
Auto-tuning Performance on Multicore Computers

Samuel Webb Williams

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2008-164

http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-164.html

December 17, 2008

Copyright 2008, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Auto-tuning Performance on Multicore Computers

by

Samuel Webb Williams

B.S. (Southern Methodist University) 1999
B.S. (Southern Methodist University) 1999

M.S. (University of California, Berkeley) 2003

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

GRADUATE DIVISION

of the

UNIVERSITY OF CALIFORNIA, BERKELEY

Committee in charge:
Professor David A. Patterson, Chair

Professor Katherine Yelick
Professor Sara McMains

Fall 2008

Auto-tuning Performance on Multicore Computers

Copyright 2008
by

Samuel Webb Williams

1

Abstract
Auto-tuning Performance on Multicore Computers

by
Samuel Webb Williams

Doctor of Philosophy in Computer Science
University of California, Berkeley

Professor David A. Patterson, Chair

For the last decade, the exponential potential of Moore’s Law has been squan-
dered in the effort to increase single thread performance, which is now limited by the
memory, instruction, and power walls. In response, the computing industry has boldly
placed its hopes on the multicore gambit. That is, abandon instruction-level parallelism
and frequency-scaling in favor of the exponential scaling of the number of compute cores
per microprocessor. The massive thread-level parallelism results in tremendous potential
performance, but demands efficient parallel programming — a task existing software tools
are ill-equipped for. We desire performance portability — the ability to write a program
once and not only have it deliver good performance on the development computer, but on
all multicore computers today and tomorrow.

This thesis accepts for fact that multicore is the basis for all future computers.
Furthermore, we regiment our study by organizing it around the computational patterns
and motifs as set forth in the Berkeley View. Although domain experts may be extremely
knowledgeable on the mathematics and algorithms of their fields, they often lack the de-
tailed computer architecture knowledge required to achieve high performance. Forthcoming
heterogeneous architectures will exacerbate the problem for everyone. Thus, we extend
the auto-tuning approach to program optimization and performance portability to the
menagerie of multicore computers. In an automated fashion, an auto-tuner will explore
the optimization space for a particular computational kernel of a motif on a particular com-
puter. In doing so, it will determine the best combination of algorithm, implementation,
and data structure for the combination of architecture and input data.

We implement and evaluate auto-tuners for two important kernels: Lattice Boltz-
mann Magnetohydrodynamics (LBMHD) and sparse matrix-vector multiplication (SpMV).
They are representative of two of the computational motifs: structured grids and sparse
linear algebra. To demonstrate the performance portability that our auto-tuners deliver, we
selected an extremely wide range of architectures as an experimental test bed. These include
conventional dual- and quad-core superscalar x86 processors both with and without inte-
grated memory controllers. We also include the rather unconventional chip multithreaded
(CMT) Sun Niagara2 (Victoria Falls) and the heterogeneous, local store-based IBM Cell
Broadband Engine. In some experiments we sacrifice the performance portability of a com-
mon C representation, by creating ISA-specific auto-tuned versions of these kernels to gain
architectural insight. To quantify our success, we created the Roofline model to perform a
bound and bottleneck analysis for each kernel-architecture combination.

Despite the common wisdom that LBMHD and SpMV are memory bandwidth-
bound, and thus nothing can be done to improve performance, we show that auto-tuning

2

consistently delivers speedups in excess of 3× across all multicore computers except the
memory-bound Intel Clovertown, where the benefit was as little as 1.5×. The Cell pro-
cessor, with its explicitly managed memory hierarchy, showed far more dramatic speedups
of between 20× and 130×. The auto-tuners includes both architecture-independent opti-
mizations based solely on source code transformations and high-level kernel knowledge, as
well as architecture-specific optimizations like the explicit use of single instruction, multiple
data (SIMD) extensions or the use Cell’s DMA-based memory operations. We observe that
the these ISA-specific optimizations are becoming increasingly important as architectures
evolve.

Professor David A. Patterson
Dissertation Committee Chair

i

To those who always believed in me,
even when I didn’t.

ii

Contents

List of Figures vii

List of Tables xi

List of symbols xiii

1 Introduction 1

2 Motivation and Background 5
2.1 Why Optimize for Performance? . 5
2.2 Trends in Computing . 6

2.2.1 Moore’s Law . 6
2.2.2 Frequency and Power . 7
2.2.3 Single Thread Performance . 7
2.2.4 The Multicore Gambit . 7
2.2.5 DRAM Bandwidth . 9
2.2.6 DRAM Latency . 9
2.2.7 Cache Coherency . 9
2.2.8 Productivity, Programmers, and Performance 10

2.3 Dwarfs, Patterns, and Motifs . 10
2.3.1 The Berkeley View . 11
2.3.2 The Case for Patterns . 11
2.3.3 The Case for Motifs . 12

2.4 The Case for Auto-tuning . 13
2.4.1 An Introduction to Auto-tuning . 13
2.4.2 Auto-tuning the Dense Linear Algebra Motif 17
2.4.3 Auto-tuning the Spectral Motif . 19
2.4.4 Auto-tuning the Particle Method Motif 20

2.5 Summary . 21

3 Experimental Setup 23
3.1 Architecture Overview . 23

3.1.1 Computers Used . 23
3.1.2 Memory Hierarchy . 26
3.1.3 Interconnection Topology . 29

iii

3.1.4 Coping with Memory Latency . 31
3.1.5 Coherency . 34

3.2 Programming Models, Languages and Tools 36
3.2.1 Programming Model . 36
3.2.2 Strong Scaling . 36
3.2.3 Barriers . 37
3.2.4 Affinity . 39
3.2.5 Compilers . 39
3.2.6 Performance Measurement Methodology 40
3.2.7 Program Structure . 40

3.3 Summary . 45

4 Roofline Performance Model 46
4.1 Related Work . 47
4.2 Performance Metrics and Related Terms . 48

4.2.1 Work vs. Performance . 48
4.2.2 Arithmetic Intensity . 49

4.3 Näıve Roofline . 50
4.4 Expanding upon Communication . 52

4.4.1 Cache Coherency . 52
4.4.2 DRAM Bandwidth . 53
4.4.3 DRAM Latency . 53
4.4.4 Cache Line Spatial Locality . 54
4.4.5 Putting It Together: Bandwidth Ceilings 54

4.5 Expanding upon Computation . 57
4.5.1 In-Core Parallelism . 57
4.5.2 Instruction Mix . 59
4.5.3 Putting It Together: In-Core Ceilings 60

4.6 Expanding upon Locality . 62
4.6.1 The Three C’s of Caches . 63
4.6.2 Putting It Together: Arithmetic Intensity Walls 64

4.7 Putting It Together: The Roofline Model 65
4.7.1 Computation, Communication, and Locality 65
4.7.2 Qualitative Assessment of the Roofline Model 66
4.7.3 Interaction with Software Optimization 67

4.8 Extending the Roofline . 70
4.8.1 Impact of Non-Pipelined Instructions 70
4.8.2 Impact of Branch Mispredictions . 71
4.8.3 Impact of Non-Unit Stride Streaming Accesses 71
4.8.4 Load Balance . 72
4.8.5 Computational Complexity and Execution Time 73
4.8.6 Other Communication Metrics . 74
4.8.7 Other Computation Metrics . 75
4.8.8 Lack of Overlap . 76
4.8.9 Combining Kernels . 78

iv

4.9 Interaction with Performance Counters . 78
4.9.1 Architectural-specific vs. Runtime 78
4.9.2 Arithmetic Intensity . 78
4.9.3 True Bandwidth Ceilings . 79
4.9.4 True In-Core Performance Ceilings 80
4.9.5 Load Balance . 81
4.9.6 Multiple Rooflines . 82

4.10 Summary . 82

5 The Structured Grid Motif 83
5.1 Characteristics of Structured Grids . 83

5.1.1 Node Valence . 84
5.1.2 Topological Dimensionality and Periodicity 85
5.1.3 Composition and Recursive Bisection 86
5.1.4 Implicit Connectivity and Addressing 88
5.1.5 Geometry . 89

5.2 Characteristics of Computations on Structured Grids 90
5.2.1 Node Data Storage and Computation 90
5.2.2 Boundary and Initial Conditions . 92
5.2.3 Code Structure and Parallelism . 94
5.2.4 Memory Access Pattern and Locality 97

5.3 Methods to Accelerate Structured Grid Codes 99
5.3.1 Cache Blocking . 100
5.3.2 Time Skewing . 100
5.3.3 Multigrid . 102
5.3.4 Adaptive Mesh Refinement (AMR) 103

5.4 Conclusions . 103

6 Auto-tuning LBMHD 106
6.1 Background and Details . 106

6.1.1 LBMHD Usage . 107
6.1.2 LBMHD Data Structures . 108
6.1.3 LBMHD Code Structure . 108
6.1.4 Local Store-Based Implementation 110

6.2 Multicore Performance Modeling . 111
6.2.1 Degree of Parallelism within collision() 111
6.2.2 collision() Arithmetic Intensity 112
6.2.3 Mapping of LBMHD onto the Roofline model 112
6.2.4 Performance Expectations . 113

6.3 Auto-tuning LBMHD . 115
6.3.1 stream() Parallelization . 115
6.3.2 collision() Parallelization . 116
6.3.3 Lattice-Aware Padding . 119
6.3.4 Vectorization . 121
6.3.5 Unrolling/Reordering . 124

v

6.3.6 Software Prefetching and DMA . 125
6.3.7 SIMDization (including streaming stores) 126
6.3.8 Smaller Pages . 129

6.4 Summary . 129
6.4.1 Initial Performance . 131
6.4.2 Speedup via Auto-Tuning . 131
6.4.3 Performance Comparison . 133

6.5 Future Work . 134
6.5.1 Alternate Data Structures . 134
6.5.2 Alternate Loop Structures . 135
6.5.3 Time Skewing . 135
6.5.4 Auto-tuning Hybrid Implementations 136
6.5.5 SIMD Portability . 136

6.6 Conclusions . 136

7 The Sparse Linear Algebra Motif 138
7.1 Sparse Matrices . 138
7.2 Sparse Kernels and Methods . 140

7.2.1 BLAS counterpart kernels . 140
7.2.2 Direct Solvers . 142
7.2.3 Iterative Solvers . 142
7.2.4 Usage: Finite Difference Methods . 142

7.3 Sparse Matrix Formats . 144
7.3.1 Coordinate (COO) . 145
7.3.2 Compressed Sparse Row (CSR) . 145
7.3.3 ELLPACK (ELL) . 146
7.3.4 Skyline (SKY) . 147
7.3.5 Symmetric and Hermitian Optimizations 147
7.3.6 Summary . 148

7.4 Conclusions . 149

8 Auto-tuning Sparse Matrix-Vector Multiplication 151
8.1 SpMV Background and Related Work . 151

8.1.1 Standard Implementation . 152
8.1.2 Benchmarking SpMV . 152
8.1.3 Optimizations . 153
8.1.4 OSKI . 154
8.1.5 OSKI’s Failings and Limitations . 155

8.2 Multicore Performance Modeling . 156
8.2.1 Parallelism within SpMV . 156
8.2.2 SpMV Arithmetic Intensity . 157
8.2.3 Mapping SpMV onto the Roofline model 158
8.2.4 Performance Expectations . 158

8.3 Matrices for SpMV . 160
8.4 Auto-tuning SpMV . 160

vi

8.4.1 Maximizing In-core Performance . 162
8.4.2 Parallelization, Load Balancing, and Array Padding 162
8.4.3 Exploiting NUMA . 165
8.4.4 Software Prefetching . 166
8.4.5 Matrix Compression . 168
8.4.6 Cache, Local Store, and TLB blocking 171

8.5 Summary . 177
8.5.1 Initial Performance . 179
8.5.2 Speedup via Auto-Tuning . 179
8.5.3 Performance Comparison . 181

8.6 Future Work . 182
8.6.1 Minimizing Traffic and Hiding Latency (Vectors) 182
8.6.2 Minimizing Memory Traffic (Matrix) 183
8.6.3 Better Heuristics . 186

8.7 Conclusions . 187

9 Insights and Future Directions in Auto-tuning 188
9.1 Insights from Auto-tuning Experiments . 188

9.1.1 Observations and Insights . 189
9.1.2 Implications for Auto-tuning . 191
9.1.3 Implications for Architectures . 193
9.1.4 Implications for Algorithms . 195

9.2 Broadening Auto-tuning: Motif Kernels . 195
9.2.1 Structured Grids . 195
9.2.2 Sparse Linear Algebra . 195
9.2.3 N-body . 197
9.2.4 Circuits . 198
9.2.5 Graph Traversal and Manipulation 200

9.3 Broadening Auto-tuning: Primitives . 201
9.4 Broadening Auto-tuning: Motif Frameworks 201
9.5 Composition of Motifs . 202
9.6 Conclusions . 203

10 Conclusions 205

Bibliography 208

vii

List of Figures

2.1 A high-level conceptualization of the pattern language 12
2.2 Integration of the Motifs into the pattern language 13
2.3 ASV triangles for the conventional and auto-tuned approaches to programming. 14
2.4 High-level discretization of the auto-tuning optimization space. 15
2.5 Visualization of three different strategies for exploring the optimization space 16
2.6 Reference C implementation and visualization of the access pattern for C=A×B,

where A, B, and C are dense, double-precision matrices. 18
2.7 Reference C implementation and visualization of the access pattern for C=A×B

using 2×2 register blocks. 19
2.8 Visualization of the cache oblivious decomposition of FFTs into smaller FFTs

exemplified by FFTW. 19

3.1 Basic Connection Topologies . 29
3.2 Shared memory barrier implementation . 38
3.3 Basic benchmark flow . 41
3.4 The five computers used throughput this work 44

4.1 Näıve Roofline Models based on Stream bandwidth and peak double-precision
FLOP/s . 51

4.2 Roofline Model with bandwidth ceilings . 55
4.3 Adding in-core performance ceilings to the Roofline Model. Note the log-log

scale. 61
4.4 Alternately adding instruction mix ceilings to the Roofline Model. Note the

log-log scale. 62
4.5 Roofline model showing in-core performance ceilings 63
4.6 Impact of cache organization on arithmetic intensity 64
4.7 Complete Roofline Model for memory-intensive floating-point kernels 66
4.8 Interplay between architecture and optimization 68
4.9 How different types of optimizations remove specific ceilings constraining

performance . 69
4.10 Impact of non-pipelined instructions on performance 71
4.11 Impact of memory and computation imbalance 73
4.12 Execution time-oriented Roofline Models . 74
4.13 Using Multiple Roofline Models to understand performance 75

viii

4.14 Timing diagram comparing perfect or no overlap of communication and com-
putation . 76

4.15 Roofline Model with and without overlap of communication or computation 77
4.16 Bandwidth Runtime Roofline Model . 80
4.17 In-core Runtime Roofline Model . 81

5.1 Three different 2D node valences . 84
5.2 Three different 3D node valences . 85
5.3 Four different 2D geometries . 86
5.4 Composition of Cartesian and hexagonal meshes 87
5.5 Recursive bisection of an icosahedron and projection onto a sphere 87
5.6 Enumeration of nodes on different topologies and periodicities 88
5.7 Mapping of a rectangular Cartesian topological grid to different physical

coordinates . 89
5.8 5- and 9-point stencils on scalar, vector, and lattice grids 92
5.9 2D rectangular Cartesian grids . 92
5.10 Ghost zones created for efficient parallelization. 94
5.11 Visualization of an upwinding stencil. the loop variable “d” denotes the diag-

onal as measured from the top left corner. Note each diagonal is dependent
on the previous two diagonals. Black nodes have been updated by the sweep,
gray ones have not. 95

5.12 Red-Black Gauss-Seidel coloring and sample code. 95
5.13 Jacobi method visualization and sample code. The stencil reads from the top

grid, and writes to the bottom one. 96
5.14 Grid restriction stencil. The stencil reads from the top grid, and writes to

the bottom one. 96
5.15 A simple 2D 5-point stencil on a scalar grid 97
5.16 A simple 2D 5-point stencil on a 2 component vector grid 98
5.17 A simple 2D 5-point stencil on a 2 component vector grid 99
5.18 A simple D2Q9 lattice . 100
5.19 Visualization of time skewing applied to a 1D stencil 101
5.20 Example of the multigrid V-cycle. 102
5.21 Visualization of the local refinement in AMR 103
5.22 Principle components for a structured grid pattern language. 104

6.1 LBMHD simulates magnetohydrodynamics via a lattice boltzmann method
using both a momentum and magnetic distribution 108

6.2 Visualization from an astrophysical LBMHD simulation 109
6.3 LBMHD data structure for each time step, where each pointer refers to a N3

3D grid. 109
6.4 The code structure of the collision function within the LBMHD application. 110
6.5 Expected range of LBMHD performance across architectures independent of

problem size . 114
6.6 LBMHD parallelization scheme . 117
6.7 Initial LBMHD performance . 118

ix

6.8 Mapping of a stencil to a cache . 120
6.9 LBMHD performance after a lattice-aware padding heuristic was applied. . 121
6.10 The code structure of the vectorized collision function within the LBMHD

application. 122
6.11 Comparison of traditional LBMHD implementation with a vectorized version 123
6.12 Impact of increasing vector length on cache and TLB misses for the Santa

Rosa Opteron . 124
6.13 LBMHD performance after loop restructuring for vectorizations was added

to the code generation and auto-tuning framework. 125
6.14 Three examples of unrolling and reordering for DLP 126
6.15 LBMHD performance after explicit SIMDization was added to the code gen-

eration and auto-tuning framework. 128
6.16 LBMHD performance before and after tuning 131
6.17 Actual LBMHD performance imposed over a Roofline model of LBMHD . . 132
6.18 Alternate array of structures LBMHD data structure for each time step . . 134
6.19 Hybrid LBMHD data structure for each time step 135

7.1 Two sparse matrices with the key terms annotated. 140
7.2 Dataflow representations of SpMV and SpTS 141
7.3 Dense matrix storage . 145
7.4 Coordinate format . 146
7.5 Compressed Sparse Row format . 146
7.6 ELLPACK format . 147
7.7 Skyline format . 148
7.8 Symmetric storage in CSR format . 148

8.1 Out-of-the-box SpMV implementation for matrices stored in CSR. 152
8.2 Matrix storage in BCSR format . 153
8.3 Four possible BCSR register blockings of a matrix 154
8.4 Expected range of SpMV performance imposed over a Roofline model of SpMV159
8.5 Matrix suite used during auto-tuning and evaluation sorted by category, then

by the number of nonzeros per row . 161
8.6 Matrix Parallelization . 163
8.7 Array Padding . 164
8.8 Näıve serial and parallel SpMV performance. 165
8.9 SpMV performance after exploitation of NUMA and auto-tuned software

prefetching. 166
8.10 SpMV performance after matrix compression. 170
8.11 Conventional Cache Blocking . 172
8.12 Thread and Sparse Cache Blocking . 173
8.13 Orchestration of DMAs and double buffering on the Cell SpMV implementation.175
8.14 SpMV performance after cache, TLB, and local store blocking were imple-

mented . 176
8.15 Median SpMV performance before and after tuning. 179

x

8.16 Actual SpMV performance for the dense matrix in sparse format imposed
over a Roofline model of SpMV . 180

8.17 Exploiting Symmetry and Matrix Splitting 184
8.18 Avoiding zero fill through bit masks . 185

9.1 Visualization of three different strategies for exploring the optimization space 192
9.2 Potential stacked chip processor architectures 194
9.3 Execution strategies for upwinding stencils 196
9.4 Charge deposition operation in PIC codes 197
9.5 Using an Omega network for bit permutations 199
9.6 Composition of parallel motifs . 202

xi

List of Tables

2.1 Comparison of traditional compiler and auto-tuning capabilities 17

3.1 Architectural summary of Intel Clovertown, AMD Opterons, Sun Victoria
Falls, and STI Cell multicore chips . 24

3.2 Summary of cache hierarchies used on the various computers 27
3.3 Summary of local store hierarchies used on the various computers 28
3.4 Summary of TLB hierarchies in each core across on the various computers . 28
3.5 Summary of DRAM types and interconnection topologies by computer . . . 30
3.6 Summary of inter-socket connection types and topologies by computer . . . 31
3.7 Summary of hardware stream prefetchers categorized by where the miss is

detected . 32
3.8 Decode of an 8-bit processor ID into physical thread, core, and socket . . . 39
3.9 Compilers and compiler flags used throughout this work 40
3.10 Cycle counter implementations. 42

4.1 Arithmetic Intensities for example kernels from the Seven Dwarfs 49
4.2 Number of functional units × latency by type by architecture 58
4.3 Instruction issue bandwidth per core . 59

5.1 Parallelism, Storage, and Spatial Locality by method for a 3D cubical prob-
lem of initial size N3. In multigrid, the restriction and prolongation operators
always appear together and in conjunction with one of four relaxation oper-
ators. 97

6.1 Structured grid taxonomy applied to LBMHD. 107
6.2 Degree of parallelism for a N3 grid . 112
6.3 Initial LBMHD peak floating-point and memory bandwidth performance . . 117
6.4 LBMHD peak floating-point and memory bandwidth performance after array

padding . 120
6.5 LBMHD peak floating-point and memory bandwidth performance after vec-

torization . 126
6.6 LBMHD peak floating-point and memory bandwidth performance after full

auto-tuning . 129
6.7 LBMHD optimizations employed and their optimal parameters 130

xii

7.1 Summary of the application of sparse linear algebra to the finite difference
method . 144

7.2 Summary of storage formats for sparse matrices relevant in the multicore era 149

8.1 Degree of parallelism for a N×N matrix with NNZ nonzeros stored in two
different formats . 157

8.2 Initial SpMV peak floating-point and memory bandwidth performance for
the dense matrix stored in sparse format . 164

8.3 SpMV floating-point and memory bandwidth performance for the dense ma-
trix stored in sparse format after auto-tuning for NUMA and software prefetch-
ing . 167

8.4 SpMV floating-point and memory bandwidth performance for the dense ma-
trix stored in sparse format after the addition of the matrix compression
optimization . 171

8.5 SpMV floating-point and memory bandwidth performance for the dense ma-
trix stored in sparse format after the addition of cache, local store, and TLB
blocking. 177

8.6 Auto-tuned SpMV optimizations employed by architecture and grouped by
Roofline optimization category: maximizing memory bandwidth, minimizing
total memory traffic, and maximizing in-core performance 178

8.7 Memory traffic as a function of storage. 183

xiii

List of symbols

AES Advanced Encryption Standard
ALU Arithmetic Logic Unit
AMR Adaptive Mesh Refinement
ASV Alberto Sangiovanni-Vincentelli
ATLAS Automatically Tuned Linear Algebra Software
AVX Advanced Vector Extensions (Intel)
BCOO Blocked Coordinate (sparse matrix format)
BCSR Blocked Compressed Sparse Row (sparse matrix format)
BIOS Basic Input/Output System
BLAS Basic Linear Algebra Subroutines
CFD Computational Fluid Dynamics
CG Conjugate Gradient
CMOS Complementary Metal-Oxide-Semiconductor
CMT Chip Multithreading (Multicore + Multithreading)
COO Coordinate (sparse matrix format)
CPU Central Processing Unit
CRC Cyclic Redundancy Check
CSC Compressed Sparse Column (sparse matrix format)
CSR Compressed Sparse Row (sparse matrix format)
CUDA Compute Unified Device Architecture (NVIDIA)
DAG Directed Acyclic Graph
DDR Double Data Rate (DRAM)
DGEMM Double-Precision General Matrix-Matrix Multiplication
DIB Dual Independent (front side) Bus
DIMM Dual In-line Memory Module (DRAM)
DIVPD Divide, Parallel, Double-Precision (an SSE instruction)
DLP Data-Level Parallelism
DMA Direct Memory Access
DRAM Dynamic Random Access Memory
ECC Error-Correcting Codes
EIB Element Interconnect Bus (Cell)
ELL Sparse matrix format used by ELLPACK
FBDIMM Fully Buffered DIMM
FFT Fast Fourier Transform

xiv

FFTW Fastest Fourier Transform in the West
FMA Fused Multiply-Add
FMM Fast Multipole Method
FPU Floating-Point Unit
FSB Front Side Bus
GCSR General Compressed Sparse Row
GPU Graphics Processing Unit
GTC Gyrokinetic Toroidal Code
HPC High Performance Computing
ILP Instruction-Level Parallelism
IRAM Intelligent RAM (a chip from Berkeley)
ISA Instruction Set Architecture
KCCA Kernel Canonical Correlation Analysis
LBM Lattice-Boltzmann Method
LBMHD Lattice-Boltzmann Magnetohydrodynamics
LU LU Factorization (Lower-Upper Triangular)
MACC Multiply Accumulate
MCH Memory Controller Hub
MCM Multi-Chip Module
MESI Cache Coherency Protocol
MFC Memory Flow Controller (Cell)
MHD Magnetohydrodynamics
MLP Memory-Level Parallelism
MOESI Cache Coherency Protocol
MPI Message Passing Interface
MPICH A Free, Portable Implementation of MPI
MT Multithreading
NNZ Number of Non-Zeros in a Sparse Matrix
NUMA Non-Uniform Memory Access
OSKI Optimized Sparse Kernel Interface
PhiPAC Portable High Performance Ansi C
PDE Partial Differential Equation
PIC Particle in Cell code
PPE PowerPC Processing Element (Cell)
QCD Quantum Chromodynamics
RGB Red, Green, Blue
RISC Reduced Instruction Set Computing
RTL Register Transfer Language
SBCSR Sparse Blocked Compressed Sparse Row
SIMD Single-Instruction, Multiple-Data
SIP System In Package approach to integration
SKY Skyline Sparse Matrix Format
SMP Shared Memory Parallel (A multiprocessor computer)
SOR Successive Over-Relaxation

xv

SPD Symmetric, Positive Definite
SPE Synergistic Processing Element (Cell)
SPMD Single-Program, Multiple-Data
SpMV Sparse Matrix-Vector Multiplication
SpTS Sparse Triangular Solve
SPU Synergistic Processing Unit (Cell)
SSE Streaming SIMD Extensions (Intel)
STI Sony-Toshiba-IBM — the partnership that produced Cell
TLB Translation Lookaside Buffer
TLP Thread-Level Parallelism
UMA Uniform Memory Access
UPC Unified Parallel C
VF Victoria Falls (multisocket Niagara2 SMP)
VIS Visual Instruction Set (Sun’s SIMD)
VL Vector Length
VLIW Very Long Instruction Word
VLSI Very Large Scale Integration
VMX PowerPC SIMD unit (AltiVec)
WB Write-Back cache
WT Write-Through cache
XDR RAMBUS eXtreme Data Rate DRAM

xvi

Acknowledgments

First, I want to thank my thesis advisor, Dave Patterson, for his research guid-
ance, exuberance, patience, and long-term career advice. These were lessons that cannot
be learned in any classroom, but I’ll remember them forever.

Second, I’d like to thank Kathy Yelick, Sara McMains, and Jim Demmel for agree-
ing to sit on my dissertation committee. Their feedback after the qualification exam and
throughout the last few years has been invaluable.

Lawrence Berkeley National Laboratory provided the means for a fundamental
change in the direction of my research when they offered funding in January of 2005. Al-
though the funding is hugely appreciated, the greatest benefit was the opportunity to work
with researchers like Leonid Oliker and John Shalf. Working with them for the last four
years has been the greatest boost to my career, and I hope this will continue in the forth-
coming years.

I’d like to thank the Berkeley’s BeBOP group for their support including several
members in particular. I’ve had a number of extremely productive discussions with Kaushik
Datta, Shoaib Kamil, and Rajesh Nishtala, in which we would flush out the ins and outs
of half-baked or random ideas on auto-tuning and parallel computing. In addition, my
telecons and discussions with Rich Vuduc were incredibly useful.

My research at Berkeley began in the IRAM project. Working in this group pro-
vided many of the fundamentals that carried me into my work on multicore processors. I
wish to express my gratitude to all members, but especially Christos Kozyrakis and Joe
Gebis. Over the years, our lively and engaging conversations ranged from thought experi-
ments in computer architecture to geopolitics to quoting the Simpsons.

I am deeply indebted to the Par Lab / RADLab sysadmins — Jon Kuroda, Mike
Howard, and Jeff Anderson-Lee — for their support and implementation of my seemingly
unreasonable and frequent admin requests. Moreover, they performed a miraculous job
keeping our diverse preproduction hardware up and running.

I’d like to thank the many researchers within the Parallel Computing Laboratory,
but several deserve individual acknowledgment. Over the summer of 2008, Andrew Water-
man was incredibly helpful in flushing out the details of the Roofline model and associated
paper. In addition, my discussions with Heidi Pan, Jike Chong, and Bryan Catanzaro over
the years provided the depth and clarity I needed to both explain auto-tuning to the laymen,
inspire many of the future directions in auto-tuning, and garner a broader understanding
of the applications of parallel computing.

I would like to thank Sun Microsystems for their donations of four generations
of Niagara computers. The rapid increase in thread-level parallelism drove much of the
work presented in this thesis. Similarly, I would like to thank IBM, the Forschungszentrum

xvii

Jülich, and AMD for remote access to their newest Cell blades and Opteron processors.
Moreover, I specifically wish to thank a number of industrial contacts, including Michael
Perrone, Fabrizio Petrini, Peter Hofstee, Denis Sheahan, Sumti Jairath, Ram Kunda, Brian
Waldecker, Joshua Mora, Allan Knies, Anwar Ghuloum, and David Levinthal for their will-
ingness to answer my detailed questions or put me into contact with those who can. Finally,
I wish to acknowledge the Millennium Cluster group for access to the PSI cluster as well as
installing and maintaining the Niagara and Opteron machines.

Finally, I’d like to thank my parents, Richard and Kay, and my brother, Joe, for
their enduring love and support. They have inspired and spurred me to achieve.

This research was supported by the ASCR Office in the DOE Office of Science un-
der contract number DE-AC02-05CH11231, by Microsoft and Intel funding through award
#20080469, and by matching funding by U.C. Discovery through award #DIG07-10227.

1

Chapter 1

Introduction

Architectures developed over the last decade have squandered the promises of
Moore’s Law by expending transistors to increase instruction- and data-level parallelism —
not to mention cache sizes — in the hope that increases in these linearly translates into
increases in single-thread performance. During this period, architectural innovation was
constrained by assumptions that the Instruction Set Architecture (ISA) must be backward
compatible, that compiled code must run transparently on successive generations of pro-
cessors, and that applications must be single-threaded. In this dissertation we diverge from
tradition by combining three novel concepts in architecture, tools, and program conceptu-
alization.

First, we accept multicore as the architectural paradigm of the future. Multicore
integrates two or more discrete processing cores into a single socket. Significant innovation
can still be made in how one interconnects these cores with each other, main memory, and
I/O. Multicore is the only viable solution capable of translating the potential of Moore’s
law into exponential increasing performance by exponentially increasing the number of
cores. Multicore is area efficient, power efficient, and VLSI-friendly. Its biggest limitation
is the fact that software must be explicitly parallelized into multiple threads to exploit
multiple cores. As compilers have failed at this, the responsibility will fall on domain and
architectural expert programmers writing applications, libraries, or frameworks.

Second, we exploit the concept of computational motifs as set forth in the Berkeley
View [7] to structure our work. Moreover, motifs abstract away rigid implementations
and algorithms in favor of a flexible implementation constrained only by the mathematical
problem to be solved. Such an approach gives us the freedom to innovate in software to
keep pace with the innovations in multicore architecture. In the future, extensible motif
frameworks or libraries will be created by domain experts and used by application framework
programmers.

Finally, given the breadth and continuing evolution of multicore architectures, any
single implementation of a kernel of a motif optimal for one architecture will be obsolete
on its successors. To that end, we embrace automated tuning or auto-tuning as a means
by which we can write one implementation of a kernel and achieve good performance on
virtually any multicore architecture today or tomorrow.

Thus, this thesis applies the auto-tuning methodology to a pair of kernels from

2

two different motifs — Lattice-Boltzmann Magnetohydrodynamics (LBMHD) and Sparse
Matrix-Vector Multiplication (SpMV). We evaluate the performance portability of this ap-
proach by benchmarking the resultant auto-tuned kernels on six multicore microarchitec-
tures. Due to the diversity of architectures and kernels, we qualify our results using the
Roofline model to bound performance.

Thesis Contributions

The following are the primary contributions of this thesis.

• We create the Roofline model, a visually-intuitive graphical representation of a ma-
chine’s performance characteristics. Although we only define the parameters relevant
for this dissertation, we outline how one could extend the Roofline model by adding
additional ceilings, using other communication or computation metrics, or even how
one could use performance counters to generate a runtime Roofline model.

• We expand auto-tuning to the structured grid motif. To that end, we select one of
the more challenging structured grid kernels — Lattice-Boltzmann Magnetohydrody-
namics (LBMHD) — to demonstrate our approach.

• As all future machines will be multicore, and existing auto-tuners optimize single-
threaded performance, we introduce techniques for auto-tuning multicore architec-
tures. Note, this is a fundamentally different approach from tuning single-thread
performance and then running the resultant code on a multicore machine. Motivated
by trends in computing, we believe heuristics are an effective means of tackling the
search space explosion problem for kernels with limited locality. We apply this mul-
ticore auto-tuning approach to both the LBMHD and SpMV kernels on six multicore
architectures.

• Fourth, we analyze the breadth of multicore architectures using these two auto-tuned
kernels. We provide insights that can be exploited by architects and algorithm de-
signers alike. For example, performance can be easily attained using local store-based
architectures. Moreover, although multithreaded architectures greatly simplify many
aspects of program optimization, they place significant demands on cache capacity
and associativity.

• Finally, we discuss future directions in auto-tuning. This spans four axes: making
auto-tuning more efficient, expanding auto-tuning to kernels in other motifs, achieving
generality within each motif, and ideas on composing different motifs in an application.

Thesis Outline

The following is an outline of the thesis:
Chapter 2 provides context, motivation, and background for this thesis. After

examining the trends in computing, it discusses the productivity-minded — and Berkeley
View-inspired — motifs as well as the performance-oriented concept of auto-tuning. It

3

then coalesces these concepts into the premise for this work: motif-oriented auto-tuning of
kernels on multicore architectures.

Chapter 3 discusses the experimental setup. This setup includes the computers
and novel architectural details, as well as the details and motivations of the selected pro-
gramming model, language, tools, and methodology.

Chapter 4 introduces the Roofline Performance Model. The Roofline Model uses
bound and bottleneck analysis to produce a visually-intuitive figure representing architec-
ture performance as a function of locality and utilized optimizations. We use the Roofline
model throughout the rest of this work to predict performance, qualify our results, and
quantify any further potential performance gains. Our discussion of the Roofline Model is
longer than required for this work because we believe the Roofline Model will have value
to performance-oriented programmers well beyond the scope of the kernels and auto-tuning
approach used in this thesis.

Chapter 5 expands upon one of the computational motifs introduced in Chapter 2,
namely the structured grid motif. It begins by describing the orthogonal characteristics of
structured grids and computations on structured grids. It finishes with a discussion of
methods by which one can accelerate operations on structured grids. By no means is
this chapter comprehensive, but it encapsulates far more than the knowledge required to
understand the next chapter.

Chapter 6 applies the auto-tuning technique to a structured grid-dominated appli-
cation — Lattice-Boltzmann Magnetohydrodynamics (LBMHD) — using the multisocket,
multicore shared-memory parallel computers (SMPs) introduced in Chapter 3. It begins
by modeling LBMHD using the Roofline Model introduced in Chapter 4. This provides
reasonable performance bounds and implies the requisite optimizations. The chapter then
proceeds with an incremental construction of a structured grid auto-tuner discussing the
motivation, implementation, and benefit for each optimization. Overall, we saw up to a
16-times increase in performance. It also compares and analyzes the multicore SMPs in the
context of LBMHD. Finally, the chapter concludes with future work and insights applicable
to auto-tuning other structured grid codes.

Reminiscent of Chapter 5, Chapter 7 expands upon the sparse linear algebra motif.
It begins by differentiating sparse linear algebra from its dense brethren. To that end, it
discusses the sparse BLAS kernels, as well as both direct and iterative sparse solvers. The
chapter proceeds with a discussion of how these kernels and methods are used in the finite
difference method. As a primer for the sparse matrix-vector multiplication (SpMV) case
study used in the next chapter, we first discuss a variety of sparse matrix formats likely to
survive into the multicore era.

Reminiscent of Chapter 6, Chapter 8 applies auto-tuning to SpMV on multicore
architectures. In begins with a case study of SpMV that includes an analysis of the reference
implementation as well as previous serial auto-tuning efforts. This is followed by sections
that use the Roofline Model to analyze SpMV and detail the matrices used as benchmark
data. The chapter then proceeds with an incremental construction of a multicore SpMV
auto-tuner discussing the motivation, implementation, and benefit for each optimization,
with the use of local stores delivering a 22× speedup over the reference PPE implementation.
It also compares and analyzes the multicore SMPs in the context of SpMV. Finally, the

4

chapter concludes with future work and insights applicable to auto-tuning other kernels in
the sparse linear algebra motif.

Chapter 9 integrates the results from auto-tuning individual kernels and discusses
insights for the entire structured grid and sparse motifs. Moreover, it examines the future
directions in auto-tuning including expanding auto-tuning to kernels from other motifs,
broadening auto-tuning to motif frameworks, as well as discussing ideas for making auto-
tuning more efficient.

Chapter 10 concludes this thesis with an executive summary of the contributions,
results, and ideas for possible future work.

5

Chapter 2

Motivation and Background

This thesis is focused on providing a productive means of attaining good perfor-
mance for a variety of computational motifs across the breadth and evolution of multicore
architectures. To that end, this chapter discusses the motivation for maximizing perfor-
mance or throughput as well as the requisite background material. Section 2.1 justifies
performance as the preeminent metric of success for this work, while Section 2.2 addresses
the trends in computing. Section 2.3 introduces dwarfs, patterns, and motifs. Moreover,
it dispels certain myths and misconceptions about them. Next, Section 2.4 introduces
auto-tuning and discusses previous attempts to optimize kernels from various motifs us-
ing auto-tuning. Finally, Section 2.5 unifies the patterns, motifs, and auto-tuning into a
productive performance solution given the trends in computing.

2.1 Why Optimize for Performance?

In high performance computing, jobs are executed in batched mode on a large
distributed memory machine composed of shared memory parallel (SMP) nodes. Each
node is composed of one or more sockets. As it is rare that every job will use the entire
machine, the machine is partitioned and jobs are run concurrently. Moreover, it is rare
that two jobs will share a single node, however. The primary metric of success for such
machines is aggregate throughput. Maximum aggregate throughput for a fixed hardware
configuration is attained by maximizing node performance. The latency, as measured by the
sum of the time a job spends queued and the time a job spends executing, is of secondary
concern to operators. Conversely, users demand low latency to maximize productivity in
the hypothesis-execution-analysis cycle. Although adding additional nodes can improve
throughput by reducing queue time, it costs both additional money and power. Opti-
mizing performance can reduce both queue time and execution time. At extreme scales,
doubling performance via doubling capacity is usually far less cost-effective than paying a
small number of programmers to optimize single-node performance and extract both higher
throughput and lower latency.

At the opposite end of the spectrum, in handheld or personal computing devices,
maintaining soft real-time constraints is often the metric of interest. However, as all personal
computing devices for the foreseeable future will be composed of multicore processors, they

6

can be conceived of as SMPs. As it is impossible to add additional nodes to attain soft
real-time performance, optimizing SMP performance is the only feasible solution.

Thus, we have chosen performance — that is, time to solution — as the metric
of success for this work. Moreover, we restrict ourselves to performance using an entire
shared memory parallel (SMP) node. However, we relax the constraints by allowing offline
optimization.

We acknowledge that both power and energy can be as important a metric as
performance. In general, we have observed that while increased application performance
may be accompanied by increases in total power. However, if the increase in application
performance exceeds the increase in power, the total energy required to solve said problem
has actually been reduced.

2.2 Trends in Computing

In this section, we examine several of the trends in computing. We limit this
examination to a single SMP. These trends act as constraints and guide us to our solution.

2.2.1 Moore’s Law

Moore’s Law [96] postulates that the number of transistors per cost-effective in-
tegrated circuit will double every two years. Each advance in process technology — a
technology node — reduces the transistor gate length by about 30%. If one accepts that all
other components will scale similarly, then the area required to re-implement an existing
design in the next process technology is halved. In practice, this perfect scaling has not
been achieved for CPUs since many not all design rules linearly scale with transistor gate
length. However, increased yields and wafer sizes has made it feasible to increase the chip
area. Thus, if density (transistors per mm2) increases by 70%, and chip area increases by
17%, then the total number of transistors per integrated circuit has doubled — a reasonable
path to fulfill Moore’s Law.

As silicon lattice constants are approximately half a nanometer, and transistors
must be at least dozens of atoms wide, the ultimate limit to transistor scaling is rapidly
approaching. Current transistor gate lengths are around 45nm. As such, there are perhaps
only four more technology nodes before planar scaling will completely fail. Moreover, it
will become increasingly unlikely that subsequent process technology nodes will deliver
quadratically smaller chips.

Stacked designs will stack multiple chips in a package and connect them with
through-silicon vias. This may provide a stopgap measure to supplement the demand for
increasing transistor counts, as technology nodes become more widely spaced in time. Per-
haps a new Moore’s law will account for smaller transistors, increased chip size, and in-
creasing number of chips per stack. Unfortunately, cost will likely scale with the number of
chips per stack. Thus, in the long term, a more efficient 3D technology implementation is
required.

7

2.2.2 Frequency and Power

On average, in the 1990s frequency doubled every 18 months. This rate, more
than any other factor, drove commentators to equate Moore’s law with ever increasing
performance. However, this increase in frequency was only achieved by allowing a steady
increase in power. Today, consumer chips are limited to between 80 and 120W. This limit
is the practical, cost-effective, range for air-cooling. The limit for liquid cooling is perhaps
twice this. Nevertheless, the green computing movement [62, 46] and mobile and embedded
computing demands will place ever increasing downward pressure on power. As such, power
and frequency will likely not increase in server processors, and will be forced steadily lower
in mobile environments.

Today, chip power often constitutes about half of an SMP’s total power. Moreover,
SMP server power will likely range from 300 to 500W. We don’t expect this to dramati-
cally change in the future. When scaling out, power will scale linearly with performance
capability.

2.2.3 Single Thread Performance

In the past, single thread performance has been the metric of interest. Over
the years, there have been numerous attempts to attain more instruction- or data-level
parallelism within a single thread. Additionally, much of Moore’s law has been diverted
into increasing the cache sizes in an effort to reduce average memory access time.

Superscalar processors have slowly grown to issue four to six instructions per
cycle. Much of this evolution has been constrained by the serial, fixed binary requirements
of personal computing. Dynamic discovery of instruction-level parallelism is not a power or
area-efficient solution. As such, there are severe constraints on the size of the out-of-order
window used in superscalar processors — typically less than 150 instructions. Coupled
with near flat increases in frequency and a lack of further ILP, single-threaded application
performance has nearly saturated [68].

As multimedia applications have become increasingly important over the last
decade, manufactures have scrambled to exploit some form of data-level parallelism. Vir-
tually all have embraced single-instruction, multiple-data (SIMD) instructions as the solu-
tion [41, 74, 75, 123]. In a little over 12 years, the x86 implementations will have increased
from 64-bit SIMD registers and datapaths to 256-bit SIMD registers and datapaths [74].
Doubling peak performance every 6 years is a very slow, but noticeable effect, especially in
the era of near constant frequencies. However, unlike true vector implementations, every
generation of SIMD instructions requires re-optimization and recompilation. One can only
reap the benefit of transitioning from half-pumped (or perhaps quarter-pumped in the case
of AVX) to fully pumped, after recompiling for AVX.

2.2.4 The Multicore Gambit

Multicore — the integration of multiple processing cores onto a single piece of
silicon — has become the de-facto solution to improving peak performance given the power
and frequency-limited single-thread performance. The result is that all computers have
become shared memory parallel (SMP) computers. Assuming all CMOS scaling is directed

8

at increasing core counts, it has been postulated that the number of cores will double every
two years [1, 7, 44].

However, perfect linear scaling is not possible, and doubling the core count will
require a substantial increase in chip area. For example, in migrating from 90 nm to 65
nm, NVIDIA nearly doubled the core count in their top-of-the-line GPUs at the expense
of a 20% increase in chip area [114]. Conversely, fixed designs will not see chip area cut in
half by migrating to a smaller process technology. Since its introduction, the fixed-design
8-core Cell processor has migrated from 90 nm to 65 nm to 45 nm. In doing so, both chip
area and power have only been reduced by half [128]. Thus, the chip market has bifurcated
into commodity chips constrained by area and power, and an extreme chip market where
customers are willing to pay for giant chips and high power. Core counts in the commodity
world might increase at only 20 to 25% per year, where core counts in the extreme world
may increase at up to 40% per year.

Multicore does not invalidate either the single source or single binary model —
the ability to maintain one code base and distribute one binary. However, it does require
applications be written in a manner that is scalable with the number of cores in the machine
the application will be run on. This doesn’t require an agnostic approach, as the application
can query the OS to determine how many threads are available. Thus, that one binary,
could query the OS to determine the number of available threads, and select the appropriate
algorithmic implementation.

There are three main styles for multicore architectures: homogeneous superscalar
multicore, homogenous simple multicore, and heterogeneous multicore. Homogeneous su-
perscalar multicore means taking existing giant superscalar cores and integrating more and
more onto a single chip. Typically, innovation is implemented outside of the cores in the
cache hierarchy. These designs can still deliver very good single thread performance as they
exploit all the architectural paradigms of the last 20 years. Homogenous simple multicore
integrates many more scalar or simple in-order cores together. As the cores are simpler and
thus much smaller, many more can be integrated in a fixed area of silicon. These designs
have clearly shifted their focus from single thread performance to multithreaded through-
put. As such, applications must be rewritten to express as much thread-level parallelism
as possible. Nevertheless, the mass of simple cores running multithreaded applications will
likely deliver better performance than their superscalar counterparts. Heterogeneous mul-
ticore achieves the best of both worlds by integrating many scalar or simple in-order cores
with one or more complex superscalar cores. Single thread performance will remain good
without recompilation, but when multithreaded applications are available, they can exploit
the bulk of the computing capability.

Today, most multicore chips are limited to about eight cores. It is difficult to
extrapolate the software requirements on processors with 32 or more cores using only 8.
There are two possible solutions to this dilemma. First, multi-socket SMPs are available.
However, as discussed below, it is best not to exceed two sockets on a SMP using a snoopy
cache coherency protocol. At the very least, a dual-socket SMP provides a glimpse into
multicore architectures two to four years from now. Second, there are designs in which each
core is hardware multithreaded. Multithreading will provide nearly an order of magnitude
increase in thread counts and provide insights into multicore chips 6 to 12 years from now.

9

2.2.5 DRAM Bandwidth

Although DRAM capacity will continue to scale as well if not better than the
number of cores, the bandwidth per channel between the DRAM modules and the processor
will scale at perhaps 20% per year [105]. Remember, markets unbridled by area constraints
may scale the number of cores per chip at 40% per year. To compensate for this potential
discrepancy in scaling trends, manufactures are slowly increasing the number of channels
per socket. Today, low-end processors still have only one channel per socket, but consumer
processors often have two or three, and high-end designs have between four and eight
channels per socket. If the number of cores increases at 40% per year, and the bandwidth per
channel increases at 20% per year, then to maintain a constant FLOP:byte ratio, the number
of channels per socket must also increase at 20% per year — or double every four years.
Such a trend is not cost-effective in the long term. As a result, without an innovative, cost-
effective interface to main memory, cost-effective computers will be increasingly memory-
bound.

2.2.6 DRAM Latency

In the 1990s, with processor frequencies doubling every 18 months, much play
was given to the fears of DRAM latencies approaching 1000 core clock cycles. This trend
is unlikely to happen, as core clock frequencies have saturated and most designs currently
have integrated memory controllers with DRAM latencies including coherency checks under
200 ns. We suggest that multithreaded applications have transformed the challenge from
latency-limited computing to throughput-limited computing. By throughout-limited, we
mean reducing memory, cache or instruction latency will not improve performance because
either the memory, cache or result bus is fully utilized. As such, the challenge can be suc-
cinctly expressed via Little’s Law [10]. Little’s Law states that the requisite concurrency
expressed to the memory subsystem to achieve peak performance is the latency-bandwidth
product. We believe that multicore is an effective and scalable technique in addressing
Little’s Law. The number of cores dictates the concurrency expressed to the memory sub-
system. As the number of cores might increase by as much as 40% per year, the concurrency
that can be efficiently expressed to the memory subsystem will increase by as much as 40%
per year. Latency to DRAM is actually decreasing. As socket bandwidth is increasing at
20 to 40% per year, the concurrency expressed through multicore can easily cover Little’s
Law’s latency-bandwidth product now and in the future.

2.2.7 Cache Coherency

Snoopy cache coherent SMPs do not scale beyond two to four sockets due to
the quickly increasing latency and bandwidth demands over networks with low bisection
bandwidth. Beyond this point, only directory-based protocols are appropriate, and up to
perhaps 512 sockets. Unfortunately, to achieve good performance at such scales, one must
program for locality and thus obviate much of the need for cache coherency. Although
on-chip bandwidth and latency are orders of magnitude better than off-chip, they are not
free. As such, there is a multicore scale at which on-chip snooping and directory protocols
will fail or become prohibitively expensive. This has motivated some multicore vendors to

10

explore local store or scratchpad architectures to eliminate the need for coherency. This
approach is seen in IBM’s Cell Broadband Engine and NVIDIA’s GPUs. We believe that it
is possible to share a local store among several cores, but these will likely be grouped into
on-chip shared memory clusters.

2.2.8 Productivity, Programmers, and Performance

The drive for increased productivity has placed more and more layers of software
between programmers and hardware. Moreover, architectures have become more and more
complex and opaque to programmers. As such, most programmers have no effective means
for predicting or understanding performance. As more and more computing cycles are
consumed by cloud and server computing, the fixed ISA requirements become secondary
and are replaced by a unified source requirement.

Compilers are very adept at handling a two-level memory hierarchy: main memory
and registers. Moreover, they work best when latencies are small and deterministic. Un-
fortunately, this means they are inadequate from a performance standpoint given today’s
multi-level cache hierarchies and out-of-order execution. Worse still, compilers have utterly
failed at auto-parallelization. As future performance is premised on multicore, parallel
efficiency is far more pertinent than single-thread performance.

Of course, no one is suggesting all programmers must be architectural experts to
efficiently program a multicore computer. However, they must be given a means by which
those concerned with poor performance can understand the bottlenecks and address them.
The result is a bifurcation of the programmer population into two camps: those program-
mers concerned with parallel, architectural, and power efficiency — “efficiency program-
mers” — and those programmers concerned with features — “productivity programmers.”
Thus, in the future, we expect the efficiency programmers to encapsulate various compo-
nents into frameworks that can then be easily used by the productivity layer programmers
without requiring them to have the detailed understanding of parallel programming.

2.3 Dwarfs, Patterns, and Motifs

One of the more subtle trends in computing is a transition away from control-
intensive computation to data-intensive computation. In essence, the problems and data
sets have scaled much faster than their respective control requirements. Nowhere else is this
more obvious than in scientific computing. Moreover, it has been postulated that there are
as few seven key numerical methods in this field — coined the Seven Dwarfs [31]. To be
clear, these are not kernels or methods in the traditional sense, but broad fields or domains
in computational science comprising many kernels. The underlying implementations of the
kernels are free to evolve, but the high-level mathematics remains the same. The Seven
Dwarfs are: dense and sparse linear algebra, calculations on structured and unstructured
grids, spectral methods, particle methods, and Monte Carlo simulations. A general purpose,
capacity supercomputer or cluster will likely be required to efficiently process all of these
dwarfs, but domain specific computers may only be required to process a subset well.

11

In this section, we track the evolution of the Seven Dwarfs from the attempts to
expand them to other fields to their generalization into patterns and motifs.

2.3.1 The Berkeley View

In part, the Berkeley View [7] attempted to map benchmarks for embedded com-
puting and general purpose computing onto the existing Seven Dwarfs. Two problems
arose: first mapping the kernels of a benchmark to dwarfs doesn’t provide insight into the
fundamentally important problems. Second, there were several kernels that simply didn’t
map to any of the Seven Dwarfs.

As a result, a broader approach was taken. A survey of several additional fields
of computing was conducted including machine learning, databases, graphics, and games.
From these, the key computational methods were extracted. The result was the creation
of six new dwarfs: combinational logic, graph traversal, dynamic programming, backtrack
and branch-and-bound, and graphical models. When there were seven, one could easily tie
them to the well-known fairy-tale. However, given 13, a new name was required — motifs.

2.3.2 The Case for Patterns

Dwarfs are useful for programs in which it is obvious that the underlying com-
putation is captured by a dwarf. However, many programmers might not realize their
computation is actually a dwarf in disguise. Moreover, many programs are still control-
intensive. As such, pontificating about data-intensive computational methods is irrelevant.
Finally, by no means are there only a small set of dwarfs now and forever in all of comput-
ing. As new problems arise, new dwarfs will be created and older ones will become obsolete.
To be productive, most programmers will need a methodology that allows them to exploit
the dwarfs when necessary, but will still provide some parallel efficiency for their typical
programs.

After examining programs and kernels, some have postulated that there is a ba-
sic set of structural program patterns that appear over and over [2, 54, 92]. These include
pipe-and-filter, agent and repository, event based, bulk-synchronous, and map reduce among
others. Clearly, these are high-level, “whiteboard” conceptualizations of program structural
organization. They provide no insight as to how one could efficiently implement such pat-
terns on any parallel machine. However, below these structural patterns, one could envision
a layering of both the styles of data and task partitioning as well as the parallel building
blocks required to implement any such program. These parallel components include shared
and distributed arrays, queues, and hash tables as well as routines for task creation and
completion. Below these components are the most basic building blocks including commu-
nication and synchronization routines. This structure can be implemented recursively; that
is, bulk-synchronous within each node of a pipe-and-filter structure. Figure 2.1 shows the re-
sult: a layered conceptualization of program organization, from the broadest “whiteboard”
conceptualization down to the implementation details.

No one expects many programmers to be capable of implementing all of these
patterns, components, and routines efficiently on all multicore machines. Thus, the splitting
of programmers into productivity and efficiency programmers is exploited. The efficiency

12

Pipe-and-Filter Map Reduce Agent and Repository
Select the high-level structural pattern

Select the decomposition and parallelization

Implement with parallel components

Implement with collective, communication, and synchronization routines

Shared Queues Shared Hash TablesShared Arrays

Thread Creation Collectives

Task ParallelismDivide and Conquer

Bulk Synchronous

Data Parallelism

Distributed Arrays

Barriers/Locks/…Message Passing

Figure 2.1: A high-level conceptualization of the pattern language. Programmers step
through each level selecting the appropriate pattern or components.

programmers will implement and encapsulate the parallel components and basic routines.
If it can be done in a general extensible manner, then it is likely the productivity-layer
programmers will be able to reuse this work over and over. Figure 2.1 shows the loose
decision tree the productivity programmers might then follow. First, they decide on the
appropriate pattern, then the appropriate decomposition, then components, and finally
routines to implement those components.

Although simplistic in its structured design and regimented decision tree, this ap-
proach demands that productivity programmers make the correct decisions as they navigate
through the tree for the given platform. Failure to do so may have significant performance
and scalability ramifications. Moreover, this approach simply punts all the performance
challenges of parallel programming to the efficiency programmers.

2.3.3 The Case for Motifs

Recall that the Dwarfs are commonly used numerical methods. In the context of
the patterns, hundreds of researchers working for decades have found the best structural
patterns, decompositions, and data structures for each Dwarf. In essence, they have agreed
upon the best know traversal of the pattern tree for a specific computational method and
black boxed the result into a library. For a number of reasons including increasing the
number of Dwarfs beyond seven, and thus poorly correlated to the well-known fairy-tale,
Dwarfs have been renamed motifs [6]. By recognizing a particular motif or kernel, the
productivity programmers can achieve good efficiency by leveraging the work conducted by
hundreds of researchers. Figure 2.2 on the next page shows the integration of the motifs
into the pattern language stack. Realization of the motif nature of computation allows
productivity programmers to bypass the decision tree pattern-based approach to parallel
program implementation and use a black boxed best-known traversal and implementation.

Some of the motifs are far more mature and developed than others. These include

13

Pipe-and-Filter Map Reduce Agent and Repository

Select the high-level structural pattern

Select the decomposition and parallelization

Implement with parallel components

Implement with collective, communication, and synchronization routines

Shared Queues Shared Hash TablesShared Arrays

Thread Creation Collectives

Task ParallelismDivide and Conquer

Bulk Synchronous

Data Parallelism

Distributed Arrays

Barriers/Locks/…Message Passing

D
ense Linear A

lgebra

S
parse Linear A

lgebra

S
tructured G

rids

S
pectral M

ethods

N
-B

ody M
ethods

G
raph M

anipulaton

select a motif, and exploit the best known traversalUse the existing pattern language, and try and find well performing traversal - or -

Figure 2.2: Integration of the Motifs into the pattern language. By selecting a motif, one
selects the best know traversal of the pattern language decision tree for that method.

six of the original Seven Dwarfs: dense and sparse linear algebra, computations on struc-
tured and unstructured grids, spectral methods, and particle methods. To these motifs, it
is clear that graph manipulation and finite state machines must be added. In the future, we
expect the acknowledgment of existing important motifs. Ultimately, the value in motifs
lies in their extensibility, not only in problem size, but also in data type, data structure,
and the operators used.

2.4 The Case for Auto-tuning

Potentially, motifs provide productivity programmers a productive solution to par-
allel programming. However, it falls to the efficiency programmers to ensure that the kernels
within the motifs each deliver good performance. By no means is this a easy task given the
breadth of both motifs and architectures they must run efficiently run on. This approach
is further complicated by the fact that simply running well on all of today’s machines is
insufficient. With a single code base, we must deliver good performance on any possible
future evolution of today’s architectures.

2.4.1 An Introduction to Auto-tuning

Automated tuning or auto-tuning has become a commonly accepted technique used
to find the best implementation for a given kernel on a given single-core machine [16, 138,
52, 135, 23]. Figure 2.3 on the following page compares the traditional and auto-tuning ap-
proaches to programming. Figure 2.3(a) shows the common Alberto Sangiovanni-Vincentelli
(ASV) triangle [95]. A programmer starts with a high-level operation or kernel he wishes
to implement. There is a large design space of possible implementations that all deliver
the same functionality. However, he prunes them to a single C program representation. In
doing so, all high level knowledge is withheld from the compiler which in turn takes the

14

(a)

Desired High-level Operation

Prune it down to a single
C representation

Produce a single
binary representation

Compiler
explores the breadth

of safe transformations

programmer
explores

possible algorithms
and implementations

A
ut

om
at

ed
 p

ro
ce

ss
H

um
an

 e
ffo

rt

(b)

Compiler
explores the breadth

of safe transformations

Programmer
explores a family of

possible implementations

Prune it to a family of C representations

Produce a family of binaries

Select the fastest binary

Desired High-level Operation

Auto-tuner searches
the binaries

H
um

an
 e

ffo
rt

A
ut

om
at

ed
 p

ro
ce

ss

Figure 2.3: ASV triangles for the conventional and auto-tuned approaches to programming.

C representation, and explores a variety of safe transformations given the little knowledge
available to it. The result is a single binary representation. Figure 2.3(b) presents the
auto-tuning approach. The programmer implements an auto-tuner that rather than gener-
ating a single C-level representation, generates hundreds or thousands. The hope is that in
generating these variants some high-level knowledge is retained when the set is examined
collectively. The compiler then individually optimizes these C kernels producing hundreds
or machine language representations. The auto-tuner then explores these binaries in the
context of the actual data set and machine.

There are three major concepts with respect to auto-tuning: the optimization
space, code generation, and exploration. First, a large optimization space is enumerated.
Then, a code generator produces C code for those optimized kernels. Finally, the auto-
tuner proper explores the optimization space by benchmarking some or all of the generated
kernels searching for the best performing implementation. The resultant configuration is
an auto-tuned kernel.

Figure 2.4 on the next page shows the high-level discretization of the optimization
space. The simplest auto-tuners only explore low-level optimizations like unrolling, reorder-
ing, restructuring loops, eliminating branches, explicit SIMDization, or using cache bypass
instructions. These are all optimizations compilers claim to be capable of performing, but
often can’t due to the lack of information conveyed in a C program. More advanced auto-
tuners will also explore different data types, data layouts, or data structures. Compilers

15

Tomorrow’s
Auto-tuners

Today’s
Auto-tuners

Yesterday’s
Auto-tuners

 Add exploration of alternate
 high-level algorithms

 Add alternate data structure
 exploration

 Only explore loop structure &
 code generation

Figure 2.4: High-level discretization of the auto-tuning optimization space.

have no hope of performing these optimizations. Finally, the most advanced auto-tuners
also explore different algorithms that produce the same solution for the high-level problem
being solved. For example, an auto-tuner might implement a Barnes-Hut-like particle-tree
method instead of a full N2 particle interaction.

The second aspect of auto-tuning is code generation. The simplest strategy is for an
expert to write a Perl or similar script to generate all possible kernels as enumerated by the
optimization space. A more advanced code generator could inspect C or FORTRAN code,
and in the context of a specific motif generate all valid optimizations through a regimented
set of transformations [80]. This differs from conventional compilation in two aspects.
First, compilers are incapable of making optimizations they cannot verify are always safe.
In essence, we have added a -motif=sparse compiler flag. Second, this method produces
all kernels, where a compiler will only produce one version of the code.

The third aspect of auto-tuning is the exploration of the optimization space. There
are several strategies designed to cope with the ever-increasing search space. We wish to
clearly differentiate an optimization from its associated parameter. For example, unrolling
is an optimization; the degree to which a loop is unrolled is the parameter. For certain
optimizations like whether to SIMDize or not, the parameter is just a Boolean variable.

The most basic approach is an exhaustive search of all parameters for all opti-
mizations. For each optimization an appropriate parameter is selected, and the appropri-
ate kernel is benchmarked. If the performance is superior to the previous contender for
best implementation, then the new performance and parameters are recorded as the best
implementation. Clearly, when this approach becomes intractable when the number of
combinations exceeds a few thousand.

Second, one can use heuristics or models of architectures to decide the appropriate
parameters for certain optimizations. For example, a heuristic may limit the parameter
search space for cache blocking so that the resultant working sets consume 80 to 99% of
the last level cache. In general, these search techniques can be applied to a subset of the
optimizations.

16

(a)

Parameter Space for
Optimization A

P
ar

am
et

er
 S

pa
ce

 fo
r

O
pt

im
iz

at
io

n
B

(b)

Parameter Space for
Optimization A

P
ar

am
et

er
 S

pa
ce

 fo
r

O
pt

im
iz

at
io

n
B

(c)

Parameter Space for
Optimization A

P
ar

am
et

er
 S

pa
ce

 fo
r

O
pt

im
iz

at
io

n
B

Figure 2.5: Visualization of three different strategies for exploring the optimization space:
(a) Exhaustive search, (b) Heuristically-pruned search, and (c) hill-climbing. Note, curves
denote combinations of constant performance. The gold star represents the best possible
performance.

Finally, in a hill climbing approach, optimizations are examined in isolation. An
optimization is selected. Performance is benchmarked for all parameters for that optimiza-
tion and the best-known parameter for all other optimizations. The best configuration for
that optimization is determined. The process continues until all optimizations have been
explored once. Previous work [37] has shown this approach can deliver good performance.
Unfortunately, this approach may still require thousands of trials.

Figure 2.5 visualizes the three different strategies for exploring the optimization
space. For clarity, we have restricted the optimizations space to two optimizations, each
with their own independent range of parameters. In practice, the number of optimizations
will likely exceed 10. The curves shown on the graph denote lines of constant performance.
We have assumed a smoothly varying performance curve where the local minimum is the
global minimum. The gold star represents the best possible performance. In Figure 2.5(a),
an exhaustive approach searches every combination of every possible parameter for all op-
timizations. Clearly, this approach is a very time consuming, but is guaranteed to find the
best possible performance for the implemented optimizations. Figure 2.5(b) heuristically-
prunes the search space, and exhaustively searches the resultant region. Clearly, this will
reduce the tuning time, but might not find the best performance as evidenced by the fact
that the resultant performance (green circle) is close but not equal to the best performance
(gold star). Figure 2.5(c) uses a one pass hill-climbing approach. Starting from the origin,
the parameter space for optimization A is explored. The local maximum performance is
found (red diamond). Then, using the best known parameter for optimization A, the pa-
rameter space for optimization B is explored. The result (green circle) is far from the best
performance (gold star), but the time required for tuning is very low.

Perhaps the most important aspect of an auto-tuner’s exploration of the parameter
space is that it is often done in conjunction with real data sets. That is, one provides either
a training set or the real data to ensure the resultant optimization configuration will be
ideal for real problems.

17

Optimizations Explored Exploration of the Optimization Space
Low Data Other multi- Data-oblivious Data-aware
Level Structure Algorithms core Heuristics Search Heuristics Search

Traditional
Compilers

X † X

“auto-tuning”
Compilers

X † X X

Yesterday’s
Auto-tuners

X X

Today’s
Auto-tuners

X X X X

Tomorrow’s
Auto-tuners

X X X X X X

Table 2.1: Comparison of traditional compiler and auto-tuning capabilities. Low-level opti-
mizations include loop transformations and code generation. †only via OpenMP pragmas.

Table 2.1 provides a comparison of the capabilities of compilers and auto-tuners.
Traditional compilers can only perform the most basic optimization and choose the parame-
ters in a data-oblivious fashion. Some have proposed compilers perform some exploration of
the generated kernels. Nevertheless, these compilers are limited by the input C program and
are oblivious to the actual data set. As a result, even yesterday’s traditional auto-tuner is
more capable. Today, some auto-tuners explore alternate data structures and use heuristics
to make exploration of the search space tractable. Tomorrow’s auto-tuners will likely also
explore algorithmic changes. In doing so, they may trade vastly improved computational
complexity (total FLOPs) for slightly worse efficiency (FLOP/s). As a result, the time to
solution will be significantly improved.

The next three sections examine previous efforts to auto-tune various represen-
tative kernels of three motifs. Chapter 7 includes a section on previous auto-tuning work
within the sparse motif. Collectively, these provide background and related work to our cur-
rent and future multicore auto-tuning endeavors on other motifs presented in Chapters 5
through 9.

2.4.2 Auto-tuning the Dense Linear Algebra Motif

As the name suggests, the dense linear algebra motif encapsulates operations and
methods on dense linear algebra. For purposes of this discussion, we restrict ourselves to
the Basic Linear Algebra Subroutines (BLAS) [45, 42] which are grouped into three basic
categories (labeled BLAS1 through BLAS3) based on whether they perform vector-vector,
matrix-vector, or matrix-matrix operations.

The BLAS3 operations typically have the highest computational complexity and
thus have the longest time to solution. The canonical BLAS3 operation is DGEMM —
essentially matrix-matrix multiplication. In fact, this operation is the core component of
the LINPACK benchmark [89], a metric by which many supercomputers are judged [131].
Figure 2.6 on the following page presents the reference C implementation of matrix-matrix
multiplication. Such näıve implementations place high demands on cache capacity and
bandwidth as matrix B is read N times. In fact, there is no reuse in the register file as

18

for(i=0;i<N;i++){
 for(j=0;j<N;j++){
 double cij = 0;
 for(k=0;k<N;k++){
 cij += a[i][k] * b[k][j];
 }
 C[i][j] = cij;
 }
} i

j

i

j

CijAik

Bkj

A C
B

Figure 2.6: Reference C implementation and visualization of the access pattern for C=A×B,
where A, B, and C are dense, double-precision matrices.

a[i][k] and b[k][j] are used only once in the inner loop.
It is possible to explicitly unroll all three loops and create 2×2 register blocks for A,

B, and C. Figure 2.7 on the next page shows this optimization. Observe, a[i][k] is loaded
once in the inner loop, but used twice. If larger register blocks were used, more locality
could be exploited. However, if one were to exceed the register file size, then spills to the
stack would occur, and the benefit would be lost. This blocking technique can be applied
hierarchically to all levels of the memory hierarchy: register file, L1 cache, L2 cache, TLB,
and so on. However, one typically won’t use temporary variables for cache blocks but rather
rely on the nature of caching to exploit locality and thus add loop nests. Unfortunately, as
each microarchitecture may have different register file and cache sizes, the optimal blockings
will vary from one machine to the next. In the past, vendors have poured enormous efforts
into hand optimizing DGEMM for their latest architecture.

Bilmes, et al. observed that if one could enumerate and generate all possible code
variants, then given the capabilities of modern microprocessors, they could all be explored
for varying problem sizes, and the optimal configuration for a given problem size could
be determined. The result, PhiPAC [16] produced a portable implementation of DGEMM
capable of achieving a high fraction of peak on a wide variety of architectures and is con-
sidered the progenitor of auto-tuners. ATLAS [138] expanded the optimization space and
extended its breadth to all of the BLAS routines. Upon installation, the target machine is
benchmarked, and the results are used for selecting the appropriate optimized routine at
runtime. Today, although the vendors still produce “vendor tuned” implementations, they
have all embraced auto-tuning as a means to facilitate their somewhat restricted optimiza-
tions. Externally, these routines must preserve the existing interface. As such, any data
structure transformations are internal and temporary.

