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Abstract 

Answering Questions about Complex Events 

by 

Steven Kumar Sinha 

Doctor of Philosophy in Computer Science 

University of California, Berkeley 

Professor Jerome Feldman, Chair 

 

Reasoning about event structure is a fundamental research problem in Artificial 

Intelligence.  Event scenarios and procedures are inherently about change of state.  To 

understand them and answer questions about them requires a means of describing, 

simulating and analyzing the underlying processes, taking into account preconditions 

and effects, the resources they produce and consume, and their interactions with each 

other.  We propose a novel, comprehensive event schema that covers many of the 

parameters required and has explicit links to language through FrameNet.  Based on 

the event schema, we have implemented a dynamic model of events capable of 

simulation and causal inference.  We describe the results of applying this event 

reasoning platform to question answering and system diagnosis, providing responses 

to questions on justification, temporal projection, ability and 'what-if' hypotheticals, as 

well as complex problems in diagnosis of systems with incomplete knowledge. 

 

  

Professor Jerome Feldman 

Dissertation Committee Chair 

1 



Contents 

1  Introduction .............................................................................................. 1 
1.1  Solution Approach ..................................................................................... 1 

1.1.1  Events & Event Questions .............................................................. 2 
1.1.2  Inferences with events.................................................................... 5 
1.1.3  Language ........................................................................................ 5 

1.2  Applications .............................................................................................. 6 
1.2.1  Answer Selection ............................................................................ 6 
1.2.2  Question Answering ....................................................................... 7 
1.2.3  Pathway Classification .................................................................... 7 

1.3  Contributions ............................................................................................ 9 
1.4  Road map .................................................................................................. 9 

2  Reasoning about Events .......................................................................... 11 
2.1  Event Models in AI .................................................................................. 11 

2.1.1  Logical AI ..................................................................................... 12 
2.1.2  Graphical Models of Actions ......................................................... 13 
2.1.3  Event Models for Transactions on the Semantic Web: ................... 14 
2.1.4  Event Models in Linguistics and NLP ........................................... 16 

2.2  Question Answering (QA) research .......................................................... 17 
2.2.1  Motivation to use event models in QA .......................................... 17 
2.2.2  State of the Art ............................................................................. 18 
2.2.3  Related Work in QA ..................................................................... 19 

3  Expressive schema and dynamic models of events ................................. 21 
3.1  Motivating example ................................................................................. 21 
3.2  Objectives ............................................................................................... 22 
3.3  Describing events .................................................................................... 24 
3.4  Dynamic modeling of events ................................................................... 27 

3.4.1  X-nets ........................................................................................... 28 
3.4.2  Representing complex events with dynamic models ..................... 33 
3.4.3  Analysis ....................................................................................... 39 

3.5  Inferring target information ..................................................................... 44 
3.5.1  Justification .................................................................................. 44 
3.5.2  Temporal Projection ..................................................................... 46 
3.5.3  Ability .......................................................................................... 46 
3.5.4  “What-if” Hypothetical ................................................................. 48 

3.6  Pathway classification ............................................................................. 48 
3.6.1  Pathways and Hypotheses ............................................................ 49 
3.6.2  Hypothesis Disambiguation .......................................................... 50 
3.6.3  Probes and optimal probe design .................................................. 50 

i 



4  Bridge to Applications ............................................................................. 57 
4.1  Interface between language and models ................................................... 58 

4.1.1  Background on Frames and FrameNet .......................................... 58 
4.1.2  Frame matching ........................................................................... 62 
4.1.3  Linking entities to bindings .......................................................... 63 
4.1.4  Semantic relevance matching........................................................ 67 
4.1.5  Linking event scenario models to frames ...................................... 68 

4.2  Determining data and simulation goal: Question Analysis ........................ 71 
4.3  Selecting Models for Questions ................................................................ 73 
4.4  Acquiring and Incorporating data ............................................................ 75 

4.4.1  Acquiring relevant data through query expansion ......................... 76 
4.4.2  Incorporating data ........................................................................ 78 

4.5  Extracting and composing answers .......................................................... 79 
4.6  Building Models ...................................................................................... 79 

4.6.1  Manual generation ........................................................................ 80 
4.6.2  Auto-generation ............................................................................ 81 
4.6.3  Models built ................................................................................. 82 

5  Applying Event Modeling to Answer Selection ........................................ 92 
5.1  System context ........................................................................................ 94 
5.2  Motivating example ................................................................................. 95 
5.3  System modules and processing flow ....................................................... 96 
5.4  Modules .................................................................................................. 98 

5.4.1  Front-end ..................................................................................... 98 
5.4.2  Alignment ................................................................................... 100 
5.4.3  Model Selection ........................................................................... 101 
5.4.4  Answer Candidate Scoring ........................................................... 105 
5.4.5  Candidate Ranking ...................................................................... 107 

5.5  Evaluation .............................................................................................. 107 

6  Applying Event Reasoning to Question Answering ............................... 109 
6.1  System context ....................................................................................... 110 
6.2  Motivating example ................................................................................ 112 
6.3  System modules and processing flow ...................................................... 112 
6.4  Modules ................................................................................................. 116 

6.4.1  Pre-system: Question Analysis ..................................................... 116 
6.4.2  Alignment (Question) ................................................................... 119 
6.4.3  Model Selection ........................................................................... 121 
6.4.4  Background Fill ........................................................................... 127 
6.4.5  Query Expansion system (Output of Stage I) ................................ 130 
6.4.6  External: Passage Analysis ........................................................... 131 
6.4.7  Alignment (Passage) ..................................................................... 133 
6.4.8  Passage Frame Mapping .............................................................. 134 

ii 



6.4.9  Simulation and Analysis .............................................................. 135 
6.4.10  Answer Extraction (Output of system) ......................................... 139 

6.5  Back-off strategies .................................................................................. 141 
6.6  Implementation details ........................................................................... 141 
6.7  Results ................................................................................................... 142 

6.7.1  Examples of answering target question types ............................... 142 
6.7.2  Evaluations and Demonstrations .................................................. 148 

7  Applying Event Reasoning to Pathway Classification ........................... 153 
7.1  Task and System context ........................................................................ 154 

7.1.1  PCLASS system ........................................................................... 154 
7.1.2  Probes ......................................................................................... 156 
7.1.3  System design scope .................................................................... 158 

7.2  System modules and process flow ........................................................... 159 
7.2.1  System outputs ............................................................................ 160 

7.3  Module details ........................................................................................ 162 
7.3.1  Model Initialization ..................................................................... 162 
7.3.2  Input Processing (per step) ........................................................... 165 
7.3.3  Simulation step ............................................................................ 166 
7.3.4  Results Processing (per step) ........................................................ 167 

7.4  Implementation details ........................................................................... 168 
7.5  Demonstrations ...................................................................................... 169 

7.5.1  Demo Models .............................................................................. 169 
7.5.2  Results ........................................................................................ 173 

8  Conclusions and Future Work .............................................................. 178 
8.1  The next generation of event modeling and reasoning ............................. 179 
8.2  Additional event-related question types .................................................. 180 
8.3  Language processing support for Question Answering ............................ 182 
8.4  Closing thoughts ..................................................................................... 186 

Bibliography ................................................................................................. 187 
 

  

iii 



List of Figures 

Figure 1-1: Event schema instance example – Car Design ........................................... 4 
Figure 1-2: Pathway Classification example – Biological Pathway ............................... 8 
Figure 3-1: Event Schema ......................................................................................... 23 
Figure 3-2: X-net basic simulation semantics ............................................................ 28 
Figure 3-3: Full X-net graphical key .......................................................................... 29 
Figure 3-4: Basic event schema parameters ............................................................... 34 
Figure 3-5: Event controller template ........................................................................ 36 
Figure 3-6: Composite Event Control constructs ....................................................... 37 
Figure 3-7: Reachability Analysis Token Requirements ............................................. 42 
Figure 5-1: AQUINAS Answer Selection System flowchart ....................................... 94 
Figure 5-2: Answer Selection Engine flowchart ......................................................... 97 
Figure 5-3: Front-end interface ................................................................................. 98 
Figure 5-4: Front-end example .................................................................................. 99 
Figure 5-5: Alignment interface ............................................................................... 100 
Figure 5-6: Alignment example ................................................................................ 101 
Figure 5-7: Model Selection interface ....................................................................... 102 
Figure 5-8: Model Selection example ....................................................................... 104 
Figure 5-9: Answer Candidate Scoring interface ....................................................... 105 
Figure 5-10: Answer Candidate Scoring example ..................................................... 105 
Figure 5-11: Candidate Ranking interface ................................................................ 107 
Figure 5-12: Candidate Ranking example ................................................................. 107 
Figure 6-1: AQUINAS QA System flowchart ............................................................ 110 
Figure 6-2: Event Scenario QA Engine flowchart ..................................................... 113 
Figure 6-3: Question Analysis interface ................................................................... 117 
Figure 6-4: Question Analysis example .................................................................... 118 
Figure 6-5: Question Alignment interface ................................................................ 119 
Figure 6-6: Question Alignment example ................................................................. 120 
Figure 6-7: Model Selection interface ....................................................................... 121 
Figure 6-8: Context Structure algorithm ................................................................... 124 
Figure 6-9: Model Selection example ....................................................................... 125 
Figure 6-10: Background Fill interface ..................................................................... 128 
Figure 6-11: Background Fill example ...................................................................... 129 
Figure 6-12: Query Expansion interface ................................................................... 130 
Figure 6-13: Query Expansion example.................................................................... 131 
Figure 6-14: Passage Analysis interface .................................................................... 131 
Figure 6-15: Passage Analysis example .................................................................... 132 
Figure 6-16: Passage Alignment interface ................................................................. 133 
Figure 6-17: Passage Alignment example ................................................................. 133 
Figure 6-18: Passage Frame Mapping interface ........................................................ 134 
Figure 6-19: Passage Frame Mapping example ......................................................... 135 

iv 



Figure 6-20: Simulation and Analysis interface ........................................................ 136 
Figure 6-21: Simulation and Analysis example ......................................................... 138 
Figure 6-22: Answer Extraction interface ................................................................. 139 
Figure 6-23: Answer Extraction example.................................................................. 140 
Figure 6-24: Hypothetical Prediction example – Part 1 ............................................. 143 
Figure 6-25: Hypothetical Prediction example – Part 2 ............................................. 145 
Figure 6-26: Ability example .................................................................................... 146 
Figure 7-1: PCLASS system flowchart ...................................................................... 155 
Figure 7-2: Change of Rate ...................................................................................... 156 
Figure 7-3: Segment Delay ....................................................................................... 156 
Figure 7-4: Pathway Inference Engine flowchart ..................................................... 159 
Figure 7-5: Pathway Probability Distribution Functions ........................................... 162 
Figure 7-6: Pathway segment controller template .................................................... 164 
Figure 7-7: Demo 1 – Products S & N model ............................................................ 170 
Figure 7-8: Demo 2 – Public and Private product model .......................................... 171 
Figure 7-9: Demo 3 - Two public, one private product model ................................... 172 
Figure 7-10: Hypothesis 2 (Prod A & B) ................................................................... 174 
Figure 7-11: Hypothesis 1 (Prod A) .......................................................................... 174 
Figure 7-12: Demo 2 probe effects ........................................................................... 176 
Figure 8-1: Issues in models for counterfactuals....................................................... 181 
 

  

v 



Acknowledgments 

My work 

First and foremost, I wish to thank my advisor, Srini Narayanan.  A Berkeley Ph.D. 

alum himself, Srini represents what the rest of us in this graduating batch should hope 

to be as researchers: broadly and deeply curious, highly capable, and ridiculously 

smart.  I, for one, feel truly privileged that he volunteered his time to mentor and 

advise me, and I greatly appreciate that I can call him my friend. 

I also wish to thank my other advisor, Jerry Feldman, for providing me an amazing 

environment for learning and conducting research.  It is his research vision that gave 

genesis to our group, and I am grateful to him for the opportunity to be a part of the 

team.  Jerry has always been there any time I needed him, and I thank him for that. 

In addition, I would like to thank Chuck Fillmore and Dan Klein for providing 

their insights during my qualifiers and beyond.  I especially appreciate Chuck and his 

FrameNet team for their frame semantics research, the fruits of which I used in many 

components of my own research efforts. 

My families 

In my time at Berkeley, I have come to have many extended families, each of which 

has played a significant part in making my experience here so enjoyable. 

Of course, I wish to thank my direct family first.  My parents have been 

unwavering in their support.  I could always call them for love and understanding, 

and I very much appreciated that.  To Terry and Vinod: I think I’ve turned out pretty 

well, and that is due in no small measure to your efforts.  Thank you.  I love you both. 

vi 



And though my parents live far away, my other relatives keep me feeling 

connected: Joyce & Ed, Chris & Julie & Elisha, Sangeeta & Ken & Ryan & Alisha; and 

further away: Leela & Janine, and Dolly & Neeraj & Muski & Vijaya – thank you, too. 

Day in day out, though, my housemates have been most present in my life.  To: 

Yatish Patel, Sonesh Surana, and Melissa Ho, as well as their significant others and 

stream of friends, especially Jen Sloan and Divya Ramachandran: you’re my family, 

too, and I love you dearly. 

I also wish to acknowledge my computer science brethren from the early years.  

From my first office: Satrajit Chatterjee, my brother in arms; Sailesh Krishnamurthy, 

my older, wiser brother; and I have to add, Manikandan Narayanan, truly a most 

wonderful human being (seeing him always made me happy).  And my CS social 

committee: Shyam Lakshmin! and Rachel Rubin, Hayley Iben, Pushkar Joshi, Kaushik 

Datta, Brian Milch, Mark Whitney, Nemanja Isailovic... and many others.  Good times. 

More recently, I have had the pleasure of the company of my ICSI colleagues and 

friends: Eva Mok, Joe Makin, Nancy Chang, Johno Bryant, Leon Barrett, Michael 

Ellsworth, Josef Ruppenhofer, Collin Baker... and the aforementioned Srini Narayanan, 

Jerry Feldman, and Chuck Fillmore.  I especially want to thank Eva, who has been a 

significant source of friendship and support throughout my time at ICSI.  And Joe 

Makin, for saying the darndest things that sparked the best conversations not to get 

work done to. 

Also, from all my activities away from work, I thank my MOT China people 

(Jihong Sanderson and our whole team, most notably Andreas Schmidt), my GSC 

people (top of the list: Carolyn White), and most recently, my Obama campaign 

people (my brother Gregory H. Smith and his sister Polly Furth, Nick & Scott, the 

vii 



viii 

Tompkins, the Holidays, the Gonders, Doug, and all of the amazing volunteers) for all 

of the wonderful times. 

And I have to add in here (because they don’t really fit into any category above): 

Ruth Keeling, who’s awesome, and whose friendship, support, and tea I have greatly 

appreciated.  And my dearest Mary Zimmerle, who knows she’s awesome.  Though I 

haven’t seen her frequently enough in these recent years (in some part because of this 

dissertation work), her friendship is one I always cherish. 

My support 

ARDA / DTO / IARPA: no matter how many times it’s changed its name, it has 

continued to support me throughout my education here at Berkeley, and I appreciate 

that.  Putting a face to the organization: Steve Maiorano has been a wonderful friend 

to our group and to me, and I want to thank him, especially. 

