
ThreadedComposite: A Mechanism for Building
Concurrent and Parallel Ptolemy II Models

Edward A. Lee

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2008-151

http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-151.html

December 7, 2008

Copyright 2008, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Acknowledgement

This work was supported in part by the Center for Hybrid and Embedded
Software Systems (CHESS) at UC Berkeley, which receives support from
the National Science Foundation (NSF awards #0720882 (CSR-EHS:
PRET) and #0720841 (CSR-CPS)), the U. S. Army Research Office (ARO
#W911NF-07-2-0019), the U. S. Air Force Office of Scientific Research
(MURI #FA9550-06-0312), the Air Force Research Lab (AFRL), the State
of California Micro Program, and the following companies: Agilent, Bosch,
HSBC, Lockheed-Martin, National Instruments, and Toyota.

ThreadedComposite:
A Mechanism for Building

Concurrent and Parallel Ptolemy II Models ∗

Edward A. Lee
UC Berkeley

eal@eecs.berkeley.edu

December 7, 2008

Abstract

This paper describes the usage patterns of the ThreadedComposite actor in
Ptolemy II. This actor enables the execution of opaque actors (atomic actors or
composite actors with directors) in a separate thread, thus providing multithreading
for models of computation that are not already multthreaded. It can be used to
execute an actor in the background, to execute multiple actors in parallel (e.g. on
a multicore machine), and to execute actors that block on I/O operations without
blocking other actors.

1 Introduction
A program is said to be concurrent if different parts of the program conceptually exe-
cute simultaneously. A program is said to be parallel if different parts of the program
physically execute simultaneously on distinct hardware (such as on multicore machines
or on server farms). A parallel program must be concurrent, but a concurrent program
need not be executed in parallel.

Ptolemy II has long included a Kahn process networks (PN) model of computa-
tion [16] and rendevous models of computation [1, 9]. Like many MoCs in Ptolemy
II, these are intrinsically concurrent, but unlike most, they are implemented using mul-
tiple threads. On machines that execute threads on multiple processors, such as SMP
or multicore machines, these MoCs provide a mechanism for constructing parallel pro-
grams.

∗This work was supported in part by the Center for Hybrid and Embedded Software Systems (CHESS) at
UC Berkeley, which receives support from the National Science Foundation (NSF awards #0720882 (CSR-
EHS: PRET) and #0720841 (CSR-CPS)), the U. S. Army Research Office (ARO #W911NF-07-2-0019),
the U. S. Air Force Office of Scientific Research (MURI #FA9550-06-0312), the Air Force Research Lab
(AFRL), the State of California Micro Program, and the following companies: Agilent, Bosch, HSBC,
Lockheed-Martin, National Instruments, and Toyota.

ThreadedComposite Actor 2

This paper introduces a new Ptolemy II actor called ThreadedComposite that sup-
ports multithreaded computation with MoCs that are not implemented using threads,
such as discrete events (DE), various dataflow MoCs, and synchronous/reactive
(SR).

Programs are typically executed in parallel to improve performance. Hence, one
may develop a concurrent program in order to be able to exploit parallel hardware.
However, there are other reasons for developing concurrent programs. One reason
is I/O. Portions of a program may stall to wait for inputs from the environment, for
example, or to wait for the right time produce some output. Another reason is to create
the illusion of parallel hardware. Time-sharing operating systems, for example, were
originally created to give each user the illusion of having their own machine. Of course,
these two reasons are intertwined, since interaction with such users is about I/O and its
timing.

Techniques for developing concurrent programs divide into two families, message
passing and threads [10]. Threads are sequential procedures that share memory. Java
directly supports threads. See Lea [11] for an excellent “how to” guide to using threads
in Java. Recently, Java acquired an extensive library of concurrent data structures and
mechanisms based on threads [12]. In the message passing style, rather than sharing
memory, sequential procedures invoke library mechanisms for sending messages to one
another. A popular such library is MPI [19].

