
Coding and Message-Passing for Large-Scale Storage
and Inference

Georgios Alexandros Dimakis

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2008-153

http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-153.html

December 10, 2008



Copyright  2008, by the author(s).
All rights reserved.

 
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.



Coding and Message-Passing
for Large-Scale Storage and Inference

by

Georgios Alexandros Dimakis

Ptychion (National Technical University of Athens) 2003
M.S. (University of California, Berkeley) 2005

A dissertation submitted in partial satisfaction
of the requirements for the degree of

Doctor of Philosophy

in

Electrical Engineering and Computer Sciences

in the

GRADUATE DIVISION

of the

UNIVERSITY OF CALIFORNIA, BERKELEY

Committee in charge:

Professor Kannan Ramchandran, Chair
Professor Martin Wainwright
Professor Sourav Chatterjee

Fall 2008



The dissertation of Georgios Alexandros Dimakis is approved:

Professor Kannan Ramchandran, Chair Date

Professor Martin Wainwright Date

Professor Sourav Chatterjee Date

University of California, Berkeley

Fall 2008



Coding and Message-Passing for Large-Scale Storage and Inference

Copyright c© 2008

by

Georgios Alexandros Dimakis



Abstract

Coding and Message-Passing for Large-Scale Storage and Inference

by

Georgios Alexandros Dimakis

Doctor of Philosophy in Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Kannan Ramchandran, Chair

Recent advances in technology have catalyzed a paradigm shift away from cen-

tralized schemes and in the direction of distributed and cooperative architectures for

large-scale systems. In applications like data centers, sensor networks, and peer-to-

peer networks, coding is used to introduce redundancy for robustness. We develop

and analyze novel coding constructions for distributed storage applications. We also

present information theoretic performance bounds and explicit network codes that

achieve optimal performance.

For the case of large-scale distributed processing, we introduce new message-

passing schemes and show explicit results on convergence rate. In particular, we

introduce geographic gossip, an algorithm that can compute linear functions of data

in a network, requiring a number of messages that scales optimally in the number of

nodes for a large class of graphs.

Professor Kannan Ramchandran, Chair Date

1



Acknowledgements

I feel that I have been tremendously lucky in my graduate life, because I had the

opportunity to interact with numerous mentors and friends. Without them, this work

would undoubtedly have not been possible. First and foremost I would like to thank

my research advisors: Kannan Ramchandran and Martin Wainwright. I am deeply

indebted to Kannan for first taking me as a Master’s student, guiding me through

my first steps in research and sharing his numerous ideas, many of which form the

foundations of this thesis. I started working with Martin after he joined Berkeley in

2005. I want to thank him for sharing his incredible mathematical skill and for the

countless hours we have spent together trying to crack down problems. Kannan and

Martin have been essential for me to realize my potential and in addition have been

mentors and good friends. I can only wish that I will be to my students as great an

advisor as Kannan and Martin have been to me.

I would like to thank my collaborators: Chapter 2 is based on joint work with

Vinod Prabhkaran and Chapter 4 with Anand Sarwate both of whom have been

mentors and valuable friends. I spent the summer of 2005 in EPFL working with

Florence Benezit, Martin Vetterli, and Patrick Thiran. Chapter 5 is based on our

joint work and I am indebted to Florence, Patrick, and Martin for the hours we spent

working together and the numerous things I learned from them.

I would like to thank Microsoft Research for the financial support through their

research fellowship for the years 2007-2008 and also for the summer internship. Chap-

ter 3 is based on joint work with Yunnan Wu from MSR and Brighten Godfrey from

Berkeley. Yunnan and Brighten have been valuable collaborators and my experience

at MSR has given me a valuable connection to real world problems that will shape

my future research. I would like to thank Phil Chou and everybody in the Com-

i



munication and Collaboration group for numerous discussions and a very creative

summer.

I would also like to thank my collaborators on projects that did not appear in

this thesis: Costis Daskalakis, Dick Karp, Elchanan Mossel, Bobak Nazer, Michael

Gastpar, June Wang, Jeremy Schiff, David Chu, Dominic Antonelli, Amin Gohari,

and Petros Maragos. Petros has been the first researcher I interacted with and my

first mentor; I am deeply indebted to him.

Almost everything I know that I did not learn from my collaborators, I learned

from some inspired courses. Thanks to Venkat Anantharam for random processes

and coding theory, Christos Papadimitriou and Dick Karp for classes on algorithms,

David Tse for his wireless class and Alistair Sinclair for his randomized algorithms

course.

The Wireless Foundations Lab and Berkeley in general has been an amazing col-

laboration and social environment. Special thanks to Anand, Bobak, Pulkit, Rahul,

Salman, Gwen, Krish, June, Vinod, Dan, Dragan, Wei, and Hari for numerous discus-

sions, not all of them technical. I would like to thank Ruth Gjerde, the calm magical

force that solves any administrative problem within seconds and makes grad student

life so much easier.

The Bay area Greeks have been the family away from home for me. Thanks

to Costas (The Colocataire), Alexandra, Maria-Daphne, Nikos, Lefteris, Victoras,

Themos and Dora, Antonis and Antonakis, Dimitris, Tasoleris, Manolis, Kostas D,

Charis and Tasos, Eva, Eleni, Christos and George.

No words can do justice to describe what I owe to my family. I want to thank

them for their infinite support over an unbounded time interval and hope that in the

future I will be able to give equal love and support.

ii



to my parents

Στoυς γoνεις µoυ

Aντώνη , πoυ µε έµαθε να σκέφτoµαι και να ρωτάω.

Iκαρία, πoυ µε έµαθε να βλέπω την oµoρφιά της ζωής.

iii



Contents

1 Introduction 1

1.1 Outline and Contributions . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Preliminaries on Coding . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Decentralized Erasure Codes 11

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Decentralized Erasure Codes . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Analysis and Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4 Sensor Network Scenarios . . . . . . . . . . . . . . . . . . . . . . . . 33

3 The Repair Problem 37

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2 Background and Related Work . . . . . . . . . . . . . . . . . . . . . . 41

3.3 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.5 Analysis and Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4 Geographic Gossip 69

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.2 Problem formulation and main results . . . . . . . . . . . . . . . . . . 71

iv



4.3 Analysis for Regular Networks . . . . . . . . . . . . . . . . . . . . . . 80

4.4 Analysis for Random Geometric Graphs . . . . . . . . . . . . . . . . 83

4.5 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5 Path Averaging 97

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.2 Background and Metrics . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.3 Path averaging algorithms . . . . . . . . . . . . . . . . . . . . . . . . 99

5.4 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.5 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6 Conclusions and Future work 123

6.1 Distributed Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

6.2 Distributed information processing . . . . . . . . . . . . . . . . . . . 123

Bibliography 125

v



Chapter 1

Introduction

1.1 Outline and Contributions

This thesis consists of two main parts dealing with distributed information storage

and distributed processing respectively. Chapters 2 and 3 deal with distributed stor-

age and Chapters 4 and 5 present distributed algorithms for computation and their

convergence analysis.

The purpose of distributed storage systems is to store data reliably over long peri-

ods of time using a distributed collection of storage nodes which may be individually

unreliable. There are several different distributed storage scenarios which include

large data centers and peer-to-peer storage systems such as OceanStore [Rhea et al.,

2001], Total Recall [Bhagwan et al., 2004], and DHash++ [Dabek et al., 2004], that

use nodes across the Internet for distributed file storage. Also it is often desirable to

store information (usually obtained from sensing) in wireless sensor networks, creat-

ing reliable storage over unreliable motes, for robust data recovery [Dimakis et al.,

2006a], especially in catastrophic scenarios [Kamra et al., 2006].

Chapters 2 and 3 deal with finding efficient methods for storing massive amounts

1



Chapter 1. Introduction

of data over large-scale networks, without centralized coordination. When the stor-

age nodes are individually unreliable (as is the case in sensor networks, peer-to-peer

distributed systems, or modern data centers), redundancy must be introduced into

the system to improve reliability. The simplest form of redundancy is straightfor-

ward replication of the data in multiple nodes. It is well known that information

representations that use erasure codes require orders of magnitude less redundancy

to provide the same level of reliability [Weatherspoon and Kubiatowicz, 2002a] and

have been used in numerous applications (e.g. Reed-Solomon codes, Fountain codes).

Still most practical large-scale distributed storage systems use replication, for reasons

that are related to the problems dealt with in this research. Gmail for example stores

21 copies, a surprisingly high replication factor. Using the simple analysis found in

Chapter 3 and assuming a mean time to failure being 1000 days for a typical disk,

the use of a (33, 10) erasure code would yield the same availability as 21 replication,

but would allow a 600% increase in the amount of data that can be stored. In sim-

ple terms, coding mixes information (using linear equations over a field) rather than

simply replicating it. This allows a data object to be spread over more storage nodes

without compromising storage efficiency, by using smaller packet sizes. The benefits

of coding for storage are well understood (see e.g. [Weatherspoon and Kubiatowicz,

2002a] and references therein), but there are significant reasons why codes for storage

are still not widely used in distributed large-scale systems. The problems of decentral-

ized encoding and code repair are the ones we address in chapters 2 and 3 respectively,

and we hope that the proposed ideas might have an impact in practical distributed

storage architectures.

Decentralized codes:

Communication over the network comes with a cost, since bandwidth (related to

energy for wireless networks), is a critical resource. Therefore, good storage codes

need to be constructed with the minimal possible communication between nodes.

2



Chapter 1. Introduction

In the terms of codes on graphs, this means that the code should be sparse. Also,

in large-scale systems, when events are occurring in multiple distributed locations,

global coordination is difficult to achieve. Chapter 2 is based on joint work with

Vinod Prabhakaran [Dimakis et al., 2005; Dimakis et al., 2006b; Dimakis et al.,

2006a] and presents decentralized erasure codes which are optimally sparse codes with

minimal communication and coordination requirements. Partial recovery of only the

most important data has been addressed in follow-up work [Dimakis et al., 2006b;

Dimakis et al., 2006a] and [Lin et al., 2007; Wang et al., 2006]. Sparse codes for storage

in sensor networks have also been used for time-critical or emergency (e.g. fire, flood,

earthquake) scenarios [Kamra et al., 2006] and refinable approximations [Wang et al.,

2007]. In our recent book chapter [Dimakis and Ramchandran, 2007] we survey this

and related work on encoded information storage in wireless networks.

The repair problem

Chapter 3 deals with the problem of dynamically maintaining an erasure encoded

storage system. When the number of storage nodes falls below a threshold due to

failures, fresh nodes can be deployed to replace the failed ones and prolong data life-

time. When replication is used, this repair problem is very simple, since a copy of

the data object can be obtained from any functioning node. However, when erasure

coding is used, the data object (of size M bits) is divided into k packets and each

of the existing storage nodes stores one linear combination of those original pack-

ets (of size M/k bits). In this case, the problem of creating new encoded packets

from encoded packets is non-trivial. One way of repairing a failure involves commu-

nicating k encoded packets, decoding the whole data object, and then generating a

new encoded packet using the original data. This approach requires the communi-

cation of M bits in the network, to create only one packet of size M/k. It was

commonly believed (see for example [Rodrigues and Liskov, 2005] and references

therein) that this k-factor overhead in repair bandwidth is the unavoidable price

3



Chapter 1. Introduction

required for the added reliability of erasure coding. In fact, all known coding con-

structions require access to the original data object to generate encoded fragments.

In our recent work with Brighten Godfrey and Yunnan Wu [Dimakis et al., 2007;

Wu et al., 2007] we show that, surprisingly, erasure codes exist that can be repaired

without communicating the whole data object. The minimum repair bandwidth prob-

lem can be reduced to a network coding problem on an infinite graph and a funda-

mental tradeoff between storage and bandwidth can be completely characterized. We

present information theoretic lower bounds, network codes that achieve every point

on this optimal tradeoff, and show how such codes can benefit real storage systems.

Chapters 3 and 4 deal with distributed gossip algorithms that require minimal

central knowledge and coordination. Gossip (or average consensus) algorithms, are

simple message-passing schemes that solve the problem of computing the average of

n sensor measurements in a distributed way. This problem, its connections to the

spectrum of stochastic matrices, and mixing of Markov chains has been studied for

over thirty years starting with the pioneering work of Tsitsiklis [Tsitsiklis, 1984].

The averaging problem is a useful building block in distributed signal processing,

when the goal is to compute a global objective (e.g. the global average of all observa-

tions) based on purely local computations. Indeed, an averaging algorithm can be eas-

ily converted into a general scheme that computes any linear projection of the sensor

measurements. Recently, such algorithms have been proposed for various signal pro-

cessing tasks like distributed filtering, and distributed detection [Spanos et al., 2005;

Saligrama et al., 2006]. Boyd et al. [Boyd et al., 2006] in their influential work, gave

a precise characterization of the number of iterations required for gossip algorithms

to converge. Our own research started with identifying that even when optimized,

nearest neighbor gossip requires Θ(n2) messages to estimate the average of n nodes

for topologies that are relevant for wireless networks. This quadratic number of

messages makes gossip algorithms impractical for energy-limited sensor network sce-

4



Chapter 1. Introduction

narios. The fundamental reason is that information is diffusing like a random walk,

essentially covering distance
√

h in h hops.

Geographic Gossip

Chapter 3 is based on joint work with Anand Sarwate and analyzes the performance

of a novel gossip algorithm, called geographic gossip [Dimakis et al., 2006d] that uses

geographic information at the nodes to spread gossip in random directions, avoid-

ing diffusive behavior. We show that geographic gossip requires O(n1.5) messages to

estimate the average, a
√

n-factor decrease in communication over nearest neighbor

gossip. Later work used geographic gossip to perform compressed sensing in net-

works [Rabbat et al., 2006b]. Related recent work relates to exploiting the physical

wireless medium [Scaglione, 2007], and performing multi-resolution representations

using gossip [Sarkar et al., 2007].

Path Averaging:

The geographic gossip paper left one important open problem unanswered: The al-

gorithm uses location information to greedily route to a randomly selected location

in the network, and the initial and final nodes replace their values with their pairwise

average. An obvious improvement would allow every node on the routed path to par-

ticipate in the averaging, at no extra communication cost. While it was clear that this

could only improve the convergence time, it was unknown if it would be a constant

factor improvement or a change in the n1.5 order of magnitude. Chapter 4 is based

on joint work performed during the summer of 2006 in EPFL working with Florence

Benezit, Martin Vetterli, and Patrick Thiran. The key result of Chapter 4 is that

the use of the Poincaré inequality [Diaconis and Stroock, 1991a], a powerful tool for

bounding mixing times of Markov chains, can applied to the convergence analysis of

path averaging. The result was that geographic gossip with averaging on the routed

paths requires only O(n) messages [Benezit et al., 2007], which is order-optimal since

it matches obvious lower bounds.

5



Chapter 1. Introduction

We start with a brief survey of linear erasure codes and network coding. One

important point is how the algebraic properties of the generator matrix of a code cor-

respond to requirements from the network algorithm used to construct and maintain

the encoded representation.

1.2 Preliminaries on Coding

Erasure coding is a generalization of replication that divides the initial data object

into k packets (or blocks) which are then used to generate n encoded packets of the

same size. Good erasure codes have the property that any k out of the n encoded

packets suffice to recover the original k data packets. In erasure problems we assume

that the only types of errors that can happen are erasures of packets (which for storage

problems correspond to failure of the corresponding storage node), but the packets

that survive are always correct. Note also that we will be dealing with erasures of

packets, not bits within a packet.

A toy example of storage using a linear code over GF (28) is given in Figure 1.1. In

the example there are two data nodes X1 and X2 and three storage nodes Y1, Y2, Y3.

We assume the data nodes have gathered a number of measurements. In the example

we choose u = 8 bits to represent each number in our field which corresponds to

GF (28). The bits of the data measurements are divided into blocks of u bits which

correspond to elements in GF (28) (for example X1(1) = 002, X1(2) = 080, X1(3) =

220). The data packet X1 is routed to storage nodes Y1, Y3 and X2 to Y2, Y3. Once

a storage node receives one or more data packets, it must select coefficients fi to

multiply the received packets and subsequently add them to construct one encoded

packet.

A desired property is that the selection of the coefficients is done without any

coordination, i.e. each storage node selects them uniformly and independently in

6



Chapter 1. Introduction

Figure 1.1: A simple example of a linear code over GF (28). Here k = 2, n = 3, k/n =
2/3, q = 256. The primitive polynomial of the field is D8+D4+D3+D2+1. Arithmetic is
done by representing numbers as binary coefficients of polynomials and doing polynomial
operations modulo the primitive polynomial. For example, 70 × 3 → (D6 + D2 + D) ×
(D + 1) = D7 + D6 + D3 + D → 202.

GF (28). Each coefficient then multiplies each block independently, multiple blocks

are added (under the arithmetic of the Galois Field) and the results are cascaded

into a new block packet Yi that has exactly the same size as all the data packets.

For example Y3 has stored a packet that corresponds to 2X1 + 1X2. Using this

notation we mean that Y3(i) = 2X1(i) + 1X2(i) for i = 1, 2, 3. Each storage node

will also store the coefficients fi that it selected. This introduces an overhead storage

that can be made arbitrarily small by coding over larger blocks [Ho et al., 2006a;

Dimakis et al., 2006a].

Notice that in Figure 1.1 any two out of the three encoding packets can be used

to reconstruct the original data.

In general, linear codes can be represented using their generator matrix in the

form

s = mG, (1.1)

7



Chapter 1. Introduction

where s is an 1× n encoded vector that is stored, m is 1× k data vector and G is a

k × n matrix with elements selected from a field GF (q). For the example in Figure

1.1,

G =

 1 0 2

0 3 1

 . (1.2)

To reconstruct m the receiver must invert a k×k sub-matrix G′ of G. The key property

required for successful decoding (that is also true for the example) is that any sub-

matrix selection of G′ forms a full rank matrix. When this is the case, decoding

corresponds to solving a system of linear equations over GF (q) (using for example,

Gaussian elimination). It is well known that good erasure codes can yield much

higher reliability compared to replication schemes for the same number of storage

nodes, and this increased reliability is the main reason codes are attractive for storage

applications.

A matrix that has the property that all the square sub-matrices G′ are full rank

corresponds to an Maximum Distance Separable (MDS) code and such combinatorial

constructions are quite difficult to achieve.

Reed-Solomon codes [Reed and Solomon, 1960] construct such matrices by exploit-

ing properties of polynomials over finite fields. The key idea is that any k interpolation

points suffice to recover the coefficients of a degree k − 1 polynomial. The smallest

field size q for which MDS codes exist is unknown, and related to the MDS conjecture

of algebraic coding theory:

(MDS Conjecture) Let G be a k × n matrix over GF (q) such that every square sub-

matrix G′ is nonsingular. Then q + 1 ≥ n + k.

A relaxation of this requirement (nearly-MDS) is that almost all the square sub-

matrices G′ are full rank, or equivalently that a randomly selected G′ will be full

rank with high probability. A random linear code over GF (q) is the code generated

8



Chapter 1. Introduction

by a matrix G that has each entry selected uniformly and independently from the

finite field. It is well known [Acedanski et al., 2005] that the probability of a randomly

selected G′ being full rank can made arbitrarily close to one, by selecting a sufficiently

large field size q. Reed-Solomon codes, are widely employed in numerous applications

like computer network distributed storage systems, and redundant disk arrays. Low-

density parity-check (LDPC) codes and more recently Fountain codes [Luby, 2002]

were proposed as alternatives with randomized construction and faster encoding and

decoding times.

1.2.1 Network Coding

Network coding is an exciting new paradigm for communication in networks where

data packets are treated as entities which can be algebraically combined rather than

simply routed and stored. The first major result [Ahlswede et al., 2000a] was a

generalization of the max-flow min-cut theorem for multicasting. If there is one

single source and multiple receivers, each receiver cannot hope to have throughput

higher than the minimum cut separating it from the source, even if it was the only

node being served. The theorem of Ahlswede et al. [Ahlswede et al., 2000a] states

that if coding in the intermediate nodes of the network is allowed, all the receivers

can have throughput equal to the minimum of the min-cuts separating each one from

the source. In other words all the receivers can have the same throughput as the

one with the weakest connection to the source, without limiting each other. It is

easy to construct examples where such throughput cannot be achieved by simply

routing packets from the source to the receivers. Subsequently it was shown that

linear coding suffices to achieve the multicast capacity [Li et al., 2003; Koetter and

Médard, 2003] and that random linear coding at intermediate nodes will suffice with

high probability [Ho et al., 2006a] for sufficiently large field size.

9



Chapter 1. Introduction

While most of the initial research on network coding focused on multicasting

throughput, the fundamental idea of coding in intermediate nodes in networks has

been shown to have advantages in other scenarios such as minimizing network re-

sources [Lun et al., 2006], network diagnosis [Wu and Li, 2006] and communica-

tion in wireless networks [Katti et al., 2006; Petrović et al., 2006; Wu, 2006]. See

also [Fragouli et al., 2006] for a general introduction and other applications of net-

work coding.

10



Chapter 2

Decentralized Erasure Codes

2.1 Introduction

In this chapter we will study the problem of creating an erasure code for storing

information in multiple storage devices that are individually unreliable, and connected

in a network. As an application consider a sensor network deployment in a remote

and inaccessible environment where sensor nodes are taking measurements (possibly

after processing) and storing data in the network, over long time periods. A data

collector may appear at any location in the network and try to retrieve as much

useful data as possible. Another scenario is a sensor network deployed in a time-

critical or emergency situation (e.g. fire, flood, earthquake). Here, the focus is on

maximizing the amount of sensed data than can be retrieved from a rapidly failing

network. In both scenarios, many storage nodes are expected to fail and redundancy

is necessary to guarantee the required reliability. This redundancy in the information

representation can be introduced either through replication or through erasure coding.

It is well known that information representations that use erasure codes require far less

redundancy to provide the same level of reliability [Weatherspoon and Kubiatowicz,

11



Chapter 2. Decentralized Erasure Codes

2002a] and many storage schemes use erasure coding techniques, often based on Reed-

Solomon codes [Reed and Solomon, 1960]. After extensive studies, essentially optimal

erasure codes exist today, with linear encoding and decoding complexity [Luby et al.,

2001; Shokrollahi, 2006]. However, for applications that require large-scale distributed

storage, over unstructured (and possibly dynamic) networks, new issues arise that

have not been addressed in the classical coding theory literature: Specifically:

• Communication between storage and data nodes comes with a cost, since energy

is a precious resource in sensor networks. Therefore, the code should be con-

structed with the minimal possible communication between nodes. This means

that sparsity in the generator matrix of the code is critical for such applications.

• The information is sensed in multiple distributed locations and global coordina-

tion is difficult to achieve. Hence the code construction should be distributed

and based on local knowledge.

• The sensor network will be deployed in a dynamic environment and the the

encoded storage might need to evolve over time, to reflect such dynamic changes.

For example when storage nodes are failing, new encoded packets need to be

generated from existing encoded packets, naturally leading to network coding

schemes.

In this chapter we discuss these issues and various related schemes that have been

proposed in the recent literature including our own contributions. In summary, we

will be interested in distributed, scalable and energy-efficient algorithms to generate

and dynamically maintain encoded information representations in networks.

12



Chapter 2. Decentralized Erasure Codes

Figure 2.1: The classical distributed storage setup. Data which is initially centralized is
encoded and stored in distributed storage nodes.

2.1.1 The Distributed Networked Storage Problem

We will be using the abstractions of a data node which is a source of information that

must be stored, and a storage node which corresponds to a storage device with limited

memory and communication capabilities. A physical sensor mote can have both

sensing capabilities and sufficient memory, and hence can be both a data node and

a storage node of our abstract model. This separation is useful because it simplifies

the presentation and can be easily mapped back to actual devices.

The classical distributed storage problem consists of having multiple (distributed)

storage nodes (e.g. hard disks) for storing data which is initially located at one single

data node (see Figure 2.1).

The distributed networked storage problem arises when both the data sources and

the storage nodes are distributed (see Figure 2.2) and hence we have multiple data

and storage nodes.

We make the following assumptions:

• We assume that there are k data-generating nodes and without loss of generality

we will assume that each data node generates one data packet containing the

13



Chapter 2. Decentralized Erasure Codes

Figure 2.2: Distributed networked storage. Initially distributed data stored in multiple
storage nodes.

information of interest.

• Further, assume we have n ≥ k storage nodes that will be used as storage

and relay devices. Sensor nodes have limited memory, and we model that by

assuming that each node can store only one data packet (or a combination

having the same number of bits as a data packet). This is a key requirement

to the scalability of the network. A data packet contains measurements over a

time interval and can have significant size.

• The ratio k/n = R (code rate) is assumed fixed as k and n scale. For example,

we can assume that some fixed ratio (for example 10%) of nodes in a sensor

network are generating data. These assumptions are only to simplify the pre-

sentation, and in practice the k data nodes and n storage nodes can be any

arbitrary (possibly overlapping) subsets of nodes in a larger network.

• We are interested in schemes that require no routing tables, centralized pro-

14



Chapter 2. Decentralized Erasure Codes

cessing or global knowledge or coordination of any sort. We rely on a packet

routing layer that can route packets to uniformly random locations in the net-

work. Constructing such random sampling algorithms which are distributed

and localized is key for the construction of codes in networks.

2.2 Decentralized Erasure Codes

When trying to store linear combinations of data as information representations in

sensor networks, new issues arise that make the existing codes unsuitable. Both

random linear codes and Reed-Solomon codes have generator matrices that are dense,

i.e. almost all the entries of G are non-zero. That means that every data node needs

to send its packet to almost all n storage nodes to create the code generating Θ(n2)

communicating pairs (since k = Rn). A second desirable property is that the code

can be created without coordination, and more specifically that each data node is

choosing where to route its packet independently and also that the storage nodes are

selecting their coefficients independently. Algebraically, this corresponds to having a

code where every row of the generator matrix is created independently and is sparse.

A code with this row independence property is called decentralized [Dimakis et al.,

2006a] and this property leads to stateless randomized network algorithms to generate

the encoded information.

We want to create an information representation that has the property that a data

collector can query any k storage nodes and use the results to reconstruct the original

k packets (with high probability). For instance, a data collector can get this data

out of some k neighboring storage nodes in its immediate vicinity to minimize the

latency in a sensor network scenario. Finally we assume that the data collector has

enough memory to store k packets and enough processing power to run the decoding

algorithm, which as we will show corresponds to solving a (sparse) system of k linear

15



Chapter 2. Decentralized Erasure Codes

Figure 2.3: Example of using linear codes for distributed storage. In this example there
are k = 4 data nodes measuring information that is distributed and n = 23 storage nodes.
We would like to diffuse the data to the storage nodes so that by accessing any 4 storage
nodes it is possible to retrieve the data. Each data node is pre-routing to 3 randomly
selected storage nodes. Each storage node has memory to store only one data packet so
the ones who receive more than one packet store a linear combination of what they have
received. The data collector in the example can recover the data by having access to (A,
B+C, A+C, D).

16



Chapter 2. Decentralized Erasure Codes

equations in a finite field.

Decentralized erasure codes have minimal data node degree which corresponds

to a maximal sparsity of the generator matrix and minimal number of pre-routed

packets. Note however, that we do not claim optimality of the distributed networked

storage system as a whole. This is because we rely on a packet routing layer instead

of jointly optimizing across all network layers.

Decentralized erasure codes are random linear codes over a finite field Fq with a

specific randomized structure on their generator matrix. Each data packet Di is seen

as a vector of elements of a finite field fi . We denote the set of data nodes by V1

with |V1| = k and storage nodes by V2, |V2| = n. We will now give a description

of a randomized construction of a bipartite graph that corresponds to the creation

of a decentralized erasure code. Every data node i ∈ V1 is assigned a random set of

storage nodes N(i). This set is created as follows: a storage node is selected uniformly

and independently from V2 and added in N(i) and this procedure is repeated d(k)

times. Therefore N(i) will be smaller than d(k) if the same storage node is selected

twice. In fact, the size of the set N(i) is exactly the number of coupons a coupon

collector would have after purchasing d(k) coupons from a set of n coupons. It is not

hard to see that when d(k) � n, N(i) will be approximately equal to d(k) with high

probability.

Denote by N(j) = {i ∈ V1 : j ∈ N(i)} the set of data nodes that connect to a

storage node. Each storage node will create a random linear combination of the data

nodes it is connected with:

Sj =
∑

∀i:∈N(j)

fijDi (2.1)

where the coefficients fij are selected uniformly and independently from a finite field

Fq. Each storage node also stores the fij coefficients, which requires an overhead

storage of N(j)(log2(q) + log2(k)) bits.

