compo-
nents, data structure and communication semantics.
Our implementation requires us to create these prim-
itive components as a subset of actors in the Ptolemy
framework. In order to map signals onto DSP hard-
ware, we require our actors to operate on strictly
fixed-point data type. Our implementation currently
supports the SR domain. However, the proposed
code generation framework, by no means, is limited
to a single domain. Support for code generation of

heterogeneous models will be future work.

4.1 Ptolemy II Actors

To support hardware generation, the Ptolemy II ac-
tors need to convey information to the code generator
that must be provided by the user. In order to obtain
the information we have created a new set of actors
which have hardware specific parameters.

Ptolemy II implements polymorphic actors that ac-
cept and output data of varying types. For example,
the AddSubtractor actor is capable of operating on
types such as double, fixed point, integer, and even
strings. Because VHDL is a strongly typed language,
the input and output ports in actors that generate
VHDL must be constrained to a single type. The
fixed point type is typically used by DSP hardware
designers. This type allows for the representation
of fractional values, in contrast to the integer type,
without requiring complex hardware which is neces-
sary for computation on double precision data. For
this reason, our current subset of actors enforce that
all input and output data be of the fixed point type.
The code generation is not restricted to this type.
Developing actors that operate on other types would
only require a new Java actor and a helper for code
generation (described in Section 4.3) to be written.

The bit widths of the ports in any component must
be fixed in hardware. To simulate this in the Ptolemy
II actors there is a precision parameter that is used
to define the data size and the location of the binary
point. The overflow parameter and rounding parame-
ters specify how to handle output results that cannot
be represented by the output precision. The over-
flow and rounding strategies can be translated into
VHDL to ensure the simulated behavior is consistent
with the hardware behavior.

Adding multiple registers at the end of a compo-
nent in VHDL causes the synthesized component to
be pipelined. This register re-timing provides better
performance since the clock need not be limited by
the timing of the entire component. The addition of a
latency parameter in Ptolemy II actors is used to in-
dicate the number of pipeline stages to be generated
in the VHDL component.

3

4.2 VHDL Library

The Code Generation framework maps a Ptolemy ac-
tor to a primitive block in a library of VHDL signal
processing primitives. The mapping from Ptolemy
to the library is one to many. The primitives in-
clude blocks like a signed fixed point two input
adder, an unsigned subtracter etc. These blocks ac-
cept parameters like bit widths, fixed point precision,
choice of truncation or rounding on overflows etc. as
VHDL generics. The fixed point arithmetic is im-
plemented using backward compatible packages re-
leased by IEEE for the proposed fixed point support
in VHDL-2006 standard [1]. Depending on parame-
ters supplied by the user to the Ptolemy actor, the
Code Generator chooses a primitive block to instan-
tiate and stitch into the VHDL output. These prim-
itives accept latency values and instantiate register
chains to allow timing optimizations by register re-
timing. This has been tested using Synplify synthe-
sis tools. In addition to providing RTL primitives,
the library also supports special primitives which do
not synthesize into hardware but can emulate the be-
havior of corresponding Ptolemy actors and provide
a testing framework to run in any VHDL simulator.

4.3 Code-Gen Kernel and Helpers

The design of the code generator is a mapping
of VHDL code generation on the general code-gen
framework. This forseeably requires two changes: a
new implementation of the kernel and a set of VHDL
helper classes (and code templates) for the newly cre-
ated simulation actors. As mentioned before, the
code-gen kernel interface is light-weight and contains
only a small set of functions. The VHDL code-gen
kernel implements these functions to arrange the or-
der of code blocks and write the code to a list of files
with proper headers and footers.

The code generator output is a structural VHDL
implementation. (i.e. the model is represented as a
structured signal flow graph) consisting of VHDL li-
brary elements (described in Section 4.2) as atomic
building blocks. As compared to sequential code,
this is easier to generate. The generated VHDL top
entity block consists of the component declarations
and instantiation blocks of sub entities. Each code

template file contains blocks of code for the declara-
tion and instantiation of a library primitive. These
code blocks are parameterized to specify which li-
brary primitive to instantiate and what parameters
to pass to it. A typical VHDL code template file
(IntegerCounter.vhdl) is illustrated below:

/*** componentBlock ***/

component ptcounter is

GENERIC (

WIDTH : INTEGER := 32;

USE_ENABLE : boolean := TRUE;

RESET_ACTIVE_VALUE : std_logic := ’0’;

ENABLE_ACTIVE_VALUE : std_logic := ’0’;

WRAP : boolean := TRUE

);

PORT (

clk : IN std_logic ;

reset : IN std_logic ;

enable : IN std_logic ;

output : OUT std_logic_vector (WIDTH-1 DOWNTO 0)

);

end component ptcounter;

/**/

/*** instantiationBlock ($width, $useEnable, $wrap, $enableSignal)

$actorSymbol(instance): ptcounter

GENERIC MAP (

WIDTH => $width,

USE_ENABLE => $useEnable;

WRAP => $wrap

)

PORT MAP (

clk => clk,

reset => reset,

enable => $enableSignal,

output => $ref(output)

);

/**/

A helper is responsible for harvesting the proper code
block by supplying the right parameters. The param-
eters are specified in a simple macro language that
the code generator implements. The macros are used
to provide unique labels and instance-specific values.
The kernel generates compliant VHDL output by col-
lecting and arranging the harvested code blocks from
every helper in the model.