A program is said to be determinate if given the same inputs, it produces the same
outputs on every execution. Sometimes programmers deliberately construct nondeter-
minate programs. Most of the time, however, even with concurrent programs, program-
mers want repeatable behavior. This is particularly true if one considers the timing of
the inputs as part of the input. Given the same inputs arriving at the same times, the
outputs of the program should be the same.

It is notoriously difficult to maintain determinacy with threads [20, 15, 8]. The
essence of the problem is that multithreaded programs have vast numbers of possible
interleavings, and distinct interleavings can result in observably different behavior. Un-
fortunately, maintaining determinacy with message-passing libraries like MPI is also
difficult. The richness of the library makes it too easy for programmers to inadvertently
introduce nondeterminate mechanisms.

There has been considerable debate in the literature between message passing schemes
(or their variations referred to as event-based mechanisms) and threads. Some argue
that the message passing schemes are a bad idea [2]. Some argue the contrary [21, 24].
In this paper, we will show a very practical and easy to use event-based scheme. We
use threads as part of the underlying implementation, but threads are not part of the
programmer’s model. The reader can then form a judgement about this debate.

Ptolemy II includes a number of directors that have a message-passing style, but
are far more disciplined than message-passing libraries like MPI. For example, the DE
director implements a discrete-even model of computation [23, 5, 3], where sequential
procedures (actors written in Java) communicate via time-stamped messages. The job
of the director is to ensure that each actor reacts to input events in time-stamp order. DE
models in Ptolemy II are determinate [22, 13, 18] and concurrent, but the DEDirector
realizes this concurrency in a very limited way. It fires actors one at time, allowing
each firing to complete before invoking the next one. Thus, although the model is

ThreadedComposite Actor 3

Figure 1: A discrete-event model that takes five seconds to process each Clock event.

concurrent, it will not effectively exploit parallel hardware, nor can it effectively handle
actors whose fire methods block on I/O or block to achieve some real-time behavior.
The firing of such actors will block other actors.

Parallel execution of DE models is a notoriously difficult problem [6, 25]. The
ThreadedComposite actor introduced here stops short of providing fully parallel ex-
ecution of DE. Instead, it provides a simple mechanism for controlling concurrency
where it is needed. If a particular actor blocks on I/O, for example, the ThreadedCom-
posite actor provides a way to prevent that actor from blocking other computations.
It also provides a way to exploit multicore architectures to get faster execution of a
model. All of this is accomplished while maintaining the determinate semantics of DE.

This paper assumes familiarity with the actor-oriented models of Ptolemy II and
actor semantics [14, 4].

2 Concurrent Execution
We begin with a simple example showing concurrent execution of an actor that blocks
on I/O. To emulate this, we use the Sleep actor, which in its fire() method calls the
Java Thread.sleep() method. The thread that calls fire() will stall for an amount of time
given by the sleepTime parameter of the Sleep actor (this parameter has type long and
specifies the number of milliseconds to sleep).

Consider the model in figure 1, where each Sleep actor has been assigned a sleep-
Time value of 1000L, specifying a sleep time of one second. This is a discrete-event
(DE) model. The Clock actor generates events with time-stamps 0, 1, 2, etc. This trig-
gers execution of five Sleep actors. Since each Sleep actor sleeps for one second, the
total execution time per Clock event is five seconds (or slightly more, since the Clock
and Display actors also take time to execute).

ThreadedComposite Actor 4

drag from library

Figure 2: The ThreadedComposite actor dragged in from the library.

The Sleep actors, however, are not doing anything useful during their sleep time.
They are blocked on I/O. Indeed, the way that Java.sleep() works is that, via the op-
erating system, it sets up a timer interrupt that will reawaken the current thread one
second later, and then suspends execution of the thread. The operating system is able
to meanwhile execute other threads, but there are no other threads associated with this
model, so the entire model is blocked while each Sleep actor fires.

If instead we put the Sleep actors inside instances of ThreadedComposite, then the
fire() method of the Sleep actor will be called in a separate thread from that of the DE
director. We refer to the inside thread and the director thread to distinguish these
two threads.