17



Chapter 2. Decentralized Erasure Codes

This construction can be summarized into

s = mG (2.2)

where s is a 1×n vector of stored data, m is 1×k data vector and G is a k×n matrix

with non-zero entries corresponding to the adjacency matrix of the random bipartite

graph we described. The key property that allows the decentralized construction of

the code is that each data node is choosing its neighbors independently and uniformly

or equivalently, every row of the generator matrix is created independently and has

N(i) = O(d(k)) nonzero elements. The decentralized property (row independence),

was proposed in our work [Dimakis et al., 2005] and independently in [Acedanski et al.,

2005] and leads to stateless robust randomized algorithms for distributed networked

storage. We compare our results with random linear coding for distributed networked

storage proposed in [Acedanski et al., 2005] in section 2.3.4.

A data collector querying k storage nodes will gain access to k encoded packets.

To reconstruct, the data collector must invert a k × k submatrix G′ of G. Therefore,

the key property required for successful decoding is that any selection of G′ forms a

full rank matrix with high probability. Clearly d(k) is measuring the sparsity of G.

Making d(k) as small as possible is important since it is directly related with overhead

storage, decoding complexity and communication cost. Our main contribution is

identifying how small d(k) can be made for matrices that have the decentralized

property to ensure that their submatrices are full rank with high probability. The

main results of this chapter are the following theorems:

Theorem 1. Let G be a random matrix with independent rows constructed as de-

scribed. Then, d(k) = c ln(k) is sufficient for a random k × k submatrix G′ of G to

18



Chapter 2. Decentralized Erasure Codes

be nonsingular with high probability. More specifically,

Pr[det(G′) = 0] ≤ k

q
+ o(1), (2.3)

for any c > 5n
k
.

Theorem 2. (Converse) If each row of G is generated independently (Decentralized

property), at least d(k) = Ω(ln(k)) is necessary to have G′ invertible with high proba-

bility.

From the two theorems it follows that d(k) = c ln(k) is (order) optimal, therefore,

decentralized erasure codes have minimal data node degree and logarithmically many

nonzero elements in every row.

Decentralized erasure codes can be decoded using Maximum Likelihood (ML)

decoding, which corresponds to solving a linear system of k equations in GF (q). This

has a decoding complexity of O(k3). Note however that one can use the sparsity

of the linear equations and have faster decoding. Using the Wiedemann algorithm

[Wiedemann, 1986] one can decode in O(k2 log(k)) time on average with negligible

extra memory requirements.

2.3 Analysis and Proofs

Proof of Theorem 1

To establish that decentralized erasure codes will be decodable, we need to show

that a randomly selected square submatrix G′ is full rank with high probablity. For

this proof we rely heavily on the Theorem 3 and use techniques similar with the ones

used by Ho et al. [Ho et al., 2006a].

It suffices to show:

det G′ 6= 0.

19



Chapter 2. Decentralized Erasure Codes

We will use the concept of a perfect matching: a bipartite graph will have a perfect

matching (P.M.) if there exists a subset E ′ ⊆ E of its edges so that no two edges in

E ′ share a common vertex and all the vertices connect to an edge in E ′. There is

a close connection between determinants of matrices and graph matchings which for

the bipartite case is given by Edmonds’ Theorem [Motwani and Raghavan, 1995a].

By construction, every row of G′ has a logarithmic number of non-zero coefficients

chosen uniformly and independently from a finite field Fq. Denote these coefficients

by f1, f2, · · · fL. Their actual number L is random and approximately equal (and in

fact, smaller than) ck ln(k). It suffices to show that the determinant of G′ is nonzero

w.h.p. Note that

det(G′) =
∑

π

sgn(π)
k∏

i=1

g′i,π(i) (2.4)

where we are summing over all the permutations of {1, 2, · · · k} and g′i,j is the i, jth

element of G′. Notice that this is a multivariate polynomial

det(G′) = P (f1, f2, · · · , fL).

There are two fundamentally different cases for the determinant to be zero. If for each

term corresponding to each permutation there existed one or more zero elements then

the determinant would be identically zero (not a function of f1, f2, · · · fL). Now the

key step is to notice that each permutation corresponds to exactly one potential

matching of the bipartite graph. Therefore, the graph has a perfect matching if and

only if det(G′) is not identically zero (Edmonds’ Theorem [Motwani and Raghavan,

1995a]). Theorem 3 establishes exactly that the random bipartite graphs we construct

have perfect matchings. The other case is when deg(G′) is a non-zero polynomial but

the specific choices of f1, f2, · · · fL correspond to one of its roots. It is clear that this

is a rare event and we can bound its probability using the Schwartz-Zippel Theorem

20



Chapter 2. Decentralized Erasure Codes

[Motwani and Raghavan, 1995a]. Notice that the degree of det(G′) is exactly k when

there exists a perfect matching so we obtain a bound on the probability of failure

conditioned on the existence of a perfect matching:

Pr(det(G′) = 0| det(G′) 6≡ 0) ≤ k

q
.

Which leads us to

Pr(det(G′) = 0) ≤ Pr(det(G′) ≡ 0) +
k

q
(1− Pr(det(G′) ≡ 0)). (2.5)

By Theorem 3, Pr(det(G′) ≡ 0) = o(1) therefore

Pr(det(G′) = 0) ≤ k/q + o(1). (2.6)

Proof of Theorem 2 (Converse) It is a standard result in balls and bins

analysis [Motwani and Raghavan, 1995a] that in order to cover n bins w.h.p. one

needs to throw Θ(n ln n) balls (See also case III in proof of Th. 3). Notice that in

our case, covering all the storage nodes is necessary to have a full rank determinant

(since not covering one corresponds to having a zero column in G). Therefore any

scheme that has data nodes acting independently and uniformly will require at least

Ω(ln k) connections per data node, just to ensure that the storage nodes are covered.

We have therefore demonstrated that the key technical condition we need to prove

is that the random bipartite graphs we construct have a perfect matching [Bollobás,

2000] with high probability. The existence of a perfect matching guarantees that the

max flow that can go through the network is sufficient. Our theoretical contribution,

which may be of independent interest, is in quantifying how sparse these random

21



Chapter 2. Decentralized Erasure Codes

bipartite graphs can be under these constraints. The proof is obtained by using

an extension of a combinatorial counting technique introduced by P. Erdős and A.

Rényi in [Erdös and Sachs, 1963; Bollobás, 2001] for analyzing matchings in random

bipartite graphs. The extension stems from the dependencies on the data nodes which

destroy the symmetry assumed in [Erdös and Sachs, 1963; Bollobás, 2001] thereby

complicating matters.

We define the graph Bln k−left−out as the random bipartite graph with two sets

of vertices, V1, V2, where |V1| = k, |V2| = n , n = αk, (α > 1). Every vertex in

V1 connects with c ln(k) vertices of V2 each one chosen independently and uniformly

with replacement. If two edges connect the same two vertices we identify them. Then

we pick a subset V ′
2 ⊂ V2 where |V ′

2 | = k and form the random bipartite graph

B′
ln k−left−out = |V1| ∪ |V ′

2 |. Edges that connect to V2 \ V ′
2 are deleted.

This graph corresponds to the submatrix G′ and we need to establish that B′
ln k−left−out

has a perfect matching w.h.p.

Theorem 3: Let B′
ln k−left−out be a bipartite graph with |V1| = |V ′

2 | = k obtained

from Bln k−left−out by taking a random subset of k storage nodes. B′
ln k−left−out has a

perfect matching with probability 1− o(1) as k →∞.

Proof: For a set of nodes A ⊂ Vi of a bipartite graph B, we denote Γ(A)={y :

xy ∈ E(B)for some x ∈ A}. So Γ(A) is simply the set of nodes that connect to nodes

in A.

A key result used in this proof is Hall’s Theorem. We use it in the following form

(which is easily derived from the standard Theorem [Bollobás, 2000; Bollobás, 2001]):

Lemma 1. Let B be a bipartite graph with vertex classes V1,V
′
2 and |V1| = |V ′

2 | = k.

If B has no isolated vertices and no perfect matching, then there exists a set A ⊂ Vi

(i = 1, 2) such that:

i) |Γ(A)| = |A| − 1

22



Chapter 2. Decentralized Erasure Codes

ii) The subgraph A ∪ Γ(A) is connected

iii) 2 ≤ |A| ≤ (k + 1)/2.

The event that B has no perfect matching can be written as the union of two

events. Specifically, let E0 denote the event that B has one or more isolated vertices:

P (B has no P.M.) = P (E0

⋃
∃A) (for some set A satisfying Lemma (1)) Therefore

by a union bound we have:

P (B has no P.M.) ≤ P (E0) + P (∃A).

We will treat the isolated nodes event later. We know from Lemma (1) that the size

of A can vary from 2 to (k + 1)/2, so we obtain the union bound:

P (∃A) = P (

(k+1)/2⋃
i=2

(∃A, |A| = i)) ≤
(k+1)/2∑

i=2

P (∃A, |A| = i). (2.7)

We can further partition into two cases, that the set A belongs to V1 (the data nodes)

or V ′
2 (the k storage nodes used to decode).

P (∃A) ≤
(k+1)/2∑

i=2

P (∃A ⊂ V1, |A| = i) + P (∃A ⊂ V ′
2 , |A| = i) (2.8)

So we now bound the probabilities P (∃A ⊂ V1, |A| = i) and P (∃A ⊂ V ′
2 , |A| = i)

using a combinatorial argument. Case I: A belongs in the data nodes: Suppose we fix

i nodes A1 ⊂ V1 and i− 1 nodes on A2 ⊂ V ′
2 . Then the probability that a set A = A1

satisfies the conditions of lemma (1) with Γ(A) = A2 is equal to the probability that

all the edges starting from A1 will end in A2 or are deleted. Note however that every

node in V1 picks c ln(k) neighbors from the set V2 (which is the large set of n = αk

nodes). We bound the probability by allowing all edges starting from A1 to land in

A2 ∪ V2 \ V ′
2 . Therefore we have ci ln(k) edges that must land in A2 ∪ V2 \ V ′

2 and

23



Chapter 2. Decentralized Erasure Codes

|A2 ∪ V2 \ V ′
2 | = i − 1 + (α − 1)k. Note that all the other edges can land anywhere

and that would not affect |Γ(A)|. Therefore, since there are
(

k
i

)
choices for A1 and(

k
i−1

)
choices for A2 we have:

P (∃A ⊂ V1) ≤
(k+1)/2∑

i=2

(
k

i

)(
k

i− 1

)(
i− 1 + (α− 1)k

αk

)ci ln(k)

(2.9)

We can always bound this sum by its maximum value times k (since there are fewer

than k positive quantities added up). Therefore it suffices to show that

kP (∃A ⊂ V1, |A| = i) = o(1), ∀i ∈ [2, (k + 1)/2] (2.10)

as k →∞.

From Stirling’s approximation we obtain the bound [Bollobás, 2001]

(
k

i

)
≤ (

ek

i
)i

and also it is easy to see that ( ek
i−1

)i−1 ≤ ( ek
i
)i when i ≤ k.

If we denote

ξ =

(
i− 1 + (α− 1)k

αk

)
< 1

and use these two bounds we obtain :

P (∃A ⊂ V1, |A| = i) ≤ exp
(

ln(k)(2i + ic ln(ξ)) + 2i(1− ln(i))
)
. (2.11)

If we multiply by k we get from (2.10) that it suffices to show

exp
(

ln(k)(2i + ic ln(ξ) + 1) + 2i(1− ln(i))
)

= o(1), (2.12)

24



Chapter 2. Decentralized Erasure Codes

for all i ∈ [2, (k + 1)/2], as k → ∞. Therefore, for this exponential to vanish it is

sufficient to have the coefficient of ln k be negative:

2i + ic ln(ξ) + 1 < 0, (2.13)

which gives us a bound for c:

c >
−(1 + 2i)

i ln(ξ)
. (2.14)

Notice that ξ < 1 and therefore it is possible to satisfy this inequality for positive c.

This bound should be true for every i ∈ [2, (k + 1)/2]. So using

1 + 2i

i
=

1

i
+ 2 ≤ 5

2
, (2.15)

and

ξ =
i− 1 + (α− 1)k

αk
≤ (k + 1)/2 + (α− 1)k

αk
≈ α− 1/2

α
, (2.16)

−1

ln(ξ)
≤ −1

ln(α−1/2
α

)
. (2.17)

Therefore, a sufficient condition for P (∃A ⊂ V1) to vanish is

c >
−5

2 ln(α−1/2
α

)
' 5α. (2.18)

Case II: A belongs in the storage nodes: With the same technique, we obtain a

bound if the set A is on the data nodes. This time we pick A ⊂ V ′
2 with |A| = i

and we want |Γ(A)| = i − 1. So we require that all edges that connect to A end in

a specific set A2 ∈ V1. The extra requirement that A ∪ Γ(A) should be connected,

further reduces the probability and is bounded away. To have |Γ(A)| = A2, it must

be the case that all the edges that start from V1 \ A2 land outside A. There are

25



Chapter 2. Decentralized Erasure Codes

c(k − (i − 1)) ln(k) such edges and each one lands outside A with probability αk−i
αk

.

We therefore obtain the bound:

P (∃A ⊂ V2, |A| = i) ≤
(

k

i− 1

)(
k

i

)(
αk − i

αk

)c(k−(i−1)) ln(k)

, (2.19)

which yields the condition for c :

c > α
k

i

2i + 1

k − i
= 2α

k

k − i
+ α

k

i(k − i)
(2.20)

Now notice that this is a convex function of i so the maximum is obtained at i = 2 or

i = k+1
2

. By substituting i = 2 and i = k+1
2

we find that these inequalities are always

dominated by (2.18). So finally we require that c > 5α.

Case III: There exist no isolated nodes: We will say that a data or storage node

is isolated when it connects to no storage or data node respectively. Bounding the

probability of this event P (E0) is easier to deal with. Notice that data nodes cannot be

isolated by construction. The αk storage nodes receive totally kc ln(k) independent

connections and we need to show that they are all covered by at least one data

node w.h.p. Using a standard bound we obtain the following result ([Motwani and

Raghavan, 1995a]):

Let C denote the number of connections required to cover all αk data nodes. then

P [C > βαk ln(αk)] ≤ (αk)−(β−1), (2.21)

which shows that any β > 1 (we require β > 5) will suffice to cover all the data nodes

with high probability.

Therefore from combining all the required bounds for c we find that c > 5α = 5n
k

is sufficient for the bipartite graph to have a perfect matching with high probability.

26



Chapter 2. Decentralized Erasure Codes

Figure 2.4: Decentralized erasure codes construction. There are d(k) = c ln(k) edges
starting from each data node and landing independently and uniformly on the storage
nodes.

2.3.0.1 Randomized Network Algorithm

There is a very simple, robust randomized algorithm to construct a decentralized era-

sure code in a network: Each data node picks one out of the n storage nodes randomly

and routes its packet to a randomly selected storage node. By repeating this process

d(k) = c ln(k) times, we construct the decentralized erasure code. Note that we re-

quire a network layer mechanism that can route packets to randomly selected storage

nodes in the network. Having a simple distributed mechanism that can perform this

task with localized knowledge is key for many randomized algorithms and we discuss

fast distributed algorithms for sampling nodes in Chapter 4. Each storage node mul-

tiplies (over the finite field) whatever it happens to receive with coefficients selected

uniformly and independently in F (q) and stores the result and the coefficients. A

schematic representation of this is given in Figure 2.4.

27



Chapter 2. Decentralized Erasure Codes

2.3.0.2 Storage Overhead

In addition to storing the linear combination of the received data packets, each storage

node must also store the randomly selected coefficients fi. The number of coefficients

can be bounded by the number of balls that land into a bin when throwing ck ln(k)

balls into n bins. It is standard problem in probabilistic analysis of algorithms [Mot-

wani and Raghavan, 1995a] that the maximum load (the maximum number of co-

efficients a storage node will have to store) is O(log(k)) with probability at least

1− o(1). The total number of overhead bits to store the coefficients and data packet

IDs is O(log(k)(log(q)+log(k))) which can be easily made negligible by picking larger

data packet sizes. Notice that if we denote by u = log2(q) the number of bits required

to store each fi, one can reduce the probability of error exponentially in the overhead

bits.

2.3.0.3 Connections to network coding

An equivalent way of thinking of the distributed networked storage problem is that

of a random bipartite graph connecting the k data nodes with the n storage nodes

and then adding a data collector for every possible subset of size k of the n storage

nodes. Then the problem of multicasting the k data packets to all the
(

n
k

)
data

collectors is equivalent to making sure that every collection of k storage nodes can

reconstruct the original packets. This connection of storage and multicasting was

proposed independently in [Dimakis et al., 2005; Jiang, 2006].

It has been shown that random linear network codes [Li et al., 2003; Ho et al.,

2006a] are sufficient for multicasting problems as long as the underlying network can

support the required throughput. Decentralized erasure codes can therefore be seen

as random linear network codes [Ho et al., 2006a] on the (random) bipartite graph

connecting the data and the storage nodes, where each edge corresponds to one routed

28



Chapter 2. Decentralized Erasure Codes

packet. One key property is that in distributed storage, the communication graph

does not correspond to any physical links but to virtual routing selections that are

made by the randomized algorithm. Therefore this graph is not given, but can be

explicitly designed to minimize communication cost. Essentially, we are trying to

make this random bipartite graph as sparse as possible, while keeping the flow high

enough and also allowing each data node to act independently. All good sparse-graph

codes have the property that they have few edges (o(n2)) connecting the data nodes

and the storage nodes but can still guarantee very good connectivity between the any

two subsets. Such bipartite graphs are called expanders [Alon and Spencer, 2000]

and are fundamental combinatorial objects for coding theory. It is easy to show that

if one requires all
(

n
k

)
data collectors to have k-connectivity with the data nodes, the

corresponding bipartite graph needs to be dense. It is the probabilistic relaxation

(a random data collector will have k-connectivity with high probability) that makes

sparsity possible. This concept leads to probabilistic expanders that are formally

defined and used for error correction in [Daskalakis et al., 2007].

2.3.1 Fountain Codes

Fountain codes [Luby, 2002; Shokrollahi, 2006] are linear codes over GF (2) with sparse

generator matrices and fast encoding and decoding algorithms. In particular, for LT

codes [Luby, 2002], each encoded packet is created by first selecting a degree d from

a carefully designed degree distribution (called the robust soliton [Luby, 2002]), and

then taking the bitwise XOR of d randomly selected data packets. Therefore, fountain

codes have the rateless property : every encoded packet is generated independently and

there exists no predetermined rate since they can potentially generate an unbounded

number of encoded packets. This corresponds to having every column of the generator

matrix being independent and sparse (with logarithmic average degree similar to the

29



Chapter 2. Decentralized Erasure Codes

decentralized codes). The degree distribution of the encoded packets is carefully

designed so that a data collector who collects k+ε random packets (where the overhead

ε is asymptotically vanishing for large k) can decode with a fast back-substitution

algorithm which is special case of belief propagation [Luby et al., 2001]. Raptor

codes [Shokrollahi, 2006] manage to reduce the degrees from logarithmic to constant

by using an appropriate pre-code. This idea cannot be used for the distributed storage

problem, since constructing the pre-code would require centralized processing.

In this context, one can think of the decentralized property as being the transpose

of the rateless property. This is because in decentralized codes, it is the rows of

the generator matrix that are independent and this corresponds to having each data

node acting independently. For sensor network applications, one implicit assumption

is that it is easier for a data node to send its data to d(k) randomly selected storage

nodes than it is for a storage node to find and request packets from d′(k) data nodes.

This is true for many practical scenarios in which there are fewer data nodes that

might also be duty-cycled or failing.

2.3.2 Partial data recovery

So far we have been addressing the problem of recovering all k data packets by

querying k storage nodes. For this scenario, fountain codes are harder to create

in networks, since creating the robust soliton degree distribution at storage nodes

requires data node coordination. They however have the advantage of smaller field

size (only binary operations) and lower computational complexity at the decoder

(O(k log k) for LT codes versus O(k2 log k) for decentralized codes). The pre-coding

idea of Raptor codes cannot be easily performed over a network because it requires

centralized processing.

Fountain codes can be used for partial recovery problems, where one is interested

30



Chapter 2. Decentralized Erasure Codes

in querying fewer than k nodes and recover partial information. Creating a fountain

code over a network where the data nodes are randomly located on a grid has been

addressed in [Dimakis et al., 2006b]. In this work there is no pre-code, and the user

is interested in recovering (1− δ)k data packets by querying (1 + ε)k storage nodes.

Random walks [Lin et al., 2007] can be used to create fountain encoded packets in

sensor networks, to guarantee the persistence and reliability of cached data.

Sanghavi [Sanghavi, 2007] investigated the optimal degree distribution for foun-

tain codes when one is interested in recovering (1−δ)k data packets. Upper bounds on

the performance of any degree distribution and lower bounds achieved by optimized

distributions for any δ are presented in [Sanghavi, 2007].

2.3.3 Growth codes

In sensor network applications involving catastrophic or emergency scenarios such as

floods, fires, earthquakes etc., the queries need to be adjusted to network dynamics.

The setup is a rapidly failing sensor network where some nodes are sensing informa-

tion that needs to reach the data collectors as soon as possible. Kamra et al. [Kamra

et al., 2006] show how fountain codes can be used for such applications and how the

degree distribution needs to evolve over time to maximize the number of immedi-

ately recoverable data packets. Specifically, the authors design a dynamically varying

degree distribution for partial network recovery to adapt to the data collector hav-

ing received some data packets already and maximize the probability that the next

packet is useful immediately. Growth codes initially create uncoded packets (since

a data collector will have received nothing at the time and only degree one packets

can be immediately useful). The degree distribution switches to pairwise XORs when

the probability that a data collector already has a randomly selected packet becomes

larger than the probability that the XOR cannot be decoded immediately.

31



Chapter 2. Decentralized Erasure Codes

2.3.4 Comparison with Random Linear Coding

In [Acedanski et al., 2005] the authors propose the use of random linear coding in-

spired by network coding for distributed networked storage with one centralized server

and multiple storage locations. They compare traditional erasure codes, uncoded stor-

age and random linear coding motivated by network coding, and demonstrate that

there are significant gains in using random linear coding. In random linear coding,

every element in the generator matrix of the code is selected independently and uni-

formly from a finite field Fq. This corresponds to matrices that are dense since they

have a constant fraction of nonzero elements, essentially having d(k) = Θ(k).

The main difference between our work and [Acedanski et al., 2005] is that we

address the problem of having multiple distributed sources and no centralized server.

Further, we identify how sparse can the generator matrices of decentralized codes can

be, and give a simple randomized way of constructing them in a network. Sparsity

leads to smaller overhead storage and more importantly, reduced communication and

decoding complexity.

Specifically, random linear coding requires an overhead storage space of O(k log(q))

bits, while decentralized erasure codes only O(log(k)(log(q))+log(k))). The overhead

storage costs are usually small if one codes over large data packets hence the commu-

nication and complexity gains are more important. If one were to use random linear

coding for the multiple source networked storage problem, each data node would have

to send its data to O(n) storage nodes, and the total cost would be the same as flood-

ing all the information everywhere. However using decentralized erasure codes each

data node has to communicate with only O(log(k)) storage nodes. As far as decoding

complexity is concerned, random linear coding requires O(k3) operations to invert a

dense matrix, while decentralized erasure codes can be decoded in O(k2 log(k)) by

exploiting sparsity [Wiedemann, 1986].

32



Chapter 2. Decentralized Erasure Codes

2.4 Sensor Network Scenarios

In this section we show how decentralized erasure codes can be applied to various

sensor network scenarios and analyze their performance. It is important to realize

that one can pick the k data nodes and the n storage nodes to be any arbitrary

subsets of nodes of a larger network. The exact choices depend on the specific sensing

application. The only requirement that we impose is that n/k should remain fixed as

the network scales.

In general, it is easy to determine the total communication cost involved in cre-

ating a decentralized erasure code. Each data node pre-routes to 5n
k

ln k storage

nodes, therefore the total number of packets sent will be 5n ln k. To determine the

communication cost in terms of radio transmissions, we need to impose a specific

network model for routing. For example, if the diameter of the network is D(n), then

the total communication cost to build a decentralized erasure code will be at most

O(D(n)n ln k). To become more specific we need to impose additional assumptions

that depend on the specific application. If D(n) = O(
√

n) for example in a grid

network, the total communication cost would be bounded by O(n1.5 ln k) to make the

data available in k = O(n) storage nodes.

Since each data node is essentially multicasting its packet to O(ln k) storage nodes,

multicast trees can be used to minimize the communication cost. These issues depend

on the specific network model and geometry and we do not address them in this work.

2.4.1 Perimetric Storage

To perform some experimental evaluation and also to illustrate how the decentralized

erasure codes can be used as a building block for more complex applications, we

consider the following scenario. Suppose we have N total nodes placed on a grid in

the unit square (dense scaling) and we are only interested in storing information in

33



Chapter 2. Decentralized Erasure Codes

the 4
√

N nodes on the perimeter of the square (see Figure 2.5). This is an interesting

extension since in most cases the sensor network will be monitoring an environment

and potential users interested in the data will have easier access to the perimeter of

this environment. Therefore we will have n = 4
√

N storage nodes and k = ρ
√

N data

nodes for some constant ρ < 4. The k data nodes can be placed in the grid randomly

or by using some optimized sensor placement strategy [Ganesan et al., 2004]. Notice

that we only have O(
√

N) nodes measuring or storing. The rest are used as relays

and perhaps it is more interesting to assume that the k data nodes are duty-cycled

to elongate the lifetime of the network. Note that in a dense network scenario
√

N

can become sufficiently large to monitor the environment of interest. Again, we want

to query any k nodes from the perimeter and be able to reconstruct the original k

data packets w.h.p. The problem now is that the diameter of the network (assuming

greedy geographic routing) is O(
√

N) = O(n) as opposed to
√

n.

Figure 2.5: Perimetric storage: The n = 4
√

N nodes on the perimeter are used as storage,

and k = O(
√

N) nodes inside the grid are the data nodes.

We assume that the transmission radius is scaling like O( 1√
N

) and measure com-

munication cost as the total number of 1-hop radio transmissions (each transfers one

packet for one hop) required to build the decentralized erasure code. It can be easily

seen that the total communication cost is at most O(N ln N) which yields a loga-

34



Chapter 2. Decentralized Erasure Codes

0 2000 4000 6000 8000 10000
0

1

2

3

4

5

6

7

8

9
x 105

To
ta

l C
om

m
un

ica
tio

n 
Co

st

Network size N

k/n=10%
k/n=33%

0 2000 4000 6000 8000 10000
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

To
ta

l p
ac

ke
ts

 p
re
!r

ou
te

d

Network size N

k/n=10%
k/n=33%

0 2000 4000 6000 8000 10000
0

5

10

15

20

25

30

St
or

ag
e 

no
de

 d
eg

re
e

Network size N

k/n=33%
mean+std
mean!std
k/n=10%

0 2000 4000 6000 8000 10000
20

30

40

50

60

70

80

90

Co
m

m
un

ica
tio

n 
Co

st
 p

er
 n

od
e

Network size N

k/n=10%
k/n=33%

Figure 2.6: Experiments for perimetric storage scenario. For each subgraph, we plot

k/n = 10% (so k = 0.4
√

N) and k/n = 33% (so k = 4/3
√

N). In both cases n = 4
√

N
a) Total communication cost to prepare the decentralized erasure code. b) Total
number of packets pre-routed. c) Average and standard deviation plots for the number
of packets that are stored at storage nodes. e) Total communication cost per node.

rithmic bound O(ln N) on the transmissions per node. Figure 2.6 illustrates some

experiments on the performance under the perimetric storage scenario. Notice that

the communication cost per node is indeed growing very slowly in N .

35



Chapter 2. Decentralized Erasure Codes

2.4.2 Correlated Data

For sensor network applications, the sensed data could be highly correlated and this

correlation can be exploited to improve the performance [Slepian and Wolf, 1973].

Distributed Source Coding Using Syndromes (DISCUS) [Pradhan and Ramchandran,

2003] is a practical means of achieving this. The data nodes form the syndromes of the

data packets they observe under suitable linear codes. These syndromes are treated

as the data which the nodes pre-route to form the decentralized erasure codewords

at the storage nodes. The data collector reconstructs the syndromes by gathering

the packets from k storage nodes. Using DISCUS decoding the collector can recover

the original data from the syndromes. The correlation statistics, which is required by

DISCUS can be learned by observing previous data at the collection point. The data

nodes only need to know the rates at which they will compress their packets. This

can be either communicated to them or learned adaptively in a distributed network

protocol. The syndromes can be considerably shorter than the original data packets

if the data observed by the different nodes are significantly correlated as is usually

the case in sensor networks. Note that this approach is separating the source coding

problem from the storage problem and this may not be optimal in general as shown

in [Ramamoorthy et al., 2004].