19

for(i=0;i<N;i+=2){
 for(j=0;j<N;j+=2){
 double c00=0;double c10 = 0;double c01=0;double c11=0;
 for(k=0;k<N;k+=2){
 c00 += a[i+0][k+0]*b[k+0][j+0] + a[i+0][k+1]*b[k+1][j+0];
 c10 += a[i+1][k+0]*b[k+0][j+0] + a[i+1][k+1]*b[k+1][j+0];
 c01 += a[i+0][k+0]*b[k+0][j+1] + a[i+0][k+1]*b[k+1][j+1];
 c11 += a[i+1][k+0]*b[k+0][j+1] + a[i+1][k+1]*b[k+1][j+1];
 }
 C[i+0][j+0] = c00;
 C[i+1][j+0] = c10;
 C[i+0][j+1] = c01;
 C[i+1][j+1] = c11;
 }
}

i

j

i

jk

k

Aik

Bkj

CijA C
B

Figure 2.7: Reference C implementation and visualization of the access pattern for C=A×B
using 2×2 register blocks.

1 1

3 7
3
12 6
2 4 5

(a) (b) (c)

output data

input data

output data

input data

output data

input data

Figure 2.8: Visualization of the cache oblivious decomposition of FFTs into smaller FFTs
exemplified by FFTW.

2.4.3 Auto-tuning the Spectral Motif

The canonical kernel for the spectral motif is the Fast Fourier Transform (FFT) [32].
Like DGEMM, vendors have poured enormous efforts into hand tuning the FFT for their
processors. Auto-tuning has been applied to this kernel in order to provide performance
portability across the breadth of processors.

Unlike DGEMM, where the traversal and block size is specified, cache oblivious
algorithms [53, 50] attempt to recursively subdivide the problem into two or more sub-
problems and solve them individually. If one were to blindly apply the cache oblivious
technique to a n-point FFT, then one would solve two n

2 point FFTs and perform the
combining butterfly. When the recursion is carried to completion, the base case is a 2-point
butterfly. FFTW [52] applies auto-tuning by benchmarking both the recursive approach
and the blindly näıve approach offline for every problem size. Thus, at runtime FFT can use
this data to decide whether näıvely solving a n-point FFT is faster than recursively solving
two n

2 point FFTs. Figure 2.8 shows three different approaches to solving a 8-point FFT

20

and represents them as a DAG. The order of computation is labeled. Figure 2.8(a) directly
solves the FFT performing each of the three stages successively. Figure 2.8(b) decides that
it is faster to solve two 4-point FFTs individually and thereby exploit locality either in the
register file or cache. Finally, Figure 2.8(c) extends the recursion to the 2-point base case.

Although cache oblivious approaches guarantee a lower bound to cache misses,
they do not guarantee an optimal implementation. The performance on any modern archi-
tectures is not solely determined by cache misses. As a result, cache oblivious algorithms do
not guarantee peak performance [81]. Modern microprocessors require long streaming ac-
cesses, software prefetching, array padding, and SIMDization to achieve peak performance.
Unfortunately, all future microprocessors will require another key set of optimizations to
achieve peak performance: efficient parallelization for multicore.

The SPIRAL project [97, 124] has taken a high-level approach to library generation
for the spectral motif, specifically linear transforms. Instead of restricting the library to
simple exploration of generated C code variants, SPIRAL takes as an input a high-level,
declarative representation of a linear transform. It then performs a series of divide-and-
conquer or rewrites using a library of over 50, hardware-conscious transformation rules.
When coupled with efficient parallelization strategies, SPIRAL produces a well-performing
library routine. We believe SPIRAL should be viewed as a template for motif-wide auto-
tuning to which we must ultimately aspire.

2.4.4 Auto-tuning the Particle Method Motif

The particle method motif typically simulates a continuing all-to-all interaction
between N particles. The canonical kernel for this motif is a Newtonian force calculation
in 2- or 3-dimensions. Simply put, time is discretized into steps. At each time step, for
each of the N particles, one sums the N-1 forces acting on it as well as any external forces
and calculates the resultant acceleration. Then, given the current positions, velocities, and
accelerations, one calculates the new position and velocity for all particles. As each force
calculation may require dozens of floating-point operations, there are N2 force calculations
per time step, and there are thousands if not millions of time steps, this method is extremely
computationally demanding for even modest numbers of particles. Thus, even the fastest
GPUs are limited to perhaps only tens of thousands of particles.

Clearly, many interesting problems demand N to be much larger. If one is willing to
sacrifice some accuracy for improved performance, then there are two approaches depending
on whether the particles are spatially clustered or not. If they are clustered, then particle-
tree methods are used; otherwise, a particle-mesh approach is used. In either case, a large
auxiliary data structure is used. These algorithmically superior approaches provide better
time to solution, but often lower FLOP rates.

Particle-tree methods recursively tessellate 3-space into an octree until there is only
one particle per cell (leaf in the octree). Observe that the force from a cluster of particles
(intermediate node in the tree) is well-approximated by its center of mass when the cluster
is both sufficiently small and sufficiently distant. In the Barnes-Hut [12], one calculates the
forces between nodes in the octree, and projects them onto the particles. With O(N·log(N))
computational complexity, it is clear that for sufficiently large N, this method is superior
to the näıve N2 approach. However the inefficiency of tree manipulation and traversal

21

results in a very large scaling constant. Another particle-tree method is the Fast Multipole
Method (FMM) [63]. Rather than directly calculating forces, it approximates the potential
throughout each leaf via an spherical harmonics expansion. Then, it differentiates the
potential to push the particles. Subtly this method has a O(N) computational complexity,
albeit with an enormous constant. Thus, the value of N for which the O(N) Fast Multipole
Method is superior to the O(N·log(N)) Barnes-Hut approach or the O(N2) näıve approach is
both architecture and problem dependent. An approach similar to the FMM is Anderson’s
Method [5] which uses numerical integration and often delivers superior time to solution.

Particle-mesh methods discretize 3-space into uniform 3D mass and potential grids.
Often there are tens to hundreds of particles per grid point. Each particle then deposits
its mass or charge on to the bounding grid points. The result is a grid representing the
distribution of mass. Solving Poisson’s equation results in a grid of the potential throughout
space. The force on each particle is calculated by differentiating the potential. When
there are sufficiently many particles the O(N) charge deposition and pushing dominates the
computational complexity of the Poisson solve. Unfortunately, the charge deposition phase
involves a scatter with conflicts. As a result, it is not efficiently parallelized on existing
architectures.

The N2 methods work best when a working set of particles is kept in the cache.
As such, one could auto-tune such kernels to look for the appropriate loop blocking sizes.
Low-level auto-tuning of particle-tree and particle-mesh approaches is uncommon. Instead,
Blackston, et al. studied the high-level algorithmic auto-tuning to find the appropriate
method, expansion size, and whether or not to use supernodes as a function of archi-
tecture, the number of particles, and their clustering [18]. Clearly, with enough parti-
cles, O(N·log(N)) methods win out over O(N2) and eventually O(N) methods win out over
O(N·log(N)) methods. The challenge is finding the break-even point a priori.

2.5 Summary

In this chapter, we discussed trends in computing, and two potential solutions
to mitigate their pitfalls. As discussed in Section 2.2, it is clear that all future gains in
performance will come from multiple cores on a chip. Moreover, the number of cores will
likely double every 2 to 4 years. It is unlikely that without major technological advances,
cost-effective memory bandwidth will be able to keep pace. The result, without algorithms
and optimizations known only to domain experts, will be that more and more codes will be
limited by memory bandwidth.

To address the parallel programming problem, Section 2.3 describes a layered,
parallel pattern language. Programmers focused on features and productivity can navigate
through the resultant decision tree, selecting patterns, decompositions, and components as
needed. A second group of programmers — efficiency programmers — will implement the
components and ensure that any combination of patterns and components will work cor-
rectly. However, it is unlikely that the productivity programmers can select the patterns
and components that will deliver scalable performance in the multicore era. As such, the ef-
ficiency programmers will also implement a set of extensible motifs based on well-established
numerical methods. Such motifs will provide productivity programmers with access to the

22

algorithms and implementations known only to the domain experts.
Hence, we have passed the buck to efficiency programmers. Thus, the final ques-

tion we must answer is how efficiency programmers can attain good performance on these
motifs given the trends in computing. As detailed in Section 2.4, auto-tuning has been
shown to provide performance portability on single core processors for several of the motifs.
Thus, we propose extending auto-tuning to multicore architectures and broaden it to other
motifs. In the following chapters, we discuss the experimental setup, performance modeling,
background material, our approach, and our results.

23

Chapter 3

Experimental Setup

This chapter provides the background material on the computers and programming
models used throughout this work, especially in Chapters 6 and 8. In Section 3.1 we discuss
the computers and architectures used for benchmarking. For the architectures that exploit
novel or less well-understood concepts, we elaborate. In Section 3.2 we discuss possible
programming models and the reasoning behind our selection of a bulk-synchronous, single-
program, multiple-data (SPMD) pthreads approach as well as details of the barrier, affinity,
and cycle timers used. The chapter wraps up with a discussion of the compilers and compiler
flags used. Finally, Section 3.3 summarizes the experimental setup.

3.1 Architecture Overview

In this section, we discuss the five computers and the six microarchitectures used
throughout this work. We assume the reader is familiar with the basic principles of computer
architecture [68]. However, as some architectures use novel or poorly documented features,
we describe them here. To avoid redundancy, we organize this section by architectural topic
rather than by computer. For clarity, we specify both the processor product names and
code names as well as the computer system product name. Generally, we refer to machines
by the processor code names.

3.1.1 Computers Used

In this dissertation we used five dual-socket shared-memory multiprocessors (SMPs)
as the testbed for our auto-tuning experiments. We believe that these architectures span
the bulk of architectural paradigms and allow us to perform some rudimentary technology
analysis. Table 3.1 on the next page provides a summary of the architectures’ floating-point
capabilities.

Intel Quad-Core Xeon E5345 (Clovertown)

The Intel Quad-Core Xeon R© (Clovertown) is a dual-socket capable implemen-
tation of the Core2 Quad 64-bit processor [71, 70, 43]. The Core2 Quad is actually a

24

Intel AMD AMD Sun STI
Core

Xeon E5345 Opteron 2214 Opteron 2356 T2+ T5140 Cell
Architecture

(Clovertown) (Santa Rosa) (Barcelona) (Victoria Falls) (PPE) (SPE)

threads/core 1 1 1 8 2 1
issue width 4 3 4 2† 2 2

FPU MUL+ADD MUL+ADD MUL+ADD MUL or ADD FMA FMA
DP SIMD X X X — — X

Clock (GHz) 2.33 2.20 2.30 1.167 3.20 3.20
DP GFLOP/s 9.33 4.40 9.20 1.167 1.83 6.40

Dell Sun AMD Sun IBM
System

PowerEdge 1950 X2200 M2 internal Victoria Falls QS20 Blade

Sockets 2 2 2 2 2
Cores/Socket 4 2 4 8 1 8

DP GFLOP/s 74.66 17.60 73.60 18.66 12.80 29.25

Table 3.1: Architectural summary of Intel Clovertown, AMD Opterons, Sun Victoria Falls,
and STI Cell multicore chips. †Each of the two thread groups may issue up to one
instruction.

multi-chip module (MCM) solution in which two separate Core2 Duo chips are paired to-
gether in a single socket. These four dual-core processors are marketed as two quad-core
processors. Each 2.33 GHz Core2 Duo implements the Core

TM
microarchitecture. The

Core microarchitecture decodes x86 instructions into RISC micro-ops that it then executes
in an out-of-order fashion. To this end, the L1 instruction cache can deliver 16 bytes per
cycle to the decoders, which in turn can decode four x86 instructions per cycle into seven
micro-ops of which only four can be issued per cycle. The SSE datapaths are all 128 bits
wide allowing an SSE instruction to be completed every core clock cycle. Thus, the peak
double-precision floating-point performance per core is 9.33 GFLOP/s. For this thesis, we
use a Dell PowerEdge 1950 with two Xeon E5345 quad-core processors.

AMD Dual-core Opteron 2214 (Santa Rosa)

The AMD Opteron
TM

2214 (Santa Rosa) is a dual-socket capable 64-bit dual-core
rev.F Opteron [4]. Like the Xeon, the Opteron decodes x86 instructions into RISC micro-ops
and executes them in an out-of-order fashion. It may decode up to 3 instructions per cycle
and issue 6 micro-ops per cycle. The cores execute 128-bit SSE instructions every two core
clock cycles using both a 64-bit floating-point multiplier and a 64-bit floating-point adder.
Therefore, the maximum throughput of packed double-precision multiply instructions is one
every other cycle. Thus at 2.2 GHz, the peak performance per core is 4.4 GFLOP/s. We
use a Sun X2200 M2 with two Opteron 2214 dual-core processors.

AMD Quad-core Opteron 2356 (Barcelona)

The Opteron
TM

2356 (Barcelona) is a dual-socket capable 64-bit quad-core rev.10h
Opteron [4, 3]. Barcelona can fetch 32 bytes of instructions from the instruction cache and

25

can decode up to four x86 instructions per cycle into six RISC micro-ops. Furthermore,
the cores can execute 128-bit SSE instructions every core clock cycle using both a 128-bit
floating-point multiplier and a 128-bit floating-point adder. Thus at 2.3 GHz, the peak
performance per core is 9.2 GFLOP/s. We use an AMD internal development computer
powered by a pair of Opteron 2356 quad-core processors.

Sun UltraSPARC T2+ T5140 (Victoria Falls)

The Sun UltraSparc R© T2 Plus is an eight-core processor referred to as Victoria
Falls [122, 107]. Each core is a dual-issue, eight-way hardware multithreaded (see Sec-
tion 3.1.4) in-order architecture. There are four primary functional units per core: two
ALUs, a FPU, and a memory unit. Although the cores are dual-issue, each thread may
only issue one instruction per cycle and resource conflicts are possible. Our study examines
the Sun UltraSparc T2+ T5140 with two T2+ processors operating at 1.16 GHz. They have
a per-core and per-socket peak performance of 1.16 GFLOP/s and 9.33 GFLOP/s respec-
tively, as there is no fused-multiply add (FMA) functionality. Inter-core communication is
only possible through memory. A large crossbar connects the eight cores per socket with
eight L2 banks as well as I/O. Although the L2 bandwidth is high, so too is the L2 latency.

IBM QS20 Cell Broadband Engine

The Sony Toshiba IBM (STI) Cell Broadband Engine
TM

was designed to be the
heart of the Sony PlayStation 3 (PS3) video game console. Unlike all other computers
used in this work, the Cell exploits a heterogeneous approach to multicore integration.
Each chip instantiates one conventional RISC Power Processing Element (PPE), and eight
Synergistic Processing Elements (SPEs) [79, 49, 106, 64, 65]. The PPE provides portability
and performs all OS and control functions, while the SPEs are designed to be extremely
efficient computational engines. In this work, we use a QS20 Cell blade with two 3.2 GHz
Cell Broadband Engine chips.

The PPEs are dual-issue, dual-threaded, in-order 64-bit PowerPC processors. Al-
though they support single-precision AltiVec (SIMD) instructions, all double-precision com-
putation is scalar. As such their peak floating-point performance is 6.4 GFLOP/s per PPE
using fused multiply add (FMA).

The SPEs contain both a dual-issue in-order 32-bit core (SPU) and a memory
flow controller (MFC). The memory flow controller is essentially a programmable micro-
controller that handles all DMA transfers into and out of the SPE. The SPU’s instruction
set is entirely SIMD with some control instructions. Unlike conventional dual-issue architec-
tures, to achieve peak instruction throughput, computational instructions must be placed
at even addresses, while memory or branch instructions must be placed at odd addresses.
Any deviation from this stalls the SPE for one cycle. Thus, at the low-level, instruc-
tions must be scheduled like those for a short VLIW processor. Although single-precision
floating-point performance is an impressive 25.6 GFLOP/s per core using SIMDized FMAs,
double-precision performance is considerably lower. Not only is the pipeline half-pumped
(serializing the operations encoded within a SIMD instruction), but the latency is consider-
ably longer than the instruction forwarding network. To maintain correct hazard detection

26

and forwarding, every double-precision instruction stalls subsequent instruction issues by 6
cycles. As such, the peak double-precision SIMDized FMA performance is 1.83 GFLOP/s
per SPE — far less than Santa Rosa’s 4.4 GFLOP/s or the Clovertown’s 9.3 GFLOP/s.
The most notable advantage of the SPEs is their use of a disjoint, DMA-filled 256 KB local
store memory (see Section 3.1.2) instead of the conventional cache hierarchy. Although
a potential productivity killer, the performance gains on memory-intensive kernels can be
significant.

Unlike conventional architectures, the PPE, SPEs, I/O, and memory controllers
are all interconnected through four 128-bit rings known as the Element Interconnect Bus
(EIB). All nodes are connected to all four rings. Two rings move data counter clockwise,
and two move data clockwise. Instead of cores communicating through a shared cache, they
may directly transfer data to or from their local memories or directly transfer data to or
from the shared main memory.

3.1.2 Memory Hierarchy

For SMPs, there are two modern styles of memory hierarchies: cache-based and
local store-based. In this work, every core uses either a cache hierarchy or a local store, but
never both. In the following sections, we discuss both the design and motivations for both
styles.

Cache-based Hierarchy

As caches are transparent to the programmer, they may seamlessly improve per-
formance. Modern cache topologies are hierarchical — that is, there are multiple levels of
cache, each somewhat larger but somewhat slower. The misses of the caches nearer the cores
are to be serviced by the next cache closer to DRAM. In addition to the standard cache
parameters of associativity, capacity and line size, one must also consider how the caches
are shared either by multiple cores or by multiple caches lower in the hierarchy. Moreover,
most cache topologies are inclusive, while some are exclusive.

Table 3.2 on the following page summarizes the cache hierarchy of the computers
used in this work. Clearly, only Barcelona has an L3 cache and the Cell SPEs have no
caches. Most line sizes are 64 bytes, but Victoria Falls uses 16 bytes for the L1, and the
PPEs use 128 bytes throughout the hierarchy. Note, that Little’s Law [10] applies to cache
access just as it does to DRAM. As such, be mindful of the computers where bandwidth×latency

threads
is large, as this is the cumulative size of the requests per thread (in bytes) that must be
pipelined to the cache. More troubling is the very low capacity and associativity per thread
in the Opteron’s and Victoria Falls’ L1’s. This problem persists on Victoria Falls in the L2
where 64 threads share a 4 MB 16-way cache.

Local Store-based Hierarchy

Cache-based memory hierarchies are often referred to as two-level memory hierar-
chies, as both the register file and DRAM are treated as addressable memories. The user
or compiler is responsible for explicitly transferring data from DRAM to the register file. A

27

Cache Xeon E5345 Opteron 2214 Opteron 2356 T2+ T5140 Cell Blade
Level Parameter (Clovertown) (Santa Rosa) (Barcelona) (Victoria Falls) (PPE) (SPE)

capacity 32 KB 64 KB 64KB 8 KB 32 KB
associativity 8-way 2-way 2-way 4-way 4-way

line size 64 bytes 64 bytes 64 bytes 16 bytes 128 bytes
L1 latency 3 cycles 3 cycles 3 cycles 3 cycles 2 cycles N/A

bandwidth 16+16 B/c 16+8 B/c 32+16 B/c 8 B/c 16 B/c (VMX)
shared by one core one core one core 8 threads 2 threads

λBW/threads 48+48 Bytes 48 Bytes 96 Bytes 3 Bytes 16 Bytes
notes WB WB, exclusive WB, exclusive WT WB

capacity 4 MB 1 MB 512 KB 4 MB 512 KB
associativity 16-way 16-way 16-way 16-way 8-way

line size 64 bytes 64 bytes 64 bytes 64 bytes 128 bytes
L2 latency 14 cycles ≈20 cycles 12 cycles >20 cycles ≈40 cycles N/A

bandwidth 32 B/c 8+8 B/c 16+16 B/c 8×(16+8) B/c 16+16 B/c
shared by two cores one core one core 64 threads one socket

λBW/threads 224 Bytes ≈320 Bytes 384 Bytes >60 Bytes ≈640 Bytes
notes WB WB, exclusive WB, exclusive WB WB

capacity 2 MB
associativity 32-way

line size 64 bytes
L3 latency N/A N/A ≈40 cycles N/A N/A N/A

bandwidth 16+16 B/c
shared by four cores

λBW/threads ≈320 Bytes
notes WB, semi-exclusive

Capacity per thread 2 MB 1.06 MB 1.06 MB 64 KB 256 KB N/A

Table 3.2: Summary of cache hierarchies used on the various computers. Note: B/c = bytes
per cycle peak bandwidth, WB = write back, WT = write through

cache can sit in front of DRAM to capture spatial and temporal locality. The programmer
only needs to address DRAM and the register file, not the cache. Moreover, hardware is
responsible for moving data in and out of caches as a response to load and store instructions.
Three-level memory hierarchies instantiate a third addressable memory (a local store) be-
tween the register file and DRAM. The user must then explicitly transfer data from DRAM
to the local store, and then separately and explicitly transfer data from the local store to
the register file. Clearly, such an approach requires significant programming effort or tool
support. From a hardware point of view, however, it is far simpler and more power efficient
as the hardware doesn’t have to maintain coherency, manage transfers, or tag locations with
physical addresses.

It is imperative the reader keeps the concepts of local stores and caches distinct.
To be clear, DRAM, local stores, and register files are completely disjoint address spaces. As
such, you must consider the data in the local store as a copy of data in DRAM. Similarly,
data in the register files is a copy of data in the local store. When it comes to caches,
locations in the cache are aliased to locations in DRAM. Although you cannot address
a DRAM line without implicitly accessing a cache line, you can access a DRAM address
without accessing a local store address.

As seen in Table 3.3 on the next page, the Cell SPE is the only architecture in
this work that uses local stores. Moreover, they are private to each SPE and are quite

28

Local Store Xeon E5345 Opteron 2214 Opteron 2356 T2+ T5140 Cell Blade
Level Parameter (Clovertown) (Santa Rosa) (Barcelona) (Victoria Falls) (PPE) (SPE)

capacity 256 KB
line size 128 bytes

L1 latency N/A N/A N/A N/A N/A 6 cycles
bandwidth 16 B/c
shared by one SPE

λBW/threads 96 Bytes

Table 3.3: Summary of local store hierarchies used on the various computers. Note: B/c =
bytes per cycle peak bandwidth

Cache Xeon E5345 Opteron 2214 Opteron 2356 T2+ T5140 Cell Blade
Level Parameter (Clovertown) (Santa Rosa) (Barcelona) (Victoria Falls) (PPE) (SPE)

entries 16† 32 48 128 1024 256
L1

working set 64 KB 128 KB 192 KB 512 MB 4 MB 1 MB

entries 256‡ 512 512
L2

working set 1 MB 2 MB 2 MB
N/A N/A N/A

Default page size 4 KB 4 KB 4 KB 4 MB 4 KB 4 KB

Table 3.4: Summary of TLB hierarchies in each core across on the various computers. †Only
for loads. ‡Shared by two cores.

large compared to a L1 cache. However, the latency is somewhat longer. Thus, one SPE
must express 6 independent SIMD loads to saturate the local store bandwidth. Although
the local store can be filled on quadword (16 byte) granularities, it is optimally filled in
granularities aligned to the 128-byte line size. There is no reason why future architectures
can’t hierarchically include multiple, potentially shared local stores or even a separate cache
hierarchy to main memory.

TLB design

All computers used in this work use a hardware page walker to service TLB misses.
However, the computers have different TLB structures and default page sizes. As such, their
structure can have severe performance ramifications. The Cell SPE’s TLB is somewhat
unique. The local stores are physically addressed and thus are not paged. However, DRAM
is paged as usual. Thus, address translation must occur in the memory flow controllers
as they process each DMA. The advantage is that other queued DMAs can be processed
while waiting for a TLB miss to be serviced. On Barcelona, software prefetched data will
generate a TLB miss, but not a page fault.

Table 3.4 summarizes the TLB hierarchies within each core across all architectures.
Observe that each architecture has a different maximum working set that it can process
without capacity TLB misses between benchmark trials. Clearly, Victoria Falls can map a
dramatically larger problem. As such, optimizations for the TLB will only be required on
large problems.

The number of entries is indicative of the maximum number of arrays than can be
accessed in a kernel assuming the working set is larger than the product of page size and

29

CPU0

MCH

I/O
Bridge

DRAM

CPU1

DRAM DRAM

(a) (b)

HyperTransport
FSB0 CPU0 CPU1

Northbridge Northbridge

CPU2 CPU3

FSB1

I/O
Bridge

DRAM

Figure 3.1: Basic Connection Topologies. (a) Four chips attached to two different front side
buses with a discrete Northbridge. (b) the Northbridge has been partitioned and distributed
among two chips.

the number of TLB entries. If the inner kernel exceeds the mappable problem size, then
TLB capacity misses will occur through the execution of the loop. However, if the inner
kernel also touches more arrays than TLB entries, TLB capacity misses will likely occur on
every memory access.

3.1.3 Interconnection Topology

Computers must contain three basic components: processors, main memory, and
I/O. As the computers in this work each have two sockets, a given socket can communicate
with DRAM, another socket, or I/O. In this section, we examine each of the connections.
Older computers like the Clovertown have a separate Northbridge chip that acts as a hub
between sockets, DRAM, and I/O. VLSI integration has allowed this to be included on chip
for the Opterons, Victoria Falls, and Cell. However, this integration has been complicated as
in two-socket computers, the Northbridge must be distributed across multiple chips. Note,
Clovertown’s Northbridge chip is also called the memory controller hub (MCH). Figure 3.1
shows the two basic connection topologies.

Access to DRAM

Table 3.5 on the following page shows the DRAM specs for each computer as well
as the interconnection topology. Clearly, the Clovertown is the only architecture still using
an external memory controller hub. In this case, only the bandwidth between the DIMMs
and the MCH is shown.

Remember, as the computers used here are all dual-socket SMPs, all DIMMs are
addressable from any socket, not just the DIMMs directly attached to the originating socket.
To this end, memory transactions and coherency is forwarded along the inter-socket network
and data can be returned on the reciprocal path. We have configured all such computers
to operate in a non-uniform memory access (NUMA) mode, rather than a uniform memory
access (UMA) mode. Note, although not a natural match for those architectures, UMA

30

Connection DRAM Xeon E5345 Opteron 2214 Opteron 2356 T2+ T5140 QS20
Topology Parameter (Clovertown) (Santa Rosa) (Barcelona) (Victoria Falls) Cell Blade

DRAM type 667MHz DDR2 667MHz DDR2 667MHz FBDIMM XDR
directly capacity 8 GB 8 GB 16 GB 512 MB

attached to bandwidth
N/A

10.66 GB/s 10.66 GB/s 21.33 GB/s (read) 25.6 GB/s
each socket (read or write) (read or write) 10.66 GB/s (write) (read or write)

DRAM type 667MHz FBDIMM
attached to capacity 16 GB
an external bandwidth 21.33 GB/s (read)

N/A N/A N/A N/A

MCH 10.66 GB/s (write)

aggregate DRAM 21.33 GB/s (read) 21.33 GB/s 21.33 GB/s 42.66 GB/s (read) 51.2 GB/s
pin bandwidth 10.66 GB/s (write) (read or write) (read or write) 21.33 GB/s (write) (read or write)

Table 3.5: Summary of DRAM types and interconnection topologies by computer.

can be achieved by interleaving physical addresses on cache line or similar granularities
between the sockets. Thus, UMA implies every other cache line accessed is accessed at a
substantially slower rate. The Clovertown computer is naturally a UMA SMP as all DRAM
accesses are centralized through the MCH. For the naturally NUMA SMPs, the aggregate
DRAM pin bandwidth is twice the bandwidth attached to each socket in Table 3.5.

Although it appears there are three different DRAM technologies employed, there
are in fact only two. FBDIMMs [47] leverage DDR2 [38] technology by placing DIMMs
on a ring rather than a bus. There are three issues for this approach. First, as there is
an extra chip per DIMM to act as a node in the ring, the DIMMs consume much more
power. Second, there are separate read and write lines sustaining a 2:1 bandwidth ratio.
Finally, on DDR2-based computers, as the number of DIMMs per channel increases, the
bus load increases. At a critical load, the DIMMs are clocked at a lower frequency. If too
few DIMMs are attached, however, then there is insufficient concurrency on the channel to
hide the overhead. FBDIMM eliminates capacitive load as a concern. We have judiciously
balanced the number of DIMMs on each computer to maximize performance. The other
type of DRAM technology employed is XDR [145]. Although this technology promises much
higher bandwidth, a comparable cost DRAM capacity is more than a order of magnitude
less than DDR2.

Access to Other Sockets

Requested data may not reside either in a local (same socket) cache or directly
attached DRAM. In such a case, access to the remote socket is required. Table 3.6 on the
next page shows the inter-socket interconnect topologies used by the SMPs in this work.
Note, there are three possible communication paths — two for the Intel computer, and one
for the others.

Intel computers of this era all rely on an external memory controller hub that
centralizes all accesses to DRAM, I/O and other sockets. The computer used in this work
is a Dell PowerEdge 1950, and uses the Intel 5000X memory controller hub (MCH). This
MCH is quite different than most in that it uses a dual independent bus (DIB) architecture.
Each MCM has access to its own front side bus (FSB). However, as each MCM is in reality

31

Xeon E5345 Opteron 2214 Opteron 2356 T2+ T5140 QS20
Parameter (Clovertown) (Santa Rosa) (Barcelona) (Victoria Falls) Cell Blade

type Dual FSB HyperTransport HyperTransport custom by address custom
topology dual buses direct connect direct connect direct connect direct connect

bandwidth 2×10.66 GB/s† ≈4 GB/s ≈4 GB/s 4×6.4 GB/s <20 GB/s
(read or write) (each direction) (each direction) (each direction) (each direction)

Table 3.6: Summary of inter-socket connection types and topologies by computer. For the
Opterons, we show practical bandwidth rather than pin bandwidth. †FSB bandwidth also
shared with DRAM and I/O access

just two chips, each FSB has three agents: two chips, and the MCH. Alternate designs
that use a single FSB would thus have the load of five agents. By reducing the number of
agents, the frequency of the bus may be increased to 333 MHz. All data transactions are
quad pumped (i.e. 4 bits per clock) resulting in a raw per FSB bandwidth of 1333 MT/s
(106 transfers/second) or 10.66 GB/s. Two chips on Clovertown socket may communicate
through via their shared front side bus (FSB). However, if communication between sockets
is required, then communication is handled via the first FSB to the MCH, then from the
MCH over the second FSB to the second socket. Clearly, the latter consumes twice the
number of bus cycles and incurs substantial latency.

The third possible communication path is a direct connection between two sockets.
The Opterons use HyperTransport with separate sustained 4 GB/s per direction per link.
Cell uses a similar approach with a much higher frequency bus. Finally, instead of a single
link on which all accesses are sent, Victoria Falls defines four separate coherency domains
based on the lower bits of the cache line address [107]. Each of the four domains has a pair
of 6.4 GB/s links (one per direction).

Access to I/O

Although not required for this work, access to I/O is handled differently on each
computer. On Clovertown, I/O access is handled indirectly by the MCH via the FSB. On
the Opterons, there are additional HyperTransport links to a I/O PCI-e bridge or hub.
Both Cell and Victoria Falls have a separate, dedicated I/O bus.

3.1.4 Coping with Memory Latency

Memory latency has become one of the most severe impediments to performance.
As such, architects have endeavored to devise novel techniques to avoid or hide memory
latency. Be mindful of the difference. Avoiding memory latency is principally handled
through caches. The standard techniques for hiding memory latency include out-of-order
execution, software prefetching, and vectors [68]. All three x86 computers used in this
work exploit out-of-order execution, and all cache-based architectures can exploit software
prefetching. No computer used here exploits long vector execution. In this section, we
discuss three alternate and novel techniques to hiding memory latency.

32

Detect Prefetch Xeon E5345 Opteron 2214 Opteron 2356 T2+ T5140 Cell Blade
misses from: Parameter (Clovertown) (Santa Rosa) (Barcelona) (Victoria Falls) (PPE) (SPE)

pattern unit-stride
load streams 1?

queue request from L1
— — — — —

store into line buffers
pattern strided

load
streams 1 per PC

queue
request from L1

— — — — —
(by PC)

store into line buffers
pattern strided unit-stride unit-stride
streams 12+4 per core ? ?

L1
request from L2 DRAM L2 & L3

— — N/A

store into L1 L2 L1
pattern strided
streams ?

L2
request from DRAM

— — — — N/A

store into L2
pattern strided
streams ?

L3
request from

N/A N/A
DRAM

N/A N/A N/A

store into dedicated buffer

Table 3.7: Summary of hardware stream prefetchers categorized by where the miss is de-
tected. Only data prefetchers are shown. Note, Cell has no caches thus cannot prefetch
from one. However, it does have local stores. The architects accepted the 6-cycle latency
rather than the complexity of a local-store load queue prefetcher.

Hardware Prefetching

The first technique, hardware stream prefetching, is entirely a hardware solution.
It requires no programming effort. In essence, it is a speculative technique as it attempts to
predict future cache misses and generate a transfer early enough to ensure memory latency
is not exposed. Initially, hardware prefetchers could only detect a pattern if accesses to
consecutive cache lines resulted in misses. The prefetchers have been improved on Clover-
town and Barcelona to detect arbitrary strides. In addition to the detectable patterns, the
other parameter is the number of concurrent streams that can be differentiated. Modern
architectures can employ multiple stream prefetchers, one for each level of the cache. As
hardware stream prefetchers almost invariably operate on physical addresses, they cannot
cross page boundaries, which are 4 KB on the x86 computers. Thus, the latency of the first
access to a page is always exposed. Disturbingly, this implies that as memory bandwidth
increases, the time to access one page using one core asymptotically approaches the ratio
of page size to DRAM latency. That is, BWaverage = BWpin·PageSize

BWpin·Latency+PageSize . As BWpin in-

creases, BWaverage tends to PageSize
Latency . The only viable solution is to have multiple hardware

prefetchers simultaneously engaged so that this latency can be hidden. This concurrency is
achieved through multicore and padding of arrays.

Table 3.7 summarizes the hardware prefetch capabilities of the computers. Closest
to the core, Clovertown can detect requests from the L1 for both unit-stride patterns from
the line buffers as well as strided patterns by matching them with the IP (program counter)
of the load instruction. The Santa Rosa Opteron prefetches data from DRAM into the L2.

33

As such, additional software prefetching may be necessary to hide the latency to the L2.
Note, Barcelona’s DRAM prefetcher detects L3 misses, but prefetches data on idle DIMM
cycles into a dedicated L3 buffer that the L3 will subsequently read from.

Hardware Multithreading

As hardware prefetchers are only effective when presented with certain address
patterns, hardware multithreading has become a common solution when there is no dis-
cernible pattern, but ample thread-level parallelism. Hardware multithreading virtualizes
the resources of a core by instantiating multiple hardware thread contexts. This includes
the state required for a thread’s execution, including register files, program counters, and
privileged state. On every cycle the fetch and issue logic must select a thread, and fetch the
corresponding instructions from the cache and then issue them down the pipeline. There
are three basic granularities at which threads may be interleaved: coarse, fine, or simulta-
neous [68].

In this work, only two architectures implement hardware multithreading: Victoria
Falls and the Cell PPEs. Victoria Falls groups four hardware thread contexts into a thread
group. It then groups two thread groups into a core. There is fine-grained multithreading
between threads within a thread group. Essentially, on every cycle one ready-to-execute
instruction from each thread group is issued to that thread group’s pipeline. When the
two instructions reach the decode state, resource conflicts are resolved for the FPU and
memory units that are shared between thread groups. The Cell PPE is also fine-grained
multithreaded. However, unlike the more dynamic approach employed by Victoria Falls,
the PPE has only two hardware thread contexts and tasks even cycles to the even thread
and odd cycles to the odd thread.

Both memory or functional unit latency can be hidden by switching to ready
threads. In today’s world, hiding memory latency is the preeminent challenge. Multi-
threading can satisfy the concurrency demanded by Little’s Law by providing one inde-
pendent cache line per thread. Ideally, on Victoria Falls, this would provide 64 threads ×
64 bytes/thread = 4 KB of concurrency per socket to DRAM — enough to hide 190 ns of
DRAM latency. However, on the Cell PPEs, two-way multithreading can only cover 10 ns
of DRAM latency — clearly a far cry from the nearly 200 ns of memory latency. This
technique can be applied to the L2 cache as well. On Victoria Falls, the L1 line sizes are
only 16 bytes. As such, only 1 KB (8 cores× 8 threads per core× 16 bytes) of concurrency
is expressed to the L2. Given the L2 read bandwidth of 128 bytes per cycle, and a latency
of 20 cycles, multithreading may only utilize 40% of the L2 bandwidth.

The biggest pitfall of multithreading is the fact that a huge number of independent
accesses are generated. As a result, conflict misses and bank conflicts become common.
Moreover, page locality within a DIMM becomes a challenge as other threads are contending
for limited resources. Careful structuring of the memory access patterns or severe over-
provisioning is required.

34

Direct Memory Access (DMA)

The one final technique for coping with memory latency is direct memory access
(DMA). As discussed with the previous topics, the goal is expression of concurrency to the
memory subsystem. Unlike hardware prefetchers, the programmer is required to detect and
express the concurrency, and unlike multithreading, all the memory-level parallelism must
be derived from one thread, although user-level software multithreading is a viable solution
in some cases [115, 9]. In the simplest DMA operation, the user specifies a source address, a
destination address, and the number of bytes to be copied. As DMA operations are typically
asynchronous, completion of a DMA is often detected though interrupts or polling. More
complex DMAs can realize scatter or gather operations. In a single command, the user
specifies an address of a list of DMA stanzas (addresses and sizes) as well as the packed
address. The DMA engine then asynchronously processes the list, either unpacking the
array and scattering stanzas or gathering stanzas into a packed array. The memory latency
is amortized by the total concurrency expressed by the DMA. Moreover, the latency can be
hidden with multiple cores or multi-buffering.

In theory, there is no reason why DMA can’t be coupled with cache architectures
or why multithreading can’t be coupled with local store architectures. In the former cases,
one must specify how deep in the cache hierarchy the DMA data should be cached. If the
DMA exceeds the cache capacity, then the equivalent of write backs would be generated.
Nevertheless, the only architecture in this work to use DMAs is the cacheless Cell SPEs.
Thus, DMA is coupled with a local store. Cell implements four basic types of DMA:

• GET — copy one stanza from DRAM to the local store.

• PUT — copy one stanza from the local store to DRAM.

• GETL — gather a list of stanzas from DRAM, and pack them contiguously in the
local store.

• PUTL — take a packed local store array, and scatter a series of stanzas to DRAM.

To satisfy Little’s Law, one only need to ensure that the aggregate sizes of all the
DMAs in flight expresses sufficient concurrency.

3.1.5 Coherency

Most computers in this work use some variant of a snoopy protocol [68] for inter-
socket cache coherency. On the Opterons and Victoria Falls, the MOESI [4] protocol is
handled over the inter-socket network. However, Clovertown’s and Cell’s cache coherency
protocol is somewhat different and requires some additional explanation. On all computers,
the latency for the coherency protocol is likely to be greater than that for physical access
to DRAM. As such, the latency in Little’s Law is the coherency latency. Moreover, without
sufficient concurrency in the memory subsystem, this latency might limit bandwidth.

35

Snoop Filter

On Clovertown, coherency is handled via a snoopy MESI protocol. However, chips
may only snoop on the bus to which they are attached. As the Clovertown employs a dual
bus architecture, every memory transaction may result in a coherency transaction being
forwarded to the second bus. To minimize FSB transactions, a rather large cache coherency
filter (deemed a snoop filter) [73] is included in the MCH. The goal of the snoop filter is to
eliminate superfluous coherency traffic, thereby retasking the available bandwidth for data
transfers.

The snoop filter is divided into two 8K sets × 16-way affinity groups (one per
FSB). Although the snoop filter only holds tags, it’s designed to track 16MB of L2 cache
lines. Each entry attempts to record the MESI state as well as which socket, if either,
has ownership. The snoop filter replacement policy is not directly tied to L2 replacement
policy. Moreover, as L2 line states can change without a bus transaction (e.g. an eviction of
shared or exclusive data), it is possible that the snoop filter may fall out of sync and believe
an entry is present when it is not. Conversely, the snoop filter may replace and evict an
entry when the cache selected a different entry. Thus, it is improper to say the snoop filter
generates a snoop when it is required to. Rather, the snoop filter won’t generate a snoop
when it know its not required to. This subtle distinction can have far ranging ramifications
on application performance.

If the data sets of interest are significantly larger than either the caches or the
snoop filter, the snoop filter is likely to be ineffective. As such, a transaction on the first
FSB will invariably generate snoop traffic on the second, and vice versa. This might be
acceptable if not for the combination of small cache lines and a quad pumped data rate.
When these two are combined, the cycles required for a data transfer are comparable to
those required for coherency. Thus, for problems with large datasets, roughly 50% of the
raw FSB bandwidth must be dedicated to coherency [61]. The combination of a slightly
higher bus frequency and double the number of buses comes with a huge price: twice the
traffic. As a result, the effective bandwidth available to a dual-socket quad-core Xeon is
only slightly greater than that available to a single socket Core2 Quad.

Cell Broadband Engine

The SPE local stores are not caches, but rather disjoint address spaces. As such,
each line in the local store is a unique address and the data itself cannot be cached elsewhere.
As a result, no coherency traffic is generated as a result of SPE reads and writes to the local
store. This saves a huge amount of inter-core coherency traffic and provides a very scalable
solution. Through DMA, however, the SPEs may transfer data between their local stores
and the shared main memory (DRAM). At this point cache coherency becomes an issue.
As each PPE can cache main memory data in its caches, all caches must be kept coherent
with all DMAs. IBM’s engineers employed a very straightforward approach to this. Before
a DMA may execute, a coherency protocol snoops both caches (one per socket) and evicts
matching addresses back to DRAM. The DMA may then execute and read the address
whose most up to date data will always be in DRAM. Thus, it is impossible for a SPE to
directly read from a PPE’s cache. To some extent, this limits a programmer’s ability to

36

exploit heterogeneity. The solution is to have the PPEs write the SPE local stores rather
than having the SPEs read from the PPE’s caches. PPE accesses to the local stores aren’t
cached and thus coherency is not an issue.

3.2 Programming Models, Languages and Tools

This thesis makes no attempt to develop or evaluate programming models, lan-
guages, or compilers. We simply specify our choices and do not dwell on the innumerable
alternatives. Sufficive to say, we use C with intrinsics for every kernel on every architecture.
Intrinsics are essentially individual assembly instructions than can be used within a C pro-
gram as if they were simple functions or macros. This section discusses the programming
model, scaling model, and in addition, details the implementations of our shared memory
barriers and the affinity routines we used.

3.2.1 Programming Model

Throughout this work, we employ a bulk-synchronous, single-program, multiple-
data (SPMD) shared-memory parallel programming model. Moreover, we use POSIX
Threads (pthreads) [129] as the threading library of choice. It should be noted that the
Cell SPEs require an additional libspe threading library. Although the model is multi-
threaded, the SPMD label is still appropriate. All threads will execute the same function,
but on different data.

We exploit heterogeneity for control and productivity rather than simultaneous
computation. Thus, while the Cell PPE is performing computation, the SPEs are waiting.
When the Cell SPEs are performing computation, the PPE is waiting.

In this work, we make no statements about other programming models or commu-
nication approaches like OpenMP [103], UPC [15], or MPI [119], other than to say much if
not all the work presented here is likely applicable.

3.2.2 Strong Scaling

In the single-core era, weak scaling is the methodology by which one fixes the
problem size per processor (an MPI task), and scales the number of processors used in a
super computer. Strong scaling is the reverse. The problem size per processor is inversely
proportional to the number of processors. In the multicore-era, this taxonomy is more
complicated. Assuming each socket is assigned an MPI task, one may:

• keep the total problem size constant (traditional strong scaling).

• scale the total problem size proportional to the number of cores per socket.

• scale the total problem size proportional to the total number of sockets
(traditional weak scaling).

• scale the total problem size proportional to product of the number of sockets and
cores per socket (proportional to the total number of cores).

37

All experiments in this dissertation only explore single node multicore scalability
performance on applications designed for weak scaling. As such, we examine the third
bullet. That is, the problem per SMP remains constant, but the number of hardware
thread contexts employed is scaled in a very regimented manner. Initially, the serial case
is run. Second, within one core on one socket, the number of hardware thread contexts is
scaled to the maximum number. Third, within one socket, the number of fully threaded
cores is scaled from one to the maximum. Finally, the number of sockets is scaled from one
to two while using all threads and cores.

There are several motivations for using this approach. First, it is a significantly
more difficult challenge, as the balance between a kernel’s components may not scale well
with the number of threads. Second, unlike large supercomputers, whose memory capacity
scales with the number of processors, memory capacity on multicore processors will likely
scale more slowly than the number of cores. Finally, load balancing can be more challenging.

3.2.3 Barriers

A barrier is a collective operation in which no participating thread or task may
proceed beyond the barrier until all participating threads have entered it. Barrier perfor-
mance acts as an upper limit to scalability when conducting strong scaling experiments.
Näıvely, speedup is NThreads, assuming perfect load balance on a strong scaling experi-
ment. That is, the time spent per thread scales as TotalWork

NThreads . Let us define barrier time as
the time between when the last thread enters the barrier and the last may leave. In the best
case, barrier time may add a constant to the compute time per thread and the time spent
per thread is TotalWork

NThreads + BarrierT ime. As such, the best speedup (TotalWork
TotalWork
NThreads

+BarrierT ime
)

is TotalWork
BarrierT ime . Alas, barrier time may scale linearly with the number of threads. As such,

there would be an optimal number of threads beyond which performance will degrade sim-
ply because execution time is dominated by the barrier time. Alternatively, one could
interpret this as placing a relationship between the size of a function, and the maximum
parallelization that can be employed on it. That is, functions that are too small can’t be
parallelized.

Although POSIX threads provides a barrier routine or other means to realize such
functionality among threads, their performance is abysmal. Despite the fact that our kernels
will require relatively infrequent barriers when using two threads, as the number of threads
scales, performance can still be substantially limited. To mediate this, we implemented two
versions of a fast shared memory barrier — one for cache-based computers and one for Cell.

In the Cell version of the barrier, a waiting variable is created in each local store.
Both the PPE and all SPEs must call the barrier routine. Upon entry, each SPE will set
its waiting variable within its local store. It will then spin waiting for it to be cleared.
When the PPE enters the barrier, it spins waiting for all SPE waiting variables to be
set. When this condition is met, the PPE resets all SPE waiting variables, and exits the
barrier. Within each SPE, they will observe the waiting variable has been cleared, and
will exit the barrier. To ensure PPE-SPE communication doesn’t impair performance, we
limit PPE accesses to the SPEs to once per microsecond. For our purposes, an exponential
back off was unnecessary.

38

void barrier_wait(barrier_t *barrier, int threadID){
double x = 2.0;
int i;
if(barrier->WaitFor==1)return; // 1 thread waiting for itself
barrier->ThreadIsWaiting[threadID] = 1;
if(threadID==0){

// thread 0 is the master thread
// (it has sole write control on the barrier)
int ThreadsWaiting = 0;
while(ThreadsWaiting != barrier->WaitFor) {

// not all threads are done
ThreadsWaiting = 0;
for(i=0;i<barrier->WaitFor;i++)
ThreadsWaiting+=barrier->ThreadIsWaiting[i];

}
// master thread now resets all other threads
// (same way PPE does it on cell)
for(i=0;i<barrier->WaitFor;i++)barrier->ThreadIsWaiting[i]=0;

}else{
// other threads just wait for the master thread to release them
// use divide to ensure spinning doesn’t sap cycles on MT cores
while(barrier->ThreadIsWaiting[threadID]){x=1.0/x;}

}
return;

}

Figure 3.2: Shared memory barrier implementation. Note that the Cell implementation is
very similar.

The cache-based implementation is quite similar and is shown in Figure 3.2. How-
ever, there are N identical threads instead of one PPE and N SPE threads. Thus, we
re-task thread0 to handle the functionality of the PPE. Thus thread0..threadN−1 will set
their waiting variable, and thread0 will reset all of them. On single threaded architec-
tures, spinning (load, compare, branch) only wastes power. However, on multithreaded
architectures, these instructions sap instruction issue bandwidth from other threads. Thus,
to ensure spinning doesn’t impair hardware multithreading, each thread executes a non-
pipelined floating-point divide when spinning. Future work could implement a less portable,
architecture-specific solution such as x86’s mwait instruction.

Unfortunately, both barrier implementations easily scale linearly with the number
of threads. On going research by Rajesh Nishtala et al. aims to auto-tune barriers and
other collectives [20]. His approach explores a variety of tree topologies. Initial results show
roughly logarithmic scaling in time. Such an approach increases the attainable concurrency
or reduces the minimal quanta for parallelization.

39

7 3 2 1 0
Xeon E5345

00000 core socket
(Clovertown)

7 2 1 0
Opteron 2214

000000 socket core
(Santa Rosa)

7 3 2 1 0
Opteron 2356

00000 socket core
(Barcelona)

7 6 5 3 2 0
T2+ T5140

0 socket core thread
(Victoria Falls)

Table 3.8: Decode of an 8-bit processor ID into physical thread, core, and socket

3.2.4 Affinity

To ensure consistent and optimal performance, we pin threads to cores. Moreover,
we use the affinity routines to ensure data is placed in memory attached to the socket tasked
to process it. Each operating system provides different routines by which such affinity
functionality may be implemented. On the x86 architectures, we use the Linux scheduler’s
sched setaffinity() routine and presume a first touch policy [48]. On Victoria Falls,
we use the complimentary Solaris scheduler’s processor bind() routine and also assume a
first touch policy. For Cell, we use libnuma’s numa run on node() to bind SPE threads to
one socket or the other and numa set membind() to bind memory allocation to one socket
or the other.

The mapping of Linux processor IDs to physical cores is computer dependent. In
addition, the mapping of Solaris processor to physical thread is generally not well known.
In both cases, we present how one could decode the processor ID into physical thread, core,
and socket. Table 3.8 shows how an 8-bit Linux/Solaris processor ID would be decoded
into physical thread, core, or socket. Clearly, using processors 0 and 1 is a very different
mapping on Clovertown compared to Barcelona. As such, the affinity routines were made
cognizant of the mapping. As this mapping is unique to each computer (not just to each
processor), future work should investigate a more portable solution.

3.2.5 Compilers

Before performing our experiments, we performed several preliminary experiments
(not presented here) to determine the appropriate compiler and compiler flags for each
computer. Table 3.9 on the next page lists those parameters. Note that all architectures
except the 32-bit Cell SPEs were compiled for a 64-bit environment. Our version of gcc
didn’t have a tuning option for the Core microarchitecture. Surprisingly, gcc tuned for
Nocona (a 64-bit Pentium4) often produced better performance on memory intensive kernels
than icc compiled for the Core microarchitecture. The Sparc gcc 4.0.4 was significantly faster
than gcc 4.0.3. Apparently, the backend was replaced and many optimizations enabled in

40

Computer Compiler Flags

Xeon E5345 icc 10.0 -O3 -fno-alias -fno-fnalias -xT
(Clovertown) gcc 4.1.2 -O4 -march=nocona -mtune=nocona -msse3 -m64 -funroll-loops
Opteron 2214
(Santa Rosa)

gcc 4.1.2 -O4 -march=opteron -mtune=opteron -msse3 -m64 -funroll-loops

Opteron 2356
(Barcelona)

gcc 4.1.2 -O4 -march=opteron -mtune=opteron -msse3 -m64 -funroll-loops

T2+ T5140
(Victoria Falls)

gcc 4.0.4 -fast -m64 -xarch=v9 -xprefetch=auto,explicit

Cell QS20
(PPE)

xlc 8.2 -O3 -qaltivec -qenablevmx -q64

Cell QS20
(SPE)

xlc 8.2 -ma -O3 -qnohot -qxflag=nunroll

Table 3.9: Compilers and compiler flags used throughout this work. On Clovertown, icc
delivered comparable performance for sparse matrix-vector multiplication.

this minor revision change. Note that the Cell PPE compiler flags were those used when
running the PPE in standalone mode.

3.2.6 Performance Measurement Methodology

Throughout this work we measure average performance over ten trials. In the
HPC world, where these kernels will be executed thousands if not millions of times, average
is the appropriate metric. In other domains, minimum, or median performance might be
more appropriate. Nevertheless, two quantities must be measured: the total number of
floating-point operations per trial and the time for ten trials. We determine the former by
manually inspecting the computational kernel as well as the dataset or problem size. We
calculate the latter using each computer’s cycle counter. We define GFLOP/s as billions
(109) of floating-point operations per second.

Each computer used in this work has a low-level cycle counter. On all architectures
except Cell, this cycle counter counts core cycles. On Cell and PowerPC, the counter is
called the TimeBase. The TimeBase frequency is implementation dependent. Playstations,
QS20’s and QS22’s each run at a different frequency. The counters run continuously and
are independent of task switches. Thus, to measure the time required by a kernel, we read
the counter both before and after and take the difference. To calibrate the cycle counter
frequency, we perform a sleep(1), and measure the delta in the cycle counter. As a basis,
we use the FFTW [52] cycle counter implementations reproduced in Table 3.10 on page 42.

3.2.7 Program Structure

Figure 3.3 on the next page shows the basic benchmark program structure. The
cache-based and Cell implementations are remarkably similar. The primary difference is
that on the cache-based implementation, Thread0 is tasked with the work performed by
the Cell PPE and SPE0. Thus, it handles all barrier management and any serial code in
addition to the computation handled by SPE0.

41

Thread0 Thread2Thread1 Thread3

(a) (b)

Barrier()

Barrier()

Barrier()

Barrier()

Barrier()

Serial
Init

pthread
create()

Parallel
Init

Parallel
Init

Parallel
Init

Parallel
Init

Serial
Parts

Stop
Timer

Start
Timer

pthread
exit()

pthread
exit()

pthread
exit()

pthread
join()

Parallel
Bench

Parallel
Bench

Parallel
Bench

Parallel
Bench

PPE SPE1SPE0 SPE2
Serial
Init

Serial
Parts

Stop
Timer

Start
Timer

pthread
join()

Parallel
Bench

Parallel
Bench

Parallel
Bench

SPE
creation

SPE
creation

SPE
creation

Serial
Cleanup

Serial
Cleanup

SPE3

Parallel
Bench

SPE
creation

pthread
exit()

pthread
exit()

pthread
exit()

pthread
exit()

Barrier()

Barrier()

Barrier()

Barrier()

Barrier()

pthread
create()

Parallel
Init

Parallel
Init

Parallel
Init

Parallel
Init

Fi
rs

t t
ria

l

Al
l 1

0
tri

al
s

Figure 3.3: Basic benchmark flow. Auto-tuning adds a loop around the ten trials to explore
the optimization space. In the cache implementations (a) Thread0 is tasked with the same
work as the PPE and SPE0 in the Cell version (b).

42

ISA Code Snippet

asm volatile ("rdtsc" : "=a" (lo), "=d" (hi));

x86/64 return((((uint64 t)hi) << 32) | ((uint64 t)lo));

asm volatile("rd %%tick, %0" : "=r" (ret));

SPARC return ret;

do {
tbu0 = mftbu();

tbl = mftb();

PowerPC tbu1 = mftbu();

}while (tbu0 != tbu1);

return (((volatile uint64 t)tbu0) << 32) | (volatile uint64 t)tbl;

Table 3.10: Cycle counter implementations.

43

We now provide a brief walkthrough of the basic structure and parallelization
scheme for this bulk-synchronous, single-program, multiple-data benchmark. Upon program
invocation, any argument processing or serial initialization is performed. This preprocessing
does not include allocation of any data structures requiring some affinity. Next, the main
thread then creates either N-1 additional pthreads for the cache-based computer or N
pthreads for Cell. As Cell has an extra core (the PPE), it always runs with one extra
thread. The main thread then performs a function jump to the same function as the target
of the pthread create(). At this point any initialization or allocation requiring memory
affinity is performed. On the Cell implementation the N pthreads each create one SPE
thread. A global barrier ensures all threads have completed initialization. Thread0 or the
PPE starts the timer and another barrier is performed. The threads then make 10 passes
through the benchmark. The benchmark consists of two phases: a parallel part and a serial
part; after each is a barrier. After the second barrier on the 10th trial, the timer is stopped
and performance is calculated. The created threads then perform a pthread exit() while
the creating thread does a return and a pthread join(). Any final cleanup is performed
serially.

Although this is the structure of the benchmarks used in this work, we believe it
is the appropriate template for many performance-oriented threaded codes. Moreover, we
believe thread creation should be performed only once. Subsequently, functions should be
dispatched enmasse to the entire thread pool. A barrier instead of a join would be placed
at the end of each of these functions. If threads aren’t tasked with work, they will reach
the barrier quickly and then spin or sleep.

44

667MHz DDR2
DIMMs

controller

H
yp

er
Tr

an
sp

or
t

O
pt

er
on

O
pt

er
on

1M
B

1M
B

SRI
xbar

667MHz DDR2
DIMMs

10.66 GB/s

controller

H
yp

er
Tr

an
sp

or
t

4G
B

/s
(e

ac
h

di
re

ct
io

n)

O
pt

er
on

O
pt

er
on

1M
B

1M
B

SRI
xbar

10.66 GB/s

667MHz DDR2
DIMMs

10.6 GB/s

2x64b controllers

H
yp

er
Tr

an
sp

or
t

O
pt

er
on

O
pt

er
on

O
pt

er
on

O
pt

er
on

51
2K

51
2K

51
2K

51
2K

2MB victim

SRI / xbar

667MHz DDR2
DIMMs

10.6 GB/s

2x64b controllers

H
yp

er
Tr

an
sp

or
t

O
pt

er
on

O
pt

er
on

O
pt

er
on

O
pt

er
on

51
2K

51
2K

51
2K

51
2K

2MB victim

SRI / xbar

4G
B

/s
(e

ac
h

di
re

ct
io

n)

B
IF

512MB XDR DRAM

25.6 GB/s

EIB (ring network)

XDR memory controllers

VMT
PPE

512K
L2

SP
E

25
6K

M
FC

SP
E

25
6K

M
FC

SP
E

25
6K

M
FC

SP
E

25
6K

M
FC

SP
E

25
6K

M
FC

SP
E

25
6K

M
FC

SP
E

25
6K

M
FC

SP
E

25
6K

M
FC

B
IF

512MB XDR DRAM

25.6 GB/s

EIB (ring network)

XDR memory controllers

SP
E

25
6K

M
FC

SP
E

25
6K

M
FC

SP
E

25
6K

M
FC

SP
E

25
6K

M
FC

SP
E

25
6K

M
FC

SP
E

25
6K

M
FC

SP
E

25
6K

M
FC

SP
E

25
6K

M
FC

VMT
PPE

512K
L2

<2
0G

B
/s

(e
ac

h
di

re
ct

io
n)

667MHz FBDIMMs

MCH (4x64b controllers)

10.66 GB/s(write)21.33 GB/s(read)

10.66 GB/s
FSB

10.66 GB/s

C
or

e
C

or
e

4MB
L2

C
or

e
C

or
e

4MB
L2

C
or

e
C

or
e

4MB
L2

C
or

e
C

or
e

4MB
L2

FSB

 667MHz FBDIMMs

21.33 GB/s 10.66 GB/s

4MB Shared L2 (16 way)
(64b interleaved)

4 Coherency Hubs

2x128b controllers

M
T

SP
A

R
C

M
T

SP
A

R
C

M
T

SP
A

R
C

M
T

SP
A

R
C

M
T

SP
A

R
C

M
T

SP
A

R
C

M
T

SP
A

R
C

M
T

SP
A

R
C

Crossbar

179 GB/s 90 GB/s

 667MHz FBDIMMs

21.33 GB/s 10.66 GB/s

4MB Shared L2 (16 way)
(64b interleaved)

4 Coherency Hubs

2x128b controllers

M
T

SP
A

R
C

M
T

SP
A

R
C

M
T

SP
A

R
C

M
T

SP
A

R
C

M
T

SP
A

R
C

M
T

SP
A

R
C

M
T

SP
A

R
C

M
T

SP
A

R
C

Crossbar

179 GB/s 90 GB/s

8
x

6.
4

G
B

/s
(1

 p
er

 h
ub

 p
er

 d
ire

ct
io

n)

(a)
Intel Xeon E5345

(Clovertown)

(b)
AMD Opteron 2214

(Santa Rosa)

(c)
AMD Opteron 2356

(Barcelona)

(d)
Sun UltraSPARC T2+ T5140

(Victoria Falls)

(e)
IBM QS20 (Cell Blade)

Figure 3.4: The five computers used throughput this work. Note, the Cell blade contains
two architectures — the PPE and the SPEs. As such, it will be used for both cache-based
and local store-based experiments. Note, L1 caches are not shown.

45

3.3 Summary

In this chapter we discussed the five computers used throughout this work: In-
tel’s Xeon E5345 (Clovertown), AMD’s Opteron 2214 (Santa Rosa), AMD’s Opteron 2356
(Barcelona), Sun’s T2+ T5140 (Victoria Falls), and IBM’s QS20 Cell Blade. Figure 3.4 on
the preceding page provides a visual representation of these five computers showing their
bandwidths and topologies. Note, L1 caches are not shown. In addition, we provided some
requisite background material on the novel or relatively unfamiliar architectural features
of these computers. We then provide an overview and some implementation of the bulk-
synchronous, single-program, multiple-data (SPMD) shared memory parallel (SMP) strong
scaling programming model we implemented using POSIX threads. Similarly, we provided
in-depth details on our affinity, barrier, and timing routines.

46

Chapter 4

Roofline Performance Model

This chapter presents the visually-intuitive, throughput-oriented Roofline Model.
The Roofline Model allows a programmer to model, predict, and analyze an individual
kernel’s performance given an architecture’s communication and computation capabilities
and the kernel’s arithmetic intensity. When used in the context of tuning, the model
clearly notes which optimizations and architectural paradigms must be exploited to attain
performance. Given a kernel’s observed performance, one may quantify further potential
performance gains. Qualitatively, one can compare the Roofline Models for a set of machines
to gain some insight into the requisite software complexity and productivity. Ultimately, the
Roofline Model allows one to reap much of the potential performance benefit with relatively
little detailed architectural knowledge. We use this model to understand and qualify the
performance of the auto-tuned kernels in Chapters 6 and 8.

In this chapter, we use memory-intensive floating-point kernels as the primary
motivator for the Roofline Model. In the latter sections we generalize the Roofline Model
to other communication and computation metrics. Section 4.1 discusses a few related and
dependent performance models. Section 4.2 clearly defines the work and performance met-
rics as well as the concept of arithmetic intensity used throughout the rest of this work.
Section 4.3 synthesizes communication, computation and locality into a performance graph
using bound and bottleneck analysis — a näıve Roofline Model. Unfortunately, such a sim-
plified graph is of little value in the performance analysis and optimization world. As such,
Sections 4.4 through 4.6 expand the Roofline Model by noting the computer’s response
to perturbations in the parameters contained in Little’s Law [10] as well as its response
to capacity or conflict cache misses. Section 4.7 unifies the previous three sections into a
single model, and makes several qualitative assessments of it. Section 4.8 speculates on
how one might extend the Roofline Model to other communication or computation metrics.
Section 4.9 describes how one could use performance counter data to construct a runtime-
specific rather than architecture-specific Roofline Model. Finally, we summarize the chapter
in Section 4.10.

47

4.1 Related Work

Enormous effort has been invested on the part of the performance optimization and
analysis community in performance modeling. More specifically these efforts can be divided
into two main categories: performance prediction, in which software is used to predict
the performance of future hardware, and performance analysis, in which one attempts to
understand observed performance on existing or future hardware.

Perennially, architects have written software simulators to predict performance as
hardware parameters are tweaked. Although such approaches may be extremely accurate
in predicting hardware performance years before a machine is built, in themselves they do
not provide any insight into why an architecture performs well or not. Nor do they provide
any insight into how one would optimize code rather than redesign hardware. Finally, their
abysmal performance (simulated cycles per second) mandates either enormous simulation
farms or restricts their use to small kernels. The former is very expensive, and the value
from the latter is small. The work presented in this thesis is focused on understanding a
machine’s performance, and adapting software to real hardware. Thus, we don’t require a
simulator to analyze or predict performance.

Accurate performance counter collection from real hardware only provides a flood
of data. Although one could observe that changes in hardware or software might result
in substantially different numbers of, say TLB misses, a separate approach is required to
understand why there are so many misses.

More recently, statistical methods have been developed to predict performance
and identify hardware bottlenecks [118, 28]. These methods attempt to produce a machine
signature by running a training set on them and deriving the parameters from performance.
To predict application performance, one must also characterize the access patterns and
computation of the application and use an operator to combine the resultant application
profile with the machine signature. In the simplest form, this is a linear combination of
the parameters. In many ways, this is somewhat of a black art. Moreover, although one
maybe able to predict performance and perhaps how fast future architectures could run
the same program, little valuable insight is provided into how architects should change
future hardware and nor is any insight afforded to programmers on how to restructure their
code for current or future processors. One can estimate existing bottlenecks by comparing
performance-correlated application and architecture signatures.

Our recent paper [36] theorized that the behavior of hardware prefetchers can
severely impair the conventional blocking strategies. When a hardware prefetcher is en-
gaged, the miss time is a function of bandwidth. When they are not effective, however,
then the miss time is a function of exposed memory latency. To that end, a microbench-
mark was created to quantify the fast and slow miss times. A performance model could then
predict stencil performance as a function of blocking as well as fast and slow miss times.
Clearly, such an approach was only possible because the authors had substantial knowledge
about the kernel and well founded theories as to the performance bottlenecks. However,
such a performance model would have been completely oblivious to software optimization
strategies such as software prefetching or a hierarchical restructuring of the data.

Rather than modeling an architecture’s performance response to code (either
blindly or with some knowledge), some have reversed the process and begun by analyz-

48

ing code. When a code’s demands exceed an architecture’s capabilities, performance will
suffer.

The compiler community uses similar models for code generation. Machine balance
is often defined as the ratio of memory bandwidth (in words) to FLOP/s (see paper [26,
27]. A complimentary term is loop balance. Loop balance is the steady state ratio of
a loop’s total number of loads and stores to total FLOPs. Without caches, one might
conclude that when a loop balance exceeds machine balance, the machine is bandwidth
limited (i.e. memory-bound). The presence of caches and thread-level parallelism coupled
with the idiosynchronies of the memory substsystems devalues this concept.

A similar approach is bound and bottleneck analysis. It is a very simple approach
that yields high and low bounds to performance. One example applies bound and bottleneck
to sizing of service centers [85]. Their basic units are the number of users and demands per
center. As the number of users increases, performance increases. However, performance
will eventually saturate at the inverse of the most heavily bottlenecked service center.

In this chapter, we leverage the simplicity of bound and bottleneck analysis with
the concept of machine balance as the basis for the Roofline model. Thus, in our work the
service centers of bound and bottleneck analysis have been transformed from datacenters
into memory controllers and FPUs. Alternate approaches like simulation or statistical
methods do not provide the performance, simplicity, or insight we desire.

4.2 Performance Metrics and Related Terms

In this section, we define the terms used as inputs to the Roofline Model. These in-
clude work, performance, and arithmetic intensity. We limit ourselves to memory-intensive
floating-point kernels.

4.2.1 Work vs. Performance

Every kernel has a computation performance metric of interest. Each kernel will
perform some units of work over a given period of time. Work can include computation
(i.e. transformation or combination of data) or data movement.

For our kernels, the computational work performed by the various kernels is
floating-point operations. These include add, subtract, multiply, and sometimes divide.
Thus, our throughput performance metric is floating-point operations per second (FLOP/s)
or billions (109) of floating-point operations per second (GFLOP/s). It is conceivable that
higher-level metrics are possible: lattice updates per second or matrix multiplications per
second. Unfortunately, there are several reasons why such metrics are inappropriate in the
context of performance optimization. For example, there are many lattice methods, and
each method might require a different number of floating-point operations per lattice up-
date. Lattice updates per second alone provides no insights into the resultant architectural
bottlenecks, whereas GFLOP/s does. As such, for purposes of clarity in the performance
optimization arena, it is easier to relate application performance measured in GFLOP/s.

When it comes to communication between storage (DRAM) and computational
resources (CPU), we define work as the total number of bytes transfered. This includes all

49

Compulsory Compulsory Requisite
Characteristic Compulsory Memory Arithmetic Cache

Kernel Parameter(s) FLOPs Traffic Intensity Capacity

Dense Vector-
Vector Size (N) N 24·N 1

24
O(1)

Vector Addition

Dense Matrix-
Vector Multiplication

Matrix Rows (N) 2·N2 8·N2 + 16·N 1
4

O(N)

Dense Matrix-
Matrix Rows (N) 2·N3 24·N2 N

12
O(N2)

Matrix Multiplication

Sparse Matrix- Nonzeros (NNZ)
2·NNZ 12·NNZ + 16·N 1

6
<O(N)

Vector Multiplication Matrix Rows (N)

3D Heat Equation
Grid Dimension (N) 8·N3 16·N3 1

2
O(1)

PDE (Jacobi)

1D Radix-2 FFT Sample Size (N) 5·Nlog(N) 32·N 5
32

log(N) O(N)

N-body Force Calculation Number of Particles (N) O(N2) O(N) O(N) O(N)

Table 4.1: Arithmetic Intensities for example kernels from the Seven Dwarfs. Arithmetic
intensity is the ratio of compulsory FLOPs to compulsory memory traffic. Note, to asymp-
totically achieve such arithmetic intensities, very large cache capacities are required.

memory traffic arising from compulsory, capacity, and conflict misses. In addition, it include
all speculative transfers — e.g. hardware initiated prefetching. We define bandwidth (com-
munication performance) as bytes transfered per second (B/s) or more commonly billions
(109) of bytes transfered per second (GB/s). In the absence accurate performance counter
data, we may approximate memory traffic by assuming there are no conflict or capacity
misses.

