Programming a Parallel Future

Joseph M. Hellerstein

F i =

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2008-144
http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-144.html

November 7, 2008

Copyright 2008, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Programming a Parallel Future

Joe Hellerstein
UC Berkeley Computer Science

Things change fast in computer science, but odds are good that they will change
especially fast in the next few years. Much of this change centers on the shift toward
parallel computing. In the short term, parallelism will thrive in settings with
massive datasets and analytics. Longer term, the shift to parallelism will impact all
software. In this note, I'll outline some key changes that have recently taken place in
the computer industry, show why existing software systems are ill-equipped to
handle this new reality, and point toward some bright spots on the horizon.

Technology Trends: A Divergence in Moore’s Law

Like many changes in computer science, the rapid drive toward parallel computing
is a function of technology trends in hardware. Most technology watchers are
familiar with Moore's Law, and the general notion that computing performance per
dollar has grown at an exponential rate — doubling about every 18-24 months —
over the last 50 years. But recently, Moore’s Law has been pushing different aspects
of computing in different directions, and this divergence is substantially changing
the rules for computer technology.

Moore's Law and exponential growth may be familiar, but they are so phenomenal
they deserve a pause for consideration. In common parlance, the term “exponential”
is often used as slang for “very fast.” But when computer scientists talk about
something exponentiating, they tend to use more colorful phrases: blowing up or
exploding. The storage industry has been a continual example of this, delivering
exponentially increasing storage density per dollar over time. In concrete terms,
consumers today might have a few Terabyte disks in the basement for home movies
and laptop backups — after all, they only cost about $150 at the local office supply
storel. But only 10 years ago, when Google was starting out, that was roughly the
storage capacity of the largest databases on the planet.

If all aspects of computer hardware followed Moore's Law together, software
developers could simply enjoy increasing performance without changing their
behavior much. This has been true, more or less, for decades now. The reason
things are changing so radically now is that not all of the computing substrate is

1 Given exponentially decreasing prices per byte, that comment nearly instantly
makes this note obsolete!

exponentiating in the same way. And when things “blow up” in different directions,
the changes are swift and significant.

To explain, recall that what Moore's Law actually predicts is the number of
transistors that can be placed on an integrated circuit. Until recently, these extra
transistors had been used to increase CPU speed. But, in recent years, limits on heat
and power dissipation have prevented computer architects from continuing this
trend. So although Moore's Law continues in its strict definition, CPUs are not
getting much faster, even though many other computing trends - RAM sizes, disk
density, network bandwidth - continue at their usual pace.

Rather than providing speed improvements, the extra transistors from Moore’s Law
are being used to pack more CPUs into each chip. Most computers being sold today
have a single chip containing between 2 and 8 processor “cores.” In the short term,
this still seems to make our existing software go faster: one core can run operating
systems utilities, another can run the currently active application, another can drive
the display, and so on. But remember, Moore's Law continues doubling every 18
months. That means your laptop in nine years will have 128 processors, and a
typical corporate rack of 40-odd computers will have something in the
neighborhood of 20,000 cores. Parallel software should, in principle, take advantage
not only of the hundreds of processors per machine, but of the entire rack — even
an entire datacenter of machines.

What does this mean for software? Since individual cores will not get appreciably
faster, we need massively parallel programs that can scale up with the increasing
number of cores, or we will effectively drop off of the exponential growth curve of
Moore’s Law. Unfortunately, the large majority of today's software is written for a
single processor, and there is no technique known to “auto-parallelize” these
programs. Worse yet, this is not just a “legacy software” problem. Programmers still
find it notoriously difficult to reason about multiple, simultaneous tasks in the
parallel model, which is much harder for the human brain to grasp than writing
“plain old” algorithms. So this is a problem that threatens to plague even new,
green-field software projects.

This is the radically new environment facing software technologists over the coming
years. Things will have to change substantially for progress to continue.

Bright Spots: SQL, Big Data and MapReduce

To look for constructive ways forward, it helps to revisit past successes and failures.
Back in the 1980's and 1990's, there were big research efforts targeting what was
then termed “massively parallel” computing, on dozens and sometimes hundreds of
processors. Much of that research targeted computationally intensive scientific
applications, and spawned startup companies like Thinking Machines, Kendall
Square and Sequent. The challenge at that time was to provide programming
languages and models that could take a complex computational task, and tease apart
separate pieces that could run on different processors. In rough terms, that burst of

energy did not have much short-term success: very few programmers were able to
reason in the programming models that were developed, and the various startup
companies mostly failed or were quietly absorbed.

But one branch of parallel research from that time did meet with success: parallel
databases. Companies like Teradata - and research projects like Gamma at
Wisconsin and Bubba at MCC - demonstrated that the Relational data model and
SQL lend themselves quite naturally to what is now called “data parallelism.” Rather
than requiring the programmer to unravel an algorithm into separate threads to be
run on separate cores, parallel databases let them chop up the input data tables into
pieces, and pump each piece through the same single-machine program on each
processor. This “parallel dataflow” model makes programming a parallel machine
as easy as programming a single machine. It also works on “shared-nothing”
clusters of computers in a datacenter: the machines involved can communicate via
simple streams of data messages, without a need for an expensive shared RAM or
disk infrastructure.