36



Chapter 3

The Repair Problem

3.1 Introduction

In this chapter we define and investigate the problem of repairing failures of storage

nodes with the minimal possible communication. Beyond sensor networks, the pro-

posed repair schemes may have applications for data centers, RAID and peer-to-peer

storage systems such as OceanStore [Rhea et al., 2001], Total Recall [Bhagwan et al.,

2004], and DHash++ [Dabek et al., 2004].

Consider a data object (or file) of total size M, separated into k fragments, each

of size M/k. Consider using an (n, k) erasure coding scheme to generate n coded

fragments which are subsequently stored in n distributed storage nodes. Then, the

data object can be recovered from any set of k coded pieces. This performance is

optimal in terms of the redundancy–reliability tradeoff because k pieces, each of size

M/k, provide the minimum data for recovering the file, which is of size M. Several

distributed file storage designs [Rhea et al., 2003; Bhagwan et al., 2004; Dabek et al.,

2004] use such erasure coding packets instead of replication.

However, a complication arises: In distributed storage systems, redundancy must

37



Chapter 3. The Repair Problem

Figure 3.1: The repair problem: Assume that a (4,2) MDS erasure code is used to
generate 4 fragments (stored in nodes x1, . . . x4) with the property that any 2 can be
used to reconstruct the original data y1, y2. When node x4 fails, and a newcomer x5

needs to generate an erasure fragment from x1, . . . x3, what is the minimum amount of
information that needs to be communicated?

be continually refreshed as nodes fail or leave the system, which involves large data

transfers across the network. This problem is best illustrated in the simple example

of Fig. 3.1: a data object is divided in two fragments y1, y2 (say, each of size 1Mb) and

these encoded into four fragments x1, . . . x4 of same size, with the property that any

two out of the four can be used to recover the original y1, y2. Now assume that storage

node x4 fails and a new node x5, the newcomer, needs to communicate with existing

nodes and create a new encoded packet, such that any two out of x1, x2, x3, x5 suffice

to recover the data object. Clearly, if the newcomer can download any two encoded

fragments (say from x1, x2), reconstruction of the whole data object is possible and

then a new encoded fragment can be generated (for example by making a new linear

combination that is independent from the existing ones). This, however, requires the

communication of 2Mb in the network to generate an erasure encoded fragment of

size 1Mb at x5. In general, if an object of size M is divided in k initial fragments, the

repair bandwidth with this strategy is M bits to generate a fragment of size M/k.

In contrast, if replication is used instead, a new replica may simply be copied from

any other existing node, incurring no bandwidth overhead. It was commonly believed

38



Chapter 3. The Repair Problem

Figure 3.2: Example: A repair for a (4,2)-Minimum-Storage Regenerating Code. All the
packets (boxes) in this figure have size 0.5Mb and each node stores two packets. Note that
any two nodes have four equations that can be used to recover the data, a1, a2, b1, b2. The
parity packets p1, p2, p3 are used to create the two packets of the newcomer, requiring
repair bandwidth of 1.5MB. The multiplying coefficients are selected at random and
the example is shown over the integers for simplicity (although any sufficiently large field
would be enough). The key point is that nodes do not send their information but generate
smaller parity packets of their data, and forward them to the newcomer, who further mixes
them to generate two new packets. Note that the selected coefficients also need to be
included in the packets, which introduces some overhead.

that this k-factor overhead in repair bandwidth is an unavoidable overhead that comes

with the benefits of coding (see, for example, [Rodrigues and Liskov, 2005]). Indeed,

all known coding constructions require access to the original data object to generate

encoded fragments.

In this chapter (based on [Dimakis et al., 2007] and [Wu et al., 2007]) we show that

surprisingly, there exist erasure codes that can be repaired without communicating the

whole data object. In particular, for the (4, 2) example, we show that the newcomer

can download 1.5Mb to repair a failure and that this is the information theoretic

minimum (see Fig. 3.2 for an example). More generally, we identify a tradeoff between

39



Chapter 3. The Repair Problem

storage and repair bandwidth and show that codes exist that achieve every point on

this optimal tradeoff curve. We call codes that lie on this optimal tradeoff curve

regenerating codes.

The two extremal points on the tradeoff curve are of special interest and we refer

to them as minimum-storage regenerating (MSR) codes and minimum-bandwidth

regenerating (MBR) codes. The former correspond to Maximum Distance Separable

(MDS) codes that can also be efficiently repaired. At the other end of the tradeoff

are the MBR codes, which have minimum repair bandwidth. We show that if each

storage node is allowed to store slightly more than M/k bits, the repair bandwidth

can be significantly reduced.

The remainder of this chapter is organized as follows. In Section 3.2 we discuss

relevant background and related work from network coding theory and distributed

storage systems. In Section 3.3 we introduce the notion of the information flow

graph, which represents how information is communicated and stored in the network

as nodes join and leave the system. In Section 3.3.2 we characterize the minimum

storage and repair bandwidth and show that there is a tradeoff between these two

quantities that can be expressed in terms of a maximum flow on this graph. We

further show that for any finite information flow graph, there exists a regenerating

code that can achieve any point on the minimum storage/ bandwidth feasible region

we computed. Finally, in Section 3.4 we evaluate the performance of the proposed

regenerating codes using traces of failures in real systems and compare to alternative

schemes previously proposed in the distributed storage literature.

40



Chapter 3. The Repair Problem

3.2 Background and Related Work

3.2.1 Erasure codes

Classical coding theory focuses on the tradeoff between redundancy and error toler-

ance. In terms of the redundancy-reliability tradeoff, the Maximum Distance Sepa-

rable (MDS) codes are optimal. The most well-known class of MDS erasure codes is

the Reed-Solomon code. More recent studies on erasure coding focus on other per-

formance metrics. For instance, sparse graph codes [Luby et al., 2001; Luby, 2002;

Shokrollahi, 2006] can achieve near-optimal performance in terms of the redundancy-

reliability tradeoff and also require low encoding and decoding complexity. Another

line of research for erasure coding in storage applications is parity array codes; see,

e.g., [Blaum et al., 1995; Xu and Bruck, 1999; Huang and Xu, 2005; Hafner, 2005].

The array codes are based solely on XOR operations and they are generally designed

with the objective of low encoding, decoding, and update complexities. Plank [Plank

and Thomason, 2004] gave a tutorial on erasure codes for storage applications at

USENIX FAST 2005, which covers Reed-Solomon codes, parity-array codes, and

LDPC codes.

Compared to these studies, we focus on different performance metrics. Specifi-

cally, motivated by practical concerns in large distributed storage systems, we explore

erasure codes that offer good tradeoffs in terms of redundancy, reliability, and repair

bandwidth tradeoff.

3.2.2 Network Coding

Network coding is a generalization of the conventional routing (store-and-forwarding)

method. In conventional routing, each intermediate node in the network simply

stores and forwards information received. In contrast, network coding allows the

41



Chapter 3. The Repair Problem

intermediate nodes to generate output data by encoding (i.e., computing certain

functions of) previously received input data. Thus, network coding allows information

to be “mixed” at intermediate nodes. The potential advantages of network coding

over routing include resource (e.g., bandwidth and power) efficiency, computational

efficiency, and robustness to network dynamics. As shown by the pioneering work of

Ahlswede et al. [Ahlswede et al., 2000b], network coding can increase the possible

network throughput, and in the multicast case can achieve the maximum data rate

theoretically possible.

Subsequent work [Li et al., 2003; Koetter and Médard, 2003] showed that the

maximum multicast capacity can be achieved by using linear encoding functions at

each node. The studies by Ho et al. [Ho et al., 2006b] and Sanders et al. [Sander et

al., 2003] further showed that random linear network coding over a sufficiently large

finite field can (asymptotically) achieve the multicast capacity. A polynomial com-

plexity procedure to construct deterministic network codes that achieve the multicast

capacity is given by Jaggi et al. [Jaggi et al., 2005].

For distributed storage, network coding was introduced in [Dimakis et al., 2005;

Dimakis et al., 2006a] for wireless sensor networks. Many aspects of coding were

explored [Kamra et al., 2006; Huang et al., 2007; Wang et al., 2006; Jiang, 2006] for

networked storage applications.

The key difference of this work to this existing literature is that we bring the

dimension of repair bandwidth into the picture, and present fundamental bounds and

constructions for network codes that need to be maintained over time. Similar to

this related work, intermediate nodes form linear combinations in a finite field and

the combination coefficients are also stored in each packet, creating some overhead

that can be made arbitrarily small for larger packet sizes. In regenerating codes,

repair bandwidth is reduced because many nodes create small parity packets of their

data that essentially contain enough novel information to generate a new encoded

42



Chapter 3. The Repair Problem

fragment, without requiring to reconstruct the whole data object.

3.2.3 Distributed storage systems

A number of recent studies [Rhea et al., 2003; Dabek et al., 2001; Rowstron and

Druschel, 2001; Bhagwan et al., 2004; Weatherspoon et al., 2005] have designed and

evaluated large-scale, peer-to-peer distributed storage systems. Redundancy man-

agement strategies for such systems have been evaluated in [Weatherspoon and Ku-

biatowicz, 2002b; Blake and Rodrigues, 2003; Bhagwan et al., 2004; Rodrigues and

Liskov, 2005; Weatherspoon et al., 2005; Chun et al., 2006; Tati and Voelker, 2006;

Godfrey et al., 2006].

Among these, [Weatherspoon and Kubiatowicz, 2002b; Bhagwan et al., 2004; Ro-

drigues and Liskov, 2005] compared replication with erasure codes in the bandwidth-

reliability tradeoff space. The analysis of Weatherspoon and Kubiatowicz [Weather-

spoon and Kubiatowicz, 2002b] showed that erasure codes could reduce bandwidth

use by an order of magnitude compared with replication. Bhagwan et al. [Bhagwan

et al., 2004] came to a similar conclusion in a simulation of the Total Recall storage

system.

Rodrigues and Liskov [Rodrigues and Liskov, 2005] propose a solution to the re-

pair problem that we call the Hybrid strategy: one special storage node maintains

one full replica in addition to multiple erasure-coded fragments. The node storing

the replica can produce new fragments and send them to newcomers, thus transfer-

ring just M/k bytes for a new fragment. However, maintaining an extra replica on

one node dilutes the bandwidth-efficiency of erasure codes and complicates system

design. For example, if the replica is lost, new fragments cannot be created until it is

restored. The authors show that in high-churn environments (i.e., high rate of node

joins/leaves), erasure codes provide a large storage benefits but the bandwidth cost

43



Chapter 3. The Repair Problem

is too high to be practical for a P2P distributed storage system, using the Hybrid

strategy. In low-churn environments, the reduction in bandwidth is negligible. In

moderate-churn environments, there is some benefit, but this may be outweighed by

the added architectural complexity that erasure codes introduce as discussed further

in Section 3.4.5. These conclusions were based on an analytical model augmented

with parameters estimated from traces of real systems. Compared with [Weather-

spoon and Kubiatowicz, 2002b], [Rodrigues and Liskov, 2005] used a much smaller

value of k (7 instead of 32) and the Hybrid strategy to address the code regenera-

tion problem. In Section 3.4, we follow the evaluation methodology of [Rodrigues

and Liskov, 2005] to measure the performance of the two redundancy maintenance

schemes that we introduce.

3.3 Analysis

Our analysis is based on a particular graphical representation of a distributed storage

system, which we refer to as an information flow graph G. This graph describes how

the information of the data object is communicated through the network, stored in

nodes with limited memory, and reaches reconstruction points at the data collectors.

3.3.1 Information Flow Graph

The information flow graph is a directed acyclic graph consisting of three kinds of

nodes: a single data source S, storage nodes xi
in, x

i
out and data collectors DCi. The

single node S corresponds to the source of the original data. Storage node i in the

system is represented by a storage input node xi
in, and a storage output node xi

out;

these two nodes are connected by a directed edge xi
in → xi

out with capacity equal

to the amount of data stored at node i. See Figure 3.3 for an illustration. Note

44



Chapter 3. The Repair Problem

that Jiang [Jiang, 2006] independently proposed a construction very similar to the

information flow graph, but for optimizing a different objective.

Given the dynamic nature of the storage systems that we consider, the information

flow graph also evolves in time. At any given time, each vertex in the graph is either

active or inactive, depending on whether it is available in the network. At the initial

time, only the source node S is active; it then contacts an initial set of storage nodes,

and connects to their inputs (xin) with directed edges of infinite capacity. From this

point onwards, the original source node S becomes and remains inactive. At the next

time step, the initially chosen storage nodes become now active; they represent a

distributed erasure code, corresponding to the desired steady state of the system. If

a new node j joins the system, it can only be connected with active nodes. If the

newcomer j chooses to connect with active storage node i, then we add a directed

edge from xi
out to xj

in, with capacity equal to the amount of data that the newcomer

downloads from node i. Note that in general it is possible for nodes to download

more data than they store, as in the example of the (4, 2)-erasure code. If a node

leaves the system, it becomes inactive. Finally, a data collector DC is a node that

corresponds to a request to reconstruct the data. Data collectors connect to subsets

of active nodes through edges with infinite capacity.

An important notion associated with the information flow graph is that of mini-

mum cuts: A cut in the graph G between the source S and a fixed data collector node

DC is a subset C of edges such that, there is no path starting from S to DC that does

not have one or more edges in C. The minimum cut is the cut between S and DC in

which the total sum of the edge capactities is smallest.

45



Chapter 3. The Repair Problem

Figure 3.3: Illustration of the information flow graph G corresponding to the (4,2) code
of figure 1. A distributed storage scheme uses an (4, 2) erasure code in which any 2
fragments suffice to recover the original data. If node x4 becomes unavailable and a new
node joins the system, we need to construct new encoded fragment in x5. To do so, node
x5

in is connected to the d = 3 active storage nodes. Assuming β bits communicated from
each active storage node, of interest is the minimum β required. The min-cut separating
the source and the data collector must be larger than M = 2Mb for reconstruction to be
possible. For this graph, the min-cut value is given by 1 + 2β, implying that β ≥ 0.5Mb
is sufficient and necessary.

3.3.2 Storage-Bandwidth Tradeoff

We are now ready for the main result of this chapter, the characterization of the feasi-

ble storage-repair bandwidth points. The setup is as follows: The normal redundancy

we want to maintain requires n active storage nodes, each storing α bits. Whenever a

node fails, a newcomer downloads β bits each from any d surviving nodes. Therefore

the total repair bandwidth is γ = dβ (see figure 3.3). We restrict our attention to

the symmetric setup where it is required that any k storage nodes can recover the

original file, and a newcomer downloads the same amount of information from each

of the existing nodes.

For each set of parameters (n, k, d, α, γ), there is a family of information flow

graphs, each of which corresponds to a particular evolution of node failures/repairs.

We denote this family of directed acyclic graphs by G(n, k, d, α, γ). An (n, k, d, α, γ)

tuple will be feasible, if a code with storage α and repair bandwidth γ exists. For

46



Chapter 3. The Repair Problem

the example in figure 3.3, the point (4, 2, 3, 1Mb, 1.5Mb) is feasible (and a code that

achieves it is shown in figure 3.2) and also on the optimal tradeoff whereas a standard

erasure code which communicates the whole data object would correspond to γ = 2Mb

instead. Note that n, k, d must be integers while α, β, γ are real valued.

Theorem 1. For any α ≥ α∗(d, γ), the points (n, k, d, α, γ) are feasible, and linear

network codes suffice to achieve them. It is information theoretically impossible to

achieve points with α < α∗(d, γ). The threshold function α∗(d, γ) (which also depends

on n, k) is the following:

α∗(d, γ) =

 M
k

, γ ∈ [f(0), +∞)

M−g(i)γ
k−i

, γ ∈ [f(i), f(i− 1)),
(3.1)

where

f(i)
∆
=

2Md

(2k − i− 1)i + 2k(d− k + 1)
, (3.2)

g(i)
∆
=

(2d− 2k + i + 1)i

2d
. (3.3)

The minimum γ is

γmin = f(k − 1) =
2Md

2kd− k2 + k
. (3.4)

The complete proof of this theorem is given in the analysis section. The main

idea is that the code repair problem can be mapped to a multicasting problem on

the information flow graph. Known results on network coding for multicasting can

then be used to establish that code repair can be achieved if and only if the un-

derlying information flow graph has enough connectivity. The bulk of the technical

analysis of the proof then involves computing the minimum cuts on arbitrary graphs

47



Chapter 3. The Repair Problem

in G(n, k, d, α, γ) and solving an optimization problem for minimizing α subject to a

sufficient flow constraint.

The optimal tradeoff curves for k = 5, n = 10, d = 9 and k = 10, n = 15, d = 14

are shown in Figure 3.4 (top) and (bottom), respectively.

3.3.3 Special Cases: Minimum-Storage Regenerating (MSR) Codes

and Minimum-Bandwidth Regenerating (MBR) Codes

We now study two extremal points on the optimal tradeoff curve, which correspond

to the best storage efficiency and the minimum repair bandwidth, respectively. We

call codes that attain these points minimum-storage regenerating (MSR) codes and

minimum-bandwidth regenerating (MBR) codes, respectively.

It can be verified that the minimum storage point is achieved by the pair

(αMSR, γMSR) =

(
M
k

,
Md

k(d− k + 1)

)
. (3.5)

If we substitute d = k into the above, we note that the total network bandwidth

for repair is M, the size of the original file. Therefore, if we only allow a newcomer

to contact k nodes, it is optimal to download the whole file and then compute the

new fragment. However, if we allow a newcomer to contact more than k nodes,

the network bandwidth γMSR can be reduced significantly. The minimum network

bandwidth is clearly achieved by having the newcomer contact all other nodes. For

instance, for (n, k) = (14, 7), the newcomer needs to download only M
49

from each of

the d = n− 1 = 13 active storage nodes, making the repair bandwidth equal to 13M
49

,

required to generate a fragment of size M
7

.

Since the MSR codes store M
k

bits at each node while ensuring any k coded blocks

can be used to recover the original file, the MSR codes have equivalent reliability-

48



Chapter 3. The Repair Problem

0.26 0.28 0.3 0.32 0.34 0.36

0.2

0.21

0.22

0.23

0.24

0.25

0.26

0.27

0.28

0.29

0.3

Bandwidth to repair one node !

St
or

ag
e 

pe
r n

od
e 
"

Optimal tradeoff for k=5, n=10

0.14 0.16 0.18 0.2 0.22 0.24 0.26 0.28

0.1

0.11

0.12

0.13

0.14

0.15

Bandwidth to repair one node !

St
or

ag
e 

pe
r n

od
e 
"

Optimal tradeoff for k=10, n=15

Figure 3.4: Optimal tradeoff curve between storage α and repair bandwidth γ, for k =
5, n = 10 (left) and k = 10, n = 15 (right). For both plots M = 1 and d = n − 1.
Note that traditional erasure coding corresponds to the points (γ = 1, α = 0.2) and
(γ = 1, α = 0.1) for the top and bottom plots.

49



Chapter 3. The Repair Problem

redundancy performance with standard Maximum Distance Separable (MDS) codes.

However, MSR codes outperform classical MDS codes in terms of the network repair

bandwidth.

At the other end of the tradeoff are MBR codes, which have minimum repair

bandwidth. It can be verified that the minimum repair bandwidth point is achieved

by

(αMBR, γMBR) =

(
2Md

2kd− k2 + k
,

2Md

2kd− k2 + k

)
. (3.6)

Note that the minimum bandwidth regenerating codes, the storage size α is equal to

γ, the total number of bits downloaded. Therefore MBR codes incur no bandwidth

expansion at all, just like a replication system does. However, the benefit of MBR

codes is significantly better storage efficiency.

3.4 Evaluation

In this section, we compare regenerating codes with other redundancy management

schemes in the context of distributed storage systems. We follow the evaluation

methodology of [Rodrigues and Liskov, 2005], which consists of a simple analytical

model whose parameters are obtained from traces of node availability measured in

several real distributed systems.

We begin in Section 3.4.1 with a discussion of node dynamics and the objectives

relevant to distributed storage systems, namely reliability, bandwidth, and disk space.

We introduce the model in Section 3.4.2 and estimate realistic values for its parameters

in Section 3.4.3. Section 3.4.4 contains the quantitative results of our evaluation. In

Section 3.4.5, we discuss qualitative tradeoffs between regenerating codes and other

strategies, and how our results change the conclusion of [Rodrigues and Liskov, 2005]

50



Chapter 3. The Repair Problem

that erasure codes provide limited practical benefit.

3.4.1 Node dynamics and objectives

In this section we introduce some background and terminology which is common to

most of the work discussed in Section 3.2.3.

We draw a distinction between permanent and transient node failures. A perma-

nent failure, such as the permanent departure of a node from the system or a disk

failure, results in loss of the data stored on the node. In contrast, data is preserved

across a transient failure, such as a reboot or temporary network disconnection. We

say that a node is available when its data can be retrieved across the network.

Distributed storage systems attempt to provide two types of reliability: availabil-

ity and durability. A file is available when it can be reconstructed from the data

stored on currently available nodes. A file’s durability is maintained if it has not been

lost due to permanent node failures: that is, it may be available at some point in the

future. Both properties are desirable, but here we report results for availability only.

Specifically, we will show file unavailability, the fraction of time that the file is not

available.

3.4.2 Model

We use a model which is intended to capture the average-case bandwidth used to

maintain a file in the system, and the resulting average availability of the file. With

minor exceptions,1this model and the subsequent estimation of its parameters are

equivalent to that of [Rodrigues and Liskov, 2005]. Although this evaluation method-

1In addition to evaluating a larger set of strategies and using a somewhat different set of traces,
we count bandwidth cost due to permanent node failure only, rather than both failures and joins.
Most designs [Bhagwan et al., 2004; Weatherspoon et al., 2005; Chun et al., 2006] can avoid reacting
to node joins. Additionally, we compute probabilities directly rather than using approximations to
the binomial.

51



Chapter 3. The Repair Problem

ology is a significant simplification of real storage systems, it allows us to compare

directly with the conclusions of [Rodrigues and Liskov, 2005] as well as to calculate

precise values for rare events.

The model has two key parameters, f and a. First, we assume that in expectation

a fraction f of the nodes storing file data fail permanently per unit time, causing data

transfers to repair the lost redundancy. Second, we assume that at any given time

while a node is storing data, the node is available with some probability a (and with

probability 1− a is currently experiencing a transient failure). Moreover, the model

assumes that the event that a node is available is independent of the availability of

all other nodes.

Under these assumptions, we can compute the expected availability and mainte-

nance bandwidth of various redundancy schemes to maintain a file of M bytes. We

make use of the fact that for all schemes except MSR codes, the amount of band-

width used is equal to the amount of redundancy that had to be replaced, which is

in expectation f times the amount of storage used.

Replication: If we store R replicas of the file, then we store a total of R ·M

bytes, and in expectation we must replace f · R ·M bytes per unit time. The file is

unavailable if no replica is available, which happens with probability (1− a)R.

Ideal Erasure Codes: For comparison, we show the bandwidth and availability

of a hypothetical (n, k) erasure code strategy which can “magically” create a new

packet while transferring just M/k bytes (i.e., the size of the packet). Setting n =

k·R, this strategy sends f ·R·M bytes per unit time and has unavailability probability

Uideal(n, k) :=
∑k−1

i=0

 n

i

 ai(1− a)n−i.

Hybrid: If we store one full replica plus an (n, k) erasure code where n = k ·

(R − 1), then we again store R · M bytes in total, so we transfer f · R · M bytes

per unit time in expectation. The file is unavailable if the replica is unavailable and

52



Chapter 3. The Repair Problem

fewer than k erasure-coded packets are available, which happens with probability

(1− a) · Uideal(n, k).

Minimum-Storage Regenerating Codes: An (n, k) MSR Code with redun-

dancy R = n/k stores RM bytes in total, so f · R ·M bytes must be replaced per

unit time. We will refer to the overhead of an MSR code δMSR as the extra amount

of information that needs to be transfered compared to the fragment size M/k:

δMSR
∆
=

(n− 1)βMSR

M/k
=

n− 1

n− k
. (3.7)

Therefore, replacing a fragment requires transferring over the network δMSR times the

size of the fragment in the most favorable case when newcomers connect to d = n− 1

nodes to construct a new fragment. Therefore, this results in f · R ·M · δMSR bytes

sent per unit time, and unavailability Uideal(n, k).

Minimum-Bandwidth Regenerating Codes:

It is convenient to define the MBR code overhead as the amount of information

transfered over the ideal fragment size:

δMBR
∆
=

(n− 1)βMBR

M/k
=

2(n− 1)

2n− k − 1
. (3.8)

Therefore, an (n, k) MBR Code stores M· n · δMBR bytes in total. So in expectation

f · M · n · δMBR bytes are transfered per unit time, and the unavailability is again

Uideal(n, k).

3.4.3 Estimating f and a

In this section we describe how we estimate f , the fraction of nodes that perma-

nently fail per unit time, and a, the mean node availability, based on traces of node

availability in several distributed systems.

53



Chapter 3. The Repair Problem

Trace Length Start Mean # f a
(days) date nodes up (fraction failed per day)

PlanetLab 527 Jan. 2004 303 0.017 0.97
Microsoft PCs 35 Jul. 6, 1999 41970 0.038 0.91

Skype 25 Sept. 12, 2005 710 0.12 0.65
Gnutella 2.5 May, 2001 1846 0.30 0.38

Table 3.1: The availability traces used in this study.

We use four traces of node availability with widely varying characteristics, sum-

marized in Table 3.1. The PlanetLab All Pairs Ping [Stribling, ] trace is based

on pings sent every 15 minutes between all pairs of 200-400 nodes in PlanetLab, a

stable, managed network research testbed. We consider a node to be up in one 15-

minute interval when at least half of the pings sent to it in that interval succeeded.

In a number of periods, all or nearly all PlanetLab nodes were down, most likely

due to planned system upgrades or measurement errors. To exclude these cases, we

“cleaned” the trace as follows: for each period of downtime at a particular node, we

remove that period (i.e. we consider the node up during that interval) when the av-

erage number of nodes up during that period is less than half the average number of

nodes up over all time. The Microsoft PCs [Bolosky et al., 2000] trace is derived

from hourly pings to desktop PCs within Microsoft Corporation. The Skype super-

peers [Guha et al., 2006] trace is based on application-level pings at 30-minute

intervals to nodes in the Skype superpeer network, which may approximate the be-

havior of a set of well-provisioned endhosts, since superpeers may be selected in part

based on bandwidth availability [Guha et al., 2006]. Finally, the trace of Gnutella

peers [Saroiu et al., 2002] is based on application-level pings to ordinary Gnutella

peers at 7-minute intervals.

We next describe how we derive f and a from these traces. It is of key impor-

tance for the storage system to distinguish between permanent and transient failures

54



Chapter 3. The Repair Problem

(defined in Section 3.4.1), since only the former requires bandwidth-intensive replace-

ment of lost redundancy. Most systems use a timeout heuristic: when a node has

not responded to network-level probes after some period of time t, it is considered

to have failed permanently. To approximate a storage system’s behavior, we use the

same heuristic. Node availability a is then calculated as the mean (over time) fraction

of nodes which were available among those which were not considered permanently

failed at that time.

The resulting values of f and a appear in Table 3.1, where we have fixed the

timeout t at 1 day. Longer timeouts reduce overall bandwidth costs [Rodrigues and

Liskov, 2005; Chun et al., 2006], but begin to impact durability [Chun et al., 2006]

and are more likely to produce artificial effects in the short (2.5-day) Gnutella trace.

We emphasize that the procedure described above only provides an estimate of

f and a which may be biased in several ways. Some designs [Chun et al., 2006]

reincorporate data on nodes which return after transient failures which were longer

than the timeout t, which would reduce f . Additionally, even placing files on uniform-

random nodes results in selecting nodes that are more available [Tati and Voelker,

2006] and less prone to failure [Godfrey et al., 2006] than the average node. Finally,

we have not accounted for the time needed to transfer data onto a node, during

which it is effectively unavailable. However, we consider it unlikely that these biases

would impact our main results since we are primarily concerned with the relative

performance of the strategies we compare.