4.2.2 Arithmetic Intensity

We redefine arithmetic intensity to be the ratio of compulsory floating-point op-
erations to the total DRAM memory traffic; that is, the ratio of computation work to
communication work. Total DRAM memory traffic is all memory requests after being fil-
tered by the cache. Similarly, we define compulsory arithmetic intensity to be the ratio
of compulsory floating-point operations (minimum number of FLOPs required by the al-
gorithm) to the compulsory DRAM memory traffic. The latter is a characteristic solely of
the kernel, where the former is a characteristic of the execution of a kernel on a specific
machine. In many ways, compulsory arithmetic intensity is a broad measure of the locality
within a kernel.

If one were to consider the canonical example kernels from a subset of the Seven
Dwarfs [31], one would notice that some kernels have compulsory arithmetic intensity that
is constant regardless of problem size, while others have arithmetic intensity that grows
with the problem size. Table 4.1 clearly shows that arithmetic intensity has substantially
different scaling as a function of memory traffic not only for kernels within a dwarf but

50

also across dwarfs. Clearly, many of these arithmetic intensities are rather low — less than
the conventional wisdom design point of 1 FLOP per byte. Moreover, to asymptotically
achieve such arithmetic intensities, substantial cache capacities are required. Many of these
arithmetic intensities could be applied hierarchically. That is, the arithmetic intensity of
dense matrix-matrix multiplication could be applied to storage and transfers from DRAM
or storage and transfers from the L2 cache. Clearly, in the latter case the L2 arithmetic
intensity can only grow until limited by L2 cache capacity.

4.3 Näıve Roofline

Using bound and bottleneck analysis [85], Equation 4.1 bounds attainable ker-
nel performance on a given computer. We label this well known formulation to be a
näıve Roofline Model. In this formulation, there are only two parameters: peak perfor-
mance and peak bandwidth. Moreover, there is a single variable: arithmetic intensity. As
we are focused on memory-intensive floating-point kernels in this section, our peak per-
formance is peak GFLOP/s as derived from architectural manuals. Peak bandwidth is
peak DRAM bandwidth obtained via the Stream benchmark [125]. Technically, the Stream
benchmark doesn’t measure bandwidth, it measures iterations per second, then attempts to
convert this performance into a bandwidth based on the compulsory number of cache misses
on non-write allocate architectures. To avoid the superfluous allocate traffic, we modified
Stream.

Attainable Performance = min
{

Peak Performance
Peak Bandwidth×Arithmetic Intensity

(4.1)

Figure 4.1 on the next page plots Equation 4.1 on a log-log scale resulting in a
Roofline Model for memory-intensive floating-point kernels for the machines introduced in
Chapter 3. The log-log scale is particularly useful as it ensures details are not lost despite
data points across a range of more than two orders of magnitude. If the next generation
of microprocessors doubles peak FLOP/s by doubling the number of cores, they can easily
be drawn and visualized without a loss of detail on a log-log scale. Clearly, as arithmetic
intensity increases, so does the bound on performance. However, at a critical arithmetic
intensity, performance saturates at the peak performance level. We call this point the
Ridge Point. In essence, this is the minimum arithmetic intensity required to achieve peak
performance.

Figure 4.1 also shows the DRAM pin bandwidth. Stream bandwidth can be sub-
stantially lower than DRAM pin bandwidth for a variety of reasons. Most notably, the Intel
Clovertown uses a front side bus (FSB) not only with less pin bandwidth than DRAM, but
on which all coherency traffic is also present. The IBM Cell was designed so that bandwidth
could only be fully exploited by the SPEs, but not by the PPE alone. Finally, the Stream
benchmark is a suboptimal implementation for the Sun Victoria Falls.

Despite its simplistic nature, even this representation has significant value. Given
a kernel and its arithmetic intensity (obtained either through inspection or simulation), one
may query the Roofline Model and bound performance. Additionally, given the kernel’s

51

0.5
1.0

1/8
actual flop:byte ratio

at
ta

in
ab

le
 G

FL
O

P/
s

2.0
4.0
8.0

16.0
32.0
64.0

128.0
256.0

1/4
1/2 1 2 4 8 16

0.5
1.0

1/8
actual flop:byte ratio

at
ta

in
ab

le
 G

FL
O

P/
s

2.0
4.0
8.0

16.0
32.0
64.0

128.0
256.0

1/4
1/2 1 2 4 8 16

Xeon E5345
(Clovertown)

Opteron 2214
(Santa Rosa)

0.5
1.0

1/8
actual flop:byte ratio

at
ta

in
ab

le
 G

FL
O

P/
s

2.0
4.0
8.0

16.0
32.0
64.0

128.0
256.0

1/4
1/2 1 2 4 8 16

QS20 Cell Blade
(PPEs)

0.5
1.0

1/8
actual flop:byte ratio

at
ta

in
ab

le
 G

FL
O

P/
s

2.0
4.0
8.0

16.0
32.0
64.0

128.0
256.0

1/4
1/2 1 2 4 8 16

QS20 Cell Blade
(SPEs)

0.5
1.0

1/8
actual flop:byte ratio

at
ta

in
ab

le
 G

FL
O

P/
s

2.0
4.0
8.0

16.0
32.0
64.0

128.0
256.0

1/4
1/2 1 2 4 8 16

Opteron 2356
(Barcelona)

0.5
1.0

1/8
actual flop:byte ratio

at
ta

in
ab

le
 G

FL
O

P/
s

2.0
4.0
8.0

16.0
32.0
64.0

128.0
256.0

1/4
1/2 1 2 4 8 16

UltraSparc T2+ T5140
(Victoria Falls)

peak DP

Stre
am

 B
an

dw
idt

h

peak DP

Stre
am

 B
an

dw
idt

h o
n l

arg
e d

ata
set

s

Stre
am

 B
an

dw
idt

h peak DP

peak DP

Stre
am

 B
an

dw
idt

h

peak DP

Stre
am

 B
an

dw
idt

h

peak DP

Stre
am

 B
an

dw
idt

h

DRAM pi
n b

an
dw

idt
h

DRAM pi
n b

an
dw

idt
h

DRAM pi
n b

an
dw

idt
h

DRAM
pin bandwidth

DRAM pi
n b

an
dw

idt
h

FSB pi
n b

an
dw

idt
h

Figure 4.1: Näıve Roofline Models based on Stream bandwidth and peak double-precision
FLOP/s. The arithmetic intensity for three generic kernels is overlaid. For clarity, we also
note DRAM pin bandwidth. Note the log-log scale.

actual performance, one may quantifiably bound further performance gains. However, this
formulation has certain, perhaps unrealistic, assumptions; most notably that a machine
may always obtain either peak bandwidth or peak FLOPs. Additionally, although this
simplistic version can quantify further potential performance gains, it fails to specify which
optimizations must be implemented to achieve better performance. These issues will be
addressed in Sections 4.4 through 4.7.

Imagine three nondescript kernels with arithmetic intensities of 1
6 , 1, and 6. Fig-

ure 4.1 overlays the arithmetic intensities of these kernels — represented by red diamonds,
blue triangles, and green circles — onto the Roofline Models for the machines used in this
work. On all machines, the first kernel is clearly memory-bound; one would expect perfor-
mance to be proportional to the machine’s Stream bandwidth. Despite having six times
the arithmetic intensity, the kernel represented by the blue triangle would still be memory-
bound on the Clovertown, Barcelona, and Cell PPEs. The final kernel, with an extremely
high arithmetic intensity of 6, would still be memory-bound on the Clovertown. Although
simple inspection of DRAM pin bandwidth would suggest a compute bound state, the fact
that Stream bandwidth is substantially lower than DRAM pin bandwidth invalidates this
hypothesis. Very few floating-point kernels would have arithmetic intensity higher than 6.

Clearly, this formulation assumes one can always achieve either peak bandwidth

52

or peak FLOP/s. No architecture/compiler combination can guarantee this on every code.
Architectures have non-zero latencies for both instructions and memory access, as well as
substantial memory and compute bandwidth that may only be achieved if all components
are utilized. Finally, non-compulsory cache misses can substantially reduce the expected
arithmetic intensity and thus limit performance. In the following four sections we address
the implications for realistic bandwidth, computation, and cache parameters.

4.4 Expanding upon Communication

We define memory bandwidth to be the rate data can be transfered from DRAM to
on-chip caches assuming stalls within a core do not impair performance. This bandwidth can
be diminished if Little’s Law is not satisified. In addition to the three components included
in Little’s Law — memory latency, raw memory bandwidth, concurrency in the memory
subsystem — we also include the reduced bandwidth due to cache coherency. If concurrency
isn’t sufficiently exploited, sustained bandwidth will drop. We express deficiencies in these
low-level concepts as deficiencies in software optimizations. We discretize deficiencies in
software optimization as either none or total deficiency. A total deficiency will result in a
roofline-like curve beneath the roofline proper. We call these curves Bandwidth Ceilings.
This section discusses the impact of cache coherency, the components of memory bandwidth
(parallelism), memory latency, and spatial locality. Finally, these concepts are unified into
the concept of bandwidth ceilings.

4.4.1 Cache Coherency

All machines used in this work rely on a snoopy cache protocol to handle inter-
chip cache coherency. Remember, the Clovertown is comprised of two multichip modules
(MCM) each comprising two chips. All four chips are connected to the memory controller
hub (MCH) via dual independent front side buses (FSB). This implies that only pairs of chips
within an MCM may directly snoop transactions on their respective FSBs. To remedy this, a
snoop filter was instantiated in the MCH and was discussed in Chapter 3. Nevertheless, the
fact that FSB bandwidth must be partially retasked for coherency bandwidth implies that
the Clovertown’s bandwidth is dependent on the effectiveness of the snoop filter. Thus, on
Clovertown, one would see substantial differences between the raw DRAM pin bandwidth,
the raw FSB pin bandwidth, the sustained application bandwidth when the snoop filter is
effective, and the sustained application bandwidth when the snoop filter is ineffective. The
näıve Roofline Model is premised on only peak Stream bandwidth and ignores the others.
An enhanced Roofline Model would be cognizant of all of them.

All other architectures in this work have a dedicated network for coherency and
inter-socket transfers. Thus, for well-structured programs on these two socket SMPs, nei-
ther the latency nor limited bandwidth of the network are expected to impede performance.
However, large snoopy SMPs will require an inordinate amount of inter-chip bandwidth to
cover the resultant explosion in cache coherency traffic. Without such hardware, perfor-
mance will be significantly below the raw DRAM pin bandwidth. The ideal cache coherency
solution is a directory protocol, since it only intervenes when there is a coherency issue.

53

However, this would be overkill for the dual-socket SMPs used here. It should be noted
that on many SMPs, including these, the coherency latency will be comparable if not larger
than the local DRAM latency. In the end, one must be mindful that cache coherency may
set the Stream bandwidth component of the Roofline far below the aggregate DRAM pin
bandwidth.

4.4.2 DRAM Bandwidth

Raw DRAM pin bandwidth comes from a variety of sources that in simplest terms
can be categorized into the product of parallelism and frequency. Parallelism itself can
be subdivided into: bit-level parallelism (channel bus width × channels per controller),
parallelism across multiple memory controllers on a chip, and parallelism across multiple
chips. Thus, we calculate the raw DRAM pin bandwidth as the product of chips, controllers
per chip, channels per controller, bits per channel, and frequency. Clearly, if hardware or
software is deficient in fully exploiting any of these forms of raw bandwidth, then Stream
bandwidth can be substantially diminished.

4.4.3 DRAM Latency

Access to DRAM requires latency of hundreds of core clock cycles. This latency
arises from several sources outside the cache hierarchy. Not only is there substantial latency
required to transfer a cache line, but there is also substantial overhead to open a DRAM
page. These latencies may be hidden via pipelining, and the overheads can be amortized via
high DRAM page locality. Moreover, the overhead may be hidden with concurrent accesses
to different DRAM ranks. One should be mindful that to pipeline requests, significant
parallelism must be expressed not only to the memory subsystem, but to each controller.
Each controller can service multiple requests; easily the number of attached DRAM ranks.
Thus, two nearly identical machines with the same number of memory controllers but
different numbers of attached DIMMs may have different Roofline models simply because
they have a different number of ranks. One cannot hide the overheads if there are not
enough ranks.

Little’s Law dictates that the concurrency that must be expressed to the memory
subsystem to achieve peak bandwidth is the latency-bandwidth product. Assuming load
and store instructions are rearranged to access independent cache lines, the requisite num-
ber of independent cache lines in flight is the latency-bandwidth product divided by the
cache line size in bytes. For the machines used in this work, this might range from 64 to
200 independent and concurrent accesses; quite a challenge given the number of cores per
SMP. However, these machines provide a number of strategies designed to express this vast
Memory-Level Parallelism to the memory controllers. These paradigms include: extreme
multithreading, out-of-order execution, software prefetching, hardware unit-stride stream
prefetching, hardware strided stream prefetching, block DMA transfers, and DMA list trans-
fers. Some of the machines can exploit more than one of these techniques to better express
concurrency. If no combination of techniques can satisfy the latency-bandwidth product,
the architecture can never achieve peak DRAM pin bandwidth.

54

Clearly, some of these techniques are dependent on hardware detecting certain ac-
cess patterns and generating speculative requests. Under ideal conditions, these techniques
require no software modifications, but may not be applicable for all applications. Other
techniques like software prefetching or DMA may require significant software modification
or compiler support without which performance will be substantially degraded. Finally, for
single-program, multiple-data (SPMD) codes, multithreading is relatively easily exploited
for a variety of applications without further software modifications. Given that consecutive
loads are likely to touch the same cache line, limited memory-level parallelism is actually
expressed to the memory controllers. Thus, the out-of-order capabilities of the superscalar
architectures cannot be brought to bear, as they are more readily used for hiding access to
the last level cache rather than main memory.

In the case where there is no inherent memory-level parallelism within an appli-
cation (e.g. sequential pointer chasing), memory latency is completely exposed, and perfor-
mance will suffer greatly. That is, one could only expect to load a 64 byte cache line every
200 ns or roughly 20 MB/s instead of the 10’s of GB/s for unit-stride streaming accesses.
Thus, it is key that software and hardware collaborate to express, discover, and exploit as
much memory-level parallelism as possible.

4.4.4 Cache Line Spatial Locality

Spatial locality is defined as the use of consecutive data values in memory, specif-
ically those within a cache line. Clearly, this is a high-level conceptualization. High band-
width is a high utilization of the memory controller and DRAM capabilities and is oblivious
to such high-level locality conceptualizations. It is imperative that the reader keeps these
distinct concepts separate.

Kernels with unit-stride stream accesses have high spatial locality within a cache
line; every byte loaded is used. However, there are other access patterns for which a small
fraction of the data loaded will be used. This should be not viewed as a reduction of band-
width commensurate with the fraction of data used, but rather a reduction in arithmetic
intensity commensurate with the lack of sub-cache line spatial locality. Small stride mem-
ory access patterns might require every consecutive cache line, but might not require every
byte. As such, they may achieve good bandwidth, but poor arithmetic intensity. Similarly,
random access patterns might achieve neither good bandwidth due to a lack of exploited
memory-level parallelism, nor good arithmetic intensity due to a lack of spatial locality.

4.4.5 Putting It Together: Bandwidth Ceilings

For single-program, multiple-data (SPMD) memory-intensive floating-point ker-
nels, there are two big pitfalls that will reduce effective memory bandwidth: exposing mem-
ory latency and nonuniform utilization of memory controllers. In this section, we perform
a sensitivity analysis in which we examine the impact on performance as we satisfy less and
less memory concurrency (expose more and more memory latency) as well as not uniformly
utilizing all memory controllers. We remove these “optimizations” one by one from a highly
optimized implementation of the Stream benchmark in a prescribed order corresponding
to the optimization’s likely exploitation in a typical SPMD kernel using existing compiler

55

0.5
1.0

1/8
actual flop:byte ratio

at
ta

in
ab

le
 G

FL
O

P/
s

2.0
4.0
8.0

16.0
32.0
64.0

128.0
256.0

1/4
1/2 1 2 4 8 16

at
ta

in
ab

le
 G

FL
O

P/
s

256.0

16

Xeon E5345
(Clovertown)

Opteron 2214
(Santa Rosa)

0.5
1.0

1/8
actual flop:byte ratio

at
ta

in
ab

le
 G

FL
O

P/
s

2.0
4.0
8.0

16.0
32.0
64.0

128.0
256.0

1/4
1/2 1 2 4 8 16

QS20 Cell Blade
(PPEs)

0.5
1.0

1/8
actual flop:byte ratio

at
ta

in
ab

le
 G

FL
O

P/
s

2.0
4.0
8.0

16.0
32.0
64.0

128.0
256.0

1/4
1/2 1 2 4 8 16

QS20 Cell Blade
(SPEs)

0.5
1.0

1/8
actual flop:byte ratio

at
ta

in
ab

le
 G

FL
O

P/
s

2.0
4.0
8.0

16.0
32.0
64.0

128.0
256.0

1/4
1/2 1 2 4 8 16

Opteron 2356
(Barcelona)

0.5
1.0

actual flop:byte ratio

at
ta

in
ab

le
 G

FL
O

P/
s

2.0
4.0
8.0

16.0
32.0
64.0

128.0
256.0

16

UltraSparc T2+ T5140
(Victoria Falls)

peak DP

peak DP

Stre
am

 B
an

dw
idt

h

DRAM pin bandwidth

w/ou
t S

W
 pref

etc
h

w/ou
t N

UMA

1/8
1/4

1/2 1 2 4 8

peak DP

Stre
am

 B
an

dw
idt

h

0.5
1.0

1/8
actual flop:byte ratio

2.0
4.0
8.0

16.0
32.0
64.0

128.0

1/4
1/2 1 2 4 8

Stre
am

 Ban
dw

idt
h o

n s
mall

 da
tas

ets
peak DP

Stre
am

 B
an

dw
idt

h o
n l

arg
e d

ata
set

s
peak DP

peak DP

Stre
am

 B
an

dw
idt

h

Stre
am

 B
an

dw
idt

h

w/ou
t S

W
 pref

etc
h

w/ou
t N

UMA

w/ou
t S

W
 pref

etc
h

w/ou
t N

UMA

misa
lig

ne
d D

MA

w/ou
t N

UMA

DRAM pin bandwidth

DRAM pin
bandwidth

FSB pin
bandwidth

DRAM pin bandwidth
Stream Bandwidth

w/out SW prefetch

w/ou
t N

UMA

DRAM pin bandwidth

Figure 4.2: Roofline Model with bandwidth ceilings. The arithmetic intensity for three
generic kernels is overlaid. For clarity, we also note DRAM pin bandwidth. Note the
log-log scale.

technology. Those least likely exploited are removed first.
As previously discussed, on some architectures, it is impossible for the Stream

benchmark to achieve a bandwidth comparable to the DRAM pin bandwidth. Thus, the
Stream bandwidth diagonal component of the Roofline is below the DRAM pin bandwidth
diagonal. Similarly, as we remove optimizations, new bandwidth diagonals will be formed
below the idealized Stream bandwidth diagonal. We call these interior Roofline-like struc-
tures Bandwidth Ceilings. Figure 4.2 includes these ceilings within the Roofline Model for
the six architectures. Without the corresponding optimizations, these ceilings constrain
performance to be below them. We detail these ceilings below.

It is possible on the Clovertown for bandwidth to exceed the Stream bandwidth,
but only when the snoop filter within the memory controller hub is effective in eliminating
superfluous FSB snoop traffic. Thus, a bandwidth ceiling appears above the Roofline.
When the dataset is sufficiently small, this ceiling provides a more reasonable bound on
performance than the Stream benchmark ceiling. However, this is almost impossible to
achieve in a real application as software optimizations can rarely reduce problem sizes
sufficiently. As such, we place the effective snoop filter ceiling at the top.

On many architectures, software prefetching can express more concurrency than
is normally expressed through scalar loads and stores, through hardware prefetchers, or

56

through out-of-order execution. However, their use requires either the compiler or the
programmer to include these instructions in the program. This is an optimization rarely
implemented, and thus the stream bandwidth without software prefetching is the next
ceiling we draw. Figure 4.2 on the previous page clearly shows that the Clovertown is
insensitive to a lack of software prefetching, while Victoria Falls, Barcelona, Santa Rosa
and the Cell PPEs show progressively higher sensitivity to a lack of software prefetching.
In fact, the Cell PPEs see only 1

4 the bandwidth without software prefetching.
The Cell SPEs use DMA rather than software prefetching to express memory-

level parallelism. However, if these DMAs are not aligned to 128-byte addresses in both
DRAM and the local store, performance is diminished substantially. Although restructuring
a program to exploit DMA is not a trivial task, restructuring a program to use 128 byte
aligned DMAs can be an insurmountable challenge. As such, on Cell, we place the DMA
alignment ceiling immediately below the Roofline as it is the most challenging for either
programmers, middleware, or compilers to exploit.

All machines used in this work are dual-socket SMPs. On all but Clovertown,
the memory controllers are distributed among the chips. Peak bandwidth is achieved when
memory transactions are generated by the same socket as their target memory controllers.
Moreover, the total memory traffic must be uniformly distributed among the memory con-
trollers both within a socket and across sockets. Failing to satisfy the former will expose
the limited bandwidth, high latency inter-socket interconnect, while failing to satisfy the
latter will result in idle cycles on one or more of the controllers. Any idle bus cycle detracts
from peak bandwidth. We describe these optimizations designed to modify a kernel to
adhere to these requirements collectively as “NUMA optimizations.” Although occasion-
ally challenging, for SPMD kernels these are often easier to implement than many of the
other bandwidth-oriented optimizations. As such, we place the ceiling marking performance
without these optimizations at the bottom. On a dual-socket NUMA SMP, these ceilings
should be about half the next ceiling’s bandwidth. If the no-NUMA ceiling is substantially
below this, then the inter-socket network is likely a major performance impediment. If the
no-NUMA ceiling is significantly better than half of the Roofline, then the machine is likely
over provisioned with bandwidth. Obviously, Clovertown is not sensitive to a lack of NUMA
optimizations, while the other architectures may see about a factor of two.

Note, on many NUMA machines, it is possible to configure the machine for either
NUMA interleaving or UMA interleaving in the BIOS. In the latter, physical addresses
are interleaved between sockets on cache line or column granularities rather than gigabyte-
size boundaries. In such a case, one should generate a separate Roofline model with a
new Stream bandwidth-derived Roofline that may be substantially lower. On the UMA
Roofline, there will not be a NUMA ceiling. Throughout this work, we leave the NUMA
BIOS option enabled.

Without optimizations, performance is constrained by the ceilings. As such, a
lack of memory optimizations moves the effective ridge point to the right. Thus, a much
higher arithmetic intensity is required to achieve peak FLOP/s. If one were to inspect only
the näıve Roofline Model or worse, just machine balance, they might erroneously conclude
a kernel’s performance is limited by the core’s performance when in fact, the delivered
memory bandwidth is the bottleneck.

57

Consider our three nondescript kernels with arithmetic intensities of 1
6 , 1, and 6

shown in Figure 4.2 on page 55. Without software prefetching or NUMA optimizations,
kernels to the left of the original ridge point will see the largest drop in performance. This
is most pronounced on the Cell PPEs, where the kernel with an arithmetic intensity of 1

6
drops off the scale. As arithmetic intensity increases from the original ridge point to the
new ridge point, kernels will see an ever smaller loss in performance until they pass the
new ridge point and see no loss in performance. As the Clovertown is not sensitive to these
optimizations, performance isn’t degraded.

4.5 Expanding upon Computation

In Section 4.4 we showed that without substantial software optimization, band-
width could drop substantially. In this section, we perform a similar analysis with respect
to computation. We define in-core performance to be the performance when data is in
registers and no memory accesses are required; not even to the L1. We assume there is
sufficient capacity. There are two primary limiters to in-core performance. First, Little’s
Law applies just as much to the functional units as the memory subsystem. Second, in-
struction issue bandwidth is finite. Every non-floating-point instruction required by the
code is potentially one less cycle that can be used to issue a floating-point instruction. We
discretize the parameters that determine if these functions are satisfied. This also results
in a series of roofline-like curves beneath the roofline proper. We call these In-core Perfor-
mance Ceilings. In Section 4.5.1 we discuss the impact of not satisfying an in-core version
of Little’s Law on performance, and in Section 4.5.2 we discuss the impact of non-floating-
point instructions on in-core floating-point performance. We combine these and define the
in-core performance ceilings in Section 4.5.3.

4.5.1 In-Core Parallelism

In its general form, Little’s Law states the concurrency required to achieve peak
performance is equal to the latency-bandwidth product. When dealing with in-core per-
formance, the “concurrency” is the number of independent operations in flight — deemed
in-core parallelism. The “bandwidth” is the number of operations that may be completed
per cycle, and the “latency” is the instruction latency measured in cycles. We first examine
the different forms of parallelism, i.e. “concurrency.”

Each core incorporates one or more floating-point functional units. Each of these
units may be general-purpose or restricted functionality. For purposes of this work, we
examine four types of floating-point functional units: general-purpose add or multiply,
multiply-only, add-only, and general-purpose fused multiply-add (FMA). The FMA datap-
ath may execute multiplies, adds, or under ideal conditions a fused multiply-add (A×B+C).
Obviously, if an architecture uses an add-only datapath, for completeness it must also in-
clude a multiply-only datapath. Typically, floating-point divides are executed in a multiply
or fused multiply-add datapath in an non-pipelined iterative fashion. Table 4.2 on the next
page lists both the number of datapaths and their latencies for each type within each core
of each architecture. Although machines like Clovertown and Opteron are superscalar, they

58

Functional Units Xeon E5345 Opteron 2214 Opteron 2356 T2+ T5140 QS20 Cell Blade
by type (Clovertown) (Santa Rosa) (Barcelona) (Victoria Falls) (PPE) (SPE)

MUL or ADD — — — 1 × 6c — —
MUL-only 1 × 3c 1 × 4c 1 × 4c — — —
ADD-only 1 × 5c 1 × 4c 1 × 4c — — —

FMA — — — — 1 × 6c 1 × 13c†

SIMD register width 128-bit 128-bit 128-bit — — 128-bit
datapath width 128-bit 64-bit 64-bit 64-bit 64-bit 128-bit

requisite independent
FLOPs in flight

16 8 16 6 12 8

(per thread) (16) (8) (16) (0.75) (6) (8)

Table 4.2: Number of functional units × latency by type by architecture. The resultant
latency-bandwidth product is shown. This is the number of in flight FLOPs that must
be maintained. †Every double-precision instruction stalls subsequent instruction issues for
6 cycles. Thus, back-to-back double-precision instructions have stalled execution by more
than the functional unit latency.

only have one add-only functional unit and one multiply-only functional unit. When one
or more of these datapaths are included in an architecture, they express either general-
purpose or specialized instruction-level parallelism. No machine in our work exploits the
former as none have multiple general-purpose functional units. Note, we distinguish balance
between multiples and adds and exploitation of fused multiply-add from the conventional
instruction-level parallelism by labeling them individually.

Every instruction has a nonzero latency associated with it. Hardware interlocks
ensure dependent instructions are not issued down the pipeline until their operands are
available or can be forwarded. In order to issue instructions at the peak rate, there must
be at least as many independent instructions as functional unit latency. There are two
means to accomplish this: instruction-level parallelism within a thread or parallelism across
threads. The latter is only applicable on hardware multithreaded architectures; that is,
those that have multiple hardware contexts per core (or per shared FPU). Typical floating-
point instruction latencies are 4 to 7 cycles. On some architectures, the requisite parallelism
may be difficult to come by within a single thread, but on Niagara with 8 thread contexts
per core, its easy to cover its 6 cycle floating-point latency. Cell is somewhat unique as
the double-precision pipeline is significantly longer than the forwarding network. To ensure
correct behavior, all subsequent instructions are stalled by 6 additional cycles. As such,
only two independent floating-point instructions are required to cover the 13 cycle latency.

There is another way to improve in-core performance: data-level parallelism. Vec-
tor and SIMD architectures may encapsulate multiple floating-point operations into the
same instruction. Each operation is independent of the others. Subtly, the maximum
throughput is neither the maximum vector length nor SIMD register width as specified
in the ISA, but rather the number of lanes implemented in each microarchitecture. The
x86 and Cell SPE instruction set architectures define a SIMD register width of 128 bits.
In double-precision, this is a pair of doubles. Although, machines like the Clovertown,
Barcelona, and the Cell SPEs have two double-precision lanes per functional unit, the
Santa Rosa Opteron has only one. As a result, on the Santa Rosa Opteron, the datapath is

59

Xeon E5345 Opteron 2214 Opteron 2356 T2+ T5140 QS20 Cell Blade
Machine

(Clovertown) (Santa Rosa) (Barcelona) (Victoria Falls) (PPE) (SPE)

Total instruction issue
bandwidth per core

4 3 4 2 2 2

FP bandwidth required
to achieve peak FLOP/s

2 1 2 1 1 2

Table 4.3: Instruction issue bandwidth per core. In addition, we show the sustained floating-
point issue bandwidth required to achieve peak FLOP/s under ideal conditions.

occupied for two cycles for a SIMD operation. Thus, executing a SIMD operation on this
machine reduces the requisite instruction-level parallelism. PowerPC, and SPARC don’t
implement double-precision SIMD instructions.

Combining these different forms of parallelism produces both the “bandwidth”
and “latency” terms in Little’s Law. However, the fact these forms cannot be interchanged
results in a heterogeneous “concurrency” term. That is, only so much concurrency is re-
quired from each of several styles. Too much of one form cannot make up for a deficiency
in the other. Using Table 4.2 on the preceding page, one may calculate all the requisite
forms of parallelism by taking the sum over the products of the number of pipelines, their
depth, and their SIMD widths. For example, by inspection of Table 4.2, Clovertown re-
quires 3 SIMD multiplies and 5 SIMD adds available for execution every cycle to achieve
peak performance. Thus, it must keep 16 double-precision operations in flight per thread
to achieve peak performance (last row). Without SIMD, performance would be cut in half,
regardless of how much instruction-level parallelism remained present. Note: although an
FMA may be encoded as one instruction, it is counted here as two floating-point operations.
Clearly, to achieve peak performance, most architectures are required to exploit many forms
of parallelism and keep many operations in flight.

4.5.2 Instruction Mix

Table 4.3 shows both the maximum instruction issue bandwidth per cycle and the
floating-point instruction issue bandwidth required to achieve peak FLOP/s. Although some
architectures have substantial slack, as measured by the difference in available and requisite
bandwidth, others don’t. As the ratio of non-floating-point instructions to floating-point
instructions increases, a tipping point is reached, and the floating-point units are starved
of instructions. Assuming memory bandwidth is not an issue and one can satisfy all forms
of in-core parallelism, Equation 4.2 estimates the impact of progressively less instruction
bandwidth available for floating-point instructions. As the floating-point fraction of in-
struction decreases, eventually the floating-point units become starved for instructions, and
performance suffers.

Fraction of Peak FLOP/s = min

{
FP Fraction× Total Issue Bandwidth

FP Issue Bandwidth
1

(4.2)

60

On Cell, where double-precision floating-point instructions consume 7 issue cycles,
the equation is somewhat different:

Fraction of Peak FLOP/s =
14× FP Fraction

1 + 13× FP Fraction
(4.3)

Clearly, on Cell, 100% of the instruction mix must be floating-point to achieve
peak performance. However, as the floating-point fraction of the instruction mix decreases,
performance drops very slowly. As such, one might conclude that Cell is less sensitive to
the instruction mix than other architectures.

4.5.3 Putting It Together: In-Core Ceilings

We have discussed the two principal factors that constrain in-core performance:
satisfying all forms of in-core parallelism, and ensuring the non-floating-point instructions
don’t suck up all the issue bandwidth. In this section, we perform a straightforward sensi-
tivity analysis in which we examine the impact on performance as we satisfy less and less
of the in-core parallelism or increase the non-floating-point instructions. These Roofline
Models presume load-balanced, single-program, multiple-data (SPMD) memory-intensive
floating-point kernels. Thus, multithreading, multicore, multisocket parallelism is assumed
to be load balanced.

First, let us consider the impact on performance as an application fails to express
sufficient instruction, data, and functional-unit parallelism. We remove these in a prescribed
order typical of many codes. For many kernels, it is impossible to achieve balance between
multiplies and adds or always exploit fused multiply-adds. As such, these are the least
likely forms of parallelism to be exploited. Second, many compilers are challenged by the
extremely rigid nature of many SIMD implementations. As such, it is very likely that despite
the presence of data-level parallelism within an application, neither the compiler nor the
programmer will exploit SIMD. Finally, we believe that some instruction-level parallelism
inherent in the kernel can readily be discovered and exploited by the compiler. Thus, ILP
is the most readily exploited form of in-core parallelism.

Every time we remove one of these forms of parallelism, performance is diminished.
As a result, we form a new in-core Performance Ceiling below the Roofline. These ceilings
act to constrain or limit how high performance can reach. As an impenetrable barrier,
performance cannot exceed a ceiling until the underlying lack of parallelism is expressed
and exploited. Figure 4.3 on the next page presents an expanded Roofline Model where
all the in-core parallelism ceilings are shown. The ceilings are derived from architectural
optimization manuals rather than benchmarks. Clearly, Victoria Falls’ chip multi-threading
is very effective in hiding instruction level parallelism. As Victoria Falls requires neither
data-level nor functional unit parallelism, there are no additional ceilings. However, other
architectures are heavily dependent on instruction-level parallelism being inherent in the
code, discovered by the compiler and exploited by the architecture.

Alternately, an architecture may be much more sensitive to the floating-point frac-
tion of the dynamic instruction mix. Figure 4.4 on page 62 clearly shows that architectures
like Victoria Falls are far more sensitive to the instruction mix than the degree of in-core

61

0.5
1.0

1/8
actual flop:byte ratio

at
ta

in
ab

le
 G

FL
O

P/
s

2.0
4.0
8.0

16.0
32.0
64.0

128.0
256.0

1/4
1/2 1 2 4 8 16

0.5
1.0

1/8
actual flop:byte ratio

at
ta

in
ab

le
 G

FL
O

P/
s

2.0
4.0
8.0

16.0
32.0
64.0

128.0
256.0

1/4
1/2 1 2 4 8 16

Xeon E5345
(Clovertown)

Opteron 2214
(Santa Rosa)

0.5
1.0

1/8
actual flop:byte ratio

at
ta

in
ab

le
 G

FL
O

P/
s

2.0
4.0
8.0

16.0
32.0
64.0

128.0
256.0

1/4
1/2 1 2 4 8 16

QS20 Cell Blade
(SPEs)

0.5
1.0

1/8
actual flop:byte ratio

at
ta

in
ab

le
 G

FL
O

P/
s

2.0
4.0
8.0

16.0
32.0
64.0

128.0
256.0

1/4
1/2 1 2 4 8 16

Opteron 2356
(Barcelona)

0.5
1.0

1/8
actual flop:byte ratio

at
ta

in
ab

le
 G

FL
O

P/
s

2.0
4.0
8.0

16.0
32.0
64.0

128.0
256.0

1/4
1/2 1 2 4 8 16

UltraSparc T2+ T5140
(Victoria Falls)

peak DP

mul / add imbalance

w/out SIMD

w/out ILP

peak DP

peak DP

w/out SIMD

w/out ILP

w/out FMA

Stre
am

 B
an

dw
idt

h

Stre
am

 B
an

dw
idt

h

Stre
am

 B
an

dw
idt

h

Stre
am

 B
an

dw
idt

h

peak DP

mul / add imbalance

w/out
ILP or SIMD

peak DP

mul / add imbalance

w/out SIMD

w/out ILP

Stre
am

 B
an

dw
idt

h

on
 la

rge
 da

tas
ets

0.5
1.0

1/8
actual flop:byte ratio

at
ta

in
ab

le
 G

FL
O

P/
s

2.0
4.0
8.0

16.0
32.0
64.0

128.0
256.0

1/4
1/2 1 2 4 8 16

QS20 Cell Blade
(PPEs)

peak DP

w/out FMA

w/out ILP
Stre

am
 B

an
dw

idt
h

Figure 4.3: Adding in-core performance ceilings to the Roofline Model. Note the log-log
scale.

parallelism expressed within a thread. Conversely, architectures like the Cell SPEs are re-
markably insensitive to the instruction mix showing only a factor of two loss in performance
when only 1 in 16 instructions is floating-point. Most of the codes we deal with should have
much higher than a 10% floating-point fraction. As a result, the typical performance loss
should be much less than 4×.

Combining the previous two figures, it is clear that each architecture has an
Achilles’ Heel to performance: either an architecture’s sensitivity to a lack of in-core paral-
lelism or its sensitivity to the instruction mix. Figure 4.5 on page 63 shows the appropriate
Roofline Model in-core ceilings for each architecture. Clearly, Victoria Falls seems to be
more sensitive to the instruction mix balance than to a lack of in-core parallelism on SPMD
codes. Conversely, satisfying the requisite degree of in-core parallelism is the preeminent
challenge on the single-threaded architectures.

Returning to our three nondescript example kernels, it is clear that the red dia-
mond kernel on the left requires relatively little in-core parallelism to achieve peak perfor-
mance regardless of architecture. In fact, a complete lack of in-core parallelism and poor
instruction mix may only impair performance by a factor of two on the Cell SPEs. As
arithmetic intensity increases, performance is much more dependent on there being suffi-
cient in-core parallelism. For the kernel with an arithmetic intensity of 6, most machines
must rely on full ILP and quite possibly both DLP and FMA or balance between multi-

62

0.5
1.0

1/8
actual flop:byte ratio

at
ta

in
ab

le
 G

FL
O

P/
s

2.0
4.0
8.0

16.0
32.0
64.0

128.0
256.0

1/4
1/2 1 2 4 8 16

0.5
1.0

1/8
actual flop:byte ratio

at
ta

in
ab

le
 G

FL
O

P/
s

2.0
4.0
8.0

16.0
32.0
64.0

128.0
256.0

1/4
1/2 1 2 4 8 16

Xeon E5345
(Clovertown)

Opteron 2214
(Santa Rosa)

0.5
1.0

1/8
actual flop:byte ratio

at
ta

in
ab

le
 G

FL
O

P/
s

2.0
4.0
8.0

16.0
32.0
64.0

128.0
256.0

1/4
1/2 1 2 4 8 16

QS20 Cell Blade
(PPEs)

0.5
1.0

1/8
actual flop:byte ratio

at
ta

in
ab

le
 G

FL
O

P/
s

2.0
4.0
8.0

16.0
32.0
64.0

128.0
256.0

1/4
1/2 1 2 4 8 16

QS20 Cell Blade
(SPEs)

0.5
1.0

1/8
actual flop:byte ratio

at
ta

in
ab

le
 G

FL
O

P/
s

2.0
4.0
8.0

16.0
32.0
64.0

128.0
256.0

1/4
1/2 1 2 4 8 16

Opteron 2356
(Barcelona)

0.5
1.0

1/8
actual flop:byte ratio

at
ta

in
ab

le
 G

FL
O

P/
s

2.0
4.0
8.0

16.0
32.0
64.0

128.0
256.0

1/4
1/2 1 2 4 8 16

UltraSparc T2+ T5140
(Victoria Falls)

Stre
am

 B
an

dw
idt

h

Stre
am

 B
an

dw
idt

h

peak DP

25% FP

12% FP

Stre
am

 B
an

dw
idt

h

on
 la

rge
 da

tas
ets

6% FP
peak DP
25% FP

Stre
am

 B
an

dw
idt

h

12% FP

6% FP

peak DP

25% FP

12% FP

Stre
am

 B
an

dw
idt

h

6% FP

peak DP

6%
peak DP

25% FP

12% FP

Stre
am

 B
an

dw
idt

h

6% FP

peak DP

25% FP

12% FP

6% FP

Figure 4.4: Alternately adding instruction mix ceilings to the Roofline Model. Note the
log-log scale.

plies and adds. Interestingly, without in-core parallelism, all machines deliver comparable
performance — an artifact of similar process technologies, core counts, and power envelopes.

Across machines, if in-core parallelism is not expressed, then the ridge point is
reduced so substantially that virtually any kernel with an arithmetic intensity greater than
1
4 would be compute bound at a substantially reduced performance. If one were to use only
the näıve Roofline Model, one might have erroneously concluded a kernel was memory-
bound, when in fact it was bound by not satisfying the in-core version of Little’s Law.
Examination of a Roofline Model including the in-core ceilings should make this mistake
obvious.

4.6 Expanding upon Locality

Thus far, we have assumed that arithmetic intensity is solely a function of the
kernel. However, this presumes an infinite, fully associative cache — clearly unrealistic.
In this section, we lay the framework as to how one would incorporate cache topology
into the Roofline Model. The result will be that arithmetic intensity is unique to the
combination of kernel and architecture. It may be substantially less than the compulsory
arithmetic intensity. This may result in a degradation in performance depending on the

63

0.5
1.0

1/8
actual flop:byte ratio

at
ta

in
ab

le
 G

FL
O

P/
s

2.0
4.0
8.0

16.0
32.0
64.0

128.0
256.0

1/4
1/2 1 2 4 8 16

Opteron 2214
(Santa Rosa)

0.5
1.0

1/8
actual flop:byte ratio

at
ta

in
ab

le
 G

FL
O

P/
s

2.0
4.0
8.0

16.0
32.0
64.0

128.0
256.0

1/4
1/2 1 2 4 8 16

QS20 Cell Blade
(PPEs)

0.5
1.0

1/8
actual flop:byte ratio

at
ta

in
ab

le
 G

FL
O

P/
s

2.0
4.0
8.0

16.0
32.0
64.0

128.0
256.0

1/4
1/2 1 2 4 8 16

QS20 Cell Blade
(SPEs)

0.5
1.0

1/8
actual flop:byte ratio

at
ta

in
ab

le
 G

FL
O

P/
s

2.0
4.0
8.0

16.0
32.0
64.0

128.0
256.0

1/4
1/2 1 2 4 8 16

Opteron 2356
(Barcelona)

peak DP

mul / add imbalance

w/out SIMD

w/out ILP

peak DP

w/out SIMD

w/out ILP

w/out FMA

Stre
am

 B
an

dw
idt

h

Stre
am

 B
an

dw
idt

h

0.5
1.0

1/8
actual flop:byte ratio

at
ta

in
ab

le
 G

FL
O

P/
s

2.0
4.0
8.0

16.0
32.0
64.0

128.0
256.0

1/4
1/2 1 2 4 8 16

UltraSparc T2+ T5140
(Victoria Falls)

Stre
am

 B
an

dw
idt

h

peak DP

25% FP

12% FP

6% FP

peak DP

mul / add imbalance

w/out
ILP or SIMD

Stre
am

 B
an

dw
idt

h

0.5
1.0

1/8
actual flop:byte ratio

at
ta

in
ab

le
 G

FL
O

P/
s

2.0
4.0
8.0

16.0
32.0
64.0

128.0
256.0

1/4
1/2 1 2 4 8 16

Xeon E5345
(Clovertown)

peak DP

mul / add imbalance

w/out SIMD

w/out ILP

Stre
am

 B
an

dw
idt

h

on
 la

rge
 da

tas
ets

peak DP

w/out FMA

w/out ILP
Stre

am
 B

an
dw

idt
h

Figure 4.5: Roofline model showing in-core performance ceilings. Each architecture has its
own Achilles’ Heel : either its ability to satisfy in-core parallelism or its sensitivity to the
instruction mix. Note the log-log scale.

balance between the resultant arithmetic intensity and the ridge point.

4.6.1 The Three C’s of Caches

Cache misses can be classified into three basic types [69]: compulsory, capacity,
or conflict misses. Thus far, we have assumed that the only cache misses produced by the
execution of a kernel on a machine were compulsory misses. This simplification allowed us
to calculate the arithmetic intensity of a kernel once and apply it to the Roofline Models for
any number of architectures. In practice, this is only applicable for simple streaming kernels
with working sets smaller than any cache in existence today. A better solution would be
to include the effects of limited cache capacity and associativity when calculating the total
number of cache misses. This would allow us to calculate a true arithmetic intensity rather
than just a compulsory arithmetic intensity. Unfortunately, without a cache simulator,
one can only determine the total number of cache misses using performance counters: see
Section 4.9.2.

64

0.5
1.0

1/8
actual flop:byte ratio

at
ta

in
ab

le
 G

FL
O

P/
s

2.0
4.0
8.0

16.0
32.0
64.0

128.0
256.0

1/4
1/2 1 2 4 8 16

0.5
1.0

1/8
actual flop:byte ratio

at
ta

in
ab

le
 G

FL
O

P/
s

2.0
4.0
8.0

16.0
32.0
64.0

128.0
256.0

1/4
1/2 1 2 4 8 16

Xeon E5345
(Clovertown)

Opteron 2214
(Santa Rosa)

0.5
1.0

1/8
actual flop:byte ratio

at
ta

in
ab

le
 G

FL
O

P/
s

2.0
4.0
8.0

16.0
32.0
64.0

128.0
256.0

1/4
1/2 1 2 4 8 16

QS20 Cell Blade
(PPEs)

0.5
1.0

1/8
actual flop:byte ratio

at
ta

in
ab

le
 G

FL
O

P/
s

2.0
4.0
8.0

16.0
32.0
64.0

128.0
256.0

1/4
1/2 1 2 4 8 16

QS20 Cell Blade
(SPEs)

0.5
1.0

1/8
actual flop:byte ratio

at
ta

in
ab

le
 G

FL
O

P/
s

2.0
4.0
8.0

16.0
32.0
64.0

128.0
256.0

1/4
1/2 1 2 4 8 16

Opteron 2356
(Barcelona)

0.5
1.0

1/8
actual flop:byte ratio

at
ta

in
ab

le
 G

FL
O

P/
s

2.0
4.0
8.0

16.0
32.0
64.0

128.0
256.0

1/4
1/2 1 2 4 8 16

UltraSparc T2+ T5140
(Victoria Falls)

peak DP

Stre
am

 B
an

dw
idt

h

peak DP

Stre
am

 B
an

dw
idt

h o
n l

arg
e d

ata
set

s

Stre
am

 B
an

dw
idt

h peak DP

peak DP

Stre
am

 B
an

dw
idt

h

peak DP

Stre
am

 B
an

dw
idt

h

peak DP

Stre
am

 B
an

dw
idt

h

DRAM pi
n b

an
dw

idt
h

DRAM pi
n b

an
dw

idt
h

DRAM pi
n b

an
dw

idt
h

DRAM
pin bandwidth

DRAM pi
n b

an
dw

idt
h

FSB pi
n b

an
dw

idt
h

co
m

pu
ls

or
y

co
m

pu
ls

or
y

co
m

pu
ls

or
y

co
m

pu
ls

or
y

co
m

pu
ls

or
y

co
m

pu
ls

or
y

2C
’s

2C
’s

2C
’s

2C
’s

2C
’s

3C
’s

3C
’s

3C
’s

3C
’s

Figure 4.6: Impact of cache organization on arithmetic intensity. Each architecture has
might be more sensitive than others to capacity or conflict misses. 2C’s implies either
compulsory and capacity or compulsory and conflict misses are still present. 3C’s implies
conflict, capacity, and compulsory are present. Note the log-log scale.

4.6.2 Putting It Together: Arithmetic Intensity Walls

In much the same way the realities of bandwidth and in-core performance act to
constrain performance through the creation of ceilings interior to the Roofline, the realities
of caches act to constrain arithmetic intensity. Unlike ceilings, these structures are vertical
barriers through which arithmetic intensity may not pass without optimization. As such,
we describe them as Arithmetic Intensity Walls. As with the ceilings, the locations of these
walls are unique to each architecture. However, unlike ceilings, their locations are also
dependent on the kernel’s implementation.

Figure 4.6 overlays not only the compulsory arithmetic intensity, but also the
resultant arithmetic intensities when cache capacity and conflict misses are included for an
arbitrary kernel. Generally, Clovertown’s large high associativity caches make it relatively
insensitive to moderate cache working sets and dramatically reduce the probabilities of
conflicts. The moderate cache capacities and associativities of the Opterons and Cell PPEs
can result in a substantial difference between the compulsory and true arithmetic intensities.
Victoria Falls is likely the most sensitive to cache capacity and conflict misses due to the
very small L2 working set sizes and associativities per thread. The Cell SPEs use a local

65

store architecture. As such, the equivalent of capacity misses must be handled through
software, but there are no conflict misses.

A loss of arithmetic intensity will have a clear impact on performance if the resul-
tant arithmetic intensity is left of the ridge point. In such cases, performance may drop by
a factor of four or more. Subtly, if the latency resulting from said misses isn’t covered via
the previously discussed latency hiding techniques, then bandwidth will suffer as well.

As with ceilings, the order of the arithmetic intensity walls is loosely defined.
Generally they should be ordered from those easiest to compensate for to those one can never
surpass. Clearly, compulsory misses should be the rightmost. Additionally, the leftmost wall
is the worst case where no effort has been made to address conflict or capacity misses. It is
somewhat kernel dependent as to whether conflict or capacity misses are easier to reduce.
We discuss this further in Section 4.7.3.

4.7 Putting It Together: The Roofline Model

In Sections 4.3 through 4.6 we developed the major components for the Roofline
Model: the Roofline, the in-core ceilings, the bandwidth ceilings, and the locality walls. In
this section, we put the individual components into a single unified framework and then
discuss the interplay between architecture and optimization.

4.7.1 Computation, Communication, and Locality

The Roofline Model presumes an idealized form where either communication or
computation can be perfectly hidden by the other. As such we may independently incor-
porate the ceilings from both communication and computation. Equation 4.4 incorporates
both types of ceilings. Performancei denotes in-core performance exploiting architectural
paradigms 1 through i. Performance(FP fraction) denotes in-core performance as a func-
tion of the FP fraction of the instruction mix assuming one has exploited all architectural
paradigms. Bandwidthj denotes attained memory bandwidth exploiting optimizations 1
through j. Finally, the true arithmetic intensity includes all cache misses, not just compul-
sory.

Attainable Performanceij = min


Performancei

Performance(FP fraction)
Bandwidthj × True Arithmetic Intensity

(4.4)

Figure 4.7 on the following page plots Equation 4.4 for the six architectures used
in this work. We have chosen to include in-core performance as a function of instruction
mix for only Victoria Falls. Such a formulation can be useful in not only qualifying (good,
bad) performance and quantifying how much further performance can be had, but also
noting whether bandwidth or in-core optimizations should be applied. Simply put, given
an arithmetic intensity, or range of intensities, one can examine the Roofline Models and
not only determine the expected performance, but also the programming effort required to
deliver that level of performance.

66

0.5
1.0

1/8
actual flop:byte ratio

at
ta

in
ab

le
 G

FL
O

P/
s

2.0
4.0
8.0

16.0
32.0
64.0

128.0
256.0

1/4
1/2 1 2 4 8 16

Opteron 2214
(Santa Rosa)

0.5
1.0

1/8
actual flop:byte ratio

at
ta

in
ab

le
 G

FL
O

P/
s

2.0
4.0
8.0

16.0
32.0
64.0

128.0
256.0

1/4
1/2 1 2 4 8 16

QS20 Cell Blade
(PPEs)

0.5
1.0

1/8
actual flop:byte ratio

at
ta

in
ab

le
 G

FL
O

P/
s

2.0
4.0
8.0

16.0
32.0
64.0

128.0
256.0

1/4
1/2 1 2 4 8 16

QS20 Cell Blade
(SPEs)

0.5
1.0

1/8
actual flop:byte ratio

at
ta

in
ab

le
 G

FL
O

P/
s

2.0
4.0
8.0

16.0
32.0
64.0

128.0
256.0

1/4
1/2 1 2 4 8 16

Opteron 2356
(Barcelona)

mul / add imbalance

w/out SIMD

w/out ILP

w/out SIMD

w/out ILP

w/out FMA

0.5
1.0

1/8
actual flop:byte ratio

at
ta

in
ab

le
 G

FL
O

P/
s

2.0
4.0
8.0

16.0
32.0
64.0

128.0
256.0

1/4
1/2 1 2 4 8 16

UltraSparc T2+ T5140
(Victoria Falls)

25% FP

12% FP

6% FP

mul / add imbalance

w/out
ILP or SIMD

0.5
1.0

1/8
actual flop:byte ratio

at
ta

in
ab

le
 G

FL
O

P/
s

2.0
4.0
8.0

16.0
32.0
64.0

128.0
256.0

1/4
1/2 1 2 4 8 16

Xeon E5345
(Clovertown)

mul / add imbalance

w/out SIMD

w/out ILP

w/out FMA

w/out ILP

peak DP

peak DP

Stre
am

 B
an

dw
idt

h

w/ou
t S

W
 pref

etc
h

w/ou
t N

UMA

peak DP

Stre
am

 B
an

dw
idt

h

w/ou
t S

W
 pref

etc
h

w/ou
t N

UMA

Ban
dw

idt
h o

n s
mall

 da
tas

ets

peak DP

Ban
dw

idt
h o

n l
arg

e d
ata

set
s

peak DP

peak DP

Stre
am

 B
an

dw
idt

h

Stre
am

 B
an

dw
idt

h

w/ou
t S

W
 pref

etc
h

w/ou
t N

UMA

misa
lig

ne
d D

MA

w/ou
t N

UMA

Stre
am

 B
an

dw
idt

h

w/ou
t S

W
 pr

efe
tch

w/ou
t N

UMA

DRAM pin bandwidth

DRAM pin bandwidth

DRAM pin
bandwidth

FSB pin
bandwidth

DRAM pin bandwidth

DRAM pin
bandwidth

Figure 4.7: Complete Roofline Model for memory-intensive floating-point kernels. Note
both bandwidth and in-core performance ceilings are shown. Note the log-log scale.

4.7.2 Qualitative Assessment of the Roofline Model

Examining the Roofline Models in Figure 4.7, we may make several qualitative
statements about the architectures used. Such statement should act as general guidelines
to the reader.

First, Stream bandwidth far short of DRAM pin bandwidth is a harbinger of
continuing poor performance for that architecture. Clearly, this is the case of the Cell
PPEs. It suggests the architecture lacks the concurrency to cope with either the latency to
DRAM or the latency for the cache coherency protocol. Of course, this assumes sufficient
DIMMs (and thus ranks) are installed in the machine to amortize or hide the overhead for
DRAM page accesses.

Second, the ridge point marks the minimum arithmetic intensity (locality) required
to achieve peak performance. Architectures with ridge points far to the right will be hard
pressed to achieve peak performance on any kernel. Conversely, architectures with ridge
points to the left have so much DRAM bandwidth that, all things being equal, they should
achieve a high fraction of peak performance on a much wider set of kernels. Architects must
be mindful of the benefit (sustained performance) and the cost (both increased unit cost
and power) required to move a ridge point to the left.

Third, let us define productivity as the software optimization work required to

67

reach the Roofline. Notice that most architectures are relatively insensitive to a lack of
memory optimizations (less than a factor of three). However, the simplest, least parallel
architecture — the Cell PPEs — are incredibly sensitive to bandwidth optimizations. When
it comes to in-core performance, Victoria Falls is somewhat insensitive to a lack of in-
core per thread parallelism as multithreading can compensate for it. Generally, one could
interpret the thickness and more specifically the number of ceilings below the Roofline as an
assessment of the requisite software, middleware, and compiler complexity. The lower the
complexity, the more productive one is likely to be. Subtly, some architectures may be far
more sensitive to cache capacities and associativities. As such, they may see a substantial
swing in true arithmetic intensity. Such is the case on Victoria Falls. If one can compensate
for the cache characteristics, then it is a productive architecture.

Fourth, the Roofline Model is the ideal form in which either computation or com-
munication can be completely hidden by the other. An architecture’s departure from this
form is a commentary on its inability to overlap communication and computation. In prac-
tice, one would expect the Roofline to be smoothed on some architectures. In the worst
case, no overlap, performance at the ridge point would be only half of the Roofline — see
Section 4.8.8.

Finally, it is interesting that the performance curve defined by the lowest ceilings
is remarkably similar across most architectures. Thus, without optimization one expects all
architectures to deliver comparable performance. In many ways the lowest ceilings are the
latency limit (i.e. solely thread-level parallelism). This should be no surprise since latency
is dictated by technology, where peak performance — in the form of parallelism or deep
pipelining — is an architectural decision. As all machines used here are either based on a
65nm or 90nm technology, they should all deliver similar sequential performance.

Figure 4.8 on the next page shows the interplay between architects and program-
mers. Over the last couple decades, architects have exploited deep pipelining and every
imaginable form of parallelism to provide ever higher levels of potential performance —
Figure 4.8(a). This approach has pushed the Roofline up by more than a order of magni-
tude by inserting additional ceilings. In addition, this has moved the ridge point to the right.
In the coming decade, as manycore becomes the battle cry, we expect at least another order
of magnitude increase. However, this performance increase has not come without a price.
In a Faustian bargain, performance is now contingent upon programmers, middleware, and
compilers completely exploiting all these forms of parallelism. Figure 4.8(b) shows that
performance may come crashing down without their collective help.

4.7.3 Interaction with Software Optimization

Figure 4.8(b) suggests that without the appropriate optimizations, the ceilings will
constrain performance into a narrow region. In the context of single-program, multiple-data
(SPMD) memory-intensive floating-point kernels, we may classify an optimization into one
of three categories: maximizing in-core performance, maximizing memory bandwidth, and
minimizing memory traffic. Figure 4.9 on page 69 shows that when these optimizations
are applied, they remove ceilings as constraints to performance. In doing so, performance
may increase substantially. In Section 4.8, we discuss other optimizations as we extend the
applicability of the Roofline Model.

68

(a) (b)

0.5

mul / add imbalance

w/out SIMD

w/out ILP

w/ou
t S

W
 pr

efe
tch

w/ou
t N

UMA single core

sin
gle

 co
re

1.0

1/8

actual flop:byte ratio

at
ta

in
ab

le
 G

FL
O

P/
s

2.0

4.0

8.0

16.0

32.0

64.0

128.0

256.0

1/4
1/2 1 2 4 8 16

peak DP

pe
ak

 BW

Generic Machine

0.5

mul / add imbalance

w/out SIMD

w/out ILP

w/ou
t S

W
 pr

efe
tch

w/ou
t N

UMA single core

sin
gle

 co
re

1.0

1/8

actual flop:byte ratio

at
ta

in
ab

le
 G

FL
O

P/
s

2.0

4.0

8.0

16.0

32.0

64.0

128.0

256.0

1/4
1/2 1 2 4 8 16

peak DP

pe
ak

 BW

Generic Machine

Deep
Pipelining

+
Massive
Parallelism

Figure 4.8: Interplay between architecture and optimization. (a) Architects have exploited
deep pipelining and massive parallelism to dramatically raise the Roofline. (b) Without
commensurate optimization, performance is significantly constrained. Note the log-log scale.

Optimizations categorized as maximizing in-core performance include optimiza-
tions such as software pipelining, unroll and jam, reordering, branchless or predicated
implementations, or explicit SIMDization. We discuss our use of these optimizations in
Sections 6.3 in Chapter 6 and 8.4 in Chapter 8. Broadly speaking, some of these optimiza-
tions express more fine-grained instruction- or data-level parallelism, while others amortize
loop overhead. In doing so, they maximize the floating-point fraction of the instruction mix.
To be fair, one might also include optimizations designed to mitigate L2 cache latency, or
L1 associativity and bank conflicts. Nominally these don’t generate additional main mem-
ory traffic, but may impair in-core performance. Multiply/add balance can be supremely
difficult to achieve. However, on multiply-heavy codes, one might consider additions instead
of small integer multiplications. For example, instead of y = 2 ∗ x, one might implement
y = x + x. This is appropriate until balance is reached, or instruction issue bandwidth is
saturated.

Once again, it is imperative to distinguish improving memory bandwidth from
reducing memory traffic. There are a number of code generation and data layout techniques
designed to maximize memory bandwidth. The most obvious optimization is to change the
data layout in main memory by using various affinity routines to ensure that the data
and processes tasked with accessing them are collocated on the same socket. In addition,
either the compiler or the programmer may insert software prefetch instructions. On the
Cell processor, bandwidth can be significantly increased when both the local store and
DRAM addresses for a DMA are aligned to 128 byte boundaries. There are also a few
subtle optimizations that can enhance memory bandwidth. These include restructuring

69

0.5
1.0

1/8
actual flop:byte ratio

at
ta

in
ab

le
 G

FL
O

P/
s

2.0
4.0
8.0

16.0
32.0
64.0

128.0

1.0

1/8
actual flop:byte ratio

at
ta

in
ab

le
 G

FL
O

P/
s

2.0
4.0
8.0

16.0
32.0
64.0

128.0

mul / add imbalance

w/out SIMD

w/out ILP

w/ou
t S

W
 pr

efe
tch

w/ou
t N

UMA

0.5
1.0

1/8
actual flop:byte ratio

at
ta

in
ab

le
 G

FL
O

P/
s

2.0
4.0
8.0

16.0
32.0
64.0

128.0
256.0

1/4
1/2 1 2 4 8 16

Generic Machine

(a)
maximizing in-core perf.

(b)
maximizing bandwidth

(c)
minimizing traffic

co
m

pu
ls

or
y

flo
p:

by
te

peak DP

pe
ak

 BW

w/ou
t N

UMA

mul / add imbalance

w/out SIMD

w/out ILP

w/ou
t S

W
 pr

efe
tch

peak DP

pe
ak

 BW

256.0

1/4
1/2 1 2 4 8 16

Generic Machine

w/out SIMD

w/out ILP

mul / add imbalance

w/ou
t S

W
 pr

efe
tch

w/ou
t N

UMA

peak DP

pe
ak

 BW

0.5

256.0

1/4
1/2 1 2 4 8 16

Generic Machine

Figure 4.9: How different types of optimizations remove specific ceilings constraining per-
formance. (a) expression of in-core parallelism eliminates in-core performance ceilings as
constraints to performance. (b) removal of bandwidth ceilings as constraints to perfor-
mance. (c) minimizing memory traffic maximizes arithmetic intensity. When bandwidth
limited, this improves performance. Note the log-log scale.

loops so that there are a small, finite number of long memory streams. This can be critical,
as hardware prefetchers require page-sized granularities of sequential locality to effectively
hide memory latency. In addition, they can only track a few (less than a dozen) streams.
They fail dramatically when the number of streams exceeds the hardware’s capability to
track. Subtly, unroll and jam can actually express more memory level parallelism as it
results in accesses to disjoint cache lines.

To achieve peak performance on bandwidth-limited code, one must maximize mem-
ory bandwidth and minimize the total memory traffic. Minimizing memory traffic will im-
prove arithmetic intensity. In order to improve arithmetic intensity, one must address the
3C’s of caches [69]. To that end, there are several standard software optimizations designed
to fix or minimize each type of cache miss. To ensure fast hit times, caches may have low
associativities. Thus, for problems that access many disjoint arrays, or implement higher
dimensional access patterns on power of two problem sizes, caches are highly sensitive to
cache conflict misses. Array padding is the standard technique designed to address conflict
misses. Essentially, this optimization can convert a power of two problem size to a non-
power of two problem size. Alternately, in the context of stencils, this can spread streaming
accesses throughout the cache’s sets so that the full cache capacity can be exploited.

Capacity misses often arise when, in a standard implementation, there are a large
number of intervening accesses before data is reused (i.e. a large working set). If the
number of intervening accesses exceeds the cache capacity, locality cannot be exploited.
Loop restructuring, also known as cache blocking, can reduce the capacity requirements to
the point where the requisite cache capacity is less than the cache capacity of the underlying
architecture. Such optimizations can dramatically increase arithmetic intensity. The goal
of such optimizations is to move the true arithmetic intensity closer and closer to the

70

compulsory arithmetic intensity.
One might think that compulsory misses cannot be helped. There are several

fallacies with such an assumption. First, write-allocate architectures load the cache line
in question on a write-miss. Under the conditions where the entire line is destined to be
overwritten, this cache line load is superfluous. In the optimal circumstance, the use of
a cache bypass or similar instruction could cut the memory traffic in half. In doing so,
arithmetic intensity could be doubled. As writes become the minority of memory traffic,
there will be less and less potential benefit for such optimizations. Another way to eliminate
compulsory memory traffic is to change data types for large, frequently accessed arrays. A
switch from 64-bit to 32-bit data types could double arithmetic intensity and thus potentially
double performance.

In this section, we have discussed a number of different optimizations, but the
question of which optimization should be applied arises. One could blindly apply all op-
timizations, but this might be time consuming with little benefit for the work involved.
Simply put, given a kernel’s true arithmetic intensity, programmers can scan up along said
arithmetic intensity wall and determine which ceiling is impacted first. If it is a bandwidth
ceiling, they must decide whether it is easier and more important to increase arithmetic in-
tensity and slide along that ceiling, or remove the ceiling by addressing the underlying lack
of optimization. If the impacted ceiling was a in-core performance ceiling then performing
any other optimization will show little benefit. They will then iterate on the process of
identifying the constraint, applying the corresponding optimization, and benchmarking the
resultant performance. Such a strategy assumes that such analysis is possible. Section 4.9
will discuss how one would use performance counters to achieve this.

4.8 Extending the Roofline

Sections 4.3 through 4.7 built a Roofline Model for single-program, multiple-data
(SPMD) memory-intensive floating-point kernels. This is perfectly adequate for the kernels
presented in Chapters 6 and 8. However, for more diverse kernels, we need a broader metric.
In this section, we address several directions by which the Roofline Model could be greatly
extended to handle a much broader set of kernels.

4.8.1 Impact of Non-Pipelined Instructions

The in-core ceilings of Section 4.5 dealt solely with pipelined instructions of equal
maximum throughput. However, on many architectures, reciprocal, divide, square root, and
reciprocal square root are not pipelined or are executed at a substantially reduced rate. As
such, they will stall execution of subsequent instructions for dozens of cycles. For example,
consider an instruction mix of SIMDized multiplies and divides. On many architectures, as
the fraction of divides or reciprocal square roots increases, FLOP/s will drop dramatically.
Many N-body particle codes rely on a distance calculation including a reciprocal square
root. An non-pipelined implementation may severely impair FLOP/s.

Figure 4.10 on the next page shows performance on the Clovertown as the fraction
of SIMDized divide instructions (DIVPD) increases. Assume the floating-point instructions

71

0.5

1.0

1/8

actual flop:byte ratio

at
ta

in
ab

le
 G

flo
p/

s

2.0

4.0

8.0

16.0

32.0

64.0

128.0

256.0

1/4
1/2 1 2 4 8 16

Xeon E5345
(Clovertown)

Ban
dw

idt
h o

n l
arg

e d
ata

set
s

100% DIVPD

peak DP

100% MULPD

50% DIVPD
25% DIVPD

12% DIVPD
6% DIVPD

Figure 4.10: Impact of non-pipelined instructions on performance. As double-precision
SIMD divides predominate, performance is drastically impaired. Note the log-log scale.

are either multiplies or divides. Clearly, if the code is entirely divides, performance may
drop by a factor of 32× over the multiply-only code, but more importantly, if the code is as
little as 25% divides, performance has dropped by nearly a factor of 10×. Not only is this
a dramatic drop in performance, but it has shifted the effective ridge point far to the left.
Thus, codes that nominally would be considered memory-bound would become compute
bound.

4.8.2 Impact of Branch Mispredictions

A mispredicted branch will result in a flush of the pipeline. In essence, all func-
tional units will be stalled for the duration of the branch mispredict penalty. Given the
average branch penalty, one can define a series of ceilings beneath the roofline enumerated
by the fraction of branch mispredicts per floating-point operation in much the same way
one visualizes non-pipelined floating-point instructions.

4.8.3 Impact of Non-Unit Stride Streaming Accesses

Although not shown in Figure 4.2 on page 55, one could contemplate additional
bandwidth ceilings. For example, consider the attained bandwidth delivered from a Stanza
Triad [82] memory access pattern. As the stanza size decreases, hardware prefetchers be-
come increasingly ineffective and more and more memory latency is exposed. The ultimate
result is a code that randomly accesses cache lines. In such a case, one would expect
bandwidth to be roughly LineSize×Threads

Latency . Future work should include a benchmark to
automatically calculate all bandwidth ceilings for the Roofline Model.

72

4.8.4 Load Balance

In this section, we deviate from the perfectly load-balanced SPMD programming
model. As a result, load imbalance will occur. In the context of the Roofline Model, load
balance within a socket can broadly be categorized as either imbalance in the memory
accesses generated per core or imbalance in the computation performed per core.