My home 

Finally, I wish to thank and acknowledge the University of California, Berkeley.  I 

have gotten so much out of my time here.  In a sense, my Ph.D. work was just my day 

job.  Here I have had the privilege of taking courses in business, political science, 

public policy, Mandarin, economics, rhetoric, linguistics, geography, music...  (Thanks 

to all the incredible professors who have allowed me to sit in on their courses!)  

Beyond classes, I have had the opportunity to run student groups, I have had the 

flexibility to travel the world... I have lost track of the number of amazing experiences 

I have had while here.  My years here have been some of the most personally 

enriching yet.  It’s somewhat depressing to think about life without the Berkeley 

community, but if the litany of friends above is any indication, I don’t think it will be 

leaving me any time soon, no matter where I go. 



1 Introduction 

Imagine that you are an analyst for General Motors.  The company has been facing 

stiff competition from foreign auto makers who are producing significant numbers of 

smaller, more fuel-efficient vehicles.  The Boss comes in and asks: “Is our Lansing, 

Michigan plant capable of producing hybrid cars?  I can give you a list of the inventory, 

the machine types, the employee list...”  Later, he comes back and says, “If needed, 

we could invest $10 million dollars, could it be upgraded sufficiently?” 

Information analysts are swamped with data, from which they are being asked to 

answer complex questions such as these.  The questions are, implicitly or explicitly, 

about events and their interactions.  Currently, there is no system, or for that matter, 

no framework from which a system can be built, to tackle the complex reasoning 

required to answer them.  This task of reasoning about events is a fundamental 

research problem in Artificial Intelligence. 

1.1 Solution Approach 

Events unfold over time, changing state based on conditions in their environment.  To 

reason about events requires a means of describing, simulating, and analyzing their 

underlying dynamic processes.  For our dissertation work, we designed an event 

modeling and inference framework to answer event-related questions.  The task 

required certain features of the framework.  It must capture event interactions, 

including contingent causal and temporal relations between multiple events.  It must 

be able to model contextual information about events.  In addition, it must also be 

able to reason about evolving events with uncertain and partially ordered trajectories, 

be able to represent sequentiality and concurrency, and be able to support 
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asynchronous control.  To be effective, the framework should be general enough to 

represent events across multiple domains.  All of this will facilitate answering 

questions1 about how states evolve over time and how states and actions interact with 

one another. 

1.1.1 Events & Event Questions 

What do we mean by events, though?  As we discuss in Chapter 2, there is a rich 

history of event reasoning work in AI employing many different representations of 

events.  For example, representations for planning, for event recognition, and for 

event extraction, frequently include the event’s name, its preconditions and effects, 

and perhaps its participants.  Each of these features is necessary, but even together 

they are not sufficient for answering typical complex questions asked about events. 

Specifically, in Section 3.2, we identify five prominent question types relating to 

events from which we wish to be able to infer answers when having only incomplete 

information. 

• Justification: questions asking about a state that must be verified and justified 

e.g. “Did Toyota complete production of its next-generation Priuses?” 

• Temporal Projection / Prediction: questions projected a state into the future 

e.g. “Will Ford start manufacturing fuel-cell cars in the next five years?” 

• Ability: questions asking about whether an actor can (as opposed to will) 

commit an action or reach a state 

e.g. “Can Chrysler produce electric cars?” 

                                              

1 Note: in this work, we will be using the term “question” loosely, to cover queries 

including but not limited to those in natural language form. 
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• ‘What-if’ Hypothetical: questions hypothesizing changes to a state, and then 

asking a Justification, Temporal Projection, or Ability question about that new 

state 

e.g. “If GM had access to cheap rechargeable batteries, could it manufacture 

plug-in hybrids for under $20,000?” 

• Hypothesis Disambiguation: questions about the structure of an event when only 

limited segments of it are observable and multiple hypotheses are possible 

e.g. “Is Honda prototyping a new luxury car or a sports car?” 

To represent the underlying events in questions like these, we designed an event 

schema that describes structure beyond preconditions and effects.  As we detail in 

Section 3.3, the parameters of a basic event also include resources that the event 

produces and consumes, its data inputs and outputs, the duration of the event, and the 

time and place of the event, among others.  Events are not isolated from each other, 

either, and their relationships with one another go beyond generic causation.  Our 

schema distinguishes events that ‘enable’, ‘disable’, ‘suspend’, ‘resume’, ‘abort’, etc., 

other events.  It also captures patterns of sub-events that compose a larger-scale event 

(‘sequentially’, ‘concurrently’, in a ‘loop’, as ‘alternatives’ to one another, etc.).  In 

addition, the schema recognizes the different levels of granularity at which events can 

also be construed (“Trip to Europe” vs. “Catch a cab”, “Drive to Airport”, “Fly to 

Europe”...).  This thorough representation of events provides valuable details about 

the dynamic characteristics of an event. 
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Decide 

Design 

Mass Produce 

Sell Lease

Alternative sub-events

Acquire 

Merger

License

Joint Venture Develop

or

Obtain 
Expertise

Manufacture 
Prototype 

Test 
Prototype

Obtain Materials

Obtain Factory

Concurrent sub-events Repeat-until sub-events

Sequential sub-events 

Creates state or resource Needs state or resource

Figure 1-1: Event schema instance example – Car Design 

alternative 

In Figure 1-1, we show an example of an event schema instance, depicted in 

graphical form.  The figure shows an expansion of our car design and production 

event, a complex scenario similar to one we used in an evaluation of our work.  On 

the left side of the figure, there is a simplified high-level sequence of events: Decide (to 

design a new car), Design (the car), and Mass Produce (the car), followed by an implicit 

choice, between Sell (the car) or Lease (the car).  Design can be broken down into 

alternative sub-events: Acquire or Develop, which in turn can be further broken down 

into sub-events organized using the various patterns shown.  There are multiple 

alternative methods to Acquire a design, including Merging the company with another 

firm with a design, Licensing a design, or entering a Joint Venture with another 

company with a design.  To Develop a design requires a sequential series of sub-events: 

Obtain Expertise (e.g. learn about new technologies); Obtain Materials and Obtain 

Factory (which can be done concurrently); and Manufacture Prototype and Test 
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Prototype (which are repeated until a successful test).  The end result of both the 

Acquire and Design actions is a car design that can be mass produced. 

1.1.2 Inferences with events 

A static event schema instance, though, does not have the runtime semantics to 

simulate the execution of an event scenario unfolding over time, as is necessary for 

our task.  We require a dynamic model of events.  In Section 3.4, we discuss our use 

of X-nets, a formalism extending Generalized Stochastic Petri Nets (GSPNs: Bause and 

Kritzinger 1996), originally used by Srini Narayanan in his dissertation work on aspect 

and metaphor understanding (Narayanan 1997).  X-nets can represent sequentiality, as 

well as concurrency and synchronization, alternatives, stochasticity, and 

asynchronous control (see 4.6.3 for an X-net representation of a scenario of similar 

structure to our Car Design event).  In addition, X-nets can support a number of 

analysis routines that can test the potential of a state to evolve into a new state of 

interest given an event structure.  At the end of Chapter 3, we describe procedures we 

developed to infer answers to our five target question types using these event analysis 

routines. 

1.1.3 Language 

To reason about complex events also requires an interface from our event models to 

data sources.  Events, while independent of language themselves, are frequently 

discussed in natural language, yielding copious data in that form.  We exploit semantic 

frames as an intermediate structure and interface between event descriptions in 

natural language and event models that produce inferences to answer questions.  The 

link between events and semantic frames (specifically through FrameNet: 
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http://framenet.icsi.berkeley.edu) is made explicit in Chapter 4.  The frame structure 

in language provides a bi-directional mapping from language to event models, 

enabling us to link information found in text about an event of interest to models that 

represent that event. 

1.2 Applications 

From the work we describe in Chapters 3 and 4, we have: 1) a means of describing 

events comprehensively; 2) a modeling system that captures the inherent dynamics of 

events; 3) a set of useful inference techniques we can use on the event models; and 4) 

specific procedures to answer our target question types. 

To test this event modeling and reasoning framework, we applied it to three 

applications: Answer Selection, Question Answering, and Pathway Classification. 

1.2.1 Answer Selection 

Before applying our event modeling framework to a full-fledged NLP application, we 

decided to test it on a simpler problem.  Answer selection is the process of choosing 

the best answer to a natural language question from a list of pre-chosen candidates.  It 

is closely related to calculating the relevance of a returned answer for a search query.  

The difficulty in the task is assessing the relative relevancy of candidates that each 

contain the relations queried in the question asked. 

For event-related questions, we hypothesized that an ontology of event models 

would improve the relevancy assessment.  Specifically, we theorized that: 

1) Keywords extracted from a question are related to one another and thus 

extracting relational information in a question and in a set of answer 
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candidates should enable higher precision measurement of the relevancy of the 

candidates; and 

2) Analyzing these relations in the context of a relevant, expressive model of the 

event in question provides a valuable link between the information sought in 

the question and the information contained in a good answer. 

For us, the Answer Selection task provided an initial test of our approach for modeling 

events.  We describe the details of our experiments in Chapter 5. 

1.2.2 Question Answering 

Boosted by initial successes with Answer Selection, we applied out event reasoning 

framework to the full task of automated Question Answering (QA).   The challenging 

goal in QA is to find or create focused answers to natural language questions.  The 

system we designed used the preprocessed language about events in question to select 

a relevant event model.  It then uses the model to select relevant evidence and 

simulation to infer missing information required for the answer.  We implemented the 

algorithms of Chapter 3 to solve Justification, Temporal Projection, Ability, and 

Hypothetical questions. These question types had previously not been answerable with 

automated systems.  We describe the details of this system and the results of three 

demonstrations in Chapter 6. 

1.2.3 Pathway Classification 

Our third system tackles a different task that can be addressed using event modeling 

and reasoning: the classification of dynamic system pathways.  A pathway can be any 

set of activities, organized around temporal and causal structure, that serves a 

particular goal.  Car production is one example.  The biological pathway shown in 
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Figure 1-2: Pathway Classification example – Biological Pathway 

Figure 1-2, is another.  Here, each line connecting two dots represents a pathway 

segment (a particular activity, e.g. research, testing, production, etc.) unfolding over 

time (each vertical bar represents one month in the 18 month pathway).  Based on the 

resources allocated by an external actor to the segment, the progress towards 

completion of the segment may be slowed or stopped. 

To classify an unknown, partially-observable pathway requires comparing the 

behavior of the unknown pathway to the expected behavior of each pathway 

hypothesis.  The task distinguishes itself because uncertainty exists about the actual 

structure and use of the events of interest.  In addition, interventions on the pathway 

(called probes) may be required to elicit outputs that distinguish the hypotheses.  We 

designed a system to test probes and classify pathways.  Our simulation system is 

specially designed to handle data input that changes over time steps based on the 

incremental results of the simulated pathway.  We describe the details of this system 

and three demonstrations of it, in Chapter 7. 
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1.3 Contributions 

The work of this dissertation produced the following novel results: 

• An expressive framework and relational schema for representing event 

structure, a dynamic model of pathway processes and complex events capable 

of simulation and inference, and a method to that uses semantic frames to 

translate from a natural language description of a particular event to a dynamic 

model form. 

• A system to solve Justification, Temporal Projection, Ability, and ‘What-if’ 

Hypothetical questions with incomplete information.  With caveats, this is the 

first such system to demonstrate promise at answering these question types in 

the Question Answering domain in an evaluation. 

• A system to model and simulate complex dynamic system pathways, and 

evaluate probes, in the service of answering the Hypothesis Disambiguation 

questions at the heart of Pathway Classification tasks. 

In this work, we showed not only the benefits of our event framework approach, but 

also areas for future work needed to facilitate the development of more robust 

automated systems that answer questions about complex events. 

1.4 Road map 

Chapter 2 situates this work within the event modeling and Question Answering 

literature.  Chapter 3 puts forward the objectives of the dissertation, specifying five 

event-related question types we wish to be able to answer.  It then describes our 

comprehensive event schema, our dynamic event modeling representation (X-nets), 

and methods for converting descriptions to dynamic models.  In addition, it lays out 

analysis routines that can be performed on X-nets and specific procedures we used to 
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answer our target question types.  Chapter 4 describes the glue that connects the 

theoretical work of Chapter 3 to the applications of Chapters 5 and 6.  Specifically, 

Chapter 4 discusses our interface between language and event models, and provides 

solutions for selecting, instantiating, and filling models with data based on a question 

asked.  Chapter 5 describes our first evaluation of our event modeling framework: 

Answer Selection.  Chapter 6 follows with a description of our work on Question 

Answering.  Chapter 7 details our final system designed for Pathway Classification.  

Finally, Chapter 8 reviews our conclusions and future work. 

Readers interested in the theoretical underpinnings of our work are directed to 

Chapter 3.  Those interested in applications of language and FrameNet will wish to 

also consult Chapter 4.  Readers interested in our Question Answering system may 

concentrate on Chapters 3, 4, and 6.  Readers exclusively interested in pathway 

modeling and probe design may read only Chapter 3 (concentrating on Section 3.6) 

and Chapter 7.  Chapters 5, being a preliminary test of our work before tackling the 

full Question Answering task described in Chapter 6, may be skipped by most people. 
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2 Reasoning about Events 

Before we dive into our model and its applications, we first describe our notion of 

events and situate it in the wider context of work within Artificial Intelligence (AI) 

and Natural Language Processing (NLP).  There is a rich history of event reasoning 

work in AI starting from early work on situation calculus (McCarthy and Hayes 1969) 

and robot planning (STRIPS: Fikes and Nilsson 1971) to work in probabilistic models 

of planning, events and causality (Astrom 1965; Pearl 2001), employing many different 

representations of events.  In recent years, there has been an increased interest in 

event recognition and extraction within Natural Language Processing (Bethard 2007; 

Chambers, Wang et al. 2007; Chambers and Jurafsky 2008).  Work in planning 

frequently focuses on the preconditions and effects of events leaving implicit the 

cause/effect relationship between two events.  Work on event extraction focuses on 

the predication features (the name of the event and the participants of the events).  

These features are all necessary, but not sufficient for answering the complex 

questions we care about, as we will describe in Chapter 3. 

We start by situating our work in the context of event representation and 

reasoning in other fields of AI including logical AI and planning, Web services on the 

semantic web, and in Computational Linguistics. 

2.1 Event Models in AI 

Reasoning about actions and events is a significant subfield within AI.  Our aim here 

is not to survey the field, but to outline significant approaches and developments that 

are relevant to our goal of connecting inference and reasoning about processes to 

answering questions about events.  
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We start with a brief description of the logical approach to reasoning about events, 

which identified important problems and provided a solid understanding of the issues 

involved.  We then describe critical progress in probabilistic reasoning about actions 

that directly informed our modeling approach from the very beginning.  We follow by 

describing recent efforts related to the semantic web that significantly enhance 

interoperability and reuse of models across different event and process descriptions, 

ontologies, and models. 

2.1.1 Logical AI 

In AI, formal approaches to model the ability to reason about changing environments 

have a long tradition.  This research area was initiated by McCarthy (McCarthy 1958) 

who claimed that reasoning about actions plays a fundamental role in common sense.  

A decisive advantage of deductive approaches to reason about actions is the 

universality inherent in any logical framework.  A purely logical axiomatization which 

is suitable for temporal prediction can just as well be employed to answer more 

general questions, such as postdiction (i.e. what can be concluded form the current 

state as to states in the past) and planning (i.e. how to act in order that the system 

evolves into a desired state).  Deductive approaches have suffered from several well 

known problems, the most famous of which is the Frame problem pertains to 

compactly specifying aspects of world that are unchanged when an action is executed.  