To use the ThreadedComposite actor, drag it into a model from the HigherOrder-
Actors library, as shown in figure 2. ThreadedComposite is a higher-order actor in
that it is an actor parameterized by another actor [16]. We will first illustrate the use of
this actor with a single atomic actor inside. In particular, you can find the Sleep actor in
the RealTime library and drag it onto the instance of ThreadedComposite that you just
created, as shown in figure 3. Notice that the ThreadedComposite acquires the ports
and icon of the actor that we just dragged onto it. It also acquires the parameters of that
actor, as you can verify by double clicking on it.

The model in figure 4 is similar to the one above with five instances of Sleep. Its
behavior as a DE model is nearly identical, but the five Sleep actors fire concurrently in
separate threads. When those threads block, the DE director thread is not blocked, so all

ThreadedComposite Actor 5

drag onto the ThreadedComposite

Figure 3: The ThreadedComposite acquires the icon and parameters of actors you drag
into it.

Figure 4: A model similar to the one in figure 1, but using instances of ThreadedCom-
posite to fire the five Sleep actors concurrently.

ThreadedComposite Actor 6

five actors sleep simultaneously. The execution time now is approximately one second
per Clock event rather than five seconds per Clock event. As a DE model, however, the
behavior is almost identical. The same sequence of time-stamped events is delivered to
the Display actor. The (slight) difference in semantics is that the ThreadedComposite
actor behaves like a TimedDelay actor, as discussed next.

3 ThreadedComposite and Model Time Delay
The Sleep actor in DE behaves semantically like a wire, albeit a slow one. The output
event is identical to the input event. It has the same value and time stamp. If you replace
each Sleep actor in figure 1 with a wire straight through, the behavior will be identical
except that the execution will be much faster. When you put the Sleep actor inside of
an instance of ThreadedComposite, the effect is almost, but not quite the same.

To achieve concurrency, ThreadedComposite introduces model time delay from its
inputs to its outputs. This delay enables the actor to produce its outputs in a subsequent
firing, after the firing where it consumes the inputs that trigger those outputs. This
model time delay is not the same as execution time delay (or real time delay). In our
example, the model time delay is zero (or more precisely, one microstep, as explained
below), whereas the computation time is a full second.

In particular, the ThreadedComposite has a parameter delay that specifies the model
time delay from an input to the output. If an input event with time stamp τ triggers a
firing of the inside actor, and that inside actor produces an output on that firing, then
the output will have time stamp τ + delay. Hence, a ThreadedComposite with Sleep
actor inside is semantically equivalent to a cascade of a Sleep and TimedDelay, which
is semantically equivalent to a TimedDelay alone.

By default, the value of delay is zero, which means that the time stamp of the output
will equal that of the input. But there is a microstep delay that you can think of as an
infinitesimal delay.

Specifically, the discrete-event domain in Ptolemy II (as with some other timed
domains like Continuous) has a super dense model of time [17]. This means that
a signal from one actor to another can contain multiple events with the same time
stamp. These events are “simultaneous,” but nonetheless have a well-defined sequential
ordering determined by the order in which they are produced.

If delay is 0.0, then the fire() method of the ThreadedComposite actor produces
on its output port the output result from the previous iteration of the inside actor with
the same time stamp, if there was one. If there wasn’t such a previous iteration, then
it produces no output, effectively asserting that the output is absent. The postfire()
method consumes and records any inputs for use by the next firing of the inside actor.
If there are such inputs, it also requests a refiring at the current time. This refire request
triggers the next iteration (at the same time stamp), on which the output is produced.

For the example in figure 4, the execution proceeds as follows. The Clock is the
first actor to fire, producing an event with time stamp 0. This event enables the Display
actor and all five instances of ThreadedComposite. These can fire in any order because
the instances of ThreadedComposite will not produce any output in that firing. Instead,
when their postfire() method is invoked, they will record the input in a queue for use by

ThreadedComposite Actor 7

the inside thread, which fires the inside actor. They will also request a refiring at time
0.0 (the current time). When this refiring occurs, the ThreadedComposite will stall the
director thread until the inside thread has completed the firing of the inside actor.

All instances of ThreadedComposite will be postfired before any of these requested
refirings occur. Thus, all five inside threads will be presented with inputs before the
director thread stalls waiting for results from any one of those threads. This is how
concurrent execution of all five actors is achieved.