Memory imbalance occurs when there is not a uniform distribution of memory
traffic across threads, cores, or sockets. As previously discussed, if there is an imbalance in
the memory traffic generated among sockets, there will be a drop in memory bandwidth.
We can expand on this observation by examining imbalance across cores or threads. The
memory level parallelism that a socket must express to satisfy Little’s law typically often
cannot be satisfied by a single core. As such, if a subset of the cores don’t expresses any
memory-level parallelism, the socket as a whole may be incapable of satisfying Little’s Law.
Thus, it cannot achieve peak Stream bandwidth. We can bound this by the extremes. First,
determine the achievable bandwidth assuming all memory requests are uniform across all
sockets, cores, and threads. Then determine the achievable bandwidth assuming all memory
requests come from one socket, but are uniform across all cores and threads within it. Then
determine the achievable bandwidth assuming all memory requests come from one core,
but are uniform across all threads within it. Finally, determine the achievable bandwidth
assuming all memory requests are generated by one thread.

Computational imbalance arises from the fact that some cores are tasked to per-
form more work than others. As such, the more heavily loaded cores will take longer to
finish. In some cases, it is easier to satisfy all forms of in-core parallelism in a kernel than
to load balance it, but on other codes load balance is very easy to achieve. In the context of
the Roofline Model, the latter would simply form load imbalance ceilings below the in-core
parallelism ceilings of Section 4.5. At the extreme, assuming communication is propor-
tional to computational work, if a socket doesn’t perform any computation, then it will not
generate any memory traffic. Thus, computational imbalance ceilings can result in band-
width imbalance ceilings, but bandwidth imbalance ceilings don’t result in computational
imbalance ceilings.

Figure 4.11(a) on page 73 shows the impact of memory imbalance on the Barcelona
Opteron assuming fully optimized in-core performance. Clearly, as memory traffic is shuffled
onto one single socket or eventually onto a single core, bandwidth will be diminished.
Let compute imbalance among sockets imply all computation is performed on one socket,
and similarly compute imbalance among cores imply all computation is performed on one
core. Thus, Figure 4.11(c) shows the impact on performance if one were to attempt to
optimize single thread performance only after attempting to compute balance a kernel. For
low computational intensity kernels (less than 1

4), in-core optimizations are irrelevant, but
compute imbalance can result in memory imbalance. In turn, memory imbalance can limit
performance. Figure 4.11(b) shows performance when the order of optimization is reversed.
As arithmetic intensity exceeds 2.0, computational balance becomes even more important.

One must balance the difficulty in producing balanced parallelization or optimiza-
tion of in-core performance with the desire for better performance. Consider the case of no
in-core optimizations compared with imbalanced code. When arithmetic intensity is less
than 1

8 , memory balance is critical, and in-core optimizations and computational balance

73

0.50
1.00

1/8
actual flop:byte ratio

at
ta

in
ab

le
 G

FL
O

P/
s

2.00
4.00
8.00

16.00
32.00
64.00

128.00

0.25
1/4

1/2 1 2 4 8 16

Opteron 2356
(Barcelona)peak DP

(a) (b) (c)

Stre
am

 B
an

dw
idt

h

10
0%

 of
 tra

ffi
c f

rom
 one

 so
ck

et

10
0%

 of
 tra

ffi
c f

rom
 one

 co
re

1/8
actual flop:byte ratio

at
ta

in
ab

le
 G

FL
O

P/
s

1/4
1/2 1 2 4 8 16

Opteron 2356
(Barcelona)

0.50
1.00
2.00
4.00
8.00

16.00
32.00
64.00

128.00

0.25

peak DP

imbalance

w/out SIMD

w/out ILP

Stre
am

 B
an

dw
idt

h

imbalance

mul / add

0.50
1.00

1/8
actual flop:byte ratio

at
ta

in
ab

le
 G

FL
O

P/
s

2.00
4.00
8.00

16.00
32.00
64.00

128.00

0.25
1/4

1/2 1 2 4 8 16

Opteron 2356
(Barcelona)peak DP

w/out SIMD

w/out ILP
Stre

am
 B

an
dw

idt
h

between cores

imbalance
mul / add

among sockets

imbalance
compute

between cores

computational imbalance

between sockets
computational imbalance

Figure 4.11: Impact of memory and computation imbalance. (a) memory imbalance as-
suming computational balance and full in-core and bandwidth optimizations. (b) impact of
compute imbalance on optimized code. (c) impact of compute imbalance on unoptimized
code. The latter two assume memory traffic is proportional to computation. Note the
log-log scale.

is irrelevant. However, computational balance quickly becomes important but ultimately
can only deliver 4 GFLOP/s without in-core optimizations. In-core optimizations alone
could only double-performance when arithmetic intensity exceeds 2. Thus, for such large
arithmetic intensities, both balanced execution and optimizations are necessary.

4.8.5 Computational Complexity and Execution Time

Thus far, we have equated performance with throughput (GFLOP/s). However,
this ignores the possibility that two different implementations or algorithms might require
significantly different numbers of floating-point operations. As such, reduced work might
be preferable over increased throughput. If performance is measured in units of time as
opposed to units of throughput, then a direct comparison can be made. Assuming compu-
tational complexity does not vary with arithmetic intensity, the execution time of a kernel
would be its computational complexity (measured in floating-point operations) divided by
its throughput (measured in FLOP/s). A nice benefit of plotting on a log-log scale is that if
one inverts a function, the only effect is that this negates the slopes of the curves. As such,
we may reuse all our previous work including ceilings. All we must do is graphically flip the
figures and change the Y-axis labels. However, unlike the performance-oriented Rooflines,
such an approach quantifiably ties the resultant figure to a specific kernel’s computational
complexity.

Figure 4.12 on the next page presents both the throughput-oriented Roofline model
as well as an execution time-oriented Roofline Model for a kernel requiring 16 million
floating-point operations regardless of arithmetic intensity. The execution time for such
a kernel is simply 16 million divided by the floating-point throughput attained in Fig-

74

0.5

1.0

1/8

actual flop:byte ratio

at
ta

in
ab

le
 G

FL
O

P/
s

2.0

4.0

8.0

16.0

32.0

64.0

128.0

256.0

1/4
1/2 1 2 4 8 16

Opteron 2214
(Santa Rosa)

mul / add imbalance

w/out
ILP or SIMD

peak DP

Stre
am

 B
an

dw
idt

h

w/ou
t S

W
 pr

efe
tch

w/ou
t N

UMA

(a) (b)

0.5

1.0

1/8

actual flop:byte ratio

Ex
ec

ut
io

n
tim

e
(m

s)

1/4
1/2 1 2 4 8 16

Opteron 2214
(Santa Rosa)

Stream Bandwidth

w/out SW
 prefetch mul / add imbalance

w/out
ILP or SIMD

peak DP

w/out NUMA

2.0

4.0

8.0

16.0

32.0

64.0

128.0

256.0

Figure 4.12: Execution time-oriented Roofline Models. (a) standard throughput-oriented
Roofline Model. (b) time-oriented Roofline Model for a kernel with a computational com-
plexity of 16 million floating-point operations. Note the log-log scale.

ure 4.12(a). Execution time is a function of arithmetic intensity. Thus it is a dependent
on cache misses and in-core optimizations. Once the code is compute bound, no further
memory traffic optimizations will improve the execution time.

4.8.6 Other Communication Metrics

Thus far, we have assumed all kernels are “memory-intensive.” By that, we mean
kernel performance is tied closely to the balance between peak FLOP/s, DRAM bandwidth,
and the FLOP:DRAM byte ratio. For the kernels presented in Chapters 6 and 8 this
is certainly true. However, the Roofline Model can easily be extended to handle other
communication metrics.

Codes such as dense matrix-matrix multiplication can readily exploit locality in
any cache. As such, L1 or L2 bandwidth may constrain performance more than DRAM
bandwidth. Thus, one could create a Roofline Model based on L2 bandwidth and the
FLOP:L2 byte ratio. The in-core roofline and ceilings would be the same as before, and one
could modify the Stream benchmark to run from the L2 cache. However, the bandwidth
ceilings must be recast in the light of locality within the L2 cache. Bandwidth ceilings might
include bandwidth without prefetching, bandwidth to another core’s L2 or bandwidth to
another socket’s L2 cache. One should be mindful as to whether aggregate across all cores
or individual bandwidth to a core is being utilized as they will connect to different in-core
rooflines.

There is no reason to limit bandwidth to the cache hierarchy. One could imagine
Roofline Models based on I/O, network, or disk bandwidth. In each case, one must bench-

75

(a) (c)(b)

0.5
1.0

1/8
actual flop:DRAM byte ratio

at
ta

in
ab

le
 G

FL
O

P/
s

2.0
4.0
8.0

16.0
32.0
64.0

128.0
256.0

1/4
1/2 1 2 4 8 16

Xeon E5345
(Clovertown)

mul / add imbalance

w/out SIMD

w/out ILP

Ban
dw

idt
h o

n s
mall

 da
tas

ets

peak DP

Ban
dw

idt
h o

n l
arg

e d
ata

set
s

0.5
1.0

actual flop:byte ratio
at

ta
in

ab
le

 G
FL

O
P/

s

2.0
4.0
8.0

16.0
32.0
64.0

128.0
256.0 Xeon E5345

(Clovertown)

mul / add imbalance

w/out SIMD

w/out ILP

peak DP

0.5
1.0

1/32

L2

at
ta

in
ab

le
 G

FL
O

P/
s

2.0
4.0
8.0

16.0
32.0
64.0

128.0
256.0

1/16
1/8

1/4
1/2 1 2 4

Xeon E5345
(Clovertown)

mul / add imbalance

w/out SIMD

w/out ILP

Ban
dw

idt
h o

n s
mall

 da
tas

ets

peak DP

Ban
dw

idt
h o

n l
arg

e d
ata

set
s

1/128
1/4

1/2 1

L2 b
an

dw
idt

h

DRAM

actual flop:byte ratio

1/8
1/16

1/32
1/64

L2 b
an

dw
idt

h

Figure 4.13: Using Multiple Roofline Models to understand performance. (a) DRAM-only
Roofline Model. (b) L2-only Roofline Model. (c) combined DRAM+L2 combined model.
Note the log-log scale.

mark the bandwidth to define the roofline. To estimate performance, one would also need
to know the FLOP:byte ratio for whichever communication metric was selected.

Although it is possible that some kernels on some machines are limited by a single
communication bandwidth for a wide range of arithmetic intensities, there are some kernels
on some machines for which a small increase in the FLOP:DRAM byte ratio will move an
architecture from being memory-bound to L2 bound. Remember, the FLOP:L2 byte ratio
is only proportional to the FLOP:DRAM byte ratio on certain kernels. Hence, improving
one doesn’t necessarily improve the other. As a result, one must simultaneously inspect two
Roofline Models. These can either be separate figures, or as per Jike Chong’s suggestion,
a combined figure with multiple X-axes. Thus, Figure 4.13 shows how one would use
multiple Roofline Models to understand performance. Given a nondescript kernel that has
a FLOP:DRAM byte ratio of 4.0 and a FLOP:L2 ratio of 0.04, if one were to use only
the DRAM model the L2-bound nature would not be evident. By either using a second
model (Figure 4.13(b)) or combined model (Figure 4.13(c)) it becomes evident that the
low FLOP:L2 byte ratio in conjunction with the low L2 arithmetic intensity results in a
constraint on performance greater than DRAM bandwidth. Note there is no reason why the
arithmetic intensity x-axes of Figure 4.13(c) must be aligned to the same value. In addition,
when using a combined figure, one must be mindful to match arithmetic intensities and
bandwidths corresponding to the same communication type.

4.8.7 Other Computation Metrics

The Roofline Model could also be extended to other computational metrics in-
cluding sorting, cryptography, logical bitwise, graphics, or any other low-level operations.
Although graphics operations are commonly expressed in throughput metrics, sorting’s non-
linear computational complexity implies that one must note the data set size when noting

76

(a) (b)

computation

load · · ·· · · store

Iteration time

· · ·· · ·computation

load next / store last

· · ·

· · ·

Iteration time

computation

load next / store last

· · ·

· · ·

Figure 4.14: Timing diagram comparing (a) complete overlap of communication with com-
putation, and (b) serialized communication and computation. Note the iteration time is up
to a factor of 2 smaller when communication and computation are overlapped.

performance. In the context of the Roofline Model, two possibilities arise: first, use the
time-oriented form and express performance in units of time. Second, use a throughput-
oriented metric for performance. In the case of the latter, we suggest a reasonable metric for
performance would be pairwise sorts per second. Clearly, use of such a metric is dependent
upon one calculating either the algorithmically-dictated number of such sorts required de-
pending on the sorting algorithm, or explicitly counting the number performed. The latter
adds accuracy at the expense of software overhead.

In general, one could create a Roofline Model based on any combination of com-
putation and communication metrics. One simply must benchmark the communication
bandwidths with differing optimizations, and then benchmark the computation metrics
with their appropriate optimizations. Given the resultant pair of tables (metric × opti-
mization), with some knowledge, experienced computer scientists could pick the relevant
metrics for their application and model performance.

As we move from floating-point arithmetic operations to the more generic oper-
ations, we should define a generic arithmetic intensity. We define operational intensity as
the ratio of computational operations to total traffic for the appropriate level of memory.
This could be the conventional FLOP:DRAM byte ratio or it could be the pairwise sorts:L2
byte ratio.

4.8.8 Lack of Overlap

Thus far, we have assumed that there is sufficient memory-level parallelism within a
kernel that communication and computation can be overlapped. Moreover, we have assumed
that given sufficient memory-level parallelism, an architecture has the ability to overlap
communication and computation. In this subsection, we examine how one would modify
the roofline if such an assumption fails. A motivating example would be transfers from
CPU (host) memory to GPU (device) memory over PCIe. Unlike Cell’s DMA programming
model, in NVIDIA’s CUDA programming model, kernel invocations and transfers cannot be
overlapped. As such, they are serialized. Thus, the best we can hope for is that computation
amortizes the transfer time rather than hiding it.

Conceptually, Figure 4.14 shows two timing diagrams depicting the idealized over-

77

0.5

1.0

1/8

actual flop:byte ratio

at
ta

in
ab

le
 G

FL
O

P/
s

2.0

4.0

8.0

16.0

32.0

64.0

128.0

256.0

1/4
1/2 1 2 4 8 16

Generic Machine

w/out ILP

peak DP

Stre
am

 B
an

dw
idt

h

w/ou
t N

UMA

(a) (b)

Generic Machine

w/out ILP

peak DP

 S
tre

am
 Ban

dw
idt

h

 w
/ou

t N
UMA

0.5

1.0

1/8

actual flop:byte ratio

at
ta

in
ab

le
 G

FL
O

P/
s

2.0

4.0

8.0

16.0

32.0

64.0

128.0

256.0

1/4
1/2 1 2 4 8 16

Figure 4.15: Roofline Model (a) with and (b) without overlap of communication or compu-
tation. Note the difference in performance is a factor of two at the ridge point. Note the
log-log scale.

lap of communication with computation and the serialized form. Clearly, the time per
iteration in Figure 4.14(b) is considerably longer than that of Figure 4.14(a). As such,
average performance is diminished. Equation 4.5 quantifies the average throughput in the
no overlap, no overhead case. Clearly, the concept of a ridge point is muted as performance
is always dependent on both bandwidth and computation.

Attainable Performanceij =
Arithmetic Intensity

Arithmetic Intensity
Performancei

+ 1
Bandwidthj

(4.5)

Figure 4.15 presents a Roofline Model for each case. The sharp roofline structure
of Figure 4.15(a) has been smoothed in Figure 4.15(b). At the limits of arithmetic intensity,
performance is basically dependent on bandwidth with certain optimizations or computation
with certain optimizations. However, near the ridge point, performance may drop by as
much as a factor of two: computation requires as much time as computation. Examining
the ceilings, there is a clear switch as to the importance of certain optimizations near the
original ridge point.

The original Roofline formulation is the ideal case. However, not every architecture
or machine can effectively overlap communication or computation. Moreover, not every
kernel expresses sufficient parallelism to allow this. As such, in some cases it may be
appropriate to use this no-overlap Roofline Model to understand the nearly factor of two
loss in performance.

78

Although examples of I/O bandwidth to a GPU may seem compelling, one should
also consider the applicability to CPU performance. Some architectures must expend com-
putational capability to express communication — i.e. software prefetch. As such, commu-
nication and computation cannot be perfectly overlapped.

4.8.9 Combining Kernels

Applications are invariably more than a single kernel. The Roofline is premised
on analyzing a single kernel at a time. Thus, the substantial benefits that may be perceived
by including an optimization based on the Roofline Model may be muted in the context of
a multi-kernel application.

To correctly analyze a multi-kernel application, one should first benchmark the
application noting the time required for each kernel. On could then pick the critical kernel
and analyze it assuming the time required for the other kernels is invariant. Application
performance now becomes a time-weighted harmonic mean of kernel time. As a result, an
application’s Roofline Model for optimizing one kernel at a time would have ceilings and
ridge points that are likely to be muted and smoothed.

4.9 Interaction with Performance Counters

Sections 4.3 through 4.7 built the Roofline Models based on microbenchmarks.
The resultant Roofline Models could then be used to gain some understanding of ker-
nel performance, as well as to quantify the potential performance gains from employing
more optimizations. Unfortunately, such an approach still requires substantial architec-
tural knowledge and significant trial and error work. In addition, in many cases, bounds
were defined as all or nothing ceilings, and arithmetic intensity was often calculated based
on compulsory memory traffic. In this section we detail how the Roofline could be enhanced
through the use of performance counters. We expect it to provide a framework and step-
ping stone for future endeavors. Performance counters will allow us to remove much of the
uncertainty in the Roofline Model.

4.9.1 Architectural-specific vs. Runtime

When multiple ceilings are present, we calculate performance assuming we reap
the benefits from all ceilings up to a point but no benefit thereafter. In the real world this is
atypical. One can partially exploit both DLP and ILP without reaping the full potential of
either. Thus, we motivate a switch from architectural Rooflines and ceilings to one based on
runtime statistics. These runtime ceilings will show the performance lost by not completely
exploiting an architectural paradigm.

4.9.2 Arithmetic Intensity

Accurately calculating total memory traffic is the easiest and most readily under-
standable use of performance counters. Previously, we were forced to either assume only

79

compulsory misses or use a costly cache simulator to estimate all cache misses. Using perfor-
mance counters, assuming they provide the requisite functionality, one could calculate the
total memory traffic. This should include all compulsory, conflict, capacity, and speculative
misses; the latter includes hardware stream prefetched data and should be readily differ-
entiable from the former three. Ideally this will allow a transition from a simple less-than
bound on arithmetic intensity to an exact calculation.

Memory traffic is only half of the data required to calculate arithmetic intensity
— the other being the total number of floating-point operations. Just as one could either
use compulsory memory traffic or the performance counter measured memory traffic, one
could also use either the algorithmically derived compulsory floating-point operations or
the performance counter measured number of floating-point operations. The compulsory
FLOP:compulsory byte ratio provides an ideal arithmetic intensity. When the performance
counter measured FLOPs exceed the compulsory number of FLOPs, wasted work has been
performed. If compute bound, the programmer should consider optimizing wasted work
away. When the performance counter measured memory traffic exceeds the compulsory
memory traffic, bandwidth has been squandered to transfer extra data. When memory-
bound, the programmer should be encouraged to block, pad, bypass the cache, or change
data structures to minimize the volume of data.

4.9.3 True Bandwidth Ceilings

In addition to determining the true arithmetic intensity, one could use performance
counters to accurately determine the spacing of various bandwidth ceilings. In doing so
it becomes evident how much performance is lost by not implementing or sub-optimally
implementing certain optimizations.

Simply put, peak bandwidth is only possible if data is transfered on every bus
cycle. Not transferring data every cycle diminishes the sustained bandwidth. By counting
the number of data bus cycles, one can calculate the true bandwidth. In conjunction with
true arithmetic intensity, performance is more readily understandable.

Unfortunately, simply stating that the true bandwidth is 57% of the Stream band-
width doesn’t aid in performance tuning. We still need to understand why performance is
lost. Thus, by inspecting the cause for each idle cycle one could determine not only the
true bandwidth, but also what fraction of performance may be lost due to various factors.
By quantizing the loss of performance by category, we have once again in effect created a
number of bandwidth ceilings between the true bandwidth and the roofline.

Consider the example presented in Figure 4.16 on the following page. Assume
all bandwidth optimizations have been attempted. Figure 4.16(a) shows the conventional
architecture-oriented Roofline Model. The gold star denotes the attainable performance
given the compulsory arithmetic intensity. However, the red diamond marks the observed
performance. One might erroneously conclude that attempts to exploit both NUMA and
software prefetching were completely ineffective. To resolve this confusion, performance
counters might be used to determine that the true arithmetic intensity was half the com-
pulsory arithmetic intensity — shown in Figure 4.16(b). Moreover, performance counters
could be used to show that the observed performance corresponds to the product of the true
bandwidth and true arithmetic intensity. The question arises, why is performance only half

80

1.0

1/8
actual flop:byte ratio

at
ta

in
ab

le
 G

FL
O

P/
s

2.0
4.0
8.0

16.0
32.0
64.0

128.0
256.0

1/4
1/2 1 2 4 8 16

mul / add imbalance

w/out SIMD

w/out ILP

w/ou
t S

W
 pr

efe
tch

w/ou
t N

UMA

0.5
1.0

1/8
actual flop:byte ratio

at
ta

in
ab

le
 G

FL
O

P/
s

2.0
4.0
8.0

16.0
32.0
64.0

128.0
256.0

1/4
1/2 1 2 4 8 16

Generic Machine

0.5
1.0

1/8
actual flop:byte ratio

at
ta

in
ab

le
 G

FL
O

P/
s

2.0
4.0
8.0

16.0
32.0
64.0

128.0
256.0

1/4
1/2 1 2 4 8 16

(a)
Architecture Roofline Model

(b)
Runtime Roofline Model

(c)
Runtime Bandwidth Ceilings

peak DP

pe
ak

 BW
co

m
pu

ls
or

y
flo

p:
by

te

peak DP

mul / add imbalance

w/out SIMD

w/out ILP

mul / add imbalance

w/out SIMD

w/out ILP

Generic Machine

0.5

pe
ak

 BW

tru
e

flo
p:

by
te

tru
e b

an
dw

idt
h

co
m

pu
ls

or
y

flo
p:

by
te

Generic Machine

peak DP

pe
ak

 BW

tru
e

flo
p:

by
te

co
m

pu
ls

or
y

flo
p:

by
te

Exposed memory latency

Lack of
NUMA
symmetry

Figure 4.16: Runtime Roofline Model showing (b) performance counter calculated true
arithmetic intensity and (c) bandwidth ceilings representing the true rather than maximum
loss in performance. Note the log-log scale.

what’s expected given the level of optimization? To that end, Figure 4.16(c) shows that
performance counters could be used to show that NUMA and software prefetching were
only partially effective. Not only is there asymmetry in the memory traffic produced by
each socket, but it is clear that software prefetching didn’t fully cover the memory latency.
Thus, performance counters can be effectively utilized to show why observed performance
was only 1

4 the Roofline bound.
Although we may be able to categorize and quantify many of the causes for re-

duced bandwidth, some may remain as combinations of unknown given the limitations of
performance counters. Thus, with realistic limitations of performance counters, we may be
forced to label a bandwidth ceiling as “unknown.” This could include problems buried deep
in the memory controllers like frequently exposing the DRAM page access latency.

4.9.4 True In-Core Performance Ceilings

In much the same way performance counters could be exploited to understand the
performance when multiple memory bandwidth concepts are partially exploited, we can use
them to understand in-core performance.

Clearly, performance counters could be used to understand the dynamic instruction
mix. By simply counting the number of floating-point instructions issued and dividing by
the total number of instructions issued, we can arrive at the instruction mix. Given the
true mix, one could query an architecture Roofline mode to determine if the mix is actually
constraining performance.

Similarly, performance counters could be used to determine what fraction of the
floating-point instructions were SIMDized, what fraction of the instructions exploit FMA,
on what fraction of the issue cycles are both multiplies and adds issued, and on what fraction
of the cycles are instructions not issued because of in-core instruction hazards. Given this

81

0.5
1.0

1/8
actual flop:byte ratio

at
ta

in
ab

le
 G

FL
O

P/
s

2.0
4.0
8.0

16.0
32.0
64.0

128.0
256.0

1/4
1/2 1 2 4 8 16

mul / add imbalance

w/out SIMD

w/out ILP

w/ou
t S

W
 pr

efe
tch

w/ou
t N

UMA

0.5
1.0

1/8
actual flop:byte ratio

at
ta

in
ab

le
 G

FL
O

P/
s

2.0
4.0
8.0

16.0
32.0
64.0

128.0
256.0

1/4
1/2 1 2 4 8 16

(a)
Architecture Roofline Model

(b)
Runtime Roofline Model

(c)
Runtime in-core Ceilings

peak DP

pe
ak

 BW

co
m

pu
ls

or
y

flo
p:

by
te

w/ou
t S

W
 pr

efe
tch

w/ou
t N

UMApe
ak

 BW

peak DP

tru
e

flo
p:

by
te

co
m

pu
ls

or
y

flo
p:

by
te

true in-core performance

0.5
1.0

1/8
actual flop:byte ratio

at
ta

in
ab

le
 G

FL
O

P/
s

2.0
4.0
8.0

16.0
32.0
64.0

128.0
256.0

1/4
1/2 1 2 4 8 16

w/ou
t S

W
 pr

efe
tch

w/ou
t N

UMA

Generic Machine Generic Machine Generic Machine

pe
ak

 BW

incomplete SIMD
mul / add imbalance

tru
e

flo
p:

by
te

co
m

pu
ls

or
y

flo
p:

by
te

peak DP

Figure 4.17: Runtime Roofline Model showing (b) performance counter calculated true
arithmetic intensity and (c) in-core performance ceilings representing the true rather than
maximum loss in performance. Note the log-log scale.

information, we could construct a series of runtime in-core ceilings analogous to the runtime
bandwidth ceilings in Figure 4.16 on the previous page.

Figure 4.17 presents an in-core example. In this case, assume all optimizations have
been applied and communication has been determined not to be the bottleneck. As shown
in Figure 4.17(b), performance counters could be used to determine both the true arithmetic
intensity and the true in-core performance. To facilitate optimization, performance counters
could be used to determine how effectively ILP, DLP, and functional unit parallelism have
been exploited. Clearly, in this example the compiler was able to deliver a little less than
half the potential performance. Upon examination, it is clear the compiler fully exploited
ILP, partially exploited SIMDization, but was not able to balance multiples and adds. As
a result, the latter two remain as ceilings in Figure 4.17(c).

4.9.5 Load Balance

Runtime load balance is far from the all or nothing (perfect or worst case) balancing
presented in Section 4.8. One could imagine that at each level of the integration hierarchy
— within a core, within a socket, within a SMP — there is some distribution of work
(computation or memory traffic) across threads, cores, or sockets. That is, there is a
distribution of computation among the sockets of an SMP, within each socket there is a
distribution of computation among cores, and within each core there is a distribution of
work among hardware thread contexts.

As the distribution of work becomes more imbalanced, certain threads, cores, or
sockets are given a disproportionate fraction of the work. Up to an architecturally depen-
dent critical imbalance, there is no performance drop, but beyond this critical imbalance,
performance begins to drop. Clearly, for computational balance at the multicore or mul-
tisocket level, the critical balance is uniform. However, at the multithreading level, the

82

critical balance may be significantly different than uniform. A similar condition arises when
dealing with memory imbalance. Each core or thread may not be capable of satisfying
the socket-level Little’s Law. As such, if too few are used, the subset will not satisfy the
socket-level Little’s Law.

As load imbalance represents current and on going research, we haven’t defined
how one could distill performance counter derived imbalance into one or more ceilings.

4.9.6 Multiple Rooflines

Performance counters would also facilitate the analysis of multiple Roofline Models.
Just as we might collect DRAM related performance counter information including total
DRAM memory traffic, or exposed DRAM latency, we could have just as easily collected L2
memory traffic or exposed L2 latency. With such information in hand, bottleneck analysis
would be greatly enhanced.

4.10 Summary

In this chapter, we introduced and defined the Roofline Model. This model comes
in two basic forms: an architecture-specific form, constructed in Sections 4.3 through 4.7,
and a runtime form, described in Section 4.9. We use the former model throughput the rest
of this paper to model, predict, analyze, and qualify kernel performance.

The architecture-oriented model is an idealized representation of an architecture’s
potential performance based on bound and bottleneck analysis. The Roofline Model is
further enhanced by performing multiple analyses based on progressively higher exploitation
of an architecture’s features. Such a formulation can be very useful in modeling, predicting,
and analyzing kernel performance. However, its value is diminished when the user cannot
quantify which aspects of an architecture have not been fully exploited.

To that end, the runtime form exploits performance counter information to pre-
cisely detail in what aspects the software, middleware, and compiler failed to implement
the optimizations required by a specific kernel to fully exploit the machine. To be clear, it
is no longer a model, but a visualization of performance counter information structured to
resemble the Roofline Model.

We believe that programmers with all levels of background, specialization, ex-
perience and competence can use the Roofline Model to understand performance. From
this understanding it is hoped that they can effectively optimize program performance or
redesign hardware.

83

Chapter 5

The Structured Grid Motif

Structured grid kernels form the cores of many HPC applications. As such, their
performance is likely the dominant component for many applications. Structured grid
kernels are also seen in many multimedia and dynamic programming codes. Thus, their
value cannot be underestimated.

This chapter discusses the fundamentals of structured grid computations. By no
means is it comprehensive. In addition, we do not analyze the mathematics or computational
stability of any kernel. For additional reading, we suggest [109]. The chapter is organized as
follows. First, Section 5.1 discusses some of the fundamental characteristics of structured
grids. In Section 5.2, we discuss the common characteristics of structured grid codes.
Section 5.3 then discusses several techniques that have been developed to accelerate the time
to solution of various structured grid codes. Finally, we provide a summary in Section 5.4.

5.1 Characteristics of Structured Grids

Motifs typically do not have well defined boundaries. As such, based on a kernel’s
characteristics, one might categorize a given kernel into one or more motifs. In this section
and the next, we discuss several agreed upon characteristics of the structured grid motif.
Generally, kernels adhering to these characteristics would be classified as structured grids.
We discuss these characteristics not only to differentiate structured grids from other motifs,
but also to allow one to understand the breadth of and differences between structured
grid codes. Most importantly, we discuss the characteristics here to provide clarity to the
auto-tuning effort in Chapter 6.

Conceptually, one can think of a structured grid as a graph. There are a num-
ber of nodes where data is stored and computation is performed and a number of edges
connecting them. The edges represent the valid paths data traverses across throughout
the calculation. The nodes directly connected to a node are the “neighboring” nodes. In
addition to simple Boolean connectivity, the edges encode distance or weight. Conceptu-
ally, a graph might be derived from a N-dimensional physical problem. One of the inherent
characteristics of structured grids compared to graphs is that they retain knowledge of the
global connectivity or dimensionality and periodicity rather than blindly interpreting the
data as an arbitrary graph. The next subsections discuss the principal characteristics of

84

(d) (e)

(a) (b) (c)

Figure 5.1: Three different 2D node valences: (a) rectangular, (b) triangular, (c) hexagonal.
(d) and (e) are just (b) and (c) aligned to a Cartesian grid to show geometry and connectivity
are disjoint concepts.

structured grid codes: node valence, topological dimensionality, periodicity, and physical
geometry. node valence deals with the local connectivity among nodes, where topological
dimensionality and periodicity deals with the global connectivity. In addition, we discuss
the ease in which neighbor addressing is handled. The geometry maps this topology to
physical space. Although the breadth of such characteristics is extremely wide, we only
discuss the common configurations.

5.1.1 Node Valence

The first characteristics we discuss are the topological characteristics. More specif-
ically, we first describe the individual or local connectivity between nodes. Typically in
structured grid codes, all nodes have the same node valence. That is, every interior node in
the grid is connected to the same number of nodes. Moreover, the lengths or weights of the
connective edges are identical or uniform. Such characteristics distinguishes the structured
grid motif from both the unstructured grid motif and the sparse motifs. In both of the
latter cases, connectivity is explicit and encoded as data at each node.

There are several common node valences or connectivities including cases where
each node connects to 2, 3, 4, 6, or more other nodes. Dimensionality is typically disjoint
from realizable connectivities. For example, 4-way connectivities appear in both 2 and 3
dimensions.

Figure 5.1 shows three different 2D node valences. We name them based on their

85

(a) (b) (c)

Figure 5.2: Three different 3D node valences: (a) hexahedral, (b) triangular slabs or prisms,
(c) tetrahedral.

duals. In rectangular connectivity, every node is connected to four other nodes. Triangular
connectivity mandates every node is connected to three other nodes, whereas in hexagonal
connectivity, every node is connected to six other nodes. Observe that node valence is
disjoint from topological dimensionality and periodicity. As such, despite dramatically
different appearances, Figure 5.1(b) and (d) are both considered triangular connectivities
and Figure 5.1(c) and (e) are both considered hexagonal connectivities.

Figure 5.2 shows three different 3D node valences. Figure 5.2(a) and (b) are simply
layered or slab extensions of Figure 5.1(a) and (b), where Figure 5.2(c) is a more natural
and uniform extension of Figure 5.1(a).

In scientific computing, rectangular and hexahedral topologies are by far the most
common simply because this meshes well with the underlying mathematics. However, there
are cases where the desire to facilitate a mapping onto a geometry overrides the mathe-
matical challenges. In such cases, tetrahedral or hexagonal slabs are often used. In image
processing and dynamic programming, 2D rectangular topology predominates.

5.1.2 Topological Dimensionality and Periodicity

The next characteristics we discuss are the topological dimensionality and peri-
odicity. These define the global connectivity among nodes. For simplicity, we will refer to
these combinations by their physical coordinate system cousins. There are a plethora of
geometries we may map a given node valence onto just as there are a number of coordi-
nate systems as a function of dimensionality. Often the dimensionality and periodicity are
derived from a physical coordinate system. We discuss several common cases starting with
the trivial one-dimensional forms.

In one dimension, there are two common coordinate systems: linear and circular.
These represent the canonical 1D Cartesian and fixed radius polar (angular) coordinates. In
essence, a circular geometry is implementing periodic boundary conditions without resorting
to explicit copies of the boundaries (ghost zones are discussed in Section 5.2.2). Note that
topology can be restricted by dimensionality. For example, in 1D, topology is restricted to
only left and right neighbors. Typically, a single topological index (i) is used.

86

(b)(a) (c) (d)

Figure 5.3: Four different 2D geometries, all using a rectangular topology: (a) Cartesian,
(b) polar, (c) cylindrical (surface), (d) spherical (surface). Note, in (b) there is no node at
the center, and the innermost radius can be arbitrarily small. A similar condition exists in
(d).

In two dimensions, degenerate forms of Cartesian, polar, cylindrical or spherical
coordinate systems are typical. One may restrict the 3D cylindrical or spherical coordinate
systems to 2D by fixing one coordinate. Thus the topologic index (i,j) coordinate can be
interpreted as a (x,y) in a Cartesian coordinate system, (r,θ) in polar, (θ,z) in cylindrical,
and (θ,φ) in spherical. Note that the possible connectivities in two dimensions are much
richer than in one dimension.

Connectivity, dimensionality, and periodicity, are disjoint concepts. Figure 5.1 on
page 84 can be thought of as mapping three different connectivities onto a 2D Cartesian
plane. Similarly, Figure 5.3 shows four different mappings of the rectangular node valence.
When examining any interior node, it is clear that it is always connected to four other nodes
regardless of geometry as there is no vertex at the origin of Figure 5.1(b) or the poles of
Figure 5.1(d). Although we show only the rectangular connectivity, we could have mapped
any of the topologies in Figure 5.1 onto the geometries of Figure 5.3. Note, to make the
Cartesian nature of the triangular and hexagonal grids obvious, the nodes have been aligned
to a Cartesian grid in Figure 5.1(d) and (e).

The number of possible mappings expands further in three dimensions. In addi-
tion to the standard Cartesian (x,y,z), spherical (r,θ,φ), and cylindrical (r,θ,z) coordinate
systems, one could easily add toroidal, among others.

5.1.3 Composition and Recursive Bisection

When presented with a complex geometry, it is common for one to jump to an
unstructured grid calculation. However, simpler solutions exists. First, it is possible to
compose two structured grids with different node valences together. The challenge is that
a new node valence is introduced where the two grids meet. In addition to composing
grids of different connectivities, one could compose grids of different physical geometries or
compose similar grids into a complex, higher-dimensional grid. Second, one may recursively
recursively bisect the edges of the faces of a solid into uniform grids. The end result is the

87

(b)(a) (c)

Figure 5.4: Composition of a Cartesian (a) and hexagonal (b) mesh. Note, the mathematics
will be different at the boundary in (c).

(a) (b) (c)

Figure 5.5: Recursive bisection of an icosahedron and projection onto a sphere. Each of the
original 20 faces becomes a hexagonal mesh. Reproduced from [76]

same as composing several grids together.
Figure 5.4 shows the composition of a rectangular and a hexagonal grid. At the in-

terface, each node has five neighbors rather than the four in rectangular or six in hexagonal.
Thus, the computation at the interface would be different.

Although there are standard coordinate systems for spherical geometries, they lack
the uniformity scientists and mathematicians desire. This recursive bisection approach has
become a common technique for generating a nearly uniform topology and geometry. Thus,
to approximate a sphere, one commonly geodesates a cube, octahedron, or icosahedron.

Figure 5.5 shows the recursive bisection of an icosahedron. At each step, each
edge is bisected, and three new edges are inserted. A projection is applied when mapping
to physical coordinates. Notice that there are two node valences: pentagonal and hexag-
onal. Moreover, there are always 12 nodes with pentagonal connectivity. However, the
nodes with hexagonal connectivity soon dominate. In essence, 20 hexagonal Cartesian grids
with triangular boundaries have been composed together into a 3D geometry. Despite the
apparent complexity of this approach, notice the edges are all uniform lengths — a quality

88

(b)(a) (c)

0

1

2

3

4

j

i
0 1 2 3 4

0 1 2 3

0

1

2

3

4

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

20 21 22 23 24

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

16 17 18 19

10 1822 14

12

20

16

8

0

11
19

23
15

13
21

17
9

1
2
345

6
7

i

j

j

Figure 5.6: Enumeration of nodes on different topologies and periodicities: (a) rectangular
Cartesian, (b) rectangular polar, and (c) hexagonal Cartesian. The value at each node is
its array index.

not present in spherical coordinates. This approach is used in some climate codes [66, 67].
Others use a similar approach in which a cube is geodesated [112].

5.1.4 Implicit Connectivity and Addressing

If the connectivity is uniform across the grid, one can choose an enumeration of the
nodes such that one can arithmetically calculate a node’s neighbors. That is, given a grid’s
topological dimensions and a node’s coordinate in topological space (i,j,k) or address in
memory (&Node) — an array index, one can directly calculate the coordinates or addresses
of the connected nodes. For the more complex geometries in Section 5.1.3, such calculations
may require several cases. Nevertheless, in structured grid codes, the addresses of the
connected nodes are never explicitly stored. Explicit storage of nodes is required in the
unstructured grid, graph algorithm, and sparse linear algebra motifs.

Consider Figure 5.6. We show two different connectivities and two different ge-
ometries. Each node has a topological index (i,j).

Figure 5.6(a) shows a rectangular connectivity with a Cartesian geometry. The
neighbors of a node at (i,j) are: (i-1,j), (i+1,j), (i,j-1), and (i,j+1). If we choose an
enumeration of the nodes such that the index of the node at (i,j) is i + 5 × j, then the
indices of the neighboring nodes are offset by ±1 and ±5.

Figure 5.6(b) shows a rectangular connectivity with a polar geometry. Let (i,j)
represent (r,θ). As it is still a rectangular connectivity, the neighbors are still: (i-1,j),
(i+1,j), (i,j-1), and (i,j+1). However, the periodicity of the coordinate system makes the
addressing of the neighbors more challenging. Although offsets in the radial direction are
simply ±8, offsets in the angular direction can be ±1, −7 and −1, or +1 and +7 depending
on j.

Figure 5.6(c) shows a hexagonal connectivity with a Cartesian geometry. There
are now six neighbors, and depending on j, they can be either:

(i-1,j), (i+1,j), (i-1,j-1), (i-1,j+1), (i,j-1), and (i,j+1)

89

(a) (b) (c)

Figure 5.7: Mapping of a rectangular Cartesian topological grid to different physical coor-
dinates using (a) uniform, (b) rectilinear, or (c) curvilinear approaches.

— or —

(i-1,j), (i+1,j), (i,j-1), (i,j+1), (i+1,j-1), and (i+1,j+1)

Clearly, this necessitates two different cases to handle the addressing. Although
neighbor offsets of ±1 and ±4 are common to all points, depending on j, offsets of −3 and
+5 or −5 and +3 are possible.

Rectangular connectivity and Cartesian geometry requires trivial arithmetic when
calculating the neighboring addresses, but even the work required for other connectivities
and geometries is still easily tractable.

5.1.5 Geometry

Thus far, we have only discussed topology, dimensionality and periodicity. How-
ever, we must now map to a physical geometry. Given topological indices (i,j,k), a mapping
function will produce physical coordinates (x,y,z) or (r,θ,φ) depending on the mathematics
of the underlying coordinate system. These transformations allow simulation of complex
geometries using simple arithmetic operations. Although it is possible to realize any geom-
etry with any topology by mixing and matching topologic and physical coordinate systems,
it is inherently undesirable. Figure 5.7 maps a single node valence, dimensionality, and
periodicity combination into three different geometries using three different approaches.

Uniform

The simplest transformation is a uniform scaling of the topological indices into
physical coordinates. Thus, one could transform topological index (i,j,k) by scaling each
such that (x,y,z) = (∆x·i, ∆y·j, ∆z·k). Similar transformations apply in all coordinate
systems. In all cases, the scaling is uniform for all ranges of a given coordinate. As such,
the topological coordinate system must be the same as the physical coordinate system.
Figure 5.7(a) shows that the y scaling is twice the x scaling. That is, the nodes are further
apart in the y-dimension than in the x-dimension.

Note, topological coordinates, physical coordinates, and the units of the underlying
mathematics may be dramatically different. For example, (i,j,k) may only be small integers

90

in the range 0 through 255, but the physical coordinates might be real numbers 0.0 through
99.9. Moreover the physical coordinates might be in units of gigaparsecs.

Rectilinear

Rectilinear coordinates are those in which the physical coordinates have a non-
linear relationship with the topological index. For instance, one could conceive of physical
coordinates that are the exponential of the topological index: (x,y,z) = (10i, 10j, 10k).
Alternately, consider the case where the scaling is dependent on the topological index:
(x,y,z) = (f(i)·i, g(j)·j, h(k)·k). Figure 5.7(b) shows that the y scaling is dependent on
the j topological index, but the x scaling is uniform. In general, this could be extended to
other topologies, dimensions or periodicities.

Curvilinear

In Cartesian coordinates, the lines of constant coordinate values are straight lines.
In a curvilinear coordinate system, these lines are curved. One may map a Cartesian coor-
dinate system to a curvilinear physical coordinate system through the appropriate transfor-
mation. Clearly, such an approach pushes the complexity of the periodicity of coordinates
from addressing to boundary conditions.

Figure 5.7(c) maps a rectangular Cartesian grid into a curved space. The physical
coordinates of each node and the spacing between nodes are obviously far more than a
simple scaling of the topological index.

5.2 Characteristics of Computations on Structured Grids

In this section, we discuss the common characteristics of computations on struc-
tured grids. We commence by discussing the data stored and computation performed at
each node. Finally, we conclude this section with a discussion of the breadth of code struc-
ture and inherent parallelism within structured grid codes as well as common memory access
patterns.

5.2.1 Node Data Storage and Computation

There are no restrictions as to the number of variables or their type stored at
each node other than that every node has identical storage requirements. Similarly, the
structured grid motif places no mandates on the computation performed at each node other
than the computation being the same at every node.

Data

In the simplest codes, one floating-point number or integer is stored at each node.
Such scalar representations are appropriate for scalar fields like temperature or potential.
As codes become more complex, each node may be required to store a Cartesian vector like
velocity or alternately a pixel (RGB color tuple). As codes become even more complex, a
small matrix or lattice distribution may be stored at each node.

91

Lattice methods evolved from statistical mechanics [126]. A lattice distribution
maintains up to 3D higher dimension phase space components (velocities). Often these
velocities are scalar floating-point numbers, but they could also be Cartesian vectors.
Uniquely, lattice methods describe their distributions as DdQq, where d is the dimen-
sionality and q is the number of velocities. For example, D3Q27 would be a complete 3D
lattice distribution. The most complex codes will maintain several grids of varying data
types. Rectangular or hexahedral are the most common connectivities for lattice methods.

Within the structured grid motif, there is no mandate as to how data must
be stored. It may either be stored by node or by component, either in one array or
multiple arrays. These two extremes are the canonical array-of-structures (AOS) and
structure-of-arrays (SOA) styles. Typically, nodes are stored consecutively within the cor-
responding arrays. They are indexed by their enumerations or array index, for example,
grid[component][node] or grid[node][component]. This make addressing nodes and
components computationally trivial.

Computation

The basis behind all structured grid computations is the stencil. A stencil is a
specific pattern, centered on the current node, that specifies not only which neighboring
nodes must be accessed, but also which components must be gathered from each neighbor.
Stencils may be expanded to include neighbors of neighbors. The only real restrictions are
that the number of neighbors be fixed and finite, and that the same stencil be applied to
all nodes in the grid.

Once the data has been gathered, the computation proper may be performed.
There are no real restrictions on the computation at each node other than the same compu-
tation being performed at every node, just on different data. It can be linear or non-linear
functions on bitwise, integer, or floating-point data.

Examples

Figure 5.8 on the next page presents two different stencils on three different 2D
Cartesian grids. By no means are they representative of all possible stencils or all possible
grids, but they should be illustrative of the concepts. Any computation could be performed
on the data gathered.

Figure 5.8(a) shows a 5-point 2D stencil on a scalar rectangular Cartesian grid.
The term point refers to the number of nodes that will be accessed. Its five points are: the
center, the left, right, top, and bottom neighbors. From each point, the scalar value stored
at that node is gathered.

By contrast, Figure 5.8(b) shows a 5-point 2D stencil on a Cartesian vector grid.
At each point in the grid a 2D Cartesian vector (x,y) is stored. From the left and right
neighbors, the x component is gathered, but from the top and bottom neighbors, the y
component is required. From the center point, both components are used. Clearly, not all
5-point stencils are the same, nor are all 5-point stencils on vector grids.

Finally, Figure 5.8(c) shows a 9-point stencil on a lattice. Each node stores a
distribution (array) of velocities (components). The stencil operator gathers a very specific

92

(a) (b) (c)

Figure 5.8: 5- and 9-point stencils on scalar, vector, and lattice grids: (a) 2D 5-point stencil
on a scalar grid, (b) 2D 5-point stencil on a Cartesian vector grid, (c) 2D 9-point stencil
on a lattice distribution (D2Q9). Remember, the DdQq notation is only used for lattice
methods.

(a) (b)

Figure 5.9: 2D rectangular Cartesian grids (a) with and (b) without the addition of ghost
zones.

pattern of velocities from the eight neighbors and the center point.

5.2.2 Boundary and Initial Conditions

Depending on the periodicity, some problems have a boundary and others don’t.
Problems with boundaries leave some nodes partially connected — exceptions to uniform
node valence. Consider the mappings in Figure 5.3 on page 86. Clearly, the spherical
geometry has no boundaries. However, the cylindrical geometry has a boundary around the
top and bottom, the polar geometry has a boundary at the outer radius, and the Cartesian
grid has a boundary around all four sides. There two issues that must be addressed. First,
how is a stencil applied to a node on such a boundary, and second, what values are employed
for the stencils on the boundary?

Figure 5.9 shows two solutions to applying a stencil on the boundary. The most
common solution is to augment the grid with a ghost zone. A ghost zone is an additional set
of nodes around the perimeter of the grid. Often additional ghost cells are added to facilitate
addressing. The values at these nodes are set with the appropriate boundary conditions,

93

thereby allowing the same stencil to be applied to every interior point. However, there is
no need to apply the stencil to the ghost zone. An alternate approach would be to define a
series of additional stencils for the nodes on the boundary. Although in the 2D polar and
cylindrical geometries only one addition stencil would be required, the Cartesian grid would
mandate the addition of at least 8 additional stencils — four for the sides, and four for the
corners. The latter approach is less common as it requires a location-aware conditional to
decide which stencil should be applied. As such, ghost zones are the common case.

Typically, the mathematics applied on a structured grid dictates how these bound-
aries are treated. One could classify these boundary conditions into four common types:

• Constant

• Periodic

• Ghost zones created through parallelization

• Other

Constant boundary conditions mean the boundary to the grid is constant in time,
but free to vary in space. Thus, each point could have a different value, but that value will
never change. Constant boundaries can be implemented either by designating a ghost zone
and filling it at the beginning of the kernel or by designating boundary stencils. The former
is the common solution. The stencil operator must not be applied to the boundary.

Periodic boundaries are somewhat restricted in their application. Consider a
Cartesian grid. A periodic boundary suggests the values above the top edge of the grid
are the values along the bottom edge of the grid, and vice versa. This could be extended to
a more complex mapping. Thus, there is a very regimented manner in which the values are
computed, but those values will change over time. Once again, these can be implemented
either with explicit ghost zones or with stencils designed for the boundaries, or as simple as
a stencil using a modulo operator for the neighbor calculation. When implemented using
ghost zones, the values must be updated every time a boundary node is updated.

On distributed memory machines, the nodes assigned to one computer are not
directly addressable by a different computer. Figure 5.10 on the following page shows the
standard solution of introducing a ghost zone around each computer’s portion of the grid.
Figure 5.10(b) shows part of the operation. At each time step, each computer sends its
boundary to the “neighboring” computers. In turn, they receive the boundaries of the
neighboring computers’ grids. They then copy this data into their ghost zones. Thus,
the values in these ghost zones vary in space and time. Depending on what constitutes a
“neighboring” computer, one could implement a periodic boundary through this technique.

The final category is perhaps appropriately labeled as “other.” It includes bound-
aries that must be locally recalculated, not simply copied, at every point in space and at
every point in time — a driving function. Typically, they are implemented with ghost zones.

A given structured grid may include one or more of these boundaries. For example
in the parallel, distributed memory case, processors on the boundary of the problem could
have both ghost zones from parallelization and constant boundary condition ghost zones.

94

(a) (b)

Figure 5.10: Ghost zones created for efficient parallelization.

Initial conditions refer to the initial values of the nodes. For some problems, this
data can be left uninitialized. However, for most problems it must be seeded with specific or
reasonable values. We assume setting the grid for the initial conditions can be sufficiently
amortized over the execution of a method. As such, the time required for initial conditions
does not significantly adversely affect performance. Thus, we do not include this time in
any performance calculation.

5.2.3 Code Structure and Parallelism

The basic building block of a structured grid code is a stencil. Stencils are then
grouped together into grid sweeps. In such a sweep, all of the nodes are updated using the
appropriate stencil operator. Structured grid codes often perform a large number of such
sweeps. In codes like parabolic or hyperbolic PDEs, sweeps simulate the time evolution of
a problem. In elliptic PDEs, they are used for convergence. In multigrid or graphics codes
they can coarsen or restrict the grid to a different resolution. Finally, for some dynamic
programming codes, sweeps are used for different boundary conditions. Typically, between
each complete update of a grid, the ghost zones are updated in accordance with their type.
Rather than defining a new set of cross-domain classifications, we typically use the names
from scientific computing and note when the concepts apply to structured grid codes from
other domains.

Inherent parallelism can vary widely from one sweep to another. Consider five com-
mon examples: Gauss-Seidel method, upwinding stencils, Red-Black Gauss-Seidel method,
Jacobi’s method, and the restriction and prolongation pair found in multigrid. We focus on
the code structure and inherent parallelism of these methods, not the numerical stability
or convergence time.

In the pure Gauss-Seidel method, there is only one grid. Moreover, the structure
of the typical stencil mandates that there is data hazard between stencils. As such, there
is one correct ordering in which the stencils must be applied. Critically, for some stencils

95

1 while(!done){
2 // sweep thru diagonals
3 for(d=0;d<5;d++){
4 for(j=0;j<d;j++){
5 i = d-j;
6 grid[i,j] = stencil(grid,i,j);
7 }}
8 }

i

j

Figure 5.11: Visualization of an upwinding stencil. the loop variable “d” denotes the
diagonal as measured from the top left corner. Note each diagonal is dependent on the
previous two diagonals. Black nodes have been updated by the sweep, gray ones have not.

 1 while(!done){
 2 // for all colors, i, j
 3 for(red=0;red<2;red++){
 4 for(j=0;j<5;j++){
 5 for(i=0;i<5;i++){
 6 NodeIsRed = (i+j)&1;
 7 // node color == sweep color?
 8 if(red==NodeIsRed){
 9 grid[i,j] = stencil(grid,i,j);
10 }}}}}

i

j

Figure 5.12: Red-Black Gauss-Seidel coloring and sample code.

there is no parallelism within each sweep, as all successive stencil updates are dependent
on the current one.

However, if the stencil used in a Gauss-Seidel-like method were ideally constructed,
then there are some loop orderings that avoid the data dependencies. As such, those loops
could be parallelized. Figure 5.11 shows such a stencil, similar to those in upwinding and
dynamic programming [98, 117] codes. Note, there is only one grid, and the stencil only
looks backward. Diagonals are enumerated from the top left corner. Thus, there is a clear
read-after-write data hazard when looking at previous diagonals. However, there are no
data hazards among stencils along a diagonal. As such, all nodes along the highlighted
diagonal can be executed in parallel. In higher dimensions, it is possible that an entire
plane could be executed in parallel.

The Red-Black Gauss-Seidel method is applicable to certain stencils. The math-
ematics behind the Red-Black Gauss-Seidel method is slightly different than the normal
Gauss-Seidel. In contrast, the nodes of the grid are colored into two or more colors. Fig-
ure 5.12 shows such a coloring on a 2D rectangular Cartesian grid. One could alternatively
color the nodes by rows, columns, or planes. Notice the neighbors of a 5-point stencil cen-
tered on a black node are all red, and the neighbors of a red node are all black. As such, one
could restructure the loops in a Red-Black Gauss-Seidel sweep to update all black nodes,
then update all red nodes. In doing so, all data hazards within a sweep are eliminated.
Thus, the nested for loops on lines 4-5 of Figure 5.12 can execute in any order or entirely

96

read grid

write grid

1 while(!done){
2 // sweep thru grid
3 for(j=0;j<5;j++){
4 for(i=0;i<5;i++){
5 write[i,j] = stencil(read,i,j);
6 }}
7 // swap read and write pointers
8 temp=read;read=write;write=temp;
9 }

Figure 5.13: Jacobi method visualization and sample code. The stencil reads from the top
grid, and writes to the bottom one.

fine resolution grid

1 // sweep thru grid
2 for(j=0;j<3;j++){
3 for(i=0;i<3;i++){
4 coarse[i,j] = stencil(fine,2*i,2*j);
5 }}

coarse resolution grid

Figure 5.14: Grid restriction stencil. The stencil reads from the top grid, and writes to the
bottom one.

in parallel. As a result, the parallelism available is half the total number of stencils.
The same mathematics could be alternately implemented with Jacobi’s method.

Figure 5.13 shows such a method in which two copies of the grid are maintained. One
represents the current state of the grid, and the other is a working or future version. Like
Red-Black, the benefit is the elimination of data hazards. To that end, one grid is read-only,
while the other is write-only. Unlike Red-Black, any stencil can easily be applied. At the
end of each sweep, pointers are swapped, and the working grid becomes the current grid.
The for-loop nest on lines 3-4 of Figure 5.13 can be parallelized — that is, all stencils may
be executed in parallel. The downside is that the total storage requirements are doubled.

Although the previously discussed Jacobi method utilized a second grid, the reso-
lution of the two grids is the same. However, in many codes, a stencil is applied to coarsen
or restrict the resolution of a grid, multigrid, or image resampling for example. Figure 5.14
shows such an example in which the resolution in both dimensions are coarsened by a factor
of 2. In this example, there is no data dependency between stencils. As such, the loop nest
on lines 2-3 of Figure 5.14 can be executed in parallel.

Table 5.1 on the next page compares the parallelism, storage, and spatial locality
for each method given an N3 input problem. Remember, one only needs enough parallelism
for the machine one is running on. Methods with good spatial locality, low storage require-
ments, and enough parallelism will perform well. Moreover, in multigrid, the restriction and
prolongation operators always appear together and in conjunction with one of the relaxation

97

Method Parallelism Storage Requirement Spatial Locality

Gauss-Seidel 1 N3 good

Gauss-Seidel (upwinding) N2 N3 poor

Gauss-Seidel (red-black) N3

2
N3 fair

Jacobi’s Method N3 2·N3 good

Restriction Operator N3

8
1.125·N3 good

Prolongation Operator 8·N3 9·N3 good

Table 5.1: Parallelism, Storage, and Spatial Locality by method for a 3D cubical problem
of initial size N3. In multigrid, the restriction and prolongation operators always appear
together and in conjunction with one of four relaxation operators.

(b)(a)

(i+1,j) (i,j)

 (i,j+1)

 (i,j-1)

(i-1,j)

read_array[]

write_array[]

x dimension

?

Figure 5.15: A simple 2D 5-point stencil on a scalar grid: (a) Conceptualization of the
stencil as seen in 2D space, (b) mapping of the stencil from 2D space onto linear array
space. The stencil sweeps through the arrays from left to right maintaining the spacing
between points in the stencil. Scanning along a component, it is clear there is both and
temporal and spatial locality.

operators.

5.2.4 Memory Access Pattern and Locality

A grid traversal is often either ordered by topological dimensions or by the enu-
merated index. When combined with the data storage format, the memory access pattern
of the stencil can have dramatic impacts on performance. In this section, we examine the
memory access patterns and cache locality for three generic stencil types: stencils on scalar
grids, stencils on vector grids, and stencils on lattice distributions. For simplicity, we limit
ourselves to 2D problems on rectangular Cartesian grids and allow the reader to contemplate
more complicated problems.

Figure 5.15 shows the memory access pattern for a 2D 5-point stencil on a scalar
rectangular Cartesian grid using the Jacobi method. When mapped to the linear addresses
of main memory, the points of the conceptual stencil are all within a single array. The

98

(b)(a)

(i+1,j)(i,j)

(i,j+1)

(i,j-1)

(i-1,j)

write_array[][]

read_array[][] x dimension

x
y

x
y

?

Figure 5.16: A simple 2D 5-point stencil on a 2 component vector grid: (a) Conceptual-
ization of the stencil with the vector components superimposed on it as seen in 2D space,
(b) mapping of the stencil from 2D space onto linear array space (structure-of-arrays). The
stencil sweeps through the arrays from left to right maintaining the spacing between points
in the stencil. Scanning along a component, it is clear there is both and temporal and
spatial locality.

dimensions of the grid dictate the separation of the points of the stencil in main memory.
These offsets are constant for all nodes in the grid. As the conceptual stencil sweeps through
the grid, the stencil in main memory will sweep from left to right through progressively
higher addresses. Observe that the address touched by the leading point in the stencil will
be subsequently reused by all other points in the stencil. As such, if the cache capacity is
sufficiently large (twice the x-dimension), then it will remain in the cache and no capacity
misses will occur. In three dimensions, the distance between the leading and trailing points
in the stencil may be twice the plane size. Such sizes may present challenges to cache
capacities.

Figure 5.16 extends Figure 5.15 to a vector grid. The data is stored in a structure-
of-arrays format. That is, the x and y components are stored in disjoint arrays. Those
arrays, although separate in memory, have had the addresses of their first elements aligned to
each other in the figure. Once again, in the linear address space, the stencil will sweep from
left to right. Observe that little cache capacity is required to capture the temporal locality
associated with the x component. However, substantial cache capacity is still required to
capture locality of the y component.

Figures like Figure 5.16 motivate exploration of different storage formats. Fig-
ure 5.17 on the following page shows the same stencil if the data were stored in an array-
of-structures, as one would expect if the data were RGB pixels. Clearly, there is a lack of
spatial locality. The leading element of the stencil would only touch the y component. The
cache hierarchy will load the corresponding x, but it will not be used immediately. Sufficient
cache capacity must be present to keep it in the cache until needed; that is, sufficient cache
capacity to avoid capacity misses.

Alternately, one might consider storing the data by diagonals rather than by rows
(diagonal-major rather than row-major). It could remain a RGB-friendly array-of-structures

99

(b)(a)

(i+1,j)(i,j)

(i,j+1)

(i,j-1)

(i-1,j)

write_array[][]

read_array[][] x dimension

x
y

x
y

?

Figure 5.17: A simple 2D 5-point stencil on a 2 component vector grid: (a) Conceptual-
ization of the stencil with the vector components superimposed on it as seen in 2D space,
(b) mapping of the stencil from 2D space onto linear array space (array-of-structures). The
stencil sweeps through the arrays from left to right maintaining the spacing between points
in the stencil. Scanning along a component, it is clear there is temporal, but poor spatial
locality.

format, but the ordering of pixels must change. One would then traverse the grid by
diagonals. Observe two diagonally adjacent stencils exhibit good spatial locality. Such an
approach would likely result in significantly lower cache requirements.

Figure 5.18 on the next page shows the memory access pattern for a lattice
method’s collision() function’s 2D 9-point stencil on a lattice distribution. Observe
not only are significantly more arrays accessed, but within each array there is no temporal
locality. Once an element is accessed, it is never used again. As the arrays are disjoint in
memory, it is likely that a different TLB entry must be allocated for each array. Although
many architectures have sufficiently large TLBs for 2D lattice methods, as dimensionality
increases, the requisite number of entries grows rapidly.

When comparing Figures 5.15 through 5.18, one should observe there is less and
less potential reuse of data. In Figure 5.15 the data used by the leading point in one stencil
will eventually be reused by four other stencils. In Figure 5.18 it is clear that there is
no reuse of data between stencils. As such, one should be extremely concerned about the
appropriate cache blocking on scalar grids and virtually oblivious of it on lattice methods.

5.3 Methods to Accelerate Structured Grid Codes

A number of techniques have been developed to accelerate the time to solution
on structured grid codes. These can be divided into implementation changes and algorith-
mic changes. An implementation change simply changes the loop structure, but overall,
performs exactly the same operations. Algorithmic changes will dramatically change the
number of operations required.

In this section, we discuss four different strategies. The first two, cache blocking
and time skewing, are implementation-only optimizations in which the loops are restruc-

100

x dimension

(b)(a)

write_array[][]

(+1,0)

(0,+1)

(0,-1)

(-1,0) (0,0)

(+1,+1)

(+1,-1)(-1,-1)

(-1,+1)

read_array[][]

?

Figure 5.18: A simple D2Q9 lattice: (a) Conceptualization of a grid with the lattice dis-
tribution superimposed on it as seen in 2D space, (b) mapping of the lattice-stencil from
2D space onto linear array space. The stencil sweeps through the arrays from left to right
maintaining the spacing between points in the stencil. Scanning along a component, it is
clear there is good spatial locality, but no temporal locality.

tured to improve performance. The last two we discuss all make algorithmic changes:
multigrid and adaptive mesh refinement.

5.3.1 Cache Blocking

Consider a stencil sweep. As discussed in Section 5.2.4, a minimum cache capacity
is required to avoid capacity misses. If we consider the example of stencil sweeps in Sec-
tion 5.2.3, it is possible for the codes in which the loop nests can be parallelized to block
the loops in a manner that maintains a useful working set in the cache. This is analogous
to the well known cache blocking techniques applied to dense matrix-matrix multiplication.
In two dimensions, only the unit-stride loop needs to be blocked. However, in 3D either the
unit-stride, the middle dimension, or both are blocked to maintain a cache-friendly working
set. Although individual stencils may be executed in a different order, neither the total
number of such stencils nor the resultant values are different. Ultimately, one might choose
to enumerate the data differently so that for a natural traversal, good cache behavior is
guaranteed.

5.3.2 Time Skewing

Cache blocking only blocks the spatial loops within a single sweep. However, if
we take a step back, and incorporate the time or iteration loop in the stencil kernel, then
we may choose to block this loop as well. In essence, this is blocking in space-time. Thus,
once the nodes of a subgrid are in the cache, they are advanced several time steps. This
can dramatically increase the arithmetic intensity. However, this technique is ultimately

101

(a) (b)

grid at t=3

grid at t=0

1

3
2

grid at t=3

grid at t=0

1

(c) (d)

grid at t=3

grid at t=0

1 2 3

2 1

grid at t=3

grid at t=0

Figure 5.19: Visualization of time skewing applied to a 1D stencil: (a) Reference imple-
mentation where an entire sweep is completed before the next it started, (b) one style of
time skewing tessellates space-time into non-overlapping trapezoids. Clearly, some can be
executed in parallel. (c) Other time skewing approaches tessellate space-time into both
trapezoids and parallelpipeds. Clearly, there is a dependency that prevents parallelization.
(d) The circular queue approach creates small auxiliary structures and tessellates space
time into overlapping trapezoids. Although easily parallelized, some work is duplicated.

limited by the bandwidth to the cache and the in-core performance. We use time skewing as
a blanket term that covers a number of such implementation techniques. Figure 5.19 shows
the most common approaches to time-skewing. Figure 5.19(a) shows näıve grid traversals.
If the cache is smaller than the grid, then the first points updated by sweep “1” will have
been evicted from the cache by the beginning of sweep “2.”

Cache oblivious codes have been made famous with FFTW [52]. They tessellate the
data and computation and traverse it in a recursive ordering. This ordering can be achieved
either with recursive function calls or with a code generator that unfolds the recursion into
straight-line code. The memory references in the straight-line code maintain the ordering
of a recursive traversal. Cache oblivious algorithms have been applied to structured grid
codes [50, 81]. These codes tessellate space-time into trapezoids and parallelepipeds. They
then traverse them in a recursive ordering. However, the complexity of the traversal typically
negates the reduction in cache misses. As such, they often run slower. The first level of this
recursion is shown in Figure 5.19(c).

Cache aware implementations [144, 93, 116, 81, 121] maintain the trapezoid and
parallelepiped tessellation of space-time, but abolish recursion in favor for complex loop

102

Restriction + Relaxation
Prolongation + Relaxation

Figure 5.20: Example of the multigrid V-cycle.

nests. In the simplest case [35], only non-overlapping trapezoids are employed — Fig-
ure 5.19(b). Although the code is very simple and easily parallelized, its complexity dra-
matically increases as the number of dimensions that are blocked increases. The more
complex code shown in Figure 5.19(c) uses parallelepipeds but is not easily parallelized.
Figure 5.19(d) tessellates space-time into overlapping trapezoids that will be executed in
parallel through the use of temporary arrays. Clearly, redundant work will be performed. In
the sparse and unstructured grid world, these methods are generalized as Ak methods [40].

5.3.3 Multigrid

Multigrid [22, 24] has become a popular solution for accelerating structured grid
problems. Like time skewing, it takes a holistic view of the structured grid code rather than a
narrow view of only a grid sweep. In essence, one could solve a coarser grid and use that as a
starting point for the fine resolution grid. Multigrid applies this recursively in what is known
as a V-cycle. As one travels down the V-cycle, a series of restriction operators are applied
that progressively coarsen the grid by cutting the resolution in half. In addition, at each
level, one or more relaxation sweeps are applied to improve the solution. On the way back up
the V-cycle, a series of interpolation operators return the grid to its original fine resolution.
Let N denote the total number of points in the discretized space of D dimensions. Although
the solution at all log(N)

D stages of the V-cycle must be stored, they are geometrically smaller
at each level. As such, both the storage and computational requirements of multigrid are
linear in the number of nodes at the fine resolution. Such approaches dramatically reduce
the number of floating-point operations from being proportional to the number of nodes
squared (N2) in Red-Black Gauss-Seidel or N1.5 in successive over-relaxation (SOR) to being
proportional to the total number of nodes in the grid — O(N).

Figure 5.20 shows the multigrid V-cycle. Clearly, two new stencils must be intro-
duced. The restriction stencil takes the grid at a finer resolution and coarsens it, where
the interpolation or prolongation stencil takes a coarser grid and interpolates it onto a fine
grid. It is possible to combine the relaxation sweeps to improve cache behavior [116]. One
could extend this by combining it with the restriction or prolongation stencils.

103

Local
Refinement

Local
Refinement

Figure 5.21: Visualization of the local refinement in AMR. Only three levels of refinement
are shown.

5.3.4 Adaptive Mesh Refinement (AMR)

Consider that there are problems of such enormous scale that no machine could
ever store a uniform, fine resolution grid. Thus, despite multigrid’s algorithmic and storage
advantages over conventional approaches, it still requires the storage of a fine resolution grid.
As such, there are situations where it cannot be used. Adaptive mesh refinement (AMR) [14]
is a novel approach that locally adapts the grid resolution as needed. In doing so, it can
simulate problems for which no fine grid could ever be stored. Often, when regridding,
the resolution is increased by a factor of 32 rather than the factor of 2 associated with
multigrid. This creates tremendous storage and load balancing challenges on a distributed
memory machine. Remember, grids twice as fine must take time steps half as big [33]. Thus,
creation of a 323 subpatch on an existing 323 grid will require 32× as much computation
as the original grid. These fine grids must be dynamically and recursively created and
destroyed as needed.

Figure 5.21 visualizes the local mesh refinement that is present in AMR codes.
The grid cells at the finest resolution are updated four times for every update at the middle
resolution and 16 times for every update of the coarsest resolution. In practice 10 or more
levels of refinement are often seen.