3.4.4 Quantitative results

Figure 3.5 shows the tradeoff between mean unavailability and mean maintenance

bandwidth in each of the strategies of Section 3.4.2 using the values of f and a from

Section 3.4.3 and k = 7. Feasible points in the tradeoff space are produced by varying

55



Chapter 3. The Repair Problem

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 0  0.5  1  1.5  2

Pr
[d

at
a 

is 
no

t a
va

ila
bl

e]

Aggregate bandwidth in KB/s per 1 GB file

(a) PlanetLab trace

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 0  0.5  1  1.5  2  2.5  3
Pr

[d
at

a 
is 

no
t a

va
ila

bl
e]

Aggregate bandwidth in KB/s per 1 GB file

(b) Microsoft PCs trace

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 0  2  4  6  8  10  12

Pr
[d

at
a 

is 
no

t a
va

ila
bl

e]

Aggregate bandwidth in KB/s per 1 GB file

(c) Skype superpeers trace

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 0  5  10  15  20  25  30  35

Pr
[d

at
a 

is 
no

t a
va

ila
bl

e]

Aggregate bandwidth in KB/s per 1 GB file

Replication
MSR Codes

Hybrid
MBR Codes

Ideal Erasure

(d) Gnutella peers trace

Figure 3.5: Availability-bandwidth tradeoff for k = 7 with parameters derived from each
of the traces. The key in (d) applies to all four plots.

56



Chapter 3. The Repair Problem

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 0  0.5  1  1.5  2

Pr
[d

at
a 

is 
no

t a
va

ila
bl

e]

Aggregate bandwidth in KB/s per 1 GB file

(a) PlanetLab trace

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 0  0.5  1  1.5  2  2.5  3
Pr

[d
at

a 
is 

no
t a

va
ila

bl
e]

Aggregate bandwidth in KB/s per 1 GB file

(b) Microsoft PCs trace

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 0  2  4  6  8  10  12

Pr
[d

at
a 

is 
no

t a
va

ila
bl

e]

Aggregate bandwidth in KB/s per 1 GB file

(c) Skype superpeers trace

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 0  5  10  15  20  25  30  35

Pr
[d

at
a 

is 
no

t a
va

ila
bl

e]

Aggregate bandwidth in KB/s per 1 GB file

Replication
MSR Codes

Hybrid
MBR Codes

Ideal Erasure

(d) Gnutella peers trace

Figure 3.6: Availability-bandwidth tradeoff for k = 14 with parameters derived from each
of the traces.

57



Chapter 3. The Repair Problem

the redundancy factor R. The marked points along each curve highlight a subset of

the feasible points (i.e., points for which n is integral).

Figure 3.6 shows that relative performance of the various strategies is similar for

k = 14.

For conciseness, we omit plots of storage used by the schemes. However, disk

usage is proportional to bandwidth for all schemes we evaluate in this section, with

the exception of minimum storage regenerating codes. This is because MSR codes

are the only scheme in which the data transferred onto a newcomer is not equal to

the amount of data that the newcomer finally stores. Instead, the storage used by

MSR codes is equal to that of the storage used by hypothetical ideal erasure codes,

and hence MSR codes’ space usage is proportional to the bandwidth used by ideal

codes.

For example, from Figure 3.5(b) we can compare the strategies at their feasible

points closest to unavailability 0.0001, i.e., four nines of availability. At these points,

MSR codes use about 44% more bandwidth and 28% less storage space than Hybrid,

while MBR codes use about 3.7% less bandwidth and storage space than Hybrid.

Additionally, these feasible points give MSR and MBR codes somewhat better un-

availability than Hybrid (.000059 vs. 0.00018).

One interesting effect apparent in the plots is that MSR codes’ maintenance band-

width actually decreases as the redundancy factor R increases, before coming to a

minimum and then increasing again. Intuitively, while increasing R increases the

total amount of data that needs to be maintained, for small R this is more than com-

pensated for by the reduction in overhead. The expected maintenance bandwidth per

unit time is

f MR δMSR = f Mn

k

n− 1

n− k
. (3.9)

It is easy to see that this function is minimized by selecting n one of the two integers

58



Chapter 3. The Repair Problem

closest to

nopt = k +
√

k2 − k. (3.10)

which approaches a redundancy factor of 2 as k →∞.

3.4.5 Qualitative comparison

In this section we discuss two questions: First, based on the results of the previous

section, what are the qualitative advantages and disadvantages of the two extremal

regenerating codes compared with the Hybrid coding scheme? Second, do our results

affect the conclusion of Rodrigues and Liskov [Rodrigues and Liskov, 2005] that era-

sure codes offer too little improvement in bandwidth use to clearly offset the added

complexity that they add to the system?

3.4.5.1 Comparison with Hybrid

Compared with Hybrid, for a given target availability, minimum storage regenerating

codes offer slightly lower maintenance bandwidth and storage, and a simpler system

architecture since only one type of redundancy needs to be maintained. An important

practical disadvantage of using the Hybrid scheme is asymmetric design which can

cause the disk I/O to become the bottleneck of the system during repairs. This is

because the disc storing the full replica and generates the encoded fragments need to

read the whole data object and compute the encoded fragment.

However, MBR codes have at least two disadvantages. First, constructing a new

packet, or reconstructing the entire file, requires communcation with n − 1 nodes2

rather than one (in Hybrid, the node holding the single replica). This adds overhead

that could be significant for sufficiently small files or sufficiently large n. Perhaps

2The scheme could be adapted to connect to fewer than n − 1 nodes, but this would increase
maintenance bandwidth.

59



Chapter 3. The Repair Problem

more importantly, there is a factor δMBR increase in total data transferred to read the

file, roughly 30% for a redundancy factor R = 2 and k = 7 or 13% for R = 4, Thus,

if the frequency that a file is read is sufficiently high and k is sufficiently small, this

inefficiency could become unacceptable. Again compared with Hybrid, MSR codes

offer a simpler, symmetric system design and somewhat lower storage space for the

same reliability. However, MSR codes have somewhat higher maintenance bandwidth

and like MSB codes require that newcomers and data collectors connect to multiple

nodes.

Rodrigues et al. [Rodrigues and Liskov, 2005] discussed two principal disadvan-

tages of using erasure codes in a widely distributed system: coding—in particular,

the Hybrid strategy—complicates the system architecture; and the improvement in

maintenance bandwidth was minimal in more stable environments, which are the

more likely deployment scenario. Regenerating codes address the first of these issues,

which may make coding more broadly applicable.

3.5 Analysis and Proofs

Here we prove Theorem 1. We start with the following simple lemma.

Lemma 1. No data collector DC can reconstruct the initial data object if the minimum

cut in G between S and DC is smaller than the initial object size M.

Proof. The information of the initial data object must be communicated from the

source to the particular data collector. Since every link in the information flow graph

can only be used at most once, and since the point-to-point capacity is less than the

data object size, a standard cut-set bound shows that the entropy of the data object

conditioned on everything observable to the data collector is non-zero and therefore

reconstruction is impossible.

60



Chapter 3. The Repair Problem

The information flow graph casts the original storage problem as a network com-

munication problem where the source s multicasts the file to the set of all possible

data collectors. By analyzing the connectivity in the information flow graph, we ob-

tain necessary conditions for all possible storage codes, as shown in Lemma 1. In

addition to providing necessary conditions for all codes, the information flow graph

can also imply the existence of codes under proper assumptions.

Proposition 1. Consider any given finite information flow graph G, with a finite

set of data collectors. If the minimum of the min-cuts separating the source with

each data collector is larger or equal to the data object size M, then there exists a

linear network code defined over a sufficiently large finite field F (whose size depends

on the graph size) such that all data collectors can recover the data object. Further,

randomized network coding guarantees that all collectors can recover the data object

with probability that can be driven arbitrarily high by increasing the field size.

Proof. The key point is observing that the reconstruction problem reduces exactly

to multicasting on all the possible data collectors on the information flow graph G.

Therefore, the result follows directly from the constructive results in network coding

theory for single source multicasting; see the discussion of related works on network

coding in Section 3.2.2.

To apply Proposition 1, consider an information flow graph G that enumerates all

possible failure/repair patterns and all possible data collectors when the number of

failures/repairs is bounded. This implies that there exists a valid regenerating code

achieving the necessary cut bound (cf. Lemma 1), which can tolerate a bounded

number of failures/repairs. In another paper [Wu et al., 2007], we present coding

methods that construct deterministic regenerating codes that can tolerate infinite

number of failures/repairs, with a bounded field size, assuming only the population

61



Chapter 3. The Repair Problem

of active nodes at any time is bounded. For the detailed coding theoretic construction,

refer to [Wu et al., 2007].

We analyze the connectivity in the information flow graph to find the minimum

repair bandwidth. The next key lemma characterizes the flow in any information flow

graph, under arbitrary failure pattern and connectivity.

Lemma 2. Consider any (potentially infinite) information flow graph G, formed by

having n initial nodes that connect directly to the source and obtain α bits, while

additional nodes join the graph by connecting to d existing nodes and obtaining β

bits from each.3 Any data collector t that connects to a k-subset of “out-nodes” (c.f.

Figure 3.3) of G must satisfy:

mincut(s, t) ≥
min{d,k}−1∑

i=0

min{(d− i)β, α}. (3.11)

Furthermore, there exists an information flow graph G∗ ∈ G(n, k, d, α, β) where this

bound is matched with equality.

Proof: First, we show that there exists an information flow graph G∗ where the

bound (3.11) is matched with equality. This graph is illustrated by Figure 3.7. In this

graph, there are initially n nodes labeled from 1 to n. Consider k newcomers labeled

as n+1, . . . , n+k. The newcomer node n+ i connects to nodes n+ i−d, . . . , n+ i−1.

Consider a data collector t that connects to the last k nodes, i.e., nodes n+1, . . . , n+k.

Consider a cut (U,U) defined as follows. For each i ∈ {1, . . . , k}, if α ≤ (d− i)β, then

we include xn+i
out in U ; otherwise, we include xn+i

out and xn+i
in in U . Then this cut (U,U)

achieves (3.11) with equality.

3Note that this setup allows more graphs than those in G(n, k, d, α, β). In a graph in
G(n, k, d, α, β), at any time there are n active storage nodes and a newcomer can only connect
to the active nodes. In contrast, in a graph G described in this lemma, there is no notion of “active
nodes” and a newcomer can connect to any d existing nodes.

62



Chapter 3. The Repair Problem

Figure 3.7: G∗ used in the proof of lemma 2

We now show that (3.11) must be satisfied for any G formed by adding d in-degree

nodes as described above. Consider a data collector t that connects to a k-subset of

“out-nodes”, say {xi
out : i ∈ I}. We want to show that any s–t cut in G has capacity

at least
min{d,k}−1∑

i=0

min{(d− i)β, α}. (3.12)

Since the incoming edges of t all have infinite capacity, we only need to examine the

cuts (U,U) with s ∈ U ,

xi
out ∈ U, ∀i ∈ I. (3.13)

Let C denote the edges in the cut, i.e., the set of edges going from U to U .

Every directed acyclic graph has a topological sorting (see, e.g., [Bang-Jensen and

Gutin, 2001]), where a topological sorting (or acyclic ordering) is an ordering of its

vertices such that the existence of an edge from vi to vj implies i < j. Let x1
out be the

topologically first output node in U . Consider two cases:

• If x1
in ∈ U , then the edge x1

inx1
out must be in C.

• If x1
in ∈ U , since x1

in has an in-degree of d and it is the topologically first node

in U , all the incoming edges of x1
in must be in C.

63



Chapter 3. The Repair Problem

Therefore, these edges related to x1
out will contribute a value of min{dβ, α} to the cut

capacity.

Now consider x2
out, the topologically second output node in U . Similar to the

above, we have two cases:

• If x2
in ∈ U , then the edge x2

inx2
out must be in C.

• If x2
in ∈ U , since at most one of the incoming edges of x2

in can be from x1
out, d−1

incoming edges of x1
in must be in C.

Following the same reasoning we find that for the i-th node (i = 0, . . . , min{d, k}−1)

in the sorted set U , either one edge of capacity α or (d− i) edges of capacity β must

be in C. Equation (3.11) is exactly summing these contributions.

From Lemma 2, we know that there exists a graph G∗ ∈ G(n, k, d, α, β) whose

mincut is exactly
∑min{d,k}−1

i=0 min{(d− i)β, α}. This implies that if we want to ensure

recoverability while allowing a newcomer to connect to any set of d existing nodes,

then the following is a necessary condition4

min{d,k}−1∑
i=0

min{(d− i)β, α} ≥ M. (3.14)

Furthermore, when this condition is satisfied, we know any graph in G(n, k, d, α, β)

will have enough flow from the source to each data collector. For this reason, we say

C
∆
=

min{d,k}−1∑
i=0

min{(d− i)β, α} (3.15)

is the capacity for (n, k, d, α, β) regenerating codes (where each newcomer can access

any arbitrary set of k nodes).

4This, however, does not rule out the possibility that the mincut is larger if a newcomer can
choose the d existing nodes to connect to. We leave this as a future work.

64



Chapter 3. The Repair Problem

Note that if d < k, requiring any d storage nodes to have a flow of M will lead to

the same condition (c.f. (3.14)) as requiring any k storage nodes to have a flow of M.

Hence in such a case, we might as well set k as d. For this reason, in the following

we assume d ≥ k without loss of generality.

We are interested in characterizing the achievable tradeoffs between the storage α

and the repair bandwidth dβ. To derive the optimal tradeoffs, we can fix the repair

bandwidth and solve for the minimum α such that (3.14) is satisfied. Recall that

γ = dβ the total repair bandwidth, and the parameters (n, k, d, α, γ) can be used

to characterize the system. We are interested in finding the whole region of feasible

points (α, γ) and then select the one that minimizes storage α or repair bandwidth

γ. Consider fixing both γ and d (to some integer value) and minimize α;

α∗(d, γ)
∆
= min α (3.16)

subject to:
k−1∑
i=0

min

{(
1− i

d

)
γ, α

}
≥M.

Now observe that the dependence on d must be monotone:

α∗(d + 1, γ) ≤ α∗(d, γ). (3.17)

This is because α∗(d, γ) is always a feasible solution for the optimization for α∗(d +

1, γ). Hence a larger d always implies a better storage–repair bandwidth tradeoff.

The optimization (3.16) can be explicitly solved: We call the solution, the thresh-

old function α∗(d, γ), which for a fixed d, is piecewise linear:

α∗(d, γ) =

 M
k

, γ ∈ [f(0), +∞)

M−g(i)γ
k−i

, γ ∈ [f(i), f(i− 1)),
(3.18)

65



Chapter 3. The Repair Problem

where

f(i)
∆
=

2Md

(2k − i− 1)i + 2k(d− k + 1)
, (3.19)

g(i)
∆
=

(2d− 2k + i + 1)i

2d
. (3.20)

The last part of the proof involves showing that the threshold function is the

solution of this optimization. To simplify notation, introduce

bi
∆
=

(
1− k − 1− i

d

)
γ, for i = 0, . . . , k − 1. (3.21)

Then the problem is to minimize α subject to the constraint:

k−1∑
i=0

min{bi, α} ≥ B. (3.22)

The left hand side of (3.22), as a function of α, is a piecewise-linear function of α:

C(α) =



kα, α ∈ [0, b0]

b0 + (k − 1)α, α ∈ (b0, b1]
...

...

b0 + . . . + bk−2 + α, α ∈ (bk−2, bk−1]

b0 + . . . + bk−1, α ∈ (bk−1,∞)

. (3.23)

Note from this expression that C(α) is strictly increasing from 0 to its maximum

value b0 + . . . + bk−1 as α increases from 0 to bk−1. To find the minimum α such that

66



Chapter 3. The Repair Problem

C(α) ≥ B, we simply let α∗ = C−1(B) if B ≤ b0 + . . . + bk−1:

α∗ =



B
k
, B ∈ [0, kb0]

B−b0
k−1

, B ∈ (kb0, b0 + (k − 1)b1]
...

...

B −
∑k−2

j=0 bj, B ∈
(∑k−2

j=0 bj + bk−2,
∑k−1

j=0 bj

] (3.24)

For i = 1, . . . , k − 1, the i-th condition in the above expression is:

α∗ =
B −

∑i−1
j=0 bj

k − i
,

for B ∈

(
i−1∑
j=0

bj + (k − i)bi−1,
i∑

j=0

bj + (k − i− 1)bi

]
,

Note from the definition of {bi} (3.21) that

i−1∑
j=0

bj =
i−1∑
j=0

(
1− k − 1− j

d

)
γ

= γ

[
i

(
1− k − 1

d

)
+

i(i− 1)

2d

]
= γi

2d− 2k + i + 1

2d
,

= γg(i),

67



Chapter 3. The Repair Problem

and

i∑
j=0

bj + (k − i− 1)bi

=γ(i + 1)
2d− 2k + i + 2

2d
+ (k − i− 1)γ

(
1− k − 1− i

d

)
=γ

2ik − i2 − i + 2k + 2kd− 2k2

2d
,

=γ
B

f(i)
,

where f(i) and g(i) are defined in (3.2)(3.3). Hence we have:

α∗ =
B − g(i)

k − i
, for B ∈

(
γB

f(i− 1)
,

γB

f(i)

]
.

The expression of α∗(d, γ) then follows.

68



Chapter 4

Geographic Gossip

4.1 Introduction

In this chapter we go beyond the distributed storage problems and into addressing is-
sues of distributed processing. Motivated by sensor network applications, we consider
a network of n nodes, in which each node collects a measurement in some modality
of interest (e.g., temperature, light, humidity). In such a setting, it is frequently of
interest to solve the distributed averaging problem: namely, to develop a distributed
algorithm by which all nodes can compute the average of the n sensor measurements.
This problem and its connection to Markov chain mixing rates has been studied for
over thirty years [deGroot, 1974; Tsitsiklis, 1984]. It has been the focus of renewed
interest over the past several years, motivated by various applications in sensor net-
works and distributed control systems. Early work [deGroot, 1974] studied deter-
ministic protocols, known as consensus algorithms, in which each node communicates
with each of its neighbors in every round. More recent work (e.g. [Kempe et al., 2003;
Boyd et al., 2004]) has focused on so-called gossip algorithms, a class of randomized
algorithms that solve the averaging problem by computing a sequence of pairwise
averages. In each round, one node is chosen randomly, and it chooses one of its
neighbors randomly. Both nodes compute the average of their values and replace
their own value with this average. By iterating this pairwise averaging process, the
estimates of all nodes converge to the global average under suitable conditions on the
graph topology.

The averaging problem is an archetypal instance of distributed signal processing,
in which the goal is to achieve a global objective (e.g., computing the global average
of all observations) based on purely local computations (in this case, message-passing
between pairs of adjacent nodes). Although distributed averaging itself is a very spe-
cialized problem, effective averaging problems provide a useful building block for solv-
ing more complex problems in distributed signal processing. Indeed, any averaging

69



Chapter 4. Geographic Gossip

algorithm can be easily converted into a general algorithm that computes any linear
projection of the sensor measurements, assuming that each sensor knows the corre-
sponding coefficient of the projection vector. Recently, such algorithms have been
proposed for various problems of distributed computation in sensor networks, includ-
ing distributed filtering, detection, optimization, and compression [Spanos et al., 2005;
Xiao et al., 2005; Saligrama et al., 2006; Rabbat et al., 2006a].

A fundamental issue—and the primary focus of this chapter—is how many itera-
tions it takes for any gossip algorithm to converge to a sufficiently accurate estimate.
These convergence rates have received significant attention in recent work [Karp
et al., 2000; Kempe et al., 2003; Boyd et al., 2004; Boyd et al., 2005; Chen and
G. Pandurangan, 2005; Moallemi and van Roy, 2006; Mosk-Aoyama and Shah, 2005;
Alanyali et al., 2006]. The convergence speed of a nearest-neighbor gossip algorithm,
known as the averaging time, turns out to be closely linked to the spectral gap (and
hence the mixing time) of a Markov matrix defined by a weighted random walk on
the graph. Boyd et al. [Boyd et al., 2005] showed how to optimize the neighbor se-
lection probabilities for each node so as to find the fastest-mixing Markov chain on
the graph. For certain types of graphs, including complete graphs, expander graphs
and peer-to-peer networks, such Markov chains are rapidly mixing, so that gossip
algorithms converge very quickly.

Unfortunately, for the graphs corresponding to typical wireless sensor networks,
even an optimized gossip algorithm can result in very high energy consumption.
For example, a common model for a wireless sensor network is a random geomet-
ric graph [Penrose, 2003], in which all nodes are placed uniformly at random in an
area and can communicate with neighbors within some fixed radius r > 0. With the

transmission radius scaling in the standard way [Penrose, 2003] as r(n) = Θ(
√

log n
n

),

even an optimized gossip algorithm requires Θ(n2) transmissions (see Section 4.2.4),
which is of the same order as the energy required for every node to flood its value
to all other nodes. This problem is noted by Boyd et al. [Boyd et al., 2005]: “In a
wireless sensor network, Theorem 6 suggests that for a small radius of transmission,
even the fastest averaging algorithm converges slowly”, and this limitation is intrinsic
to standard gossip algorithms applied to such graphs. Intuitively, the nodes in a stan-
dard gossip protocol are essentially “blind,” and they repeatedly compute pairwise
averages with their one-hop neighbors. Information diffuses slowly throughout the
network—roughly moving distance

√
k in k iterations—as in a random walk.

Accordingly, our goal is to develop and analyze alternative—and ultimately more
efficient—methods for solving distributed averaging problems in wireless networks.
We leverage the fact that sensor nodes typically know their locations, and can exploit
this knowledge to perform geographic routing. Localization is itself a well-studied
problem (e.g., [Langendoen and Reijers, 2003; He et al., 2003]), since geographic

70



Chapter 4. Geographic Gossip

knowledge is required in numerous applications. With this perspective in mind, we
propose an algorithm that, like a standard gossiping protocol, is randomized and
distributed, but requires substantially less communication by exploiting geographic
information. The idea is that instead of exchanging information with one-hop neigh-
bors, geographic routing can be used to gossip with random nodes who are far away
in the network. The bulk of our technical analysis is devoted to showing that the
resulting rapid diffusion of information more than compensates for the extra cost of
this multi-hop routing procedure.

In effect, routing to far away neighbors creates an overlay communication network
that is the complete graph, where an edge is assigned a cost equal to the number of
hops on the route between the two nodes. For graphs with regular topology, it is
relatively straightforward to see how this additional cost is offset by the benefit of
faster convergence time. Indeed, two such examples, the cycle and the grid, are
analyzed in Section 5.3, where we show gains of the order n and

√
n respectively.

The more surprising result in chapter is that, by using a simple resampling technique,
this type of benefit extends to random geometric graphs—a class of networks with
irregular topology that are commonly used as a model of sensor networks formed by
random deployments.

This chapter is organized as follows. In Section 5.3, we provide a precise state-
ment of the distributed averaging problem, describe our algorithm, state our main
results on its performance, and compare them to previous results in the literature.
In Section 4.3, we analyze the performance of our algorithms on two simple regular
network topologies, the cycle and the grid. Section 4.4 provides the proofs of our
result for the random geometric graph model. In Section 4.5, we provide a number
of experimental results that illustrate and complement our theoretical analysis.

4.2 Problem formulation and main results

In this section, we first formulate the distributed averaging problem in sensor networks
and then describe our algorithm and main analytical results. We conclude with an
overview and comparison to related work.

4.2.1 Problem statement

We begin by formulating the problem of distributed averaging and specifying the
technical details of our time and communication models.

71



Chapter 4. Geographic Gossip

4.2.1.1 Distributed averaging

Consider a graph G with vertex set V = {1, . . . , n} and edge set E ⊂ V ×V . Suppose
that at time k = 0, each node s ∈ V is given a real-valued number xs(0) ∈ R,
representing an observation of some type. The goal of distributed averaging is to
compute the average x̄ave : = 1

n

∑n
s=1 xs(0) at all nodes of the graph. Consensus and

gossip algorithms achieve this goal as follows: at each time slot k = 0, 1, 2 . . ., each
node s = 1, . . . , n maintains an estimate xs(k) of the global average. We use x(k)
to denote the n-vector of these estimates; note that that the estimate at different
nodes need not agree (i.e., xs(k) is in general different from xt(k) for s 6= t). The
ultimate goal is to drive the estimate x(k) to the vector of averages x̄ave

~1, where ~1 is
an n-vector of ones.

For the algorithms of interest to us, the quantity x(k) for k > 0 is a random vector,
since the algorithms are randomized in their behavior. Accordingly, we measure the
convergence of x(k) to x(0) in the following sense [Kempe et al., 2003; Boyd et al.,
2005]:

Definition 1. Given ε > 0, the ε-averaging time is the earliest time at which the
vector x(k) is ε close to the normalized true average with probability greater than
1− ε:

Tave(n, ε) = sup
x(0)

inf
k=0,1,2...

{
P

(
‖x(k)− xave

~1‖
‖x(0)‖

≥ ε

)
≤ ε

}
, (4.1)

where ‖ · ‖ denotes the `2 norm. Note that this is essentially measuring a rate of
convergence in probability.

We can also generalize the pairwise averaging schemes for arbitrary subsets of
communicating nodes. At each time-slot k, a random set S(k) of nodes communicate
with each other and update their estimates to the average of the estimates of S(k): for
all j ∈ S(k), xj(k + 1) =

∑
i∈S(k) xi(t)/|S(k)|. In standard gossip (nearest neighbor)

and in geographic gossip, only random pairs of nodes average their estimates, hence
S(k) always contains exactly two nodes. On the other hand, in path averaging, S(k)
is the set of nodes in the random route generated at each time-slot k. Therefore in
this case, S(k) contains a random number of nodes.

4.2.1.2 Asynchronous time model

We use the asynchronous time model [Bertsekas and Tsitsiklis, 1997; Boyd et al.,
2005], which is well-matched to the distributed nature of sensor networks. In particu-
lar, we assume that each sensor has an independent clock whose “ticks” are distributed

72



Chapter 4. Geographic Gossip

as a rate λ Poisson process. The inter-tick times are exponentially distributed, inde-
pendent across nodes, and independent across time. We note that this model can be
equivalently formulated in terms of a single global clock ticking according to a rate
nλ Poisson process. By letting Zk denote the arrival times for this global clock, then
the individual clocks can be generated from the global clock by randomly assigning
each Zk to the sensors according to a uniform distribution. On average, there are
approximately n global clock ticks per unit of absolute time (an exact analysis can
be found in [Boyd et al., 2005]). However, our analysis is based on measuring time in
terms of the number of ticks of this (virtual) global clock. Time is discretized, and
the interval [Zk, Zk+1) corresponds to the kth timeslot.

Note that throughout this thesis, we are interested in minimizing the number of
messages without worrying about delay. We can therefore adjust the length of the
timeslots relative to the communication time so that only one packet exists in the
network at each timeslot with high probability. Note that this assumption is made
only for analytical convenience; in a practical implementation, several packets might
co-exist in the network, but the associated congestion control issues are beyond the
scope of this work.

4.2.1.3 Communication cost

We compare algorithms in terms of the amount of communication required. We
will assume a fixed communication radius and hence the number of one-hop radio
transmissions is proportional to the total energy spent for communication. More
specifically, let R(k) represent the number of one-hop radio transmissions required
for a given node to communicate with some other node in the interval [Zk, Zk+1). In
a standard gossip protocol, the quantity R(k) ≡ R is simply a constant, whereas for
our protocol, R(k) will be a random variable (with identical distribution for each time
slot). The total communication cost, measured in one-hop transmissions, is given by
the random variable

C(n, ε) =

Tave(n,ε)∑
k=1

R(k) . (4.2)

We analyze mainly the expected communication cost, denoted by E(n, ε), which is
given by

E(n, ε) = E[R(k)]Tave(n, ε) . (4.3)

73



Chapter 4. Geographic Gossip

Our analysis also yields probabilistic upper bounds on the communication cost C(n, ε)
of the form

P
{
C(n, ε) ≥ f(n, ε)

}
≤ ε

2
. (4.4)

A related convergence metric is consensus time [Denantes et al., 2008] the time
Tc required for the error to be divided by an e factor in the long run.

The estimate vector x(k) and the error vector ε(k) = x(k) − x̄ave
~1 for k > 0

are or course random. However, in the long run, the error decays exponentially
with a deterministic rate 1/Tc, where Tc, called consensus time, Apart from giving
an almost sure criterion for convergence time, consensus time Tc also lightens the
formalism by removing the ε’s (see also [Fagnani and Zampieri, 2008] for a related
analysis). Consensus time is formally defined as follows [Denantes et al., 2008]:

Theorem 1. Consensus time Tc. If {S(k)}t>0 is an independently and identically
distributed (i.i.d.) process, then the limit

− 1

Tc

= lim
t→∞

1

t
log ‖ε(k)‖, (4.5)

where ‖ · ‖ denotes the `2 norm, exists and is a constant with probability 1.