For the model in figure 4, if the delay parameter of each ThreadedComposite is set
to 0.0, then the only observable difference in behavior from that of figure 1 (aside from
execution time) is that the Display actor will fire twice instead of once for each Clock
event. On the first of these firings, it will have only one event on the topmost input,
which comes directly from the Clock. The other input channels will all be absent. On
the second firing, which occurs with the same time stamp, the topmost input channel
will be absent and the other five channels will have events from the ThreadedCompos-
ite. This difference is observable on the displayed output if the suppressBlankLines
parameter of the Display actor set to false, because in this case the Display actor will
produce a blank line for each absent event.

4 Background Execution
In the previous example, ThreadedComposite is used to dispatch several blocking I/O
operations simultaneously. Another use for the ThreadedComposite actor is to execute
an actor or a submodel in the background while a model continues to execute for some
time. Typically this means that the delay parameter of the ThreadedComposite will be
given a value greater than zero. If the value is d, then this effectively gives a DE director
(or any other timed director) permission to continue to execute the model up to model
time τ + d after delivering an event with time stamp τ to the ThreadedComposite. In
effect, the ThreadedComposite guarantees that it will not produce an event with a time
stamp smaller than τ + d. In fact, any output it produces in response to the input event
at time τ will have time stamp τ + d.

Consider the example in figure 5. In that model, the ThreadedComposite has de-
lay 2.0 and contains a Sleep actor with a sleep time of 1.5 seconds. Executing this
model produces exactly the same result as if the ThreadedComposite were replaced by
a TimedDelay with delay 2.0.

The ThreadedComposite takes a full 1.5 seconds to execute, but that execution
occurs in the background and does not block firings of the other actors, except as
necessary to preserve timed DE semantics. Thus, the lower actors react to events at
times 0, 0.25, 1, and 1.25 before the ThreadedComposite has completed its execution.
The ThreadedComposite, in effect, executes the Sleep actor in the background without
compromising the determinacy of DE semantics.

ThreadedComposite Actor 8

Figure 5: This model uses ThreadedComposite with a non-zero delay to allow the
director to process events with future time stamps while the ThreadedComposite reacts
in the background to a given event.

public void fire() throws IllegalActionException {
// Record the start time.
long start = System.currentTimeMillis();

// Read and discard the input, if there is one.
if (input.hasToken(0)) {input.get(0); }

// Perform a fixed (useless) computation.
int dummy = 0;
for (long i = 0; i < count; i++) {

dummy++;
}
// Produce on the output the actual time consumed.
Token result = new LongToken(System.currentTimeMillis() - start);
output.send(0, result);

}

Figure 6: The fire() method of an actor that consumes cycles on the processor to emu-
late a computational load. This is a simplified version of the Ptolemy II ExecutionTime
actor.

ThreadedComposite Actor 9

(a)

(b)

Figure 7: Two models that use the ExecutionTime actor. The model on the left executes
the two actors in the same thread, and thus does not exploit a multicore machine. The
one on the right has the ExecutionTime actors inside instances of ThreadedComposite.
On a two-core machine, it executes approximately twice as fast as the model on the
left.

5 Parallel Execution
ThreadedComposite can also be used to achieve parallel execution on multicore ma-
chines. This is useful if you have actors that consume a large number of CPU cycles.
The ExecutionTime actor can be used to illustrate this effect. Its fire() method (simpli-
fied) is shown in figure 6. Like the Sleep actor, this actor’s role is to consume time, but
unlike the Sleep actor, it uses CPU cycles doing a (useless) fixed computation during
that time.

In figure 7, we show two models using the ExecutionTime actor. The model on the
left fires these actors directly in the director thread. The one on the right wraps them
in instances of ThreadedComposite, so their execution occurs in separate threads. On
a dual-core MacBook Pro, for example, the model on the right executes approximately
twice as fast as the model on the left.