5.4 Conclusions

In this chapter we provided an overview of the breadth of the structured grid motif
by first discussing many of the common characteristics of its kernels. The most important
characteristics discussed in Section 5.1 and Section 5.2 are the uniform topology, topological
dimensionality, topological periodicity, data storage, and computation. The code structures
of the kernels within the motif are broadly similar and are characterized by grid sweeps of
a common stencil. However, the parallelism and storage requirements within such a sweep
can vary widely. We may view structured grid computations as a restricted DAG with these
particular characteristics. The edges of the DAG represent the gather operation of a stencil,
and the nodes represent both computation and the resultant storage. However, it is much
easier to construct a DAG after the fact based on these restrictions than attempt to infer
or detect them by inspecting the DAG.

104

Define the
Per Node

Computation

Define the Grid’s
Boundary
Conditions

Define the
Grid

Sweep

Define the Topological
Characteristics

Define the Per
Node Data

Define the Stencil
Structure

Integer
Double

Complex

Bit

Scal
ar

Vect
or

Matr
ix

Latt
ice

Data
 Typ

e

Structure

CylindricalPolar

Cartesian

Spherical

Tria
ng

ula
r

Rect
an

gu
lar

Hex
ag

on
al

Tetr
ah

ed
ral

Tria
ng

ula
r S

lab

Hex
ah

ed
ral

Hex
ag

on
al

Slab

Topology

Geo
metr

y

Components

extracted by the
stencil

Nod
es

tou
ch

ed
 by

the
 ste

nc
il

Fun
cti

on
al

Structural

C
 c

od
e

? ?

Figure 5.22: Principle components for a structured grid pattern language.

Figure 5.22 presents the primary components of pattern language for describing
a structured grid kernel. One may start at the high level by synthesizing together the
node valence, topological dimensionality, and periodicity to describe the grid. One then
augments this description by specifying the data stored at each node both in terms of the
data type and the data structures. Now that the grid is described, we must describe the per
node computation. First, we describe the stencil both in its structural node connectivity
and the data it must access from each of said nodes. Once this data has been gathered,
one then specifies the computation as if it were entirely local operating on a number of
input parameters. Although per node data and computation is described for the interior
of the grid, we must also describe the boundary conditions. Finally, we must describe the
collective method that sweeps stencils through the grid. This can range from the simplest
Gauss-Seidel to the most complex upwinding stencils.

Unfortunately, a detailed pattern language alone doesn’t ensure performance. As
the sizes of the grids are very large, they do not remain in cache between sweeps. More-
over, given typical cache sizes, they can be so large that any inherent reuse within one
sweep cannot be exploited using a näıve traversal. When coupled with stencil computa-
tions amounting to nothing more than simple linear combinations, grid sweeps invariably
have low arithmetic intensities. As such, they often generate many capacity misses, are
bandwidth-limited, and deliver low performance. Section 5.3 provided an overview of sev-
eral common and novel techniques that improve the time to solution for structured grid
codes, the simplest of which eliminate capacity misses. As the complexity of the per node
data structure increases, a similar technique should be applied in component or velocity
space rather than grid (physical) space. Acceleration techniques progress to the point of
taking a holistic view of structured grid methods, rather than the narrow view of sweep
optimization. In doing so, they may restructure loops to dramatically improve arithmetic
intensity. In doing so, one sacrifices the ability to inspect the grid between sweeps as these
values are now considered temporaries. Ultimately, the acceleration techniques can make
algorithmic changes that drastically reduce the total number of floating-point operations
required for the method.

In Chapter 6 we use the insights gained from this case study to successfully ap-

105

ply auto-tuning to a structured application: Lattice Boltzmann Magnetohydrodynamics
(LBMHD). Succinctly, Chapter 5 provides the fundamental knowledge required to under-
stand Chapter 6.

106

Chapter 6

Auto-tuning LBMHD

This chapter presents the results of extending auto-tuning to multicore architec-
tures and the structured grid motif. To that end, we select the Lattice Boltzmann Magne-
tohydrodynamics (LBMHD) application as it will require a super set of optimizations likely
required by smaller kernels. Although we see that auto-tuning provides a performance
portable solution across cache-based microprocessors, it is clear that compilers cannot fully
exploit the power of existing SIMD ISAs. Thus, architecture specific optimizations still
provide a further boost to performance.

Section 6.1 delves into a case study of LBMHD. Section 6.2 uses the Roofline model
introduced in Chapter 4 to estimate attainable LBMHD performance, as well as enumerate
the optimizations required to achieve it. Section 6.3 walks through each optimization as it
is added to the search space explored by the auto-tuner. At each point, performance and
efficiency are also reported and analyzed. In addition, the final fully-tuned performance
is overlaid on the Roofline model. Section 6.4 summarizes, analyzes, and compares the
performance across architectures. In addition, a brief discussion of productivity is included.
Although significant optimization effort was applied in this work, Section 6.5 discusses a
few alternate approaches that may be explored at a later date. Finally, Section 6.6 provides
a few concluding remarks.

6.1 Background and Details

In our examination of auto-tuning on structured grids presented in this chapter, we
chose to restrict ourselves to lattice methods as they will likely show a great diversity in the
optimizations required. To that end, we chose Lattice Boltzmann Magnetohydrodynamics
(LBMHD) [90] as an example lattice method and extend the work presented in [139]. This
section performs a case study LBMHD, and the rest of the chapter is dedicated to the study
of auto-tuning LBMHD on multicore architectures.

Although superficially similar to simple differential operators, Lattice Boltzmann
methods (LBM) form an important and distinct subclass of structured grid codes. They
emerged from the use of statistical mechanics to develop a simplified kinetic model designed
to maintain the core physics while reproducing the statistically averaged macroscopic quan-
tities [126]. The popularity of the application of LBM to computational fluid dynamics

107

Topological Node Boundary
Kernel Parameters Parameters Conditions Sweep

Vertex Valence: Hexahedral Data: D3Q27 Lattice (SOA)
collision() Geometry: Cartesian Stencil: 27-point

Periodic Jacobi’s

Domain: Cubical Computation: nonlinear operator
(via ghost zones) Method

Table 6.1: Structured grid taxonomy applied to LBMHD.

(CFD) has steadily grown due to their flexibility in handling irregular boundary conditions.
Recently, LBM has been extended to magnetohydrodynamics (MHD) [91, 39].

LBMHD was developed to study homogeneous isotropic turbulence in dissipative
magnetohydrodynamics (MHD) — the macroscopic interaction of electrically conducting
fluids with an induced magnetic field. MHD turbulence plays an important role in many
branches of physics [17] from astrophysical phenomena in stars, accretion discs, interstel-
lar and intergalactic media to plasma instabilities in magnetic fusion devices. There are
three principal macroscopic quantities of interest at each point in space: density (a scalar),
momentum (a Cartesian vector), and the magnetic field (also a Cartesian vector).

Table 6.1 uses the structured grid taxonomy introduced in Chapter 5 to describe
LBMHD’s collision() operator. Although the topological parameters are rather mun-
dane, the complexity of the node parameters is the source of the challenge.

As LBMHD couples computational fluid dynamics (CFD) with Maxwell’s equa-
tions, two (phase space) distribution functions are required. The first is a momentum
distribution arising from the CFD part of the physics to reconstruct density and momen-
tum. The second is a Cartesian vector distribution function included to reconstruct the
additional macroscopic quantity — the magnetic field. As the magnetic field may be re-
solved with only the first moment, only 15 (velocities 12 through 26) discrete velocities are
required. These are enumerated in Figure 6.1(c). For simplicity, a D3Q27 quantization is
used for both the momentum and magnetic distributions, although only the relevant subset
of velocities are stored and computed for the latter. LBMHD only simulates a 3D hexahe-
dral Cartesian volume with periodic boundary conditions despite the ease with which LBM
methods can be implemented with complex boundary conditions and geometries.

Figure 6.1 on the following page illustrates how LBMHD is applied to a 3D volume.
For every point in space 6.1(a), two higher dimensional lattice distribution functions are
stored: momentum 6.1(b), and magnetic 6.1(c). Thus, to reconstruct three macroscopic
quantities of interest — density, momentum, and the magnetic field — an additional 27
scalar and 15 Cartesian vector quantities must be stored and operated upon. Tallying this
up, over 1 KB of storage is required for every point in space. This means a 643 problem
requires about 330 MB, where a 1283 requires more than 2.5 GB; far more than a QS20
Cell blade can accommodate.

6.1.1 LBMHD Usage

LBMHD has been extensively used for MHD simulations. In fact, Figure 6.2
on page 109 is reproduced from one of the largest 3D LBMHD simulations conducted
to date [29]. The goal was to further understanding of the turbulent decay mechanisms

108

14
4

13

16
5

8

9
21

12

2
25

1

3
24

23

22
26

0

18
6

17

19
7

10

11
20

15
14

13

16

21

12

25

24

23

22
26

18

17

19

20

15

(b)
momentum distribution

(c)
magnetic distribution

(a)
macroscopic variables

+Y

+Z

+X

+Y

+Z

+X

+Y

+Z

+X

Figure 6.1: LBMHD simulates magnetohydrodynamics via a lattice boltzmann method
using both a momentum and magnetic distribution. Note, each velocity in the momentum
distribution is a scalar, and each velocity in the magnetic distribution is a Cartesian vector.

starting from a Taylor-Green vortex. This astrophysical simulation shows the development
of turbulent structures in the z-direction.

6.1.2 LBMHD Data Structures

LBMHD was originally written in Fortran and parallelized onto a 3D processor grid
using MPI. It used a Jacobi method structure-of-arrays approach — storing not only even
and odd time steps separately, but also each velocity of each distribution. This approach
achieved high sustained performance on the Earth Simulator, but a relatively low percentage
of peak performance on superscalar platforms [102]. For this work, the application was
rewritten in C using two different threading models to exploit our multicore architectures
of interest. It retained the Jacobi approach, ghost zones, and periodic boundary conditions
of the original.

As noted, to facilitate vectorization on the Earth Simulator, the previous LBMHD
implementation utilized a structure-of-arrays approach. As that approach delivers good
spatial locality and was easily vectorized, we extended that approach here. As seen in
Figure 6.3 on the following page, each element of the data structure points to a conceptual
3D array surrounded by a ghost zone that we may pad or align as needed. To simplify
indexing, the 36 (12 Cartesian vector pointers) unused lattice elements of the magnetic
component are simply unused NULL pointers. As ghost zones are normally required, each
N3 3D grid is allocated as a (N+2)3 3D grid.

6.1.3 LBMHD Code Structure

Modern Lattice Boltzmann implementations have been restructured to perform
gather rather than scatter operations [137]. Nevertheless, they still iterate between two
phases during each time step. The first phase, stream(), handles ghost zone exchanges via
a three phase exchange [104]. The second phase, collision(), evolves the local grid one
step in time.

109

Figure 6.2: Visualization from an astrophysical LBMHD simulation. Figure reproduced
from [29] which conducted simulations performed on the Earth Simulator.

struct{
// macroscopic quantities
double * Density;
double * Momentum[3];
double * Magnetic[3];
// distributions used to reconstruct macroscopics
double * MomentumDistribution[27];
double * MagneticDistribution[3][27];

}

Figure 6.3: LBMHD data structure for each time step, where each pointer refers to a N3

3D grid.

The stream() function simply extracts the outward directed velocities on the
surface of the lattice distributions and packs them into buffers. It then performs the typical
MPI isend() / irecv() to send this data to the conceptually neighboring processors. The
function then unpacks the buffers into the inward directed velocities on the boundaries of
the distributions. However, as this work examines only single node performance, all MPI
calls were replaced with pointer swapping. That is, we retained the surface extraction
into the MPI buffers, but rather than communicating among nodes, we implement periodic
boundary conditions on a single node using pointer swapping.

The most interesting aspects of the code are within the collision() function.
Figure 6.4 on the next page provides an overview of its structure. The code sweeps through
all points in 3-space, and updates each individually. For the momentum distribution, a
27-point stencil is used, but for the magnetic distribution, a 15-point stencil is used. The

110

collision(...){
for(all points in 3-space){

// reconstruct macroscopic quantities:
// weighted reduction over all distribution velocities
// ~73 reads from DRAM
// ~7 writes to DRAM

// update distributions:
// each is a function of the previous value and the macroscopics
// ~72 writes to DRAM

}
}

Figure 6.4: The code structure of the collision function within the LBMHD application.

first sub-phase of the update involves reconstructing the three macroscopic quantities. Un-
fortunately, this involves a high volume of read memory traffic (in the form of a gather)
for relatively few FLOPs serialized into a series of reductions. In the second phase, each
velocity of both distributions is evolved individually. Each velocity update requires the
recently reconstructed macroscopic quantities as well as the previous values of that velocity
for both distributions. In addition, a few projection constants are used. This sub-phase
performs the bulk of the nearly 1300 floating-point operations per lattice update, and writes
about 600 bytes of data — making it relatively computationally intense. However, on some
architectures, a FLOP:byte ratio of 2.25 is still memory bound. Thus, both phases might
require comparable time despite the disparity in computation.

The memory access pattern is well visualized with the lattice example in Fig-
ure 5.18 on page 100. However, the number of arrays for LBMHD is far larger. Essentially,
there are 73 read and 79 write arrays. As with most lattice methods, there is no reuse of
the data from one stencil by any other stencil.

6.1.4 Local Store-Based Implementation

As code written for a conventional cache-based memory hierarchy cannot be run
on Cell’s SPEs, we wrote a local store-based implementation. As with the cache-based
implementation, at the beginning of a time step, both the macroscopic quantities as well
as the distributions are in the main memory. At the end of a time-step, the updates must
be committed back to main memory. The difference is that processing within a time step
is processed in three phases. First, the read data required for a lattice update is copied
into the local store via DMA. Second, the lattice update is performed within the local
store: reading from an input buffer and writing to an output buffer. Finally, the output
buffer is copied back to DRAM via a DMA. As this Jacobi implementation can be readily
parallelized within a time step, it is possible to overlap three phases associated with three
different lattice updates. Thus, an SPE may load via DMA the data associated with the

111

next (in space) lattice update, compute within the local store the current update, and
store via DMA the data for the previous lattice update. The downside to this DMA /
computation pipeline is that the pressure on the local store is doubled.

6.2 Multicore Performance Modeling

Before attempting to run the LBMHD application, we chose to perform some
rudimentary performance analysis based on the application and architectural characteristics.
This analysis will not only provide performance expectations for each architecture, but will
also offer insight into the capabilities and productivity challenges associated with each
architecture. We choose only to model collision(). We believe that for sufficiently large
problems, the stream() operator will constitute a small and manageable fraction of the
execution time.

6.2.1 Degree of Parallelism within collision()

A lattice update is one iteration of the innermost spatial loop of the collision()
function. It is divided into two phases: reconstructing the macroscopic quantities and
advancing the velocities. There is very limited instruction-level parallelism (ILP) when
reconstructing the macroscopic quantities as they take the form of scalar reductions. For
any reasonably sized instruction window, the same is true when advancing the velocities in
the second phase. We also observe that there is a significant imbalance between multiplies
and adds, and fused multiply-add (FMA) cannot always be used. This imbalance may halve
attainable performance on the x86, PowerPC, and Cell architectures.

For the baseline implementation, within a single lattice update, there is no data-
level parallelism (DLP). DLP only arises from inter-lattice updates; that is, between points
in space. As problems are composed of millions of points, there is multi-million-way DLP in
the outer loop. This parallelism cannot be readily exploited in the original implementation
without the compiler or programmer restructuring the loops. Loops must also be restruc-
tured to effectively exploit the rigid SIMD capabilities on the x86 and Cell architectures.

Although there is no explicit thread-level parallelism (TLP) in the original im-
plementation, we may recast ILP — or more typically DLP — as TLP; essentially an
OpenMP [103] inspired approach to loop parallelization implemented with pthreads.

Memory-level parallelism (MLP) is a more nebulous concept. As a structure of
arrays implementation sweeps through each array in a unit stride fashion, we are only limited
by the expressibility of the architecture in finding MLP. For cache-based architectures, we
are limited by the load store queue to at most a few kilobytes of data. Hardware prefetching
will likely not work as the number of load streams in the structure of arrays implementation
is far too great. Restructuring the code should allow several TLB pages of data in flight,
perhaps as many as eight. This limit arises from the fact that hardware prefetchers do
not prefetch beyond page boundaries. Double buffered implementations on DMA-based
architectures are limited by the size of the buffer. Thus, it should be possible to express
over 100 KB of MLP per SPE on Cell.

112

collision() Instruction-level Data-level Thread-level Memory-level Memory streams
Implementation Parallelism Parallelism Parallelism Parallelism per thread

standard ≤7 ≈1 ≈N O(N3) ≈150

vectorized ≤7 ≈VL ≈N2 O(N3) ≈7

Table 6.2: Degree of parallelism for a N3 grid for both the näıve and vectorized collision()
function.

Table 6.2 shows the degree of parallelism within the original and vectorized (Sec-
tion 6.3.4) versions of the collision() function.

6.2.2 collision() Arithmetic Intensity

Chapter 4 introduced the Roofline performance model. As the Roofline model
suggests, the performance of many kernels is a function of in-core performance, memory
bandwidth, and arithmetic intensity. To perform one lattice update, collision() must
read the neighboring 27 momentum scalars and 15 magnetic Cartesian vectors from main
memory. In addition, it must read the macroscopic density. After performing about 1,300
floating-point operations, it must write the local 27 momentum scalars, 15 magnetic Carte-
sian vectors, and 7 macroscopic quantities back to main memory. Note that most caches
are write-allocate. As a result, whenever a write miss occurs, the cache must first fill the
cache line in question — that is, read the cache line from main memory. As a result, we
expect collision() will generate at least 1,848 bytes of main memory traffic for every
1,300 floating-point operations — a FLOP:compulsory byte arithmetic intensity of about
0.70.

Note that the line fill on a write miss is superfluous in LBMHD where every byte
in the cache line will be overwritten. For architectures that allow cache bypass or are not
write allocate, we expect a FLOP:compulsory byte ratio of 1.07, or about 50% better. This
optimization may be directly implemented on Cell via DMA, but requires a special cache
bypass store instruction on the x86 architectures.

6.2.3 Mapping of LBMHD onto the Roofline model

Figure 6.5 on page 114 maps LBMHD’s FLOP:compulsory byte ratio onto the
Roofline performance model discussed in Chapter 4. From this figure, we should be able to
predict performance and which optimizations should be important across architectures.

113

As a reminder, for each architecture there are three types of lines in the Roofline
model:

• In-core Ceilings denote in-core FLOP rates with progressively higher levels of opti-
mization.

• Bandwidth Ceilings denote memory bandwidths with progressively higher levels of
optimization.

• Arithmetic Intensity Walls denote actual FLOP:byte ratios with progressively
higher levels of optimization.

Combined, the ceilings place bounds on performance and constrain it to a region on a
Roofline figure.

The red dashed lines in Figure 6.5 denote LBMHD’s FLOP:compulsory byte ratio
for write allocate architectures, while the green dashed lines mark the ideal (higher) LBMHD
FLOP:compulsory byte ratio. The lowest bandwidth ceiling denotes unit-stride performance
without any optimization. Out-of-the box LBMHD performance is expected to fall on or
to the left of the red dashed vertical lines due to the potential for significant numbers of
conflict or capacity misses reducing the arithmetic intensity. Performance should fall below
the lowest diagonal, as the original memory access pattern is not unit stride.

6.2.4 Performance Expectations

Inspection of Figure 6.5 on the next page suggests the Clovertown will be heavily
memory bound. The inherent ILP in LBMHD will likely be sufficient to ensure Clover-
town remains memory bound. Although explicit SIMDization for computation will be
unnecessary, SIMDization to facilitate the use of cache bypass intrinsics will likely improve
performance. Depending on the sustained bandwidth, we expect to attain between 6 and
12 GFLOP/s with full optimization. This suggests we may trade concurrency for auto-tuned
performance.

We see two very different cases between the two Opteron machines. The Santa
Rosa Opteron will likely be heavily processor bound. This implies that optimal code gen-
eration is essential, but memory optimization is of lesser importance. Recall that there is
an inherent imbalance between adds and multiplies in LBMHD. Thus, architectures relying
on an even number of adds and multiplies to achieve peak performance will be at a disad-
vantage. As such, the Santa Rosa Opteron will be ultimately limited by the floating-point
adder performance.

Figure 6.5 on the following page suggests Barcelona will likely require significant
memory-level optimizations, especially NUMA, to achieve peak performance. Unlike the
Clovertown, Barcelona requires either full ILP or full SIMDization with some ILP to at-
tain peak performance. As with all x86 machines, it is possible to increase LBMHD’s
FLOP:byte ratio to deliver better performance — up to 8 GFLOP/s on Santa Rosa and up
to 16 GFLOP/s on Barcelona — through the use of the cache bypass instruction.

On Victoria Falls, LBMHD maps to the region where both instruction and memory-
level optimizations will be necessary. As 8-way multithreading is sufficient to hide the

114

0.5
1.0

1/8
actual flop:byte ratio

at
ta

in
ab

le
 G

FL
O

P/
s

2.0
4.0
8.0

16.0
32.0
64.0

128.0
256.0

1/4
1/2 1 2 4 8 16

0.5
1.0

1/8
actual flop:byte ratio

at
ta

in
ab

le
 G

FL
O

P/
s

2.0
4.0
8.0

16.0
32.0
64.0

128.0
256.0

1/4
1/2 1 2 4 8 16

Xeon E5345
(Clovertown)

Opteron 2214
(Santa Rosa)

0.5
1.0

1/8
actual flop:byte ratio

at
ta

in
ab

le
 G

FL
O

P/
s

2.0
4.0
8.0

16.0
32.0
64.0

128.0
256.0

1/4
1/2 1 2 4 8 16

QS20 Cell Blade
(PPEs)

0.5
1.0

1/8
actual flop:byte ratio

at
ta

in
ab

le
 G

FL
O

P/
s

2.0
4.0
8.0

16.0
32.0
64.0

128.0
256.0

1/4
1/2 1 2 4 8 16

QS20 Cell Blade
(SPEs)

0.5
1.0

1/8
actual flop:byte ratio

at
ta

in
ab

le
 G

FL
O

P/
s

2.0
4.0
8.0

16.0
32.0
64.0

128.0
256.0

1/4
1/2 1 2 4 8 16

Opteron 2356
(Barcelona)

peak DP

mul / add imbalance

w/out SIMD

w/out ILP

peak DP

mul / add imbalance

w/out
ILP or SIMD

peak DP

mul / add imbalance

w/out SIMD

w/out ILP

peak DP

w/out FMA

w/out ILP

peak DP

w/out FMA

w/out SIMD

w/out ILP

lar
ge

 da
tas

ets

0.5
1.0

1/8
actual flop:byte ratio

at
ta

in
ab

le
 G

FL
O

P/
s

2.0
4.0
8.0

16.0
32.0
64.0

128.0
256.0

1/4
1/2 1 2 4 8 16

UltraSparc T2+ T5140
(Victoria Falls)

peak DP

FP = 25%

FP = 12%

Figure 6.5: Expected range of LBMHD performance across architectures independent of
problem size. Red dashed lines denote the realistic FLOP:compulsory byte ratios on write
allocate architectures. Green dashed lines denote the ideal FLOP:compulsory byte ratios.
The inherent lack of multiplies in the algorithm is noted as multiply/add imbalance is the
effective roofline. Note the log-log scale.

latency of a 6 cycle FPU, we expect the challenge to be maximizing the fraction of floating-
point instructions issued on this dual-issue architecture. The C compiler will do a reasonable
job of ensuring non-floating-point instructions are used sparingly.

When using the PPEs on the Cell Blade, it is clear that both significant memory-
level and instruction-level optimizations will be required. We expect the IBM XL/C com-
piler to efficiently unroll the loops, but experience suggests that without any hardware
support for latency hiding, sustained PPE memory bandwidth will be near the lower diag-
onal. The optimized SPE version will clearly be different than any other architecture, as
it lies completely outside the memory-level optimization region. Thus, we must discover
sufficient ILP and fully SIMDize the code to achieve peak performance. As FMAs cannot
be readily exploited in LBMHD, we expect peak performance to be near 16 GFLOP/s.

115

6.3 Auto-tuning LBMHD

There are a large number of optimizations to maximize LBMHD performance.
Within each of these optimizations is a large parameter space. To efficiently explore this
optimization space, we employed an auto-tuning methodology similar to that seen in li-
braries such as ATLAS [138], OSKI [135], and SPIRAL [97]. A large number of kernel
“variations”are produced and individually timed. Performance determines the winner.

The first step in auto-tuning is the creation of a code generator. For expediency,
we wrote a Perl script that generates all the variations of the collision() function. We
also wrote additional architecture specific modules to generate SSE intrinsic laden C code
variants. Note that the code generation and auto-tuning process has to date only been
implemented for cache-based machines. The Cell implementation is a reasonably well op-
timized first attempt designed more for correctness rather than performance. Future work
will extend this auto-tuning approach to Cell.

The Perl script used in the code generation process can generate hundreds of
variations for the collision() operator. They are all placed into a pointer to function
table indexed by the optimizations. To determine the best configuration for a given problem
size and thread concurrency, we run a 20 minute tuning benchmark to exhaustively search
the space of possible code optimizations. In some cases, the search space may be pruned of
optimizations unlikely to improve performance. In a production environment, the optimal
configuration found on one processor is applicable to all identically configured processors
in the MPI SPMD version. As the auto-tuner searches through the optimization space, we
measure the per time step performance averaged over a ten time step trial and report the
best.

In the following sections, we add optimizations to our code generation and auto-
tuning framework. At each step we benchmark the performance of all architectures exploit-
ing the full capability of the auto-tuner implemented to that point. Thus, at each stage we
can make an inter-architecture performance comparison at equivalent productivity, allowing
for commentary on the relative performance of each architecture with a productive subset
of the optimizations implemented.

6.3.1 stream() Parallelization

In the original MPI version of the LBMHD code, the stream() function updates
the ghost-zones surrounding the subdomain held by each task with the surfaces of the
neighboring tasks. Rather than explicitly exchanging ghost-zone data with the 26 nearest
neighboring subdomains, we use the shift algorithm [104]. It performs a three phase ex-
change where faces are transfered after the first phase, edges after the second phase, and
vertices after the third phase. Within each phase, each MPI task only communicates with
two neighbors.

Communication with each neighbor requires transferring different subsets of the
distributions. To facilitate an MPI implementation, the disjoint distribution faces are first
copied into contiguous buffers. Then an MPI isend() and irecv() is initiated. Once the
data is received, it is unpacked, and the process repeats for each additional phase. When
auto-tuning, we do not call the MPI routines, but rather do a pointer swap. In effect, we

116

are implementing periodic boundary conditions via explicit copies.
Each point on a face requires 192 bytes of communication — 9 particle scalars,

and 5 magnetic field vectors — from 24 different arrays. We maximize sequential and page
locality by parallelizing across the velocities followed by points within each array.

Although stream() typically contributes little to the overall execution time, non-
parallelized code fragments can become the limiting factor in Amdahl’s Law. Thus, one
would expect a serial implementation of stream() to severely impair performance on Vic-
toria Falls.

6.3.2 collision() Parallelization

Although not required, all LBMHD simulations were performed on a cubical vol-
ume. Figure 6.6(a) on page 117 shows that collision() parallelization uses a 2D decom-
position in the Y and Z dimensions. Although parallelization in the unit stride dimension
is possible, it is often avoided as this can result in poor prefetch behavior [81]. Load bal-
ancing is guaranteed by specifying the per-thread problem dimensions and the number of
threads in each dimension. Thus, the full problem size is the element by element product
of thread size and the number of threads in each dimension. All benchmarks in this work
use strong scaling — the full problem size remains fixed, but the number of participating
threads increases. We impose two restrictions when benchmarking: all problem dimensions
are powers of two and the number of threads in any dimension is a power of two. When
auto-tuning we explore several possible combinations of threads in the Y and Z dimensions
with the caveat that there cannot be more threads in any dimension than the problem size.
As the total number of threads (ThreadsY Z = ThreadsY × ThreadsZ) is a power of
two, we can state that at most 1 + log(ThreadsY Z) combinations exist. Thus, exhaustive
search along this axis is tractable.

As four of the machines in this work are non-uniform memory access (NUMA)
architectures, we must ensure that data allocation is closely tied to the thread tasked with
processing it. We rely on a first touch policy to ensure this affinity is guaranteed. To that
end, we malloc() the data first, then create threads, and finally each thread initializes
its piece in parallel. This approach works well when the parallelization granularity (array
size per velocity) is much larger than the TLB page size. The arrays of a 643 problem are
only 2 MB. For most architectures, 2 MB is significantly larger than the default page size.
However, Solaris’ use of 4 MB pages on the heap implies that grids may not be parallelized
across sockets but will be pinned to one or the other. We expect 643 problem scalability to
be poor beyond 64 threads on Victoria Falls.

Figure 6.7 on page 118 shows initial performance on the cache-based architectures
before tuning as a function of the number of threads. Through the use of affinity and
pinning routines, threads are ordered to exploit multithreading, then multicore, and finally
multisocket parallelism. Note that all Victoria Falls data is shown for fully threaded cores.
Note, initial performance is not näıve performance. It includes threading and NUMA opti-
mizations on top of a rich history of LBMHD optimization [102, 29, 90, 137, 101, 139]. For
most architectures, the general multicore and multisocket scaling trends are good, but we
do see substantial differences in performance as problem size increases as well as between
architectures. Table 6.3 on the following page notes the highest sustained floating-point

117

(a) (b)

+Y

+Z

+X
0

1
2

3 4
5

6
7 8

9
10

11 12
13

14
15

th
re

ad
 0

th
re

ad
 1

th
re

ad
 2

th
re

ad
 3

+X

+Y

Figure 6.6: LBMHD parallelization scheme: (a) 2D composition of subdomains into a 3D
domain, (b) skweing within a plane for alignment to cache lines and vectors.

Xeon E5345 Opteron 2214 Opteron 2356 T2+ T5140 QS20 Cell Blade
Machine

(Clovertown) (Santa Rosa) (Barcelona) (Victoria Falls) (PPE) (SPE)

GFLOP/s (% peak) 3.55 (4.8%) 2.46 (14.0%) 4.52 (6.1%) 6.65 (35.6%) 0.13 (1.0%) —
GB/s (% peak) 5.04 (15.8%) 3.49 (16.4%) 6.42 (30.1%) 9.44 (14.8%) 0.18 (0.3%) —

Table 6.3: Initial LBMHD peak floating-point and memory bandwidth performance. The
Cell SPE version cannot be run without further essential optimizations.

and bandwidth performance, as well as percentage of machine peak, for each architecture.
Note, bandwidth is calculated based on the FLOP:compulsory byte ratio. The relative per-
formance seen here is a reasonable proxy for the performance that will be seen on a variety
of applications without further optimization.

When examining Clovertown performance in Figure 6.7 on the next page, we
see multicore scaling was nearly linear, indicating we are far from saturating a socket’s
frontside bus (FSB) bandwidth. When using the second socket, we see about 70% better
performance, but clearly a drop in parallel efficiency. The dual-independent bus coherency
protocol becomes noticeable when a second socket is used as the second socket will begin
to generate snoop traffic on the first socket’s FSB, and vice versa. Although the 5 GB/s of
bandwidth is a small fraction of the raw DIMM bandwidth, it is a substantial fraction of
the machine’s effective FSB bandwidth of less than 10 GB/s.

The Santa Rosa Opteron, with only the inherent NUMA optimizations, shows very
good scaling, but does not deliver the performance of the Clovertown. Of course, this is due
primarily to the fact that the Clovertown is an eight core machine, where the Santa Rosa
Opteron has only four cores. Comparing quad-core Barcelona performance on a core by
core basis with Clovertown, we see a high correlation, until the FSB becomes Clovertown’s
bottleneck. Without SIMDization, the Opterons have a similar peak performance to that
of the Clovertown resulting in similar per core performance for processor bound kernels.
We also note that the Santa Rosa Opteron serendipitously achieves comparable utilization
of memory bandwidth to that of the Clovertown.

When examining Victoria Falls performance, we see good scaling to 64 threads

118

Xeon E5345
(Clovertown)

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

1 2 4 8 1 2 4 8

64^3 128^3

G
F
L
O

P
/

s
Opteron 2214
(Santa Rosa)

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

1 2 4 1 2 4

64^3 128^3

G
F
L
O

P
/

s

Opteron 2356
(Barcelona)

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

1 2 4 8 1 2 4 8

64^3 128^3

G
F
L
O

P
/

s

UltraSparc T2+ T5140
(Victoria Falls)

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

8

1
6

3
2

6
4

1
2
8 8

1
6

3
2

6
4

1
2
8

64^3 128^3

G
F
L
O

P
/

s

QS20 Cell Blade
(PPEs)

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

1 2 4 1 2 4

64^3 128^3

G
F
L
O

P
/

s Cell SPE version
was not auto-tuned

Figure 6.7: Initial LBMHD performance as a function of the number of threads ordered to
exploit multithreading, then multicore, and finally multisocket parallelism.

or eight cores, but see little benefit to using the second socket on a 643 problem. This
sub-linear scaling is due primarily to the interaction of the 4 MB default page size and the
desire for parallelization on sub 2 MB granularities on this machine. Although Table 6.3
shows bandwidth utilization as a fraction of total SMP bandwidth, the fact that only one
socket’s memory controllers are effectively being used implies that the true utilization of
the socket’s memory controllers is nearly 30%. Section 6.3.8 describes a solution to this
bottleneck. We also observe a substantial drop in performance on the large problem at
full concurrency. Without accurate performance counter data, we can only speculate as
to the cause. Clearly cache capacity is not the culprit as the working size is quite small,
and doubling the sockets doubles the cache capacity. It seems more than likely that either
limited cache associativity or some idiosyncratic behavior in the memory controllers is the
culprit.

As the Cell SPE version cannot be run without significant further requisite opti-
mizations, we initially only examine the Cell PPE performance. We believe examination of
the PPE performance is essential not because we believe that it will be good, but rather it
will be a limiting factor in a productivity version of Amdahl’s Law — maximum produc-
tivity is achieved by only running code on the PPE, but maximum performance should be
achieved by porting as much code as possible to the SPEs. When examining performance,
it is clear that two-way in-order multithreading is wholly insufficient in satisfying the ap-

119

proximately 5 KB of concurrency required per socket by Little’s Law (200ns × 25 GB/s).
As a result, the Cell PPE version delivers pathetic performance even when compared to
the other multi-threaded in-order architecture — Victoria Falls. It is clear that at the very
minimum collision() will need to be ported to the SPEs.

6.3.3 Lattice-Aware Padding

LBMHD tries to maintain a working set of points in the cache through the first
subphase of collision() so that during the second phase, all needed data is still present
in the cache. Two major pitfalls may arise with this approach: the possibility of capacity
misses, and the possibility of conflict misses. L1 cache working sets can be very small and
may not be able to hold a full cache line per distribution velocity. In fact, given Victoria
Falls’ L1 cache line size of 16 bytes, and the desired working set of more than 150 cache
lines, Victoria Falls’ 1 KB per thread L1 working set ensures capacity misses will occur
through the first phase. However, as the L2 caches on all machines are sufficiently large to
avoid L2 capacity misses, L1 capacity misses may not severely affect performance. Conflict
misses are a far more dangerous pitfall, as it is possible to thrash in the L1. Remember
that a structure of arrays data structure is used for LBMHD. As a result, to update one
point, 152 of these arrays must be individually and uniquely indexed. Given a lack of
correlation between array addresses, it is quite possible that a conflict miss will occur on
a low associativity L1 cache. Victoria Falls’ tiny L1 ensures that capacity misses will hide
the effects of conflict misses.

Before detailing the solution for LBMHD, let us examine the enlightening solution
for a 7-point stencil. As seen from the memory access pattern in Figure 5.15 on page 97 of
Chapter 5, there is a fixed offset between the five streams in memory — two are so widely
separated they can’t be shown on a single figure. Figure 6.8(a) on page 120 maps a cache
to polar coordinates to maintain the inherent periodicity, where the angle represents set
address, and concentric rings represent associativity. Arcs represent working sets filled by
streams of points in a stencil. For any angle, there can never be more overlapping arcs than
cache associativity — conflict misses will prevent this. The relative offsets in memory allow
us to map each point in the stencil to a different angle in the cache as seen in Figure 6.8(b).
The stanzas from streaming in memory are mapped to arcs in the cache. Ideally, we want
the arc length to be the size of a plane — the distance between the leading and trailing
point in the stencil. Failing that, we wish it to be a pencil (series of points in the unit
stride dimension) — the distance between the 2nd and 6th point in the stencil. By padding
each pencil and each plane with a few extra doubles, we change the angles corresponding
to the mapping of stencil points to the cache from a pathological but common case to an
optimal one. The padding that must be applied is a function of the array base, the relative
offset arising from the stencil, and the desired position on the cache circle. This stencil-
aware padding is a subtle but effective solution. When optimally applied, the resultant
arc lengths shown for the 2-way cache in Figure 6.8(c) are 40% of the total cache size.
Hopefully, this is sufficiently large to keep several pencils in the cache.

Padding for lattice methods can be significantly more beneficial than padding
for stencils. To that end, we want to guarantee that the points accessed by the lattice
during each phase are uniformly distributed around the cache circle. Thus, each array is

120

(b) (c)(a)

set

set address

associativity

Figure 6.8: Mapping of a stencil to a cache: (a) A 2-way cache represented in polar coordi-
nates, (b) mapping of the original stencil on a near power of two problem size results in poor
cache utilization (purple highlighted region), (c) Padding uniformly distributes the points
of the stencil in cache space results in good cache utilization (purple highlighted region).

Xeon E5345 Opteron 2214 Opteron 2356 T2+ T5140 QS20 Cell Blade
Machine

(Clovertown) (Santa Rosa) (Barcelona) (Victoria Falls) (PPE) (SPE)

GFLOP/s (% peak) 4.55 (6.1%) 3.55 (20.2%) 5.82 (7.9%) 6.65 (35.6%) 0.56 (4.4%) —
GB/s (% peak) 6.46 (20.2%) 5.04 (23.6%) 8.26 (38.7%) 9.44 (14.8%) 0.78 (1.5%) —

Speedup from
this optimization

+28% +44% +29% +0% +330% —

Table 6.4: LBMHD peak floating-point and memory bandwidth performance after array
padding. The Cell SPE version cannot be run without further essential optimizations.
Speedup from optimization is the incremental benefit from array padding.

padded such that Array Base + Relative Offset + Padding maps to the desired set on
the cache circle. The complexity of LBMHD, with its 73 read arrays, precludes any attempt
at drawing this mapping, but one can contemplate it based on the previous stencil example.

Figure 6.9 on the following page shows the performance when the lattice-aware
padding heuristic is applied to LBMHD. We see a substantial increase in performance on
all machines for which conflict misses are more likely than capacity misses; that is, all but
Victoria Falls. It should be no surprise that Clovertown, with an 8-way cache, saw less of
a benefit than the Opterons, with their 2-way L1 caches. In fact, for a 1283 problem, the
Santa Rosa Opteron performance doubles. More impressive, although difficult to see, the
Cell PPE performance quadruples.

Table 6.4 shows utilization. We see that although all architectures still achieve
both a low fraction of peak FLOPs and a low fraction of DRAM bandwidth. Although the
Clovertown achieves a tiny fraction of its DRAM bandwidth, it achieves nearly 60% of its
effective FSB bandwidth — the bottleneck in its design.

121

Xeon E5345
(Clovertown)

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

1 2 4 8 1 2 4 8

64^3 128^3

G
F
L
O

P
/

s

+Padding
original

Opteron 2214
(Santa Rosa)

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

1 2 4 1 2 4

64^3 128^3

G
F
L
O

P
/

s

Opteron 2356
(Barcelona)

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

1 2 4 8 1 2 4 8

64^3 128^3

G
F
L
O

P
/

s

UltraSparc T2+ T5140
(Victoria Falls)

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

8

1
6

3
2

6
4

1
2
8 8

1
6

3
2

6
4

1
2
8

64^3 128^3

G
F
L
O

P
/

s

QS20 Cell Blade
(PPEs)

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

1 2 4 1 2 4

64^3 128^3

G
F
L
O

P
/

s Cell SPE version
was not auto-tuned

Figure 6.9: LBMHD performance after a lattice-aware padding heuristic was applied.

6.3.4 Vectorization

Although the structure of arrays layout maximizes spatial locality and will facili-
tate SIMDization, it creates a huge number of streams to memory — 73 read and 79 write.
Table 3.4 on page 28 shows most architectures evaluated have small L1 TLBs, fewer entries
than the number of streams in LBMHD. Thus, we expect a TLB capacity miss for every
array access. These misses would severely impair performance as a table walk is required
to service each.

Let us examine Victoria Falls, where Solaris by default uses 4 MB pages for the
heap. Even though the architecture only has 128 TLB entries, it can map a 512 MB data
structure. For LBMHD this corresponds to a cubicle problem of about 753. Thus, as
we scale the problem size up, we expect a drop in performance around this size as TLB
capacity misses will become common. In fact, we see exactly that. Figure 6.9 shows the
1283 problems have substantially worse performance and scalability than the 643 problems.

Inspired by vector architectures, we can solve this problem by resorting to a loop
interchange technique used by vectorizing compilers. In this vectorization technique, we fuse
the spatial loops within a plane, and strip mine the resultant loop into vectors. We then
exchange the phase space lattice velocity loops with the vector loop. This transformation
results in about eight smaller loop nests, each of which performs several simple, but coupled,
BLAS1 like operations. This approach increases the page locality as references within a loop
nest are likely to touch fewer than 10 pages, thereby ensuring only compulsory TLB misses.

122

collision(...){
for(all planes){

for(vectors within this plane){
// 1. reconstruct macroscopic quantities for VL points
// 2. update distributions for VL points

}}
}

Figure 6.10: The code structure of the vectorized collision function within the LBMHD
application.

Figure 6.10 provides a representation of this code structure.
Conceptually, the original collision() function reconstructs the macroscopic

quantities for one point one velocity at a time, then updates the distributions for that
one point — see Figure 6.11(a) and (b) on page 123. The vectorized collision() function
reconstructs the macroscopic quantities for VL points one velocity for each at a time, then
updates the distributions for those VL points — see Figure 6.11(c) and (d).

There is not a universally optimal vector length. Figure 6.12 on page 124 shows the
cache working set footprint is linearly related to vector length. As vector length increases
we improve page locality (multiple TLB hits per TLB capacity miss), but we may increase
vector length to the point where a vector of points no longer fits in the L1 (or L2). One
might believe that keeping data in the L1 is ideal, but the number of TLB misses can be
quite large. Trading L1 capacity misses in favor of reducing TLB misses may be acceptable
if the relative costs balance. As each architecture has a different relationship between the L1
miss penalty and the TLB miss penalty, we auto-tune by sweeping through vector lengths
from one cache line to the maximum number of points that can fit in the cache for the
specified concurrency. This exhausitve approach can often find very good performance for
non-intuitive vector lengths. For example, Victoria Falls reaches peak performance with a
vector length of 24 — clearly much larger than the L1 capacity per thread. To facilitate a
future fully auto-tuned vectorization on Cell, we align all vectors to cache line boundaries.
That is, we interpret the specified parallelization within a plane as a suggestion rather
than a mandate. These jogs in the normally regular parallelization schemes can be seen in
Figure 6.6(b) on page 117.

Figure 6.13 on page 125 shows LBMHD performance after the auto-tuned vec-
torization technique is applied. Clearly the benefit varries greatly among architectures,
concurrency, and problem size. Nevertheless, the benefit is substantial.

Interestingly, the Clovertown shows progressively less benefit as the concurrency
increases — to the point where all cores of a socket are fully utilized. This is indicative that
at full socket concurrency, we’re heavily limited by the memory subsystem performance.
Conversely, at the single thread concurrency, memory subsystem performance plays a small
role, but core performance is the key. Thus, Clovertown performance only increased slightly.

Vectorization had a substantial benefit on both the Santa Rosa and Barcelona
Opterons. In fact, they delivered far better performance than the Clovertown despite having

123

(b)

(a)

(d)

(c)

Figure 6.11: Comparison of traditional(a and b) LBMHD implementation with a vectorized
version(c and d). In the first phase of collision()(a and c) data is gathered, and the
macroscopics are reconstructed. In the second phase (b and d), the local velocity distri-
butions are updated. The difference is that the vectorized version updates VL points at a
time.

less raw DRAM bandwidth. At this point it is clear that neither Opteron has fully utilized
either its raw peak bandwidth, as seen in Table 6.5, or even its nebulous effective peak
bandwidth found in the Roofline model. We see that Barcelona uses more that 50% of its
peak DRAM bandwidth.

Vectorization was also a major success story on Victoria Falls, improving perfor-
mance on the largest problems by more than a factor of 15. Vectorization solved both the
TLB capacity miss problem as well as a L2 conflict miss problem. We also see that the 1283

problem no longer suffers from the NUMA effects of the 643 problem. As a result, we see
near linear scaling from 64 to 128 threads. Remember, vectorization virtualizes the cache hi-
erarchy into a vector register file. As such, far more load and store instructions are required.
This tends to depress the floating-point fraction of the dynamic instruction mix. Given that
Victoria Falls’ performance at this arithmetic intensity is tied to the floating-point fraction
and it achieves more than half of its peak FLOPs, it is unlikely further optimization will
yield substantially better performance.

The Cell PPE also benefited substantially from vectorization, nearly doubling
performance. Nevertheless, the combination of productivity lost via vectorization, and the
still dismal performance of the PPE further motivates us to implement a local-store based
implementation of collision().

124

8

16

8
Vector Length (doubles)

w
or

ki
ng

 se
t s

iz
e,

 c
ac

he
 si

ze
 (K

B
)

32

64

128

256

512

1024

2048

 16 32 64 128 256 512 1K

(a)

L1 size

L2 size

foo
tpr

int

C
om

pu
ls

ar
y

TL
B

 m
is

se
s

foo
tpr

int
 (w

/m
ov

nt)

L1 size

L2 size

foo
tpr

int

C
om

pu
ls

ar
y

TL
B

 m
is

se
s

foo
tpr

int
 (w

/m
ov

nt)

C
om

pu
ls

or
y

L1
 m

is
se

s
C

om
pu

ls
or

y
L2

 m
is

se
s

C
ap

ac
ity

 T
LB

 m
is

se
s

C
ap

ac
ity

 L
1

m
is

se
s

C
om

pu
ls

or
y

L2
 m

is
se

s
C

ap
ac

ity
 T

LB
 m

is
se

s

C
om

pu
ls

or
y

TL
B

 m
is

se
s

16w
or

ki
ng

 se
t s

iz
e,

 c
ac

he
 si

ze
 (K

B
)

32

64

128

256

512

1024

2048

Vector Length (doubles)

 16 32 64 128 256 512 1K

(b)

8
8

Figure 6.12: Impact of increasing vector length on cache and TLB misses for the Santa Rosa
Opteron. (a) Working set footprint as a function of vector length. L1/L2 cache and full
page locality limits are shown, (b) Overlay showing regions where different types of cache
and TLB misses will occur.

6.3.5 Unrolling/Reordering

Given the vector-style loops produced by vectorization, we modify the code gen-
erator to explicitly unroll each loop nest by a specified power of two between one and the
cache line size. Although manual unrolling is unlikely to show any benefit for compilers that
are already capable of this optimization, we have observed a broad variation in the quality
of compiled code on the evaluated systems. As subsequent optimizations will add explicit
SIMDization, we expect this unrolling and reordering optimization to become valuable as
many compilers cannot effectively optimize intrinsic-laden loops. The most näıve approach
to unrolling simply replicates the body of an inner loop to amortize loop overhead. To get
the maximum benefit, the statements within the loops must be reordered to group state-
ments with similar addresses, or variables, together to compensate for limited architectural
resources and compiler schedulers. These statements are grouped in increasing powers of
two, but not more than the unrolling amount. Figure 6.14 on page 126 provides an ex-
ample. There are (2 + log(CacheLineSize)) × (1 + log(CacheLineSize))/2 combinations
of unrolling and reordering. For the architectures in this work, there are only 10 or 15
combinations. As such, an exhaustive search based auto-tuning environment is well-suited
at discovering the best combination of unrolling and reordering. The optimal reorderings
are not unique to each ISA, but rather to a given microarchitecture, as they depend on
the number of rename registers, memory queue sizes, the functional unit latencies, and a
myriad of other parameters.

Explicit unrolling and reordering rarely shows any benefit on any architecture with

125

Xeon E5345
(Clovertown)

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

1 2 4 8 1 2 4 8

64^3 128^3

G
F
L
O

P
/

s

+Vectorization
+Padding
original

Opteron 2214
(Santa Rosa)

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

1 2 4 1 2 4

64^3 128^3

G
F
L
O

P
/

s

Opteron 2356
(Barcelona)

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

1 2 4 8 1 2 4 8

64^3 128^3

G
F
L
O

P
/

s

UltraSparc T2+ T5140
(Victoria Falls)

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

8

1
6

3
2

6
4

1
2
8 8

1
6

3
2

6
4

1
2
8

64^3 128^3

G
F
L
O

P
/

s

QS20 Cell Blade
(PPEs)

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

1 2 4 1 2 4

64^3 128^3

G
F
L
O

P
/

s Cell SPE version
was not auto-tuned

Figure 6.13: LBMHD performance after loop restructuring for vectorizations was added to
the code generation and auto-tuning framework.

C code — most compilers can handle these optimizations. They do become somewhat more
important after explicit SIMD intrinsics are employed, and are discussed in that section.

6.3.6 Software Prefetching and DMA

Previous work [81, 140] has shown that software prefetching can significantly im-
prove performance on certain superscalar platforms. Although LBMHD is considered mem-
ory intensive, it is far less so than many other kernels. As such, we believe that exhaustive
search for the optimal prefetch distance will require a significant amount of time but show
relatively little benefit. To that end, we modified the code generator to implement three
prefetching strategies:

• no prefetching.

• prefetch ahead of each read array by one cache line.

• prefetch ahead of each read array by one one vector length.

Prefetching by one cache line is designed to address L1 latency, while prefetching
by a vector is designed to address memory subsystem performance. Thus, in one case, the
machine is essentially double buffering in the L1, where the other is double buffering in the

126

Xeon E5345 Opteron 2214 Opteron 2356 T2+ T5140 QS20 Cell Blade
Machine

(Clovertown) (Santa Rosa) (Barcelona) (Victoria Falls) (PPE) (SPE)

GFLOP/s (% peak) 4.60 (6.2%) 5.31 (30.2%) 7.67 (10.4%) 9.69 (51.9%) 1.11 (8.7%) —
GB/s (% peak) 6.53 (20.4%) 7.54 (35.3%) 10.89 (51.0%) 13.76 (21.5%) 1.54 (3.0%) —

Speedup from
this optimization

+1% +50% +32% +46% +98% —

Table 6.5: LBMHD peak floating-point and memory bandwidth performance after vec-
torization. The Cell SPE version cannot be run without further essential optimizations.
Speedup from optimization is the incremental benefit from vectorization.

for(i=…; i<VL; i+=1){

statementA(i+0)

}

statementB(i+0)

for(i=…; i<VL; i+=2){

statementA(i+0)

}

statementB(i+0)
statementA(i+1)
statementB(i+1)

for(i=…; i<VL; i+=2){

statementA(i+0)

}

statementA(i+1)
statementB(i+0)
statementB(i+1)

(unroll=1, DLP=1) (unroll=2, DLP=1) (unroll=2, DLP=2)

Figure 6.14: Three examples of unrolling and reordering for DLP. Left, no unrolling and no
reordering. Middle: unroll by 2, but no reordering. Right: unroll by 2, reorder for DLP by
pairs

L2. When double buffering, the current vector is being processed by the execution units,
while the next vector is being prefetched into the memory subsystem.

The Cell SPE LBMHD implementation utilizes a similar double buffering ap-
proach, but to fill the local store, it uses DMAs instead of prefetching. Thus, each SPE
must keep four sets of pencils within the local store: the set of pencils for the current time,
y, and z coordinates; the set of pencils being written to for the next time step, but current
y and z coordinates; the incoming set from the current time but next y and z coordinates;
and the outgoing set for the next time step, but current y and z coordinates.

Software prefetching showed only a small benefit on these architectures, primar-
ily due to the relatively high arithmetic intensity and tuning to maximize cache locality.
Obviously, DMA is required on a Cell SPE implementation.

6.3.7 SIMDization (including streaming stores)

SIMD instructions are small data parallel operations that perform arithmetic op-
erations on multiple data values loaded from contiguous memory locations. Although they
have become an increasingly popular choice for improving peak performance, their rigid
nature makes SIMD difficult to exploit on many codes — lattice methods are no exception.
While loop unrolling and code-reordering described previously explicitly expresses data-level
parallelism, SIMD implementations typically require memory accesses be aligned to 128-bit
boundaries. Structured grids and lattice methods often must access the adjacent point in

127

the unit stride direction, resulting in an unaligned load. There are several solutions to this
problem: SSE allows for slower misaligned loads, while IBM’s implementations force the
user to load the two adjacent quadwords, and permute them to extract the desired values.

By restricting the unit stride dimension to be even — not an issue as they were
already powers of two — we can easily modify the code generators with lattice-aware knowl-
edge of which velocities will be misaligned. Thus, each loop has two variants: one when
components are aligned and one when they are not. To facilitate the process, all constants
were also expanded into two element arrays. The code generators were modified to repli-
cate all C kernels using SSE intrinsics. They exploit all the previous techniques including
prefetching, unrolling and reordering. Thus, these kernels have the advantage of not only
exploiting data-level parallelism via SIMD, but are often more cleanly implemented than
the code that would be produced by a compiler. When auto-tuning, we benchmark both
the C and SIMD kernels for architectures that support both.

SSE2 introduced a streaming store (movntpd) designed to reduce cache-pollution
from contiguous writes that fill an entire cache line. Normally, a write operation to a write-
allocate/write-back cache requires the entire cache line be read into cache then updated
and subsequently written back to memory. Therefore, a write requires twice the memory
traffic as a read, and consumes a cache line in the process. However, if the writes are
guaranteed to update the entire cache line, the streaming-store can completely bypass the
cache and output directly to the write combining buffers. This has a several advantages:
useful data is not evicted from the cache, the write miss latency does not have to be hidden,
and most importantly, the traffic associated with a cache line fill on a write-allocate is
eliminated. As LBMHD performs as many compulsory reads from main memory as writes
to main memory, the use of streaming stores has the benefit of reducing memory traffic by
33%, and potentially increasing performance by 50%. All SSE kernels use this streaming
store. We note that Cell’s DMA model was programmed to explicitly avoid the write
allocate issue and eliminate the associated memory traffic. However, Cell’s weak double-
precision performance hides this benefit. We believe it is useful now that the enhanced
double-precision implementation of Cell has been introduced.

Figure 6.15 on the next page shows the performance benefit when SIMDization is
enabled in the auto-tuning framework on the x86 machines. Clearly, we see varying degrees
of improvement. As noted in Section 6.2, we expect SIMD to be capable of not only trading
ILP for DLP, but also, through the use of a streaming store, increasing the FLOP:byte ratio.
We also cede the point that hand-coded intrinsics are likely faster than compiler generated
code.

SSE only afforded the Clovertown — which we generally expected to be memory
bound — a 20% increase in performance. If it were solely memory bandwidth bound, we
would have expected a 50% increase in performance. Thus, the upper stream limit diagonal
in Figure 6.5 on page 114 is likely a substantial overestimate of the bandwidth achievable
given the memory access pattern and data set size seen in LBMHD.

Although we see a similar effect on the Santa Rosa Opteron with a roughly 25%
increase in performance, we see nearly a 75% increase in performance on Barcelona. Based
on Figure 6.5 on page 114, it was clear that the Santa Rosa Opteron would likely not
benefit from the increased FLOP:byte ratio, but would readily be capable of exploiting the

128

Xeon E5345
(Clovertown)

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

18.0

20.0

1 2 4 8 1 2 4 8

64^3 128^3

G
F
L
O

P
/

s

+SIMD
+Prefetch
+Unrolling
+Vectorization
+Padding
original

Opteron 2214
(Santa Rosa)

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

18.0

20.0

1 2 4 1 2 4

64^3 128^3

G
F
L
O

P
/

s

Opteron 2356
(Barcelona)

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

18.0

20.0

1 2 4 8 1 2 4 8

64^3 128^3

G
F
L
O

P
/

s

UltraSparc T2+ T5140
(Victoria Falls)

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

18.0

20.0

8

1
6

3
2

6
4

1
2
8 8

1
6

3
2

6
4

1
2
8

64^3 128^3

G
F
L
O

P
/

s

QS20 Cell Blade
(PPEs)

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

18.0

20.0

1 2 4 1 2 4

64^3 128^3

G
F
L
O

P
/

s
QS20 Cell Blade (SPEs)

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

18.0

20.0

1 2 4 8 16 1 2 4 8 16

64^3 128^3

G
F
L
O

P
/

s
Figure 6.15: LBMHD performance after explicit SIMDization was added to the code gen-
eration and auto-tuning framework.

more efficient expression of parallelism in the form of DLP, rather than in ILP. Barcelona,
on the other hand, would likely be capable of exploiting both efficient DLP and a higher
FLOP:byte ratio. Note that SIMDization exploits reordering and unrolling. On the Santa
Rosa Opteron the use of reordering and unrolling yielded about 7% addition performance
over SIMDization alone. This small increase in performance came with a nearly 16× increase
in tuning time. Furthermore, as architectures become increasingly bandwidth limited (as
seen on Barcelona and Clovertown) this benefit will likely shrink.

We also implemented a fully SIMDized Cell SPE implementation. The imple-
mentation, although vectorized and SIMDized, is not auto-tuned, and it performs no loop
unrolling or reordering. Thus, the only ILP exploited is that which is inherent in a single
velocity loop iteration. We should also note that only collision() was implemented and
benchmarked. As expected, we see great scaling, and are ultimately limited, despite inher-
ent ILP and DLP exploitation, by the combination of the inherent inability to exploit FMA
in LBMHD and the stall issue cycles induced by each double-precision instruction.

Table 6.6 shows that after SIMDization, the Clovertown achieves around 25% of its
raw DRAM write bandwidth, and a similar fraction of its raw FSB bandwidth. We also see
that Barcelona, despite the challenging memory access pattern, achieved nearly 62% of its
DRAM bandwidth. As a result, AMD’s quad-core Opteron delivers 2.5× the performance
of Intel’s quad-core machine. We also see Cell, despite its handicapped double-precision,

129

Xeon E5345 Opteron 2214 Opteron 2356 T2+ T5140 QS20 Cell Blade
Machine

(Clovertown) (Santa Rosa) (Barcelona) (Victoria Falls) (PPE) (SPE)

GFLOP/s (% peak) 5.63 (7.6%) 7.37 (41.9%) 14.13 (19.2%) 10.47 (56.1%) 1.28 (10.0%) 16.72 (57.1%)
GB/s (% peak) 5.26 (25.7%∗) 6.89 (32.3%) 13.21 (61.9%) 14.87 (23.2%) 1.79 (3.5%) 15.63 (30.5%)

Speedup from
these optimizations

+22% +39% +84% +8% +15% —

Table 6.6: LBMHD peak floating-point and memory bandwidth performance after full
auto-tuning. ∗fraction of raw DRAM write bandwidth. Speedup from optimization is the
incremental benefit from unrolling, reordering, prefetching, SIMDization, cache bypass, and
TLB page size tuning.

still delivers better performance than even Barcelona. When examining Cell’s memory
bandwidth utilization (30%) we see plenty of room to improve performance with the newly
enhanced double-precision implementation.

6.3.8 Smaller Pages

As previously discussed and seen in Figure 6.15 on the preceding page, Victoria
Falls has scalability problems on the smaller problem when the second socket is used. This
sub-linear scaling is due to the interaction of a first touch policy on a velocity by velocity ba-
sis coupled with TLB pages larger than the desired parallelization on a NUMA architecture.
The result is the placement of the problem only in the DRAM attached to first socket. The
solution, accessible through compiler flags, environment variables, or a wrapper program,
is to reduce the default heap page size to 64 KB. This is a trivial solution requiring no
coding effort. Clearly 64 KB is far less than the parallelization granularity of 2 MB. Thus,
we expect a reasonably equitable distribution of pages among memory controllers. Clearly
visible is a roughly 50% increase in performance when auto-tuning is conducted with small
pages. To be clear, this performance is achieved in conjunction with vectorization, unrolling,
reordering, and prefetching. We see, despite the significantly worse surface:volume ratio,
the 643 problem achieves nearly the same performance as the 1283. This is indicative that
time within stream() has been effectively amortized via parallelization.

6.4 Summary

Table 6.7 details the optimizations and the optimal parameters used by each ar-
chitecture. Note that the Cell SPE implementation was very primitive and thus did not
include many of the optimizations seen on other machines. In addition, many of the pa-
rameters were chosen rather than tuned for. The first group of optimizations are focused
on maximizing memory bandwidth. The next group addresses attempts to minimize the
total memory traffic. Third, we examine the optimizations designed to maximize in-core
performance. Finally, we quote the time LBMHD spent in the stream() boundary ex-
change function. As this time was small, we feel confident that further optimization beyond
parallelization is currently unnecessary.

130

Bandwidth Auto-tuning Xeon E5345 Opteron 2214 Opteron 2356 T2+ T5140 Cell Blade
Optimization approach (Clovertown) (Santa Rosa) (Barcelona) (Victoria Falls) (PPE) (SPE)

NUMA
Allocation

model N/A X X X X —

Tuned VL
(in doubles)

search 128 128 120 24 80 64∗

Prefetch/DMA
distance heuristic 8 8 120 8 16 64∗

(in doubles)

Traffic Auto-tuning Xeon E5345 Opteron 2214 Opteron 2356 T2+ T5140 Cell Blade
Optimization approach (Clovertown) (Santa Rosa) (Barcelona) (Victoria Falls) (PPE) (SPE)

Lattice-aware
Padding

model X X X X X —

Cache
Bypass

search X X X N/A — X

In-core Auto-tuning Xeon E5345 Opteron 2214 Opteron 2356 T2+ T5140 Cell Blade
Optimization approach (Clovertown) (Santa Rosa) (Barcelona) (Victoria Falls) (PPE) (SPE)

SIMDized search X X X N/A N/A X

Unrolling search 8 8 8 4 2 2∗

Reordering search 8 8 4 1 2 2∗

Xeon E5345 Opteron 2214 Opteron 2356 T2+ T5140 Cell Blade
Function (Clovertown) (Santa Rosa) (Barcelona) (Victoria Falls) (PPE) (SPE)

% time in stream() 7.7% 9.0% 10.5% 4.8% 8.2% N/A

Table 6.7: Top: LBMHD optimizations employed and their optimal parameters for the 1283

problem at full concurrency (643 for Cell) and grouped by Roofline optimization category:
maximizing memory bandwidth, minimizing total memory traffic, and maximizing in-core
performance. Bottom: breakdown of application time by function after auto-tuning. ∗hand
selected.

131

0

5

10

15

20

Xeon E5345
(Clovertown)

Opteron 2214
(Santa Rosa)

Opteron 2356
(Barcelona)

T2+ T5140
(Victoria Falls)

QS20 Cell Blade

G
F
L
O
P
/
s

auto-tuned (ISA specific)
auto-tuned (portable C)
reference C code

Figure 6.16: LBMHD performance before and after tuning. Performance is taken from the
largest problem run.

6.4.1 Initial Performance

Currently, auto-tuners must be written on a per-kernel basis. As an auto-tuner
might not be available, comparing unoptimized performance provides insights into the archi-
tecture/compiler synergy and as is indicative of what we might expect for most out-of-the-
box codes. Figure 6.16 shows that for LBMHD, the Clovertown, Barcelona, and Victoria
Falls deliver comparable performance despite the vastly different peak rates. This compar-
ison is somewhat unfair to Victoria Falls, as it attains better performance on the smaller
problem with smaller pages. All three deliver nearly twice the out-of-the-box performance
of the Santa Rosa Opteron. Clearly, the PPE’s on a Cell blade are completely inadequate
for LBMHD — with Clovertown being nearly 30× faster. Figure 6.17 on the following page
shows their performances are all at the low end of the expected performance range, with the
Cell PPE number extremely low. Recall that the bandwidth ceilings all presume unit-stride
memory access patterns — something in practice the original implementation of LBMHD
does not have.

6.4.2 Speedup via Auto-Tuning

As previously discussed, auto-tuning provided substantial speedup on each archi-
tecture. Although the Clovertown attained a nearly 4.5× increase in performance using
a single thread, in Figure 6.16 we see only a 60% increase in overall performance. The
extremely weak FSB profoundly limited the effectiveness of auto-tuning as the number of
threads increased — 3.2× with two threads, 2× with four, and a mere 1.6× with all eight
threads. Thus, sheer parallelism won out over code quality. This result was somewhat
surprising given the bandwidth characteristics of Figure 6.17 on the following page. Per-
formance seemed to remain bounded by the low end of FSB performance — perhaps due

132

0.5
1.0

1/8
actual flop:byte ratio

at
ta

in
ab

le
 G

FL
O

P/
s

2.0
4.0
8.0

16.0
32.0
64.0

128.0
256.0

1/4
1/2 1 2 4 8 16

0.5
1.0

1/8
actual flop:byte ratio

at
ta

in
ab

le
 G

FL
O

P/
s

2.0
4.0
8.0

16.0
32.0
64.0

1/4
1/2 1 2 4 8 16

0.5
1.0

1/8
actual flop:byte ratio

at
ta

in
ab

le
 G

FL
O

P/
s

2.0
4.0
8.0

16.0
32.0
64.0

128.0
256.0

1/4
1/2 1 2 4 8 16

Xeon E5345
(Clovertown)

Opteron 2214
(Santa Rosa)

UltraSparc T2+ T5140
(Victoria Falls)

0.5
1.0

1/8
actual flop:byte ratio

at
ta

in
ab

le
 G

FL
O

P/
s

2.0
4.0
8.0

16.0
32.0
64.0

1/4
1/2 1 2 4 8 16

QS20 Cell Blade
(PPEs)

0.5
1.0

1/8
actual flop:byte ratio

at
ta

in
ab

le
 G

FL
O

P/
s

2.0
4.0
8.0

16.0
32.0
64.0

1/4
1/2 1 2 4 8 16

QS20 Cell Blade
(SPEs)

0.5
1.0

1/8
actual flop:byte ratio

at
ta

in
ab

le
 G

FL
O

P/
s

2.0
4.0
8.0

16.0
32.0
64.0

128.0
256.0

1/4
1/2 1 2 4 8 16

Opteron 2356
(Barcelona)

peak DP

mul / add imbalance

w/out SIMD

w/out ILP

peak DP

mul / add imbalance

w/out
ILP or SIMD

peak DP

mul / add imbalance

w/out SIMD

w/out ILP

peak DP

w/out FMA

w/out SIMD

w/out ILP

lar
ge

 da
tas

ets

peak DP

FP = 25%

FP = 12%

0.25
0.125

0.25
0.125

0.25
0.125

peak DP

w/out FMA

w/out ILP

Figure 6.17: Actual LBMHD performance imposed over a Roofline model of LBMHD. Note
the lowest bandwidth diagonal assumes a unit-stride access pattern. Red diamonds denote
untuned performance, where green circles mark fully tuned performance for the largest
problem attempted. Note the log-log scale, and the different scale for the lower three
architectures.

to an ineffective snoop filter on problems with large data sets. The primary advantage
of ISA-specific auto-tuning was the use of cache bypass instructions to eliminate write fill
traffic.

The Opterons, capable of sustaining far greater bandwidth, saw the benefits of the
auto-tuning as concurrency increased — better than 4× from one through four threads on
Santa Rosa. Despite the fact that Barcelona has no more raw DRAM bandwidth than a
Santa Rosa Opteron, and less than Clovertown, we saw that it was extremely effective in
exploiting it — also delivering a near 4× speedup via auto-tuning. Thus, in Figure 6.17,
we see the Santa Rosa started out processor bound, and ended up bound by the fact that
LBMHD is not multiply/add balanced. Conversely, we see Barcelona started out processor
bound, but quickly became memory bound with the increased FLOP:byte ratio helping
significantly. Figure 6.16 clearly shows the huge advantage of cache bypass ISA-specific
tuning on the memory-bound Barcelona, but not the processor-bound Santa Rosa.

On the smaller problem, Victoria Falls showed very good performance before auto-
tuning, but ran into limitations due to the page size. The TLB effect was far more dramatic
and persisted as concurrency increased on the larger problem. Although auto-tuning im-

133

proved performance by a respectable 50% on the smaller problem, it improved performance
by an astounding 16× on the larger problem. We believe that it remained processor bound
as experiments with higher frequency parts showed linear speedups. The SPARC VIS
instructions do not currently support double-precision floating-point SIMD. Furthermore,
the Sun compiler does not currently provide intrinsics to exploit cache bypass. Thus, the
auto-tuner didn’t explore SIMDization or the cache bypass optimizations.

Cell required two implementations. The first, an auto-tuned implementation, only
ran on the PPEs. Auto-tuning provided a 10× increase in performance, but the raw per-
formance remained very low. When the SPE implementation was included, we saw a phe-
nomenal 13× increase in performance over the auto-tuned PPE implementation. Like the
Santa Rosa Opteron, Figure 6.17 on the preceding page demonstrates that the Cell SPE
implementation was limited by the inherent inability to exploit fused multiply add (FMA)
within the LBMHD kernels.