A number of associated problems and proposed solutions can be found in (Lifschitz 

1989).  Additionally, formal theories of action and change often make the assumption 

that (Gelfond and Lifschitz 1993) environmental changes only occur as a result of 

some agent initiated action.  This assumption is unduly restrictive and renders such 

systems incapable of dealing with complex environments where state transitions may 
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occur independent of agent initiated action.  In most complex environments, the 

world continues to evolve between agent actions.  These problems combined with the 

need to generate real time behavior in complex and dynamic environments renders 

deliberative reasoning about the effects of low level action too expensive and thus 

impractical.  Recognition of this fact in AI and Robotics has resulted in various 

proposals for the representation and use of compiled plans and behaviors (Nilsson 

1984; Rosenschein 1985; Brooks 1986; Agre and Chapman 1987; Arkin 1990).  The 

basic idea is that rather than divide overall process of acting in the world into 

functional components (such as planning, execution, and perception) one could 

instead divide the process into task specific pre-compiled plans for various behaviors.  

The basic insight here is that the necessity to act fast in an uncertain and dynamic 

world requires reactive planning agents (biological or robotic) to develop 

representations that can tightly couple action, execution monitoring, error correction 

and failure recovery.  Narayanan (1999) contains a full comparison of our event model 

to these techniques in logical AI and classical planning. 

2.1.2 Graphical Models of Actions 

There has been a considerable amount of work initiated by Pearl (2001) and colleagues 

on graphical models of actions.  The basic idea is to use a causal network graph to 

represent a set of autonomous mechanisms where inter-mechanism interactions are 

captured through links in the graph.  Each action implies an intervention on this graph 

resulting in isolating an autonomous mechanism through local surgery on the causal 

graph.  This allows for a uniform structure that can reason about both observations 

and actions.  Pearl develops an extensive framework that can deal with many issues in 

causal inference including predictions, diagnosis, and counterfactual reasoning.  Our 
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work derives a lot from the work in probabilistic representation of actions.  

Specifically, (Narayanan 1999) outlines an initial integration of the two lines of work 

that specifically addresses the frame problem (and the qualification and ramification 

subproblems) in a framework that combines our representation and model of event 

structure with the graphical model for inference.  Chapter 8 outlines a companion 

thesis that is focused more directly on a more expressive probabilistic representation 

and manipulation of complex behavior.  The main difference between our approach 

and the work of Pearl and colleagues is in the representation of actions and events.  In 

previous approaches, actions are typically treated as atomic (either effect axioms in 

the logical approach, or single mechanism in the probabilistic work).  Our approach, 

in contrast, models actions with internal structure that includes resource production 

and consumption, internal phases, and composite actions that include concurrency 

and synchronization.  As shown in subsequent chapters of the thesis, such an 

expressive model of event structure is essential to handle the kinds of event and action 

related questions that users routinely ask of complex scenarios.  The work here also 

connects to recent work on planning using Partially Observable Markov Decision 

Processes (POMDP) and to work on concurrent models of computation such as 

Stochastic Petri Nets (Bause and Kritzinger 1996) for representing complex processes.  

Chapter 3 describes the connection to concurrent models in greater detail.  A 

companion thesis by Leon Barrett (see Chapter 8 for a brief description) is exploiting 

this connection for planning and reasoning about complex behaviors. 

2.1.3 Event Models for Transactions on the Semantic Web: 

More recently, there have been efforts toward the idea of creating a database out of 

the web.  This idea (called the Semantic Web) has the goal of enabling access Web 
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resources by content rather than just by keywords.  In the last decade, the Semantic 

Web community has developed a new generation of Web markup languages such as 

OWL (McGuinness, Van Harmelen et al. 2004).  These languages enable the creation 

of ontologies for any domain and the instantiation of these ontologies in the 

description of specific Web sites.  These languages are also amenable to efficient 

reasoning procedures and thus reasoning applications can be built to automatically 

determine the logical consequences of the ontological statements.  

Among the most important Web resources are those that provide services.  Web 

services are web sites that do not merely provide static information but allow one to 

effect some action or change in the world, such as the sale of a product or the control 

of a physical device.  To make use of a Web service, a software agent needs a 

computer-interpretable description of the service, and the means by which it is 

accessed.  An important goal for Semantic Web markup languages, then, is to establish 

a framework within which these descriptions are made and shared.  Web sites should 

be able to employ a standard ontology, consisting of a set of basic classes and 

properties, for declaring and describing services, and the ontology structuring 

mechanisms of OWL provide an appropriate, Web-compatible representation language 

framework within which to do this.  

A collaborative effort by researchers at several organizations has resulted in just an 

ontology called OWL-S or OWL for Services (Martin, Burstein et al. 2004).  OWL-S is a 

markup language for describing both atomic and composite transactions on the web 

using a formal model of events and processes.  OWL-S service descriptions enable 

programmatic access for service discovery, monitoring, simulation, analysis, and 

composition.  
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The OWL-S model of web services is closely related to the event model described 

in this thesis.  Indeed, our event model implemented the first Distributed OPErational 

(DOPE) semantics of the OWL-S language (Narayanan and McIllraith 2002).  Models 

that are described in OWL-S can be compiled automatically to our event models.  

Details of the process and our use of the models are described in Chapter 4.  The 

connection to OWL-S allows our event models to be compiled directly from process 

and event descriptions on the Semantic web. 

2.1.4 Event Models in Linguistics and NLP 

Events are central to language and a subject of obvious interest to linguists.  The 

description of events in language can rely on a variety of devices including predication, 

modification, and reference.  Vexing problems in event interpretation such as 

linguistic aspect and contingent causal relations have led researchers in Formal 

Semantics to propose ontological schemes such as the Vendler-Dowty-Taylor (VDT) 

verb classification.  Extensions and computational models of event structure have 

been proposed to handle some of the compositional issues in interpreting expressions 

about events (Moens and Steedman 1988; Steedman 1996).  More recently, basic ideas 

from Frame Semantics and Formal Lexical Semantics have been used to build wide-

coverage open domain semantic resources such as FrameNet and VerbNet.  Resources 

such as FrameNet function as a semantic basis for extracting event information from 

textual sources.  Chapters 3-6 details our use of FrameNet as a structured intermediate 

representation to connect language to event models.  (Narayanan 1999) details an 

expressive model of event structure using a structured dynamic system (called X-

schemas) that was used in solving hard problems linguistic aspect and metaphoric 

language about events.  Our work is a direct follow-on to Srini Narayanan’s thesis 
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work on active event representation for understanding aspect and metaphor 

(Narayanan 1997).  His work on X-schemas is a cornerstone of our QA engine. 

2.2 Question Answering (QA) research 

The typical formulation of the QA task is: a user inputs a natural language question, 

and the system responds with an answer (the exact answer, or a passage or document 

containing the answer).  The task comes in two flavors: open-domain (where a 

question can be on any topic) and closed-domain (where a question is on a 

prespecified topic, e.g. one about cooking, travel, or international terrorism).  Open 

domain QA frequently leverages the Web as a large corpus.  With broader coverage 

required, though, it is a challenge to get and exploit deep domain specific knowledge; 

for that reason, we chose to work in a closed-domain environment for our research.  

Event scenario QA represents a specialization of the general QA problem, focusing on 

complex question types that need additional semantic resources, as we detail in the 

Chapters 3 and 4.  

2.2.1 Motivation to use event models in QA 

The driving rationale for our approach is that humans appear to have limited need for 

factoid question answering, and instead much more need to have systems that can 

deal with complex reasoning about causes, effects, and chains of hypotheses. 

This is borne out through a number of studies, as well as our own empirical 

analysis.  As cited in (Yin 2004; Aouladomar 2005), procedural questions make up the 

second largest set of queries on web search engines, after factoids.  In our own 

analysis of the AQUINAS AnswerBank corpus.  The corpus, produced by the 

University of Texas, Dallas (UTD), has 2692 question/answer pairs generated to 
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resemble intelligence analysts’ queries about weapons programs and proliferation 

issues, approximately half of the questions were found to be event related. 

As discussed in 2.2.3, most work in QA during the first half of this decade was 

focused on improving performance in factoid answering systems.  Even in recent 

years, only a few groups have been working on solving event related questions.  It is 

still a problem waiting for an adequate solution. 

2.2.2 State of the Art 

We used the UTD-LCC state-of-the-art QA System (Pasca and Harabagiu 2001) as a 

baseline for our task. The UTD QA system uses a component-based flexible 

architecture with modules that  a) process the question by linking it to an entry in an 

ontology of answer-types, b) use a variety of IR techniques to retrieve relevant answer 

passages, and c) extract the answer passage ranked highest amongst the candidates.  

The system is trained to handle questions related to a closed domain of documents 

from the Center for Nonproliferation Studies. 

State-of-the-art QA systems such as the UTD system and others (Ramakrishnan, 

Chakrabarti et al. 2004) rely on standard IR techniques (like TF-IDF; Salton, Wong et 

al. 1975) along with enhancements that expand the query.  Such modifications include 

search patterns and heuristics based on word clusters, synonym sets, and lexical 

chains, which are a) derived using machine learning techniques, b) extracted from 

lexical resources such as WordNet or c) a combination of a) and b).  Selecting answer 

passages relies on a quantitative measure that evaluates the degree to which a passage 

shares the words in the expanded query keyword set. 
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2.2.3 Related Work in QA 

While question answering as a domain is not a new area of research (e.g. Lehnert 

1978), it is only over the past half dozen years that the field has really taken off, 

stimulated by new funding (AQUAINT) and large evaluations (TREC QA Track).  

Many projects during this period have focused on improving factoid QA performance, 

which has, indeed, improved as a result (Pasca and Harabagiu 2001). 

Using lexico-semantic resources, such as WordNet, PropBank, and FrameNet, has 

become more popular, though the use of FrameNet is still relatively rare (Fellebaum 

1998; Kingsbury and Palmer 2002; Palmer, Gildea et al. 2005; Ruppenhofer, Ellsworth 

et al. 2006).  One group actively experimenting with FrameNet for QA is at Saarland 

University.   Gerhard Fliedner, in cooperation with the SALSA group, is using frame 

annotations as a basis of comparison between questions and answers in a prototype 

QA system for German (Fliedner 2006).  He has developed a number of innovative 

techniques to merge frames that we plan on looking at further for possible adoption 

(Fliedner 2004; Fliedner 2005). 

Attempts at answering procedural questions has some history, the most recent of 

which comes from France and England.  Farida Aouladomar, a computational linguist 

at IRIT in France, has done significant work in analyzing questions about procedures 

and texts which explain those procedures (Aouladomar 2005).  Her goal is to answer 

“How” questions (mostly geared towards French).  Compared to the system proposed 

in this document, her work is most similar to our model selection component (outlined 

in Chapter 5). Aouladomar’s analysis of procedural texts may assist us in the future for 

extracting event model structure in additional test domains.  Ling Yin at ITRI at the 
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University of Brighton, UK, has also done some procedural question analysis (Yin 

2004). 

One other group has worked on answering prediction questions using simulation.  

Back in 1994, Jeff Rickel and Bruce Porter, at UT Austin, built a system for answering 

questions of scientific models (Rickel and Porter 1994).  In this system, there was no 

tie to natural language.  Instead, interactions were through predicate calculus.  Their 

system focused on automatically building models of necessary and sufficient 

differential equations chains for solving a question posed to the system.  Our work 

may be able to supply a means of interacting with and using natural language with 

their scientific model solver.  In more recent work, Porter and colleagues have been 

using an ontology and lexicon to build on this early work. They have been working in 

the area of question answering for scientific domains. The input to their system is still 

a logical representation of the textual material (Barker, Porter et al. 2001; Barker, 

Chaudhri et al. 2004). They have built a library of generic concepts and use a 

Knowledge-Base and reasoner to answer questions about advanced placement 

Chemistry. Our system differs from these previous systems in the complexity of 

question types, the connection to language using a wide coverage resource (FrameNet) 

and the ability to reason with dynamic and uncertain input and knowledge. 

 

20 



3 Expressive schema and dynamic models of events 

Events and procedures are complex.  They are dynamic, unfolding over time.  They 

are inherently about change of state, with outcomes contingent on resources.  What 

makes them interesting is their structure, which dictates the conditions required to 

bring an event to a particular state, and the possible and likely evolutions going 

forward from a state.  To understand events and reason about them requires a means 

of describing, simulating, and analyzing the underlying processes, taking into account 

preconditions and effects, the resources they produce and consume, and their 

interactions with each other. 

We developed a novel, comprehensive event schema that covers many of the 

parameters required to do complex reasoning about events (Section 3.3).  Based on this 

schema, we further designed a dynamic model of events capable of simulation and 

causal inference (3.4).  With this framework in hand, we have formulated and adapted 

existing algorithms (3.5) to infer the information required to answer common 

questions about events (detailed in 3.2). 

3.1 Motivating example 

Here is a motivating example.  Take a process like the one that commences when a 

crime is reported.  Here in the United States, the police investigate the alleged crime 

and come to one of two conclusions: there was or there was not a crime.  If there was 

a crime, suspects are identified and pursued, often leading to the arrest of the suspect.  

The suspect is brought before a judge and notified of the charges, after which he 

enters a plea.  If needed, the judge sets bail and the case goes to trial.  A jury is 

sometimes selected, the case is deliberated, and a verdict is entered.  If found guilty, 
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the suspect is sentenced and pays for the crime: monetarily, in prison, or with his life.  

If innocent, the suspect is released and the investigation is potentially restarted. 

3.2 Objectives 

As humans, we can understand the complexities of this judicial process.  How, though, 

can a computer reason about it?  What specific aspects of reasoning would we like a 

computer to tackle? 

As mentioned, events evolve over time.  As they progress, clues are left behind 

regarding the path taken.  If a suspect in a crime is in front of a judge, there is a trail 

of police reports and court filings preceding this court appearance.  Given a set of 

information, like court filings, we would like a computer system to be able to 

determine if there is a causal relationship between that information and a particular 

target state of interest.  This will allow us to answer a question like, Did Joe appear in 

traffic court for speeding?  These are justification questions: questions with an 

underlying premise (Joe appeared in traffic court for speeding) that require 

verification with evidence and a trace of reasoning. 

Events can progress in potentially multiple ways.  In addition to looking at past 

effects, we would like to be able to reason about the possible evolution of a state going 

forward.  This can come in two forms: a temporal projection or a test of the ability 

of an event to reach a target state.  The former is an assessment of the likely evolution 

of a state: Will Sam testify in front of a jury?  The latter is a test of what is possible: Can 

Jill evade jail? 
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Not all reasoning, though, is based on states as they actually exist(ed).  Many times 

we wish to reason about what could have been or could be.  We wish to be able to 

find causal chains from an altered set of evidence (a hypothetical state) to a target 

state, such as: If the murder weapon is thrown out as evidence, will Mike be convicted? 

Also, our knowledge about the structure of an event is not always complete.  In 

analyzing an event, we may not be in a position to observe it actually happening; 

instead we may only have access to incomplete and uncertain snapshots of the 

progress.  We would like to be able to disambiguate between hypotheses of the 

type of event occurring based on that evidence. Based on the court proceedings, is the 

defendant being tried under a civil law or religious law system? 

These are each types of event-related questions we seek to be able to answer: 

justification, temporal projection, ability, hypothetical, and hypothesis disambiguation.  

We identify solutions to each in Section 3.5, after describing in the upcoming sections 

a common framework for representing and analyzing the events. 