The model on the right in the figure also illustrates that ThreadedComposite can
be used with composite actors as well as with atomic actors. Instead of dragging an
actor onto the ThreadedComposite as in figure 2, just right click on the instance of
ThreadedComposite and select Open Actor. Then populate the actor with a director,
ports, and a submodel consisting of any number of other actors. The submodel will be
executed in a separate thread. In this example, we have also shown the use of a distinct
director, in this case the synchronous dataflow (SDF) director.

Note that the process networks (PN) director, since it executes every actor in a
separate thread, can also be used to get the same effect, exploiting multiple cores. The

ThreadedComposite Actor 10

Figure 8: A model that opens a window on the screen into which a user types com-
mands. This model simply echos back what the user typed.

ThreadedComposite actor makes this possible with directors that are not themselves
multithreaded, such as the DE director.

6 Sporadic Behaviors
All of the examples we have considered so far use actors with rather simple execution
patterns. For each input event, they produce an output event. Moreover, the model time
of the output event has a fixed relationship to the input event. Not all applications of
ThreadedComposite have such simple behaviors.

Consider the InteractiveShell actor in Ptolemy II. This actor opens a window on the
screen into which a user may type commands. When the actor fires, it reads a string
from the input port and displays it in the window. It then displays a prompt (which is
a string specified by a parameter). The user then types something, and when the user
hits the Return or Enter key, the command is sent as a string to the output port, and the
fire() method returns. This actor blocks execution of the model until the user enters a
command.

A simple model using this actor is shown in figure 8. Here, a SingleEvent actor
provides an initial event that starts execution of the feedback loop. Its output is the
string “Type something.” When the user types something, that string is fed back through
the TimedDelay actor and through the Merge actor back to the InteractiveShell, which
displays what was typed on the next line.

The TimedDelay actor in this model is needed to break the circular causality that is
implied by the feedback loop. In this example, the delay parameter of the TimedDelay
is set to 0.0, so the time-stamp of the output is the same as the time stamp of the
input. However, the output occurs one microstep later in super-dense time, as explained
above. Thus, the outputs of the Merge actor, though having the same time stamp, are
logically ordered. In this model, time does not advance past 0.0. If you change the
delay parameter of the TimedDelay actor to something larger, then model time will
advance in fixed increments.

ThreadedComposite Actor 11

Figure 9: A model that opens two windows on the screen into which users type
commands. This model merges what the users type and displays them together in
a third window. If the delay parameter of the ThreadedComposite actors is set to
UNDEFINED, then the users can type in any order, and their text will be merged in
the order in which they type.

Now suppose that we would like to two instances of InteractiveShell in the same
model. Since each instance blocks execution of the model, this would be problematic.
The user would have to type into one first, then the other, in whatever order the DE
scheduler choses to fire the instances of InteractiveShell. This is probably not what we
want.

Consider the model shown in figure 9. Here, we have two instances of Interac-
tiveShell, each wrapped in an instance of ThreadedComposite. With the default pa-
rameters, however, this still does not do what we want. In order to allow users to type
in arbitrary order, we need to set the delay parameter of the instances of ThreadedCom-
posite to UNDEFINED.

Recall that with ThreadedComposite, the instances of InteractiveShell execute in
separate threads called the inside thread. If delay has value UNDEFINED, then output
events from ThreadedComposite are produced at the current model time when the in-
side thread happens to produce those events. However, in the model we have given,

ThreadedComposite Actor 12

there is no mechanism for time to advance, so model time will remain at 0.0. This
won’t quite work. We could add, for example, a Clock actor to the model, and then
time will advance.

More interestingly, we can set the synchronizeToRealTime parameter of the Thread-
edComposite actors to true. This has the effect that setting the time stamp of any
outputs from the ThreadedComposite to the greater of real time (measured in seconds
from the start of execution) and the model time. Since there is no mechanism for model
time to advance, in this example, the time stamps will be the real time.

In addition, for this model to work, we need to set the stopWhenQueueIsEmpty pa-
rameter of DE Director to false. While the model is waiting for users to type some-
thing, there are no pending events on the event queue, and by default, the DE Director
terminates the execution of a model when this occurs. The stopWhenQueueIsEmpty
parameter prevents this termination.