Table 6.7 on page 130 shows the optimal unrolling was often the cache line size
because this provides the optimal number of software prefetches per cache line. The re-
ordering for DLP varied substantially between architectures, although given the range in
architected registers, it is not entirely surprising. Regardless, the value of this optimization
was small. We also see that after the cache bypass instructions are employed, the footprint
associated with the optimal vector length is very close to the L1 size, but far less than the
page size — indicative of the relative cost of L1 misses and TLB misses. Although slightly
smaller vector lengths slightly degraded performance, larger vector lengths substantially
degraded performance.

6.4.3 Performance Comparison

When comparing auto-tuned performance, we see that the Santa Rosa Opteron is
slightly faster than Intel’s Clovertown, despite the vastly lower FLOP rate. When moving
to the quad-core Barcelona, we see nearly a doubling of performance over the Santa Rosa,
achieving better than 60% of its memory bandwidth. Clearly, the combination of twice the
cores and fully pumped SSE was capable of saturating the machine’s attainable memory
bandwidth. This makes AMD’s quad-core nearly 2.5× as fast as Intel’s current quad-core
offering. LBMHD is far from Victoria Falls’ sweet spot as it is fairly FLOP intensive.
Nevertheless, we see Victoria Falls achieve better than 75% of Barcelona’s performance
despite having a quarter the peak FLOP/s. In the end, Cell’s extremely efficient DMA
ensured memory bandwidth would not be the bottleneck. Thus, despite having less than
half the FLOP rate, Cell delivered better performance than Barcelona. We believe the
enhanced double-precision implementaion (eDP Cell) will more than double the current
delivered performance. Overall, Cell, without auto-tuning, delivers 1.2× better performance
than Barcelona, 1.6× better than Victoria Falls, 2.25× the Santa Rosa Opteron, and almost
3× the performance of the Intel Clovertown. The most disturbing trend we observe on
the newer architectures is the increasing dependence on ISA-specific tuning to achieve peak
performance. This is not to say portable C tuning isn’t valuable, but rather it is insufficient.
Clearly Victoria Falls’ use of simple multithreaded RISC cores obviated ISA-specific auto-
tuning. Thus, from the productivity standpoint, Victoria Falls reaches peak performance
with much less work.

134

struct{
// macroscopic quantities
double Density;
double Momentum[3];
double Magnetic[3];
// distributions
double MomentumDistribution[27];
double MagneticDistribution[3][27];

}

Figure 6.18: Alternate array of structures LBMHD data structure for each time step. An
N3 3D array of structures should be allocated.

6.5 Future Work

Although an extensive number of optimizations have been implemented here, sig-
nificant work specific to LBMHD remains to be explored. This research is divided into four
categories: exploration of alternate data structures, exploration of alternate loop structures
for vectorization, time skewing, and tuning hybrid MPI-pthread implementations. We dis-
cuss motif-wide future work in Chapter 9.

6.5.1 Alternate Data Structures

The major omission in the optimization of collision() was the lack of exploration
of alternate data structures. The auto-tuned implementation of sparse matrix-vector mul-
tiplication (SpMV) presented in Chapter 8 shows significant benefit using alternate data
structures. We discuss several possibilities here. Ultimately, if we are at the bandwidth
Roofline, only data structures that reduce memory traffic will be valuable, something not
easily achieved within the structured grid motif.

Figure 6.18 presents the näıve array of structures format. Use of this approach
would reduce the number of memory streams from 152 to ideally 10. The disadvantage is
that when gathering data from neighboring points in space, only 8 bytes are used — the
one velocity directed at the point to be updated. One can only compensate for this total
lack of spatial locality by using a giant cache — as much as 16 MB — to encompass all the
neighbors of a point’s neighbors. The other disadvantage of this approach is that it cannot
be efficiently SIMDized.

Figure 6.19 on the next page shows a hybrid data structure. Spatial locality is
maintained without the need for a large cache, and the number of streams in memory is
reduced from over 150 to about 56. This approach may obfiscate the need for vectorization
on some architectures, but like the array of structures approach, it cannot be efficiently
SIMDized.

Rather than storing the problem as a single large N3 array, one could store the
grid hierarchically in several smaller B3 arrays. The challenge is whether the inter block
ghost zones should be explicit and thus require a more complex stream(), or implicit and
thus require complex addressing in collision().

135

struct{
double7 *Macroscopics;
// 7 doubles per point in space
// 0=Density, 1-3=Momentum[3], 4-6=Magnetic[3]

double *MomentumOnlyDistributions[27];
// 1 double-per velocity
// only velocities 0..11 are non-NULL

double4 *MomentumAndMagneticDistributions[27];
// 4 doubles per velocity
// 0=Momentum, 1-3=Magnetic[3]
// only velocities 12..26 are non-NULL

}

Figure 6.19: Hybrid LBMHD data structure for each time step. Each pointer points to an
N3 3D array of structures.

In general, the auto-tuner should consider or explore all possible data structures
and find the one that best matches the architecture being tuned for.

6.5.2 Alternate Loop Structures

Note that only a simple loop interchange was performed in the vectorization op-
timization. As a result, during the reconstruction of the macroscopic variables, only one
velocity is gathered at a time. Although this approach keeps the number of open pages low,
it can put enormous pressure on the cache bandwidth, given the very low FLOP:L1 byte
ratio. This optimization strategy can be further expaned. First, we can begin grouping sev-
eral velocities together during the reconstruction phase — gathering two, three or four at a
time. Grouping velocities will reduce the cache requirements but increase the TLB capacity
requirements. Alternately, we may calculate the momentum and three magnetic variables
separately rather than trying to recover them simultaneously. This increases the cache re-
quirements, but reduces the TLB requirements. A search over this vastly expanded space
would only be necessary on architectures not already clearly limited by memory bandwidth.

6.5.3 Time Skewing

We observe that many of the machines are memory bound. The trends in comput-
ing will only exacerbate this problem in the future. As such, one should consider applying
the time skewing techniques introduced in Section 5.3. Previous work [141, 142] has shown
that such techniques are applicable in single-precision on Cell for simple PDEs and have also
shown benefit for lower dimensional versions of LBMHD [51] on superscalar processors. In
essence, each grid sweep would advance the grid by two or more time steps. The challenge
is the on-chip memory required to implement such an approach may be far greater than the

136

cache capacities of some architectures. As such, one could tune for the optimal number of
steps to take.

6.5.4 Auto-tuning Hybrid Implementations

Although LBMHD is originally an MPI application, the auto-tuner is only designed
to run on an SMP. The auto-tuned framework, but not the exploration, should be back fitted
to the application. With this change, one would tune for the optimal single node parameters
using a single node, and then scale out to a large distributed memory super computer using
MPI. A 4× increase on a single Opteron chip may translate to a 30 TFLOP/s increase in
full system performance on a large supercomputer.

Furthermore, in this hybrid implementation, one could tune for the optimal balance
between MPI tasks and threads per MPI task. For example, given a dual-socket, quad-core
SMP, the näıve approach is to use 8 MPI tasks per SMP. However, one could alternately use
4 MPI tasks of two threads, 2 MPI tasks of four threads (i.e. one per socket), or 1 MPI task
using 16 threads (i.e. one MPI task per SMP). To be fair, the total memory requirements
per SMP should remain constant regardless of the decomposition.

6.5.5 SIMD Portability

collision() was optimized for SSE through the use of non-portable intrinsics
embedded within the C code. A similar approach can be employed on both BlueGene or
future Intel machines with the use of double hummer or AVX [74] intrinsics. Although
they are not identical to SSE, they are sufficiently similar that the work required is small.
Ideally, a common SIMD language would provide portability across SIMD ISAs.

6.6 Conclusions

In this chapter, we examined the applicability of auto-tuning to structured grid
kernels on multicore architectures. As structured grids are an extremely broad motif, we
chose lattice methods — specifically LBMHD — as an interesting subclass for which many
optimizations will need to be tuned. Despite the fact that the original LBMHD implementa-
tion is far from näıve, we see auto-tuning provided substantial speedups on all architectures
aside from the heavily frontside bus-bound Xeon. Although attempting to specify the
appropriate loop unrolling and reordering provides little benefit over current compilation
technology, it was clear that these compilers are wholly incapable of efficiently SIMDizing
even simple kernels. Some of the largest benefits came from lattice-aware padding to avoid
L1 conflict misses and the selective use of cache bypass instructions to avoid write-fill traffic.
Both of these optimizations improve the application’s actual FLOP:byte ratio.

Before auto-tuning, there is relatively little difference in the performance and effi-
ciency of the cache-based architectures. As we trade productivity to expand the capability of
the auto-tuner, Victoria Falls quickly reaches peak performance. Only when SSE intrinsics
are included, an extremely unproductive task, does Barcelona achieve peak performance.
The Cell implementation, although not auto-tuned, required the same work as the SSE
enabled auto-tuner. Thus, we conclude that although Barcelona, Victoria Falls, and Cell

137

deliver similar performance, we were most productive on Victoria Falls. Finally, we con-
clude that Cell has the most potential for future performance gains as its extremely weak
double-precision implementation is a performance bottleneck. Correcting this architectural
limitation is relatively simple compared to increasing memory bandwidth on the other ar-
chitectures.

138

Chapter 7

The Sparse Linear Algebra Motif

Sparse methods form the cores of many HPC applications. As such, their perfor-
mance is likely a key component of application performance. This chapter discusses the
fundamentals of sparse linear algebra. We do not discuss derivations or computational sta-
bility of any kernel. For additional reading, we suggest [109]. The chapter is organized
as follows. Section 7.1 discusses some of the fundamental characteristics of sparse matrices
and sparse linear algebra. Next, Section 7.2 discusses the fundamental sparse computational
kernels and as well as methods built from such kernels. In addition, it discusses several uses
for these methods. Section 7.3 then discusses several common storage formats and what
motivated their creation and use. This chapter provides the breadth and depth required
to understand our auto-tuning endeavor in Chapter 8. Finally, we provide a summary in
Section 7.4.

7.1 Sparse Matrices

Although motifs typically don’t have well defined boundaries, sparse linear algebra
is an exception. As it evolved from the well-defined dense linear algebra motif, it is also well
defined. In this section, we discuss several agreed upon characteristics of sparse matrices
and sparse kernels. We do so to provide clarity to the auto-tuning effort in Chapter 8.

An m×n matrix A has elements aij where i is the row index and j is the column
index. By convention, the first row is row 0, and the first column is column 0. Thus,
0 ≤ i ≤ m− 1 and 0 ≤ j ≤ n− 1. By definition, there are m×n matrix elements. In
many linear algebra matrix operations, the number of element-wise operations is at least
m×n and, in many cases, it can be larger than the product of the matrix dimensions.
For example, where the computational complexity of square matrix-vector multiplication is
O(n2), the computational complexity of square matrix-matrix multiplication is O(n3).

A sparse matrix has a large number of elements such that aij = 0. In sparse
linear algebra, the properties of addition and multiplication with zeros are exploited. For
many kernels, as long as one knows that aij = 0, there is no need to explicitly store or
compute on a floating-point zero. Typically, only the values and indices of the nonzeros are
stored. All other elements are zero by construction. When performing a matrix operation,
one must determine whether aij is explicitly stored and thus utilize the value or whether

139

it is implicitly zero and so no computation is required. Such checks can dramatically
reduce the floating-point computation rate of sparse matrix operations compared to their
dense cousins when implemented on a computer. However, when the number of nonzeros
is substantially less than of m×n, the inefficiency of sparse computations is offset by the
dramatic reduction in the execution time of matrix operations. As such, there will be both
a dramatic performance and storage benefit.

There are several common characteristics and terms associated with sparse matri-
ces. We define them here.

• rows and columns — All matrices, whether dense or sparse, span a number of rows
and columns irrespective of whether or not these rows or columns are empty. A square
matrix has the same number of rows as columns.

• NNZ — The number of nonzeros (NNZ) in a matrix is the total number of non-zero
aij elements.

• NNZ/row — The average number of nonzeros per row. In many kernels, a large
number of nonzeros per row amortizes accesses to dense vectors as well as amortizes
loop overheads.

• sparsity — A qualitative assessment of the pattern and locality of nonzeros. The
sparsity pattern of a matrix often provides some insight into a kernel’s performance
when operating on said matrix.

• spyplot — A 2D visual representation of the sparsity pattern of the matrix generated
by placing a black pixel at every nonzero.

• bandwidth — For any given row, one can calculate the bandwidth of the row as the
greatest difference in column indices between any two nonzeros on that row. Moreover,
the bandwidth of a matrix is commonly calculated as either the average bandwidth
across all rows, or the maximum bandwidth of any row.

• well structured — Low bandwidth matrices are often labeled well structured as
they are efficiently parallelized and have small cache working sets.

• symmetric — square matrices for which aij = aji

• hermitian — square matrices of complex floating-point values for which aij = a∗ji.
That is Re(aij) = Re(aji), but Im(aij) = − Im(aji)

Figure 7.1 on the following page presents spyplots for two different sparse matrices.
The matrix in Figure 7.1(a) is well structured, has low bandwidth, and has on average 28
nonzeros per row. Kernels operating on such matrices are often efficiently parallelized.
Observe that despite smaller dimensions, Figure 7.1(b) is poorly structured, has a higher
bandwidth, and a comparable number of nonzeros per row.

140

R
ow

s ~
 1

41
K

 Bandwidth ~ 9K

Columns ~ 141K

4M nonzeros
(28 nonzeros per row)

(a) (b)

1.6M nonzeros
(40 nonzeros per row)

R
ow

s ~
 4

0K

Columns ~ 40K

 Bandwidth ~ 35K

Figure 7.1: Two sparse matrices with the key terms annotated.

7.2 Sparse Kernels and Methods

Sparse kernels and methods are broadly categorized as any routine or set of routines
that operates on a sparse matrix or sparse vector. One could consider a sparse vector as
one row of a sparse matrix.

Generally, kernels and methods can be categorized into routines that evaluate
expressions or routines that solve for a vector or matrix. Typically, solvers are complex
routines or methods that use of several primitive kernels. Those primitive kernels can
operate on either dense or sparse data. For purposes of this work, we focus on only those
methods and kernels derived from dense linear algebra.

One can classify sparse methods into either direct or iterative described in Sec-
tions 7.2.2 and 7.2.3 respectively. In turn, these two types of methods are implemented
as a series of dense BLAS or sparse BLAS kernel calls. We assume the reader is familiar
with the most frequently used dense BLAS kernels [45, 42]. In this section, we begin with
a discussion of the sparse BLAS kernels. We follow this with a discussion many common or
direct and iterative sparse methods. Finally, we discuss a number of problems solved with
these methods.

7.2.1 BLAS counterpart kernels

The dense BLAS kernels are often categorized into level 1, 2, and 3 depending on
whether they operate on 0, 1, or 2 matrices. The sparse BLAS [110] have defined sparse
versions of many of these routines in which one vector or matrix is sparse. Some dense
BLAS routines are actually operating on sparse matrices, but of very restricted sparsity
patterns (e.g. band matrices).

141

0
0
0
0
0
0
0
0

x

yA

(a) (b)

b

x

A
÷

÷

÷

÷

÷

÷

÷

÷

Figure 7.2: Dataflow representations of (a) SpMV (y = Ax) and (b) SpTS (Ax = b). The
boxes represent multiply-add, negative multiply-add, or divide.

The most primitive sparse BLAS operations operate on vectors. The principal
operations are addition, dot products, gathers, and scatters. Addition with a dense vector
results in a dense vector, but addition of two sparse vectors results in a sparse vector with
a number of nonzeros ranging from anywhere between 0 and the sum of nonzeros in the
vectors. A dot product always results in a scalar. Gathers convert sparse vectors into dense,
and scatters convert dense vectors into sparse.

The more complex sparse BLAS operations are evaluation of sparse matrix-vector
multiplication (SpMV) and sparse triangular solve (SpTS). SpMV performs the operation
y = Ax where A is a sparse matrix, x is the dense source vector, and y is the dense
destination vector. SpTS solves for the dense vector x in the equation Tx = b where T is
either a lower or upper triangular sparse matrix, and x and b are once again dense vectors.

SpMV and SpTS are drastically different in their respective implementations and
inherent parallelism. Figure 7.2 presents a dataflow representation for the reference imple-
mentations of SpMV and SpTS. The evaluation of y = Ax is expressed as ∀ aij 6= 0, yi =
yi + aij · xj . Clearly, all yi are independent and are thus easily parallelized. This is born
out in inspection of the DAG in Figure 7.2(a). The challenge is to attain performance. In
a nightmarish pathological case, solving for xj in SpTS is completely serial. Figure 7.2(b)
shows that there is a partial ordering in which the xj must be evaluated for correctness.
Luckily, the there is some parallelism in most matrices for SpTS. Nevertheless, the paral-
lelism and optimal ordering of operations is matrix-dependent. SpTS performance is further
hampered as one floating-point divide is required per row.

Both SpMV and SpTS can be extended by operating on multiple right hand sides.
In essence, SpMV becomes SpMM (sparse matrix matrix multiplication) where the second
matrix is a tall, skinny matrix. In addition, the sparse matrices at the cores of these
operations can be transformed via a transpose or complex conjugate. As a result, one could
perform the operation AT X where A is a, say, 1M×1K sparse matrix, and X is a 1M×10
dense matrix. The result would be a 1K×10 dense matrix. Moreover, one could reverse the

142

order of operations y = Ax vs. y = xT A.

7.2.2 Direct Solvers

Sparse direct methods perform complex operations like solving Ax = b via Gaus-
sian Elimination, LU factorization, or Cholesky Factorization using a number of primitive
kernels including SpTS. The selection of the appropriate routine depends on matrix charac-
teristics. For example, Cholesky is only applicable if A is symmetric and positive definite.

Unlike their dense cousins whose requisite computation and storage requirements
are fixed and constant, the storage requirements for direct sparse methods are sparsity
dependent. To be specific, in the dense world, the storage requirements are ≈ N2. However,
in the sparse world the size of A is approximately NNZ, but the size of the factored matrices
can be much larger than NNZ. In fact, it is not uncommon for the factored sparse matrices
to be more than an order of magnitude larger than the original sparse matrix. Nevertheless,
the computational complexity of direct methods is strictly determined by NNZ in L and U ,
and the accuracy is often better than iterative methods. As a result, significant effort has
been made in implementing and optimizing sparse direct methods. Although LU results
in two sparse matrices that must be stored, Cholesky factorization (A = LLT = UT U)
requires only storage of one matrix. However, SpTS must also be implemented to solve
using a transposed matrix: LT x = b or UT x = b.

7.2.3 Iterative Solvers

Iterative methods take a radically different approach. Rather than directly solv-
ing the problem, for which there may be no method, they make an initial estimate of the
solution, and then through an iterative process, refine that initial guess. Although the
computational requirements per iteration are moderate and easily calculated, the net com-
putational requirements of this method depend on the rate of convergence. Moreover, an
accurate result might not be possible. In näıve approaches, the storage requirements are
constant, easily predicted, and dominated by the size of A. However, for algorithms that
deliver increased accuracy, the storage requirements increase with the number of iterations.

Conjugate Gradient (CG) is a common iterative method to solving Ax = b, in
which one starts with an initial guess x0, calculates the residual b− Ax0, calculates a new
xi, and iterates until the residual is sufficiently small. Each iteration of this method requires
a sparse matrix-vector multiplication, and a number of dense vector-vector operations.
Like Cholesky, CG imposes the symmetric, positive definite (SPD) restrictions on matrices.
However, there are a number of other iterative methods such as BiCG that remove some of
these restrictions.

7.2.4 Usage: Finite Difference Methods

There are a myriad of uses of sparse kernels and solvers. Motivated by our discus-
sion in Chapter 5 and work in Chapter 6, we discuss the applicability of the sparse motif
to partial differential equations on structured and unstructured grids. This is only possi-
ble because differential operators become stencils in a finite difference method. Moreover,

143

these stencil operators are linear combinations of neighboring nodes. Linear combinations
map perfectly to linear algebra. If the computation of the resultant stencils were non-linear
operators, then one could not use the sparse motif. Moreover, this approach is limited to
Jacobi’s method as discussed in Chapter 5.

First, let us consider the sweep of a scalar stencil operator on a 2D rectangular
structured grid. The first step is to represent the state of the scalar grid as a dense vector:
x. We choose a natural row ordered enumeration of nodes. Thus, the value of the grid
at (i, j) is element xk, where k = j · XDimension + i. The value of the node after the
stencil is stored in yk. In addition, a 5-point linear combination stencil operator performs a
linear combination of neighboring nodes. To replicate this functionality, one must perform a
linear combination of the “neighbors” in grid space of vector element xk. This functionality
is perfectly realized through a sparse matrix-vector multiplication: y = Ax. A has five
nonzeros per row (the points of the stencil), the same five values appear on every row,
and if properly ordered, the matrix is pentadiagonal. In itself, there is no benefit in this
approach as the resultant volume of memory traffic for each sweep is now 76 bytes per node,
instead of the structured motif’s 16 bytes per node.

Next, consider that the problem we are solving is not a perfect rectangular grid,
but has a complex geometry. As such, the addressing of elements may be far too challenging
to implement as a structured grid. Moreover, the topological connectivity and edge weights
may vary from one node to the next. As such, the structured grid motif is totally inadequate.
One could implement such operations either via the unstructured grid motif, or through
the sparse motif. In the sparse motif, the number of nonzeros per row varies over the range
of possible topological connectivities. In addition, each row’s nonzeros may have unique
values. If connectivity were still rectangular, the volume of memory traffic is still 76 bytes
per node.

At a higher level, the finite difference method can result in either an explicit or an
implicit method to model the time evolution of a PDE. That is, given the grid a time t, we
apply a function that determines the state of the grid at time t+1.

In an explicit method, the next value at one point in the grid is dependent on a
subset of points in the current grid. This is the forward difference, and results in either a
stencil sweep or one SpMV. That is, evaluate xt+1 = Axt, where xt is the known current
state of the grid, xt+1 is the next state, and A represents the stencil. However, this approach
is generally numerically less stable.

As such, the backward difference results in an implicit method, in which the current
value of the grid is a function of the next values for a subset of the grid. Such approaches
demand that one must solve, rather than evaluate, to determine the next grid values.
Depending on structure, one could implement this as a n-diagonal solve or solve Axt+1 = xt.
As previously described solving Ax = b can be realized either through direct methods
(e.g. sparse LU or Cholesky) or iterative methods (e.g. conjugate gradient).

In the direct approach, one first factors A into LU . Then for each time step,
one must solve LUxt+1 = xt. This can be accomplished by solving Ly = xt, then solving
Uxt+1 = y. Both steps require a SpTS. Although this method is generally more stable,
sparse LU factorization is expensive, L and U can be substantially larger than A, and SpTS
is substantially slower than SpMV.

144

Upfront Steady State Principle Storage
Classification Operation(s) Operation(s) Kernel(s) Requirement

Explicit — xt+1 = Axt 1 × SpMV ≈NNZ(A)

CG, BiCG, etc. . .
Iterative — Axt+1 = xt

(many SpMV’s)
≈NNZ(A)

Implicit
Direct LU = A LUxt+1 = xt 2 × SpTS �NNZ(A)

Table 7.1: Summary of the application of sparse linear algebra to the finite difference
method. The upfront operations only need to be performed once per grid topology.

In the iterative approach, one must attempt to solve Axt+1 = xt at each time step
using a method like conjugate gradient. Although no additional space is required, each
solve will require several SpMV’s. Ideally, xt is a reasonable initial guess for xt+1. As such,
the number iterations should be well managed.

The question arises, can any structured grid kernel be implemented with a SpMV?
For example, can LBMHD’s collision() operator be implemented with an SpMV? The
answer is no. SpMV only performs linear combinations of vector elements. LBMHD re-
quires divides and other structured grid codes may require logs or exponentials. Moreover,
LBMHD multiplies lattice velocities together rather than simply taking linear combinations
of them.

Table 7.1 summarizes the application of the sparse linear algebra motif to the finite
difference method for partial differential equations (PDEs). The computational and storage
requirements vary substantially. Moreover, numerical stability is the motivation for implicit
methods. Clearly, SpMV and SpTS are critical operations and the value of optimizing them
cannot be underestimated.

7.3 Sparse Matrix Formats

Matrices are stored in a variety of formats designed to deliver good performance
for the typical kernels that use them. In this section, we discuss formats that will perform
well for SpMV. We believe that many of these will likely stand the test of time in the
multicore-era

Figure 7.3 on the next page shows a small dense matrix and the most common
storage formats. Typically, the 2D m×n structure of a dense matrix is reorganized into
a dense 1D array either in a row-major or column major format. Clearly, the resultant
memory footprint of such a matrix is simply 8·m·n bytes, or 8 bytes per element. In
addition, addressing element aij is a trivial task, it is either A[n*i + j] or A[m*j + i]. In
addition, a matrix must store the number of rows and the number of columns. Accessing
elements on neighboring rows or columns are realized with trivial offsets of ±1, ±m, or ±n,
depending on format. Often such approaches are implemented hierarchically. The optimal
storage format for a dense matrix is both machine and kernel dependent. That is, the
optimal storage format depends on the kernel that will use the matrix and the machine on
which the kernel is run.

145

(a) (b)

A00

A10

A20

A30

A01

A11

A21

A31

A02

A12

A202

A32

A03

A13

A23

A33

A00 A10 A20 A30A01 A11 A21 A31A02 A12 A202 A32A03 A13 A23 A33

A00 A10 A20 A30 A01 A11 A21 A31 A02 A12 A202 A32 A03 A13 A23 A33

values_column_major[]

values_row_major[]

Figure 7.3: Dense matrix storage. (a) enumeration of matrix elements, (b) row- and column-
major storage formats.

Storing a sparse matrix presents a number of unique challenges as, unlike dense
matrices, the sparsity pattern can dictate the optimal format. That is, the optimal format
is machine, kernel, and matrix dependent. To that end, a number of storage formats have
been proposed. The simplest strategy is to store a sparse matrix in dense format. This is
not to be confused with storing a dense matrix in a sparse format. In such a case, the vast
number of zeros would also be stored. As a result, all algorithmic advantages would be lost.

7.3.1 Coordinate (COO)

Figure 7.4 on the following page is the simplest truly sparse format: coordinate
(COO). In such a format, in addition to the number of rows and columns in the matrix,
three values must be maintained per nonzero: the floating-point value, the row index, and
the column index. Typically, a separate array is maintained for each attribute. Given a
column and row index, it is expensive to extract the matrix value. However, many kernels
can be restructured so that rather than looping through all rows and then all columns,
they are data-oriented and stream through the nonzero arrays and perform an operation
according to the coordinate. That is, it is easy to extract the row and column of the ith

nonzero. The size of a matrix in this format is 16·NNZ bytes in double-precision. Clearly,
for large m×n, this approach is orders of magnitude more efficient than dense storage.
Although not required, the nonzeros could be sorted by row, column or, hierarchically to
exploit locality in certain kernel operations. In doing so, one could observe redundancy
among row or column indices. Such observations motivate the use of the next two formats.

7.3.2 Compressed Sparse Row (CSR)

Given a row-sorted COO format matrix, there are blocks of nonzeros all on the
same row. As such, there are blocks of elements in the row index array that all have the same
row index. One could eliminate an explicit row index array in favor a row pointer array.
Figure 7.5 on the next page shows the compressed sparse row (CSR) format. For every row
in the original matrix, there is an element in the row pointer array. These pointers denote
the indices of the first and last nonzeros in the value and column index arrays for each row.
In essence, all nonzeros within a row have been packed together. Subsequently all rows are
packed together. Such formats reduce memory traffic and minimize the computation for

146

A00

A11

A31

A22 A23

A43

A14

A74

A35

A55

A65

A75

A66

A77

(a) (b)

A00 A11 A31A22 A23 A43A14 A74A35 A55 A65 A75A66 A77

0 1 32 2 41 73 5 6 76 7

0 1 12 3 34 45 5 5 56 7

values[]

row_indices[]

column_indices[]

Figure 7.4: Coordinate format (COO). (a) spyplot for a small sparse matrixi, (b) the
resultant data structure for COO format.

(a) (b)

A00 A11 A31A22 A23 A43A14 A74A35 A55 A65 A75A66 A77

0 1 85 7 113 9 12

0 1 12 3 34 45 5 5 56 7

values[]

row_pointers[]

column_indices[]

A00

A11

A31

A22 A23

A43

A14

A74

A35

A55

A65

A75

A66

A77

Figure 7.5: Compressed Sparse Row format (CSR). (a) spyplot for a small sparse matrix,
(b) the resultant data structure for CSR format.

many kernels. This approach requires 12·NNZ + 4·m bytes to store the matrix. A similar
approach for nonzeros sorted by column results in compressed sparse column (CSC).

In itself, many kernels are not efficient operating on matrices with short rows (few
nonzeros per row) when the matrix is stored in CSR. Moreover, branchless implementations
of SpMV are not possible if empty rows are present. A solution to both problems can be
found by eliminating the empty rows and storing a row index for each of the remaining rows
— GCSR in OSKI parlance[135].

7.3.3 ELLPACK (ELL)

Many sparse matrices have about the same number of nonzeros per row. By
adding explicit zeros until all rows have equal length, the row pointers can be eliminated.
The resultant format is known as ELLPACK (ELL). Figure 7.6 on the following page shows
the storage of a sparse matrix in ELLPACK. The pointers can be calculated at runtime
based on the row index and the new row length. An additional benefit is that it is easy to

147

0.0 0.0 0.0 0.0 0.0 0.00.0 0.0 0.0 0.0

0.0 0.0

0.0 0.0
0.0

0.0
0.0

0.0
0.0
0.0

A00

A11

A31

A22 A23

A43

A14

A74

A35

A55

A65

A75

A66

A77

(a) (b)

A00 A11 A31A22 A23 A43A14 A74A35 A55 A65 A75A66 A77

0 1 12 3 34 45 5 5 56 7

values[]

column_indices[]

Figure 7.6: ELLPACK format (ELL). (a) spyplot for a small sparse matrix, (b) the resultant
data structure for ELL format. Notice, after the addition of explicit zeros, all rows are the
same length.

vectorize across several rows at a time. Ideally, this approach only requires 12 bytes per
nonzero. However, if the maximum number of nonzeros per row is substantially greater
than the average number of nonzeros per row, then this format will require significantly
more storage than any other format.

7.3.4 Skyline (SKY)

There are many matrices for which all the nonzeros appear near the diagonal. By
adding explicit nonzeros around the diagonal, one could simply maintain a row pointer array
and eliminate the explicit column indices as they are now implicit in the format. That is,
given a row, one indexes the row pointers array to determine the values. In addition, the
row pointer array allows one to determine the column index of the first nonzero within that
row. As all nonzeros are densely packed to the diagonal, the column indices of the remaining
nonzeros fall out. This format is known as skyline (SKY) and ideally only requires 8 bytes
per nonzero and 4 bytes per row. However, this can be substantially increased by the
number of explicit zeros that must be added to adhere to this format. Figure 7.7 shows a
lower triangular matrix stored in the Skyline format. Notice explicit zeros are inserted to
create a dense band up to the diagonal.

7.3.5 Symmetric and Hermitian Optimizations

Symmetric (Aij = Aji) or Hermitian (Aij = A∗
ji) matrices can stored in either a

näıve non-symmetric format or an optimized format. The non-symmetric format treats the
matrix as if it were non-symmetric and thus stores all NNZ nonzeros. The symmetry-aware
formats typically store either the lower or upper triangular matrices including the diagonal.
Figure 7.8 on the next page shows an symmetric matrix stored in the optimized format.
Ideally, this matrix would only require 6 ·NNZ + 4 ·m bytes as up to half the nonzeros are
redundant. Although this format requires substantially less memory traffic, it can only be
used in conjunction with highly optimized kernels.

148

0.0 0.0
0.0

0.0

0.0 0.0 0.0 0.0

(a) (b)

A00

A11

A31

A22

A43

A74

A55

A65

A75

A66

A77

A00 A11 A31A22 A43 A74A55 A65 A75A66 A77

values[]

0 1 83 6 112 9 13
row_pointers[]

Figure 7.7: Skyline format (SKY). (a) spyplot for a small, lower triangular sparse matrix,
(b) the resultant data structure for SKY format.

(a) (b)

A00

A11

A31

A22 A23

A43

A74

A35

A55

A65

A75

A66

A77

A57

A47

A56

A32

A13

A34

A53

A55

5

A31 A43 A74A32 A53 A65 A75A66 A77

1 3 42 3 5 56 7

A22

2

A00 A11

0 1 63 5 102 8 13

0 1

values[]

row_pointers[]

column_indices[]

Figure 7.8: Symmetric storage in CSR format: (a) spyplot for a small, symmetric sparse ma-
trix. Note Aij = Aji, (b) the resultant data structure for the CSR format after exploitation
of symmetry.

7.3.6 Summary

Table 7.2 on the following page provides a brief summary of the sparse matrix
formats discussed in this chapter. Clearly, dense provides a lower bound, and CSR and
COO are within a factor of two of the dense storage requirement. Symmetric storage is
only applicable for symmetric matrices and can nearly cut the storage requirements in
half (full row pointers must be maintained). The selection of an optimal format is heavily
dependent on matrix sparsity. Moreover, the kernels that operate on these formats should
be implemented with the format’s natural matrix traversal. Note, these formats are the
subset we believe will continue to have value in the multicore era.

Dozens of other formats have been suggested to address the needs of architecture,
sparsity, and kernel. However, the justifications for many of these formats have been ob-
viated by obsolescence of various architectures and implementations. Moreover, one must
remember, that the implementation of a kernel is completely disjoint from the matrix format

149

Storage Storage Natural Matrix Motivation and
Format Requirement (bytes) Traversal Applicability

Dense
(row major)

8·NNZ = 8·N2 by rows, or blocks of rows large, dense blocks

Dense
(column major)

8·NNZ = 8·N2 by columns, or blocks of columns large, dense blocks

COO 16·NNZ order specified by sorting extreme sparsity, short rows

CSR 12·NNZ+4·N by rows long rows, structured

facilitates vectorization,
ELL 12·N·(Max Nonzeros Per Row) by rows, or blocks of rows

near equal row lengths

SKY 8ΣRowBandwidthj+4·N by rows low bandwidth

Table 7.2: Summary of storage formats for sparse matrices relevant in the multicore era.
Many other formats have been omitted because multicore obviates the needs for efficient
vectorization.

selected. That is, for a given kernel, there are a number of possible implementations that
all use the CSR format. For example, SpMV is a kernel, CSR is a format, and segmented
scan is an implementation. In Chapter 8 we perform a limited exploration of format and
kernel implementation.

Thus far, we have only discussed sparsity and corresponding formats. We have
not specified the data type of aij . It is not uncommon for matrices to be other than
simply double-precision floating-point numbers. The nonzeros can be real or complex, and
they values can be integers, fixed point, single, double, or double-double-precision floating-
point numbers. Moreover, when dealing with complex or double-double numbers the two
components can be stored as either an array-of-structures (AOS) or structure-of-arrays
(SOA).

7.4 Conclusions

In this chapter we provided an overview of the sparse linear algebra motif. We
started with a discussion of the characteristics of sparse matrices in Section 7.1. The primary
difference from the dense linear algebra motif, is the fact that most matrix entries are zero.
As such, due the reduced storage requirements, the dimensions of the typical sparse matrix
is several orders of magnitude larger than the typical dense matrix. Unfortunately, the
price for such algorithmic and storage efficiency is architectural inefficiency. That is, the
complexity of the code required to implicitly reconstruct matrix structure is very high. As
a result, the performance of such code is invariably low.

Section 7.2 discussed a number of sparse kernels and methods and their applica-
bility to partial differential equations on structured and unstructured grid. We observe the
two principal kernels — sparse matrix-vector multiplication (SpMV) and sparse triangular
solve (SpTS) — have poor locality and little reuse. The resultant low arithmetic intensity
implies these kernels will be at best memory-bound on any foreseeable future multicore
computer, and without proper expression of memory-level parallelism, they will likely be

150

latency limited. As such, all efficiency-oriented optimization efforts should focus on ex-
pressing sufficient memory-level parallelism, and minimizing the total memory traffic. To
that end, we may view sparse computations as a DAG. However, unlike a structure grid
DAG, it might be preferable to view the nodes as primitive computation operating on one
matrix element rather than an entire row with the prevision that certain rewrite rules exist.
Although parallelism in SpMV is obvious, parallelism in SpTS is determined though DAG
inspection.

Section 7.3 discussed several common formats for representing sparse matrices
selected based on their propensity to minimize memory traffic. Although other formats
express more instruction- or data-level parallelism, we believe multicore obviates their need.
Ultimately, the selection of matrix format is highly tied to sparsity, computation, and even
the underlying computer the computation will be performed on. Thus, when a matrix is
defined, it should be inspected and it should be stored in the appropriate representation.

The entirety of the next chapter is dedicated to auto-tuning sparse matrix-vector
multiplication (SpMV) on the multicore computers presented in Chapter 8.

151

Chapter 8

Auto-tuning Sparse Matrix-Vector
Multiplication

This chapter presents the results of applying auto-tuning to the Sparse Matrix-
Vector Multiplication (SpMV). We observe that auto-tuning provides a performance portable
solution across cache-based microprocessors. However, we sacrifice portability and produc-
tivity when porting to local store architectures for only modest performance gains.

Section 8.1 delves into the details of the reference SpMV implementation, useful
optimizations, and previous serial auto-tuning efforts. Section 8.2 uses the Roofline model
introduced in Chapter 4 to estimate attainable SpMV performance, as well as enumerate
the optimizations required to achieve it. Section 8.3 describes the benchmark matrices for
this kernel. Section 8.4 walks through each optimization as it is added to the search space
explored by the auto-tuner. At each step, performance and efficiency are also reported and
analyzed. In addition, the final fully-tuned performance is overlaid on the Roofline model.
Section 8.5 summarizes, analyzes, and compares the performance across architectures. In
addition, a brief discussion of productivity is included. Although significant optimization
effort was applied in this work, Section 8.6 discusses a few alternate approaches that may
be explored at a later date. Finally, Section 8.7 provides a few concluding remarks.

8.1 SpMV Background and Related Work

In our examination of auto-tuning of sparse methods presented in this chapter,
we chose to restrict ourselves to an important kernel that we believe embodies the bulk of
the optimizations that would be applicable to any sparse kernel. To that end, we chose
sparse matrix-vector multiplication (SpMV) as an example sparse kernel and extend the
work presented in [140]. This section performs a case study SpMV detailing the kernel,
issues, and some of the previous auto-tuning efforts. The rest of the chapter is dedicated
to the study of auto-tuning SpMV on multicore architectures.

152

for(r=0;r<A.m;r++){
yr = 0.0;
for(i=A.ptr[r];i<A.ptr[r+1];r++){

c = A.col[i];
yr += A.values[i]*x[c];

}
y[r] = yr;

}

Figure 8.1: Out-of-the-box SpMV implementation for matrices stored in CSR.

8.1.1 Standard Implementation

We restrict this case study to SpMV on a non-symmetric double-precision matrix.
Thus, we investigate the evaluation of y = Ax where A is a m×n sparse matrix with NNZ
nonzeros, and x and y are dense vectors. Evaluation of y = Ax is defined as ∀ aij 6= 0, yi =
yi + aij · xj . We describe x as the source vector and y as the destination vector. Although
A is typically so large that it will not fit in cache, x and y might fit in cache. Notice
that regardless of sparsity, every yi can be calculated independently and in any order. Such
characteristics make näıve parallelization of SpMV easy. Efficient parallelization can remain
a challenge. Contrast this to SpTS (Lx = b) in which there are dependencies between xj ’s.
As such, different orderings and degrees of parallelization are dependent on sparsity.

Decades of research on such a kernel has produced a myriad of representations of
A and an even broader variety of implementations of the SpMV kernel. Nevertheless, the
most common representation of the matrix is compressed sparse row (CSR) using 32-bit
indices and pointers. Moreover, the standard implementation of the SpMV operation on a
CSR matrix is a nested loop over all rows and over all nonzeros within said row. Figure 8.1
shows a C implementation of this approach.

Let us consider the performance pitfalls of such an implementation. A.values[]
and A.col[] are very large arrays that are streamed through once per SpMV. As such,
they will generate one miss per cache line. Second, for low bandwidth matrices, both x[c]
and y[r] will likely have a high cache hit rates or at least do not significantly impair
performance. However, if the rows are short (A.ptr[r+1]-A.ptr[r] is small), then the
inner loops are short, and the overhead of starting a loop cannot be amortized. This
overhead is critical on the Itanium architecture where the overhead involved in starting a
hardware-accelerated software pipelined loop is substantial. Finally, there is no instruction-
or data-level parallelism within the inner loop. As a result, on deeply pipelined superscalar
SIMD architectures, performance will be far from peak.

8.1.2 Benchmarking SpMV

Typically, when benchmarking SpMV performance, one only measures the asymp-
totic SpMV performance. Thus, we ignore the initial matrix load and preparation time
and run enough trials to warm the caches and TLBs. Moreover, to replicate typical usage
on a parallel machine, the vectors are swapped between SpMV’s. In effect, the typical

153

(a) (b)

A00

A10 A11

A22

A32 A33

A44

A55

A66

A77

A54

A66

A24

A02

A46

0.0
0.0

0.0
0.0

0.0
0.0

0.0

0 3 9 116
row_pointers[]

0

values[]

column_indices[]

A00

A10 A11

A22

A32 A33

A44

A55

A66

A77A54 A66

A24A02 A460.0
0.0

0.0
0.0

0.0
0.0

0.0

1 2 2 3 4 4 5 6 6 7

A00 A01

A12 A13

A24 A25

A36 A37

A14

A02

A26

(c)

Figure 8.2: Matrix storage in BCSR format: (a) spyplot for a small matrix with zeros added
to facilitate register blocking, (b) conceptualization where each matrix entry is a 2×1 dense
matrix, (c) the resultant data structure.

benchmark loops over the following operations:∣∣∣∣ y = Ax
x = Ay

If the matrix has a high bandwidth, a significant volume of data (the vectors) will
be sent between caches, cores, and processors. As a result, performance will be diminished.

8.1.3 Optimizations

There are a number of commonly used optimizations that have been applied to
SpMV. We detail them here.

Branchless implementations restructure the nested loops of Figure 8.1 into a single
loop using conditional operations either in the form of predication or via bitwise muxing.
The advantage is that this minimizes the performance impact of matrices with few nonzeros
per row. Our preliminary investigations have shown this to be an effective solution on
architectures like Itanium2 or the Cell SPEs. On predicated architectures, this method can
be extended into segmented scan [19]. Such an approach expresses more parallelism within
the inner loop and, for appropriate vector lengths, results in better performance.

To express more parallelism, one generally wants to calculate several yi simulta-
neously. Moreover, to capture locality within the register, rather than the last level cache,
one wants to reuse the element xj or elements near xj for successive nonzeros. Blocked
Compressed Sparse Row (BCSR) addresses these issues by changing the minimum quanta
for an element from a nonzero to an aligned r×c dense matrix. Thus, every “r” rows are
grouped into a blocked row, and every “c” columns within that blocked row are grouped
into an r×c sub-matrix. The original m×n matrix is now a m

r ×
n
c matrix where each entry

is an r×c dense matrix, now called a register block, in which it is now tolerable to have
explicit zeros. Conceptually, the nonzero multiply-add operation has been transformed into
a matrix-vector multiply-add on a small r×c matrix and c×1 vector.

Many problems naturally produce a regular blocked structure. Consider a opera-
tions on a structured grid of Cartesian vectors. When mapped to a dense vector for sparse

154

0.0
0.0
0.0
0.0
0.0
0.0
0.0

0.0 0.0

0.0 0.0

0.0 0.0

0.0

0.0
0.0

0.0
0.0

0.0
0.0

A00
A10A11

A22
A32A33

A44
A55
A66
A77

A54

A66

A24

A02

A46

0.0
0.0
0.0
0.0
0.0
0.0
0.0

A00
A10A11

A22
A32A33

A44
A55
A66
A77

A54

A66

A24

A02

A46

A00
A10A11

A22
A32A33

A44
A55
A66
A77

A54

A66

A24

A02

A46

A00
A10A11

A22
A32A33

A44
A55
A66
A77

A54

A66

A24

A02

A46

1x1 1x2 2x22x1

(a) (b) (c) (d)

Figure 8.3: Four possible BCSR register blockings of a matrix. Note, (b) and (c) fill in
seven zeros, but (d) fills in 13.

linear algebra, the (i,j,k) Cartesian components would likely occupy sequential vector ele-
ments. Often the stencil operator will calculate a new (i,j,k) based on the current (i,j,k).
Thus a natural 3×3 blocking arises.

Figure 8.2 on the preceding page illustrates BCSR. Starting with a sparse matrix
of nonzeros in Figure 8.2(a), one can reorganize the matrix into small 2×1 dense blocks
rather than individual nonzeros — Figure 8.2(b). Only one column index is stored per r×c
tile, and only one row pointer is required per blocked row. Figure 8.2(c) shows the typical
data structures for BCSR. There are six ways one could store the tiles, as the nonzeros
are basically a 3D array indexed by tile index, row within a tile, and column within a
tile. Efficient implementations store the nonzeros in as an array of structures with each tile
stored in a dense column major format. That is double values[tile][col][row];

Typically, the tile×vector product in SpMV is completely unrolled. As such, the
inner loop loops over tiles in a blocked row, and the outer loop loops over all blocked
rows. Observe that there is r-way explicit data-level parallelism, and only m

r for loop
starts. However, the raw number of requisite floating-point operations may have dramat-
ically increased due to the fill of nonzeros. As such, effective performance as measured in
useful FLOPs

total time = 2·NNZ
total time is both sparsity and machine dependent.

8.1.4 OSKI

A question arises: what is the optimal register block size for a given matrix on
a particular machine? Assume that once an optimal encoding is chosen, thousands of
SpMV’s will be performed. As such, one can amortize some exploration of possible register
blockings. To that end, one could bound the maximum register block size to something
like 16×16, convert A to each of the 256 different combinations of r and c, and individually
benchmark them (perhaps ten SpMVs each). The optimal choice would need to be used
tens of thousands of times to amortize the exploration.

Berkeley’s Optimized Sparse Kernel Interface (OSKI) [135] provides an elegant
solution to this problem. First, it is an auto-tuned library that encapsulates many tuning
and sparse kernels into routines. Upon installation, it benchmarks the performance of every

155

possible register blocking on the target machine. Then, at runtime, it samples a portion of
the matrix to be tuned, and will estimate the useful FLOP rate for every possible register
blocking using the benchmark data and projected number of nonzero fills.

For example, Figure 8.3 on the previous page shows a sampling of a matrix blocked
with four different register blockings. All four resultant forms are numerically identical.
However, their effective SpMV performance may be dramatically different. Suppose, 1×1
BCSR can achieve a FLOP rate of 1 GFLOP/s for a dense matrix stored in sparse format,
but 1×2, 2×1, and 2×2 can achieve 1.2, 2.0, and 2.2 GFLOP/s, respectively. We can
calculate the effective FLOP rate as the product of the raw FLOP rate and the ratio of
nonzeros to matrix entries. Thus, Figure 8.3(a)-(d) should achieve at best 1.0, 0.81, 1.36,
and 1.17 GFLOP/s respectively. Thus, OSKI would conclude that for this matrix, 2×1
BCSR will likely deliver the best performance.

OSKI was originally vetted on older single core processors. Nevertheless, it should
substantial performance benefits on the Itanium2 and other now obsolete architectures.

8.1.5 OSKI’s Failings and Limitations

Despite its successes, there are some key failings and limitations for OSKI that we
discuss here. The purpose is to motivate our work rather than deride OSKI.

OSKI is natively a serial library. Although, the auto-tuned kernels it produces can
be integrated into an MPI-based parallel distributed memory framework like PETSc [11]
with relatively little work, even when using an optimized shared memory MPICH implemen-
tation results have shown that scalability of this parallelization strategy was often lacking on
many multicore SMPs [140]. There are two principal failings here: OSKI tunes kernels seri-
ally and thus assumes the entire socket bandwidth is always available to any and every core.
Clearly, when all cores are running, each core can only be guaranteed a small fraction of a
socket’s bandwidth. Thus, OSKI may choose a register blocking that when run in isolation
delivers good performance because the core isn’t memory limited. However, that register
blocking may have increased the size of the matrix data structures. As such, when run in
conjunction with other cores on a memory limited multicore architecture, performance will
be reduced because a larger volume of data must be transfered.

The second failing is that PETSc uses explicit messaging to pass newly calculated
destination vectors to the other processors for subsequent consumption as source vectors.
Every byte of bandwidth used for explicit communication is both redundant on a cache co-
herent shared memory parallel machine, and strips bandwidth away from where its needed:
computation. Finally, many SMPs are NUMA architectures. As such, data must be cor-
rectly placed to attain peak bandwidth. It is likely MPI can do this implicitly, but it must
be handled explicitly on threaded applications.

OSKI’s final limitation is its lack of architecture- or ISA-specific optimizations.
For instance, many architectures require software prefetch, cache bypass instructions, or
SIMD instructions to attain peak performance. Many modern compilers are incapable of
appropriately exploiting these instructions. As such, the responsibility falls to either the
library or the user to correctly insert them.

156

8.2 Multicore Performance Modeling

Before diving into construction of an auto-tuned multicore implementation of
Sparse Matrix-Vector Multiplication (SpMV), we first extract the relevant characteristics
of the kernel, map those characteristics onto a Roofline model for each architecture, and
estimate both performance and the requisite optimizations for each machine. During this
analysis, we assume a warm started cache for only the vectors — access to the matrix
will generate additional compulsory misses, but the compulsory misses associated with the
vectors is amortized.

8.2.1 Parallelism within SpMV

Figure 8.1 on page 152 shows the standard nested loop implementation of SpMV
for a compressed sparse row (CSR) matrix format. It performs a multiply accumulate per
iteration of the innermost loop. Thus, like many linear algebra routines, the use of fused
multiply add (FMA) is explicit. On non-FMA architectures, instead of the typical imbalance
between multiplies and adds in many motifs, there is an inherent balance between multiplies
and adds. However, for a reasonably sized instruction window — less than a row — there
is no other floating-point instruction-level parallelism (ILP). This lack of ILP also implies
there is no data-level parallelism (DLP). As discussed in Chapter 4, a total lack of ILP
and DLP can profoundly impair performance. In addition, each loop (row) in this nested
loop kernel has significant startup overhead. When coupled with the requisite indirect
addressing, the floating-point fraction of the total dynamic instruction mix is diminished.

As discussed in Section 8.1.3, OSKI uses register blocking (BCSR) to improve per-
formance. In the context of ILP, DLP, and operation mix, register blocking can significantly
increase DLP — and thus ILP — as well as amortize the loop overhead. Each additional
row in a register block provides additional DLP, and the loop overhead is executed once per
register block rather than once per nonzero.

There is no explicit thread-level parallel (TLP) in the standard CSR SpMV im-
plementation. Nevertheless, we can apply an OpenMP style of loop-level parallelism on the
outermost loop. We chose to implement it with pthreads.

There is no temporal locality among the value, column index, row pointer, and
destination vector arrays of a matrix within a SpMV. Thus, there only needs to be sufficient
cache or local store capacity to satisfy Little’s Law. For today’s typical latency-bandwidth
product, we need less than 10 KB across an entire SMP. As these access to these arrays are
all unit-stride, there is plenty of spatial locality.

When it comes to the source vector, there is only moderate overall temporal locality
— each double is typically used 6 to 50 times. However, given limited cache capacities and
large working set requirements, the actual reuse in practice can be significantly lower since
cache lines are evicted before the data can be reused. In addition, with larger capacities
comes higher spatial locality, as cache lines remain in the cache until the seemingly random
accesses associated with the source vector have touched every double in a given cache line.

The degree of memory-level parallelism in SpMV is completely specified when the
matrix is created. This includes all matrix values, column indices, row pointers, and all
vector accesses. This parallelism — O(NNZ) + O(N) — vastly exceeds the capabilities

157

Storage FP Parallelism by type Instructions Memory streams
Format Instruction Data Thread Memory per multiply-add per thread

standard CSR ≈ 1 ≈ 1 ≈ N ≈ NNZ + N ≈ 11 + 10N
NNZ

2

R×C BCSR ≈ 1 ≈ R ≈ N
R

≈ NNZ + N ≈ 3 + 1
R

+ 7
RC

+ 10N
R·NNZ

2

R×C BCOO ≈ 1 ≈ R ≈ N
R

≈ NNZ + N ≈ 3 + 1
R

+ 7
RC

+ 10N
R·NNZ

3

Table 8.1: Degree of parallelism for a N×N matrix with NNZ nonzeros stored in two different
formats. Data- and thread-level parallelism are clearly linked to data structure.

of any architecture. Although a load-store queue will only afford a few dozen accesses,
hardware prefetchers can be very effective in prefetching the value, column index, row
pointer, and destination vector arrays. The latency associated with randomly accessing
source vector elements cannot be covered by either hardware prefetchers or out of order
execution. Both multithreading and DMA lists will be effective for all accesses due to the
magnitude of MLP inherent in the algorithm.

Table 8.1 summarizes the parallelism in the standard OpenMP style implemen-
tations of SpMV on an N×N matrix. The constants are based on disassembly of SpMV
kernels on a SPARC architecture. Clearly, DLP increases with register blocking. The sec-
ond to last column shows the instruction overhead per floating-point multiply-add for three
matrix storage formats. The CSR implementations are dominated by two terms: overhead
per row and overheads per nonzero. In a sparse linear algebra, a long row is a row with a
large number of nonzeros. When the average row is long (NNZ

N is large), the overhead per
nonzero dominates (11 � 10N

NNZ), and the floating-point mix approaches one FMA per 11
instructions. However, for short rows (NNZ ∼ N), then the two terms are approximately
equal, and the floating-point mix is cut in half. Clearly, when examining the register blocked
implementations, there are four terms: outer loop overhead, index calculation, source vector
loads, and FMAs. Register blocks spanning multiple rows decrease the overall number of
outer loop iterations, as well as drive down the average number of indexing and source vec-
tor loads per nonzero. Register blocks spanning multiple columns also amortize the array
indexing.

The conclusion is that register blocking can significantly increase performance
by increasing data level parallelism and the floating-point instruction mix. However, its
effectiveness is bounded by the instruction latencies, register pressure, and the fact that
very large register blocks may significantly increase the total memory traffic since zeros
must be explicitly added to the block.

8.2.2 SpMV Arithmetic Intensity

Chapter 4 introduced the Roofline performance model. Given an arithmetic inten-
sity, one can use the Roofline model to predict performance. Each iteration of the innermost
loop of a CSR SpMV implementation multiplies one nonzero matrix entry by one vector
element and accumulates the result — two floating-point operations. Thus, a SpMV per-
forms 2 × NNZ floating-point operations. In addition, each nonzero is represented by a

158

double-precision value and a column index. The column index is typically a 32-bit integer.
As a result, each SpMV must read at least 12 × NNZ bytes. This lower limit assumes
no cache misses associated with the vectors. For most matrices, the write traffic is much,
much smaller than the read traffic. Putting it together, SpMV has a compulsory arithmetic
intensity less than 2×NNZ

12×NNZ , or about 0.166.
The register blocking used in OSKI encodes only one column index per regis-

ter block. As register blocks can grow quite large, it is possible to amortize this one
integer among dozens of nonzeros. Asymptotically, register blocked SpMV can reach a
FLOP:compulsory byte ratio of 0.25 — a 50% improvement. This upper bound presumes
no explicit zeros were added.

8.2.3 Mapping SpMV onto the Roofline model

Figure 8.4 on the next page maps SpMV’s FLOP:compulsory byte ratio onto the
Roofline performance model discussed in Chapter 4. From this figure, we should be able
to predict performance, and which optimizations should be important across architectures.
We continue to refer to this Roofline throughout this chapter.

The dashed red lines on the left in Figure 8.4 on the following page denote the
SpMV FLOP:compulsory byte ratio for the standard CSR implementation, while the green
dashed lines to the right mark the FLOP:compulsory byte ratio for the best possible register
blocked SpMV implementation. The purple shaded region highlights the performance range
corresponding to a range in potential arithmetic intensities arising from varying degrees of
success when register blocking. The lowermost diagonal denotes unit-stride performance
without any optimization — a likely access pattern for the value and index arrays. Out-of-
the box SpMV performance is expected to fall on or to the left of the red dashed vertical line
due to the potential for vector capacity misses or conflict misses on any access reducing the
arithmetic intensity. Additionally, performance should fall below the ’without ILP’ ceiling.
Finally, it is likely that non-floating-point operations will constitute the bulk (greater than
80%) of the dynamic instruction mix. However, this overhead is only an issue on Victoria
Falls.

8.2.4 Performance Expectations

Figure 8.4 on the next page suggests the Clovertown will be heavily memory-
bound. Not only will register blocking help by reducing memory traffic, but for sufficiently
small matrices, a super linear benefit will occur. This benefit arises because the snoop filter
will eliminate more snoop traffic on a small matrix than a large one. We generally expect
performance to be between 1 and 2 GFLOP/s without register blocking, and perhaps up
to 3 GFLOP/s with perfect register blocking.

The Roofline for the Santa Rosa Opteron shows significant variation in attain-
able memory bandwidth before and after optimization. As a result, we expect to see pro-
found improvements in performance with NUMA, register blocking and prefetching: from
0.7 GFLOP/s to 4.0 GFLOP/s. At the highest possible performance, SIMD or ILP may
need to be exploited.

159

0.5
1.0

1/8
actual flop:byte ratio

at
ta

in
ab

le
 G

FL
O

P/
s

2.0
4.0
8.0

16.0
32.0
64.0

128.0
256.0

1/4
1/2 1 2 4 8 16

0.5
1.0

1/8
actual flop:byte ratio

at
ta

in
ab

le
 G

FL
O

P/
s

2.0
4.0
8.0

16.0
32.0
64.0

128.0
256.0

1/4
1/2 1 2 4 8 16

Xeon E5345
(Clovertown)

Opteron 2214
(Santa Rosa)

0.5
1.0

1/8
actual flop:byte ratio

at
ta

in
ab

le
 G

FL
O

P/
s

2.0
4.0
8.0

16.0
32.0
64.0

128.0
256.0

1/4
1/2 1 2 4 8 16

QS20 Cell Blade
(PPEs)

0.5
1.0

1/8
actual flop:byte ratio

at
ta

in
ab

le
 G

FL
O

P/
s

2.0
4.0
8.0

16.0
32.0
64.0

128.0
256.0

1/4
1/2 1 2 4 8 16

QS20 Cell Blade
(SPEs)

0.5
1.0

1/8
actual flop:byte ratio

at
ta

in
ab

le
 G

FL
O

P/
s

2.0
4.0
8.0

16.0
32.0
64.0

128.0
256.0

1/4
1/2 1 2 4 8 16

Opteron 2356
(Barcelona)

peak DP

w/out SIMD

w/out ILP

peak DP

w/out ILP

peak DP

w/out SIMD

w/out ILP

peak DP

w/out
ILP or SIMD

lar
ge

 da
tas

ets

peak DP

w/out SIMD

w/out ILP

mul/add imbalance

mul/add imbalance

mul/add imbalance

mul/add imbalance

mul/add imbalance

0.5
1.0

1/8
actual flop:byte ratio

at
ta

in
ab

le
 G

FL
O

P/
s

2.0
4.0
8.0

16.0
32.0
64.0

128.0
256.0

1/4
1/2 1 2 4 8 16

UltraSparc T2+ T5140
(Victoria Falls)

peak DP

FP = 25%

FP = 12%

Figure 8.4: Expected range of SpMV performance imposed over a Roofline model of SpMV.
Note the lowest bandwidth diagonal assumes a unit-stride access pattern. Note the log-log
scale.

Although the Barcelona Opteron has the same raw pin bandwidth, the Roofline
suggests multicore may effectively obviate some of the need for NUMA optimizations, and
ILP and SIMDization will be of lesser value. Nevertheless, we expect performance between
1.4 and 2.8 GFLOP/s without register blocking, and perhaps over 4 GFLOP/s with perfect
register blocking. SIMD and ILP will be of much less value on Barcelona.

On Victoria Falls, the limited instruction issue bandwidth suggests that the large
number of non-floating-point operations may limit performance. The Roofline suggests that
NUMA, prefetching, and register blocking will be essential in delivering up to 8 GFLOP/s.
Without these optimizations, performance will fall to about 6, 4, or 2 GFLOP/s respectively.

Without optimization, the Roofline suggests Cell PPE performance will be abysmal.
Even after full opimization — heavily dependent on prefetching — performance is still ex-
pected to be less than 2 GFLOP/s. In order for Cell SPE performance to hit a 12 GFLOP/s
peak, it will require NUMA, effective DMA double buffering, and register blocking. In ad-
dition, local store blocking is required to avoid copious redundant source vector accesses.

On all computers, memory bandwidth optimizations must be coupled with memory
traffic reduction techniques. SIMDization or other exotic vectorization techniques are not
likely to be beneficial as the architectures are primarily bound by memory bandwidth rather
than a lack of instruction or data-level parallelism.

160

Large bandwidth matrices may generate large numbers of capacity misses. As
such, their arithmetic intensities will be less than ideal. As a result, SpMV performance
will likely be poor on those matrices. Cache blocking techniques may be applicable.

8.3 Matrices for SpMV

Unlike the lattice Boltzmann method discussed in Chapters 5 and 6, the problem
dimensions alone do not specify a sparse matrix. As discussed in Chapter 7, sparse matrices
are characterized by both dimension and sparsity — which matrix elements are nonzero. To
that end, we have created a dataset of 14 sparse matrices extracted from the SPARSITY [72]
matrix suite. The criteria for selection were:

• Size — the matrices should not fit in any chip’s cache.

• Sparsity — they should contain a range of sparsity patterns.

• Relevance — they should be representative of a wide range of actual applications.

Figure 8.5 on the following page shows the characteristics of each of our selected
matrices. Note they have been grouped into four categories: one matrix is dense, nine are
well structured, three are poorly structured, and one is an extreme aspect ratio matrix.
Matrices are further sorted by the number of nonzeros per row (NNZ) — a parameter
correlated to loop overhead amortization. We use this ordering of the matrices throughout
the rest of this chapter.

A few observations of the matrices will aid in the analysis later in this chapter. In
Figure 8.5 on the next page, the last two rows estimate the each shared cache’s requisite
capacity for both the matrix stored in CSR as well as the vectors as the number of such
caches increases. When the either of these sizes exceeds the actual cache sizes, capacity
misses will certainly occur between SpMVs. For poorly structured matrices, capacity misses
may occur within each SpMV. Note, the last four matrices have cache capacity requirements
≈1MB or greater for the vectors. Thus, we expect low performance on most architectures.
Furthermore, those matrices will require significant data movement between sockets across
successive SpMVs. Conversely, we generally expect the Dense matrix stored in sparse format
to provide an upper bound to performance. Additionally, matrices such as QCD, Economics,
and Circuit are significantly smaller than Clovertown’s snoop filter. As such, they will see
significantly better bandwidth through the snoop filter eliminating unnecessary coherency
traffic. Finally, as the number of nonzeros per row decreases, the loop overhead will tend
to dominate kernel time. As a result, we expect CSR performance to continually decrease
from the Protein matrix to the Epidemiology matrix.

8.4 Auto-tuning SpMV

Section 8.1.3 discussed the myriad of matrix formats and optimizations designed to
maximize SpMV performance. In this work, we chose to restrict ourselves to only changing
the matrix data structure and the SpMV kernel. The vectors are always the standard dense

161

D
en

se

Pr
ot

ei
n

Sp
he

re
s

C
an

til
ev

er

W
in

d
T

un
ne

l

H
ar

bo
r

Q
C

D

Sh
ip

E
co

no
m

ic
s

E
pi

de
m

io
lo

gy

A
cc

el
er

at
or

C
ir

cu
it

w
eb

ba
se

L
P

Spyplot

Matrix
Footprint

48
N

52
N

72
N

48
N

140
N

29
N

23
N

49
N

16
 N

27
N

32
N

12
N

41
N

Rows
Cols

2K
2K

36K
36K

83K
83K

62K
62K

218K
218K

47K
47K

49K
49K

141K
141K

207K
207K

526K
526K

121K
121K

171K
171K

1M
1M

4K
1M

NNZ 4.0M 4.3M 6.0M 4.0M 11.6M 2.4M 1.9M 4.0M 1.3M 2.1M 2.6M 0.9M 3.1M 11.3M

136
N

average
NNZ/Row 2000 119 72 65 53 50 39 28 6 4 22 6 3 2825

Vector
Footprint 0.03 0.6

N
1.3
N

1.0
N

3.3
N

0.7
N

0.8
N

2.3
N

3.3
N

8.0
N

0.9 -
1.8

1.3 -
2.6

7.6 -
15.3 7.6

Symmetric -     - -  - -  - - -

Figure 8.5: Matrix suite used during auto-tuning and evaluation sorted by category, then
by the number of nonzeros per row. Footprint is measured in MB. Partitioning implies the
requisite cache capacity drops with the number (N) of shared caches exploited.

vectors. Furthermore, we explore only two of the matrix formats, but add several other
optimization spaces. Within each of these new optimizations is a large parameter space.
To efficiently explore this optimization space, we employed an auto-tuning methodology
similar to that seen in libraries such as ATLAS [138], OSKI [135], and SPIRAL [97]. A large
number of kernel ’variations’ are produced and individually timed. Performance determines
the winner.

Once again, the first step in auto-tuning is the creation of a code generator. We
wrote a Perl script that generates all the variations of SpMV for all matrix formats explored.
For the SIMD architectures, we implemented an additional Perl script to generate SSE
intrinsic-laden C code variants. Note that the code generation and auto-tuning process
on Cell is a significantly restricted and simplified approach. Future work will expand the
auto-tuning approach on Cell.

The code generator can generate hundreds of variations for the SpMV operation.
They are all placed into a pointer to function table indexed by the optimizations and matrix
format. To determine the best configuration for a given matrix and thread concurrency,
we run a tuning benchmark to search the space of possible code and data structure opti-
mizations. In some cases the search space may be heuristically pruned of optimizations and
storage formats unlikely to improve performance. In a production environment, the time
required for this one time tuning is amortized by the time required to load the matrix from
disk and number of sparse matrix-vector multiplications in the full code. As the auto-tuner
searches through the optimization space, we measure the per multiplication performance
averaged over a ten time step trial and report the best.

In the following sections, we add optimizations to our code generation and auto-

162

tuning framework. At each step we benchmark the performance of all architectures exploit-
ing the full capability of the auto-tuner implemented to that point. Thus, at each stage we
can make an inter-architecture performance comparison at equivalent productivity, allowing
for commentary on the relative performance of each architecture with a productive subset
of the optimizations implemented. We have ordered the optimizations from those that are
easiest to implement — simple outer loop parallelization — to the most complex — register,
cache and TLB blocking.

8.4.1 Maximizing In-core Performance

One generally expects SpMV to be memory-bound. However, on architectures with
limited numbers of cores or weak double-precision implementations, in-core performance can
limit SpMV performance. To that end, we designed our code generators to produce code
superior to the standard BCSR and BCOO implementations.

First, SIMD optimized code was generated on the relevant architectures. Given the
simplicity of the SpMV inner loop, this was very easy. Second, computers without branch
prediction like Cell will suffer greatly when on average there are few nonzeros per row, even
when using BCOO. To ameliorate this, we experimented with branchless implementations
(software predication) on both Cell and the x86 architectures. The technique had value
on Cell, but not on the x86 architectures. Thus, it was not subsequently used on the x86
architectures. Finally, we included a software pipelined implementation on Cell — once
again, there was no gain on the x86 architectures. This optimization is designed to hide the
longer instruction and local store latency.

8.4.2 Parallelization, Load Balancing, and Array Padding

In order to provide a baseline for our multicore auto-tuning, we first run the
standard serial CSR SpMV implementation on our multicore SMPs. The lowest bars in
Figure 8.8 on page 165 show Clovertown, Santa Rosa, and Barcelona all deliver comparable
out-of-the-box single-thread performance. Not only is this performance an abysmal fraction
of peak FLOPs, it is also only 14% of peak DRAM bandwidth. Despite this poor perfor-
mance, the x86 cores are an order of magnitude faster than a single thread on Victoria Falls
or the Cell PPE. Clearly, we must explicitly exploit thread-level parallelism to achieve good
performance on those computers.

As discussed in Chapter 7, in a matrix-vector multiplication, there is no depen-
dency between rows. As such, parallelization by rows ensures there are no data dependencies
or reductions of private vectors. Rather than employing the standard loop parallelization
techniques, Figure 8.6(b) on page 163 exemplifies how we partition each matrix by rows
into disjoint thread blocks. There is one matrix thread block per thread of execution. Each
thread will perform its own submatrix-vector multiplication, writing into the shared desti-
nation vector without data hazards. The granularity of parallelization is a cache line. We
load balance SpMV by attempting to balance the total number of nonzeros in each thread
block. In a CSR implementation, each thread block has its own Value, ColumnIndex, and
RowPointer arrays. Thus, the thread blocked sparse matrix is implemented as a structure
of sparse matrix structures. A malloc() call is performed for each array of each sub-matrix.