Figure 3-1: Event Schema
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3.3 Describing events 

Having a standardized event representation is crucial to being able to reason about a 

significant number of event-related scenarios.  It allows us to develop algorithmic 

solutions to common complex questions, such as those described in Section 3.2. 

In designing an ontology of events, we have identified a number of critical features 

required to provide significant coverage and usability for reasoning tasks.  First, an 

event representation must be fine-grained to capture the wide range of possible events 

and their interactions.  Next, it must be context-sensitive in order to adapt to a dynamic 

and uncertain environment.  Thirdly, it should be cognitively motivated to allow 

humans to easily add content, query, and make sense of the information returned.  

Finally, event descriptions should allow for elaboration, so that new domain models 

can specialize existing representations without changing the basic primitives. 

We have developed a parameterized model of the structure of events and 

processes that meets these criteria.  Figure 3-1 shows the basic schema of events.  We 

describe its main elements here. 

1) All events have a basic structure: A basic event is comprised of a set of inputs, 

outputs, preconditions, effects (direct and indirect), and a set of resource 

requirements (consuming, producing, sharing and locking). Events are 

grounded at a time and place and have a duration.  The hasParameter link in 

Figure 3-1 depicts the set of parameters in the domain of the basic event type.  

We discuss this further in Section 3.4.2. 

2) Events have a frame semantic structure: Events, though occurring independent of 

language, are described in language using Frame-like relations (Fillmore 1982). 

Frames are labeled entities comprised of a collection of roles that include major 
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syntactic and semantic sub-categorization information. The relation hasFrame 

in Figure 3-1 is a many-to-many link since an individual event may have 

multiple frames and a single frame could capture multiple events.  Many frame 

roles used when describing an event have corresponding event parameters, 

allowing for tight integration of language and event structure.  See Chapter 4 

for more details. 

3) Composite events have rich temporal structure and evolution trajectories: The fine-

structure of events is composed of key states (such as enabled, ready, ongoing, 

done, suspended, canceled, and stopped) and a partially ordered directed graph 

of transitions that represents possible evolution trajectories between these 

states (transitions include: prepare, start, interrupt, finish, cancel, iterate, 

resume, restart). Each of these transitions may be atomic, timed, stochastic or 

hierarchical (with a recursively embedded event-structure).  

4) Composite events are composed of process primitives: Verbal aspect (the temporal 

structure of events (Narayanan 1997)) discriminates between events that are 

punctual, durative, (a)telic, (a)periodic, (un)controllable, (ir)reversible, ballistic, 

or continuous.  Each type of event relates to a particular internal structure, 

which draw upon a set of process primitives and control constructs (sequence, 

concurrent, choice, conditionals, etc.). These primitives specify a partial 

execution ordering over subevents. The composedBy relation in Figure 3-1 

shows the various process decompositions.  Figure 3-6 describes them in 

greater detail. 

5) Composite events support various construals: Composite events can be viewed at 

different granularities using operations for elaboration (zoom-in) and collapse 

(zoom-out) (Narayanan, 1997).  In addition, specific parts and participants of a 
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composite event can be focused on, profiled and framed.  Construal operations 

are shown in Figure 3-1 through the construedAs relation. 

6) Events relate to each other in regular patterns: A rich theory of inter-event 

relations allows sequential and concurrent enabling, disabling, or modifying 

relations. Examples include interrupting, starting, resuming, canceling, 

aborting or terminating relations, as shown in Figure 3-1 through the 

eventRelation relation. 

Example 

Any specific action can be described in structured form, as an instantiation of the 

event schema.  We can use feature-structures to formally specify the components of 

the event.  (A feature-structure is a collection of attributes, values, and constraints.)  

Take our example of going to trial. 

Composite Event: CriminalTrial
   Precondition: crimeAlleged, suspectApprehended 
   Effect: verdictRendered 
   Resource-In: [judge, 1], [court, 1], [clerk, 1], [prosecutionTeam, 1],  
 [defenseTeam, 1], [defendant, 1], [juryPool, 24] 
   Input: charges 
   Duration: 3-hours 
   Subevent: [sequence JurySelection, EvidenceExamination, VerdictFinding] 
   Frame: Trial 
  Element: Defendant  - <Person> 
  Element: Judge - <Judge> 
  Element: Prosecution  - <DistrictAttorney> 
  Element: Defense  - <DefenseAttorney> 
 ... 

 

A trial is a composite event, having fine-grained structure.  At the basic level, it has 

certain preconditions (Precondition), such as a crime being alleged (crimeAlleged) and 

a suspect being apprehended (suspectApprehended).  The effect (Effect) of the trial is 

that a verdict is rendered (verdictRendered).  These are states – they occur or they 
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don’t.  The mechanics of a jury trial require a set of resources (Resource-In): a judge, a 

court, a clerk, a prosecution team, a defense team, a defendant, and pool of potential 

jurors.  Resource requirements are specified with tuples of the resource name and the 

amount required.  Certain information is also required (Input), namely the charges 

against the defendant.  A prototypical trial will take 3 hours, in this example 

(Duration).  In that time, certain subevents are executed.  The trial is composed of a 

sequence of subevents, namely jury selection (JurySelection), the examination of 

witnesses and evidence (EvidenceExamination), and the jury deliberation and finding 

of verdict (VerdictFinding).  Each subevent may, itself, be a composite event.  With 

these different levels of granularity, we can construe the trial event as either a single, 

high-level event, or as a sum of its sub-parts.  In addition to this structure, each action 

and sub-action can be described in frame form, in this case, the Trial frame provides 

one such grounding in language, with its various elements and bindings (see Chapter 4 

for more information about frames). 

This representation provides the first step in the apparatus needed for complex 

reasoning about events: for tasks ranging from planning to simulation. 

3.4 Dynamic modeling of events 

Complex reasoning about event interactions requires not only an event description, 

but also a dynamic model that can simulate the execution of the event unfolding over 

time.  We can instantiate such a model with facts about a particular event, enabling us 

to project which situations are likely or possible based on the consumption and 

production of resources and the creation and elimination of states. 

Take, for example, our simplified trial process.  In a particular instance, a suspect, 

Joe, may be arrested for theft.  We may wish to know whether it is possible for him to 
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be convicted.  If we know that there is no judge available, an attempt to simulate a 

trial will fail, and it won’t be possible to reach a verdict.  If the necessary resources 

for a trial do exist, then an analysis should determine that after three hours in court, 

the defendant may be convicted. 

To create dynamic models to analyze this and more complicated scenarios, we use 

a computational modeling framework known as X-nets (Section 3.4.1).  They support 

many of the event primitives described in the event schema (Section 3.4.2).  Most 

importantly, they support both simulation of the underlying event and algorithms for 

analysis and inference (Section 3.4.3). 

3.4.1 X-nets 

Events, as mentioned, are about state changes.  A method for dynamic modeling of 

events requires two key pieces, then: a way of storing state and a way of changing 

state.  X-nets have these two main components.  Places hold resource and condition 

state.  Transitions are active elements that create, destroy, and test the resources and 

conditions encoded in Places.  Together, they provide a solution for representing the 

dynamics of events and the means of simulating them. 

Figure 3-2 shows the basic semantics with a subset of the features of X-nets.  In 

the first frame (Before), Place P-1 is shown containing one token, representing either 
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Hierarchical Transition

Place Instantaneous 
Transition

Token 

Resource Arc 

Timed Transition 
Enable Arc

Inhibitory Arc

Figure 3-3: Full X-net graphical key 

one unit of a resource or the existence of a condition.  Places P-2 and P-3 have no 

tokens.  An Arc exists from P-1 to Transition T-1 representing a resource dependence.  

P-1 must have adequate resources (one token by default) for T-1 to execute (also 

known as “firing”).  T-1 will fire in this case, resulting in the second frame (After).  

Here T-1 has consumed the resource from P-1.  The Arcs from T-1 to P-2 and P-3 

represent resource production; T-1 creates resources in P-2 and P-3 when firing.  Each 

firing thus changes the overall state of the X-net.  We call this distribution of tokens 

over Places a marking, in this case going from [1, 0, 0] to [0, 1, 1] (for [P-1, P-2, P-3]). 

This simple, abstract model can represent a specific event.  For example, Joe buys 

a can of soda.  P-1 represents Joe’s money, in this case, one token is $1.  T-1 

represents the buying operation.  P-2 represents Joe having a soda, and P-3 is the 

receipt.  Joe has a $1, he executes the buying operation, the $1 is consumed, and he 

gains a soda and a receipt.  Dynamic modeling allows us to make different inferences 

based on the evidence available.  Had Joe had no money, he would not have been able 

to buy the can of soda. 

In full, the X-net representation directly captures a number of additional features 

of events. (See Figure 3-3 for some.) 

• Events unfold in uncertain ways.  X-nets support stochasticity in transitions. 
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• Some events take time and some do not.  X-nets provide instantaneous 

Transitions and timed Transitions. 

• For conceptualization and display, it can be useful to abstract away subevents, 

collapsing an X-net as a special Transition in another X-net.  We flatten these 

“hierarchical” Transitions at X-net creation time. 

• The existence of certain resources and conditions can have both positive and 

negative impact on an event’s execution.  X-nets provide inhibitor arcs for 

those cases where a satisfied condition should prevent a Transition from 

executing. 

• Not all resources and conditions required for the execution of an event should 

be consumed during the execution of the event.  Enable arcs can be used to 

test-but-not-consume resources and conditions. 

All of these features combined provide us the building blocks to represent the 

complex event structures described in Section 3.3.  At their core, X-net Transitions 

represent simple events.  We are able to chain several events together through their 

common conditions and resources to represent a larger scenario.  In the next section 

(Section 3.4.2), we will show the mapping from event description to X-net. 

Background 

Narayanan, in his 1997 work on aspect and metaphor understanding, proposed using 

modified Petri Nets for modeling actions.  His Action Execution Schema (X-schema) 

extended basic Place-Transition Nets (P-T Nets) with stochastic transitions and 

hierarchical transitions, bounded colored tokens (tokens that are typed), and enable 

and inhibitor arcs (for k-safe nets).  The resulting semantics could cleanly and 
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efficiently capture sequentiality and concurrency, while providing asynchronous 

control.  (Narayanan 1997; Narayanan 1999) 

Simulating and analyzing events to answer questions has computational 

requirements similar to the features provided in Narayanan’s X-schema design.  In 

following up his work, we use a subset of the proposed Petri Net extensions.  Our 

design supports stochasticity and enable and inhibitor arcs, but we leave out colored 

tokens and hierarchical transitions (which can be decomposed and flattened with 

finite nets).  The resulting design, as with X-schemas, is built upon Generalized 

Stochastic Petri Nets (GSPNs) (Ajmone Marsan, Balbo et al. 1995; Narayanan 1999).  

We describe our extended version of GSPNs, below. 

Formal definition 

Formally defined, a GSPN is an 8-tuple, GSPN = (P, T, T1, T2, I-, I+, W, M0) where 

• P = {p1, ..., pn} is a finite, non-empty set of places, 

• T = {t1, ..., tn} is a finite, non-empty set of transitions, 

• T1 ⊆ T is the set of timed transitions, T1≠∅ 

• T2 ⊂ T denotes the set of immediate transitions, T1 ∩ T2 = ∅, T = T1 ∪ T2 

• P ∩ T = ∅ 

• I-, I+ : P × T → N0 are the backward and forward incidence functions, 

respectively (these are the incoming and outgoing resource arc weights, w.r.t. 

the transition) 

• W = (w1, ..., w|T|) is an array whose entry wi  R+ 

o is a rate of negative exponential distribution specifying the firing delay 

when transition ti is a timed transition, or 
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o is a firing weight when transition ti is an immediate transition 

• M0 : P → N0 is the initial marking; for each place, a number of tokens 

Note: if T1 = ∅, then the net is a weighted Place-Transition net.  If T2 = ∅, then the 

definition of GSPN coincides with the definition of a Stochastic Petri Net.  (definition 

adapted from Bause and Kritzinger 1996)  Our design relaxes the constraint that T1
 ≠ ∅, 

thus supporting both GSPNs and basic P-T Nets. 

Modifications to traditional GSPNs that we use in X-nets: 

• C = {c1, ..., c|P|} is an array of place capacities whose entry ci ∈ N0, if present, 

represents an inclusive upper bound on marking value for place pi, 

• E : P × T → N0 are enable arc weights, not separately defined from I+ and I- as 

they are syntactic sugar, providing equal additive influence to I+ and I=, 

• N : P × T → N0 are inhibitor arc weights 

• Π : T → N are transition priority levels 

Real-time simulation semantics  

Petri Nets follow a well-defined simulation semantics that specify how states change.  

With any given marking, the next state is determined by executing the net firing rule. 

• At statei with marking Mi, a transition tj is enabled iff, for each place pk,  

Mi[k] ≥ I-[k, j] (i.e. resource and enable arcs satisfied), Mi[k] ≠ ck (i.e. place 

capacity has not been reached), Mi[k] !≥ N[k, j] (i.e. not disabled by inhibitor 

arcs), and no other transition th can be enabled with Πh > Πj (i.e. highest 

priority transition with necessary resources). 
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• When an enabled transition tj fires, for each place pk, Mi+1[k] = Mi[k] - I-[k, j] + 

I+[k, j] (i.e. consume and produce tokens) 

• For all enabled immediate transitions, firing order is determined by sampling 

from a discrete uniform distribution 

• When no immediate transitions are enabled, timed transitions can fire after a 

delay determined by sampling the negative exponential distribution 

( ( ) 1 i

i

x
XF x e λ−= − ), where the rate of transition ti is λi.  Race condition 

semantics are employed (when enabled, a transition waits for its sampled delay, 

then, if its incoming tokens are still available, it fires). 

3.4.2 Representing complex events with dynamic models 

Our event schema provides a structured form that explicitly captures many of the 

features of events. Our X-net framework provides the raw materials for representing 

complex events in a dynamic model.  Next, we detail how to map the structure 

described in event schema instances to dynamic X-net models. 

Basic Event 

In Section 3.3 (Figure 3-1), we described a number of event parameters that provide a 

description of the basic structure of an event.  They include inputs, output, 

preconditions, effects, resources, duration, time, and place.  Each can be translated 

into a piece of X-net structure. 

In the simple atomic case, the event itself translates into a single Transition t, 

representing the action of executing that event.  The event parameters are attribute 

tuples, as defined in Figure 3-4, which constrain the mapping from description to X-

net structure. 

33 



Precondition 
 name unique tag 
 frameSet set of frames grounding object in language  
 ‘consuming’ | flag:  remove condition upon event firing 
    ‘negative’  if satisfied, event cannot fire 
 ‘motivation’ flag: precondition represents the motivation 
Resource-In 
 name  unique tag 
 frameSet  set of frames grounding object in language 
 amount amount of resource required 
 max maximum resource possible 
 ‘test’ | flag: do not remove tokens upon event firing 
    ‘negative’  if satisfied, event cannot fire 
Effect 
 name  unique tag 
 frameSet  set of frames grounding object in language 
Resource-Out 
 name  unique tag 
 frameSet  set of frames grounding object in language 
 amount  amount of resource required 
 max  maximum resource possible 
  
 (bold = required) 

Figure 3-4: Basic event schema 

• Precondition:  translates into an incoming Place p (with a directed arc from p 

to t), with Capacity cp = 1.  By default, the arc connecting p to t (I-[p,t]) is an 

Enable arc (s.t. I+[p,t] = I-[p,t]).  If flagged as ‘consuming’, the arc will be a 

standard Resource arc.  If set as ‘negative’, the arc is an Inhibitor arc.  The arc 

weight is 1 (I-[p,t] = 1). 