The figure shows a sample execution with the two interactive shell windows and
the display of the merged results. Note that the users can type in any order, and that
the time stamps represent the time at which the user hit the Enter or Return. The
Expression actors are used to format the text that is displayed.

This example illustrates the use of ThreadedComposite to generate sporadic events
(in this case user inputs) without blocking the model to wait for those events. The same
mechanism can be used to inject into a model sensor events, network packet arrivals,
or any pushed data.

In summary, to make this work, we have set the parameters of the instances of
ThreadedComposite as follows:

delay: UNDEFINED
synchronizeToRealTime: true

and the DE Director as follows:
stopWhenQueueIsEmpty: false

7 Real-Time Behaviors
We have seen that in ThreadedComposite, if synchronizeToRealTime is true, then out-
put events are assigned a time stamp that is the larger of the current model time and
the current real time (in seconds since the start of execution). In addition, when a
time-stamped input event is delivered to an input of the ThreadedComposite, if the
time stamp value is larger than real time, then the inside thread will stall until real time
matches or exceeds the value of the time stamp (again measured in seconds since the
start of execution of the inside thread). Thus, ThreadedComposite can be used to delay
execution of actor until some real time.

In the example of figure 9, the input events of the InteractiveShell actors always
have time stamps less than real time because they are generated either at the start by
the SingleEvent actor (with time stamp 0.0) or by the outputs fed back from the Inter-
activeShell, which assigns time stamps that match real time. Hence, in that example,
the stall of the inside thread will not occur.

If we modify the model, however, putting a TimedDelay actor in each feedback
loop with the delay parameter set to, say, 10.0, then users will be constrained to enter

ThreadedComposite Actor 13

data no more than once every 10 seconds.
Note that the DE Director also has a synchronizeToRealTime parameter. That pa-

rameter delays execution of all actors until real time matches the time stamp of their
inputs. Using ThreadedComposite, we can build models with more targeted real-time
properties.

8 Using ThreadedComposite with Other Directors
All of the examples above use ThreadedComposite with the DE director. This is natu-
ral because of the delay parameter and the correspondence with the TimedDelay actor.
With some care, however, ThreadedComposite can also be used with some other direc-
tors.

First, note that it would make no sense to use ThreadedComposite with PN or
Rendezvous, since these directors already execute all actors in their own threads.

The synchronous/reactive (SR) director can be used with ThreadedComposite, with
one constraint. The delay parameter of ThreadedComposite must match the period
parameter of the SR director (or it can an exact multiple of the period). By default,
both parameters have value 0.0, so the default values match. Note that with this default,
any outputs produced by the ThreadedComposite will appear one clock tick later than
the inputs that trigger them, so the ThreadedComposite behaves like a Pre actor. If
the period parameter is 1.0, say, and the delay is 2.0, then outputs will appear two
ticks later than the input that triggered them. This mechanism can be used to achieve
pipeline parallelism in SR. If the delay parameter of ThreadedComposite is given the
value UNDEFINED, then the output will appear a nondeterminate number of ticks later.

The synchronous dataflow (SDF) director can sometimes be used with Threaded-
Composite, but the combination is a bit odd. To get multithreaded execution with SDF,
it is usually better to use a PN director instead. Nonetheless, it is sometimes possible
to use ThreadedComposite with SDF, and it can be occasionally be useful because PN
does not compose well with other domains [7].

First, be aware that, just as with SR, the first firing of ThreadedComposite will not
produce any output. This violates the SDF assumption that the number of tokens pro-
duced and consumed on every port is constant throughout the execution of the model.
Nonetheless, as long as downstream actors are robust enough to not throw exceptions
if they are fired with no inputs, models can be made to work. Typically, actors check
for input availability in prefire(), returning false if their required inputs are not present.
If all downstream actors do that, then the model will execute without exception. Be-
cause the first firing produces no output, a more sensible dataflow director to use with
ThreadedComposite is dynamic dataflow (DDF).

As with SR, using ThreadedComposite with SDF requires that the delay parameter
match the period parameter of the SDF director (or be an exact multiple). Again,
this can be used to achieve pipeline parallelism in SDF. As with SR, if period is
UNDEFINED, then outputs will appear a nondeterminate number of iterations later
than the inputs that trigger them.