The parallel database revolution was enormously successful, but at the time it only
touched a modest segment of the computing industry: a few high-end enterprise
data warehousing customers who had unusually large-scale data entry and data
capture efforts. But this niche has grown radically in recent years, and the
importance of these ideas is being rethought.

We're now entering what I call the “Industrial Revolution of Data,” where the vast
majority of data will be stamped out by machines: software logs, cameras,
microphones, RFID readers, wireless sensor networks, and so on. These machines
generate data a lot faster than people can, and their production rates will grow
exponentially with Moore’s Law. Storing this data is cheap, and it can be mined for
valuable information.

This trend has convinced nearly everyone in computing that the next leaps forward
will revolve around what many computer scientists have dubbed “Big Data”
problems. In previous years this focus was largely confined to the database field,
and SQL was a popular language to tackle the problem. But a broader array of
developers are now interested, and they want to wrangle their data in typical
programming languages, rather than use SQL, which they often find unfamiliar and
restrictive.

The MapReduce programming model has turned a new page in the parallelism story.
In the late 1990s, the pioneering web search companies built new parallel software
infrastructure to manage web crawls and indexes. As part of this effort, they were
forced to reinvent a number of ideas from parallel databases — in part because the
commercial database products at the time did not handle their workload well.
Google developed a business model that depended not on crawling and indexing per

se, but instead on running massive analytics tasks over their data, e.g., to ensure that
advertisements were relevant to searches so that ads could be sold for measurable
financial benefit. To facilitate this kind of task, they implemented a programming
framework called MapReduce, based on two simple operations from functional
programming languages.

The Google MapReduce framework is a parallel dataflow system that works by
partitioning data across machines, each of which runs the same single-node logic.
But unlike SQL, MapReduce largely asks programmers to write traditional code, in
languages like C, Java, Python, and Perl], whereas SQL provides a higher-level
language that is more flexible and optimizable, but less familiar to many
programmers. In addition to its familiar syntax, MapReduce allows programs to be
written to and read from traditional files in a filesystem, rather than requiring
database schema definitions.

Technically speaking, SQL has some advantages over MapReduce, including easy
ways to combine multiple data sets, and the opportunity for deeper code analysis
and just-in-time query optimizations. In this context, one of the most exciting
developments on the scene is the emergence of platforms that provide both SQL and
MapReduce interfaces within a single runtime environment. These are especially
useful when they support parallel access to both database tables and filesystem files
from either language. Examples of these frameworks include the commercial
Greenplum system (which provides all of the above), the commercial Aster Data
system (which provides SQL and MapReduce over database tables), and the open-
source Hive framework from Facebook (which provides an SQL-like language over
files, layered on the open-source Hadoop MapReduce engine.) DryadLINQ from
Microsoft Research is another interesting design point in this space that merges a
SQL-like syntax with a MapReduce-style parallel dataflow.

MapReduce has brought a new wave of excited, bright developers to the challenge of
writing parallel programs against Big Data. This is critical: a revolution in parallel
software development can only be achieved by a broad base of enthusiastic,
productive programmers. SQL also has legions of experienced programmers, and
integration with a wide variety of software tools and frameworks. The new
combined platforms for data parallelism expand the options for these programmers,
and should foster synergies between the SQL and MapReduce communities. There
are interesting days ahead for massively parallel programs against Big Data — which
is good news for the future of Moore’s Law and computing in general.

In the context of the previous discussion, I should note that I am an advisor at
Greenplum, and strongly encouraged their development of a MapReduce interface
for many of the reasons listed above. I was pleasantly surprised to learn of Aster’s
entry into that space at the same time Greenplum made their first public

announcements. Meanwhile, [am in close touch with friends and colleagues in the
Hadoop world, and the various companies extending that work.

For the moment, these platforms have various distinguishing features that
differentiate them in the marketplace. But these are systems in quick evolution, and
there will undoubtedly be a lot of change in this realm in upcoming months and
years. In addition to evolution from the first set of players, we can expect the large
enterprise players like Oracle, IBM and Microsoft to make moves in this space if it
can be shown to be lucrative. The role of the web search and cloud hosting
companies will be interesting to watch as well, since they have the expertise and
infrastructure to host large MapReduce jobs.

If the startups grow and the large players follow, this will only fuel the fire for data-
centric parallel programming. That in turn will drive the training of more and more
programmers to think about parallel programs on Big Data. And once the
programmers are on board in large numbers, bigger and more unexpected changes
may emerge.

What Is Computer Science Doing About It?

The computing industry is actively pursuing parallel data management with both
SQL and MapReduce frameworks. And the pipeline is filling from the academic front
as well.