• Resource-In: translates into an incoming Place p.  By default, Capacity cp is 

not set (i.e. infinity), and the arc weight is 1 (I-[p,t] = 1), unless otherwise 

specified by ‘max’ and ‘amount’, respectively.  If flagged as ‘test’, the arc is set 

to be an Enable arc.  If flagged as ‘negative’, the arc is set to be an Inhibitor arc. 

• Effect: is similar to a Precondition, but instead translates into an outgoing 

Place p (with a directed arc from t to p), with Capacity cp = 1 and arc weight 1 

(I+[p,t] = 1). 
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• Resource-Out: translates into an outgoing Place p.  Again, by default, 

Capacity cp is not set, and the arc weight is 1 (I+[p,t] = 1), unless otherwise 

specified by ‘max’ and ‘amount’. 

• An event Duration can be directly translated into the rate parameter of t.  The 

existence of a duration implies Transition t is timed; the lack of a duration 

parameter implies t is immediate. 

• Input, Output, and Grounding parameters (and the frameSet attribute of the 

aforementioned parameters) are not taken into account by the simulation firing 

rule, and are thus not mapped over to the simulatable model.  (Inputs are, for 

example, credit card numbers needed for a Buying event.  The Precondition of 

having a credit card is sufficient for simulation; the exact number is not 

necessary.) 

Event-Event Relations 

Events can be connected to other events implicitly or explicitly.  Implicitly, events 

sharing states and resources are automatically connected to one another by common 

Places.  Explicitly, events can be connected through stated event-event relations 

(described in Figure 3-1). 
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Suspended Restart 

Start Ongoing Finish 

Done 

CanceledCancel

Ready 

Prepare Enabled 

Stop Stopped 

Suspend 

Iterate 

Resume Enable Disable 

Undone Undo 

Figure 3-5: Event controller 

We extend Narayanan’s work on linguistic aspect to provide guidance on how to 

connect events related by an evolutionary trajectory.  In Figure 3-5 (adapted from 

Narayanan 1999), we show a general event controller, where the event in focus is 

represented with three components, the starting action, the ongoing state, and the 

finishing action (shown contained in the dashed-line hierarchical transition).  Other 

events related to the focal event are linked according to the design shown.  For 

example, an event that suspends the focal event will be linked so as to remove the 

ongoing control token when fired, preventing the focal event from finishing.  (Note: 

each hierarchical transition represents a sub-net that can be expanded; thus our 

suspend is a placeholder for the event that is suspending the focal event.)  The control 

states (ready, suspended, stopped, etc.) are added to connect the related events and to 

mark event evolution progress; they assist in answering questions about the current 

phase an event may be in.  (Not all relations shown may be used in a description; the 

unused portions of the design are collapsed.) 
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Subevent expansion 

 

Figure 3-6: Composite Event Control 
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Composite Events 

Control constructs in composite events can also explicitly define the layout of a set of 

(sub)events.  In an event description, composite events can be specified as a recursive 

3-tuple in the form of <constructType event event>, where each ‘event’ can be atomic 

or composite.  In Figure 3-6 (adapted from Narayanan 1997), we demonstrate the 

expressive power of X-nets to represent these control constructs for composite events. 

Frames 

Frames capture the way in which language describes events; specifically, they capture 

roles and profiled participants, aspectual structure, instruments, and other grounding 

constructs such as location and time.  These frame elements, when extracted from the 

linguistic input, can provide parameters to an event simulation.  In Section 4.1, we 

will discuss our use of frames to help setup event simulations.  To enable this effort, 

X-nets created from Event Schema instances must retain links to all linguistic 

descriptions of the underlying events. 

As mentioned in Section 3.3, frames can be associated with the main action of the 

event, or its parameters.  Frames associated with the main action are directly linked to 

the corresponding Transition.  Those associated with a particular parameter (as 

specified in the attribute tuple under ‘frameSet’) are directly linked to the 

corresponding Place. 

Linking and Tuning Event Models for Larger Scenarios 

Event schema instances are a starting point for creating dynamic X-net models.  Our 

method provides a default mapping from a schema instance to a model, but it requires 

a model designer to tune models to meet an analysis goal. 
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First, a model designer may have access to an event ontology consisting of 

relatively primitive event schema instances.  Building up a larger event scenario may 

requires piecing together smaller composite and basic events.  This can be semi-

automated based on common resources shared between these pieces, leaving control 

structure linking to the designer. 

The designer must then tune X-net parameters such as immediate transition 

weights and transition priorities, to achieve accurate stochastic behavior model-wide. 

3.4.3 Analysis 

Questions about events, as discussed in Section 3.2, require complex reasoning to 

answer.  In a question about the ability of an actor to do something not yet done, for 

example, we wish to be able to figure out if a particular state is reachable given the 

current state.  It may be likely or not.  It may be inevitable or it may be one of ten-

thousand possible evolutions.   

X-net modeling, by virtue of its simulation semantics, gives us the direct ability to 

simulate single paths of potential evolution of events.  While this is an important 

building block for more complex analysis, it is insufficient for our needs on its own.  

GSPNs (and by extension, X-nets) are amenable to a number of analysis techniques, 

chief among them for our purposes: reachability. 

Reachability (Forward) 

Reachability analysis produces an exhaustive set of states that are achievable through 

simulation given the initial marking.  As we will discuss in Section 3.5, this is an 

important component of our algorithms to solve justification, temporal projection, and 

ability questions. 
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Our method to calculate the forward reachable set of states is to construct a 

coverability tree.  Coverability analysis is a special form of reachability analysis that 

handles both bounded and unbounded nets.  (To be bounded, the number of tokens in 

the net cannot grow beyond some fixed value.)  The deterministic version of the 

algorithm we use to construct coverability trees is adapted from (Murata 1989). 

1. Label the initial marking M0 as the root and tag it “new” 
2. While “new” marking exist, do the following: 

2.1. Select a new marking M 
2.2. If M is identical to a marking on the path from the root to 

M, then tag M “old” and go to another new marking. 
2.3. If no transitions are enabled at M, tag M “dead-end” 
2.4. While there exist enabled transitions at M, do the following 

for each enabled transition t at M: 
2.4.1. Obtain the marking M’ that results from firing t at M 
2.4.2. On the path from the root to M if there exists a 

marking M’’ such that M’[p] ≥ M’’[p] for each place p 
and M’ ≠ M’’, i.e., M’’ is coverable, then replace M’[p] 
by ω for each p such that M’[p] > M’’[p] && cp = ∅   
(ω represents “infinity”) 

2.4.3. Introduce M’ as a node, draw an arc with label t from 
M to M’, and tag M’ “new” 

 
 adapted from Murata 1989 

 

Line 2.4.2 of the algorithm is responsible for handling unbounded nets.  It relies on 

the monotonicity property of Petri Nets, that transitions that can fire with a certain 

number of tokens can also fire with more tokens.  This property is violated by the 

existence of inhibitor arcs.  As such, for models with inhibitor arcs, our design only 

supports analysis of bounded nets; in that situation, we ignore line 2.4.2.  There is 

literature on subclasses of Petri Nets with inhibitor arcs where modified coverability 

analysis is still possible.  This is not a part of our design, but we reference readers to 

(Busi 2002), for one approach. 
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For nets with stochasticity, we can convert the net into a Markov Chain and use 

Forward-Backward and Viterbi algorithms to estimate the likelihood of particular 

reachable states or paths (see Bause and Kritzinger 1996). 

Backwards Reachability 

Justification, ability, and other analyses do not only rely on projecting evidence 

forward.  As we will discuss in Section 3.5, information about a current state can 

provide clues of what has already happened, not just what may happen in the future.  

Backwards reachability analysis is an important tool that can provide an exhaustive 

set of states that may have generated a given state.  With it, in our simplified judicial 

process example, we can infer that someone who was convicted must have gone 

through a trial. 

Backwards reachability is more complicated than forward reachability, 

unfortunately.  Unlike determining the forward reachable set, where standard Petri 

Net firing rule semantics are employed, techniques for calculating the backwards 

reachable set require structural model intervention or a significant change to the 

simulation firing rule.  We provide a brief explanation of solutions customized for our 

task of answering event-related questions.  A full solution is outside the scope of this 

work. 

There are two types of Petri Net circuits that require attention, as seen in Figure 

3-7.  In the first circuit, forward analysis requires tokens on all incoming arcs, leading 

to token creation on all outgoing arcs when the transition is simulated to fire.  In 

backward analysis, though, any token on an outgoing arc is taken as evidence that the 

Transition may have fired, which requires projecting tokens on each of the incoming 

arcs.  This is a relaxed constraint for cases of incomplete information.  Likewise, in 
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the second circuit, forward analysis requires that only one of the Transitions must 

have fired to create a token in the outgoing Place.  In backwards analysis, any token 

in the Place means either Transition may have fired and thus both possibilities are 

reachable. 

To run a backwards direction analysis, we can reverse the incidence matrices 

(swap I+ and I-) and consult a secondary firing function that reflects this different logic 

when running reachability analysis.  Alternatively, we can keep a modified version of 

the net that has been patched following the template shown in Figure 3-7 (unit arc 

weights on added section).  Then we can reverse the incidence matrices and run a 

standard reachability analysis on this net.  Both of these methods are computationally 

expensive compared to reachability in the forward direction, since the new firing 

semantics (and modified net alternative) lead to more state paths being followed. 

The structural solution is unnecessarily expensive for our design, though.  In our 

task, we focus on the state of a limited number of Places (typically only one) per 

analysis.  Rather than analyzing an X-net to determine if a particular full marking is 

Figure 3-7: Reachability Analysis Token Requirements 

All All 

Forward Analysis 

Any 

All Any 

Backward Analysis Circuit Patch 

1) 

All2) 
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reachable from a given state, only a partial marking is relevant; the parts of a full 

marking that do not influence the distribution of tokens over the Places in focus can 

be ignored.  This assumption allows us to devise a much more efficient algorithm. 

We use a modified breadth-first search (BFS) on the net in the forward direction 

from the target, at each step checking if any Place on the search path has a token in 

the marking.  There are two types of paths we cut short at a transition: a) those where 

we know the transition cannot have fired due to a known lack of required tokens, and 

b) those where we know the transition must have been inhibited.   The pseudo-code is 

shown here.   Note with respect to case (a), in certain situations, we have evidence 

that tokens do not exist and can specify this in the net by setting the related Place’s 

capacity to 0. This is further explained in Section 4.4. 

1. For each target X-net object (Place or Transition)
1.1. Push target on new Queue q 
1.2. While q not empty (and timeout depth not reached) 

1.2.1. Pull out object o 
1.2.2. If o is a Place, 

1.2.2.1. For each Transition t where I-[o,t] > 0 
If  

a) for each Place p where I-[p,t] > 0, cp ≠ 0 (i.e. p 
is not guaranteed to have no tokens, which 
would be specified by setting place capacity to 
0), and  

b) for each Place p where N[p,t] > 0 && ∉ t’ 
where I+[p,t’] > 0, M[p] < N[p,t] (i.e. t is not 
guaranteed to be inhibited),  

then push t onto q 
1.2.3. If o is a Transition,  

1.2.3.1. For each Place p where I+[p,o] > 0 
If M[p] > I+[p,o],  
then tag target as reachable and return to 1. 
else push p onto q 

2. Return reachability status of targets 
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3.5 Inferring target information 

With the ability to transform detailed descriptions of events into active representations 

on which analysis can be performed, we come back to our main goal of answering 

complex event-related questions.  For four question types (Justification, Temporal 

Projection, Ability, and Hypothetical), we have developed analysis routines that 

calculate causal chains from evidence to information targets. 

While a query may ask about multiple pieces of information and our routines can 

be modified to meet such a request, we currently focus on and optimize for single 

targets per question.  That target can be an event or a state or resource; for example, 

the question could be about the act of running (did/can/will X run?) or it could be 

about the state of reaching a goal.  For basic event models, this translates into 

analyzing evidence about the X-net Transition corresponding with an event in 

question or the X-net Place corresponding with a state in question.  When X-nets 

model the control structure of events (Figure 3-5), questions can be about a fine-

grained internal state of an event, again corresponding to a specific Place. 

In Chapter 4, we will discuss how to acquire and automatically place evidence into 

a model.  Next, though, we describe how to process evidence based on the question 

type. 

3.5.1 Justification 

In Justification questions, Target Time (the temporal point at which the event in 

question took place) is before Analysis Time (the point at which evidence is collected 

and analyzed to answer the query).  Thus, some available evidence related to the 

event may have been generated before the target event (information about 

preconditions and required resources) and some after (information about effects and 
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generated resources), both of which are potentially relevant to the task of attempting 

to justify a claim in question. 

Target Resulting 
evidence 

Causative 
evidence 

Forward Analysis Backward Analysis 

Analysis Time 

?

Target Time

 

To apply both sets of evidence, we combine forward and backward reachability 

analysis, to find viable causal chains that would show the possible existence of the 

state in question.  Forward analysis can extend from the ‘earliest’ evidence in the 

model up to the target (‘early’, in terms of causally preceding).  Backward analysis can 

extend from analysis time back to the target (evidence will not exist for events that 

have not yet occurred). 

We can handle negative evidence (evidence that a state did not occur or an action 

did not take place) by disabling the corresponding Place or Transition.  With a Place, 

we can set its capacity to 0; with a Transition, we can set its rate to 0.  This prevents 

non-viable causal chains from being inferred. 

If we find a viable causal chain, we can conclude that there is a possible 

justification of the claim in question.  With a stochastic X-net, we can calculate the 

probability of that chain. 
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3.5.2 Temporal Projection 

In Projection questions, Target Time is ahead of Analysis Time.  We have evidence 

from before Target Time, but not between Target Time and Analysis Time, nor after 

Target Time. 

Target Precondition / Resource-In 
Evidence  

Forward Analysis

Analysis Time

?

Target Time 

 

Here we only use forward reachability analysis to find causal chains, using 

evidence available before Analysis Time to project what may occur going forward, up 

until the target event. 

Negative evidence that relates to events occurring before analysis time is handled 

similarly to Justification questions, by disabling the related Place or Transition.  

Negative evidence that relates to events occurring after Analysis Time is ignored (the 

rationale being, though it did not occur does not mean it will not occur). 

3.5.3 Ability 

The unique feature of Ability questions is that they take the motivation of the actor in 

question out of the analysis.  Analysis Time can come before or after Target Time.  

The question can be asking about an actor’s ability to do an action in the future (can X 

do Y?) or in the past (could X have done Y?).  The latter has an underlying Justification 

question and can be handled similarly.  The former can be handled in one of two 

ways: 1) taking into account evidence of previous occurrences of the action in 
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question, making the ceteris paribus assumption that previous occurrences do not 

affect the actor’s ability to execute again; or 2) ignoring the evidence.  The first choice 

leads to similar analysis to Justification questions; the second, more restrictive choice 

leads to similar analysis to Projection questions.  An analyst choosing between the two 

options can look to the resource requirements of the target action for guidance: actions 

consuming few or easily replaceable resources, for example, may lead to a bias 

towards (1) – an external Bayesian reasoning system can assist here. 

Target Resulting 
evidence 

Causative 
evidence  

Forward Analysis Backward Analysis 

?