4

Figure 1: Synthesizable vs. Testbench Files

4.4 Testing Methodology

Ptolemy II provides a Test actor which uses regres-
sion testing to check that the output of a simulation
is consistent with the output observed by the actor
in previous simulations on the same system. We uti-
lize this actor to test the VHDL being generated by
the system. When generating VHDL the Test actor
will create two signals. One outputs the values that
were observed by the Ptolemy II Test actor and the
second outputs the values that are being generated
by the hardware. If the two signals (which can be
viewed with a VHDL simulator) are equal, then the
generated VHDL is consistent with finite simulation
of the Ptolemy II design at the bit and cycle level.

It is useful to distinguish parts of the design that
are for testing from parts that should be synthesized
into hardware. The Ptolemy II actors include a syn-
thesizable parameter to facilitate this. During code
generation, any actors marked as synthesizable will
be put into separate (RTL) file from the other non-
synthesizable or testbench (TB) actors. The code
generator also outputs a file which instantiates and
stitches together the RTL and TB. The Ptolemy II
hierarchy poses problems when dividing the actors
because both non-synthesizable and synthesizable ac-
tors may be in the same composite actor (refer to
the composites in Figure 1). The hierarchy is flat-
tened in order to partition the synthesizable and non-
synthesizable actors. Retaining the heirarchy of com-

Figure 2: This models the accumulation of a fixed-
point value.

posites in the model to the generated hardware is not
seen as particularly useful as we do not expect users
to hand tweak the VHDL generated by the code gen-
erator. Each actor is placed in its appropriate file
and any connection that spans the partition creates
a VHDL port in both files.

Automatically partitioning the generated VHDL
can provide many features to the user. The gener-
ated code is generic so other VHDL test bench files
can be swapped in so long as they have the same
ports. Also, actors that are placed in the test bench
file can take advantage of non-synthesizable VHDL
as only the RTL output is passed to synthesis tools
which translate VHDL into gateware/hardware im-
plementations. For example, the Test actor and other
testing only actors will never be included in the RTL
output. Such testing only actors can use all the test-
ing features provided by the VHDL language. One
can also use otherwise synthesizeable actors for build-
ing a testbench and mark them as non-synthesizable
to keep them out of the RTL output. This simplifies
the design of test cases and actors that can simulate
complex behavior.

5 The Add/Sub Accumulator

Example

To show how VHDL code is actually generated, let’s
go through the code generation process for the fol-
lowing model:

In this model, the FixConst and AddSubtract ac-
tors are synthesizable components, while the Test

5

Figure 3: The parameters for the AddSubtract actor.

instances are testbench (non-synthesizable) compo-
nents. A actor can be parameterized at the GUI
level, and its helper uses the information to choose
and give arguments for code blocks. As shown in Fig-
ure 3, the AddSubtract actor has a parameter called
operation which tells the code-gen helper whether an
adder or subtracter circuit needs to be instantiated.
Other parameters have similar effects in influencing
the resulting circuit. For example, the value of the
latency parameter decides whether combinational or
pipelined logic is produced.

By invoking the VHDL code generator (the box in
blue), a synthesizable entity, a testbench entity and
a top entity are generated. Generating the synthesiz-
able entity requires code blocks harvesting from the
AddSubtract and FixConst helpers, while the test-
bench entity requires code blocks from the two in-
stances of the Test helper. The two entities are con-
nected by gateway ports (See Section 4.4). The top
entity is the instantiation of the RTL and TB entities.

6 Future work

As the next step, we want to extend the code
generation framework to support other domains
(i.e. Dataflow, Discrete Event, FSM (Finite State
Machnes), etc.) and heterogeneous models. We

would also like to add hardware benchmarking fea-
tures, against other comparable tools such as XSG,
in area and timing comparison.

7 Acknowledgments

This project receives a joint support from the
Ptolemy, BEE, and CASPER groups. We want to
thank Professor Edward A. Lee, Dr. Chen Chang,
Dr. Dan Werthimer, Christopher Brooks, and Pierre
Droz for their mentoring and advice.

References

[1] David Bishop. Fixed point package user’s guide.

[2] C. Brooks, E. A. Lee, S. Neuendorffer X. Liu,
Y. Zhao, and H. Zhang. Heterogeneous concur-
rent modeling and design in java, July 2005.

[3] J. Hwang, B. Milne, N. Shirazi, and J. Stroomer.
System level tools for DSP in FPGA’s, 2001.

[4] J. Davis II, M. Goel, C. Hylands, B. Kien-
huis, E. A. Lee, J. Liu, X. Liu, L. Muliadi,
S. Neuendorffer, J. Reekie, N. Smyth, J. Tsay,
and Y. Xiong. Overview of the ptolemy project,
July 1999.

6

[5] M. C. Williamson. Synthesis of parallel hard-
ware implementations from synchronous dataflow
graph specifications. Technical Report UCB/ERL
M98/45, University of California, Berkeley, June
1998.

7