163

(a)
original matrix

(b)
thread blocked matrix

Th
re

ad
 0

Th
re

ad
 1

Th
re

ad
 2

Th
re

ad
 3

Figure 8.6: Matrix Parallelization. For load balancing, all sub-matrices have about the
same number of nonzeros, but are stored separately to exploit NUMA architectures.

Most architectures with shared caches have more associativity than threads. As
such, inter-thread conflicts are unlikely. However, architectures such Victoria Falls have far
more threads sharing the L1 than L1 associativity — 8 and 4 respectively. Moreover, L2
conflicts can be more hazardous due to the increased probability — 64 threads into a 16-way
cache — as well as the increased miss penalty required to fetch from DRAM. Furthermore,
the L2 only has 8 banks shared among 8 cores. As such, it is important to ensure that
not only are there no L1 or L2 conflicts, but there are no bank conflicts either. To that
end, we align array malloc() to a 256 KB boundary — the way size. Next, we pad it to
ensure each group of eight threads within a core so that it is uniformly spread throughout
the L2. We then pad it to ensure that threads within a core are uniformly spread within
the L1. Finally, we pad it to ensure that threads are uniformly spread across L2 banks.
Figure 8.7 on the next page shows this three level padding, which ultimately improved
peak performance by 20% after subsequent optimizations were included. This approach
is identical to the lattice-aware padding described in Section 6.3.3 with the provision that
instead of padding to spread the points of a stencil, we pad to spread the threads’ arrays.

Figure 8.8 on page 165 shows SpMV performance at full concurrency. Note, the
horizontal axis represents the 14 matrices in our suite plus a median performance number.
The order of matrices in Figure 8.5 on page 161 has been preserved. Generally speaking, the
x86 multicores see little benefit from 4- to 8-way parallelism, but the multithreaded Victoria
Falls and Cell PPE see dramatic improvements. In fact, we see a reversal of fortune on
Victoria Falls. It is now 50% faster than the closest x86 multicore SMP. Table 8.2 notes the
highest sustained floating-point and bandwidth performance for the dense matrix in sparse
format, as well as percentage of machine peak, for each architecture. Note, bandwidth is
calculated based on the FLOP:compulsory byte ratio assuming all compulsory cache misses
arise from matrix accesses.

When examining Clovertown performance, we see 8-way multicore parallelism
only doubled performance. Nevertheless, performance is remarkably constant — around

164

(a)
before padding

(b)
after padding

 padding to avoid L1 conflict misses padding to avoid L2 conflict misses padding to avoid L2 bank conflicts

0
1
2
3
5
6
7

4

8
9

10
11
13
14
15

12



th
re

ad

line 0 (L2$)

0
1
2
3
5
6
7

4

8
9

10
11
13
14
15

12

th
re

ad



line 0 (L2$)

L1 way size

L2 way size/8

Figure 8.7: Array Padding (a) Arrays are individually allocated resulting in numerous bank
and cache conflicts. (b) Each array for each thread block is padded such that for a given
array all threads’ elements map to a different L1 and L2 set, and the number of threads per
bank is balanced.

Xeon E5345 Opteron 2214 Opteron 2356 T2+ T5140 QS20 Cell Blade
Machine

(Clovertown) (Santa Rosa) (Barcelona) (Victoria Falls) (PPE) (SPE)

GFLOP/s (% peak) 1.02 (1.4%) 0.84 (4.8%) 1.50 (2.0%) 2.50 (13.4%) 0.34 (2.7%) —
GB/s (% peak) 6.12 (28.7%) 5.04 (47.3%) 9.00 (84.4%) 15.00 (70.3%) 2.04 (8.0%) —

Table 8.2: Initial SpMV peak floating-point and memory bandwidth performance for the
dense matrix stored in sparse format. Note, on NUMA architectures, percentage of peak
bandwidth is defined as percentage of single socket bandwidth. The Cell SPE version cannot
be run without further essential optimizations.

1 GFLOP/s or 6 GB/s. Clearly, the snoop filter can eliminate snoop traffic on the dual
independent bus for the smallest matrices — Harbor, QCD, and Economics. As a result,
they see bandwidths up to 10.5 GB/s. Nevertheless, this is far below either the aggregate
FSB or total DRAM bandwidth. As expected, capacity misses on the source vectors of the
largest two matrices impairs performance on Clovertown.

Both Santa Rosa and Barcelona Opteron performance is quite similar. Santa Rosa
typically delivers better than 0.8 GFLOP/s or about 5 GB/s, where Barcelona typically
delivers nearly 1.5 GFLOP/s or nearly 9 GB/s. Although the sustained bandwidth on
Santa Rosa is far below a single socket’s 10.66 GB/s, sustained Barcelona bandwidth is
approaching the limits of a single socket. Thus, when bandwidth-limited, multicore scaling
is expected to be poor. In fact, 4-way parallelism only doubled Santa Rosa performance,
where 8-way parallelism only improved Barcelona performance by a factor of 2.5×. Unlike
Clovertown with its giant caches, capacity misses strike Barcelona and Santa Rosa on the
six most challenging matrices.

At this point — simple parallelization — Victoria Falls is clearly the best per-

165

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

D
en

se

Pr
o
te

in

S
p
h
er

es

C
an

t
Tu

n
n
el

H

ar
b
o
r

Q
C
D

S
h
ip

E
co

n

E
p
id

em

A
cc

el

C
ir
cu

it

W
eb

b
as

e
LP

M
ed

ia
n

G
F
L
O

P
/

s
Xeon E5345

(Clovertown)
+Parallel
Naïve

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

D
en

se

Pr
o
te

in

S
p
h
er

es

C
an

t
Tu

n
n
el

H

ar
b
o
r

Q
C
D

S
h
ip

E
co

n

E
p
id

em

A
cc

el

C
ir
cu

it

W
eb

b
as

e LP

M
ed

ia
n

G
F
L
O

P
/

s

Opteron 2214
(Santa Rosa)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

D
en

se

Pr
o
te

in

S
p
h
er

es

C
an

t
Tu

n
n
el

H

ar
b
o
r

Q
C
D

S
h
ip

E
co

n

E
p
id

em

A
cc

el

C
ir
cu

it

W
eb

b
as

e
LP

M
ed

ia
n

G
F
L
O

P
/

s

Opteron 2356
(Barcelona)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

D
en

se

Pr
o
te

in

S
p
h
er

es

C
an

t
Tu

n
n
el

H

ar
b
o
r

Q
C
D

S
h
ip

E
co

n

E
p
id

em

A
cc

el

C
ir
cu

it

W
eb

b
as

e
LP

M
ed

ia
n

G
F
L
O

P
/

s

UltraSparc T2+ T5140
(Victoria Falls)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

D
en

se

Pr
o
te

in

S
p
h
er

es

C
an

t
Tu

n
n
el

H

ar
b
o
r

Q
C
D

S
h
ip

E
co

n

E
p
id

em

A
cc

el

C
ir
cu

it

W
eb

b
as

e
LP

M
ed

ia
n

G
F
L
O

P
/

s
QS20 Cell Blade

(PPEs)

Cell SPE version
was not auto-tuned

Figure 8.8: Näıve serial and parallel SpMV performance.

forming architecture delivering 2.5 GFLOP/s or 15 GB/s. This represents about 70% of a
socket’s bandwidth. Performance is higher than any other architecture because the machine
has double the bandwidth per socket and nearly comparable efficiency. Like the Opterons,
the limited cache cannot contain the largest vectors. Additionally, the small number of
rows in the extreme aspect ratio Linear Programming matrix does not lend itself to massive
parallelization by rows.

As the Cell SPE version cannot be run without significant further requisite opti-
mizations, we initially only examine the Cell PPE performance. It is clear that two-way
in-order multithreading on each core is wholly insufficient in satisfying the approximately
5 KB of concurrency required per socket by Little’s Law (200 ns × 25 GB/s). As a re-
sult, the Cell PPE version delivers pathetic performance even when compared to the other
architectures — delivering less than 0.4 GFLOP/s. Nevertheless, it is clear that together
multithreading and multicore delivered at 3.4× speedup over näıve serial.

8.4.3 Exploiting NUMA

At this point, without further optimization, it is reasonable to conclude that
Clovertown is FSB-bound, the Opterons and Victoria Falls are likely single-socket mem-
ory bandwidth-bound, and the Cell PPEs are latency-bound — they do not satisfy Little’s
Law. As such, fully engaging the memory controllers on the second socket is essential in
increasing memory bandwidth on Santa Rosa, Barcelona, and Victoria Falls. (Doubling

166

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

D
en

se

Pr
o
te

in

S
p
h
er

es

C
an

t
Tu

n
n
el

H

ar
b
o
r

Q
C
D

S
h
ip

E
co

n

E
p
id

em

A
cc

el

C
ir
cu

it

W
eb

b
as

e
LP

M
ed

ia
n

G
F
L
O

P
/

s
Xeon E5345

(Clovertown)
+Prefetch
+NUMA
+Parallel
Naïve

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

D
en

se

Pr
o
te

in

S
p
h
er

es

C
an

t
Tu

n
n
el

H

ar
b
o
r

Q
C
D

S
h
ip

E
co

n

E
p
id

em

A
cc

el

C
ir
cu

it

W
eb

b
as

e LP

M
ed

ia
n

G
F
L
O

P
/

s

Opteron 2214
(Santa Rosa)

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

D
en

se

Pr
o
te

in

S
p
h
er

es

C
an

t
Tu

n
n
el

H

ar
b
o
r

Q
C
D

S
h
ip

E
co

n

E
p
id

em

A
cc

el

C
ir
cu

it

W
eb

b
as

e
LP

M
ed

ia
n

G
F
L
O

P
/

s

Opteron 2356
(Barcelona)

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

D
en

se

Pr
o
te

in

S
p
h
er

es

C
an

t
Tu

n
n
el

H

ar
b
o
r

Q
C
D

S
h
ip

E
co

n

E
p
id

em

A
cc

el

C
ir
cu

it

W
eb

b
as

e
LP

M
ed

ia
n

G
F
L
O

P
/

s

UltraSparc T2+ T5140
(Victoria Falls)

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

D
en

se

Pr
o
te

in

S
p
h
er

es

C
an

t
Tu

n
n
el

H

ar
b
o
r

Q
C
D

S
h
ip

E
co

n

E
p
id

em

A
cc

el

C
ir
cu

it

W
eb

b
as

e
LP

M
ed

ia
n

G
F
L
O

P
/

s
QS20 Cell Blade

(PPEs)

Cell SPE version
was not auto-tuned

Figure 8.9: SpMV performance after exploitation of NUMA and auto-tuned software
prefetching.

the available bandwidth will not help the Cell PPEs) Thus, we must update our matrix
initialization routines to exploit NUMA. As each thread block described in Section 8.4.2
is individually malloc()’d, it is possible to modify the malloc() routines to allocate the
thread block on the same socket so that the thread tasked to process it will be assigned to
it. On Victoria Falls, we implement our own simplified, NUMA-aware, heap management
routines. We maintain one heap per socket. The first vector is placed on the first socket
and the second vector is placed on the second socket. Remember, we alternate between
y = Ax and x = Ay. Figure 8.9 shows performance after the auto-tuner exploits NUMA
optimizations. We discuss the results in conjunction with those of the following section.

8.4.4 Software Prefetching

Previous work [81, 140] has shown that software prefetching can significantly im-
prove streaming bandwidth. We reproduce that optimization here. We perform an exhaus-
tive search for the optimal prefetch distance for both the value and column index arrays.
Note no prefetching is not the same as prefetch by zero, because a completely different code
variant is generated. With two prefetched arrays, four variants are generated. We search
the prefetch distances from 0 to 1024 in increments of the cache line size.

As implemented, one prefetch is inserted per inner loop iteration — that is, one
per nonzero. Although simple, this is inefficient as only one prefetch is needed per eight or

167

Xeon E5345 Opteron 2214 Opteron 2356 T2+ T5140 QS20 Cell Blade
Machine

(Clovertown) (Santa Rosa) (Barcelona) (Victoria Falls) (PPE) (SPE)

GFLOP/s (% peak) 1.35 (1.8%) 2.32 (13.2%) 3.12 (4.2%) 3.83 (20.5%) 0.37 (2.9%) —
GB/s (% peak) 8.10 (38.0%) 13.92 (65.3%) 18.72 (87.8%) 22.98 (53.9%) 2.22 (4.3%) —

Speedup from
Optimization

+32% +176% +108% +53% +9% —

Table 8.3: SpMV peak floating-point and memory bandwidth performance for the dense
matrix stored in sparse format after auto-tuning for NUMA and software prefetching. The
Cell SPE version cannot be run without further essential optimizations. Speedup from
optimization is the incremental benefit from NUMA and software prefetching.

sixteen nonzeros. Thus, we don’t expect optimal bandwidth on architectures that don’t co-
alesce redundant prefetches. Section 8.4.5 will show how this can be significantly improved.

Figure 8.9 on the previous page shows performance after the inclusion of NUMA
and software prefetching in the auto-tuning framework. There is a significant benefit in
correctly exploiting NUMA on the memory-bound NUMA architectures. Additionally, there
is a moderate benefit from software prefetching on all architectures. For reference, Table 8.3
shows the floating-point and bandwidth performance for the dense matrix in sparse format.

The two Clovertown sockets interface with DRAM through a common external
memory controller hub. Just as in Chapter 6 for LBMHD, NUMA will have no benefit on
a uniform memory access architecture. Despite instantiating five hardware prefetchers on
each Clovertown chip, software prefetching is surprisingly beneficial — delivering approxi-
mately roughly a 25% boost for many matrices. Once again, the snoop filter delivers better
bandwidth for the smaller matrices — Harbor, QCD, Economics. In fact, the Economics
matrix achieves better than 14 GB/s. However, the larger dense matrix only attains about
8 GB/s.

The NUMA optimization is immensely beneficial on both the Santa Rosa and the
Barcelona Opterons: it doubles performance. On top of this, software prefetching further
improves the performance of the well structured matrices. Santa Rosa and Barcelona are
about 1.7× and 2.3× faster than Clovertown on the dense matrix. This performance implies
Santa Rosa and Barcelona achieve 13.9 and 18.7 GB/s, respectively. These bandwidths are
approximately 65% and 88% of peak bandwidth. Clearly, AMD dramatically improved
the memory subsystem on Barcelona through the addition of a DRAM prefetcher. There
remains a performance bifurcation on the Opteron. Matrices for which the vectors do not
fit in cache continue to run slowly — NUMA and software prefetching don’t address this
deficiency.

The Victoria Falls results are very counterintuitive. First, the NUMA optimization
only improved performance by about 50%. This suggests that the relatively low frequency,
dual-issue cores are likely becoming instruction issue-limited rather than bandwidth-limited.
Second, unlike the other architectures, software prefetching helped on the challenging ma-
trices rather than on the well structured ones. It is likely that large numbers of capacity
misses to the source vector will generate many long latency misses that normally stall the
in-order cores. The inclusion of software prefetching injects more concurrency into the mem-
ory subsystem than multithreading alone is capable of. Nevertheless, SpMV performance is

168

typically about 4 GFLOP/s, or nearly 24 GB/s. However, despite the performance boost,
Victoria Falls is now only 20% faster than the Barcelona Opteron in the median case.

The NUMA and software prefetching optimizations are designed to improve mem-
ory bandwidth. As the Cell PPE doesn’t satisfy Little’s Law, it will see little benefit. In
fact, although it sees a 23% boost in the median case, these optimizations only improve
performance on the dense case by 8%. The inefficient implementation of software prefetch-
ing within a 1×1 CSR is obvious on this architecture as there is no other latency hiding
paradigm to fall back upon. Victoria Falls is about 10× faster than the Cell PPEs.

8.4.5 Matrix Compression

Tables 8.2 and 8.3 clearly showed SpMV performance is nearly memory or FSB-
bound after parallelization, exploitation of NUMA, and auto-tuning the software prefetch
distance. Moreover, performance is primarily limited by compulsory cache misses. The
only hope for improved performance is the elimination of compulsory misses associated
with the loading of the matrix. There are two potential solutions: changing the algorithm
as exemplified by Ak methods [40], or compressing the matrix. We explore the latter. SpMV
is dominated by reads, not writes. Thus, cache bypass is not applicable as it eliminates the
write allocate behavior.

Strategies

Our first strategy attempts to eliminate sparsely spaced row indices or redundant
row pointers. Associated with each nonzero, there is some meta data used to calculate
the appropriate row and column index. In coordinate (COO), coupled with each nonzero
is a row and column index. One may sort the nonzeros by rows then by columns. As
such, many adjacent nonzeros have the same row index. CSR eliminates these redundant
indices in favor of a row pointer for each row. As the sparsity pattern for a thread (or
eventually cache) block may have many empty rows, COO may result in a smaller footprint
on some matrices, while CSR may be smaller on others. Selection of the appropriate format
may eliminate redundant meta data, and result in higher SpMV performance. In practice,
we didn’t observe substantial selection of COO over CSR with the row start/end (RSE)
optimization [99] on cache-based architectures. Thus, the benefit from COO was miniscule.

Our second strategy attempts to keep the column indices as small as possible.
The columns spanned by a thread block (last column− first column) may be significantly
less than 232. As such, many of the high bits in every 32-bit column index will be zero —
why load zeros over and over? Thus, we allow any block spanning less than 216 columns
to use 16-bit indices rather than the standard 32-bit indices used in CSR. In general, this
approach could be extended to select the minimum number of requisite bytes or ultimately
the minimum number of bits. For simplicity, we restrict compression of indices to either
none or by 16 bits.

The third strategy we employ attempts to eliminate neighboring column and row
indices all together. OSKI exploits register blocking as a technique designed to improve peak
performance. It encodes matrices in a format known as Blocked Compressed Sparse Row
(BCSR). Often, on single core machines of five years ago, the performacne gains come from

169

expression of instruction and data-level parallelism in the number of rows in a register block.
Additionally, the loop overhead per nonzero is amortized. As a result, it was not uncommon
for a serendipitous increase in total matrix size to result in an increase in performance.

Fast-forward five years, and architecture has changed dramatically. Multicore
provides abundant and untapped parallelism but little additional memory bandwidth. As
a result, bandwidth is the resource that must be conserved. We do not employ register
blocking (BCSR) to increase the expression of parallelism. Rather, we exploit register
blocking to eliminate redundant meta data. Thus, for every register block, we select a
potentially unique register blocking that minimizes that thread block’s memory footprint.
For simplicity we only explore the 16 power of 2 register blockings between 1×1 and 8×8
inclusive. Asymptotically, register blocking can eliminate 33% of the total memory traffic,
resulting in a 50% increase in the FLOP:Byte ratio. When prefetching, we insert at least
one prefetch per register block, asymptotically one per cache line. Thus, small register
blocks — less than a cache line — have more prefetches than necessary.

We combine the previous five techniques into a one pass data structure optimiza-
tion routine. For each thread block, we scan through its columns eight rows at a time. We
copy the nonzeros we detect into a single 8×8 register block. When we have covered eight
adjacent columns, column scanning stops, and we analyze the resultant 8×8 register block
to calculate how many R×C tiles it contains for all R and C. A running tally of the total
number of R×C tiles is incremented. Thus, when the thread block has been completely
scanned, the total number of requisite tiles associated with any power of 2 register blocking
are known exactly. We then examine all valid combinations of format register blocking and
index size, and select the combination that minimizes the total memory footprint of the
thread block. Note, that each thread block is individually compressed. Thus, it is possible
for a matrix to include hundreds of different blockings.

Results

Figure 8.10 on the following page shows performance after matrix compression
is added to the auto-tuning framework. Interestingly, acorss architectures, some matrices
see significant benefits, while others see none. Thus, we move away from the previous
results where performance was dictated by memory bandwidth and cache capacity misses.
Victoria Falls clearly delivers the highest peak and median performances. However, the
Opteron Barcelona delivers comparable median performance. Although both 1.166 GHz
Victoria Falls and the 2.3 GHz Barcelona are considered low frequency parts, Victoria
Falls is far from the bandwidth limit. Consequently, moderate frequency improvements will
translate into moderate increases in performance. As Barcelona is near the bandwidth limit,
higher frequency will show little benefit. Table 8.4 shows the floating-point and bandwidth
performance for the dense matrix in sparse format.

On Clovertown, matrix compression doubled the SpMV performance on the dense
matrix in sparse format using better than half of the raw DRAM bandwidth. This was
quite surprising, as register blocking nominally would improve performance by 50%. There
are two reasons for this boost to performance. First, in 1×1 CSR software prefetching is
implemented by inserting one software prefetch intrinsic per nonzero. Clearly, this generates
eight to sixteen times more prefetches than are required depending on the line size. When

170

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

D
en

se

Pr
o
te

in

S
p
h
er

es

C
an

t
Tu

n
n
el

H

ar
b
o
r

Q
C
D

S
h
ip

E
co

n

E
p
id

em

A
cc

el

C
ir
cu

it

W
eb

b
as LP

M
ed

ia
n

G
F
L
O

P
/

s
Xeon E5345

(Clovertown)
+Compression
+Prefetch
+NUMA
+Parallel
Naïve

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

D
en

se

Pr
o
te

in

S
p
h
er

es

C
an

t
Tu

n
n
el

H

ar
b
o
r

Q
C
D

S
h
ip

E
co

n

E
p
id

em

A
cc

el

C
ir
cu

it

W
eb

b
as

e LP

M
ed

ia
n

G
F
L
O

P
/

s

Opteron 2214
(Santa Rosa)

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

D
en

se

Pr
o
te

in

S
p
h
er

es

C
an

t
Tu

n
n
el

H

ar
b
o
r

Q
C
D

S
h
ip

E
co

n

E
p
id

em

A
cc

el

C
ir
cu

it

W
eb

b
as

e
LP

M
ed

ia
n

G
F
L
O

P
/

s

Opteron 2356
(Barcelona)

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

D
en

se

Pr
o
te

in

S
p
h
er

es

C
an

t
Tu

n
n
el

H

ar
b
o
r

Q
C
D

S
h
ip

E
co

n

E
p
id

em

A
cc

el

C
ir
cu

it

W
eb

b
as

e
LP

M
ed

ia
n

G
F
L
O

P
/

s

UltraSparc T2+ T5140
(Victoria Falls)

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

D
en

se

Pr
o
te

in

S
p
h
er

es

C
an

t
Tu

n
n
el

H

ar
b
o
r

Q
C
D

S
h
ip

E
co

n

E
p
id

em

A
cc

el

C
ir
cu

it

W
eb

b
as

e
LP

M
ed

ia
n

G
F
L
O

P
/

s
QS20 Cell Blade

(PPEs)

Cell SPE version
was not auto-tuned

Figure 8.10: SpMV performance after matrix compression.

the number of elements in a register block is a perfect multiple of the cache line size, only
one prefetch is inserted per cache line. This is clearly the optimal case. As such, bandwidth
is improved. Finally, matrix compression reduces the memory footprint of a matrix. As
a result, the snoop filter becomes more effective, and snoops are generated less frequently.
Many other matrices amenable to register blocking saw significant boosts to performance.

The Santa Rosa and Barcelona Opterons continued to deliver very good memory
bandwidths with Santa Rosa showing a 7% increase in bandwidth on the dense matrix.
Of course, register blocking on the dense matrix reduces memory traffic by 33%. Thus
performance improved by 1.6× and 1.5×, respectively. Barcelona delivered 1.7× better
performance than Clovertown for both the dense and median cases. Surprisingly, on the
most challenging matrix, Barcelona was 1.85× faster. This disparity arises from the fact
that vectors are swapped between successive SpMVs. Thus, for poorly structured matrices,
this swap acts much like an all-to-all broadcast — clearly a memory intensive operation.
Although the quad-core Barcelona consistently outperformed the dual-core Santa Rosa, the
lack of additional memory bandwidth severely limits scalability. In fact, Barcelona shows
little scalability beyond two cores per socket on SpMV. Much of the benefit is derived from
the vastly improved DRAM prefetcher.

The performance gains on Victoria Falls are enigmatic. Dense performance in-
creased by 90% while median performance only improved by 11%. The 1.16 GHz Victoria
Falls is a rather low frequency part with vast amounts of bandwidth. As a result, our as-

171

Xeon E5345 Opteron 2214 Opteron 2356 T2+ T5140 QS20 Cell Blade
Machine

(Clovertown) (Santa Rosa) (Barcelona) (Victoria Falls) (PPE) (SPE)

GFLOP/s (% peak) 2.78 (3.7%) 3.72 (21.1%) 4.64 (6.3%) 7.27 (38.9%) 1.29 (10.1%) —
GB/s (% peak) 11.12 (52.1%) 14.88 (69.8%) 18.56 (87.0%) 29.08 (68.2%) 5.16 (10.1%) —

Speedup from
Optimization

+106% +60% +49% +90% +249% —

Table 8.4: SpMV peak floating-point and memory bandwidth performance for the dense
matrix stored in sparse format after the addition of the matrix compression optimization.
The Cell SPE version cannot be run without further essential optimizations. Speedup from
optimization is the incremental benefit from matrix compression.

sumption that with enough threads any code should be memory-bound is certainly not true
on this architecture. Hence, the matrix compression heuristic — minimize matrix footprint
— may not yield optimal or even superior results.

The dense matrix likely sees dramatic performance gains for several reasons. First,
effective prefetching injects more parallelism into the memory subsystem than threading
alone. This results in a 20% performance boost over register blocking without prefetching.
Second, there is a low fraction of floating-point instructions in the 1×1 CSR SpMV imple-
mentation. On architectures that are instruction bandwidth-limited, increasing the faction
of floating-point instructions in the instruction mix through elimination of non-floating-
point instructions will improve performance. This improvement is clearly shown in the
Victoria Falls Roofline model in Figure 8.4 on page 159. Register blocking will asymptoti-
cally improve the floating-point fraction from around 12% to better than 50%. Additional
experiments have shown that the 1.4 GHz Victoria Falls delivers proportionally better per-
formance, lending credence to our hypothesis that SpMV performance is limited by in-core
performance. A bandwidth-only heuristic is inappropriate for architectures with extremely
low FLOP:Byte ratios.

Aside from minimalistic multithreading, software prefetching is the only latency
hiding technique possessed by the Cell PPEs. As such, any implementation that efficiently
exploits it will significantly improve memory bandwidth. Register blocking in conjunction
with efficient software prefetching improved dense performance by 3.5× but median per-
formance by only 1.2×. As a result, sustained memory bandwidth on the dense matrix
improved by 2.3×. Clearly, register blocking not only reduces memory traffic, but also in-
creases memory bandwidth. Like Victoria Falls, the heuristic used on the Cell PPE should
be augmented. However, for the PPE, the variation in memory bandwidth induced by ef-
fective software prefetching necessitates a heuristic which incorporates traffic, bandwidth,
and execution time profiles for each and every register blocking.

8.4.6 Cache, Local Store, and TLB blocking

With regard to the matrix, we have discussed strategies designed to minimize
conflict and compulsory misses: padding and compression. Capacity misses are not an
issue as there is no temporal reuse of the nonzeros. However, nearly half of the matrices
will show large numbers of capacity misses associated with the source vectors. These can be

172

(b)
cache blocked matrix

(a)
original matrix

Figure 8.11: Conventional Cache Blocking: (a) The original matrix stored in CSR, (b) The
matrix is blocked so that each cache block spans the same fixed number of columns. Each
cache block is individually stored in CSR. In practice, each cache block should span between
10K and 100K columns.

divided into two categories: those that generate capacity misses within a SpMV, and those
that cannot hold the vectors in cache between SpMV’s. The latter is the class of matrices
whose bandwidths are smaller than the cache sizes, but whose vectors do not fit in cache
— consider a billion row tri-diagonal matrix. In this section, we focus on the former for
cache-based machines, and both types for the Cell processor.

Figure 8.11(b) on page 172 illustrates the näıve attempts [99, 141] to simply par-
tition the matrix into blocked columns whose corresponding source vector elements can fit
in cache. Hence, there are N/CacheBlockSize blocked columns in the resultant matrix.
Each cache blocked column would then be stored in CSR with its own value, column, and
row pointer arrays. This optimization was nothing more than applying the standard cache
blocking techniques found in structured grids and dense linear algebra to SpMV. This was
extended to the parallel case for the Cell processor by assigning rows to each SPE [141].
The local store on Cell restricted cache blocks to be less than 16K elements wide, as the
equivalent of a capacity miss must be handled in software. Thus, the largest matrices could
not be run as they would require as many as 100 blocked columns stored in CSR each
with a 1M element row pointer array. This would exceed the main memory capacity of
a Cell blade. As a result, the matrices previously capable of running the Cell blade were
very small. One final point is that this approach does not partition the data structure for
NUMA or multicore. Combining these inefficiencies make this approach very unattractive.

Strategy

In this work, we extend the standard cache blocking techniques from dense linear
algebra to the sparse motif. In a dense matrix-vector multiplication, every source vector
element will be used repeatedly. In the sparse case, this may not be true. Due to sparsity,
some elements will never be used in the current cache block. Thus no cache or local store
capacity should be reserved to store them. The goal is to only load the cache lines containing
one or more source vector elements that will be used in the current cache block. Although

173

(b)
thread and sparse cache blocked matrix

(a)
thread blocked matrix

th
re

ad
 0

th
re

ad
 1

th
re

ad
 2

th
re

ad
 3

th
re

ad
 0

th
re

ad
 1

th
re

ad
 2

th
re

ad
 3

Figure 8.12: Thread and Sparse Cache Blocking: (a) a thread blocked matrix. Each thread
block is individually stored in CSR, (b) A thread and sparse cache blocked matrix. Each
cache block is individually stored in CSR. In addition, although they may span vastly
different numbers of columns, each cache block should touch the same number of source
vector cache lines or source vector TLB pages.

cache blocks may span vastly different numbers of columns, they should all touch the same
number of cache lines. Figure 8.12(b) on page 173 illustrates the sparse cache blocking
technique when applied on a previously thread blocked matrix. Clearly, the number of
columns spanned can vary greatly. However, the number of requisite source vector cache
lines per cache block is roughly constant.

Traditional cache blocking is sparsity agnostic. To effectively block for a sparse
matrix, the matrix must be examined. In our approach, each architecture has a specified
cache capacity broken into a number of cache lines and the number of doubles per line. We
allocate 40% of that to caching source vectors, reserve another 20% for caching row pointers,
and the remaining 40% for caching destination vector elements. Thus, we have specified the
number cache blocked rows to partition each thread block into: 40% of the cache capacity.
During the data structure optimization phase, we scan through the resultant cache blocked
row and mark which source vector cache lines are referenced. We then convert this bitmask
into a cumulative distibution. By columns, we scan through the cache blocked row a second
time. When the fraction of the cumulative distribution reaches the cache capacity we stop
scanning and create a new cache block. Column indices are DRAM relative, but are stored
relative to the first column within the cache block. This allows for more effective index
compression (discussed in Section 8.4.5) even on matrices that don’t suffer from vector
capacity misses. In addition, for CSR, we store the indices of the first and last non-empty
row to avoid data transfers and computation on empty rows; the row start/end (RSE)
optimization [99].

This technique can be trivially extended to blocking for Cell’s local store. The
difference is that instead of encoding a DRAM relative column indices relative to the first
column and relying on the cache to handle misses, a DMA gather list must be created and

174

column indices are stored relative to their local store (gathered) addresses. This approach
is not difficult. As we scan through the cumulative distribution we simultaneously create a
DMA list element for each contiguous stanza of referenced cache lines. During execution of
each cache block, its DMA list must be loaded. Note, each DMA list item contains the base
address relative to the source vector and the number of bytes in the transfer. However, the
DMA list command treats the addresses as absolute DRAM addresses rather than relative
to some base. Thus, after the list itself is read into the local store, every address must be
incremented by the address of the first element of the vector.

The resultant Cell code is orchestrated with clockwork precision:

1. The cache block after next header is loaded via a double buffered DMA. The headers
contain all the relevant parameters, and pointers for the given cache block.

2. Concurrently, the next cache block’s list of DMAs is loaded while simultaneously
executing the DMA gather for the current cache block packing the result into the
local store.

3. At the same time, the working copy of the destination vector can be zeroed out. Once
that is complete, the flow control takes over and streams through blocks of nonzeros
tiles.

4. Each tile is decoded and processed accessing the appropriate element of the source
vector copy. The row’s running sum is always written to the local copy of the des-
tination vector. When done with all buffers of nonzeros, the copy of the destination
vector is copied back to DRAM via a DMA.

5. Neither copy of the source and destination vectors is double buffered to maximize
available local store capacity.

Observe that the same sparse cache blocking technique can be applied to TLB
blocking. The only difference is in the granularity: 32 entries of 512 doubles instead of 8K
entries of 8 doubles. Thus, we may reuse the same code but block for the TLB rather than
the cache. The code still scans through the matrix marking touched blocks — pages in this
case. Most architectures use 4K pages (512 doubles), but Solaris uses 4 MB pages. Hence,
we don’t explore TLB blocking on Victoria Falls.

Results

Figure 8.14 on page 176 shows performance after cache and TLB blocking are
added to the auto-tuning framework. Note that with this last set of optimizations, we can
start including results for the Cell SPEs. Although the blocking parameters are based on
heuristics, we search on three global strategies: no blocking, only cache blocking, cache
and TLB blocking. In the figure, the latter two strategies are combined into a single
optimization. Blocking should only be expected to be beneficial on matrices with very
large bandwidths. Remember, matrix bandwidth is the bandwidth for which Aij = 0 when
|i − j| > BW . Only two matrices fall into this class: Webbase and Linear Programming.
Webbase suffers from very short rows — averaging less than three nonzeros per row, but

175

V[i]

X[C[i]]

row indices

column indices

!=

D
M

A
to

/fr
om

 D
RA

M

D
ou

bl
e

bu
ffe

r
no

nz
er

os

1

3,5

2

values

Gather stanzas from DRAM
(execute the DMA list)

X

Source vector in DRAM

parameters lists

Gather lists in DRAM

3

4 D
es

tin
at

io
n

ve
ct

or
 in

 D
R

A
M

Y

flow
control

Figure 8.13: Orchestration of DMAs and double buffering on the Cell SpMV
implementation.

the linear programming matrix has very long rows and very high bandwidths. Across
most architectures, the linear programming matrix is consistently the only matrix to show
speedups. Moreover, it was typically the conjunction of cache and TLB blocking that
showed the larger speedup. Table 8.5 shows the floating-point and bandwidth performance
for the dense matrix in sparse format. Note that only the Cell SPE data is different in this
table as cache blocking is not beneficial on a small matrix but is essential for a local store
implementation.

Despite Clovertown’s 16 MB of L2 cache, cache and TLB blocking improved
performance on the linear programming matrix by 1.8×. The matrix bandwidth is suf-
ficiently large that it cannot fit in any chip’s 4 MB of L2 cache. Barcelona also saw a
1.8× speedup from cache and TLB blocking despite each chip also having only 4 MB. In
the end, Barcelona’s significantly greater bandwidth resulted in it being 1.85× faster than
Clovertown. Interestingly, Victoria Falls, also with 4 MB of cache per chip, only saw a 1.1×
increase in performance. Perhaps its untapped memory bandwidth softened the capacity
cache miss penalty. Alternatively, as TLB blocking was often more valuable on the x86
machines, Solaris’ use of 4 MB pages eliminated the benefit on Victoria Falls. The benefit
of cache and TLB blocking was even greater on the machines with small caches or TLBs.
The Santa Rosa Operton and the Cell PPE saw a 2.5× and 2.6× improvement, respectively.

Due to the weak double-precision implementation and lack of scalar instructions
like those available in x86 SSE, the minimum register blocking implemented on the Cell
SPEs was 2×1. This is trivially SIMDized, making the kernels easy to implement. How-
ever, the downside is that 1×1 register blocking is the optimal blocking on many matrices.
As a result, Cell will often require more memory traffic for the matrix than the other archi-
tectures. Furthermore, to further expedite implementation on Cell, only a sorted blocked

176

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

D
en

se

Pr
o
te

in

S
p
h
er

es

C
an

t
Tu

n
n
el

H

ar
b
o
r

Q
C
D

S
h
ip

E
co

n

E
p
id

em

A
cc

el

C
ir
cu

it

W
eb

b
as LP

M
ed

ia
n

G
F
L
O

P
/

s
Xeon E5345

(Clovertown)
+Cache/TLB Block
+Compression
+Prefetch
+NUMA
+Parallel
Naïve

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

D
en

se

Pr
o
te

in

S
p
h
er

es

C
an

t
Tu

n
n
el

H

ar
b
o
r

Q
C
D

S
h
ip

E
co

n

E
p
id

em

A
cc

el

C
ir
cu

it

W
eb

b
as

e LP

M
ed

ia
n

G
F
L
O

P
/

s

Opteron 2214
(Santa Rosa)

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

D
en

se

Pr
o
te

in

S
p
h
er

es

C
an

t
Tu

n
n
el

H

ar
b
o
r

Q
C
D

S
h
ip

E
co

n

E
p
id

em

A
cc

el

C
ir
cu

it

W
eb

b
as

e
LP

M
ed

ia
n

G
F
L
O

P
/

s

Opteron 2356
(Barcelona)

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

D
en

se

Pr
o
te

in

S
p
h
er

es

C
an

t
Tu

n
n
el

H

ar
b
o
r

Q
C
D

S
h
ip

E
co

n

E
p
id

em

A
cc

el

C
ir
cu

it

W
eb

b
as

e
LP

M
ed

ia
n

G
F
L
O

P
/

s

UltraSparc T2+ T5140
(Victoria Falls)

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

D
en

se

Pr
o
te

in

S
p
h
er

es

C
an

t
Tu

n
n
el

H

ar
b
o
r

Q
C
D

S
h
ip

E
co

n

E
p
id

em

A
cc

el

C
ir
cu

it

W
eb

b
as

e
LP

M
ed

ia
n

G
F
L
O

P
/

s
QS20 Cell Blade

(PPEs)

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

D
en

se

Pr
o
te

in

S
p
h
er

es

C
an

t
Tu

n
n
el

H

ar
b
o
r

Q
C
D

S
h
ip

E
co

n

E
p
id

em

A
cc

el

C
ir
cu

it

W
eb

b
as

e
LP

M
ed

ia
n

G
F
L
O

P
/

s

QS20 Cell Blade
(SPEs)

Figure 8.14: SpMV performance after cache, TLB, and local store blocking were imple-
mented. Note local store blocking is required for correctness when using the Cell SPEs.

coordinate format (BCOO) was used. Blocked compress sparse row is significantly more
difficult to implement on a double buffered DMA architecture and would provide relatively
little benefit. As mentioned, the local store is sufficiently small to allow 16-bit indices to
always be used in conjunction with cache blocking for DMA. As a result, every nonzero tile
is at least a 2×1 block with a 16-bit column coordinate, and a 16-bit row coordinate. Thus
in the worst case, arithmetic intensity will be less than 0.10. Nevertheless, in the best case,
the best arithmetic intensity will be nearly the same as any other machine: 0.25. Hence,
one would expect Cell to win on the easy matrices as it has more bandwidth and the same
arithmetic intensity. However, it will be significantly challenged on the complex matrices
as all spatial and temporal locality will have to be found and encoded into the matrix, and
the combination of register blocking and format will hurt the arithmetic intensity.

The Cell SPEs and PPE share the same memory controllers and thus have access to
the same memory raw bandwidth. Despite collectively the SPEs having the same bandwidth
and little more than double the peak double-precision FLOPs, the SPE version of the code
delivers more than a 15× speedup in the median case. When examining memory bandwidth
on the dense case it becomes blatantly obvious that DMA is extremely effective in utilizing
the available memory bandwidth — achieving about 92% of the raw bandwidth. On the
same matrix, Cell nearly doubles Victoria Falls’ performance, tripples Opteron performance,
and quadruples Clovertown performance.

177

Xeon E5345 Opteron 2214 Opteron 2356 T2+ T5140 QS20 Cell Blade
Machine

(Clovertown) (Santa Rosa) (Barcelona) (Victoria Falls) (PPE) (SPE)

GFLOP/s (% peak) 2.78 (3.7%) 3.72 (21.1%) 4.64 (6.3%) 7.27 (38.9%) 1.29 (10.1%) 11.78 (40.2%)
GB/s (% peak) 11.12 (52.1%) 14.88 (69.8%) 18.56 (87.0%) 29.08 (68.2%) 5.16 (10.1%) 47.1 (92.0%)

Table 8.5: SpMV floating-point and memory bandwidth performance for the dense matrix
stored in sparse format after the addition of cache, local store, and TLB blocking.

Although peak Cell performance is very good, qualitatively the performance dis-
tribution is lacking the consistent behavior seen on the Opteron. This arises because Cell’s
use of 2×1 BCOO for productivity can severely hamper performance when 1×1 BCSR
is optimal. We believe that 1×1 BCSR can be implemented on the new eDP (enhanced
double-precision) QS22 blades without fear of making the code computationally-bound.
Nevertheless, sparse cache blocking to encode spatial and temporal locality when the ma-
trix is created was effective despite the tiny 256 KB local store capacity.

8.5 Summary

Table 8.6 on the next page details the optimizations used by each architecture
and grouped by the Roofline-oriented optimization goal: maximizing memory bandwidth,
minimizing total memory traffic, and maximizing in-core performance. In addition, for each
optimization, we list how the auto-tuner found the relevant parameters for each matrix for
each architecture. Note that the Cell SPE implementation used every optimization as the
cache implementation except it never selects CSR as the format, and always chooses a
register blocking greater than 2×1.

178

Bandwidth Auto-tuning Xeon E5345 Opteron 2214 Opteron 2356 T2+ T5140 Cell Blade
Optimization approach (Clovertown) (Santa Rosa) (Barcelona) (Victoria Falls) (PPE) (SPE)

NUMA
Allocation

model N/A X X X X X

Prefetch/DMA
(matrix)

search5 X X X X X X

Prefetch/DMA
(vectors)

heuristic — — — — — X

Traffic Auto-tuning Xeon E5345 Opteron 2214 Opteron 2356 T2+ T5140 Cell Blade
Optimization approach (Clovertown) (Santa Rosa) (Barcelona) (Victoria Falls) (PPE) (SPE)

Array
Padding

model X X X X X X

Register
Blocking

heuristic X1 X1 X1 X1 X1 X2

Format
(BCSR)

heuristic X X X X X —

Format
(BCOO)

heuristic X X X X X X

Cache / TLB
Blocking

heuristic6 X X X X X X3

In-core Auto-tuning Xeon E5345 Opteron 2214 Opteron 2356 T2+ T5140 Cell Blade
Optimization approach (Clovertown) (Santa Rosa) (Barcelona) (Victoria Falls) (PPE) (SPE)

SIMDized N/A X X X N/A N/A X

Branchless N/A X4 X4 X4 — — X

Software
Pipelined

N/A — — — — — X

Table 8.6: Auto-tuned SpMV optimizations employed by architecture and grouped by
Roofline optimization category: maximizing memory bandwidth, minimizing total mem-
ory traffic, and maximizing in-core performance. 1powers of two from 1×1 through 8×8,
2powers of two from 2×1 through to 8×8, 3sparse blocking for local store using DMA,
4implementation resulted in no observed speedup, 5Cell used only heuristics. 6search was
used to decide whether to block, but heuristics were used to determine the blocking param-
eters. Note optimization parameters may vary from one matrix to the next. In such cases,
a Xnotes that parameters were chosen.

179

0

1

2

3

4

5

6

7

8

Xeon E5345
(Clovertown)

Opteron 2214
(Santa Rosa)

Opteron 2356
(Barcelona)

T2+ T5140
(Victoria Falls)

QS20 Cell Blade

G
F
L
O
P
/
s

auto-tuned (ISA specific)
auto-tuned (portable C)
reference C code

Figure 8.15: Median SpMV performance before and after tuning.

8.5.1 Initial Performance

Auto-tuners are not completely automatic. Although the search process has been
automated, the optimization conceptualization process is still tied to a programmer. As
such, out-of-the box performance remains an interesting metric used to compare different
architectures. Figure 8.15 shows both näıvely parallelized and fully auto-tuned parallel
median SpMV performance across all five SMPs. The three x86 architectures deliver com-
parable out-of-the-box performance. Although Victoria Falls delivers more than twice the
performance of the Santa Rosa Opteron, the PPE’s on the Cell blade deliver less than half
the performance despite having more available DRAM read bandwidth than Victoria Falls.
We see that there was no benefit for ISA-specific auto-tuning on any architecture except
Cell.

Figure 8.16 on the next page shows SpMV performance on the dense matrix stored
in sparse format before and after auto-tuning. Most architectures are near their respective
streaming bandwidth limits. This should be no surprise as the diagonals in the chart refer
to kernels with unit-stride memory accesses — typical of SpMV on a dense matrix in sparse
format.

8.5.2 Speedup via Auto-Tuning

The benefits of auto-tuning SpMV varied wildly from one architecture to the next
but more significantly from one matrix to another. Clovertown is no exception. Although
some matrices saw speedups of 2.7×, the speedup in median performance was only 1.6×.
This result in itself is surprising as matrix compression can only reduce memory traffic by
33%. Clearly software prefetching played a small benefit, and there is the possibility that
some matrices were compressed sufficiently to fit either within the snoop filter or within
the caches. Thus, on some matrices we see a jump from the lower bandwidth diagonal in

180

0.5
1.0

1/8
actual flop:byte ratio

at
ta

in
ab

le
 G

FL
O

P/
s

2.0
4.0
8.0

16.0
32.0
64.0

128.0

1/4
1/2 1 2 4 8 16

0.5
1.0

1/8
actual flop:byte ratio

at
ta

in
ab

le
 G

FL
O

P/
s

2.0
4.0
8.0

16.0
32.0
64.0

128.0

1/4
1/2 1 2 4 8 16

0.5
1.0

1/8
actual flop:byte ratio

at
ta

in
ab

le
 G

FL
O

P/
s

2.0
4.0
8.0

16.0
32.0
64.0

128.0

1/4
1/2 1 2 4 8 16

Xeon E5345
(Clovertown)

Opteron 2214
(Santa Rosa)

UltraSparc T2+ T5140
(Victoria Falls)

0.5
1.0

1/8
actual flop:byte ratio

at
ta

in
ab

le
 G

FL
O

P/
s

2.0
4.0
8.0

16.0
32.0
64.0

128.0

1/4
1/2 1 2 4 8 16

QS20 Cell Blade
(PPEs)

0.5
1.0

1/8
actual flop:byte ratio

at
ta

in
ab

le
 G

FL
O

P/
s

2.0
4.0
8.0

16.0
32.0
64.0

128.0

1/4
1/2 1 2 4 8 16

QS20 Cell Blade
(SPEs)

0.5
1.0

1/8
actual flop:byte ratio

at
ta

in
ab

le
 G

FL
O

P/
s

2.0
4.0
8.0

16.0
32.0
64.0

128.0

1/4
1/2 1 2 4 8 16

Opteron 2356
(Barcelona) peak DP

w/out SIMD

w/out ILP

peak DP

w/out SIMD

w/out ILP

peak DP

w/out
ILP or SIMD

lar
ge

 da
tas

ets

peak DP

w/out SIMD

w/out ILP

mul/add imbalance

mul/add imbalance

mul/add imbalance

mul/add imbalance

peak DP

FP = 25%

FP = 12%

0.25

0.25

0.25

0.25

0.25

0.25

peak DP

w/out ILP

mul/add imbalance

Figure 8.16: Actual SpMV performance for the dense matrix in sparse format imposed over
a Roofline model of SpMV. Note the lowest bandwidth diagonal assumes a unit-stride access
pattern. Red diamonds denote untuned performance, where green circles mark fully tuned
performance. Note the log-log scale.

Figure 8.16 to the upper one. When examining scalability, it is clear that dual core and
dual socket are of value. However, quad core provides no additional benefit — a testament
to the bandwidth-limited nature of SpMV.

The Opterons are known to be capable of sustaining far greater bandwidth than
Clovertown. Moreover, sustained Opteron stream bandwidth is tied to whether or not
NUMA and software prefetching are effectively exploited. This observation is most readily
true for the case of the dense matrix in sparse format. Here, auto-tuning increased Santa
Rosa performance by 4.4× and Barcelona performance by 3.1× despite Barcelona’s higher
core count and improved hardware prefetching but identical raw bandwidth. The values of
these optimizations in conjunction with register blocking are clearly visible in Figure 8.16.
Although the dense matrix is an upper bound to performance and speedup, median perfor-
mance still improved by 3.2× and 2.6× respectively. When examining scalability, we see
that once again, quad core is of little value on SpMV for both the dense and the median
case.

On Victoria Falls, auto-tuning dramatically improved performance on some ma-
trices, but showed only modest benefits on others. Aside from parallelization, the only
optimization that showed any significant benefit to median performance was NUMA aware

181

matrix allocation, which provided 1.67× of the 1.9× total speedup. The Roofline in Fig-
ure 8.16 on the previous page clearly shows that the expected range of SpMV performance
straddles a dramatic and critical range in the fraction of the dynamic instruction mix that is
floating-point. Näıve SpMV may have a floating-point dynamic instruction fraction as little
as 10%. Register blocking has a triple advantage: increasing ILP, increasing arithmetic
intensity, and effectively exploiting software prefetching. Thus, the auto-tuned SpMV on
a dense matrix exploits all three, insuring the in-core ceilings are not a limiting factor in
performance. Thus, we believe median SpMV performance was limited by the fact that
simply minimizing memory traffic is insufficient on architectures with a low FLOP:Byte
balance. Multicore scalability across Victoria Falls’ 16 cores was 13× in the median case,
but dropped to 9.8× in the dense case. As discussed, the dense matrix can nearly saturate
a socket’s memory bandwidth. Thus, one only expects scaling until bandwidth saturation.

Cell required two implementations. The first, a portable auto-tuned implementa-
tion, only ran on the PPEs. Auto-tuning provided them nearly a 1.5× increase in perfor-
mance, but the raw performance remained much lower than the other cache-based archi-
tectures. When the SPE implementation was included, we saw a phenomenal 15× further
increase in performance over the auto-tuned 4-thread PPE implementation. Collectively,
auto-tuning the SPEs provided a 22× increase in performance over the parallelized standard
CSR implementation. Figure 8.16 on the preceding page demonstrates that although the
Cell PPE came close to the bandwidth Roofline for the dense matrix in sparse format, the
SPE implementation was completely limited by DRAM bandwidth.

8.5.3 Performance Comparison

When comparing auto-tuned performance, we see that the Santa Rosa Opteron is
1.3× and 1.6× faster than Intel’s Clovertown for the dense and median cases, respectively.
When moving to the quad-core Barcelona, we see it provides 1.25× and 1.4× the perfor-
mance of the Santa Rosa Opteron, and achieves better than 87% of its memory bandwidth.
This makes AMD’s quad-core nearly 1.7× and 2.4× as fast as Intel’s current quad-core
offering. In many ways, SpMV is an ideal match for Victoria Falls. Nevertheless, we see
Victoria Falls only achieves about 1.14× Barcelona’s performance despite having a double
the raw bandwidth, a testament to the low per-core performance. In the end, Cell’s lack
of a cache was not critical as DMAs could be used to orchestrate the irregular source vec-
tor accesses. However, Cell’s weak double-precision implementation forced a suboptimal,
SIMD-friendly implementation that can often significantly increase the compulsory traffic.
Nevertheless, Cell delivered nearly 1.8× better performance than Barcelona. We believe
a future faster double-precision implementaion (eDP Cell) will allow for a more efficient
and general implementation that will improve median SpMV performance. Overall, with
a handicapped, but auto-tuned implementation, Cell delivers 1.6× better median perfor-
mance than Victoria Falls, 1.8× the Barcelona Opteron, 2.5× the Santa Rosa Opteron, and
almost 4.2× the median performance of the Intel Clovertown. Cell’s SpMV performance
for a dense matrix was 1.6× better than Victoria Falls, 2.5× the Barcelona Opteron, 3.2×
the Santa Rosa Opteron, and 4.2× the median performance of the Intel Clovertown.

182

8.6 Future Work

Although an extensive number optimizations have been implemented here, sig-
nificant SpMV-specific work remains to be explored. This research is divided into three
categories: improving access to the vectors, minimizing the memory traffic associated with
the matrix, and better heuristics. We save the discussion of broadening this effort to other
kernels within the sparse motif for Chapter 9.

8.6.1 Minimizing Traffic and Hiding Latency (Vectors)

For matrices limited by access to the source and destination vectors, there are two
basic principals we focus on: hiding memory latency and minimizing total memory traffic
associated with the source vectors.

Unlike accessing the matrix, accessing the source vectors can result in non-unit
stride access patterns. As a result, hardware prefetchers can be confused, resulting in
memory latency stalls. Although massive thread level parallelism or DMA are solutions
adept at hiding memory latency associated with non-stride memory access patterns, there
is additional potential value in using software prefetching. Currently, four parameterized
prefetch code variants are produced for each blocking and format combination: prefetch
neither the value or index arrays, prefetch just the value array, prefetch just the index
arrays, or prefetch both arrays. They are parameterized by the prefetch distance which
is automatically tuned for — a rather time consuming operation. This process could be
extended by providing a complimentary set of variants in which the source vector elements
are prefetched. In this case, they would be parameterized by how many nonzeros should
be prefetched. i.e. prefetching X[col[i+number]] prefetches “number” elements ahead in
an attempt to hide the latency of a miss. Although some initial experimentation showed
modest speedups, an exhaustive search would increase auto-tuning time by more than an
order of magnitude.

We could attempt to address both memory traffic and latency by reordering the
matrix [34]. We performed a few initial experiments on the reordered webbase matrix and
saw less than a 10% speedup. This was much in line with the results from Im et al. [78]
perhaps due to the limited scope of our matrix suite. It might be more appropriate not
to strive for a perfectly diagonal matrix, but rather a matrix with good spatial locality on
cache line granularities. In addition, it is possible to reorder the matrix to facilitate register
blocking [108].

Finally, some vectors are so large that they will not fit in cache. When evaluating
y ← Ax on such a matrix there is no point in even attempting to cache y. As such, it
is possible to generate another set of variants that use the x86 cache bypass instruction
movntpd. Thus, a cache line fill will not occur on the write miss to y. Heuristically, this
optimization should be beneficial on matrices with very large numbers of rows and relatively
few nonzeros per row.

183

Explicit Storage of Elimination of Redundant
all Nonzero Values Nonzero Values

Explicit Storage of all
16·N + 16·NNZ 16·N + (8. . . 16)·NNZ

Nonzero Coordinates

Elimination of Redundant
16·N + (8. . . 16)·NNZ 16·N + (0. . . 16)·NNZ

Nonzero Coordinates

Table 8.7: Memory traffic as a function of storage.

8.6.2 Minimizing Memory Traffic (Matrix)

As demonstrated, the existing auto-tuning approach can achieve a high fraction of
memory bandwidth. Given SpMV’s bounded arithmetic intensity, higher performance can
only be achieved by minimizing the compulsory memory traffic associated with the matrix.
As Table 8.7 suggests, one should consider storage of nonzero values and coordinates as
orthogonal optimizations. On can attempt to implicitly encode values or coordinates or
both. Elimination of one might double COO performance. However, elimination of both
could asymptotically improve performance by 1 + NNZ/Row. Of course, this is just a
bound; the asymptotic realization of this is the structured grid motif. Ultimately, we desire
the performance of a structured grid code with the flexibility of a sparse method.

Alternate BCSR Representations

In Section 8.4.5 we discussed register blocking and other optimizations designed
to compress away as much redundant meta data as possible. When register blocking, our
heuristic only examined power of two blockings. It is possible to heuristically or exhaustively
extend this to all possible register blockings. Although this may quadruple the optimiza-
tion routine running time, it may increase performance by more than 50% as 3×3 register
blocking can be common, and has a substantially higher arithmetic intensity than 1×1.
Furthermore, the Cell version should be expanded to implement sub-SIMD 1×C register
blocks.

CSR implementations on local-store architectures are difficult to implement as the
loop structure must be changed from rows and nonzeros to buffers and nonzeros within a
buffer. As such, we did not allow the selection of the CSR format because of the perceived
weak Cell double-precision implementation. To further facilitate CSR implementations on
all architectures, branchless or segmented scan implementations are desirable. However,
branchless and segmented implementations do not work correctly when there are empty
rows. Thus, we believe that using the empty-row CSR implementation discussed in Chap-
ter 7 will greatly facilitate a common implementation. Architectures with few cores and
high branch overheads operating on matrix blocks with few nonzeros per row will see a
significant benefit. However, the reduction in total matrix memory traffic will be small.

184

(a)
original matrix

(c)
symmetric matrix

(b)
split matrix

(d)
split symmetric matrix

0

0

0

0

0

0

0

0

0

0

0

0

0

Figure 8.17: Exploiting Symmetry and Matrix Splitting. From the original matrix (a), one
may split the matrix (b) or exploit symmetry (c). Exploiting both is shown in (d).

Symmetric Storage

Figure 8.5 on page 161 shows nearly half of the matrices in our evaluation suite
are symmetric; that is, A = AT or Aij = Aji. Our matrix loader recognizes this, and
converts any symmetric matrix to non-symmetric by duplicating nonzeros. By doing so,
a common set of optimizations and SpMV routines may be executed. Although the total
number of floating-point multiplies remains unchanged, the clear downside is that twice
the storage and memory traffic are required — thereby potentially cutting performance in
half. Unfortunately, symmetric storage is not easily parallelized. We examine several ideas
applicable to multicore computers.

For symmetric matrices with the bulk of nonzeros near the diagonal, like Protein,
Spheres, Cant, Tunnel, and Ship, it is possible to split the matrix into a low-bandwidth
symmetric matrix and another symmetric matrix containing the remaining nonzeros far from
the diagonal. The symmetric storage optimization would be applied to the low bandwidth

185

A00

A10 A11

A22

A32 A33

A44

A55

A66

A77

A54

A66

A24

A02

A46

0x03020D083420D080

TileValues[]

TileSparsity[]

A00 A10 A11 A22 A32 A33 A44 A55 A66 A77A54 A66A24A02 A460.0

0.0
xx
TileColumnIndices[]

1
1 1

1
1 1

1
1

1
1

1

1

1

1

1

0
0

0
0

0
0 0

0
0

0
0

0
0

0
0

0
0

0
0

00
0 0

00
0

0
0 0

0
0

0
0

0
0

0
00000

0 0 0 0
0

00
0

Figure 8.18: Avoiding zero fill through bit masks. One sparse register block is shown. A
column-major bit mask marks the nonzero elements per register block.

matrix, where the matrix of the remaining nonzeros would be stored in a non-symmetric
format. This could double performance on the heavily bandwidth-limited x86 architectures
and quite possibly all future versions of Cell. However, Victoria Falls’ limited FLOP rate
and instruction bandwidth would dramatically limit performance gains. This approach is
also applicable to the case of very special complex (in the mathematical sense) matrices.
In a Hermitian matrix, A = A† or Aij = A∗

ji. Thus, with nothing more than one XOR
instruction to negate a floating-point number, we may change Realij + Imaginaryij into
Realji − Imaginaryji and then apply the same optimizations used in symmetric matrices.

Figure 8.17 on the previous page demonstrates thus approach. Given the original
symmetric matrix stored in a non-symmetric form (a), it is possible to eliminate the upper
triangle of nonzeros as their values are duplicated in the lower triangle (c). However, this
approach doesn’t parallelize well and would be difficult to effectively implement on Cell.
Alternately, one could split the matrix into two matrices: one containing blocks near the
diagonal and one containing the off diagonal blocks (b). Although this approach would
parallelize well, it hasn’t reduced the memory traffic. However, one could now exploit
symmetry along the diagonal blocks (d). If they constitute the bulk of the nonzeros, then
not only is this easy to parallelize, but it will possess a significantly higher arithmetic
intensity — well worth the data structure transformation and more complex SpMV.

Sparse BCSR

The traditional register blocking fills in explicit zeros to create nicely sized dense
blocks. In an era where FLOPs are perceived as being free, or at least are becoming
15% cheaper every year, we must call into question whether or not explicit fill is required.
Figure 8.18 shows it is possible to store only the nonzeros of a register block, but add an
additional array representing the sparsity pattern within the register block using a bit mask
— a 8×8 unfilled register block would require an additional 64-bit bit mask. In this example,
one register block is shown. Moreover, the bit mask represents the column major sparsity
of the register block. popcount can be used to calculate the actual storage requirement for
a sparse register block.

There are now three options for processing these compressed register blocks. One
could decompress blocks of them into dense register blocks stored in the cache or local

186

store and then use existing BCSR routines, or alternately, one could decompress them on
the fly within the inner loop without explicit storage. Although the latter is slightly more
complicated, there is a tremendous opportunity to reduce the number of wasted floating-
point operations. The third option is to create special instructions that could efficiently
process these tiny sparse matrix-vector multiplications. This storage format may ultimately
provide up to a 50% performance benefit on a much broader set of matrices, but at a
significant productivity cost.

Elimination of Redundant Values

There is one final potential future work item geared at reducing matrix memory
traffic that we discuss here. It is possible that many double-precision matrices can be
represented exactly in single-precision. For example, if the 29 least significant bits of the
mantissa of the double-precision representation of a floating-point number are zero, and
the exponent has an absolute magnitude less than 2127, a floating-point number can be
represented exactly in single-precision. The storage of the matrix values in single-precision
could reduce memory traffic by 1.5× to 2×. Of course, the vectors must always be stored in
double-precision, and all computation would still be performed in double-precision. During
execution of a single-precision block, as each nonzero is loaded from DRAM, it could be con-
verted to double-precision without loss of accuracy. All subsequent computation would be
performed in double-precision, and the resultant vector would be stored in double-precision
without loss of accuracy. The auto-tuner could be expanded to inspect the matrix at run-
time, determine which cache blocks can be represented in single-precision without a loss of
accuracy, then convert them. One could even contemplate a 16-bit half-precision or even
bit representations of the values of a matrix.

Alternately, just as one observes that adjacent rows and columns have the same
coordinates and can thus create register blocks, one could observe that there may be a finite
number of unique floating point values within a matrix. Consider a matrix with 10M nonze-
ros of which there are only 16K unique values. Rather than storing one double-precision
floating-point value, and at least one 32-bit integer per nonzero, we could replace the 64-
bit float with a 16-bit index to an array of the unique floating-point values as motivated
by [83]. As such, the SpMV arithmetic intensity would improve from 0.166 to 0.333 — a
2× improvement. In addition, if one could perfectly apply register blocking, the arithmetic
intensity could be improved to nearly 1.0 — a 6× improvement. As the number of unique
values decreases, the better the performance.

8.6.3 Better Heuristics

The third arena for future work is the development and application of better
heuristics. Better heuristics may improve performance and reduce tuning time.

As previously discussed in Section 8.4.5, not all architectures are heavily memory-
bound. In fact, some may be computationally-limited. As such, the matrix compression
heuristic could be augmented with a more traditional OSKI style approach to register
blocking selection. As time passes, the FLOP:Byte ratio of more and more architectures
will significantly exceed that of SpMV. We are currently in a transition period where most,

187

but not all architectures have done so. As such, in the long term, our existing heuristic will
be acceptable. Thus, better heuristics are a minor concern.

Second, when prefetching, we perform an exhaustive search over both read streams
in cache line granularities up to 1 KB. This search is extremely expensive. Although the
optimal choice can vary greatly from one architecture to another, it does not vary signifi-
cantly across matrices. As such, a one time offline tuning could find a reasonable prefetch
distance for each architecture.

Most matrices on most architectures were well load balanced. It is typically very
easy to balance 4 threads — the parallelism per thread is high, and the probability that one
thread used a spectacularly bad register blocking is low. However, the extreme multithread-
ing on Victoria Falls ensures the parallelism per thread is low and there is a chance that one
of the 128 threads may select 1×1 register blocking when all other threads chose something
larger. Thus there were several matrices for which Victoria Falls was 25% unbalanced. Al-
though 25% sounds small, when architectures are within a comparable performance-bound
it can significantly skew one’s conclusions. Future work should strive to ensure effective,
perhaps dynamic, load balancing as thread counts may tend to 1,000.

8.7 Conclusions

In this chapter, we examined the applicability of auto-tuning to sparse kernels on
multicore architectures. As sparse linear algebra is an immensely broad motif, we chose
sparse matrix-vector multiplication (SpMV) — as an interesting and common example
kernel. Despite the fact that the standard CSR implementation has existed for decades, we
see auto-tuning provided substantial speedups on all architectures.

Although, as suggested by the Rooflines, SIMDization is ineffective, we see that
some of the largest benefits came from minimization of memory traffic and maximizing mem-
ory bandwidth through NUMA allocation and software prefetching. Before auto-tuning, we
see most of the cache-based architectures providing similar performance. Unfortunately,
the out-of-the box Cell PPE performance was extremely poor. As we trade productivity to
expand the capability of the auto-tuner, all cache based machines quickly reach good per-
formance and high fractions of their respective attainable memory bandwidths. However,
the data structure transformation associated with register blocking provides the most sub-
stantial impact. The Cell implementation, although heuristically tuned, required slightly
more work than the fully optimized cache implementations. Unlike LBMHD, Cell’s ex-
tremely weak double-precision implementation is not a significant performance bottleneck
for SpMV.

Without radical technological or algorithmic advantages, the trends in computing
suggest SpMV will become increasingly memory-bound as core counts increase. This doesn’t
obviate the need for auto-tuning. Rather, it increases its value. First, achieving peak
memory bandwidth is challenging and only achieved through selection of the optimal data
layouts and prefetching. Moreover, the superfluous computational capability will allow one
to realize complex data structures and compression techniques aimed at minimizing the
total memory traffic. Ultimately, algorithms with superior arithmetic intensities and at
least comparable computational complexity are required.

188

Chapter 9

Insights and Future Directions in
Auto-tuning

In this chapter, we take a high-level integrative view of the auto-tuning efforts
of Chapters 6 and 8 and discuss several directions this work could take in the future. To
that end, Section 9.1 makes several observations of LBMHD and SpMV and discusses their
implications for auto-tuning, architecture, and algorithms. In Section 9.2 we discuss how one
could apply the auto-tuning techniques and methodology employed for LBMHD and SpMV
to specific kernels from other motifs. Unfortunately, existing auto-tuning efforts still lack
the desired productivity for efficiency-layer programmers. To that end, Sections 9.3, 9.4,
and 9.5 discuss how auto-tuning might reach its full potential. Finally, Sections 9.6 discusses
some high-level conclusions.

9.1 Insights from Auto-tuning Experiments

Consider the work from Chapter 6 and 8. In both chapters, we restricted ourselves
to one particular “representative” kernel and extensively auto-tuned it. In this section,
we attempt to capture the high-level cross-motif insights and discuss their implications
for auto-tuning, algorithms, and architecture. Although not presented in this work, we
include the insights acquired from our auto-tuning of another structured grid kernel — a
7-point Laplacian operator applied to a 3D scalar grid [37]. We believe these insights will
facilitate the application of auto-tuning to other kernels in the structured grid and sparse
linear algebra motifs as well as applying auto-tuning to the newer, non-scientific computing
motifs.

Broadly speaking, we observe the timescale for auto-tuning adaptation and inno-
vation must be much less than the timescale for architectural innovation. That is, we must
adapt to and optimize for an architecture long before its successor is released. The timescale
for a single generation is perhaps two years. As such, we demand auto-tuning adaptation
and optimization in perhaps one month. Similarly, we observe that algorithmic innovation
and acceptance is typically measured in decades. Thus, we have the time to implement
algorithmic acceleration features in hardware. In the following subsections, we discuss the
implications and future directions in auto-tuning, architecture, and algorithms.

189

9.1.1 Observations and Insights

In our examination of the application of auto-tuning to SpMV, LBMHD, and the
7-point stencil, we have noted several trends and insights. These can be categorized into
four domains: bandwidth, in-core, parallelism, and search. We discuss them here.

Bandwidth and Traffic

When examining these three kernels, we observe they all have constant, or more
appropriately, bounded compulsory arithmetic intensity with respect to problem size. More-
over, these arithmetic intensities are so low, they are less than the ridge point for virtually
any machine today. As the Roofline model suggests, performance can be bounded by the
product of arithmetic intensity and Stream bandwidth. As such, these three kernels are of-
ten labeled as memory-intensive kernels. Thus, regardless of problem size, we näıvely expect
roughly the same performance. Näıvely, one might believe that hardware prefetching and
out-of-order execution are sufficient to guarantee performance at the arithmetic intensity–
Stream bandwidth product. Thus, one might erroneously conclude that auto-tuning is
unnecessary. As borne out in the data in Figures 6.16 on page 131 and 8.15 on page 179, it
is clear that significant increases in performance can be achieved via auto-tuning memory-
intensive kernels.

One must ponder the reasons for poor performance on memory-intensive kernels.
There are only two real possibilities: poor memory bandwidth or memory traffic in excess
of the compulsory memory traffic. We believe that by using both software and hardware
prefetching as well as multithreading, we can achieve a high fraction of Streaming band-
width, although only performance counters could verify that belief. Thus, our primary task
is to ensure the total memory traffic is not significantly greater than the compulsory mem-
ory traffic. Unfortunately, minimization of memory traffic can be a daunting and poorly
understood task for novice programmers as they do not understand the intricate and com-
plex behavior of caches with finite capacities and associativity. Not all memory requests
will hit in the cache. As such, in addition to the compulsory misses, it is possible for caches
to generate conflict and capacity misses. Moreover, write allocate caches will fill the cache
line in question on a write miss. Thus, we classify memory traffic as compulsory, capacity,
conflict, or allocate.