As of this writing, the DDF director has no period parameter, and hence will not
increment time. Thus, for ThreadedComposite to work with DDF, the delay parameter

ThreadedComposite Actor 14

must remain at 0.0 (or be UNDEFINED, if the nondeterminism is tolerable), unless
DDF is being used inside some domain that itself increments time (such as DE).

ThreadedComposite can be used with CT or Continuous directors, just as with DE.

9 Port-Parameters
One last subtlety of the ThreadedComposite actor is that it cannot expose instances of
ParameterPort without introducing nondeterminacy in the execution. A ParameterPort
is an input port that sets the value of a parameter with the same name. Upon receiving
a token at such a port, if the ThreadedComposite were to set a parameter visible by the
inside thread, there is no assurance that the inside thread is not still executing an earlier
iteration. Thus, it could appear to be sending a message backward in time, which would
be bizarre. To prevent this error, the ThreadedComposite actor does not mirror such
ports, and hence they appear on the outside only as parameters.

10 How it Works
The ThreadedComposite Actor is a container for another actor that executes that other
actor in a separate thread (the inside thread). This actor starts that thread in its initial-
ize() method, which is invoked by its executive director (the director in charge of firing
the ThreadedComposite). The thread that invokes the action methods of the Threaded-
Composite (initialize(), prefire(), fire(), postfire(), and wrapup()) is called the director
thread.

ThreadedComposite is a subclass of MirrorComposite, which automatically creates
input and output ports to match those of the inside actor. Input events provided at those
input ports are provided as input events to the contained actor. Outputs provided by the
contained actor become output events of this actor. If used in a timed domain, the time
stamp of the output events depends on the delay parameter, as explained above.

The inside thread blocks waiting for inputs or pure events (firings where all inputs
are absent). Inputs are queued for use by the inside thread when the postfire() method
of the ThreadedComposite is invoked by the director thread. Pure events are provided
after fireAt(), fireAtCurrentTime(), or fireAtFirstValidTimeAfter() are called by either
the inside thread or the director thread. When the time of those firing requests becomes
current time, the container will (presumably) fire the ThreadedComposite actor, and
this actor will provide a pure event to the inside thread, causing it to fire the contained
actor.

When the inside thread completes an iteration (prefire(), fire(), postfire()) of the
inside actor, any outputs that are produced by that iteration are collected and queued for
use by the director thread. When the director thread fires the ThreadedComposite actor
and current model time matches the time at which those outputs should be produced,
the director thread retrieves these outputs from the queue and sends them via the output
ports of the ThreadedComposite. If the inside thread hasn’t completed the appointed
iteration, then the director thread stalls until it has. If there are no output ports, or if
the inside actor doesn’t happen to produce any tokens on its output ports, the director

ThreadedComposite Actor 15

thread stalls anyway to wait for the completion of the iteration. This prevents model
time in the director thread from getting ahead of model time seen by the inside thread
by more than the value of delay.

When the wrapup() method of a ThreadedComposite is called, the inside thread is
provided with signal to terminate rather than to process additional inputs. The inside
thread will also exit if stop() is called on the ThreadedComposite, as occurs for example
if the user pushes the Stop button in the GUI; however, in this case, which iterations
are completed is nondeterminate (there may be inputs left unprocessed).

11 Conclusion
The ThreadedComposite actor provides a versatile mechanism for executing compo-
nents of a model concurrently and/or in parallel with execution of other components.
This mechanism can exploit multicore architecture to get faster executions, or it can be
used to contain the extent to which I/O operations block execution of the model. All of
this done while preserving the determinate semantics of discrete-event models.

References
[1] F. Arbab. Reo: A channel-based coordination model for component composition.

Mathematical Structures in Computer Science, 14(3):329–366, 2004.

[2] R. v. Behren, J. Condit, and E. Brewer. Why events are a bad idea (for high-
concurrency servers). In 10th Workshop on Hot Topics in Operating Systems
(HotOS IX), Lihue, Hawaii, 2003.