Target Time

Motivation 
evidence 

(add) Analysis Time? 

 

No matter the underlying question type, we need to make two manipulations to 

the model to prepare it for reachability analysis.  For all Precondition Places that are 

tagged as representing motivation of the actor in question that come causally before 

the target, we add a token and convert all outgoing arcs to Enable arcs.  This removes 

the influence of the motivation, or, more accurately, assumes motivation. 

There is one exception: Preconditions that are positive preconditions to some 

actions (linked by Enable and Resource arcs) and negative preconditions to other 

actions (linked by Inhibitor arcs).  To maintain the modeled mutual exclusivity 

between the positive and negative cases, analysis has to be run under both cases: 1) 

Resource and Enable arcs as Enable arcs, with Inhibitor arcs as Inhibitor arcs; and 2) 

Resource and Enable arcs as Inhibitor arcs, with Inhibitor arcs as Enable arcs.  The 
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analysis grows exponentially with the number of mutual exclusion cases related to the 

motivation of the actor in question.  (For most models, this will tend to be very small.) 

Once the model is manipulated, if the underlying question is a Justification 

question or we choose to use evidence of previous ability, we use forward and 

backward reachability analysis, just as in the Justification question case.  For 

underlying Projection questions, we use forward analysis up to the target. 

3.5.4 “What-if” Hypothetical 

Ability questions can be construed as one type of hypothetical: if X has/had the 

motivation, will/did X do Y?  Our design can handle other similar questions: if X 

has/had some resource or precondition, will/did/can X do Y?  Specifically, our design 

supports simple cases of hypothesized added evidence.  We add the hypothesized 

evidence to the known evidence and then analyze the underlying question, be it 

Justification, Projection, or Ability.  Analyzing both the base case and the hypothetical 

and calculating the delta determines the salient effect of the hypothetical. 

There is plenty of future work to be done here around more complex model 

intervention (Pearl 2001), specifically about identifying stale evidence to be 

manipulated given hypothesized new evidence.  Such a solution is crucial to solving 

counterfactuals. 

3.6 Pathway classification 

In Section 3.5, we described analysis routines to infer information targets described 

within a particular model.  Our active event modeling framework also lends itself to 

analysis for classifying a partially observable model, based on its output, as fitting one 

of a given set of hypotheses about the its structure and use.  The questions that can be 
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answered are thus not only about a specific state or action within a known model, but 

also about the makeup and use of the model itself.  This additional question type 

requires a different analytic approach, which we detail below. 

3.6.1 Pathways and Hypotheses 

Consider a complex dynamic system with multiple uses.  Let us assume that each use 

constrains the possible evolution trajectories.  We refer to a set of possible evolution 

trajectories that serve a particular goal as a pathway.  A pathway is thus an 

assemblage of complex events that share a single goal.  For instance, a metabolic 

pathway in biology refers to the set of processes that result in a specific set of 

interacting proteins and possibly a set of outputs.  Similarly an automobile production 

pathway corresponds to a set of related processes that result in the production of an 

automobile.  We can encode one or more related pathways in an event model. 

Assume we know multiple related different development pathways and we are 

interested in ascertaining which of these pathways is actually being pursued in a 

certain situation.  We can call each such known type of pathway a hypothesis for the 

unknown pathway instance.  In many circumstances, only some of the individual 

pathway processes (pathway segments) are observable, and further even those 

segments that are observable can have noise in the measurements of relevant features 

of the pathways.  This can complicate analysis to disambiguate between the 

hypotheses when attempting to classify the pathway of interest. 
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3.6.2 Hypothesis Disambiguation 

If there are no shared segments between pathway hypotheses, we can just look at the 

values of observable segments (whether they occur, or how quickly they proceed), and 

based on this set, decide which of the hypotheses is being pursued. 

The more interesting question occurs when some of the segments (both observable 

and unobservable) are shared between the pathways.  In this case, the question is 

essentially one of hypothesis disambiguation.  Given the data and hypothesis, we 

construct a set of simulations under the different hypotheses and use this as training 

data for a classifier.  The features are pathway segment initiation and durations under 

the different hypotheses. The classes are the different hypotheses.  Using this data, we 

can train a classifier (e.g. SVM, Naïve Bayes) to learn the mapping from features to 

classes.  Then in an unseen situation (test case), we can use the classifier to assign the 

most likely class to the observed data. 

3.6.3 Probes and optimal probe design 

Given the default set of inputs for an unknown pathway, the observations of the 

evolution of the pathway, made using the default set of observable pathway segments, 

may be insufficient for hypothesis disambiguation.  The observations expected under 

each hypothesis for that input set may be indistinguishable. 

The question then becomes one of constructing probes.  Probes are external 

events that are interventions designed to produces effects on the observable segments.  

They can be passive (measurements on observables; e.g. monitoring an additional 

resource) or active (structural or input changes to the pathway; e.g. changing the 

resource profile for a specific segment).  The effect of a probe can manifest itself 
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differently for each hypothesis, ideally creating better separation in the expected 

observations and thus greater diagnosticity. 

Probes inherently trade the cost of probing (how easy is it, how detectable it is, 

monetary expense, etc.) with the value of the information obtained.  We propose a 

method for calculating the information value of probes.  When weighted by the costs 

of the probes (which are application specific), we can use the information value metric 

to choose the optimal probe to help us answer Hypothesis Disambiguation questions.  In 

Chapter 7, we describe a multi-university project that use our event model to build 

biological pathway simulations which are then used by another team (from CMU) to 

build optimal probes for hypothesis disambiguation. 

The mutual information between a hypothesis set and a probe 

There are two sets of evaluation measures that have to be combined to produce an 

overall system diagnosticity measure.  One is the utility of the model and the second is 

the utility of a probe given a model. 

1. Model Utility: how good is the model in evaluating the posterior probability of 

multiple hypothesis given a set of observable values. 

2. Probe Utility: given the model, how diagnostic are a chosen set of noisy 

measurements (passive probes) and interventions (active probes). 

We define the overall system utility as a combination of the model and probe 

utility.  Next, we outline the evaluation metrics for each of the component utilities. 

Evaluating model utility 

Our basic question pertains to the degree to which the model is able to diagnose a 

given sets of observations correctly as evidence of specific hypotheses.  Our baseline 

for evaluation is a prior assignment of probabilities to each competing hypothesis 
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(based on the current best information available).  The question then is how much can 

the model improve over the baseline if it has access to specific observations (time 

series of values for specific observable variables). 

The evaluation method is as follows: 

1. An expert provides a prior over the hypotheses.  

2. A case generator generates cases that are values of subsets of observables.  The 

case generator (independent from the model) may use a (weighted) 

combination of: 

a. Expert knowledge  

b. Historical gold standard cases 

c. Sampling techniques (Latin Hypercube Design, model MCMC) 

(The first two have a high weight, the third low weight.) 

3. The ability of the model to evaluate the hypotheses (given the prior) is 

evaluated.  We can use any of the following criteria: 

a. Ordinal rankings  

b. ROC curves2 

c. Brier scores3 

                                              

2 Curves of True Positive rate (TPR or Sensitivity) verses False Positive Rate (FPR = 1 - 

specificity).  Here we assume the prior over hypotheses is P(H) and the True Positive 

probability ( ) ( )* ( | ( )) ( )* .P TP P h P True P h P h TPF= =  

3 Least Mean Square of misclassification. 2( ( ) ( ))
i
P i X i−∑ , where ( )P i  and 1 ( )P i−  are 

the classifier probability for a binary hypothesis and ( ) 0,X i 1=  is the correct hypothesis for 

the instance i 
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d. AUC (Area under the ROC).   

ROC and AUC are especially good: a) they are invariant to skews in the class 

distributions (change over time); b) they allow discrete and continuous classifiers; c) 

can be extended to the multiclass case, and c) per example costs can be incorporated.  

They are widely used in medical diagnosis and in machine learning and classification 

(Swets 1988; Mossman 1999; Lachiche and Flach 2003). 

Evaluating probe utility 

With the model utility measurement as a baseline, we wish to determine how much 

we can improve diagnosticity by a careful design of measurements and interventions.  

The value is of the information obtained by the probe is thus this improvement of 

diagnosticity. 

There has been an explosion of statistical approaches to measuring value of 

information in recent years within the fields of machine learning and planning (e.g. 

NIPS 2005 Workshop on Value of Information in Inference, Learning and Decision-

Making).  We propose the use of entropy reduction for determining the value of 

probes. 

The basic method for measuring entropy reduction is determining the difference 

between the prior uncertainty over a given set of hypotheses, and the posterior 

uncertainty over those hypotheses after the use of a given probe (measurement or 

intervention).  Take ( )H C  as the prior entropy over the different hypotheses C  

.  The conditional entropy is defined as the posterior entropy given the probe, ( ic C∈ )

P , and the result of the probe is a set of observables Q  with post probe 

distributions of their values (

O∈

iq Q∈ ). 
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The reduction in uncertainty (the probe utility) is thus given by the mutual 

information ( , )I C P  between the hypothesis C  and the probe P : 

 ( , ) ( ) ( | )I C P H C H C P= −  (3.1) 

Decomposing the terms, we get: 

 
1( ) ( )*
( )ic i
i

H C P c log
P c

=∑  (3.2) 

Using the chain rule, we decompose the second term: 

 ( | ) ( | ) ( | )H C P H C Q H Q P= +  (3.3) 

Here, the first term is the conditional entropy in the hypotheses (C) given the 

observation set (Q), and the second term is the sensor model that provides the 

conditional entropy of the observations (Q) given the probe (P). 

Expanding the first term of Equation (3.3), we get: 

 ( | ) ( | )* ( | )
jq j jH C Q P q Q H C q=∑  (3.4) 

 
1( | ) ( | )

( | )ij c i j
i j

H C q P c q log
P c q

=∑  (3.5) 

Combining Equations (3.4) and (3.5) we get: 

 
1( | ) ( | )* ( | )

( | )j iq j c i j
i j

H C Q P q Q P c q log
P c q

=∑ ∑  (3.6) 

Using the definition of entropy, 
1( | ) ( | )

( | )
H Q P P Q P log

P Q P
=  we get the overall 

conditional entropy of the hypothesis given the probe ( ( | )H C P ). 

 
1 1( | ) ( | )* ( | ) ( | )

( | ) ( | )j iq j c i j
i j

H C P P q Q P c q log P Q P log
P c q P Q P

= +∑ ∑  (3.7) 

Plugging this back into Equation (3.1), we get the total change in entropy for the 

probe given a model which is the diagnosticity of the probe. 
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Still to be explained is the sensor model, ( | )P Q P .  The two types of probes, 

measurement (passive probe) and intervention (active probe), have different sensor 

models, which we describe in turn. 

For an intervention (into the real world), we do not know which observables are 

going to be impacted, nor how they will be impacted (what the new distribution is 

over the impacted observables).  By contrast, in the case of a measurement, we know 

(by definition) which variables are being observed and can have a model of 

measurement errors to generate the new distribution over possible values of the 

observed variables. 

Thus, for interventions, there is uncertainty over which variables are impacted 

and the distributions over the observables given the impacted variables.  Let  be the 

set of observables, and 

O

( | )P Q P  ( )Q O∈  the probability of an observable variable Q  

being impacted by the probe. 

 ( | ) ( | )* ( | , )
ji q QQ O

P Q P P Q P P q Q P∈∈
= j∑∑  (3.8) 

This is the sensor model of the intervention probe and its impact on observables.  

This model has to be designed using understanding of the effect of the probe on the 

system.  The model can be explicit or can be acquired from domain expertise. 

In the case of a measurement, we know which variables are impacted (Qs), leading 

to: 

 ( | ) ( | ( ))
jm q Q j jP Q P P q Probe q∈=∑  (3.9) 

Here  is the measurement error model (what is the probability 

that the value  obtains when a probe returns a value ).  This model can come 

( | ( ))jP q Probe q

jq

j

jq
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from domain expertise and sensor models of measurements, but also from model 

exploration to estimate the measurement parameters. 

Plugging Equation (3.8) as the value of  into Equation ( | )iP Q P (3.7) gives us the 

measure of the diagnosticity of an intervention.  Plugging Equation (3.9) as the value 

of  into Equation ( | )mP Q P (3.7) gives us the measure of the diagnosticity of a 

measurement probe. 

Calculating the optimal probe 

We can thus use Equation (3.1) (expanded, as above) to test the value of information 

of each potential probe.  Weighting ( , )I C P  for each P  by the cost of P , we can 

calculate the overall utility for the probes, and select the best one for a given question.  

Chapter 7 details the use of the pathway model in a multi-university effort to 

determine optimal probes for a complex set of biological pathways. 
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4 Bridge to Applications 

Chapter 3 laid out the key theoretical components of our event modeling and 

reasoning framework, as well as our goals for utilizing this platform to answer 

complex-but-common questions related to the structure of events (Section 3.2).  To 

fulfill our goal and build applications to answer such question, though, requires the 

addition of a number of tools and techniques for managing and interacting with event 

models. 

Our design uses a structured representation of language based on FrameNet 

frames to mediate between natural language and event models (4.1).  Our 

representation extends the general structure of frames with domain specific ontologies 

and named entities, allowing us to better constrain the information that is extracted 

from a question and any text used to answer it (4.1.3).  Frames of this form extracted 

from a question can be used for selecting a model of the event in question (4.3).  

Furthermore, frames of this form extracted from evidence related to a question can be 

used to add data to a pertinent model (4.4). 

The ability of an application to process questions using our representation requires 

certain preprocessing of the natural language input, which we have identified (4.2).  

We have also devised a mechanism by which an application can extract information 

related to an answer, after it has been inferred using our event reasoning framework 

(4.5).  In addition, we have guidance for model designers on methods to populate the 

event ontology, which is necessary for any event reasoning to take place using our 

framework (4.6). 

This work comes to fruition in the applications we describe in Chapters 5 (Answer 

Selection), 6 (Question Answering), and 7 (Pathway inference). 
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4.1 Interface between language and models 

Event analysis requires a dynamic event model that a) captures the structure and the 

set of possible evolutions of an event and b) incorporates state information resulting in 

a specific instantiation for simulation and analysis.  An application thus need a means 

of finding an appropriate event model for a desired analysis, and a means of finding 

and incorporating state information into the model. 

Natural language is both the easiest form for users to specify their analysis 

requests and it is also the form in which significant amounts of event-related 

knowledge is available (corpora, etc).  Unfortunately, natural language is capable of 

encoding an unrestricted set of concepts in a wide variety of forms.  In its raw form, it 

is too unwieldy to map directly to models; we need a formal, precise intermediate 

representation to work with, instead. 

Fortunately, there are now robust efforts to develop open domain semantic 

resources that we can exploit for this purpose.  As we have discussed, events 

inherently have frame semantic structure.  We chose frames as the intermediate 

structured language in our design.  We can use this structured representation on two 

fronts: to describe queries and data, and to describe event models.  In our frame-based 

approach to answering event-related questions, we use FrameNet (Fillmore, Johnson 

et al. 2003), which we explore next. 

4.1.1 Background on Frames and FrameNet 

In 1976, Charles Fillmore proposed that the meaning of a word in a phrase is based on 

its relation to its semantic frames (Fillmore 1976).  Frames he defined as “schematic 

representations of the conceptual structures and patterns of beliefs, practices, 

institutions, images, etc. that provide a foundation for meaningful interaction in a 
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given speech community” (Fillmore, Johnson et al. 2003).  For us, frame annotations 

of a phrase are formal, precise structures that can capture the meaning from the 

words in the phrase and the relational form that binds them together. 