In other words, after a transient regime, the number of iterations needed to reduce
the error ‖ε‖ by a factor e is almost surely equal to Tc, which therefore characterizes
the speed of convergence of the algorithm. Tc is easy to measure in experiments, and
can be theoretically upper bounded. However lower bounding this quantity remains
an open problem.

Although Tave(ε) is hard to measure in practice, it is easily upper and lower
bounded theoretically in terms of the spectral gap (see Section 5.4). Indeed Tave(ε)
contains a probability tolerance ε in its definition, which simplifies the analysis. An
important issue is the behavior of Tc and Tave as the number n of nodes in the network
grows. It can be shown that Tc(n) = O(Tave(n, ε)) for any fixed ε, but whether the
two quantities are equivalent and under which conditions is still an open problem.
Using the asymptotic consensus time concept, an asymptotic consensus cost Cc can
be defined as follows [Denantes et al., 2008]:

Theorem 2. Consensus cost Cc. If the averaged sets {S(k)}t>0 are selected in an
independent and identically distributed manner, then the following limit exists and is

74



Chapter 4. Geographic Gossip

a constant with probability 1:

− 1

Cc

= lim
t→∞

1

C(t)
log ‖ε(t)‖

= lim
t→∞

t

C(t)
lim
t→∞

log ‖ε(t)‖
t

.

Thus, Cc = E[R(k)]Tc is the number of one-hop transmissions needed in the long run
to reduce the error by a factor e with probability 1 and can be directly bounded by the
expected communication cost

Cc(n) = O(E(ε, n)). (4.6)

for any fixed ε.

4.2.1.4 Graph topologies

This chapter treats both standard graphs with regular topology, including the single
cycle graph and regular grid as illustrated in panels (a) and (b) respectively of Fig-
ure 4.1, and an important subclass of random graphs with irregular topologies, namely
those formed by random geometric graphs [Penrose, 2003]. The random graph model
has been used in previous work on wireless sensor networks [Gupta and Kumar, 2000;
Boyd et al., 2005]. More precisely, the random geometric graph G(n, r) is formed by
choosing n sensor locations uniformly and independently in the unit square, with any
pair of nodes s and t is connected if and only if their Euclidean distance is smaller
than some transmission radius r. A sample from this random graph model is illus-
trated in Figure 4.1(c). It is well known [Penrose, 2003; Gupta and Kumar, 2000;
Gamal et al., 2004] that in order to maintain connectivity and minimize interference,

the transmission radius r(n) should scale like Θ(
√

log n
n

). For the purposes of analy-

sis, we assume that communication within this transmission radius always succeeds.1

Note that we assume that the messages involve real numbers; the effects of message
quantization in gossip and consensus algorithms, is an active area of research (see for
example [Nedic et al., 2007; Aysal et al., 2008]).

4.2.2 Proposed Algorithm

The proposed algorithm combines gossip with geographic routing. The key assump-
tion is that each node s knows its own geographic location within some compact

1However, we note that our proposed algorithm remains robust to communication and node
failures.

75



Chapter 4. Geographic Gossip

(a) Cycle (b) Grid

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(c) Random Geometric Graph

Figure 4.1: Illustration of a various graphs (nodes as circles and edges as solid lines) and
the associated Voronoi regions associated with each node (dotted lines). (a) Cycle graph.
(b) Regular grid. (c) Random geometric graph.

subset C ⊂ R2, specified as a Euclidean pair (xs, ys) ∈ C. For the regular grid and
random geometric graphs, we take C to be the unit square [0, 1]× [0, 1], whereas for
the single cycle graph we take C to be the unit circle S1. In addition, each node can
learn the geographic locations of its one-hop neighbors (i.e., vertices t ∈ V such that
(s, t) ∈ E) using a single transmission per node.

Geographic Gossip Algorithm: Suppose the j-th clock tick Zj is assigned to
node s at location `(s). The following events then happen:

(1) Node s activates and chooses a point y = (y1, y2) uniformly in the region C,
referred to as the target location. Node s forms the tuple ms = (xs(j), `(s), y).

(2) Node s sends ms to its one-hop neighbor t ∈ N(s) closest to location y. This
operation continues in a recursive manner: when a successive node r receives a
packet ms, it relays the packet ms to its one-hop neighbor closest to location y.
Greedy geographic routing terminates when a node receives the packet and has
no one-hop neighbors with distance smaller to the random target that its own.
Let v be the node closest to location y.

(3) Node v makes an independent randomized decision to accept ms. If the packet
is accepted, v computes its new value xv(j+1) = 1

2
(xv(j)+xs(j)) and generates

a message mv = (xv(j), `(v), `(s)), which is sent back to s via greedy geographic
routing. Node s can then compute its new value xs(j + 1) = (xv(j) + xs(j))/2,

76



Chapter 4. Geographic Gossip

and the round ends. If the packet is rejected, then v sends a rejection message
to s.

(4) If v rejects the packet from s, then v chooses a new point y′ uniformly in the
plane and repeats steps (4.2.2)–(4.2.2) with message m′

s = (xs(j), `(s), y
′).

At a high level, the motivation of the geographic gossip algorithm is to exploit
geographic information (via the greedy routing protocol described in step (2)) to
create a new communication graph G′ = (V, E ′) as an overlay of the original graph
G = (V, E). Note that the new communication graph G′ has the same vertex set,
but an expanded edge set (i.e., E ′ ⊃ E). In fact, for all of the versions of geographic
gossip analyzed in this chapter, the extended communication graph G′ is the complete
graph, meaning that (s, t) ∈ E ′ for all s 6= t. In the standard gossip protocol, each
gossip round takes two radio transmissions. In the new communication graph G′,
certain edges are more costly in terms of one-hop radio transmissions because of the
routing required to carry out the communication. On the other hand, the benefit
is that the new communication graph G′ is dense, so that gossiping converges more
quickly. Our main result shows that this tradeoff—between the cost of each gossip
round and the total number of rounds—can lead to favorable reductions in the total
number of one-hop radio transmissions.

4.2.3 Main Results

The geographic gossip algorithm is a randomized procedure that induces a probability
distribution over the sensor v chosen at each round. By construction, the probability
of choosing sensor v in step (2) of the geographic gossip algorithm is equal to av, the
area of its associated Voronoi region. For certain types of regular graphs, such as the
single cycle and regular grid shown in panels (a) and (b) of Figure 4.1, this distribution
over Voronoi regions is uniform. In this particularly favorable setting, the “random-
ized” decision of node v in step (3) is simple: it accepts the packet ms with probability
one. With this choice, the distribution over chosen nodes v is guaranteed to be uni-
form for these regular graphs. Consequently, it can be shown using known results for
mixing on the complete graph that the averaging time of geographic gossip Tave(n, ε)
is O(n log ε−1). The communication cost given by E(n, ε) = E[R(k)]Tave(n, ε), where
R(k) ≡ R is the number of single-hop communications required in round k of the
protocol. By computing the expected value E[R], it can be shown that the overall
communication costs for these regular topologies scale as E(n, ε) = Θ(n2 log ε−1) for
the single cycle, and E(n, ε) = Θ(n1.5 log ε−1) for the regular grid. Thus, as derived
in Section 4.3, geographic gossip yields improvements by factors of n and

√
n over

standard gossip for these regular graphs.

77



Chapter 4. Geographic Gossip

For random geographic graphs, in contrast, the distribution of Voronoi regions is
quite non-uniform. Consequently, in order to bound the averaging time Tave(n, ε), we
use in step (3) a rejection sampling scheme previously proposed by Bash et al. [Bash
et al., 2004] in order to “temper” the distribution. Given the n-vector ~a of areas
of the sensors’ Voronoi regions, we set a threshold τ . Sensors with cell area smaller
than τ always accept a query, and sensors with cell areas larger than τ may reject
the query with a certain probability. The rejection sampling method simultaneously
protects against oversampling and limits the number of undersampled sensors, which
allows us to prove that Tave(n, ε) = O(n log ε−1) even for this perturbed distribution.

Of course, nothing comes for free: the rejection sampling scheme requires a random
number Q of queries before a sensor accepts. Since the queries are independent, Q is
a geometric random variable with parameter equal to the probability of a query being
accepted. In terms of the number of queries, the total number of radio transmissions
for the kth gossip round is R(k) = O (Q ·G). Therefore if Tave gossip rounds take
place overall, the expected of radio transmissions will be E(n, ε) = E [Q ·G · Tave(n, ε)].
Accordingly, a third key component of our analysis in Section 4.4 is to show that the
probability of acceptance remains larger than a constant, which allows us to upper
bound the expectation of the geometric random variable Q by a constant. We also
establish an upper bound on the maximum value of Q over Tave rounds that holds
with probability greater than 1− ε/2.

Putting together the pieces yields our main result for random geometric graphs:
the expected cost for computing the average with the proposed geographic gossip
algorithm is

E(n, ε) = O

(
n3/2

√
log n

log ε−1

)
. (4.7)

In comparison to previous results on standard gossip for random graphs [Boyd et al.,

2005], geographic gossip yields a reduction by a factor of
√

n
log n

in the number of

one-hop communication rounds.
We note for some classes of graphs, the rejection sampling may not be necessary,

even when the induced distribution is not uniform, as long as it is reasonably close
to uniform. In particular, if we have a Ω(n−1) lower bound on the area of a Voronoi
cell for all sensors, then sampling by area is approximately uniform. If we can obtain
a slightly looser bound on the deviations of the Voronoi areas, alternative techniques
may be able to show that our algorithm will not suffer a performance loss without
rejection sampling. However, for geometric random graphs, it is difficult to obtain a
good lower bound on the Voronoi cell size, which is our motivation for applying and
analyzing the rejection sampling scheme.

78



Chapter 4. Geographic Gossip

4.2.4 Related work and comparisons

Boyd et al. [Boyd et al., 2005; Boyd et al., 2004] have analyzed the performance of
standard gossip algorithms. Their fastest standard gossip algorithm for the ensem-
ble of random geometric graphs G(n, r) has a ε-averaging time [Boyd et al., 2005]

Tave(n, ε) = Θ(n log ε−1

r(n)2
). (This quantity is computed in section IV.A of Boyd et

al. [Boyd et al., 2005] but the result is expressed in terms of absolute time units
which needs to be multiplied by n to become clock ticks). Consequently, for the stan-

dard choice of radius r(n) = Θ(
√

log n
n

) ensuring network connectivity, this averaging

time scales as Θ( n2

log n
log ε−1). In standard gossip, each gossip round corresponds to

communication with only one-hop neighbor and hence costs only one radio transmis-
sion which means that the fastest standard gossip algorithm will have a total cost
E(n) = Θ( n2

log n
log 1/ε) radio transmissions. Therefore, our proposed algorithm saves

a factor of
√

n
log n

in communication energy by exploiting geographic information.

A number of recent papers [Moallemi and van Roy, 2006; Mosk-Aoyama and Shah,
2005; Alanyali et al., 2006] have also considered the problem of computing averages in
networks. The consensus propagation algorithm of Moallemi and van Roy [Moallemi
and van Roy, 2006] is a modified form of belief propagation that attempts to mitigate
the inefficiencies introduced by the “random walk” in gossip algorithms. For the
single cycle graph, they show improvement by a factor of Θ( n

log n
) over standard

gossip. Our results for geographic gossip on the single cycle (see Section 4.3) show
improvement by a factor of Θ(n) over standard gossip, and hence a factor Θ(log n)
over consensus propagation. Mosk-Aoyama and Shah [Mosk-Aoyama and Shah, 2005]

use an algorithm based on Flajolet and Martin [Flajolet and Martin, 1985] to compute
averages, and bound the averaging time in terms of a “spreading time” associated with
the communication graph. However, they only show the optimality of their algorithm
for a graph consisting of a single cycle, so it is currently difficult to speculate how
it would perform on other regular graphs or geometric random graphs. Alanyali et
al. [Alanyali et al., 2006] consider the related problem of computing the average of a
network at a single node (in contrast to computing the average in parallel at every
node). They propose a distributed algorithm to solve this problem and show how it
can be related to cover times of random walks on graphs.

Li and Dai [Li and Dai, 2008] recently proposed Location-Aided Distributed Aver-
aging (LADA), a scheme that uses partial locations and markov chain lifting to create
fast gossiping algorithms. The cluster-based LADA algorithm performs slightly bet-
ter than geographic gossip, requiring Θ(n1.5 log ε−1/(log n)1.5) messages for random
geometric graphs. While the theoretical machinery is different, LADA algorithms
also use directionality to accelerate gossip, but can operate even with partial location

79



Chapter 4. Geographic Gossip

information and have smaller total delay compared to geographic gossip, at the cost
of a somewhat more complicated algorithm.

4.3 Analysis for Regular Networks

In this section, we illustrate the benefits of our geographic gossip algorithm for two
simple networks, the ring and the grid, both of which are regular graphs. Due to
this regularity, the implementation and analysis of geographic gossip turns out to be
especially simple. More specifically, when these graphs are viewed as contained with
the unit disk (ring graph) or the unit square (grid graph), then the Voronoi region of
each node is equal in area (see Figure 4.1). Consequently, sampling a location uni-
formly in the space is equivalent to sampling a sensor uniformly, and thus the overlay
graph created by geographic routing (step (2) of the geographic gossip algorithm) is a
complete graph with uniform edge weights. In this case, the randomized decision rule
in step (4.2.2) is not needed — the target v always accepts the message. For the ring,
we show that standard gossip has a communication cost E(n, ε) for ε-accuracy that
scales as Θ(n3 log ε−1), and that geographic gossip can improve this to O(n2 log ε−1).
For the grid, we show that standard gossip has communication cost Θ(n2 log ε−1), and
geographic gossip can improve this to O(n3/2 log ε−1).

4.3.1 Analysis of single cycle graph

The ring network consists of a single cycle of n nodes equispaced on the unit circle (see
Figure 4.1(a)). For this simple network, we have the following result characterizing
the improvement of geographic gossip over standard gossip:

Proposition 1. In terms of the communication cost E(n, ε) for ε-accuracy, geographic
gossip yields a Ω(n) improvement over standard gossip on the single cycle graph.

Proof. We first compute the communication cost E(n, ε) for standard gossip. In stan-
dard nearest-neighbor gossip, the probability pij that nodes i chooses to average with
node j is 0 unless |i − j| = 1, otherwise it is 1/2. Therefore the matrix P = (pij) is
a symmetric circulant matrix, generated by the n-vector (0, 1/2, 0, 0, . . . , 1/2). Using
previous results on standard gossip [Boyd et al., 2005], in order to evaluate the per-
formance of standard gossip, we must find the second eigenvalue λ2 of the matrix W

80



Chapter 4. Geographic Gossip

defined by

D = diag

({
n∑

j=1

(Pij + Pji) : i = 1, 2, . . . , n

})
= 2I

W = I +
1

2n
D +

1

2n
(P + P T ) =

(
1− 1

n

)
I +

1

n
P .

Note that W is also a circulant matrix, generated by the n-vector (1−n−1, (2n)−1, 0, 0, . . . , (2n)−1).
Circulant matrices are diagonalized by the discrete Fourier Transform (DFT) matrix,
so that the eigenvalues can be computed explicitly as(

1− 1

n

)
+

1

n
cos

k2π

n
k = 0, 2, . . . , n− 1 .

Consequently, the second largest eigenvalue is given by

λ2(W ) = 1 +
1

n

∞∑
j=1

(−1)2j 1

(2j)!

(
2π

n

)(2j)

= 1 + Θ(n−3) .

Therefore, by a Taylor series expansion, we have log λ2(W ) = Θ(n−3). Applying pre-
vious results [Boyd et al., 2005] on standard gossip, we conclude that the ε-averaging
time of standard gossip is:

Tave(n, ε) = Θ

(
log ε−1

log λ2(W )−1

)
= Θ

(
n3 log ε−1

)
Since each gossip communication costs us one hop, the average number of one-hop
transmissions for standard gossip on the ring is

E(n, ε) = Θ
(
n3 log ε−1

)
. (4.8)

We now show how geographic gossip reduces the number of one-hop transmissions.
In geographic gossip for the ring network, a source node chooses a random location
within the unit circle uniformly at random, which induces a uniform distribution over
the nodes in the network (see Figure 4.1(a)). It then sends a packet to its target
around the ring and they exchange values. We think of geographic gossip as running
a gossip algorithm on the complete graph with pij = n−1 for all i and j. For this

81



Chapter 4. Geographic Gossip

graph, we have

W =

(
1− 1

n

)
I +

1

n2
~1 ~1T .

Calculating the second largest eigenvalue yields λ2(W ) = 1 − 1
n

+ 1
n2 = 1 − Θ(n−1),

so log λ2(W ) = Θ(n−1), and hence Tave(n, ε) = Θ (n log ε−1). By summing over
the pairwise distances in the graph, we see that the expected number of one-hop
transmissions at any round is bounded by

E[R] = E[R(k)] ≤ 1

n

dn
2
e∑

i=1

(2) = O(n) .

Thus, the expected number of transmissions for geographic gossip is given by

E(n, ε) = Tave(n, ε) E[R] = O
(
n2 log ε−1

)
. (4.9)

Comparing equations (4.8) and (4.9) yields the claim.

As demonstrated by this result, for the ring network, using geographic knowledge
and routing improves the energy consumption as measure in hops by a factor of n. In
standard gossip, information from one node diffuses slowly in a ring, taking almost
n2 steps to become uniformly distributed. Geographic gossip allows the information
from one node in the network to travel larger distances at the expense of the routing
cost.

4.3.2 Analysis of regular grid

We now turn to geographic gossip on the two dimensional grid defined by a collection
of n vertices sij located at positions (i/

√
n, j/

√
n) within the unit square [0, 1]× [0, 1],

as illustrated in Figure 4.1(c).

Proposition 2. In terms of the communication cost E(n, ε) required to achieve ε-
accuracy, geographic gossip yields a Ω(

√
n) improvement over standard gossip on the

regular 2-D grid.

Proof. The performance of standard gossip on the grid can be calculated using Corol-
lary 1 from Boyd et al. [Boyd et al., 2006], which says that the averaging time is given

by Tave(n, ε) = Θ
(

n log ε−1

1−λ2(P )

)
. For standard gossip on the grid, the matrix P is simply

the transition matrix of a random walk on the two-dimensional grid, for which it is

82



Chapter 4. Geographic Gossip

known [Aldous and Fill, 2007] that (1 − λ2(P ))−1 = Θ(n). Consequently, we have
Tave(n, ε) = Θ (n2 log ε−1), so that the average number of one-hop transmissions is

E(n, ε) = Θ
(
n2 log ε−1

)
. (4.10)

Now let us turn to geographic gossip. For a regular topology like the grid, the
Voronoi cells are all of equal area, so in step (4.2.2) of the geographic gossip algorithm,
the chosen target v simply accepts with probability one. Consequently, the number
of one-hop communications per round is simply the route length. For a regular 2-
dimensional grid, routing the message at round k costs E[R(k)] = O(

√
n) one-hop

transmissions. As we derived for the ring network, the geographic gossip algorithm is
communicating on an overlay network that is fully connected, so that the number of
rounds required scales as Tave(n, ε) = O (n log ε−1). Putting the pieces together, we
conclude that the total communication cost for ε-accuracy using geographic gossip
scales as

E(n, ε) = O
(
n3/2 log ε−1

)
. (4.11)

Comparing equations (4.10) and (4.11) yields the claim.

Thus, for the regular grid in 2-dimensions, geographic gossip yields a factor of
√

n
savings in the convergence time. The ease of our analysis in both of the preceding
examples—ring and grid networks—arises from the regularity of the topology, which
allowed us to either write the transition matrix explicitly or use standard results.
The following section is devoted to analysis of geographic gossip for random geomet-
ric graphs, where we will derive a similar performance improvement. For random
geometric graphs, in contrast to the regular topologies considered thus far, we will
use a non-trivial randomized decision rule in step (4.2.2) of the gossip algorithm in
order to compensate for irregularities of the graph topology and areas of Voronoi
regions.

4.4 Analysis for Random Geometric Graphs

We now turn to an analysis of the number of one-hop communications needed for
our algorithm in the case of the random geometric graph model. At a high level, our
analysis consists of three main steps:

1. First, we address the number of one-hop transmissions G required to route
a packet from node s to the randomly chosen target v (see step (2) of the
geographic gossip algorithm). We first prove that when the connectivity radius

83



Chapter 4. Geographic Gossip

of the random graphs scales in the standard way as r(n) = Θ(
√

log n
n

), greedy

routing always reaches the closest node v to the random target with

G = O

(√
n

log n

)
(4.12)

one-hop radio transmissions. Note that in practice more sophisticated geo-
graphic routing algorithms (e.g., [Karp and Kung, 2000]) can be used to ensure
that the packet approaches the random target when there are “holes” in the
node coverage. However, greedy geographic routing is adequate for the problem
considered here.

2. As discussed above, when geographic gossip is applied to a graph with an irreg-
ular topology (such as a random geometric graph), it is necessary to compensate
for the irregularity with a non-trivial accept/reject protocol in step (3) of the
algorithm. Accordingly, our next step is to bound the expected number of
rejections experienced by a given sensor s.

3. The final step is to analyze the number of such gossip rounds needed for the
average to converge to within the target error.

We take up each of these factors in turn in the subsections to follow.

4.4.1 Routing in O(1/r(n))

We first address how to choose the transmission radius of the sensors in order to
guarantee the network’s connectivity and the success of greedy geographic routing.

Lemma 1 (Network connectivity). Let a graph be drawn randomly from the geometric
ensemble G(n, r) defined in Section 4.2.1, and a partition be made of the unit area

into squares of side length α(n) =
√

2 log n
n

. Then the following statements all hold

with high probability:

(a) Each square contains at least one node.

(b) If r(n) =
√

10 log n
n

, then each node can communicate to a node in the four

adjacent squares.

(c) All the nodes in each square are connected with each other.

Proof. The total number of squares of side length α(n) is M = n
2 log n

. We view these
as “bins” into which the n sensors are assigned uniformly. Standard results on this

84



Chapter 4. Geographic Gossip

random process [Motwani and Raghavan, 1995b; Gamal et al., 2004] show that with
high probability Θ(M log M) sensors are sufficient to cover all of the bins, concluding
the proof.

Lemma 2 (Greedy geographic routing). Suppose that a node target location is chosen
in the unit square. Then greedy geographic routing routes to the node closest to the

target in O(1/r(n)) = O(
√

n
log n

) steps.

Proof. By Lemma 1(a), every square of side length α(n) =
√

2 log n
n

is occupied by at

least a node. Therefore, we can perform greedy geographic routing by first matching
the row and then the column of the square which contains the target, which requires at

most 2
r(n)

= O(
√

n
log n

) hops. After reaching the square where the target is contained,

Lemma 1(c) guarantees that the subgraph contained in the square is completely
connected. Therefore, one more hop suffices to reach the node closest to the target.

These routing results allow us to bound the cost in hops for an arbitrary pair of
nodes in the network to exchange values. In the next section, we analyze a rejection
sampling method used to reduce the nonuniformity of the distribution.

4.4.2 Rejection sampling

As mentioned in the previous section, sampling geographic locations uniformly in-
duces a nonuniform sampling distribution on the sensors. Assigning locations to the
nearest sensors induces a Voronoi tessellation of the plane, and sensor v is queried
with probability proportional to the area av of its Voronoi cell. By judiciously re-
jecting queries, the sensors with larger Voronoi areas can ensure that they are not
oversampled. We adopt the rejection sampling scheme proposed by Bash et al. [Bash
et al., 2004]: when queried, sensor v accepts the request with probability

rv = min

(
τ

av

, 1

)
, (4.13)

where τ is a predefined threshold. Thus sensors with small Voronoi regions always
accept, and sensors with large Voronoi regions sometimes reject.

85



Chapter 4. Geographic Gossip

Given τ , the probability qv that sensor v is sampled can be written as:

qv =
min(τ, av)∑n
t=1 min(τ, at)

=
min(τ, av)

|{t : at ≥ τ}| · τ +
∑

t:at<τ at

. (4.14)

Here the denominator in expression (4.14) is the total chance that a query is accepted:

Pa =
n∑

v=1

av min

(
τ

av

, 1

)
= |{v : av ≥ τ}|τ +

∑
v:av<τ

av . (4.15)

Let Q denote the total number of requests made by a sensor before one is accepted.
Rejection sampling “slices” the histogram at τ , and renormalizes the distribution

accordingly. The total area that is sliced off is equal to 1−Pa, the probability that a
query is rejected. Thus, we see that if τ is chosen to be too small, then the probability
of rejection becomes very large. Lemma 3 addresses this concern—in particular, by
establishing that the choice τ = Θ(n−1) suffices to keep the rejection probability
suitably bounded away from 1, so that the expected number of queries E[Q] remains
finite. More specifically, we choose τ such that

P(av ≤ τ) = min

(
ν,

µ

1 + µ

)
, (4.16)

where the constants ν and µ control the undersampling and oversampling respectively.
With this choice of τ , the results of Bash et al. [Bash et al., 2004] ensure that no sensor
is sampled with probability greater than (1 + µ)/n and no more than νn sensors are
sampled with probability less than 1/n. The following result establishes that the
acceptance probability remains sufficiently large:

Lemma 3. Ler 0 < c < 1/4. For τ = cn−1, we have P(av > τ) ≥ 1− 4c.

Proof. We use a simple geometric argument to lower bound P(av > τ). Consider a
node s such that a circle of area τ it lies entirely within its Voronoi region. Clearly,
such nodes are a subset of those with area larger than τ . The radius of this circle is
r =

√
τ/π. Note that r is no more than half the distance to the nearest node. Thus

in order to inscribe a circle of radius τ in the Voronoi region, all other nodes must lie
outside a circle of radius 2r around the node. This larger circle has area 4τ , so

P(av > τ) ≥ (1− 4τ)n−1 = (1− 4cn−1)n−1 ≥ 1− 4c . (4.17)

Thus, by appropriate choice of c, we can make the acceptance probability arbitrarily

86



Chapter 4. Geographic Gossip

close to 1.

Our next step is to bound the distance between the new sampling distribution ~q
(i.e., after tempering by the rejection sampling procedure), and the uniform distribu-
tion n−1~1 over acceptance regions. These bounds are used in next section to bound
an eigenvalue of a matrix associated with the gossip algorithm.

Lemma 4. For any ε > 0, there exists constants µ > 0 and ν > 0 such that rejection
sampling with parameters (µ, ν) ensures that∥∥∥∥~q − 1

n
~1

∥∥∥∥
1

< ε, and (4.18a)∥∥∥∥~q − 1

n
~1

∥∥∥∥
2

<
1√
n

ε . (4.18b)

Proof. Given ε > 0, choose ν and µ such that ν + µ < ε and ν + µ2 < ε2. We then
expand and bound the error function as

n∑
v=1

∣∣∣∣qv −
1

n

∣∣∣∣ ≤ ∑
v:qv<1/n

∣∣∣∣ 1n − qv

∣∣∣∣+ ∑
v:qv≥1/n

∣∣∣∣qv −
1

n

∣∣∣∣ .
Now we use the properties of rejection sampling from [Bash et al., 2004]:

qv ≤
1 + µ

n
∀v (4.19)∣∣∣∣{v : qv <

1

n

}∣∣∣∣ ≤ νn . (4.20)

On the set {v : qv ≥ 1/n} we use the first bound and on the set {v : qv < 1/n} we
use the second bound:

n∑
v=1

∣∣∣∣qv −
1

n

∣∣∣∣ ≤ (νn
1

n
+ n

(
1 + µ

n
− 1

n

))
≤ ν + µ ,

which is less than ε by our choice of ν and µ.

87



Chapter 4. Geographic Gossip

Turning now to the bound (4.18b), we write∥∥∥∥~q − 1

n
~1

∥∥∥∥2

2

=
∑

v:av<τ

∣∣∣∣qv −
1

n

∣∣∣∣2 +
∑

v:av≥τ

∣∣∣∣qv −
1

n

∣∣∣∣2
≤ νn

1

n2
+ n

(µ

n

)2

≤ 1

n
(ν + µ2)

≤ 1

n
ε2 .

Finally, we need to bound the expected number of rejections and the maximum
number of rejections in order to bound the expected number of transmissions and
total transmission time. Recall that Q is the number of queries that a sensor has to
make before one is accepted, and has a geometric distribution:

P(Q = t) = Pa(1− Pa)
t . (4.21)

Lemma 5. For a fixed (µ, ν), rejection sampling leads to a constant number of ex-
pected rejections.