In terms of education, MapReduce is such a compelling entryway into parallel
programming, it is being used to nurture a new generation of parallel programmers.
Every Berkeley CS freshman now learns MapReduce. Other schools have undertaken
similar programs, and a consortium of companies is eagerly supporting these efforts
with shared computing platforms, curriculum development, and support of the
Hadoop open-source backend. This is a great example of an academic/industrial
collaboration working toward a common goal.

But it’s the news on the research front that I find most intriguing. The focus on data-
parallelism today surrounds Big Data, and that is an important application domain.
But what about the rest of the software industry? How will parallel computing
transcend Big Data problems, so that broad classes of software can leverage
multicore and cluster parallelism?

This is a hard problem, but based on research in the last 5-10 years, | am optimistic
that academic computer science can play a leadership role here. Inrecent years, the
data-centric approach to programming exemplified by SQL and MapReduce has
been gaining footholds well outside of batch-oriented data parallelism. There has
been a groundswell of work on “declarative”, data-centric languages for a variety of
domain-specific tasks, mostly using extensions of Datalog, a formal language
popular with theoreticians. These new data-centric languages have been popping up
in networking and distributed systems, natural language processing, compiler
analysis, modular robotics, security, machine learning, and video games, among

other applications. And they are being proposed for tasks that are not
embarrassingly parallel. It turns out that focusing on the data can make a broad
class of programs simpler — much simpler! — to express.

As one example from my research group at Berkeley, our version of the Chord
Distributed Hash Table (DHT) is 47 lines of our Overlog language; the reference
implementation is over 10,000 lines of C++. (DHTSs are a key component of cloud
services like Amazon’s Dynamo). That is the kind of scenario where the
quantitative difference is best captured qualitatively. You can print out our Chord
implementation on one sheet of paper, take it down to the coffee shop, and figure it
out. Doing that with 10,000 lines of C++ would be a superhuman feat of
Programmer-Fu, and a big waste of paper. Now, Overlog is a fairly academic
language, but we are following it up with a much more complete language called
Lincoln that is targeted at a much wider range of programmers. Other such
languages are under development in various groups.

Things to Watch

It is easy to see the need for new parallel programming approaches, but hard to
envision where and how the next generation of big ideas will play out. Here are
some things I am keeping an eye on:

* MapReduce Extensions and Integration. I am not a big fan of the specifics
of Google’s MapReduce, nor of the cloning of that model in the open-source
Hadoop framework. Its biggest drawback is the need to stage data to disk
over and over, which prevents it from providing real-time feedback, and
dooms it to poor overall performance. (Itis not only slower than it should
be, it is an enormous energy hog, which should even bother resource-rich
companies like Google and Yahoo). ButI do not view MapReduce as a fixed
target. Most of the companies I talk to using Hadoop have modified it
significantly, and there are a number of languages layered on top including
Yahoo!’s Pig, IBM’s JAQL, and Facebook’s Hive. New MapReduce
implementations like those of Greenplum and Aster Data will presumably
remove some of these design roadblocks, and open up interesting
integrations with database technology. MapReduce is a movement, not an
artifact, and the landscape there is likely to change substantially in the next
months and years.

* The Next Programming Language(s). The need for Parallelism opens the
door for a new programming language. MapReduce is almost certainly too
simple, and SQL too cumbersome to be a broadly useful language. If the next
popular language has to provide parallelism, what will it look like? I am
placing a bet on data-centric declarative languages like our new effort,
Lincoln. But these have yet to have their day in the sun, and there are
certainly plenty of fans of other paradigms. Given that languages succeed for
both technical and non-technical reasons, how will this space get staked out?

Cloud Computing. One of the major challenges in exploiting parallelism is to
make improvements in legacy software, including operating systems,
desktop applications, games etc. The emergence of software in the cloud is
intriguing in its timing, because it provides an opportunity to rewrite
everything from scratch. Shouldn’t this new platform be programmed for
parallelism, both at its core and in its applications? That’s not really the case
today. Are the programs being written today for early cloud platforms
doomed to irrelevance because they predate the next parallel language? Is
this an opportunity to leapfrog the early movers in the Cloud Computing
space?

Data and Statistics. Data volumes will continue to grow as never before;
everybody will want to turn information into value. As part of that evolution,
statisticians, machine learning experts, and other data analysts will play an
increasingly important role in effective organizations, and will need to be
skilled at handling very big data sets. The practice of “Data Mining” arose
with roughly this premise, but the research has grown increasingly
sophisticated, and I expect this sophistication to become much more
widespread in industry over the coming years. Practitioners who can master
this combination of skills will be highly valued, as will the tools that they
embrace for their work.

About Joe Hellerstein

Joseph M. Hellerstein is a Professor of Computer Science at the University of
California, Berkeley, whose research focuses on data management and networking.
His work has been recognized via awards including an Alfred P. Sloan Research
Fellowship, MIT Technology Review's inaugural TR100 list, and two ACM-SIGMOD
"Test of Time" awards. Key ideas from his research have been incorporated into
commercial and open-source database software released by IBM, Oracle, and
PostgreSQL. He has also held industrial posts including Director of Intel Research
Berkeley, and Chief Scientist of Cohera Corporation.