In our work, we employ FrameNet, a lexico-semantic database of frames in the 

English language.  The FrameNet project works to identify significant frames in 

language, their frame elements, as well as lexemes that evoke those frames.  In 

addition, the project maintains a corpus of annotated sentences that demonstrate the 

use of these frames in language. 

FrameNet is a mature research project devoted to the specification and analysis of 

frames in English and other languages.  A number of other groups research tools to 

improve and simplify automated frame annotation of natural language text (e.g. 

University of Saarlandes’ Shalmaneser tool).  Coverage and performance of these 

resources should only improve over time. 

FrameNet frame attributes 

FrameNet frames have a number of key components.  Each frame is tagged with a 

name: a mnemonic descriptor related to the target concept represented.  In addition, 

frames have an argument structure of thematically-tagged variables known as Frame 

Elements (FEs), each describing the types of entities that can participate in the frame.  

Certain FEs are labeled as being core to the frame, having the property that without a 

participant semantically filling the specified role, the event described in the frame 

could not occur.  Some FEs have Semantic Types that provide guidance of acceptable 

roll fillers using very high level ontological categories (mappable to WordNet’s synset 

hierarchy).  FrameNet also documents frame-to-frame relations, including inheritance, 

causation, part-of, perspectivization, and temporal ordering.  Each frame comes with 
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the Lexical Units (LUs) that evoke the frame, and annotated sentences 

demonstrating the use of the frame in various syntactic forms.  A full description of 

these attributes can be found here (Ruppenhofer, Ellsworth et al. 2006). 

The end result is a frame like Commerce_buy, which describes “a basic 

commercial transaction involving a buyer and a seller exchanging money and goods, 

taking the perspecitive of the buyer”.  It is evoked by lexical units like ‘buy’ and 

‘purchase’. (FrameNet: http://framenet.icsi.berkeley.edu) 

Frame: Commerce_buy
 Element (core): Buyer 
 Element (core): Goods 
 Element: Duration (Type: Duration) 
 Element: Manner (Type: Manner) 
 Element: Means (Type: State_of_affairs) 
 Element: Money 
 Element: Place (Type: Locative_relation) 
 Element: Purpose (Type: State_of_affairs) 
 Element: Purpose_of_goods 
 Element: Rate 
 Element: Reason (Type: State_of_affairs) 
 Element: Recipient 
 Element: Seller (Type: Source) 
 Element: Time (Type: Time) 
 Element: Unit 
 
 Inherits From: Getting 
 Is Inherited By: Renting 
 Perspective on: Commerce_goods-transfer

 

Frame annotations 

Frames are, in and of themselves, abstract schemas.  It is through frame annotation 

that meaning in a sentence is extracted in frame form.   

Take, for example, the sentence “Alice and Bob purchased a car from the dealer at 

the Ford showroom.”  Evoked by the predicate, “purchase”, a frame annotation of this 

sentence will result in the frame: 
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Frame: Commerce_buy
   Buyer: “Alice and Bob” 
   Goods: “a car” 
   Seller: “the dealer” 
   Place: “the Ford showroom” 

 

This frame instance binds a subset of its elements to words in the sentence that fulfill 

corresponding roles.  In this case, “Alice and Bob” are determined to fill the Buyer slot; 

“a car” fills the Goods slot, “the dealer” is the Seller, and “the Ford showroom” is the 

Place.  The frame thus captures the actors, the theme, their roles, and the relations 

between them in this sentence. 

Frames abstract away (or provide the means to abstract away) from a number of 

natural language idiosyncrasies, including: 

• Predicate word choice – collapsing synonyms to a single representation 

• Syntactic phrasing – collapsing various syntactic realizations of the same 

concept 

• Perspective of actors – collapsing to the unperspectivized event 

The above sentence could have used the predicate “to buy” rather than “to purchase”, 

without affecting the annotation.  So too could it have moved some of its clauses 

around, like moving the location to the beginning (“Alice and Bob, at the Ford 

showroom, purchased a car from the dealer.”), without significant effect to the 

meaning of the sentence and thus no change to that frame annotation.  Moreover, it 

could have been written from the perspective of the dealer selling Alice and Bob a car, 

which would connect back to the same unperspectivized ‘Commerce_goods-transfer’ 

frame that ‘Commerce_buy’ does, with approximately the same role bindings. 

(Methods used in the annotation process are beyond the scope of this dissertation.) 
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4.1.2 Frame matching 

We use frames with bindings as the functional units for linguistic descriptions in our 

designs: for event-related queries, for evidence required for deriving answers to a 

query, and for event models. 

Frames provide us with structured representations of language.  We can compare 

and match not only which frame is used to describe two pieces of data, but also the 

bindings of roles essential to a particular analysis.  This allows us to extract crucial 

relational information from language to select and instantiate event models. 

In the simplest case, we can attempt to match query frames to evidence frames 

directly.  To demonstrate the approach and its drawbacks, let us consider one of the 

questions that was used in an evaluation we will discuss later (Chapter 6), regarding 

the subject of weapons production: 

What countries have provided Iran with ballistic missiles and 
missile-related technology? 

 

The passage provided with a possible answer to the question was: 

The continued willingness of the Democratic People's Republic 
of Korea (DPRK), the People's Republic of China (PRC), and 
Russia to provide Iran with both missiles and missile-related 
technology that at the very least exceed the intentions of the 
Missile Technology Control Regime (MTCR). This has been 
complemented, to a lesser extent, by the willingness of other 
nations (e.g., Libya and Syria) to cooperate within the realm of 
ballistic missile development. 

 

Frame analysis of the question leads to the following pertinent frame: 
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Frame: Supply 
   Supplier: “What countries” 
   Recipient: “Iran” 
   Theme: “with ballistic missiles and missile-related 
 technology”

 

and analysis of the provided passage leads to this frame: 

Frame: Supply 
   Supplier: “the Democratic People's Republic 
  of Korea (DPRK), the People's Republic 
  of China (PRC), and Russia” 
   Recipient: “Iran” 
   Theme: “with both missile and missile-related 
 technology” 

 

The annotation extracts structures that humans can see yields an answer to the 

question posed:  the relational constraints of the question frame are fulfilled by the 

passage frame.  Unfortunately, while we can automatically determine that the frames 

are of the same type (Supply), the role bindings are still unstructured and do not 

match up perfectly.  The Recipient and Theme bindings refer to common objects 

across the two frames, but in the case of the Theme, use slightly different strings.  

Matching frames to frames directly is insufficient for our needs. 

4.1.3 Linking entities to bindings 

We would like to be able to match related frames, but, as mentioned above, raw 

frame annotations bind strings to frame roles.  There are many surface realizations of 

the concepts underlying the strings, which are difficult to anticipate in advance, 

making it difficult to find links between frames that match in meaning but not form.  

Furthermore, frame representations of natural language phrases do not automatically 
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incorporate domain related knowledge such as domain ontologies and constraints.  To 

get to a form for our intermediate representation that provides for robust semantic 

comparison between items, we extended FrameNet frames to incorporate domain 

ontologies of entities that capture relations between entities. 

Named entity classes 

Named entity (NE) tagging provides an off-the-shelf solution for collapsing strings to a 

unified representation of underlying concepts, in this case named entity types.  We 

can link the text string bound to frame elements with the NE class associated with the 

semantic head of the string.  Unfortunately, our investigation of easily available 

named entity recognizers (NERs) found the range of classes produced by each to be 

inadequate.  For example, the ACE program specifies five entity types (Person, Geo-

Political Entity, Organization, Facility, and Location); MUC-7 specifies seven; IREX 

has eight (Chinchor 1998; Sekine and Isahara 2000; Doddington, Mitchell et al. 2004).  

With the number of classes in the range of five to ten, and the fact that NERs are 

technically only supposed to capture rigid designators (like proper names), the best 

frame-and-entity annotation of our question, “What countries have provided Iran with 

ballistic missiles and missile-related technology?”, would be:  

Frame: Supply
   Supplier: < > 
   Recipient: <Geo-Political Entity> 
   Theme: < >

 

with analysis of the passage providing the frame: 
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Frame: Supply
   Supplier: <Geo-Political Entity, Geo-Political Entity, 
  Geo-Political Entity> 
   Recipient: <Geo-Political Entity> 
   Theme: < >

 

(As here, we use brackets to denote entity classes.  These classes shown are ACE tags.) 

Obviously, the representation is impoverished in both breadth and depth of 

coverage of concepts.  These named entities are insufficient for representing important 

fine-grain distinctions in any particular domain. 

Hierarchical domain ontology 

Our design, instead, requires the use of fine-grained hierarchical domain ontologies 

that cover detailed information about the domains in question.  Such an ontology 

captures general and specific types and super-type/sub-type relationships, amongst 

others. 

For our evaluation dealing with the topic of Weapons Production, we developed 

our own hierarchical concept ontology of approximately 250 classes, up to seven 

levels deep, coded in OWL (McGuinness, Van Harmelen et al. 2004).  It encodes 

inheritance relationships, as well as part-of and representative-of relationships that 

provide a basic level of support for metonymy reasoning.  Here is a partial snapshot of 

the ontology: 
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Thing 
 ├── Action 
 ├── Agreement 
 ├── Date 
 ├── Design 
 ├── Infrastructure 
 └── Locale 
 ├── Disposal_Facility 
 ├── Education_Facility 
 ├── Manufacturing_Facility 
 ├── Military_Base 
 └── Political_Locale 
 ├── City 
 └── Country 
 ├── Afghanistan 
 ├── Australia 
 ├── Austria 
 │ ... 
 ├── China 
 │ ... 
 ├── Iran 
 │ ... 
   ... 
  ... 
 ... 

 

The level of detail of the ontology, frame and ontological entity analysis of our 

example question leads to the following frame: 

 

and analysis of the passage leads to this frame: 

Frame: Supply
   Supplier: <Country> 
   Recipient: <Iran> 
   Theme: <Ballistic_missile> 

Frame: Supply
   Supplier: <North_Korea, China, Russia> 
   Recipient: <Iran> 
   Theme: <Missile>
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With the domain ontology, we are able to automatically reason that a) North Korea, 

China, and Russia are all subtypes of Country, and thus match with the question 

frame’s Supplier element; and b) that ballistic missiles are a type of missile; thus the 

passage frame’s theme may be relevant. 

Access to hierarchical domain ontologies and tools to tag strings with ontological 

entities is essential for effective frame matching. 

To provide a starting point for domain ontology creation, there are publicly 

available ontologies to use and extend, including WordNet’s synset hierarchy, the 

SUMO/MILO ontology, and Cyc (Lenat and Guha 1990; Fellebaum 1998; Niles and 

Pease 2001).  In our work, we only did a cursory exploration of using these ontologies; 

it is an area for future work. 

4.1.4 Semantic relevance matching 

A structured representation of language content facilitates the comparison of questions 

and data, as we have shown.  For a representation using frames with entity fillers, we 

have developed a simple, formal method of comparison to determine similarity and 

relevance of a candidate frame to a target frame.  (Here, the target frame represents 

the search template that we use to find data of relevance; potentially relevant data is 

represented by the candidate frame.) 

We require that a target frame and candidate frame match in terms of frame name.  

Then, for each frame element (FE), we look at the entities bound and compare and 

score using a set of scoring parameters (penaltygen, penaltyspec, penaltymiss, penaltymismatch; 

different penalties can be used for core FEs and non-core FEs).  FE match scores range 

from 0 to 1, real-value. 
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1. If the entities match perfectly, that is a full FE match. 
scoreFE = 1 

2. If the target’s entity type is more general than the candidate’s entity, the 
FEs match imperfectly, and the FE match score is penalized, proportional 
to the degree of separation in the type super/sub-type hierarchy. 
scoreFE = (1 - penaltygen)deg  

3. Similarly, if the target’s entity type is more specific than the model 
entity’s, the FEs match imperfectly, and the FE match score can be 
penalized, proportional to the degree of separation in the type hierarchy. 
scoreFE = (1 - penaltyspec)deg 

4. If the target frame has an element filled that the candidate frame does 
not, either the FE match is 0 or the full frame match is rejected or 
otherwise severely penalized. 
scoreFE = 0 | scoreFrame = 0 | scoreFrame -= penaltymiss 

5. If the candidate frame has an element filled that the target frame does 
not, the FE is ignored. 

6. If the target’s entity and candidate’s entity do not match and have no 
inheritance relationship, either the full frame match is rejected or it is 
severely penalized. 
scoreFrame = 0 | scoreFrame -= penaltymismatch 

 

Note that relevance is asymmetric, as a candidate frame describing a state or action 

more specific than a target frame may be deemed more relevant than a case where a 

candidate frame is more general than a target.  Frame match scores are normalized 

sums of their constituent FE match scores (normalized to 1 by dividing by number of 

FEs in target frame). 

The algorithm can be extended to use relations beyond super-type and sub-type to 

establish a partial match between entities.  As mentioned, relations like part-of and 

representative-of, are two that we have explored that help in many metonymic 

situations.  (<George Bush> instead of <United States>, for example, matching a 

<Country> entity restriction.) 

4.1.5 Linking event scenario models to frames 

The ability to use frames to directly connect questions about complex events to 

‘smoking-gun’ answer data only exists in limited situations.  Our work focuses on 
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using simulation and dynamic event analysis to facilitate the use of indirectly related 

information to answer such queries.  We design for the use of frame annotated queries 

to guide the selection of a relevant event model; this model, in turn, provides guidance 

on the (frame annotated) data that can be used to answer the question. 

As briefly mentioned in Section 3.4.2 (Figure 3-4), our dynamic models contain a 

number of frame ‘hooks’ that attach to the Places and Transitions.  These frame hooks 

act as linguistic descriptions of the states, resources, and actions represented by the 

Places and Transitions.  For our purposes, the hooks are also patterns that match the 

entity-bound frames of questions and data.  The hooks themselves are entity-restricted 

frames.  We distinguish “entity-bound” frames from “entity-restricted” frames to 

denote the difference in derivation.  “Entity-bound” frames are typically extracted 

from analyzed text and are as specific as possible in terms of the constituent frame 

and entities used to represent the desired meaning.  “Entity-restricted” frames are 

defined at the time of model creation, and are as general as possible, yet specific 

enough to match only what is relevant to the model.  They are structurally the same: 

frames with entity role fillers linked to hierarchical domain ontology entities. 

When designing a model, a modeler has a desired meaning in mind for each state, 

resource, and action they depict.  Attaching frame hooks to these units formalizes the 

meaning such that the model can interact with queries and data.  With the ability to 

select specific frames and entities to describe each unit, the modeler can calibrate 

which information matches and which information is deemed too general or irrelevant. 

Continuing our weapons production example, an event model can depict the high-

level process of manufacturing a weapon or the specific process of manufacturing a 

ballistic missile.  The first model is relevant to a all weapons, while the second is only 

relevant to ballistic missile production.  The same frame, Manufacturing, can be used 
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in describing both models, but its Product element should be restricted to the 

ontological entity Weapon in the first case, and Ballistic_missile in the second. 

Abstract models 

A SME may wish to design an abstract model, like one of the process of a person 

buying a car, that can cover multiple instances with different buyers and different 

cars.  To do so requires not just using a general entity category restriction in all 

relevant frame hook slots across the model, like <Person> for all buyer slots.  Also, it 

requires linking all such restrictions together such that if one restriction is tightened, 

all related restrictions are tightened – if we wish to specialize the Person Buying Car 

scenario model to apply specifically to Joe, any place the buyer has a role should have 

a tightened restriction of <Joe>. 