Proof. The random variable Q is just a geometric random variable with parameter
Pa, so we can write its mean as:

E[Q] =
1

Pa

=
1

|{v : av ≥ τ}|τ +
∑

v:av<τ av

≤ 1

(1− ν)τn

= O(1) ,

where the final step follows since τ = Θ(n−1) by construction.

Lemma 6. Let {Qk : k = 1, 2, . . . K} be a set of i.i.d. geometric random variables
with parameter Pa. For any fixed pair (µ, ν), rejection sampling gives

max
1≤k≤K

Qk = O(log K + log ε−1) (4.22)

with probability greater than 1− ε/2.

88



Chapter 4. Geographic Gossip

Proof. For any integer m ≥ 2, a straightforward computation yields that

P(Q ≤ m− 1) =
m−1∑
t=0

Pa (1− Pa)
t = 1− (1− Pa)

m.

By the i.i.d. assumption, we have

P(max
k

Qk ≤ m− 1) =
[
1− (1− Pa)

m
]K

=
[
1− exp(m log(1− Pa))

]K
.

We want to choose m = m(K, ε) such that this probability is greater than or equal
to 1− ε/2. First set m = −ρ log K

log(1−Pa)
, where ρ is to be determined. Then we have

P(max
k

Qk ≤ m− 1) = [1− 1/Kρ]K .

We now need to choose ρ > 1 such that[
1− 1/Kρ

]K ≥ 1− ε/2 ,

or equivalently, such that

1−
[
1− 1/Kρ

]K ≤ ε/2 .

Without loss of generality, let K be even. Then by convexity, we have (1 − y)K ≥
1−Ky. Applying this with y = 1/Kρ, we obtain

1−
[
1− 1/Kρ

]K ≤ 1/Kρ−1.

Hence we need to choose ρ ≥ log(2/ε)/ log K + 1 for the bound to hold. Thus, if we
set

m = −ρ
log K

log(1− Pa)
= O(log ε−1 + log K) ,

then with probability greater than 1− ε/2, all K rounds of the protocol use less than
m rounds of rejection.

4.4.3 Averaging with gossip

As with averaging algorithms based on pairwise updates [Boyd et al., 2005], the
convergence rate of our method is controlled by the second largest eigenvalue, denoted

89



Chapter 4. Geographic Gossip

λ2(W ), of the matrix

W : = I +
1

2n

[
P + P T −D

]
,

where D is diagonal with entries Di = (
∑n

j=1[Pij + Pji]). The (i, j)-th entry of the
matrix P is the probability that node i exchanges values with node j. Without
rejection sampling, Pij = aj, and with rejection sampling, Pij = qj. With this
notation, we are now equipped to state and prove the main result of this chapter.

Theorem 3. The geographic gossip protocol with rejection threshold τ = Θ(n−1) has
an averaging time

Tave(n, ε) = O
(
n log ε−1

)
. (4.23)

Proof. To establish this bound, we exploit Theorem 3 of [Boyd et al., 2005], which
states that the ε-averaging time is given by

Tave(ε, P ) = Θ

(
log ε−1

log λ2(W )−1

)
. (4.24)

Thus, it suffices to prove that log λ2(W ) = Ω(1/n) in order to establish the claim.
The probability of any sensor choosing sensor v is just qv, so that we can write P

as the outer product P = ~1~qT . Note that the diagonal matrix D has entries

Di =
n∑

j=1

(Pij + Pji) =
n∑

j=1

qj +
n∑

j=1

qi = 1 + nqi .

Overall, we can write W in terms of outer products as:

W =
(
I − diag(~1 + n~q)

)
+

1

2n
(~1 ~qT + ~q ~1T ) . (4.25)

Note that the matrix W is symmetric and positive semidefinite.
We claim that the second largest eigenvalue λ2(W ) = O(1−c/n), for some constant

c. By a Taylor series expansion, this implies that log λ2(W ) = Θ(n−1) as desired. To
simplify matters, we transform the problem to finding the maximum eigenvalue of
an alternative matrix. Since W is doubly stochastic, Perron-Frobenius theory [Horn
and Johnson, 1987] guarantees that its largest eigenvalue is one, and has associated
eigenvector v1 = n−1/2~1. Consider the matrix W ′ = W− 1

n2
~1 ~1T ; using equation (4.25),

it can be decomposed as

W ′ = D′ + Q′,

90



Chapter 4. Geographic Gossip

where D′ = (I − (2n)−1 diag(~1 + n~q)) is diagonal and

Q′ =
1

2n
(~1(~q − n−1~1)T + (~q − n−1~1)~1T )

is symmetric.
Note that by construction, the eigenvalues of W ′ are simply

λ(W ′) =

{
1− 1

n
, λ2(W ), . . . , λn(W )

}
.

On one hand, suppose that λ1(W
′) > λ2(W ); in this case, then (1− 1

n
) > λ2(W ) and

we are done. Otherwise, we have

λ1(W
′) = λ2(W ) .

Note that W ′ is the sum of two Hermitian matrices – a diagonal matrix and a sym-
metric matrix with small entries. We can therefore apply Weyl’s theorem [Horn and
Johnson, 1987, p.181], to obtain that

λ1(W
′) ≤ λ1(D

′) + λ1(Q
′) ≤

(
1− 1

2n

)
+ λ1(Q

′) .

It is therefore sufficient to bound λ1(Q
′). We do so using the Rayleigh-Ritz theorem

[Horn and Johnson, 1987, p.176], the Cauchy-Schwartz inequality, and Lemma 4 as
follows:

λ1(Q
′) = max

~y:‖~y‖2=1
~yT Q′~y

=
1

2n
max

~y:‖~y‖2=1
~yT (~1(~q − n−1~1)T + (~q − n−1~1)~1T~y

=
1

n
max

~y:‖~y‖2=1
~yT~1(~q − n−1~1)T~y

≤ 1

n
max

~y:‖~y‖2=1
‖~y‖2 · ‖~1‖2 · ‖~q − n−1~1‖2 · ‖~y‖2

≤ 1

n

(
1 ·
√

n · 1√
n

ε

)
=

1

n
ε .

91



Chapter 4. Geographic Gossip

Overall we have proved the bound

λ1(W
′) ≤

(
1− 1

2n

)
+

1

n
ε . (4.26)

We can choose ε < 1/4 using Lemma 4 to get the desired bound.

The preceding theorem shows that by using rejection sampling we can bound the
convergence time of the gossip algorithm. We can therefore bound the number of
radio transmissions required to estimate the average.

Corollary 1. The expected number of radio transmissions required for our gossip

protocol on the geometric random graph G(n,
√

log n
n

) is upper bounded by

E(n, ε) = O

(
n3/2

√
log n

log ε−1

)
. (4.27)

Moreover, with probability greater than 1− ε/2, the maximum number of radio trans-
missions is upper bounded

C(n, ε) = O

(
E(n, ε)

[
log n + log ε−1

])
. (4.28)

Remark: Note that for ε = n−α for any α > 0, our bounds are of the form
E(n, 1/nα) = O(n3/2

√
log n) and C(n, ε) = O(n3/2 log3/2 n).

Proof. We just have to put the pieces together. If we assume an asynchronous pro-
tocol, the cost per transmission pair is given by the product of O(

√
n/ log n) from

routing, E[Q] from rejection sampling, and the averaging time Tave. From Lemma 5,
E[Q] = O(1). Using equation (4.24) and Theorem 3, we can bound log λ2(W )−1 by
(1− λ2(W )) = O(n−1). Thus, the expected number of communications is

O

(√
n

log n
E[Q]n log ε−1

)
= O

(
n3/2

√
log n

log ε−1

)
. (4.29)

To upper bound the maximum number of transmissions with high probability, we
note that Lemma 6 guarantees that

max
k=1,...,Tave

Qk = O(log Tave + log ε−1) (4.30)

with high probability. Using Theorem 3, we can see that O(log Tave + log ε−1) =

92



Chapter 4. Geographic Gossip

O(log n + log ε−1). Consequently, with probability greater than 1− ε/2,

C(n, ε) = O

(
E(n, ε)

[
log n + log ε−1

])
. (4.31)

4.5 Simulations

Note that the averaging time is defined in equation (4.1) is a conservative measure,
obtained by selecting the worst case initial field x(0) for each algorithm. Due to this
conservative choice, an algorithm is guaranteed to give (with high probability) an
estimated average that is ε close to the true average for all choices of the underlying
sensor observations. As we have theoretically demonstrated, our algorithm is provably
superior to standard gossiping schemes in terms of this metric. In this section, we
evaluate our geographic gossip algorithm experimentally on specific fields that are of
practical interest. We construct three different fields and compare geographic gossip
to the standard gossip algorithm with uniform neighbor selection probability. Note
that for random geometric graphs, standard gossiping with uniform neighbor selection
has the same scaling behavior as with optimal neighbor selection probabilities [Boyd
et al., 2005], which ensures that the comparison is fair.

Figures 4.2 through 4.4 illustrate how the cost of each algorithm behaves for
various fields and network sizes. The error in the average estimation is measured by

the normalized `2 norm ‖x(k)−xave~1‖
‖x(0)‖ . On the other axis we plot the total number of

radio transmissions required to achieve the given accuracy. Figure 4.2 demonstrates
how the estimation error behaves for a field that varies linearly. In Figure 4.3, we use a
field that is created by placing temperature sources in the unit square and smooth the
field by a simple process that models temperature diffusion. Finally, in Figure 4.4,
we use a field that is zero everywhere except in a sharp spike in the center of the
field. For this case, geographic gossip significantly outperforms standard gossip as
the network size and time increase, except for large estimation tolerances (ε ≈ 10−1)
and small number of rounds.

As would be expected, simple gossip is capable of computing local averages quite
fast. Therefore, when the field is sufficiently smooth, or when the averages in lo-
cal node neighborhoods are close to the global average, simple gossip can generate
approximate estimates that are closer to the true average with a smaller number of
transmissions. For these cases, however, it is arguable that finding the global average
is not of substantial interest in the first place. In all our simulations, the energy gains
obtained by using geographic gossip were significant and asymptotically increasing
for larger network sizes, corroborating our theoretical results.

93



Chapter 4. Geographic Gossip

0 2000 4000 6000 8000 10000 12000 14000
10!10

10!8

10!6

10!4

10!2

100

Energy spent

Er
ro

r i
n 

es
tim

at
io

n 
of

 a
ve

ra
ge

Geographic Gossip
Standard Gossip

n=50
nodes

n=100
nodes

n=200 nodes

n=500 nodes

0
10

20
30

40
50

0
10

20
30

40
50

0

0.2

0.4

0.6

0.8

1

No
rm

al
ize

d 
Te

m
pe

ra
tu

re
Figure 4.2: Estimation accuracy versus total spent energy for a linearly varying field.

0 1000 2000 3000 4000 5000 6000
10!5

10!4

10!3

10!2

10!1

100

Energy spent

Er
ro

r i
n 

es
tim

at
io

n 
of

 a
ve

ra
ge

Geographic Gossip
Standard Gossip

n=50 nodes

n=100
nodes

n=200
nodes

0
5

10
15

20
25

30
35

40
45

50

0

10

20

30

40

50
0

0.2

0.4

0.6

0.8

1

No
rm

al
ize

d 
Te

m
pe

ra
tu

re

Figure 4.3: Estimation accuracy versus total spent energy for a smooth field modeling
temperature.

94



Chapter 4. Geographic Gossip

0 2000 4000 6000 8000 10000 12000

10!2

10!1

100

Energy spent

Er
ro

r i
n 

es
tim

at
io

n 
of

 a
ve

ra
ge

Geographic Gossip
Standard Gossip

n=50
nodes

n=100
nodes

n=200
nodes

0
5

10
15

20
25

30
35

40
45

50

0

10

20

30

40

50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

No
rm

al
ize

d 
Te

m
pe

ra
tu

re

Figure 4.4: Estimation accuracy versus total spent energy for a field which is zero every-
where except in a sharp spike.

4.6 Discussion

We proposed and analyzed a novel message-passing algorithm for computing averages
in networks in a distributed manner. By exploiting geographic knowledge of the net-
work, our geographic gossip algorithm computes the averages faster than standard
nearest-neighbor gossip. Even if the specific type of geographic routing considered
here cannot be performed, similar gossip algorithms could be developed for any net-
work structure that supports some form of routing to random nodes. Thus, our
nearest-neighbor gossip can be understood as a particular case of a more general fam-
ily of algorithms in which message-passing occurs on the overlay network supported
by random routing. Other routing protocols may produce different overlay networks
that could be analyzed in a similar manner.

We analyzed in detail the case of certain regular graphs, including the ring and
grid networks, as well as the random geometric graph model, which is commonly used
as a model of sensor networks under random deployments. Our algorithm can also
be applied to other topologies that realistically model wireless sensor networks, and
should provide gains when (a) the mixing time of a random walk on the graph is
slow (b) efficient routing is possible, and (c) uniform sampling over space can yield
approximately uniform sampling over sensors.

Although the current work has focused on the averaging problem, it is worth
noting that many more complicated functions of interest can be computed using
gossip; see the papers [Mosk-Aoyama and Shah, 2006; Spanos et al., 2005; Rabbat
et al., 2005; Xiao et al., 2005] for various examples involving localization, Kalman
filtering and sensor fusion. However, linear operations (such as filtering) can be
computed using our algorithm by allowing the sensors to pre-scale their observations

95



Chapter 4. Geographic Gossip

by their coefficients in the objective function. Our results suggest that geographic
gossip may be useful instead of standard nearest-neighbor gossip to improve energy
consumption in these and other distributed signal processing applications.

96



Chapter 5

Path Averaging

5.1 Introduction

In this chapter we investigate the performance of path averaging, which is the same
algorithm as geographic gossip with the additional modification of averaging all the
nodes on the routed paths. Observe that averaging the whole route comes almost for
free in multihop communication, because a packet can accumulate the sum and the
number of nodes visited, compute the average when it reaches its final destination
and follow the same route backwards to disseminate the average to all the nodes along
this route.

In path averaging, the selection of the routed path (and hence the routing al-
gorithm) will affect the performance of the algorithm. We start by experimentally
observing that the number of messages for grids and random geometric graphs seems
to scale linearly when random greedy routing is used.

The mathematical analysis of path averaging with greedy routing is complex be-
cause the number of possible routes increases exponentially in the number of nodes.
To make the analysis tractable we make two simplifications: a) We eliminate edge
effects by assuming a grid or random geometric graph on a torus b) we use box-greedy
routing, a scheme very similar to greedy routing with the extra restriction that each
hop is guaranteed to be within a virtual box that is not too close or too far from the
existing node. Box-greedy routing (described in section 5.3.4) can be implemented
in a distributed way if each node knows its location, the location of its one-hope
neighbors, and the total number of nodes n. We call path averaging with box-greedy
routing Box-path averaging.

The main result of this chapter is that geographic gossip with path averaging
requires O(n) messages under these assumptions. Further, we present experimental
evidence that suggests that this optimal behavior is preserved even when different
routing algorithms are used.

97



Chapter 5. Path Averaging

Grid Random geometric graph

Standard gossip [Boyd et al., 2006] E(n, ε) = Θ(n2 log ε−1) E(n, ε) = Θ
(

n2 log ε−1

log n

)
Hops per time-slot E[R] = Θ(

√
n) E[R] = Θ

(√
n

log n

)
Geographic Tave = Θ(n log ε−1) Tave = Θ(n log ε−1)

gossip [Dimakis et al., 2006c] E(n, ε) = Θ(n1.5 log ε−1) E(n, ε) = Θ
(

n1.5 log ε−1
√

log n

)
Box- Tave = Θ(

√
n log ε−1) Tave = Θ(

√
n log n log ε−1)

path averaging E(n, ε) = Θ(n log ε−1) E(n, ε) = Θ(n log ε−1)

Table 5.1: Performance of different Gossip algorithms. Tave denotes ε-averaging time (in
gossip rounds) and E(n, ε) denotes expected number of messages required to estimate
within ε accuracy.

5.2 Background and Metrics

5.2.1 Network model

Similarly to the previous chapter we model the wireless networks as random geometric
graphs (RGG), following standard modeling assumptions [Gupta and Kumar, 2000;
Penrose, 2003]. As analyzed in Chapter 4, to maintain connectivity and to minimize
interference, the transmission radius r(n) should scale like r(n) =

√
c log n/n. For

our analysis of path averaging, we prove a slightly stronger regularity condition: that
in fact, if α > 2, the number of nodes in each square will be Θ(log n) nodes, i.e. the
random geometric graphs are regular geometric graphs w.h.p. In Section 5.3.4, we
assume that our network is a regular geometric graph embedded on a torus, and we
ensure that any node in a square is able to communicate with any other node of its
four neighboring squares by setting c > 10.

98



Chapter 5. Path Averaging

5.3 Path averaging algorithms

5.3.1 Path averaging on random geometric graphs.

The proposed algorithm combines gossip with random greedy geographic routing. A
key assumption is that each node knows its location and is able to learn the geographic
locations of its one-hop neighbors (for example using a single transmission per node).
Also the nodes need to know the size of the space they are embedded in. Note that
while our results are developped for random geometric topologies, the algorithm can
be applied on any set of nodes embedded on some compact and convex region.

The algorithm operates as follows: at each time-slot one random node activates
and selects a random position (target) on the unit square region where the nodes
are spread out. Note that no node needs to be located on the target, since this
would require global knowledge of locations. The node then creates a packet that
contains its current estimate of the average, its position, the number of visited nodes
so far (one), the target location, and passes the packet to a neighbor that is randomly
chosen among its neighbors closer to the target. As nodes receive the packet, randomly
and greedily forwarding it towards the target, they add their value to the sum and
increase the hop counter. When the packet reaches its destination node (the first
node whose nearest neighbors have larger distance to the target compared to it), the
destination node computes the average of all the nodes on the path, and reroutes that
information backwards on the same route. See Fig. 5.1 for an illustration of random
greedy routing. It is not hard to show [Dimakis et al., 2006c] that for G(n, r) when r
scales like Θ(

√
log n/n), greedy forwarding succeeds to reach the closest node to the

random target with high probability over graphs — in other words there are no large
’holes’ in the network. We will refer to this whole procedure of routing a message and
averaging on a random path as one gossip round which lasts for one time-slot, after
which O(

√
n/ log n) nodes will replace their estimates with their joint average. We

prefer not to route the estimates by choosing the next node as the closest neighbor
to the target, but as one random neighbor closer to the target, because we observed
that the latter is cheaper (smaller Cc). Note that the nodes do not need to know the
number of nodes n in the network, they only need the size of the field on which they
are deployed.

5.3.2 Motivation–Performance simulations

We experimentally measured Tc and Cc in order to evaluate the performance of path
averaging on random geometric graphs with a growing number n of nodes in the
unit square. Fig 5.2(b) shows that our algorithm behaves strikingly better than
standard gossip and geographic gossip, when, for example, r(n) =

√
c log n/n with

99



Chapter 5. Path Averaging

r(n)

?

Node i

?

?

?

Figure 5.1: Random greedy routing. Node i has to choose the following node in the route
among the nodes that are his neighbors (inside the ball of radius r(n) centered in node i)
and that are closer to the target than i (inside the ball of radius centered in the target,
where d is the distance between node i and the target). Next node is thus randomly
chosen in the intersection of the two balls.

c = 4.5. For other values of c, the performance of our algorithm also greatly improves
previous gossip schemes. Most importantly, for small connection radius r(n) (small
c), the number of messages Cc behaves almost linearly in n (see Fig. 5.2(c)), and
as c increases, the behavior improves (see Fig. 5.2(d)). The slight super-linearity in
Fig.5.2(c) is due to small r(n) and possibly edge effects. Clearly, we cannot expect
better than linear behavior in n because at least n messages are necessary to average
n values. Therefore path averaging with greedy routing seems to be optimal for
sufficiently large constant c.

Unfortunately, the theoretical analysis of path averaging with greedy routing
seems intractable. However, with a slight modification in the routing algorithm,
and by ignoring edge effects, we are able to analyze path averaging, first for grids and
then for regular geometric graphs. Recall that random geometric graphs are regular
geometric graphs with high probability when n large if c is sufficiently large (Section
5.2.1).

5.3.3 (↔, l)-path averaging on grids

The first step in our analysis is understanding the behavior of path averaging on
regular grids using a simple routing scheme. Throughout this chapter, a grid of n

100



Chapter 5. Path Averaging

15 20 25 30 35 40 45
7

8

9

10

11

12

13

14

sqrt (n)

m
ea

n 
ro

ut
e 

le
ng

th

(a) Mean route length E(R).

200 400 600 800 1000 1200 1400 1600
0

2

4

6

8

10

12

14

16

18 x 104

network size n

nu
m

be
r o

f m
es

sa
ge

s

 

 

Path averaging
Geographic gossip
Standard gossip

(b) Consensus cost Cc: compare
three methods

200 400 600 800 1000 1200 1400 1600 1800 2000

2000

4000

6000

8000

10000

12000

14000

16000

nu
m

be
r o

f m
es

sa
ge

s

network size n

(c) Cc: path averaging,
r(n) =

√
4.5 log n/n

200 400 600 800 1000 1200 1400 1600 1800 2000

2000

4000

6000

8000

10000

12000

nu
m

be
r o

f m
es

sa
ge

s

network size n

(d) Cc: path averaging,
r(n) =

√
25 log n/n

Figure 5.2: Performance of path averaging. The simulations were performed over 15
graphs per n. Averaging time was measured here by Tc ' (t1 − t2)/[log ‖ε(t2)‖ −
log ‖ε(t1)‖] for t1 = 500 and t2 = 1750. (a) The mean route length in random greedy
routing behaves in

√
n/ log n. (b) Comparison between standard gossip, geographic

gossip (without rejection sampling) and path averaging with r(n) =
√

4.5 log n/n. (c),

(d) Consensus costs Cc = E[R]Tc for radii r(n) =
√

4.5 log n/n and r(n) =
√

25 log n/n.

101



Chapter 5. Path Averaging

I

J

(a) (↔, l)-route

Figure 5.3: (a) Shortest (↔, l)-route from I to J on the grid. (b) Example of box-path
averaging on an RGG: The node with inital value 3 selects a random position and places
a target. Using (↔, l)-box routing towards that target, all the nodes on the path replace
their values with the average of the four nodes.

nodes will be a 4-connected lattice on a torus of size
√

n×
√

n. (↔, l)-path averaging
performs as follows: At each iteration t, a randomly selected node I wakes up and
selects a random destination node J so that the pair (I, J) is independently and
uniformly distributed. Node I also flips a fair coin to design the first direction:
horizontal (↔) or vertical (l). If for instance horizontal was picked as the first
direction, the path between I and J is then defined by the shortest horizontal-vertical
route between I and J (see Fig. 5.3(a)). The estimates of all the nodes on this path
are aggregated and averaged by messages passed on this path, and at the end of
the iteration the estimates of the nodes on this path are updated to their global
average. Clearly, this message-passing procedure can be executed if each node knows
its location on the grid.

5.3.4 Box-path averaging on regular geometric graphs

As seen in Section 5.2.1, a regular geometric graph can be organized in virtual squares
with the transmission radius r(n) selected so that a node can pass messages to any
node in the four squares adjacent to its own square.

102



Chapter 5. Path Averaging

In box-path averaging, when a node activates, it chooses uniformly at random
a target location in the unit torus and its initial direction: horizontal or vertical.
Then a node is selected uniformly from the ones in the adjacent square in the right
direction. (Recall that regularity ensures that w.h.p. Θ(log n) nodes will be in each
square.) The routing stops when the message reaches a node in the square where the
target is located. As in the previous path averaging algorithms, the estimates of all
the nodes on the path are averaged and all the nodes replace their values with this
estimate (see Fig. 5.4). The key point is that box-path averaging can be executed
if each node knows its location, the locations of its one-hop neighbors and the total
number of nodes n, because with this knowledge each node can figure out which
square it belongs to and pass messages appropriately.

Box-greedy routing is a regularized version of random greedy routing, and is in-
troduced to make the analysis tractable. Both routing schemes proceed by choosing
the next hop among Θ(log n) nodes (Fig. 5.5). Box-greedy routing generates routes
with Θ(

√
n/ log n) hops on average, and random greedy routing does as well on ex-

periments (Fig. 5.2(a)). We are now ready to start the theoretical analysis of the
aforementioned path averaging algorithms.

5.4 Analysis

5.4.1 Averaging and eigenvalues.

Let x(t) denote the vector of estimates of the global averages after the tth gossip
round, where x(0) is the vector of initial measurements. Any gossip algorithm can be
described by an equation of the form

x(t + 1) = W (t)x(t), (5.1)

where W (t) is the averaging matrix over the tth time-slot.
We say that the algorithm converges almost surely (a.s.) if P [limt→∞ x(t) =

xave
~1] = 1. It converges in expectation if limt→∞ E[x(t) − xave

~1] = 0, and there is
mean square convergence if limt→∞ E[‖x(t) − xave

~1‖2] = 0. There are two necessary
conditions for convergence: {

~1T W (t) = ~1T

W (t)~1 = ~1,
(5.2)

which respectively ensure that the average is preserved at every iteration, and that ~1
is a fixed point. For any linear distributed averaging algorithm following (5.1) where
{W (t)}t≥0 is i.i.d., conditions for convergence in expectation and in mean square can
be found in [Boyd et al., 2004]. In gossip algorithms, W (t) are symmetric and projec-

103



Chapter 5. Path Averaging

Figure 5.4: Example of box-path averaging: The node with inital value 3 selects a random
position and places a target. Using (↔, l)-box routing towards that target, all the nodes
on the path replace their values with the average of the four nodes.

tion matrices. Taking into account this particularity, we can state specific conditions
for convergence. Let λ2(E[W ]) be the second largest eigenvalue in magnitude of the
expectation of the averaging matrix E[W ] = E[W (t)]. If condition (5.2) holds and if
λ2(E[W ]) < 1, then x(t) converges to xave

~1 in expectation and in mean square.
In the case where {W (t)}t≥0 is stationary and ergodic (and thus in particular when

{W (t)}t≥0 is i.i.d.), sufficient conditions for a.s. convergence can be proven [Denantes,
2007]: if the gossip communication network is connected, then the estimates of gossip
converge to the global average x̄ave with probability 1. More precisely, define Tη :=

104



Chapter 5. Path Averaging

?S

T

?

??

S

T

? ?

Figure 5.5: Choosing next node in the route. On the left: random greedy routing, on the
right: (l,↔)-box routing. It is easy to see that the two choice areas contain on average
Θ(log n) nodes.

inf{t ≥ 1 :
∏t

p=0 W (t − p) ≥ η > 0}. Tη is a stopping time. If E[Tη] < ∞, then the
estimates converge to the global average with probability 1. In other words, every
node has to eventually connect to the network, which has to be jointly connected.

Interestingly, the value of λ2(E[W ]), that appears in the criteria of convergence in
expectation and of mean square convergence, controls the speed of convergence:

Tc(E[W ]) 6
2

log
(

1

λ2(E[W ])

) ≤ 2

1− λ2(E[W ])
. (5.3)

A straightforward extension of the proof of Boyd et al. [Boyd et al., 2006] from the case
of pairwise averaging matrices to the case of symmetric projection averaging matrices
yields the following bound on the ε-averaging time, which also involves λ2(E[W ]):

Tave(ε, E[W ]) ≤ 3 log ε−1

log
(

1

λ2(E[W ])

) ≤ 3 log ε−1

1− λ2(E[W ])
. (5.4)

There is also a lower bound of the same order, which implies that Tave(ε, E[W ]) =
Θ(log ε−1/(1− λ2(E[W ]))).

Consequently, the rate at which the spectral gap 1−λ2(E[W ]) approaches zero as n
increases, controls both the ε-averaging time Tave and the consensus time Tc. For ex-
ample, in the case of a complete graph and uniform pairwise gossiping, one can show
that λ2(E[W ]) = 1 − 1/n. Therefore, as previously mentioned, the consensus time
of this scheme is O(n). In pairwise gossiping, the convergence time and the number
of messages have the same order because there is a constant number R of transmis-
sions per time-slot. In geographic gossip and in path averaging on random geometric
graphs, one round uses many messages for the path routing (

√
n/ log n messages on

105



Chapter 5. Path Averaging

average), hence multiplying the order of consensus time Tc(n) by
√

n/ log n gives the
order of consensus cost Cc(n).

5.4.2 The travel agency method

A direct consequence of the previous section is that the evaluation of consensus time
requires an accurate upper bound on λ2(E[W ]). Consequently, computing the aver-
aging time of a scheme takes two steps: (1) evaluation of E[W ], (2) upperbound of
its second largest eigenvalue in magnitude. E[W ] is a doubly stochastic matrix that
corresponds to a time-reversible Markov Chain.