[3] C. G. Cassandras. Discrete Event Systems, Modeling and Performance Analysis.
Irwin, 1993.

[4] J. Eker, J. W. Janneck, E. A. Lee, J. Liu, X. Liu, J. Ludvig, S. Neuendorffer,
S. Sachs, and Y. Xiong. Taming heterogeneity—the Ptolemy approach. Proceed-
ings of the IEEE, 91(2):127–144, 2003.

[5] G. S. Fishman. Discrete-Event Simulation: Modeling, Programming, and Analy-
sis. Springer-Verlag, 2001.

[6] R. Fujimoto. Parallel and Distributed Simulation Systems. John Wiley and Sons,
2000.

[7] A. Goderis, C. Brooks, l. Altintas, and E. A. Lee. Composing different models of
computation in Ptolemy II and Kepler. In International Conference on Computa-
tional Science (ICCS), to appear, 2007.

[8] B. Hayes. Computing in a parallel universe. American Scientist, 95:476–480,
2007.

[9] C. A. R. Hoare. Communicating sequential processes. Communications of the
ACM, 21(8), 1978.

ThreadedComposite Actor 16

[10] H. C. Lauer and R. M. Needham. On the duality of operating system structures.
SIGOPS Operating Systems Review, 13(2):3–19, 1979.

[11] D. Lea. Concurrent Programming in Java: Design Principles and Patterns.
Addison-Wesley, Reading MA, 1997.

[12] D. Lea. The java.util.concurrent synchronizer framework. Science of Computer
Programming, 58(3):293–309, 2005.

[13] E. A. Lee. Modeling concurrent real-time processes using discrete events. Annals
of Software Engineering, 7:25–45, 1999.

[14] E. A. Lee. Model-driven development - from object-oriented design to actor-
oriented design. In Workshop on Software Engineering for Embedded Systems:
From Requirements to Implementation (a.k.a. The Monterey Workshop), Chicago,
September 24 2003.

[15] E. A. Lee. The problem with threads. Computer, 39(5):33–42, 2006.

[16] E. A. Lee and T. M. Parks. Dataflow process networks. Proceedings of the IEEE,
83(5):773–801, 1995.

[17] E. A. Lee and H. Zheng. Operational semantics of hybrid systems. In M. Morari
and L. Thiele, editors, Hybrid Systems: Computation and Control (HSCC), vol-
ume LNCS 3414, pages pp. 25–53, Zurich, Switzerland, March 9-11 2005.
Springer-Verlag.

[18] E. A. Lee and H. Zheng. Leveraging synchronous language principles for het-
erogeneous modeling and design of embedded systems. In EMSOFT, Salzburg,
Austria, October 2007. ACM.

[19] Message Passing Interface Forum. MPI2: A message passing interface standard.
International Journal of High Performance Computing Applications, 12(1-2):1–
299, 1998.

[20] H. Sutter and J. Larus. Software and the concurrency revolution. ACM Queue,
3(7):54–62, 2005.

[21] R. van Renesse. Goal-oriented programming, or composition using events,
or threads considered harmful. In Eighth ACM SIGOPS European Workshop,
September 1998.

[22] R. K. Yates. Networks of real-time processes. In E. Best, editor, Proc. of the
4th Int. Conf. on Concurrency Theory (CONCUR), volume LNCS 715. Springer-
Verlag, 1993.

[23] B. P. Zeigler, H. Praehofer, and T. G. Kim. Theory of Modeling and Simulation.
Academic Press, 2nd edition, 2000.

ThreadedComposite Actor 17

[24] N. Zeldovich, A. Yip, F. Dabek, R. T. Morris, D. Mazieres, and F. Kaashoek.
Multiprocessor support for event-driven programs. In USENIX Annual Technical
Conference, San Antonio, Texas, USA, June 9-14 2003.

[25] Y. Zhao, E. A. Lee, and J. Liu. A programming model for time-synchronized
distributed real-time systems. In Real-Time and Embedded Technology and Ap-
plications Symposium (RTAS), Bellevue, WA, USA, April 3-6 2007. IEEE.