Consider our three kernels. When we consider the primitive operations, a lattice
update, a 7-point stencil on a scalar grid, or a nonzero multiply-accumulate (MACC), we
observe that they will show different degrees of reuse and thus different working set sizes.
There is no inter-lattice update reuse, but there is reuse within an update. As such, in
the absence of bandwidth considerations, we can choose any traversal of the data, but to
maximize bandwidth and efficiently vectorize the lattice updates, we choose a conventional
traversal and thus control the working set size. When examining the 7-point stencil, we
see there is partial reuse among three stencils in any direction. As such, we must select an
optimal traversal that maintains a sufficiently large working set in the cache. Failure to do
so will result in extra capacity misses. Finally, if we consider a MACC on a nonzero, we see
that the source vector element will be reused by all other nonzero MACC’s in its column,
and the running sum will be reused by all nonzero MACC’s in its row. As such, to minimize

190

capacity misses, one should select a traversal of the nonzeros that maintains a sufficiently
large working set in the cache.

Limited cache associativity can give rise to conflict misses before the capacity of
the cache is exhausted by the working set. Currently, we believe this is primarily a problem
on structured grid codes with their rigid stencil structure. Nevertheless, as discussed in
Section 8.4.2, it is possible for sparse methods to be hampered by conflict misses. We only
addressed nonzero conflicts between threads.

Although structured grid codes typically read as much data as they write, sparse
codes typically read much more data than they write. As a result, write allocation traffic
predominately affects only the structured grid kernels here. Moreover, elimination of this
traffic can reduce the total memory traffic by up to 33% — a huge boon on memory-intensive
kernels.

Finally, we observe that unlike structured grid codes, both the addressing and edge
weights are explicit in sparse codes. As such, vector data is the minority of the “compulsory”
traffic. By eliminating some redundancy in the indices through register blocking, we can
cut the compulsory traffic by perhaps 33%.

Figures 6.15 and 8.14 visualize the potential performance gains from these cache
and memory observations. We observe these memory bandwidth and traffic-oriented opti-
mizations deliver the bulk of the performance gains.

In-Core Optimizations

When we look at the requisite optimizations, we see nearly a complete lack of
in-core optimizations. In fact, reordering and unrolling delivered small increases in perfor-
mance. Essentially, the SSE implementation was only implemented to facilitate the cache
bypass optimization of avoiding the write allocate traffic. Unfortunately, most compilers
were incapable of optimizing intrinsic-laden code. Thus, reordering and unrolling were
beneficial only because compilers couldn’t exploit cache bypass.

Such a trend should come as no surprise given the Roofline model. It clearly
shows that most architectures will be heavily memory-bound. Moreover, there is sufficient
instruction-level parallelism in the structured grid codes to ensure a lack of multiply-add
balance or SIMD doesn’t impede performance.

Parallelism

For better or worse, the thread-level parallelism in these kernels was static, abun-
dant, and trivially discovered. As discussed in Chapters 5 and 7, such characteristics are
not omnipresent.

Both the LBMHD and 7-point stencil structured grid codes use Jacobi’s method.
As such, every point may be updated in parallel, and thus load balancing is easily achieved.
The primary challenge is how to divide up the grid into pieces. This task has two major
challenges: dealing with shared caches, and handling NUMA allocation with potentially
large pages.

If we were to have examined an upwinding stencil, the parallelism would vary
substantially as only a diagonal plane in a cube might be executed in parallel. A diagonal

191

plane at a corner has no parallelism. As the plane sweeps through the cube, the parallelism
quickly increases to N2, then quickly drops back to none. Clearly, this is far more challenging
to parallelize on multicore SMPs with as many as 128 threads. Nevertheless, although the
parallelism is variable, the parallelism at a step can be statically predicted as soon as the
problem is specified. At the extreme are AMR codes where the parallelism is not only
variable, but cannot be predicted, and is in fact dynamic at any time step. Thus, barrier,
shared queue, and load balancer performance become critical.

When it comes to SpMV, once again, we can use the high-level knowledge that
all destination vector elements may be independently calculated. Although all rows are
independent, the computation required for each can vary substantially. As such, load bal-
ancing is the challenge. Only when the matrix is specified, is it possible to load balance
the computation. If one were to consider the other sparse kernel discussed in Chapter 7,
sparse triangular solve (SpTS), we see that DAG inspection is required to determine the
characteristics of parallelism. In SpTS, the parallelism is not static, may not be abundant,
and can be difficult to discover.

In the end, no parallelism-oriented auto-tuning was performed for LBMHD or
SpMV. That is, we heuristically selected one parallelization strategy. However, it was clear
that extensive parallelism-oriented auto-tuning was performed in [37] through chunking,
core blocking, and thread blocking. We believe that in the future, as kernel complexity
increases, so too will the parallelism-oriented auto-tuning effort.

Search Methodology

The goal of an auto-tuner’s search methodology is to efficiently explore the opti-
mization parameter space; that is, minimize the exploration while maximizing the perfor-
mance. When we examine the search methodologies employed by these three auto-tuning
attempts across perhaps 10 different optimizations, we see a variety of different search
methodologies with no clear winner. Often exhaustive search or greedy search is used as a
crutch when we don’t understand the intricacies of an architectural paradigm. Typically,
cache conflicts and hardware prefetching are the most challenging architectural features to
understand. On Cell, without caches and where DMA functionality is easily understood,
simple heuristics are efficiently employed as the search methodology. However, on machines
with low cache associativities or complex and opaque hardware prefetching mechanisms,
search has proven to be easier than attempting to understand the interacting forces. When
examining the raw LBMHD data, we observe that the optimal vector length is often well
correlated with cache sizes, and the optimal reordering and unrolling for SIMDized code
was well correlated with cache line sizes. Thus, a heuristic could have been developed to ac-
celerate the exhaustive search. Depending on architecture and optimizations, an auto-tuner
may need a combination of search techniques.

9.1.2 Implications for Auto-tuning

Given the trends in computing and the slowly evolving algorithms, we believe
that most computers will become increasingly bandwidth-limited on kernels with ample
parallelism. For example, if the number of cores grows faster than bandwidth, then the ridge

192

(c)

Parameter Space for
Optimization A

Pa
ra

m
et

er
 S

pa
ce

 fo
r

O
pt

im
iz

at
io

n
B

(a)

Parameter Space for
Optimization A

Pa
ra

m
et

er
 S

pa
ce

 fo
r

O
pt

im
iz

at
io

n
B

(b)

Parameter Space for
Optimization A

Pa
ra

m
et

er
 S

pa
ce

 fo
r

O
pt

im
iz

at
io

n
B

Figure 9.1: Visualization of three different strategies for exploring the optimization space:
(a) Hill-climbing search, (b) Iterative hill-climbing, (c) Gradient descent. Note, curves
denote combinations of constant performance. The gold star represents the best possible
performance.

points in the Roofline model will move to the right. As a result, more and more kernels will
be bandwidth-limited. Thus, the demands on in-core performance and compiler capabilities
will be reduced. Moreover, we believe that auto-tuning would be greatly simplified as
one could employ bound-and-bottleneck-based heuristics. That is, if we can identify a
communication bottleneck in a computer’s execution of a kernel, then the auto-tuning
effort should be geared to minimizing traffic. To facilitate such approaches on cache-based
architectures, one should utilize algorithms that eliminate cache effects by copying into fixed
buffers stored in cache like the circular queue [37, 81].

For kernels that do not lend themselves to any obvious high-level heuristic, there
are several possible directions auto-tuning might take aside from a näıve exhaustive search.
First, as discussed in Chapter 4 one could iterate on constraint identification, optimization,
and removal of said constraint. The challenge is the selection of the appropriate optimization
and parameters. In all likelihood, the programmer would be required to annotate or analyze
the optimizations and pass that information to the auto-tuner.

Second, one could employ an iterative form of the hill climbing algorithm discussed
in Section 2.4 of Chapter 2 and shown in Figure 9.1(a). That is, if the performance hyper-
surface is sufficiently smooth, then one iterates over and over through the optimization
space examining the performance for each optimization as a function of parameter. For
each optimization, the best known solution is the starting point for the next optimization
search. Figure 9.1(b) clearly shows that the number of trials may be significantly larger
than those required in Figure 9.1(a), and there is no guarantee an optimal solution will
be found. With some local sampling of the performance hyper-surface, one might be able
to employ a method similar to gradient descent [120]. Figure 9.1(c) shows that such an
approach might dramatically improve the search time.

Finally, a completely novel technique would be to apply machine learning. As
suggested by Ganapathi et al., one could randomly sample the optimization parameter
space and apply machine learning techniques to look for correlations between optimization

193

parameters and performance metrics [56, 55] via KCCA [8]. Clearly, this model is completely
oblivious of the architectural details. Given the highest performing input parameter, one can
look for its neighbors in projected space and back project them into the original parameter
space. One can then try different permutations of these key parameters. Results have
shown this can achieve very good performance on the problems for which exhaustive search
is simply not tractable. This is an area of continuing research for which KCCA is but one
of several possible approaches.

9.1.3 Implications for Architectures

Given our observations and insights into auto-tuning, we discuss their implications
for architecture. Primarily, these can be categorized into the effects on core microarchitec-
ture, cache sizes, and off-chip bandwidth.

Given our breadth of architectures running auto-tuned SpMV and structured grid
codes, we observe that the product of high frequency, superscalar, and out-of-order execu-
tion is overkill. Two or possibly only one of the three are sufficient. Moreover, for these
codes multiply-add balance is atypical and irrelevant on memory-bound kernels. Perhaps
in the future algorithms may express more locality and thus computation will become more
important. If such a day were to come, we could imagine rebalancing the floating-point
datapaths away from the LINPACK-centric balance between multiplies and adds. Stencil
codes often exhibit more than an order of magnitude more floating-point adds than mul-
tiplies. As such, we could envision asymmetric SIMD units to ensure efficient utilization
of silicon. That is, fully pumped 128-bit floating-point adders, but half-pumped 64-bit
floating-point multipliers. Thus the throughput for SIMD adds would be one per cycle, but
SIMD multiplies would be executed at one every other cycle.

Although untuned codes generally perform better on computers with large caches,
auto-tuned codes will restructure themselves to adapt to the smaller working set sizes. We
observe that processors like Cell with only 256 KB per core can run auto-tuned sparse and
structured grid codes extremely well. Thus, there is little need to design computers with
per core cache capacities in excess of 1 MB. Although auto-tuning is particularly adept
at adapting to differing cache capacities, architectures and auto-tuners tend to struggle
with low per thread associativities. We suggest that caches be designed with significantly
more associativity than threads sharing them. That is, caches shared by 8 threads should
be at least 8-way associative. Moreover, local store architectures implicitly eliminate the
possibility of cache conflict misses and both conflict and capacity TLB misses. Thus, local
store functionality is desirable. Either a custom local store can be added to the memory
hierarchy, or part of the cache can be reconfigured as a local store.

Numerical methods for which the arithmetic intensities are constant with respect
to problem size invalidate the simple multicore version of Moore’s Law. That is, there is no
justification for doubling the number of cores every two years if bandwidth has only increased
by 40% in that same time frame. Rather, two more plausible, conventional solutions arise.
First, manufacturers could increase both the number of cores and the bandwidth by 40%
every two years. This would imply chips get smaller and smaller, but performance would
only increase at 20% per year. Alternatively, one could double the number of cores every
two years, but reduce the per core performance by 40% in that same time period. As a

194

(a)

crossbar
core core core core

$ $ $ $

crossbar
DRAM DRAM DRAM DRAM

DRAM DRAM DRAM DRAM

crossbar
DRAM DRAM DRAM DRAM

DRAM DRAM DRAM DRAM

Capacity-optimized DIMMs

External Memory Controller Hub

stacked chips

(b)

Capacity-optimized DIMMs

External Memory Controller Hub

stacked chips

crossbar
$ $ DRAM DRAM

core core DRAM DRAM

crossbar
$ $ DRAM DRAM

core core DRAM DRAM

crossbar
$ $ DRAM DRAM

core core DRAM DRAM… …

Figure 9.2: Potential stacked chip processor architectures. (a) DRAM chips stacked on a
multicore chip, (b) identical chips with multiple cores and embedded DRAM.

result, the cores would continue to deliver sufficient performance to use all the available
memory bandwidth. The principal upside of such an approach is the power consumed by
the chips would likely decrease by much more than 20% per year — a clear advantage in a
mobile or green market.

What is truly required is novel and performance scalable means of attaching large
capacities of main memory to processors. We assume we need at least 256 MB of main
memory per core and several GB per SMP. Three reasonable possibilities have been pro-
posed.

First, optically connect processors to DIMMs. Current research suggests that a
tremendous benefit is possible [13, 132]. Of course, there is no need to utilize photonic’s
potential in a single step. Instead, the performance boost could be doled out over the course
of a decade to maintain a constant FLOP:byte ratio.

Second, Figure 9.2(a) shows that it is possible to stack DRAMs on top of multicore
chips in a system-in-package (SIP) using through-silicon vias to interconnect the chips.
Doing so could greatly increase the bandwidth to part or all of main memory. Bleeding
edge DRAM modules are nearly 256 MB/cm2, and current quad-core superscalar and eight-
core Cell chips are about 1 cm2. Thus, to achieve 256 MB/core, one must stack 4 to 8 DRAM
chips on top of a multicore chip. In doing so, one sacrifices expandability and sheer capacity
afforded by multiple DIMMs for performance. To ameliorate this, one could still employ
a conventional external memory controller hub attached to conventional DIMMs. Thus,
one could partition the physical address space into a relatively small, but fast on-chip main
memory, and a large, but slower, off-chip main memory. A specialized version of malloc()
could be used to allocate on-chip memory.

Finally, Figure 9.2(b) shows that one could integrate a couple cores and perhaps
256 MB of DRAM onto a single chip. One could then stack multiple identical chips to create
a multicore socket. Clearly such an approach is both a non-uniform on-chip memory access
and non-uniform off-chip memory access architecture. Just as current external memory

195

controller hubs can integrate two or more chips, the same approach could be reused here.
In many ways, this is a stacked and multicore reincarnation of IRAM [84, 57]

9.1.4 Implications for Algorithms

Perennially, the timescale for algorithmic innovation is measured in decades. As
such, we in the computing industry have relied on technological and software advances to
deliver superior time to solutions for various problems. Assuming current technological
scaling trends will continue into the future, to achieve performance that will scale better
than bandwidth, we need algorithms whose arithmetic intensity increases over time or at
the very least is not constant with respect to problem size. Unfortunately, this means we
require a relaxation on implementation or at the very least, a high-level conceptualization of
the problem definition within which we are free to choose the appropriate implementation.

9.2 Broadening Auto-tuning: Motif Kernels

In this thesis, we applied the auto-tuning optimization technique to one kernel
in each of two computational motifs. We believe auto-tuning can be applied to any well
defined kernel in virtually any motif. Note, this doesn’t imply the same optimizations are
required or the same improvements will be seen. In this section, we discuss how one might
auto-tune various kernels from a subset of the computational motifs.

9.2.1 Structured Grids

When the auto-tuning work of Chapter 6 is examined in conjunction with the opti-
mizations presented in [37], we believe the bulk of the structured grid-related optimizations
have been enumerated. However, there are a few other kernels that demand additional
optimizations.

As previously discussed, Gauss-Seidel or upwinding stencils demand dramatically
different approaches to parallelization when compared with Jacobi’s method. Here the per-
formance of barrier collectives dictates the maximum parallelization for a particular problem
size. Consider Figure 9.3 on the next page. There are two orthogonal optimizations: data
layout and parallelization. Figure 9.3(a) shows one could choose to parallelize within the
execution of each diagonal. Clearly, barrier or synchronization time is critical. Figure 9.3(b)
shows one could choose to block the grid and execute some blocks in parallel. Barriers are
less frequent, but there is also less parallelism. When it comes to data structure, one might
choose to lay the data out either by rows for simplicity or by diagonals to match the exe-
cution’s access pattern. Moreover, if the form of parallelism is blocking, one might choose
to apply a hierarchical storage format. That is, by rows or diagonals within a block. Thus,
one must also tune to find the optimal parallelization style, block sizes, and concurrency.

9.2.2 Sparse Linear Algebra

Although we extensively auto-tuned SpMV in Chapter 8, there are dozens of other
important sparse kernels that could be auto-tuned for multicore architectures.

196

(a)

2
1

3
4
5
6
7
8
9
10
11
12
13
1415

(b)

2
1

3
4
5
6 7

9
8

10
11
12
1314

9
8

10
11
12
1314

16
15

17
18
19
2021

Figure 9.3: Execution strategies for upwinding stencils: (a) unblocked, execute entire diag-
onals, (b) blocked, execute by diagonals within a block.

The most obvious next kernel, as suggested by [134], is sparse matrix-matrix mul-
tiplication (SpMM). That is, a sparse matrix times a tall, skinny dense matrix (a dense
matrix with far more rows than columns). The simplest approach would be to use the
existing SpMV framework with small changes to the inner kernel. In essence, one should
calculate multiple destination vectors simultaneously by simply loading multiple elements
from the same row of the source vector. The principle tuning parameter is how many of
these destination vectors should be simultaneously calculated. Clearly, the matrix is still
parallelized among threads. One could instead exploit the multiple cores to individually
calculate different destination vectors. The first core would load nonzeros from main mem-
ory, calculate its vector elements, and then pass the nonzeros to the next core. That core
would in turn load its own source vector elements and update its destination vector. Such
a technique is applicable on architectures with good inter-core bandwidth, cores that can
individually saturate main memory bandwidth, and SpMM operations with dense matrices
larger than the sparse ones.

Chapter 7 clearly motivated the value of both SpMV and sparse triangular solve
(SpTS). Vuduc performed some preliminary auto-tuning of SpTS on single-threaded archi-
tectures using both register blocking and large dense blocks [134]. Multicore demands a
new form of parallelism be discovered. Clearly, some DAG analysis is required to enumerate
the nodes that can be computed in parallel. The desire for good cache locality counter-
balances this parallelism. As such, one must pass up potential parallelism to avoid cache
misses — a challenging analysis or tuning problem. Optimization is further complicated by
the non-pipelined nature of floating-point divides. Thus, parallelization and SIMDization
of such divides is critical.

Finally, given the bandwidth intensive nature of SpMV, the performance impact of

197

(a) (b)

Figure 9.4: Charge Deposition operation in PIC codes: (a) deposition when particles are
points, (b) deposition for codes like GTC where particles are rings.

software implementations of complex or double-double SpMV may only be a factor of two.
The potentially improved application level numerical accuracy and stability may justify its
use.

9.2.3 N-body

One interesting area for future auto-tuning research is auto-tuning particle-mesh
or particle-in-cell (PIC) codes. Algorithmically, these codes deliver O(N) complexity rather
than the normal O(N2) at the expense of poor locality and throughput. The most chal-
lenging step of PIC codes is the charge or mass deposition, where in preparation for solving
Poisson’s equation the grid must mimic a continuous distribution of mass or charge.

Figure 9.4 visualizes two PIC codes. Each particle is a point in Figure 9.4(a).
Thus, it is always boxed in by four points. In the charge deposition phase, each particle’s
charge (red) is distributed among the four grid points (blue) via a scatter increment. For any
given particle, those four updates are independent and thus may be executed in parallel. A
problem arises. Any two particles may attempt to update the same point. So how can this
code be parallelized across a large multicore SMP? Moreover, Figure 9.4(b) approximates
the behavior of Gyrokinetic Toroidal Code (GTC) [88]. Here, ions and electrons gyrate
around a line perpendicular to the plane (green). Thus, they are approximated by rings
(red). As the radius of the rings are constrained by their finite energies, the rings can in
turn be approximated by four points (red). Each of these four points must deposit one
quarter of the particle’s charge to its neighboring grid points. Thus, not only is it possible
for there to be intra-particle data hazards, but also inter-particle data hazards. How can
this be efficiently executed on a multicore SMP?

Let’s examine multi-thread parallelism as it is likely to require discovery of the
greatest degree of parallelism. The simplest solution, inspired by GTC’s vectorization tech-
nique on the SX-6 [102], is to replicate the grid P times: one per thread. All threads update
their own private grid, then at the end of the deposition phase, the P grids are reduced to
one. Such techniques are viable when the number of threads is less than the average number
of particles per grid point. The second major parallelization approach is to spatially bin

198

(cheaper than sort) the particles. The grid (and thus the particles) can then be partitioned
among threads. If the particles move slowly, then the grids can be padded, and the binning
can be performed infrequently.

As seen in Chapter 6, achieving parallel efficiency is far easier than architectural
efficiency. We believe a similar situation will arise on PIC codes. Within a thread, the
grid updates are essentially random gather-scatters on grids exceeding a few megabytes. As
such, we expect hardware prefetchers to be ineffective and we will thus expose main memory
latency. Perhaps software prefetching, multithreading or, DMA may ameliorate this, but
ultimately we require cache locality. If binning particles is not possible, we might be able
to bin the updates into a quad-tree of lists. We could tune for the fan-out and depth to
balance the desire for cache locality with the multiple streaming bin operations.

Aside from parallel efficiency, we may tune for single-thread performance. Observe
that similar to the approach of allocating a copy of the grid for every thread, we could allo-
cate a copy of the grid for each of the four points on the ring. Within a thread, this increases
the parallelism from 4-way to 16-way. Moreover, given the bounds on gyration radius, one
could visualize the update as a dense tile of updates. As suggested by Figure 9.4(b), there
are only a finite number of different, tetris-style blocks that can arise. As such, one could
bin particles based on their pattern. Within each block, one could explicitly avoid data
hazards by reading each point once, and performing multiple increments in registers.

9.2.4 Circuits

The circuits motif encompasses both combinational logic and sequential logic. Un-
like other motifs where the typical operands are floating-point or integer numbers and the
typical operators are add, subtract, multiply, and divide, the typical operand in the circuits
motif is a bit or a bus, and the typical operators are logical bitwise operators like AND, OR,
NOT, XOR, and MUX.

The kernels of the circuits motif include cyclic redundancy checks (CRC), error
checking and correcting (ECC), encryption, and hashing. Unfortunately, such kernels typ-
ically operate on data (bit) streams and express relatively little parallelism. For example,
CRC32 only defines 32 independent operations. This presents an enormous problem on
multicore SMPs. Consider a Clovertown SMP performing bitwise XOR operations. Each
core may execute three 128-bit SIMD XOR instructions per cycle. With eight cores, that’s
3K independent XOR bit-operations per cycle. Clearly, CRC operations will make poor use
of such compute capability. On the upside, Clovertown has so little main memory band-
width (sustaining less than 32 bits per cycle) that it may be bandwidth-limited using only
one core. Moreover, such processors may be tasked with performing several independent
circuits kernels that could be efficiently parceled out to multiple cores. The importance
of this motif cannot be understimated as evidenced by SSE’s recent inclusion of CRC and
AES instructions.

If simply finding parallelism wasn’t a big enough problem, existing SIMD instruc-
tion sets are designed for integer and floating-point operations. As such, they are typically
oriented around packed loads and stores. They often implement gather and scatter op-
erations through insertion and extraction of 64-bit, 32-bit, 16-bit, or very recently, 8-bit

199

(a) (b)

x0
x1

y0
y1

x0
x1

y0
y1

x0
x1

y0
y1

x0
x1

y0
y1

Figure 9.5: Using an Omega network for bit permutations: (a) 8 node network implemented
in 3 stages, (b) modified functionality per “switch.”

elements. Consider the vector analogy. Vector processors without scatter or gather instruc-
tions are relegated to executing only the simplest kernels.

Given a combinational logic circuit, one could visualize it as a series of stages
in which there are some number of AND’s, some number of OR’s, some number of NOT’s,
and some number of XOR’s that must be performed. The total number of such stages is
the depth of the DAG. All XOR’s within one stage could be strip mined into a series of
SIMD instructions. Thus, one could attempt to map this DAG onto a grid of operations
(stages × operation × bit). The ultimate challenge of this motif is the implementation of
an register transfer language (RTL) compiler that can place gates onto this grid so that the
number of inter-stage bit permutation instructions is minimized. To that end, operations
may be executed late or multiple times. Moreover, space may be wasted within each stage
to minimize the number of bit permutation instructions. From a tuning perspective, one
must decide how much waste or duplication is acceptable. For example, each bit signal
could be stored in a 32-bit register. Four of these could be efficiently packed into a SIMD
register. However, this uses a small fraction of a SIMD instruction’s inherent bit-level
parallelism. Alternately, one could use anywhere from eight 16-bit elements to store eight
1-bit signals to 128 1-bit elements. The ISA’s facilities for bit permutation dictate the
optimal implementation.

Parallel code implementations demand the circuit exhibit tremendous bit-level
parallelism so that the circuit can be partitioned. Even if such parallelism is present, high
performance may demand cores perform redundant work.

Software tuning may be insufficient in facilitating the exploration and development
of kernels within the combinational logic motif. As such, manufacturers should attempt
to facilitate development within this motif through the addition of general instructions.
Consider an omega network [68] retasked to permute the bits of a 128-bit register. Although
it is impractical to encode such functionality in a single instruction, we believe that the
functionality of each stage could be encapsulated in one instruction. Thus, execution of
the same instruction seven times would allow an arbitrary 128-bit permutation. Figure 9.5
shows a dimunitive version that shuffles bits within a byte. Each “switch” must be modified

200

to also broadcast either input. Thus, 2 control bits are required for each of the b
2 switches

per stage, and the entire control word per stage (instruction) can be stored in another
128-bit register.

At the high-level, discrete event simulators have often been used to simulate com-
binational logic circuits. These clearly have the advantage of not executing sub-circuits for
which none of the inputs have changed at the expense of maintaining an event wheel of
trivial operations. When combined with efficient SIMD executions of combinational logic
circuits, one could consider blocking combinational logic circuits into sub-circuits. Sub-
circuit execution is triggered by discrete events, but the execution proper is an auto-tuned
SIMD kernel. Thus, one must tune each discrete event circuit simulator for the underlying
architecture.

9.2.5 Graph Traversal and Manipulation

The graph traversal and manipulation motif is extremely broad and lacks any
substantial auto-tuning effort. There are three major concepts: graph attributes and char-
acteristics, graph kernels, and graph representation.

Broadly speaking, graphs are defined by a set of vertices and a set of edges, each
of which connect exactly two vertices. Vertices can encapsulate a wide range of data. Edges
are often individually weighted and can be directed. Graphs can vary from the simplest
linked lists and trees to the most complex DAGs.

Graph kernels can be broadly subdivided into graph traversal and graph manipu-
lation. In graph traversal algorithms like breadth- or depth-first search, the graph is static
and read-only. This greatly facilitates parallelization but does not guarantee efficient par-
allelization. Graph manipulation algorithms can change not only the values stored at the
vertices but may also change the structure of the graph through the insertion of deletion of
nodes. Such characteristics make parallelization far more challenging and far less efficient.

Typically, graph kernels don’t reuse vertex data sufficiently to be computationally-
limited. Moreover, poor data structures and placement in memory will result in latency-
limited performance. Multithreaded architectures attempt to solve this problem in hard-
ware, but we believe that choosing data representations cognizant of architecture will im-
prove performance. We assume the kernel will be run enough times to amortize the over-
head involved in changing storage representation. When selecting a data representation,
one should integrate both graph and kernel characteristics into the decision making process.

For example, if common traversals only access one value of the record stored at
each vertex, then the records should be stored as a structure-of-arrays to maximize spatial
locality. Similarly, depth-first traversals should attempt to lay out data accordingly so
that hardware prefetchers are effectively utilized [60]. Simply calling malloc() for each
node will probably result in poor performance as typical node traversals will not exhibit
spatial locality exceeding a few bytes. A similar suggestion could be made for breadth-
first kernels. For tree traversals, one might consider grouping subtrees into dense blocks
allocated together. One could tune to determine the optimal balance between block size,
prefetcher effectiveness, and cache usage (log(b)

b), where b is the subtree block size.
We assume discovery of parallelism is explicit in the algorithm. However, efficient

exploitation of such parallelism demands efficient implementations of parallel stacks, queues,

201

and barriers. We discuss these in Section 9.3.

9.3 Broadening Auto-tuning: Primitives

As discussed in Chapter 2, the Berkeley View set forth a pattern language for
parallel programming. The lowest layers of this stack require efficiency layer programmers
implement a number of parallel structures, collectives and routines. Rajesh Nishtala et
al. investigated the auto-tuning of barriers and collectives on SMPs [20]. Typically, this
involved exploration of various information dissemination trees. We believe that auto-tuning
can and should be extended to parallel structures like shared stacks and queues.

When it comes to parallel queue management, one could implement it with locks or
a dedicated thread for queue management. However, for many parallel algorithms, items are
queued in bulk, threads synchronize, and then items are dequeued in bulk. As such, between
synchronization points, any queue ordering is acceptable. Thus, threads could maintain
their own queues and at the synchronization point, the private queues are interleaved or
concatenated, perhaps by only changing queue bounds.

9.4 Broadening Auto-tuning: Motif Frameworks

We can continue with the existing auto-tuning strategy in which every time a new
“key” kernel is written, we write a kernel-specific auto-tuner for it. Although an individual’s
ability to write an auto-tuner may improve over time, it will always remain a significant
effort. We must take a step towards motif-wide auto-tuning. To that end, at the very
least, we must define a motif-specific pattern language that describes the characteristics of
any kernel with said motif. Then, we may build an auto-tuner that, based on the kernel
description, may apply any motif-specific optimizations and parallelization strategies. Just
as PhiPAC [16] is viewed as the progenitor of auto-tuned kernels, we believe SPIRAL
project [97, 124] should be viewed as the progenitor of auto-tuned motifs.

At a high-level, we consider the construction of an auto-tuned structured grid
framework. Chapter 5 introduced a structured grid pattern language. First, the grid is
characterized by several parameters including node valence, topological dimensionality and
periodicity, and data type. Second, computation within the structured grid motif is limited
to stencil operations for which there are several styles of parallelism. One could specify
the stencil, computation (a code snippet on local data), and style of parallelism. One
could encapsulate these into a configurable family of data structures chosen at tuning- or
runtime. An auto-tuner could then explore a preset list of optimizations depending on the
specified parameters. In time, as motifs become cleanly defined, we believe SPIRAL-style
auto-tuning frameworks could be created for each.

Ultimately, the kernels of many motifs can be viewed as static DAGs operating
on double-precision floating-point inputs. At the high level, what allows us to perform
certain optimizations, for example register blocking in sparse linear algebra? We believe
each motif specifies the functionality of each node in the DAG and a series of rewrite rules
that allow transformations of the DAG. For example, the nodes in SpMV are floating-point
multiplication and addition. As such, floating-point commutativity allows the nodes in a

202

A
100%

G GD E F
14% 28% 57% 50% 50%

HHHH
50%50%50%50%

CB
43% 57%

Figure 9.6: Composition of parallel motifs. Note: Rather than specifying the exact number
of cores, the programmers of each level specify the fraction (%’s) of that level’s computa-
tional resources. Motifs may only communicate through their parent frameworks.

row to be interchanged. Moreover, addition with zero doesn’t change the result. As a result,
additional nodes can be inserted so long as they only add zero to the running sum. We
believe many motifs could be generalized to an arbitrary data type so long as the algebra on
said data type doesn’t change the underlying assumptions of the motif in question. That is,
one could reuse the optimizations employed in auto-tuning SpMV on floating-point numbers
for SpMV on arbitrary objects so long as “addition” and “multiplication” on these arbitrary
objects behaves the same as floating-point addition and multiplication.

9.5 Composition of Motifs

Composition of multiple motifs into an application is a difficult, yet poorly defined
problem. We believe it will become the preeminent problem once the challenges from the
previous two sections have been a least partially solved. There are two principal problems
with composition: efficient parallelization in hierarchical compositions, and interoperability
between motifs.

For efficient and portable composition of motifs into frameworks or applications,
we believe it is inappropriate and likely detrimental to hardcode the desired number of
cores. Figure 9.6 shows the structure of an application written by as many as eight pro-
grammers. The programmer writing the parallel section “A” wants to execute “B” and “C”
in parallel. However, the sections’ computational requirements demand that “C” be given
33% more cores. Rather than hardcoding the number of cores, he simply specifies that “B”
receives 43% of “A”s resources, but “C” gets the remaining 57%. A second programmer
independently writing “B” is oblivious of the fact that “C” will be run concurrently. As
such, she might näıvely attempt to use all of a computer’s cores rather than those that
have been allocated by its parent. Ultimately, the auto-tuning of the leaf kernels must be
performed for all possible concurrencies.

The second major issue is communication between motifs. Some motifs, like sparse
linear algebra, already interface well with the dense motif through the common dense vec-

203

tors. Given M motifs we don’t have to define M2 routines to exchange data, but rather
define one universally portable representation for each motif. The programmer is then re-
quired to implement the necessary transformations from these common types. Moreover,
within each motif, we believe that within each motif there are very few values of interest.
Thus, the motif writers must provide the mechanisms to extract those values.

The arrows in Figure 9.6 show how communication and composition might mesh.
Motifs “D” and “E” each provide an external representation and access to their respective
internal conceptual variables. The writer of “B” must either implement a representation
transformation or extract and insert the relevant variables. Similarly, for two instantiations
of “H” to communicate, both “G” and “C” must transport data or access to data, but no
transformations are required.

Consider codes where physics from two different domains must be composed. One
could image a multi-phase SPMD implementation that alternates between different physics
codes; temporal partitioning of hardware. However, in a multicore world, it may be simpler
to spatially partition hardware, and allow domain experts code their part oblivious of the
number of codes they will be allocated.

9.6 Conclusions

In this chapter, we discussed our observations and insights derived from auto-
tuning LBMHD and SpMV. Clearly, the drive for in-core performance over the last decade
has driven many kernels into the bandwidth-bound region. This shift has dramatically
changed the nature of auto-tuning from instruction scheduling into a quest to maximize
memory bandwidth and minimize memory traffic. The combination of multicore and shared
caches actually complicates the quest for the latter as threads can contend for both capacity
and associativity. All too often, the result is a flood of capacity and conflict misses. Auto-
tuning can eliminate these by adapting the kernels to the architecture.

We may either accept our fate and tune memory-limited kernels or demand ar-
chitectural or algorithmic changes. New architectures must deliver bandwidth that will
scale with the number of cores. Moreover, shared caches must have both associativity and
capacity that scales with the number of cores sharing them. When it comes to algorithms,
we must discover algorithms that deliver a superior balance of computational complexity
and arithmetic efficiency. Moreover, to deliver superior throughput on future architectures,
the arithmetic efficiency must scale with the number of cores. That is, algorithms with
constant arithmetic intensity will scale slowly with bandwidth.

We believe that the auto-tuning process can be applied kernel by kernel, motif
by motif. In Section 9.2 we discuss how one might apply auto-tuning to kernels within a
number of motifs. The only discussed motif for which in-core performance may be critical is
the circuits motif due to the lack of instruction support for bit-level manipulation. To that
end, we discussed both software and new instructions to facilitate efficient implementation
of combinational logic kernels on multicore processors.

Ultimately, without a productive means of auto-tuning an arbitrary kernel, auto-
tuning will be relegated to a few key kernels auto-tuned by experts. To that end, we discuss
how motif-wide auto-tuning might be realized. This clearly requires each motif be well

204

defined including the creation of a motif-language to describe any kernel within that motif.
Finally, we put forth some ideas as to how multiple motifs could efficiently inter-

operate within an application. To that end, each level of the composition must be oblivious
of the layers above or below. Moreover, it must be oblivious of any other subtree within
the application. We believe that programmers should allocate fractions of a computer’s
computational capability rather than programming for a fixed number of cores.

205

Chapter 10

Conclusions

Architectures developed over the last decade have squandered the exponential
promises of Moore’s Law by expending transistors to increase instruction- and data-level
parallelism — not to mention cache sizes — in an effort that only moderately increased
single-thread performance. We embrace multicore as the better solution to deliver scalable
performance in the future. In doing so, we must accept parallel programming as the new
preeminent challenge in computing. The computational motifs as set forth in the Berkeley
View allow domain expert programmers to encapsulate key numerical methods into libraries
or frameworks so that productivity-level programmers may view them as black boxes. In
this thesis, we take on the role of domain experts and apply automated tuning or auto-tuning
as a technique to provide performance portability across both the breadth and evolution of
multicore computers when running two specific kernels from these motifs.

Thesis Contributions

• In Chapter 4, we created the Roofline model, a visually-intuitive graphical represen-
tation of a machine’s performance characteristics. For the computers used in this the-
sis, we created Roofline models that combined floating-point performance and main
memory bandwidth. These Roofline models were useful in identifying performance
bottlenecks, and identifying them as either inherent in the architecture, or an artifact
of a program’s implementation. Moreover, when used in the context of performance
bounds, they were useful in noting when to stop tuning. We discussed how the Roofline
model could be extended to other communication or computation metrics and even de-
tailed how one could use performance counters to generate a runtime-specific Roofline
model.

• We expanded auto-tuning to the structured grid motif. To that end, we selected one
of the more challenging structured grid kernels — Lattice-Boltzmann Magnetohydro-
dynamics (LBMHD) and created an auto-tuner for it. Chapter 6 showed that the
complexity of LBMHD’s data structure demands blocking in the higher-dimensional
lattice velocity space to mitigate TLB capacity misses.

• As all future computers will be built from multicore processors, we extended auto-
tuning single-thread performance to auto-tuning multicore architectures. Note, this is

206

a fundamentally different approach from tuning single-thread performance and then
running the resultant code on a multicore machine. Heuristics are an effective means of
tackling the search space explosion problem for kernels with limited locality. We imple-
mented this multicore auto-tuning approach for both the LBMHD and sparse matrix-
vector multiplication (SpMV) kernels on six multicore architectures. We showed that
despite the näıve implementation’s exhibition of deceptively good parallel efficiency,
multicore-aware auto-tuning can provide significant performance enhancements.

• We concretely address the aspects auto-tuners should focus on. Throughout Chap-
ters 6 and 8, we showed how imperative it was for auto-tuners to explore data structure
and even serial optimizations with the goal of minimizing memory traffic. Moreover,
we show the importance of NUMA and cache optimizations in the context of multi-
threaded codes.

• Finally, throughout Chapters 6 and 8, we analyze the breadth of multicore archi-
tectures using these two auto-tuned kernels. Processing power has quickly outpaced
bandwidth. As such many so-called compute-intensive kernels have become bandwidth-
limited in the multicore era. Moreover, although multithreading solves many perfor-
mance optimization problems with a single programming paradigm, it greatly exac-
erbates the requisite cache optimizations to avoid conflict and capacity misses.

Future Work

Although we made significant advances in the areas of auto-tuning LBMHD and
SpMV on a wide range of multicore computers, much work remains within both the struc-
tured grid and sparse linear algebra motifs. Moreover, may other motifs have been un-
touched by auto-tuning endeavors. We summarize potential auto-tuning efforts:

• Auto-tuning individual kernels: Inspired and guided by our efforts in Chapters 6
and 8, we believe any well-defined kernel could be auto-tuned. In many respects, the
benefits of auto-tuning are limited only by the flexibility allowed in the selection of
data representation and algorithm.

• Auto-tuning primitives: The performance of collectives and primitives like barri-
ers, shared queues, and locks is key to parallel performance for many strong scaling
applications. That is, as the number of threads increase, the time each thread spends
in isolation is inversely proportional to the total number of threads. However, the
time each thread spends in collectives or primitives must increase. As such, for a
quanta of work, there is a maximum number of threads that can efficiently process it.
Improving collective performance pushes out the point of diminishing returns.

• Auto-tuning motif frameworks: Ultimately, we should consider the definition of
a motif-description language for each motif. Any kernel within said motif could be
precisely described by this motif language. A per-motif language will greatly facilitate
per-motif auto-tuning as it simply constrains the auto-tuner.

207

• Motif composition: The ultimate potential of auto-tuning motifs will not be realized
until productivity-level programmers can easily integrate multiple auto-tuned motifs
into a single application or routine. We believe these programmers should be oblivious
of the actual number of cores any routine will utilize but should have the ability
to assign fractions of the number of cores to each sub-task. Composition is also
complicated by the opaque and flexible nature of an auto-tuned motif’s internal data
representation. An agreed upon format for exporting or importing of data may help,
but the burden ultimately falls upon the integrating programmer.

The transition to multicore hardware from single-core processors is widely viewed
as the necessary step to continued exponential performance gains. The hardware community
is firmly ensconced in the transition to on-chip software-managed parallelism, whether it
be in the form of ever wider SIMD units, ever more superscalar cores, or ever more of
the simple, lightweight cores seen in graphics or game processors today. Regardless of the
solution, we are faced with a software crisis as few applications are written to take advantage
of these features. Moreover, existing tools cannot automatically exploit these technologies
using existing serial software. We believe that auto-tuning, in part, offers the solution to this
software crisis by providing a productive and performance portable approach to building
libraries and frameworks. The results in this thesis demonstrate that auto-tuning is an
effective approach to all three forms of hardware parallelism. It can exploit superscalar
multicore, it can exploit lightweight manycore, and it can utilize small ISA augmentations
such as software prefetching and SIMD instructions without full compiler support. We
have identified a roadmap for future breadth, depth, and evolution of auto-tuning work
regimented around the structure of the Berkeley View “motifs.”

208

Bibliography

[1] A. Agarwal. The Why, Where and How of Multicore. In In Workshop on EDGE Com-
puting Using New Commodity Architectures (EDGE) http: // www. cs. unc. edu/
∼geom/ EDGE/ SLIDES/ agarwal. pdf , May 2006.

[2] C. Alexander, S. Ishikawa, M. Silverstein, M. Jacobson, I. Fiksdahl-King, and S. An-
gel. A Pattern Language: Towns, Buildings, Construction. Oxford University Press,
USA, 1977.

[3] Software Optimization Guide for AMD Family 10h Processors. http://www.amd.com/
us-en/assets/content type/white papers and tech docs/40546.pdf, May 2007.

[4] AMD64 Architecture Programmers Manual Volume 2: System Program-
ming. http://www.amd.com/us-en/assets/content type/white papers and
tech docs/24593.pdf, September 2007.

[5] C. Anderson. An implementation of the fast multipole method without multipoles.
SIAM J. Sci. Stat. Comput., 13(4):923–947, 1992.

[6] K. Asanovic, R. Bodik, J. Demmel, T. Keaveny, K. Keutzer, J. Kubiatowicz, N. Mor-
gan, D. Patterson, K. Sen, J. Wawrzynek, D. Wessel, and K. Yelick. A View of the
Parallel Computing Landscape. (submitted to) Communications of the ACM, May
2008.

[7] Krste Asanovic, Ras Bodik, Bryan Christopher Catanzaro, Joseph James Gebis, Parry
Husbands, Kurt Keutzer, David A. Patterson, William Lester Plishker, John Shalf,
Samuel Webb Williams, and Katherine A. Yelick. The Landscape of Parallel Comput-
ing Research: A View from Berkeley. Technical Report UCB/EECS-2006-183, EECS
Department, University of California, Berkeley, Dec 2006.

[8] F. Bach and M. Jordan. Kernel independent component analysis. Technical Report
UCB CSD-01-1166, University of California, Berkeley, 2001.

[9] D.A. Bader, V. Agarwal, and K. Madduri. On the Design and Analysis of Irregular
Algorithms on the Cell Processor: A Case Study of List Ranking. In Proc. Int’l
Parallel and Distributed Processing Symp. (IPDPS 2007), Long Beach, CA, USA,
2007.

209

[10] D. Bailey. Little’s Law and High Performance Computing. In RNR Technical Report,
1997.

[11] S. Balay, W. D. Gropp, L. C. McInnes, and B. F. Smith. Efficient management of
parallelism in object oriented numerical software libraries. In E. Arge, A. M. Bruaset,
and H. P. Langtangen, editors, Modern Software Tools in Scientific Computing, pages
163–202, 1997.

[12] J. Barnes and P. Hut. A Hierarchical O(N log N) Force-Calculation Algorithm. Nature,
324(6096):446–449, December 1986.

[13] C. Batten, A. Joshi, J. Orcutt, A. Khilo, B. Moss, C. Holzwarth, M. Popovic, H. Li,
H. Smith, J. Hoyt, F. Kartner, R. Ram, V. Stojanovic, and K. Asanovic. Build-
ing manycore processor-to-dram networks with monolithic silicon photonics. High-
Performance Interconnects, Symposium on, 0:21–30, 2008.

[14] M. Berger and J. Oliger. Adaptive mesh refinement for hyperbolic partial differential
equations. Journal of Computational Physics, 53:484–512, 1984.

[15] The Berkeley UPC Compiler. http://upc.lbl.gov, 2002.

[16] J. Bilmes, K. Asanović, C.W. Chin, and J. Demmel. Optimizing Matrix Multiply using
PHiPAC: a Portable, High-Performance, ANSI C Coding Methodology. In Proceedings
of the International Conference on Supercomputing, Vienna, Austria, July 1997. ACM
SIGARC.

[17] D. Biskamp. Magnetohydrodynamic Turbulence. Cambridge University Press, 2003.

[18] David Thomas Blackston. Pbody: a parallel n-body library. PhD thesis, University of
California, Berkeley, 2000. Chair-James Demmel.

[19] G. E. Blelloch, M. A. Heroux, and M. Zagha. Segmented Operations for Sparse
Matrix Computations on Vector Multiprocessors. Technical Report CMU-CS-93-173,
Department of Computer Science, CMU, 1993.

[20] D. Bonachea, R. Nishtala, P. Hargrove, M. Welcome, and K. Yelick. Optimized
Collectives for PGAS Languages with One-Sided Communication . Poster Session,
Supercomputing, November 2006.

[21] S. Borkar. Design challenges of technology scaling. IEEE Micro, 19(4):23–29, Jul-Aug,
1999.

[22] A. Brandt. Multi-level adaptive solutions to boundary value problems. Math. Comp.,
31:333–390, 1977.

[23] Eric Allen Brewer. Portable high-performance supercomputing: high-level platform-
dependent optimization. PhD thesis, Massachusetts Institute of Technology, 1994.

210

[24] William L. Briggs, Van Emden Henson, and Steve F. McCormick. A multigrid tutorial
(2nd ed.). Society for Industrial and Applied Mathematics, Philadelphia, PA, USA,
2000.

[25] Cactus homepage. http://www.cactuscode.org.

[26] D. Callahan, J. Cocke, and K. Kennedy. Estimating Interlock and Improving Balance
for Pipelined Machines. Journal of Parallel and Distributed Computing, 5:334–358,
1988.

[27] S. Carr and K. Kennedy. Improving the Ratio of Memory Operations to Floating-point
Operations in Loops. ACM Transactions on Programming Languages and Systems,
16:1768–1810, 1994.

[28] Laura C. Carrington, Xiaofeng Gao, Nicole Wolter, Allan Snavely, and Roy L. Jr.
Campbell. Performance Sensitivity Studies for Strategic Applications. In DOD UGC
’05: Proceedings of the 2005 Users Group Conference on 2005 Users Group Confer-
ence, page 400, Washington, DC, USA, 2005. IEEE Computer Society.

[29] J. Carter, M. Soe, L. Oliker, Y. Tsuda, G. Vahala, L. Vahala, and A. Macnab. Mag-
netohydrodynamic Turbulence Simulations on the Earth Simulator Using the Lattice
Boltzmann Method. In Proc. SC2005: High performance computing, networking, and
storage conference, 2005.

[30] Chombo homepage. http://seesar.lbl.gov/anag/chombo.

[31] P. Colella. Defining Software Requirements for Scientific Computing (presentation),
2004.

[32] James W. Cooley and John W. Tukey. An Algorithm for the Machine Calculation of
Complex Fourier Series. Mathematics of Computation, 19(90):297–301, 1965.

[33] R. Courant, K. Friedrichs, and H. Lewy. On the Partial Difference Equations of
Mathematical Physics. IBM Journal of Research and Development, 11:215–234, 1967.

[34] E. Cuthill and J. McKee. Reducing the bandwidth of sparse symmetric matrices. In
Proceedings of the ACM National Conference, 1969.

[35] K. Datta. private communication, 2005.

[36] K. Datta, S. Kamil, S. Williams, L. Oliker, J. Shalf, and K. Yelick. Optimization and
performance modeling of stencil computations on modern microprocessors. In SIAM
Review (SIREV) (to appear), 2008.

[37] K. Datta, M. Murphy, V. Volkov, S. Williams, J. Carter, L. Oliker, J. Shalf D. Pat-
terson, and K. Yelick. Stencil computation optimization and autotuning on state-
of-the-art multicore architectures. In Proc. SC2008: High performance computing,
networking, and storage conference, 2008.

211

[38] PC2-3200/PC2-4200/PC2-5300/PC2-6400 DDR2 SDRAM Unbuffered DIMM Design
Specification. http://www.jedec.org/download/search/4 20 13R15.pdf, January
2005.

[39] P.J. Dellar. Lattice Kinetic Schemes for Magnetohydrodynamics. J. Comput. Phys.,
79, 2002.

[40] James Demmel, Mark Frederick Hoemmen, Marghoob Mohiyuddin, and Katherine A.
Yelick. Avoiding Communication in Computing Krylov Subspaces. Technical Re-
port UCB/EECS-2007-123, EECS Department, University of California, Berkeley,
Oct 2007.

[41] Keith Diefendorff, Pradeep K. Dubey, Ron Hochsprung, and Hunter Scales. Al-
tiVec Extension to PowerPC Accelerates Media Processing. IEEE Micro, 20(2):85–95,
March 2000.

[42] Jack J. Dongarra, Jack J. Dongarra, Jeremy Du Croz, Jeremy Du Croz, Sven Ham-
marling, Sven Hammarling, Richard J. Hanson, and Richard J. Hanson. An Extended
Set of Fortran Basic Linear Algebra Subprograms. ACM Transactions on Mathemat-
ical Software, 14:1–17, 1988.

[43] J. Doweck. Inside intel core microarchitecture. In HotChips 18, 2006.

[44] P. Dubey. A platform 2015 workload model: Recognition, mining and synthesis moves
computers to the era of tera. Technical report, Intel Corporation, 2005.

[45] Iain S. Duff, Michele Marrone, and Carlo Vittoli. A set of Level 3 Basic Linear Algebra
Subprograms for sparse matrices. ACM Trans. Math. Softw, 23:379–401, 1997.

[46] Energy Star Computer Specifications. http://www.energystar.gov/index.cfm?c=
revisions.computer spec.

[47] Technical Note FBDIMM Channel Utilization (Bandwidth and Power). http://
download.micron.com/pdf/technotes/ddr2/tn4721.pdf, 2006.

[48] Solaris Memory Placement Optimization and Sun FireServers. http://www.sun.com/
software/solaris/performance.jsp, March 2003.

[49] B. Flachs, S. Asano, S.H. Dhong, et al. A streaming processor unit for a cell processor.
ISSCC Dig. Tech. Papers, pages 134–135, February 2005.

[50] M. Frigo and V. Strumpen. Cache oblivious stencil computations. In Proceedings of
the 19th ACM International Conference on Supercomputing (ICS05), 2005.

[51] M. Frigo and V. Strumpen. The Memory Behavior of Cache Oblivious Stencil Com-
putations. J. Supercomput., 39(2):93–112, 2007.

[52] Matteo Frigo and Steven G. Johnson. FFTW: An adaptive software architecture for
the FFT. In Proc. 1998 IEEE Intl. Conf. Acoustics Speech and Signal Processing,
volume 3, pages 1381–1384. IEEE, 1998.

212

[53] Matteo Frigo, Charles E. Leiserson, Harald Prokop, Sridhar Ramachandran, and
Z W(l. Cache-oblivious algorithms. Extended abstract submitted for publication.
In In Proc. 40th Annual Symposium on Foundations of Computer Science, pages
285–397. IEEE Computer Society Press, 1999.

[54] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley Professional, USA, 1994.

[55] A. Ganapathi, K. Datta, A. Fox, and D. Patterson. Using Machine Learning to Auto-
tune a Stencil Code on a Multicore Architecture. In (submitted to) Third Workshop
on Tackling Computer Systems Problems with Machine Learning Techniques (SysML),
2008.

[56] A. Ganapathi, K. Datta, A. Fox, and D. Patterson. A Case for Machine Learning
to Optimize Multicore Performance. In First USENIX Workshop on Hot Topics in
Parallelism, 2009.

[57] J. Gebis, S. Williams, C. Kozyrakis, and D. Patterson. VIRAM1: A Media-Oriented
Vector Processor with Embedded DRAM. In 41st Design Automation Student Design
Contenst, 2004.

[58] P. P. Gelsinger. Microprocessors for the New Millennium: Challenges, Opportuni-
ties, and New Frontiers. In Proc. In International Solid State Circuits Conference,
(ISSCC), San Francisco, CA, 2001.

[59] R. Geus and S. Röllin. Towards a Fast Parallel Sparse Matrix-Vector Multiplication.
In E. H. D’Hollander, J. R. Joubert, F. J. Peters, and H. Sips, editors, Proceedings of
the International Conference on Parallel Computing (ParCo), pages 308–315. Imperial
College Press, 1999.

[60] A. Ghoting, G. Buehrer, S. Parthasarathy, D. Kim, A. Nguyen, Y.K. Chen, and
P. Dubey. Cache-conscious frequent pattern mining on a modern processor. In In
VLDB05, pages 577–588. MIT, 2005.

[61] X. Gou, M. Liao, P. Peng, G. Wu, A. Ghuloum, and D. Carmean. Report on Sparse
Matrix Performance Analysis. Intel report, Intel, United States, 2008.

[62] Green500 Supercomputer Site. http://www.green500.org.

[63] L. Greengard and V. Rokhlin. A fast algorithm for particle simulations. J. Comput.
Phys., 73(2):325–348, 1987.

[64] M. Gschwind. Chip Multiprocessing and the Cell Broadband Engine. In CF ’06:
Proceedings of the 3rd conference on Computing frontiers, pages 1–8, New York, NY,
USA, 2006.

[65] M. Gschwind, H. P. Hofstee, B. K. Flachs, M. Hopkins, Y. Watanabe, and T. Ya-
mazaki. Synergistic Processing in Cell’s Multicore Architecture. IEEE Micro,
26(2):10–24, 2006.

213

[66] R. Heikes and D.A. Randall. Numerical integration of the shallow-water equations on
a twisted icosahedral grid. Part I: basic design and results of tests. Monthly Weather
Review, 123:1862, 1995.

[67] R. Heikes and D.A. Randall. Numerical integration of the shallow-water equations on
a twisted icosahedral grid. Part II. A detailed description of the grid and analysis of
numerical accuracy. Monthly Weather Review, 123:1862, 1995.

[68] J. L. Hennessy and D. A. Patterson. Computer Architecture : A Quantitative Ap-
proach; fourth edition. Morgan Kaufmann, San Francisco, 2007.

[69] M. D. Hill and A. J. Smith. Evaluating Associativity in CPU Caches. IEEE Trans.
Comput., 38(12):1612–1630, 1989.

[70] Intel64 and IA-32 Architectures Optimization Reference Manual. http://support.
intel.com/design/processor/manuals/248966.pdf, May 2007.

[71] Intel 64 and IA-32 Architectures Software Developers Manual. http://download.
intel.com/design/processor/manuals/253665.pdf, September 2008.

[72] E. J. Im, K. Yelick, and R. Vuduc. SPARSITY: Optimization Framework for Sparse
Matrix Kernels. International Journal of High Performance Computing Applications,
18(1):135–158, 2004.

[73] Intel 5000X Chipset Memory Controller Hub (MCH) Datasheet. http://www.intel.
com/design/chipsets/datashts/313070.htm, September 2006.

[74] Intel Advanced Vector Extensions Programming Reference. http://software.
intel.com/sites/avx/, August 2008.

[75] Intel SSE4 Programming Reference. http://www.intel.com/technology/
architecture-silicon/sse4-instructions/index.htm, July 2007.

[76] C. Jablonowski. Test of the Dynamics of two global Weather Prediction Models of the
German Weather Service: The Held-Suarez Test (diploma thesis), September 1998.

[77] Ankit Jain. pOSKI: An Extensible Autotuning Framework to Perform Optimized
SpMVs on Multicore Architectures. Technical Report (pending), MS Report, EECS
Department, University of California, Berkeley, 2008.

[78] Eun jin Im and Katherine Yelick. Optimizing sparse matrix vector multiplication on
smps. In In Proc. of the 9th SIAM Conf. on Parallel Processing for Sci. Comp, 1999.

[79] J. A. Kahle, M. N. Day, H. P. Hofstee, C. R. Johns, T. R. Maeurer, and D. Shippy.
Introduction to the cell multiprocessor. IBM J. Res. Dev., 49(4/5):589–604, 2005.

[80] S. Kamil, C. Chan, K. Datta, S. Williams, J. Shalf, L. Oliker, and K. Yelick. In-Place
Auto-tuning of Structured Grid Kernels. http://www.cs.berkeley.edu/∼skamil/
stencilautotunerposter.ppt, December 2008.

214

[81] S. Kamil, K. Datta, S. Williams, L. Oliker. J. Shalf, and K. Yelick. Implicit and
explicit optimizations for stencil computations. In Memory Systems Performance and
Correctness (MSPC), 2006.

[82] S. Kamil, P. Husbands, L. Oliker, J. Shalf, and K. Yelick. Impact of modern memory
subsystems on cache optimizations for stencil computations. In MSP ’05: Proceedings
of the 2005 workshop on Memory system performance, pages 36–43, New York, NY,
USA, 2005. ACM.

[83] Kornilios Kourtis, Georgios I. Goumas, and Nectarios Koziris. Optimizing Sparse
Matrix-Vector Multiplication Using Index and Value Compression. In Conf. Comput-
ing Frontiers, pages 87–96, 2008.

[84] C. Kozyrakis, J. Gebis, D. Martin, S. Williams, I. Mavroidis, S. Pope, D. Jones,
D. Patterson, and K. Yelick. Vector IRAM: A Media-oriented Vector Processor with
Embedded DRAM. In HotChips 12, 2000.

[85] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik.
Quantitative System Performance: Computer System Analysis using Queueing Net-
work Models. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1984.

[86] B. C. Lee, R. Vuduc, J. Demmel, and K. Yelick. Performance Models for Evaluation
and Automatic Tuning of Symmetric Sparse Matrix-Vector Multiply. In Proceedings
of the International Conference on Parallel Processing, Montreal, Canada, August
2004.

[87] W. W. Lee. Gyrokinetic particle simulation model. J. Comp. Phys., 72, 1987.

[88] Z. Lin, T.S. Hahm, W.W. Lee, W.M. Tang, and R.B. White. Turbulent transport
reduction by zonal flows: Massively parallel simulations. Science, September 1998.

[89] LINPACK Benchmark. http://www.netlib.org/benchmark/hpl.

[90] A. Macnab, G. Vahala, L. Vahala, and P. Pavlo. Lattice Boltzmann Model for Dissipa-
tive MHD. In Proc. 29th EPS Conference on Controlled Fusion and Plasma Physics,
volume 26B, Montreux, Switzerland, June 17-21, 2002.

[91] D.O. Martinez, S. Chen, and W.H. Matthaeus. Lattice Boltzmann magnetohydrody-
namics. Phys. Plasmas, 1, 1994.

[92] T. Mattson, B. Sanders, and B. Massingill. Patterns for Parallel Programming.
Addison-Wesley Professional, USA, 2004.

[93] J. McCalpin and D. Wonnacott. Time Skewing: A Value-Based Approach to Optimiz-
ing for Memory Locality. Technical Report DCS-TR-379, Department of Computer
Science, Rugers University, 1999.

[94] J. Mellor-Crummey and J. Garvin. Optimizing Sparse Matrix Vector Multiply Using
Unroll-and-Jam. In Proc. LACSI Symposium, Santa Fe, NM, USA, October 2002.

215

[95] T.C. Meyerowitz. Single and Multi-CPU Performance Modeling for Embedded Sys-
tems. PhD thesis, University of California, Berkeley, Berkeley, CA, USA, April 2008.

[96] Gordon E. Moore. Cramming More Components Onto Integrated Circuits. Electron-
ics, 38(8), April 1965.

[97] José M. F. Moura, Jeremy Johnson, Robert W. Johnson, David Padua, Viktor K.
Prasanna, Markus Püschel, and Manuela Veloso. SPIRAL: Automatic Implementation
of Signal Processing Algorithms. In High Performance Embedded Computing (HPEC),
2000.

[98] Saul B. Needleman and Christian D. Wunsch. A general method applicable to the
search for similarities in the amino acid sequence of two proteins. Journal of Molecular
Biology, 48(3):443–453, March 1970.

[99] R. Nishtala, R. Vuduc, J. W. Demmel, and K. A. Yelick. When cache blocking
sparse matrix vector multiply works and why. Applicable Algebra in Engineering,
Communication, and Computing, March 2007.

[100] NVIDIA CUDA programming guide 1.1. http://www.nvidia.com/object/cuda
develop.html, November 2007.

[101] L. Oliker, A. Canning, J. Carter, J. Shalf, D. Skinner, S. Ethier, et al. Performance
evaluation of the SX-6 vector architecture for scientific computations. Concurrency
and Computation; Practice and Experience, 17:1:69–93, 2005.

[102] L. Oliker, J. Carter, M. Wehner, A. Canning, S. Ethier, et al. Leading Computational
Methods on Scalar and Vector HEC Platforms. In Proc. SC2005: High performance
computing, networking, and storage conference, Seattle, WA, 2005.

[103] OpenMP. http://openmp.org, 1997.

[104] B. Palmer and J. Nieplocha. Efficient algorithms for ghost cell updates on two classes
of MPP architectures. In Proc. PDCS International Conference on Parallel and Dis-
tributed Computing Systems, volume 192, 2002.

[105] David A. Patterson. Latency lags bandwith. Commun. ACM, 47(10):71–75, 2004.

[106] D. Pham, S. Asano, M. Bollier, et al. The design and implementation of a first-
generation cell processor. ISSCC Dig. Tech. Papers, pages 184–185, February 2005.

[107] S. Phillips. Victoriafalls: Scaling highly-threaded processor cores. In HotChips 19,
2007.

[108] A. Pinar and M. Heath. Improving performance of sparse matrix-vector multiplica-
tion. In Proc. Supercomputing, 1999.

[109] William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery.
Numerical Recipes in C: The Art of Scientific Computing. Cambridge University
Press, New York, NY, USA, 1992.

216

[110] K. Remington and R. Pozo. NIST Sparse BLAS: Users Guide. gams.nist.gov/
spblas, 1996.

[111] G. Rivera and C. Tseng. Tiling optimizations for 3D scientific computations. In
Proceedings of SC’00, Dallas, TX, November 2000. Supercomputing 2000.

[112] C. Ronchi, R. Iacono, and P.S. Paolucci. Finite Difference Approximation to the
Shallow Water Equations on a Quasi-uniform Spherical Grid. In Lecture Notes in
Computer Science, volume 919, pages 741–747, Berlin / Heidelberg, 1995. Springer.

[113] D. J. Rose. A graph-theoretic study of the numerical solution of sparse positive definite
systems of linear equations. Graph Theory and Computing, pages 183–217, 1973.

[114] T. Ruge. Does Your Software Scale ? Multi-GPU Scaling for Large Data Visualization.
In NVISION, 2008.

[115] D. Scarpazza, O. Villa, and F. Petrini. High-speed String Searching Against Large
Dictionaries on the Cell/B.E. Processor. In IPDPS, pages 1–12. IEEE, 2008.

[116] S. Sellappa and S. Chatterjee. Cache-Efficient Multigrid Algorithms. International
Journal of High Performance Computing Applications, 18(1):115–133, 2004.

[117] T. F. Smith and M. S. Waterman. Identification of common molecular subsequences.
J. Mol. Biol., 147(1):195–197, March 1981.

[118] A. Snavely, N. Wolter, and L. Carrington. Modeling Application Performance by Con-
volving Machine Signatures with Application Profiles. In WWC ’01: Proceedings of
the Workload Characterization, 2001. WWC-4. 2001 IEEE International Workshop,
pages 149–156, Washington, DC, USA, 2001. IEEE Computer Society.

[119] M. Snir, S. Otto, S. Huss-Lederman, D. Walker, , and J. Dongarra. MPI: The Com-
plete Reference (Vol. 1). The MIT Press, 1998.

[120] J.A. Snyman. Practical Mathematical Optimization: An Introduction to Basic Opti-
mization Theory and Classical and New Gradient-Based Algorithms. Springer, New
York, 2005.

[121] Y. Song and Z. Li. New Tiling Techniques to Improve Cache Temporal Locality. In
Proc. ACM SIGPLAN Conference on Programming Language Design and Implemen-
tation, Atlanta, GA, 1999.

[122] The SPARC Architecture Manual Version 9. http://www.sparc.org/standards/
SPARCV9.pdf, 1994.

[123] Synergistic processor unit instruction set architecture, October 2006.

[124] SPIRAL Project. http://www.spiral.net/.

[125] STREAM: Sustainable Memory Bandwidth in High Performance Computers. http:
//www.cs.virginia.edu/stream.

217

[126] S. Succi. The Lattice Boltzmann Equation For fluids and beyond. Oxford Science
Publ., 2001.

[127] D. Sylvester and K. Keutzer. Microarchitectures for Systems on a Chip in Small
Process Geometries. In Proceedings of the IEEE, pages 467–489, Apr. 2001.

[128] O. Takahashi, C. Adams, D. Ault, E. Behnen, O. Chiang, S.R. Cottier, P. Coulman,
J. Culp, G. Gervais, M.S. Gray, Y. Itaka, C.J. Johnson, F. Kono, L. Maurice, K.W.
McCullen, L. Nguyen, Y. Nishino, H. Noro, J. Pille, M. Riley, M. Shen, C. Takano,
S. Tokito, T. Wagner, and H. Yoshihara. Migration of Cell Broadband Engine from
65nm SOI to 45nm SOI. In ISSCC, 2008.

[129] The IEEE and The Open Group. The Open Group Base Specifications Issue 6, 2004.

[130] S. Toledo. Improving Memory-System Performance of Sparse Matrix-Vector Multipli-
cation. In Eighth SIAM Conference on Parallel Processing for Scientific Computing,
March 1997.

[131] Top500 Supercomputer Site. http://www.top500.org.

[132] Dana Vantrease, Robert Schreiber, Matteo Monchiero, Moray McLaren, Norman P.
Jouppi, Marco Fiorentino, Al Davis, Nathan Binkert, Raymond G. Beausoleil, and
Jung Ho Ahn. Corona: System implications of emerging nanophotonic technology.
SIGARCH Comput. Archit. News, 36(3):153–164, 2008.

[133] B. Vastenhouw and R. H. Bisseling. A Two-Dimensional Data Distribution Method
for Parallel Sparse Matrix-Vector Multiplication. SIAM Review, 47(1):67–95, 2005.

[134] R. Vuduc. Automatic Performance Tuning of Sparse Matrix Kernels. PhD thesis,
University of California, Berkeley, Berkeley, CA, USA, December 2003.

[135] R. Vuduc, J. Demmel, and K. Yelick. OSKI: A Library of Automatically Tuned Sparse
Matrix Kernels. In Proc. of SciDAC 2005, J. of Physics: Conference Series. Institute
of Physics Publishing, June 2005.

[136] R. Vuduc, S. Kamil, J. Hsu, R. Nishtala, J. W. Demmel, and K. A. Yelick. Automatic
performance tuning and analysis of sparse triangular solve. In ICS 2002: Workshop on
Performance Optimization via High-Level Languages and Libraries, New York, USA,
June 2002.

[137] G. Wellein, T. Zeiser, S. Donath, and G. Hager. On the single processor performance
of simple lattice Boltzmann kernels. Computers and Fluids, 35(910), 2005.

[138] R. C. Whaley, A. Petitet, and J. Dongarra. Automated Empirical Optimization of
Software and the ATLAS project. Parallel Computing, 27(1-2):3–35, 2001.

[139] S. Williams, J. Carter, L. Oliker, J. Shalf, and K. Yelick. Lattice Boltzmann simulation
optimization on leading multicore platforms. In Interational Conference on Parallel
and Distributed Computing Systems (IPDPS), Miami, Florida, 2008.

218

[140] S. Williams, L. Oliker, R. Vuduc, J. Shalf, K. Yelick, and J. Demmel. Optimization
of sparse matrix-vector multiplication on emerging multicore platforms. In Proc.
SC2007: High performance computing, networking, and storage conference, 2007.

[141] S. Williams, J. Shalf, L. Oliker, S. Kamil, P. Husbands, and K. Yelick. The Potential
of the Cell Processor for Scientific Computing. In CF ’06: Proceedings of the 3rd
conference on Computing frontiers, pages 9–20, New York, NY, USA, 2006. ACM
Press.

[142] S. Williams, J. Shalf, L. Oliker, S. Kamil, P. Husbands, and K. Yelick. Scientific Com-
puting Kernels on the Cell Processor. International Journal of Parallel Programming,
35(3):263–298, 2007.

[143] M. E. Wolf. Improving Locality and Parallelism in Nested Loops. PhD thesis, Stanford
University, Stanford, CA, USA, 1992.

[144] D. Wonnacott. Using Time Skewing to Eliminate Idle Time due to Memory Band-
width and Network Limitations. In IPDPS:Interational Conference on Parallel and
Distributed Computing Systems, Cancun, Mexico, 2000.

[145] XDR Memory Architecture. http://www.rambus.com/us/products/xdr/index.
html.