We can therefore use techniques developed for bounding the spectral gap of
Markov Chains to bound the convergence time of gossip. In particular, we will use
Poincaré’s inequality by Diaconis and Stroock [Diaconis and Stroock, 1991b] (see
also [Brémaud, 1999], p. 212-213 and the related canonical paths technique [Sinclair,
1992]) to develop a bounding technique for gossip.

Theorem 4 (Poincaré’s inequality [Diaconis and Stroock, 1991b]). Let P denote an
n×n irreducible and reversible stochastic matrix, and π its left eigenvector associated
to the eigenvalue 1 (πT P = πT ) such that

∑n
i=1 π(i) = 1. A pair e = (k, l) is called

an edge if Pkl 6= 0. For each ordered pair (i, j) where 1 6 i, j 6 n, i 6= j, choose one
and only one path γij = (i, i1, . . . , im, j) between i and j such that (i, i1), (i1, i2), . . .,
(im, j) are all edges. Define

|γij| =
1

π(i)Pii1

+
1

π(i1)Pi1i2

+ . . . +
1

π(im)Pimj

. (5.5)

The Poincaré coefficient is defined as

κ = max
edge e

∑
γij3e

|γij|π(i)π(j). (5.6)

Then the second largest eigenvalue of P verifies

λ2(P ) ≤ 1− 1

κ
. (5.7)

We will apply this theorem with P = E[W ]. Here π(i) = 1/n for all 1 6 i 6 n.
The combination of Poincaré inequality with bounds 5.3 and 5.4 forms a versatile

technique for bounding the performance of gossip algorithms that we call the travel
agency method. It is crucial to understand that the edges used in the application

106



Chapter 5. Path Averaging

of the theorem are abstract and do not correspond to actual edges in the physical
network. They instead correspond to paths on which there is joint averaging, and
hence information flow, through message-passing. Consider the following analogy.
Imagine that n airports are positioned at the locations of the nodes of the network.
In this scenario, we are given a table P = E[W ] of the flight capacities (number
of passengers per time unit) between any pair of airports among the n airports. A
good averaging intensity E[Wij] between nodes i and j correspond to a good capacity
flight between airports i and j in the travel agency method. Here edges e are existing
flights and, in our specific case, there is the same number of travelers in all the airports
(π(i) = 1/n for all i). We are asked to design one and only one road map γij between
each pair of airports i and j that avoids congestion and multiple hops. |γij| measures
the level of congestion between airport i and airport j. The theorem tells us that
if we can come up with a road map that avoids significant congestion on the worst
flight (i.e. if κ is small), then we will have proven that the flying network is efficient
(λ2 is small). The previous bounds 5.3,5.4 can now be used to bound the consensus
time and consensus cost.

One of the important benefits of this bounding technique is that we do not need
know the entries of E[W ] to bound the averaging cost, and only good lower bounds
suffice. In terms of the analogy, we only need to know that each flight (i, j) has at
least capacity Ci,j. If (i, j) can actually carry more passengers (Pi,j > Ci,j), then our
measure of congestion κ will be overestimated. While our final upper-bounds will not
be as tight as they could have been if we had exact knowledge of E[W ], they suffice
to establish the optimal asymptotic behavior.

5.4.3 Example: standard gossip revisited

In order to illustrate the generality of our technique, we show how to apply it on simple
examples, by giving sketches of novel proofs for known results on nearest neighbors
gossip on the complete graph and on the random geometric graph.

5.4.3.1 Complete graph

For any i 6= j, E[Wij] = 1/n2. Indeed Wij = 0.5 when node i wakes up (event of
probability 1/n) and chooses node j (event of probability 1/n as well), or when j
wakes up and chooses i. We apply now the travel agency method. We see in E[W ]
that all flights have equal capacity 1/n2 and that there are direct flights between any
pair of airports. We choose here the simplest road map one could think of: to go
from airport i to airport j, each traveller should take the direct hop γij = (i, j). Then
the sum in (5.5) has only one term: |γij| = n3. In this case all flights are equal and
one flight e = (i, j) belongs only to one road map: γij. Thus the sum in (5.6) also

107



Chapter 5. Path Averaging

has only one term and κ = n3/(n · n) = n. Therefore λ2(E[W ]) 6 1 − 1/n, which
proves that Tc(n) = O(n). Note that the complete graph is the overlay network of
geographic gossip 1 (every pair of node can be averaged at the expense of routing),
which thus performs in Cc(n) = O(n

√
n/ log n).

5.4.3.2 Random geometric graph (RGG)

In Section 5.5.3 subsequently show that if the connection radius r(n) is large enough,
then RGGs are regular with high probability, i.e. each node has Θ(log n) neighbors.
To keep the illustration of the travel agency method simple, we assume that the nodes
lie on a torus (no border effects). Consider the pair of nodes (i, j). If i and j are not
neighbors, then E[Wij] = 0; if i and j are neighbors, then E[Wij] = Θ (1/(n log n))
because node i wakes up with probability 1/n and chooses node j with probability
Θ (1/ log n). We now have to create a roadmap with only short distance paths. Regu-
larity ensures that there are no isolated nodes that could create local congestion. We
thus naturally decide that the best way to go is to select paths along the straightest
possible line between the departure airport and the destination airport. This will
require O(

√
n/ log n) hops, therefore the right hand side of Equation (5.5) is the sum

of O(
√

n/ log n) terms, each of equal order:

|γij| = O

(√
n

log n

)
1

1/n
Θ

(
1

1/n log n

)
= O(n2

√
n log n). (5.8)

Now we need to compute in how many paths each particular flight is used. It follows
from our regularity and torus assumptions that each flight appears in approximatively
the same number of road maps. There are n2 paths that use O(

√
n/ log n) flights, but

there are only Θ(n log n) different flights, hence each flight is used in O ((n/ log n)1.5)
paths. We can now compute the Poincaré coefficient κ. We drop the maxe argument
in Equation (5.6) because all flights are equal. As π(i) = π(j) = 1/n,

κ =
∑
γij3e

O(n2
√

n log n)
1

n

1

n
(5.9)

= O

(
(

n

log n
)1.5

)
O(
√

n log n) (5.10)

= O(
n2

log n
), (5.11)

which proves that Tc(n) = O(n2/ log n).

1In reality, geographic gossip will not be completely uniform but rejection sampling can be
used [Dimakis et al., 2006c] to tamper the distribution

108



Chapter 5. Path Averaging

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1 x 10!5

d(i,j)

E[
W

ij]

 

 

Standard gossip
Geographic gossip
Box!path averaging

Figure 5.6: Behavior of E[Wij] as a function of the distance in norm 1 between i and j
for standard gossip, geographic gossip and box-path averaging.

5.4.3.3 Comments

The proof of the performance of path averaging on a RGG given in Section 5.5.2
gives insight on how to complete this last proof. It is interesting to see that the travel
agency method describes how information will diffuse in the network. In the second
example, far away nodes will never directly average their estimates, but they will do
it indirectly, using the nodes between them.

Note that our method does not give lower-bounds on λ2(E[W ]), which would be
useful to give an equivalent order for ε-averaging time Tave. In the case of path
averaging, this is not an issue since it is not possible to achieve better than the
consensus cost Cc(n) = Θ(n). So if the method shows that Tc(n) = O(

√
n log n),

we have that Cc(n) = O(
√

n log n)O(
√

n/ log n) = O(n) and we can conclude that
Cc(n) = Θ(n).

5.4.4 Main Results

The main results of this chapter is that the consensus cost of (↔, l)-path averaging
on grids and of box-path averaging on random geometric graphs, behave linearly in
the number of nodes n:

Theorem 5 ((↔, l)-path averaging on grids). On a
√

n ×
√

n torus grid, the con-
sensus time Tc(n) of (↔, l)-path averaging, described in Section 5.3.3, is O(

√
n).

Furthermore, the consensus cost is linear: Cc(n) = O(n).

109



Chapter 5. Path Averaging

Theorem 6 (Box-path averaging on RGG). Consider a random geometric graph

G(n, r) on the unit torus with r(n) =
√

c log n
n

, c > 10. With high probability over

graphs, the consensus time Tc(n) of box-path averaging, described in Section 5.3.4, is
O(
√

n log n). Furthermore, the consensus cost is linear: Cc(n) = O(n).

The proofs of Theorem 5 and Theorem 6 are given in the Appendix. Both proofs
have the same structure: we first lower bound the entries of E[W ] and next upper
bound its second largest eigenvalue in magnitude. Figure 5.6 shows the behavior of
E[Wij] as a function of the L1 distance between nodes i and j for standard gossip,
geographic gossip and path averaging; respectively the proofs give us the insight
behind the good performance of box-path averaging compared to standard gossip
and geographic gossip by simply analysing Fig. 5.6. Box-path averaging concentrates
the averaging intensities E[Wij] of node i in the area of nodes j close to i. Indeed, the
closer two nodes, the higher the probability that they are on the same route. Thus,
as we can observe on Fig. 5.6, close nodes have a much higher averaging intensity
E[Wij] than in geographic gossip, where nodes are equally rarely averaged together

(the proof shows an order
√

n/ log n higher). However, the averaging intensity gained
by close nodes is lost for far away nodes, which do not average together well anymore
(a factor n loss compared to geographic gossip).

In terms of the travel agency method, in box-path averaging over the unit area
torus, flights with that cover distances shorter than 1/2 have high capacity, whereas
long distance flights are rare. To apply the method, the idea is to chose 2-hop paths:
to go from node i to node j, the path will contain two hops that stop half way, in
order to exclusively and fairly use the high capacity flights. Remember that standard
gossip needs

√
n/ log n flights per path (see Section 5.4.3.1), which heavily penalizes

the performance despite a very high averaging intensity E[Wij] for neighboring nodes
i and j (see Fig. 5.6, where E[Wij] is large for neighboring nodes but falls to 0 for
distances larger than r(n)). The performance of path averaging algorithms is good
thanks to a diffusion scheme requiring only O(1) flights in each path and O(1) uses of
each flight in the road map, combined with a high enough level of averaging intensity
E[Wij]. Each node can act as a diffusion relay for some far away nodes, so that the
whole network can benefit from the concentration of the averaging intensity.

As a summary, in contrast with geographic gossip, path averaging and standard
gossip concentrate their averaging intensity on close nodes, which leads to larger coef-
ficients E[Wi,j] when nodes i and j are close enough. However, while standard gossip
pays for its concentration with long paths overusing every existing flight, the diffusion
pattern of path averaging operates in 2 steps only without creating any congestion
(more precisely, we compute in the proof that each flight is used in at most 9 paths).
In conclusion, the analysis shows that path averaging achieves a good tradeoff be-
tween promoting local averaging to increase averaging intensity (large E[Wij]) and

110



Chapter 5. Path Averaging

favoring long distance averaging to get an efficient diffusion pattern (every path γij

contains only O(1) edges, and every edge e appears in only O(1) paths).

5.5 Appendix

We start with a reminder of notation and some definitions.

• G(n, r) or RGG: random geometric graph with n nodes and connection radius
r.

• x(0): vector of the initial values to be averaged.

• x̄ave =
∑n

k=1 xk(0)/n.

• x(t): vector of the estimates of the average.

• S(t): the random set of nodes that average together at time-slot t.

• R(t): number of one hop transmissions at time-slot t.

• ε(t) = x(t)− x̄ave
~1: error vector, where ~1 is the vector of all ones.

• W (t): averaging matrix at time t.

• λ2: second largest eigenvalue in magnitude.

• γij: path starting in i and ending in j.

• |γij| measures the “resistance” of path γij (Eq. (5.5)).

• κ: Poincaré coefficient (Eq. (5.6)).

• Tave(ε): ε-averaging time (Def. 4.1)

• Cave(ε) = E[R(1)]Tave: expected ε-averaging cost.

• Tc, Cc: consensus time, consensus cost (Def. 4.5, 2).

111



Chapter 5. Path Averaging

5.5.0.1 List of the algorithms

• Standard gossip: pairwise gossip where only direct neighbors can average their
estimates together.

• Geographic gossip: pairwise gossip where any pair of nodes can average their
estimates together at the expense of routing.

• Path averaging: at each iteration a random route is created by random greedy
routing in an RGG. The nodes of the route average their estimates together.

• (↔, l)-path averaging: at each iteration a random route is created by (↔, l)-
routing on a grid (embedded on a torus in the analysis). The nodes of the route
average their estimates together.

• Box-path routing: at each iteration a random route is created by box-routing
on a regular geometric graph (embedded on a torus in the analysis). The nodes
of the route average their estimates together.

5.5.1 Performance of (↔, l)-path averaging on a grid

This section prooves Theorem 5, which states the linearity of consensus cost for
(↔, l)-path averaging on a grid. The analyzed algorithm is described in Section
5.3.3.

We need to define the shortest distance on a torus. To this end, we introduce a
torus absolute value |.|T and a torus L1 norm ‖.‖1. For any algebraic value x on a
one dimensional torus (circle with

√
n nodes) and any vector i on a

√
n ×

√
n two

dimensional torus,

|x|T = min(|x|, |x−
√

n|, |x +
√

n|)
‖i‖1 = |ix|T + |iy|T .

We call `ij = ‖j − i‖1 the L1 distance between nodes i and j. The shortest routes
between I and J have α = `IJ + 1 = |Jx− Ix|T + |Jy − Iy|T + 1 nodes to be averaged,
thus the non-zero coefficients of their corresponding matrices W are all equal to 1/α.

To each route r, we assign a generalized gossip n × n matrix W (r) that aver-
ages the current estimates of the nodes on the route. Consequently, at iteration t,
W (t) = W (r(t)), where r(t) was randomly chosen. We call R the route random vari-
able, s(R) its starting node, d(R) its destination node, and `(R) = `s(R)d(R) + 1 its
number of nodes. As we choose the shortest route, the maximum number of nodes a
route can contain is

√
n if

√
n is odd,

√
n + 1 if

√
n is even, which can be written as

112



Chapter 5. Path Averaging

2b
√

n/2c+ 1 in short.

5.5.1.1 Evaluating E[W ]

Lemma 7. (Expected E[W ] on the grid) For any pair of nodes (i, j), if their distance
normalized to the maximum distance δij = ‖j − i‖1/

√
n is smaller than a constant,

then

E[Wi,j] = Ω

(
1

n1.5

)
. (5.12)

More precisely,

E[Wi,j] ≥
2(1− δij + δij log δij)

n
√

n
.

Therefore, as expected, far away nodes are less likely to be jointly averaged com-
pared to neighboring ones (see Figure 5.6).

Proof. Observing that E[W (R)|(↔, l)] = E[W (R)|(l,↔)] because the route from a
node I to a node J horizontally first has the same nodes as the route from J to I
vertically first, we get

E[W ] = E[W (R)]

=
1

2
E[W (R)|(↔, l)] +

1

2
E[W (R)|(l,↔)]

= E[W (R)|(↔, l)].

So, for a given pair of nodes (i, j), we can compute the (i, j)th entry of the matrix
expectation E[W ] by systematically routing first horizontally. Only the (↔, l)-routes
which contain both these two nodes i and j will have a non-zero contribution in
E[Wij]. Pick such a route r, the (i, j)th entry of the corresponding averaging matrix

is W
(r)
i,j = 1/`(r). We call R`

ij the set of (↔, l)-routes with ` nodes passing by node
i and by node j, and denote x+ = max(x, 0). It is not hard to see that (` − `ij)

+

is the number of routes of length ` passing by i first and j next (see Fig. 5.7), so

113



Chapter 5. Path Averaging

j

i

Figure 5.7: Counting the number of routes of length ` = 9 nodes, in the case where
`ij = 5. There are `− `ij = 9− 5 = 4 possible routes with exactly ` nodes going through
node i then through node j. We admit only routes going horizontally first then vertically.

|R`
ij| = 2(`− `ij)

+. We thus have for any i 6= j:

E[Wi,j] =
∑

r

W
(r)
i,j P[R = r]

=
1

n2

∑
r

W
(r)
i,j

=
1

n2

2b
√

n
2
c+1∑

`=`ij+1

|R`
ij|
`

=
2

n2

2b
√

n
2
c+1∑

`=`ij+1

`− `ij

`
,

114



Chapter 5. Path Averaging

from which we can deduce that for i 6= j

E[Wi,j] ≤ 2

n2

∫ √
n+2

`ij+1

x− `ij

x
dx

=
2

n2

(√
n− `ij + 1− `ij ln

√
n + 2

`ij + 1

)
E[Wi,j] ≥ 2

n2

∫ √
n

`ij

x− `ij

x
dx

=
2

n2

(√
n− `ij − `ij ln

√
n

`ij

)
.

E[Wi,j] decreases from 2
n
√

n
to o( 1

n2 ) as a function of `ij. To get a normalized expression

with respect to
√

n, we use the coefficient δij defined in the statement of Lemma 7.

2

n
√

n
(1− δij + δij ln δij) ≤ E[Wi,j] ≤

2

n
√

n

(
1− δij + δij ln δij +

1√
n
− δij ln

√
n + 2√
n + 1

δij

)
.

This establishes the claim. In particular, if δij = 1/2, then E[Wi,j] ∼ 1−ln 2
n
√

n
.

5.5.1.2 Bounding λ2(E[W ])

We need now to upperbound the second largest eigenvalue in magnitude of E[W ], or
equivalently, the relaxation time 1/(1− λ2(E[W ])).

Lemma 8 (Relaxation time).

1

1− λ2(E[W ])
= O(

√
n). (5.13)

Proof. The Poincaré inequality (Theorem 4) bounds the second largest eigenvalue of
a stochastic matrix and not necessarily its second largest eigenvalue in magnitude,
which is the important quantity involved in Eq. (5.3). It could happen that the
smallest negative eigenvalue is larger in magnitude than the second largest eigenvalue.
Consequently, if we show that all the eigenvalues of E[W ] are positive, then the two
eigenvalues coincide and we can use the Poincaré inequality to bound the second
largest eigenvalue in magnitude. E[W ] is symmetric so all its eigenvalues are real. The
sum of all the entries along the lines of E[W ] without counting the diagonal element is

115



Chapter 5. Path Averaging

O(1/
√

n), whereas the diagonal elements are Θ(1), so by Gershgorin bound [Brémaud,
1999], all the eigenvalues of E[W ] are positive.

We can now use the bounds on E[W ] to bound its spectral gap.
We want to prove that path averaging performs

√
n better than geographic gossip,

where E[Wi,j] = 1/n2 (5.4.3.1). It is encouraging to note that for δij 6 1/2, E[Wi,j] >
1−ln 2
n
√

n
, which is precisely

√
n better than 1/n2. We thus observe that it is possible to

find edges with a good capacity with length equal to half of the whole graph. However
very distant destinations remain problematic. Consider the extreme case of a distance√

n between two nodes i and j. There are only two routes that will jointly average
them: the route that goes from i to j, and the reverse one. These routes are selected
with probability 1/n2 and Wij = 1/

√
n, implying that E[Wij] = 2/n2.5 � 1/n1.5.

Formally, for each ordered and distinct pair (i, j), we choose a 2-hop path γij from
i to j stopping by an “airport” node k chosen to be located approximatively half way
between i and j. To be more precise, we define direction functions σx and σy, where
σx(i, j) = 1 (respectively, σy(i, j) = 1) if the horizontal (resp., vertical) part of the
route from i to j goes to the right (resp., up) and σx(i, j) = −1 (resp., σy(i, j) = −1)
if it goes left (resp., down). The coordinates of k in the torus are:

kx =

(
ix + σx(i, j)b

|jx − ix|T
2

c
)

(mod
√

n) (5.14)

ky =

(
iy + σy(i, j)b

|jy − iy|T
2

c
)

(mod
√

n).

In the road map γ we have just constructed, the maximum flight distance is smaller
than

√
n

2
+ 1 in L1 distance. Therefore, according to Lemma 7, for any edge e in γ,

E[We] > η/n1.5, where η is a non negative constant slightly smaller than 1 − ln 2.
Thus, for each path γij we have:

|γij| =
1

π(i)E[Wi,k]
+

1

π(k)E[Wk,j]

= n

(
1

E[Wi,k]
+

1

E[Wk,j]

)
≤ 2n2

√
n

η
. (5.15)

We can now compute the Poincaré coefficient:

κ = max
e

∑
γij3e

|γij|πiπj =
1

n2
max

e

∑
γij3e

|γij|. (5.16)

116



Chapter 5. Path Averaging

To compute this sum, we need to count the number of paths γij in the road map that
use a given flight e. In our construction, we have balanced the traffic load over all the
short flights so that a flight e belongs to at most 8 paths. Indeed, if a path contains
flight e, then e is either the first or second flight. In the first case, by construction, the
second flight has to be approximatively as long as e. Moreover, because of quantized
grid effects, there are actually only 4 different possible flights a traveler in flight e
might take as second flight (see Fig. 5.8). Repeating this argument in the case where
e is the second flight, we then obtain that a flight e appears in at most 8 paths.
Combining (5.15) and (5.16), we get:

κ ≤ 16

η

√
n.

As a result,

λ2 ≤ 1− η

16
√

n
,

which yields Lemma 8. The proof is complete by using equation (5.3).

In the next Section, we generalize this proof from grids to regular geometric
graphs. The approach will be the same but the detailed computations will be differ-
ent. Also, the construction of the paths in the travel agency method will need some
refinement.

e

2
1 3

4

6
5 7

8

A

B

Figure 5.8: Number of paths including an edge e = (A, B) in the road map. Paths have
two hops of equal length, where equality here is defined up to grid effects. Therefore,
for a given edge e, there are at most 8 paths including e: (1, A,B), (2, A,B), (3, A,B),
(4, A,B) and (A, B, 5), (A, B, 6), (A, B, 7), (A, B, 8).

117



Chapter 5. Path Averaging

5.5.2 Performance of box-path averaging.

We now prove Theorem 6. All the fundamental ideas coming from the proof on
grids in the previous section, appear here again, but sometimes in a more technical
form. We have k boxes forming a torus grid as in the previous section and k =
d
√

(n/(α log n))e2 ' n/(α log n), for some α > 2.
Using regularity, each box contains a number of nodes between a log n and b log n.

We use the (↔, l)-box routing scheme presented in Section 5.3.4. There are only a
few modifications to make to the grid proof in order to obtain the regular geometric
graph proof. The idea is to notice that for any route r = (r1, r2, · · · , r`), we can
attribute a box route r̃ consisting of the boxes the nodes of r belong to. If we call b(i)
the box node i belongs to, then r̃ = (b(r1), b(r2), · · · , b(r`)). We call ni the number of
nodes in the box b(i) node i belongs to. The sequence of ni is fixed by the graph we
are considering. `ij is the L1 distance between boxes b(i) and b(j): `ij = ‖b(j)−b(i)‖1.
We denote by `(r) the number of nodes in route r, s(r̃) the starting box of route r̃ and
d(r̃) its destination box. In our problem the chosen route is random, which we will

denote by capital case letter: R, leading to other random variables R̃, `(R), s(R̃), etc.

5.5.2.1 Evaluating E[W ]

Lemma 9. (Expected E[W ] on the regular geometric graph) For any pair of nodes
(i, j) that do not belong to the same box, if their grid-distance normalized to the
maximum grid-distance δij = `ij/

√
k is smaller than a constant, then

E[Wij] = Ω

(
1

n
√

n log n

)
. (5.17)

More precisely,

E[Wi,j] ≥
4a

b2

2

n2

√
n

α log n
(1− δij + δij log δij) , (5.18)

Proof. For any node i and node j that do not belong to the same box, we want to
compute the expectation of Wij. Counting the routes in this setting is complicated
because each sender has at least a log n nodes to send its message to. In order to use
our simple analysis of the grid, we condition the expectation on the box routes R̃.
Given a box route, Wij = 0 if i or j is not in the box route. On the contrary, if they

both are in the box route, then Wij = 1/`(R̃) with probability 1/(ninj). Indeed, if i
(or j) is in starting box, the probability that i is the starting node is 1/n(i), because
all the nodes wake up with the same rate. If i (or j) is in another box of the given

118



Chapter 5. Path Averaging

box route, then the probability that i is chosen is 1/n(i) as well, because the routing
chooses next node uniformly among the nodes of the next box.

E[Wij] = E eR[ER[Wij|R̃]]

= E eR[
1

ninj

1

`(R̃)
1b(i)∈ eR1b(j)∈ eR].

From now on, we are back to a problem with routes on a grid which has k “nodes”.
The difference with previous section is that routes are no longer uniform. Indeed, now,
boxes wake up more frequently if they contain more nodes: the probability that box
bi wakes up is ni/n. Destination boxes are still chosen uniformly at random with
probability 1/k because there are k boxes in total. Just as before, we consider only
(↔, l)-box routes so that a box route is entirely determined by its starting box and
its destination box, and we count box routes of different length separately. Let R`

ij

be the set of box routes of size ` including bi and bj.

E[Wij] =
1

ninj

∑
er

1b(i)∈er1b(j)∈er
`(r̃)

P[R̃ = r̃]

=
1

ninj

2b
√

k
2
c+1∑

`=`ij+1

∑
er∈R`

ij

P[R̃ = r̃]

`

=
1

ninj

2b
√

k
2
c+1∑

`=`ij+1

∑
er∈R`

ij

P[s(R̃) = s(r̃), d(R̃) = d(r̃)]

`

=
1

ninj

2b
√

k
2
c+1∑

`=`ij+1

∑
er∈R`

ij

1

`

ns(er)
n

1

k
.

119



Chapter 5. Path Averaging

We now use the regularity of the graph : for any node m, a log n 6 nm 6 b log n.

E[Wij] >
1

(b log n)2

2b
√

k
2
c+1∑

`=`ij+1

1

`

a log n

n

4 log n

n
|R`

ij|.

=
4a

b2

1

n2

2b
√

k
2
c+1∑

`=`ij+1

|R`
ij|
`

>
4a

b2

2

n2

(
√

k − `ij − `ij ln

√
k

`ij

)
.

The last inequality comes from the same computation as for the grid, and it can be
reformulated as in Lemma 9 when using the normalized distance coefficient δij =

`ij/
√

k.

5.5.2.2 Bounding λ2(E[W ])

Lemma 10 (Relaxation time RGG).

1

1− λ2(E[W ])
= O(

√
n log n). (5.19)

Proof. As for the grid, we now apply the travel agency method. The situation is very
similar to the grid case, except that boxes now contain Θ(log n) nodes each.
Similarly to the grid case, we will be using 2-hop paths for every pair of nodes,
by adding one intermediate stop half-way. More precisely, this intermediate stop is
chosen in the box whose coordinates on the underlying lattice are given by equations
5.14, where i and j are the lattice coordinates of the source and destination boxes.
Then, within each box, we need to carefully and fairly assign the intermediate nodes
because a flight should not be used more than a constant number of times (it was
8 for the grid), otherwise it would create congestion. It is not hard to design such
road maps because the number of nodes in each box varies at most by a constant
multiplicative factor b/a.

To show this, assume that each box contains exactly log n nodes. Then, there are
(log n)2 road maps to find between all the nodes in a pair of boxes (assume box 1 and
3, and let box 2 be the one half-way), but happily enough, there are (log n)2 flights
between box 1 and box 2 and also between box 2 and 3. Therefore, as we can see on
Fig. 5.9, the box path (box 1, box 2, box 3) can correspond to (log n)2 node road
maps all using different flights (edges). This flight allocation technique can easily be
extended to cases where the boxes do not have the same number of airports by using

120



Chapter 5. Path Averaging

some flights at most db/ae times each in the paths between two given boxes.
There is a second refinement to the grid proof: solving the problem for nodes that

Figure 5.9: Path allocation when there are 3 nodes per box and thus 9 paths to design.

share a common box, which do not average jointly (Our bound on E[Wij] is zero).
However there are many edges to nodes in neighboring boxes. So formally, if node i
and node j are in the same box, we design the road map from i to j to be a two hop
road map stopping at a node located in the box above their box. By sharing fairly
the available relay airports, the short north-south flights might be used in db/ae extra
road maps.
We can thus construct road maps for any pair of airports that will use at most 9db/ae
times each good intensity flight. The rest of the proof is identical to the grid proof.

For each path we have:

|γij| =
1

π(i)E[Wi,k]
+

1

π(k)E[Wk,j]

= n

(
1

E[Wi,k]
+

1

E[Wk,j]

)
≤ cn2

√
n log n, (5.20)

for some constant c. Inequality 5.20 was obtained with the same reasoning as in the
grid. We therefore conclude, using the Poincaré coefficient argument that

κ ≤ 9d b

a
ec
√

n log n.

As a result, for n large enough, and some constant c′.

λ2 ≤ 1− 1

c′
√

n log n
,

which yields the lemma.

121



Chapter 5. Path Averaging

5.5.3 Regularity of random geometric graphs

Lemma 11 (Regularity of random geometric graphs). Consider a random geometric
graph with n nodes and partition the unit square in boxes of size α log n

n
. Then, all the

boxes contain Θ(log n) nodes, with high probability as n →∞.

Proof. Let Xi denote the number of nodes contained in the ith box. Xi are (non-
independent) Binomially distributed random variables with expectation α log n. Stan-
dard Chernoff (we do not optimize for the constants) bounds [Motwani and Raghavan,
1995b] imply:

P(Xi ≤
α

2
log n) ≤ e−α/8 log n.

and
P(Xi ≥ 2α log n) ≤ e−α/3 log n.

which give tight bounds on the number of nodes in each box:

P(
α

2
log n ≤ Xi ≤ 2α log n) ≥ 1− 2e−α/8 log n. (5.21)

A union bound over boxes yields the uniform bounds on the maximum and minimum
load of a square:

P(
α

2
log n ≤ min

i
Xi ≤ max

i
Xi ≤ 2α log n) ≥ 1− n1−α/8 2

α log n
.

Therefore, selecting α ≥ 8 yields the lemma. A more technical proof shows that the
lemma holds for α > 2.

122



Chapter 6

Conclusions and Future work

6.1 Distributed Storage

For storage problems, we think the most important conceptual contribution is the
introduction of the information flow graph (Chapter 3). It is a graphical represen-
tation of how information is communicated across different storage nodes and time
(through the links linking in and out copies of storage nodes). Information flow
graphs can be created for any storage system even if it uses any hybrid of replica-
tion and coding since it abstracts the algebraic details of the encoded information
and turns it into a flow problem. Cut-set arguments then yield information theoretic
bounds on repair communication required and the network coding multicasting the-
orem shows that they can be achieved. The identified tradeoff between storage and
bandwidth is essentially a tradeoff between communication over nodes (bandwidth)
and communication across time (storage).

Certainly there are many issues that remain to be addressed before these ideas can
be implemented in practical storage systems. In future work we plan to investigate
deterministic designs of regenerating codes over small finite fields, the existence of
systematic regenerating codes, designs that minimize the overhead storage of the co-
efficients, as well as the impact of node dynamics in reliability. Other issues of interest
involve how CPU processing and disk I/O will influence the system performance, as
well as integrity and security for the linear combination packets (see [C. Gkantsidis,
2006] for a related analysis for content distribution).

6.2 Distributed information processing

In Chapters 4 and 5 we introduced two novel gossip algorithms for distributed av-
eraging. The proposed schemes operate in a distributed and asynchronous manne

123



Chapter 6. Conclusions and Future work

on locally connected graphs and requires an order-optimal number of communicated
messages for random geometric graph and grid topologies. The execution of path
averaging requires that each node knows its own location, the locations of its nearest-
hop neighbors and (for the routing-scheme that was theoretically analyzed) the total
number of nodes n.

Location information is independently useful and likely to exist in many applica-
tion scenarios. The key idea that makes path averaging efficient is the opportunistic
combination of routing and averaging. The issues of delay (how several paths can be
concurrently averaged in the network) and fault tolerance (robustness and recovery
in failures) remain as interesting future work.

More generally, we believe that the idea of greedily routing towards a randomly
pre-selected target (and processing information on the routed paths) is a very use-
ful primitive for designing message-passing algorithms on networks that have some
geometry. The reason is that the target introduces some directionality in the schedul-
ing of message passing which avoids diffusive behavior. Other than computing linear
functions, such path-processing algorithms can be designed for information dissemi-
nation or more general message passing computations such as marginal computations
or MAP estimates for probabilistic graphical models. Scheduling the message-passing
using some form of linear paths can accelerate the communication required for the
convergence of such algorithms. Also understanding how node mobility or the physi-
cal wireless medium can be exploited to make more efficient distributed information
processing algorithms are interesting open problems. We plan to investigate such
research directions in future work.

124



Bibliography

[Acedanski et al., 2005] S. Acedanski, S. Deb, M. Médard, and R. Koetter. How good
is random linear coding based distributed networked storage. In NetCod, 2005.

[Ahlswede et al., 2000a] R. Ahlswede, N. Cai, S.-Y. R. Li, and R. W. Yeung. Network
information flow. IEEE Trans. on Information Theory, 46:1204–1216, 2000.

[Ahlswede et al., 2000b] R. Ahlswede, N. Cai, S.-Y. R. Li, and R. W. Yeung. Network
information flow. IEEE Trans. Info. Theory, 46(4):1204–1216, July 2000.

[Alanyali et al., 2006] M. Alanyali, V. Saligrama, and O. Savas. A random-walk
model for distributed computation in energy-limited networks. In Proceedings of
the 1st Workshop on Information Theory and its Applications, San Diego, CA,
2006.

[Aldous and Fill, 2007] D. Aldous and J. Fill. Reversible
markov chains on graphs. Book in preparation; available at
http://www.stat.berkeley.edu/˜aldous/RWG/book.html, 2007.

[Alon and Spencer, 2000] N. Alon and J. Spencer. The Probabilistic Method. Wiley
Interscience, New York, 2000.

[Aysal et al., 2008] T. C. Aysal, M. J. Coates, and M. G. Rabbat. Distributed average
consensus with dithered quantization. IEEE Transactions on Signal Processing, To
appear 2008.

[Bang-Jensen and Gutin, 2001] Jorgen Bang-Jensen and Gregory Gutin. Digraphs:
Theory, Algorithms and Applications. Springer, New York, 2001.

[Bash et al., 2004] B.A. Bash, J.W. Byers, and J. Considine. Approximately uni-
form random sampling in sensor networks. In Proc. of the 1st Workshop on Data
Management in Sensor Networks (DMSN ’04), August 2004.

125



BIBLIOGRAPHY

[Benezit et al., 2007] F. Benezit, A. G. Dimakis, P. Thiran, and M. Vetterli. Gossip
along the way: Order-optimal consensus through randomized path averaging. In
Proceedings of Allerton Conference, Monticello, IL, 2007.

[Bertsekas and Tsitsiklis, 1997] D. Bertsekas and J. Tsitsiklis. Parallel and Dis-
tributed Computation: Numerical Methods. Athena Scientific, Belmont, MA, 1997.

[Bhagwan et al., 2004] Ranjita Bhagwan, Kiran Tati, Yu-Chung Cheng, Stefan Sav-
age, and Geoffrey M. Voelker. Total recall: System support for automated avail-
ability management. In NSDI, 2004.

[Blake and Rodrigues, 2003] C. Blake and R. Rodrigues. High availability, scalable
storage, dynamic peer neetworks: Pick two. In Proc. HOTOS, 2003.

[Blaum et al., 1995] M. Blaum, J. Brady, J. Bruck, and J. Menon. EVENODD: An
efficient scheme for tolerating double disk failures. IEEE Trans. on Computing,
44:192–202, February 1995.

[Bollobás, 2000] B. Bollobás. Modern Graph Theory. Springer-Verlag, New York,
2000.

[Bollobás, 2001] B. Bollobás. Random Graphs (second edition). Cambridge University
Press, 2001.

[Bolosky et al., 2000] William J. Bolosky, John R. Douceur, David Ely, and Marvin
Theimer. Feasibility of a serverless distributed file system deployed on an existing
set of desktop PCs. In Proc. SIGMETRICS, 2000.

[Boyd et al., 2004] S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah. Analysis and op-
timization of randomized gossip algorithms. In Proceedings of the 43rd Conference
on Decision and Control (CDC 2004), 2004.

[Boyd et al., 2005] S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah. Gossip algorithms
: Design, analysis and applications. In Proceedings of the 24th Conference of the
IEEE Communications Society (INFOCOM 2005), 2005.

[Boyd et al., 2006] S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah. Randomized
gossip algorithms. IEEE Transactions on Information Theory, 52(6):2508–2530,
June 2006.

[Brémaud, 1999] P. Brémaud. Markov Chains. Gibbs Fields, Monte Carlo Simulation,
and Queues. Springer, 1999.

126



BIBLIOGRAPHY

[C. Gkantsidis, 2006] P. Rodriguez C. Gkantsidis, J. Miller. Anatomy of a P2P con-
tent distribution system with network coding. Proceedings of IPTPS, 2006.

[Chen and G. Pandurangan, 2005] J.-Y. Chen and D. Xu G. Pandurangan. Robust
aggregates computation in wireless sensor networks: Distributed randomized al-
gorithms and analysis. In 2005 Fourth International Symposium on Information
Processing in Sensor Networks, 2005.

[Chun et al., 2006] Byung-Gon Chun, Frank Dabek, Andreas Haeberlen, Emil Sit,
Hakim Weatherspoon, M. Frans Kaashoek, John Kubiatowicz, and Robert Morris.
Efficient replica maintenance for distributed storage systems. In NSDI, 2006.

[Dabek et al., 2001] Frank Dabek, Frans Kaashoek, David Karger, Robert Morris,
and Ion Stoica. Wide-area cooperative storage with CFS. In Proc. ACM SOSP,
2001.

[Dabek et al., 2004] F. Dabek, J. Li, E. Sit, J. Robertson, M. Kaashoek, and R. Mor-
ris. Designing a dht for low latency and high throughput, 2004.

[Daskalakis et al., 2007] C. Daskalakis, A.G. Dimakis, R. M. Karp, and M. J. Wain-
wright. Probabilistic analysis of linear programming decoding. In ACM-SIAM
Symposium on Discrete Algorithms (SODA), January 2007.

[deGroot, 1974] M. H. deGroot. Reaching a consensus. Journal of the American
Statistical Association, 69(345):118–121, March 1974.

[Denantes et al., 2008] P. Denantes, F. Bénézit, P. Thiran, and M. Vetterli. Which
distributed averaging algorithm should i choose for my sensor network? In Proc.
IEEE Infocom, 2008.

[Denantes, 2007] Patrick Denantes. Performance of averaging algorithms in time-
varying networks. Technical report, EPFL, 2007.

[Diaconis and Stroock, 1991a] P. Diaconis and D. Stroock. Geometric bounds for
eigenvalues of Markov chains. Ann. Applied Probability, 1:36–61, 1991.

[Diaconis and Stroock, 1991b] P. Diaconis and D. Stroock. Geometric bounds for
eigenvalues of markov chains. In Annals of Applied Probability, volume 1, 1991.

[Dimakis and Ramchandran, 2007] A.G. Dimakis and K. Ramchandran. Network
coding for distributed storage in wireless networks. In Networked Sensing Infor-
mation and Control, Signals and Communication series. Springer-Verlag, 2007.

127



BIBLIOGRAPHY

[Dimakis et al., 2005] A.G. Dimakis, V. Prabhakaran, and K. Ramchandran. Ubiq-
uitous Acess to Distributed Data in Large-Scale Sensor Networks through Decen-
tralized Erasure Codes. In IEEE/ACM Int. Symposium on Information Processing
in Sensor Networks (IPSN), April 2005.

[Dimakis et al., 2006a] A.G. Dimakis, V. Prabhakaran, and K. Ramchandran. De-
centralized erasure codes for distributed networked storage. In IEEE Transactions
on Information Theory, June 2006.

[Dimakis et al., 2006b] A.G. Dimakis, V. Prabhakaran, and K. Ramchandran. Dis-
tributed fountain codes for networked storage. In Proceedings of IEEE ICASSP,
2006.

[Dimakis et al., 2006c] A.G. Dimakis, A. D. Sarwate, and M. Wainwright. Geo-
graphic gossip : Efficient aggregation for sensor networks. In Proceedings of
the Fifth International Symposium on Information Processing in Sensor Networks
(IPSN 2006), Nashville, TN, April 2006.

[Dimakis et al., 2006d] A.G. Dimakis, A.D. Sarwate, and M.J. Wainwright. Geo-
graphic gossip: Efficient aggregation for sensor networks. In IEEE/ACM Int. Sym-
posium on Information Processing in Sensor Networks (IPSN), 2006.

[Dimakis et al., 2007] A.G. Dimakis, P.B. Godfrey, Y. Wu, M.J. Wainwright, and
K. Ramchandran. Network coding for distributed storage systems. In Submitted
for publication, preliminary version appeared in proceedings of IEEE Infocom, 2007.

[Erdös and Sachs, 1963] P. Erdös and H. Sachs. Regulare graphen gegebene taillen-
weite mit minimaler knotenzahl. Wiss. Z. Univ. Hall Martin Luther Univ. Halle–
Wittenberg Math.– Natur.Reine, 12:251–257, 1963.

[Fagnani and Zampieri, 2008] F. Fagnani and S. Zampieri. Randomized consensus
algorithms over large scale networks. In IEEE J. on Selected Areas of Communi-
cations, to appear, 2008.

[Flajolet and Martin, 1985] P. Flajolet and G.N. Martin. Probabilistic counting al-
gorithms for data base applications. Journal of Computer and System Sciences,
31(2):182–209, 1985.

[Fragouli et al., 2006] C. Fragouli, J.Y. Le Boudec, and J. Widmer. Network coding:
an instant primer. ACM SIGCOMM Computer Comm. Review, 2006.

[Gamal et al., 2004] A. El Gamal, J. Mammen, B. Prabhakar, and D. Shah.
Throughput-delay trade-off in wireless networks. In Proceedings of the 24th Con-
ference of the IEEE Communications Society (INFOCOM 2004), 2004.

128



BIBLIOGRAPHY

[Ganesan et al., 2004] D. Ganesan, R. Cristecu, and B. Beferull-Lozano. Power-
efficient sensor placement and transmission structure for data gathering under dis-
tortion constraints. In IEEE/ACM Int. Symposium on Information Processing in
Sensor Networks (IPSN), April 2004.

[Godfrey et al., 2006] P. Brighten Godfrey, Scott Shenker, and Ion Stoica. Minimizing
churn in distributed systems. In Proc. ACM SIGCOMM, 2006.

[Guha et al., 2006] Saikat Guha, Neil Daswani, and Ravi Jain. An experimental study
of the Skype peer-to-peer VoIP system. In IPTPS, 2006.

[Gupta and Kumar, 2000] P. Gupta and P.R. Kumar. The capacity of wireless net-
works. IEEE Transactions on Information Theory, 46(2):388–404, March 2000.

[Hafner, 2005] J. L. Hafner. WEAVER codes: Highly fault tolerant erasure codes
for storage systems. In FAST-2005: 4th Usenix Conference on File and Storage
Technologies, San Francisco, CA, December 2005.

[He et al., 2003] T. He, C. Huang, B.M. Blum, J.A. Stankovic, and T. Abdelzaher.
Range-free localization schemes for large scale sensor networks. In Proceedings
of the 9th Annual International Conference on Mobile computing and networking,
2003.

[Ho et al., 2006a] T. Ho, M. Médard, R. Koetter, D. Karger, M. Effros, J. Shi, and
B. Leong. A random linear network coding approach to multicast. IEEE Transac-
tions on Information Theory, October 2006.

[Ho et al., 2006b] Tracey Ho, Muriel Médard, Ralf Koetter, David R. Karger,
Michelle Effros, Jun Shi, and Ben Leong. A random linear network coding approach
to multicast. IEEE Trans. Inform. Theory, 52(10):4413–4430, October 2006.

[Horn and Johnson, 1987] R.A. Horn and C.R. Johnson. Matrix Analysis. Cambridge
University Press, Cambridge, 1987.

[Huang and Xu, 2005] C. Huang and L. Xu. STAR: An efficient coding scheme for
correcting triple storage node failures. In FAST-2005: 4th Usenix Conference on
File and Storage Technologies, San Francisco, CA, December 2005.

[Huang et al., 2007] C. Huang, M. Chen, and J. Li. Pyramid codes: Flexible schemes
to trade space for access efficiency in reliable data storage systems. In IEEE Inter-
national Symposium on Network Computing and Applications (NCA 2007), July
2007.

129



BIBLIOGRAPHY

[Jaggi et al., 2005] S. Jaggi, P. Sanders, P. A. Chou, M. Effros, S. Egner, K. Jain, and
L. Tolhuizen. Polynomial time algorithms for network code construction. IEEE
Trans. Inform. Theory, 51:1973–1982, June 2005.

[Jiang, 2006] A. Jiang. Network coding for joint storage and transmission with mini-
mum cost. In International Symposium on Information Theory (ISIT), July 2006.

[Kamra et al., 2006] A. Kamra, J. Feldman, V. Misra, and D. Rubenstein. Growth
codes: Maximizing sensor network data persistence. Proc. of ACM SIGCOMM,
2006.

[Karp and Kung, 2000] B. Karp and H. Kung. Greedy perimeter stateless routing.
In Proceedings of ACM Conf. on Mobile Computing and Networking (MOBICOM),
Boston, MA, pages 243–254. ACM, 2000.

[Karp et al., 2000] R. Karp, C. Schindelhauer, S. Shenker, and B. Vöcking. Ran-
domized rumor spreading. In Proc. IEEE Conference of Foundations of Computer
Science, (FOCS), 2000.

[Katti et al., 2006] S. Katti, H. Rahul, W. Hu, D. Katabi, M. Medard, and Jon
Crowcroft. XORs in the air: Practical wireless network coding. Proc. of ACM
SIGCOMM, 2006.

[Kempe et al., 2003] D. Kempe, A. Dobra, and J. Gehrke. Gossip-based computation
of aggregate information. In Proc. IEEE Conference of Foundations of Computer
Science, (FOCS), 2003.

[Koetter and Médard, 2003] R. Koetter and M. Médard. An algebraic approach to
network coding. Transactions on Networking, October 2003.

[Langendoen and Reijers, 2003] K. Langendoen and N. Reijers. Distributed localiza-
tion in wireless sensor networks: a quantitative comparison. Computer Networks,
2003.

[Li and Dai, 2008] W. Li and H. Dai. Location-aided fast distributed consensus. In
IEEE Transactions on Information Theory, submitted, 2008.

[Li et al., 2003] S.-Y. R. Li, R. W. Yeung, and N. Cai. Linear network coding. IEEE
Trans. on Information Theory, 49:371–381, February 2003.

[Lin et al., 2007] Y. Lin, B. Liang, and B. Li. Data persistence in large-scale sensor
networks with decentralized fountain codes. In Proceedings of IEEE Infocom, 2007.

130



BIBLIOGRAPHY

[Luby et al., 2001] M. Luby, M. Mitzenmacher, M.A. Shokrollahi, and D. Spielman.
Improved low-density parity check codes using irregular graphs. IEEE Trans. Info.
Theory, 47:585–598, February 2001.

[Luby, 2002] M. Luby. LT codes. Proc. IEEE Foundations of Computer Science
(FOCS), 2002.

[Lun et al., 2006] D.S. Lun, N. Ratnakar, M. Médard, R. Koetter, D.R. Karger,
T. Ho, E. Ahmed, and F. Zhao. Minimum-cost multicast over coded packet net-
works. IEEE Transactions on Information Theory, June 2006.

[Moallemi and van Roy, 2006] C. C. Moallemi and B. van Roy. Consensus propaga-
tion. IEEE Trans. Info. Theory, 52(11):1–13, 2006.

[Mosk-Aoyama and Shah, 2005] D. Mosk-Aoyama and D. Shah. Informa-
tion dissemination via gossip: Applications to averaging and coding.
http://arxiv.org/cs.NI/0504029, April 2005.

[Mosk-Aoyama and Shah, 2006] D. Mosk-Aoyama and D. Shah. Computing separa-
ble functions via gossip. In Proceedings of the Twenty-Fifth ACM Symposium on
Principles of Distributed Computing., Denver, CO, July 2006.

[Motwani and Raghavan, 1995a] R. Motwani and P. Raghavan. Randomized Algo-
rithms. Cambridge University Press, Cambridge, UK, 1995.

[Motwani and Raghavan, 1995b] R. Motwani and P. Raghavan. Randomized Algo-
rithms. Cambridge University Press, Cambridge, 1995.

[Nedic et al., 2007] A. Nedic, A. Olshevsky, A. Ozdaglar, and J. Tsitsiklis. On dis-
tributed averaging algorithms and quantization effects. In LIDS Technical Report
2778, MIT,LIDS, submitted for publication, 2007.

[Penrose, 2003] M. Penrose. Random Geometric Graphs. Oxford studies in probabil-
ity. Oxford University Press, Oxford, 2003.

[Petrović et al., 2006] D. Petrović, K. Ramchandran, and J. Rabaey. Overcoming
untuned radios in wireless networks with network coding. IEEE Transactions on
Information Theory, June 2006.

[Plank and Thomason, 2004] J.S. Plank and M.G. Thomason. A practical analysis
of low-density parity-check erasure codes for wide-area storage applications. In
International Conference on Dependable Systems and Networks, 2004.

131



BIBLIOGRAPHY

[Pradhan and Ramchandran, 2003] S. S. Pradhan and K. Ramchandran. Distributed
source coding using syndromes (DISCUS): Design and construction. IEEE Trans.
Info. Theory, 49(3):626–643, 2003.

[Rabbat et al., 2005] M. Rabbat, R. Nowak, and J. Bucklew. Robust decentralized
source localization via averaging. In Proceedings of IEEE International Conference
on Acoustics, Speech and Signal processing (ICASSP), Philadelphia, PA, March
2005.

[Rabbat et al., 2006a] M. Rabbat, J. Haupt, A.Singh, and R. Nowak. Decentralized
compression and predistribution via randomized gossiping. In ACM/IEEE Con-
ference on Information Processing in Sensor Networks (IPSN’06), April 2006.

[Rabbat et al., 2006b] M. Rabbat, J. Haupt, A. Singh, and R. Nowak. Decentralized
compression and predistribution via randomized gossiping. In IEEE/ACM Int.
Symposium on Information Processing in Sensor Networks (IPSN), 2006.

[Ramamoorthy et al., 2004] A. Ramamoorthy, K. Jain, P.A. Chou, and M. Effros.
Separating distributed source coding from network coding. In 42nd Allerton Con-
ference on Communication, Control and Computing, 2004.

[Reed and Solomon, 1960] I.S. Reed and G. Solomon. Polynomial codes over certain
finite fields. In Journal of the SIAM, 1960.

[Rhea et al., 2001] S. Rhea, C. Wells, P. Eaton, D. Geels, B. Zhao, H. Weatherspoon,
and J. Kubiatowicz. Maintenance-free global data storage. IEEE Internet Com-
puting, pages 40–49, September 2001.

[Rhea et al., 2003] S. Rhea, P. Eaton, D. Geels, H. Weatherspoon, B. Zhao, and
J. Kubiatowicz. Pond: the OceanStore prototype. In Proc. USENIX File and
Storage Technologies (FAST), 2003.

[Rodrigues and Liskov, 2005] R. Rodrigues and B. Liskov. High availability in DHTs:
Erasure coding vs. replication. In Proc. IPTPS, 2005.

[Rowstron and Druschel, 2001] A. Rowstron and P. Druschel. Storage management
and caching in past, a large-scale, persistent peer-to-peer storage utility. In Proc.
ACM SOSP, 2001.

[Saligrama et al., 2006] V. Saligrama, M. Alanyali, and O. Savas. Distributed detec-
tion in sensor networks with packet losses and finite capacity links. IEEE Trans-
actions on Signal Processing, to appear, 2006.

132



BIBLIOGRAPHY

[Sander et al., 2003] P. Sander, S. Egner, and L. Tolhuizen. Polynomial time algo-
rithms for network information flow. In Symposium on Parallel Algorithms and
Architectures (SPAA), pages 286–294, San Diego, CA, June 2003. ACM.

[Sanghavi, 2007] Sujay Sanghavi. Intermediate performance of rateless codes. Infor-
mation Theory and Applications (ITA), 2007.

[Sarkar et al., 2007] Rik Sarkar, Xianjin Zhu, and Jie Gao. Hierarchical spatial gossip
for multi-resolution representations in sensor networks. In Proc. of the International
Conference on Information Processing in Sensor Networks (IPSN’07), pages 420–
429, April 2007.

[Saroiu et al., 2002] Stefan Saroiu, P. Krishna Gummadi, and Steven D. Gribble. A
Measurement Study of Peer-to-Peer File Sharing Systems. In Proc. MMCN, San
Jose, CA, USA, January 2002.

[Scaglione, 2007] A. Scaglione. On the wireless communication architecture for con-
sensus problems. In Information Theory and Applications (ITA), 2007.

[Shokrollahi, 2006] A. Shokrollahi. Raptor codes. IEEE Trans. on Information The-
ory, June 2006.

[Sinclair, 1992] A. Sinclair. Improved bounds for mixing rates of markov chains and
multicommodity flow. In Combinatorics, Probability and Computing, volume 1,
1992.

[Slepian and Wolf, 1973] D. Slepian and J.K. Wolf. Noiseless coding of correlated
information sources. IEEE Transactions on Information Theory, 19, 1973.

[Spanos et al., 2005] D. Spanos, R. Olfati-Saber, and R. Murray. Distributed Kalman
filtering in sensor networks with quantifiable performance. In 2005 Fourth Inter-
national Symposium on Information Processing in Sensor Networks, 2005.

[Stribling, ] Jeremy Stribling. Planetlab all pairs ping. http://infospect.planet-
lab.org/pings.

[Tati and Voelker, 2006] K. Tati and G. M. Voelker. On object maintenance in peer-
to-peer systems. In Proc. IPTPS, 2006.

[Tsitsiklis, 1984] J. Tsitsiklis. Problems in decentralized decision-making and compu-
tation. PhD thesis, Department of EECS, MIT, 1984.

[Wang et al., 2006] D. Wang, Q. Zhang, and J. Liu. Partial network coding: Theory
and application for continuous sensor data collection. Fourteenth IEEE Interna-
tional Workshop on Quality of Service (IWQoS), 2006.

133



BIBLIOGRAPHY

[Wang et al., 2007] W. Wang, M. Garofalakis, and K. Ramchandran. Distributed
sparse random projections for refinable approximation. In IEEE/ACM Int. Sym-
posium on Information Processing in Sensor Networks (IPSN), 2007.

[Weatherspoon and Kubiatowicz, 2002a] Hakim Weatherspoon and John D. Kubia-
towicz. Erasure coding vs. replication: a quantitiative comparison. In Proc. IPTPS,
2002.

[Weatherspoon and Kubiatowicz, 2002b] Hakim Weatherspoon and John D. Kubia-
towicz. Erasure coding vs. replication: a quantitiative comparison. In Proc. IPTPS,
2002.

[Weatherspoon et al., 2005] H. Weatherspoon, Byung-Gon Chun, Chiu Wah So, and
John Kubiatowicz. Long-term data maintenace in wide-area storage systems: A
quantitative approach. Technical report, UC Berkeley, UCB/CSD-05-1404, July
2005.

[Wiedemann, 1986] D. H. Wiedemann. Solving sparse linear equations over finite
fields. In IEEE Transactions on Information Theory, 1986.

[Wu and Li, 2006] C. Wu and B. Li. Echelon: Peer-to-peer network diagnosis with
network coding. Fourteenth IEEE International Workshop on Quality of Service
(IWQoS), 2006.

[Wu et al., 2007] Y. Wu, A. G. Dimakis, and K. Ramchandran. Deterministic regen-
erating codes for distributed storage. In Allerton Conference on Control, Comput-
ing, and Communication, Urbana-Champaign, IL, September 2007.

[Wu, 2006] Y. Wu. On constructive multi-source network coding. In International
Symposium on Information Theory (ISIT), July 2006.

[Xiao et al., 2005] L. Xiao, S. Boyd, and S. Lall. A scheme for asynchronous dis-
tributed sensor fusion based on average consensus. In 2005 Fourth International
Symposium on Information Processing in Sensor Networks, 2005.

[Xu and Bruck, 1999] L. Xu and J. Bruck. X-code: MDS array codes with optimal
encoding. IEEE Trans. on Information Theory, 45:272–276, January 1999.

134


	Introduction
	Outline and Contributions
	Preliminaries on Coding

	Decentralized Erasure Codes
	Introduction
	Decentralized Erasure Codes
	Analysis and Proofs
	Sensor Network Scenarios

	The Repair Problem
	Introduction
	Background and Related Work
	Analysis
	Evaluation
	Analysis and Proofs

	Geographic Gossip
	Introduction
	Problem formulation and main results
	Analysis for Regular Networks
	Analysis for Random Geometric Graphs
	Simulations
	Discussion

	Path Averaging
	Introduction
	Background and Metrics
	Path averaging algorithms
	Analysis
	Appendix

	Conclusions and Future work
	Distributed Storage
	Distributed information processing

	Bibliography