Our approach is to use a layer of indirection, setting entity-restrictions in frame 

hooks to an entity category variable; subsequently, that variable can be set to, in this 

example, originally <Person>, then <Joe>. 

Frame: Commerce_buy
   Buyer: v_buyer 
   Goods: v_car 

 

Using this technique, it is easy to manage interrelated entity restrictions across a 

model.  Note that this only works in one direction; models can be made more specific 

Frame: Commerce_pay
   Buyer: v_buyer 
   Goods: v_car 

Specialize 
v_buyer = <Person>  = <Joe> 
v_car = <Car>  = <Ferrari> 
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in their entity restrictions and still be structurally accurate, but that need not be true 

in the reverse. 

Abstract models are a key component of our overall event modeling framework, 

providing a tool for tractable coverage over multiple event instances without the need 

of a SME to create unique models for each instance. 

4.2 Determining data and simulation goal: Question Analysis 

Before simulation and event analysis can commence in the service of answering a 

question, certain processes are required of other systems to analyze the question.  For 

one, the frames and entities in the question have to be extracted, so as to provide a 

form that can be compared to model frame hooks and frame-encoded data.  In 

addition, the question type has to be ascertained, be it Justification, Prediction, Ability, 

Hypothetical, or Hypothesis Disambiguation.  Also, some determination has to be made 

on what, if any, post-processing is required to extract the exact answer from the 

structure resulting from event simulation. 

Question Frame and Entity Analysis 

Question frames (extended with domain entities) can be used to help determine which 

event model out of a set would be most useful for analyzing an event in question.  It 

can furthermore pinpoint which action or state in that model is specifically in question.  

To acquire frames and entities from a raw text query requires extraction tools for each. 

Many groups are actively working in the area of semantic parsing (aka semantic 

role labeling, semantic analysis), and for our work we wished to use the best existing 

tool to extract frames from text.  Specifically, we looked to the work of University of 

Texas at Dallas (Harabagiu, Bejan et al. 2005) and Saarland University (Erk and Pado 
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2006) for two approaches for automated frame analysis.  Our work used the resulting 

analyses of the UTD system, as well as hand generated, gold standard parses by the 

FrameNet group. 

Entity tagging is also an active area of research.  Stanford University has recently 

done some interesting work (Klein, Smarr et al. 2003; Krishnan and Manning 2006), as 

one example.  Unfortunately, no off-the-shelf approaches were able to perform with 

sufficient accuracy at the fine-grained level we needed.  For our work using our 

Weapons Production ontology, we used a customized in-house entity tagger created by 

a member of our research group, Javier Rey.  We used this tagger in conjunction with 

hand generated and corrected analysis. 

Question Type Classification 

The question type directs which event analysis method is used, as described in 

Section 3.5. While the complete technique of classifying the question type of a raw 

text query is outside the scope of our research, note that there are a number of lexical 

cues that highly correlate with certain question types.  For example, ability questions 

typically have the words “can”, “could”, “able”, “capable”, etc. in them.  Hypotheticals 

have words like “if”.  Predication questions are frequently in the future tense.  For our 

work, we used mostly hand generated question type analysis, created internally and 

by UTD. 

Support for peripheral event-related questions 

Many event-related questions ask a fundamental question about whether a state or 

action did, can, or will exist.  Many other event-related questions ask about a specific 

detail of an event that is not critical to simulation or other dynamic analysis, but may 

be contained in structured data generated by simulation.  An example of this might be 
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a question about the location of an event (“where x”).  To take structured data 

resulting from an event analysis and extract from it one particular piece of interest 

requires a postprocessing step to be applied to that structure. 

That step can be a relational lookup, like for a location.  It can be a token count, 

like for a question about the size of a resource (“how many”).  It could also be a simple 

token existence test, like for a basic Justification question (“did x”).  For example, in the 

question “Did Joe buy a car?”, the test is simply, was the Joe buy car action reached?  

Alternatively, the question could be, “What car did Joe buy?”, in which case the answer 

should be a relational argument, specifically the information bound to the Goods 

frame element of the Commerce_buy frame attached to the Joe buy car action. 

In this work, we delegated post-processing of data for these type of questions to an 

external presentation engine that used hand generated functions. 

4.3 Selecting Models for Questions 

To use event analysis to assist in answering a question, we require a method to select 

an event model based on the question being asked.  Our approach, as alluded to in 

Section 4.1.5, is to search for matches between the frame representation of the 

question and frame-form descriptions of our event models in our event ontology. 

Scoring models 

Our simple heuristic approach extends scoring semantic relevance of an individual 

frame to another, to scoring a match of frames from a question to frames from a 

model.  The easiest method is to look at question frames as one set and model frames 

(all the frame hooks connected to states, resources, and actions for a particular 

dynamic model) as another set, and then calculate the largest set intersection.  Scoring 
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a set intersection is taking the sum total of frame matches (Section 4.1.4) between the 

sets. 

For each model
For each question frame 

Find potential matches of qFrame in model 
totalFrameScore += thisFrameScore 

Score[modelID] = totalFrameScore 
Return argmaxID Score[ID]

 

This method values a match between any question frame and any event model frame 

equally, not taking into account whether the model frame represents a peripheral or 

core component of the model.  The scoring approach can be further strengthened by 

weighting the value of a frame match by a measurement of the relative relevance to 

the model of the particular state/resource/action represented by the event frame 

matched.  This can be dynamically approximated by the centrality of the model 

component in the model graph; or it can be supplied as an extra model parameter by 

the model designer.  The highest scoring event scenario model is used for analyzing 

the event in question. 

Instantiating an abstract model 

Abstract models (Section 4.1.5) must be instantiated after selection, binding the model 

to the specific event instance asked about in the question.  This is carried out based on 

the frame matches used to select the model.  For each frame match between question 

frames and model frames (i.e. the frame match score is above zero), the frame element 

restriction of the model is compared to the frame element binding of the question, and 

altered according to the following algorithm: 
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1. For each pair of matching frames {modelFrame, questionFrame} 
1.1. For each FE, fe, of the questionFrame 

1.1.1. If questionFrame[fe] binding is more specific than 
modelFrame[fe] restriction, 

1.1.1.1. If modelFrame[fe] restriction is basic domain entity, 
Set modelFrame[fe] restriction to questionFrame[fe] 
binding 

1.1.1.2. If modelFrame[fe] restriction is through a variable, 
Set modelFrame[fe] variable to questionFrame[fe] 
binding 

1.1.2. If modelFrame[fe] restriction does not exist, 
Set modelFrame[fe] restriction to questionFrame[fe] binding 

 

Note, as stated in Section 4.1.5, restrictions in a model are only made more 

specific; never more general. 

4.4 Acquiring and Incorporating data 

An event model selected for a question, whether abstract or specific, requires data 

about the event in question in order to provide analysis.  These data can be pieces of 

contextual background information (e.g. Alice owns a car) or control information (e.g. 

at the time to be analyzed, Alice is at home).  Combined, we can simulate and analyze 

the particular event at a particular state to infer new information (e.g. Alice is able to 

drive to work). 

Data for analysis 

Pieces of information in X-nets are represented by tokens.  These tokens represent 

either, a) a condition being satisfied, or b) a quantity of a resource, depending on the 

meaning of the Place where it resides (recall Section 3.4.2).  The goal in searching for 

information about an event instance is finding evidence that informs the model about 

the state or resource represented by each Place of interest in an X-net. 
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4.4.1 Acquiring relevant data through query expansion 

In selecting a model based on question frames, not only is a model chosen, but also 

information targets within the model: specific Places and Transitions within frame 

hooks that match the query frames.  If direct evidence about these information targets 

can be found, no further event reasoning is needed to answer the question.  However, 

for those situations where X-net analysis is needed to infer these information targets, 

the analysis routines (described in Section 3.5) require contextual information.  The 

more information that can be added to an X-net simulation, the more thorough an 

analysis can be completed. 

Models, though, can be large, and processing information requests about every 

aspect of a large model can be expensive.  Each piece of data with the potential of 

enlightening an X-net about contextual information sought, requires frame and entity 

extraction.  To limit the scope of information requests, we can dynamically select 

subsections of the model most relevant to the information targets of the question.  

Relevancy of a particular Place or Transition in the X-net is directly proportional to 

the causal influence that X-net object has to the X-net objects representing the 

information targets. 

We select the contextual information targets using a depth-limited breadth-first 

search: 
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1. Initialize new Set queryExpansion
2. Push all query targets on new Queue currentExpansionBwd 
3. For depth = 0..max // search causal predecessors 

3.1. Initialize new Queue nextExpansion 
3.2. For each target object o in currentExpansionBwd 

3.2.1. Add o to queryExpansion 
3.2.2. For each object o’ where 

  (if o is a Place) I+[o,o’] > 0  (or) 
  (if o is a Transition) I-[o’,o] > 0, 
add o’ to nextExpansion 

3.3. currentExpansionBwd = nextExpansion 
4. Push all query targets on new Queue currentExpansionFwd 
5. For depth = 0..max // search causal successors 

5.1. Initialize new Queue nextExpansion 
5.2. For each target object o in currentExpansionFwd 

5.2.1. Add o to queryExpansion 
5.2.2. For each object o’ where 

  (if o is a Place) I-[o,o’] > 0  (or) 
  (if o is a Transition) I+[o’,o] > 0, 
add o’ to nextExpansion 

5.3. currentExpansionFwd = nextExpansion 
6. Return combined set of frame hooks from queryExpansion set 

 

The algorithm selects all of the X-net objects that have a causal path to the objects 

representing the information targets of the query, within a certain path distance.  (The 

depth parameter quantifies the tradeoff between search completeness and expense.)  

These context objects are chosen because of their potential affect on the analysis 

routines used to infer the question targets.  The algorithm harvests the frame-hooks 

for each object, combining them into a single set.  This set represents a query 

expansion (beyond the original information targets), containing structured information 

requests in entity-restricted frame form for contextual data required for analysis.  

Note that the algorithm should be adapted slightly when selecting contextual 

information targets for answering a Temporal Projection question.  As discussed in 

Section 3.5, our method to analyze models for Projection questions only touches X-net 

objects that are causally before the objects of the analysis targets.  As such, sections 4 

and 5 are not required in the above algorithm, because that information is not used. 
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4.4.2 Incorporating data 

Data found matching information targets of a model (from the question or from 

context), can be incorporated into the model in the form of tokens or changes to the 

behavior of the model.  When doing so, it is important to distinguish evidence that 

explicitly supports a condition being satisfied, evidence that explicitly states that a 

condition is not satisfied, and a situation where there is no evidence.  We have 

developed the following table for incorporating data when matches are found between 

model query frames (e.g. frames from a model-based expanded query, as above) and 

data frames (e.g. frames extracted from data retrieved based on the expanded query): 

1. If the query is about a state, 
evidence of the state existing will result in a token added to the 
corresponding Place. 

2. If the query is about a resource,  
evidence of the amount of resource existing will result in a comparable 
number of tokens (in N0) added to the corresponding Place. 

3. If the query is about an action,  
evidence of the action taking place will result in a pseudo-‘firing’ of the 
corresponding Transition: without consuming tokens on incoming arcs, 
resources and states created by the action are added to the Places on the 
outgoing arcs.  (recall X-net semantics: Section 3.4.1) 

4. If the retrieved evidence is explicitly negative  
(e.g. the queried fact is not true; there is no resource) 
• For Justification questions: 

o a state or resource:  
the capacity of the corresponding Place is set to 0 

o an action:  
the firing rate of the corresponding Transition is set to 0 

• For Non-Justification questions: 
o a state or resource:  

any existing marking is removed from the corresponding Place 
5. If there are multiple references to evidence about: 

• a state: only one token is added 
• a resource: the largest referenced quantity is used 
• an action: the action is only fired once 
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4.5 Extracting and composing answers 

Applications using our event reasoning framework require a means to extract data 

relevant to the answer of a question after completing an analysis of the underlying 

event.  While we are not tackling natural language generation, we have developed a 

method to return more detailed and complete answer data. 

Users rarely want a one bit answer, “yes” or “no”, to a question; instead they 

frequently wish for a small amount of context that provides insights to answer.  

Similar to the query expansion algorithm described above in Section 4.4, it is possible 

to dynamically and automatically select a set of contextually relevant actions and 

states closely causally related to (and including) the state or action in question.  We 

call this the Answer Structure.  The Answer Structure is a feature structure with slots 

for information related to each of the designated contextually relevant actions and 

states.  The goal of a system can then be to fill this Answer Structure, instead of just 

the information directly targeted in the question.  After all analysis is complete, 

information about each element of the Answer Structure can be returned.  This comes 

in a few flavors: the information was retrieved from a data source, the information 

was inferred through X-net analysis, or no information was found.  The last group (no 

information found) can act as feedback and can lead to a second round of searching 

for the missing information (e.g. from additional resources).  How the elements of the 

Answer Structures can best be presented is application dependent and an open 

question beyond the scope of our research. 

4.6 Building Models 

Event scenario models can represent a wide range of situations – everything from 

basic embodied actions, like walking, grasping, kicking, etc., to higher level processes, 
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like device manufacturing, to specific historical accounts, like the D-Day Battle of 

Normandy in WWII.  We require a tractable solution to populate our event ontology 

with models such as these, as needed.  This entails a means to manually generate 

models and/or mechanisms to semi-automate or fully automate the creation of basic 

models within a domain of interest. 

4.6.1 Manual generation 

The process of creating a model can be split into two stages: describing the event 

structure, and providing the frame hooks to ground the events in structured language.  

A Subject Matter Expert (SME) is required for each. 

A model designer needs either a tool for describing events (Section 3.3) and a tool 

for converting the description into an X-net (Section 3.4.2), or tool to directly create X-

nets.  In addition, the designer also needs a tool to load descriptions or X-net models 

and append frame hooks to individual event objects.   

PIPE2 Editor and OWL Translator 

For our work, we modified a version of the Platform Independent Petri-net Editor 2 

(PIPE2) (Akharware 2005), a Petri Net editing package, as described in Section 6.6.  

This provided us a GUI for the creation, saving, loading, and editing of X-nets.  Our 

package also provides for adding entity-restricted frame-based linguistic descriptions 

of each Place and Transition in a model. 

In addition, a member of our team, John Denero, created an OWL-S–to–X-net 

translator, providing the means for event descriptions encoded in OWL-S (the 

semantic markup language for services: Martin, Burstein et al. 2004) to be translated 

into X-nets.  This allows for 1) event models to be described using popular packages 
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like the Protégé Ontology Editor (http://protege.stanford.edu); and 2) those 

descriptions to automatically generate X-nets. 

Model-language design approach 

In creating models, each model element requires a linguistic description using frames 

and entities that describe the represented state, action, or resource.  We used a couple 

of techniques to generate those entity-restricted frame descriptions. 

For frames, first, we take a word or a few different words that describe the state or 

action and look up which frame(s) they evoke, using FrameNet’s lexical-unit-to-frame 

map.  Then, for each frame, we use the FrameNet frame-to-frame relations to find 

related frames that may also be employed in language used to describe this action 

(many related frames will be relevant to the event at hand, some will not). 

Once a set of frames is selected, the frame elements need to be restricted with the 

appropriate domain entity category, the most general entity category that still restricts 

the model to appropriate data.  We use keyword search to find entities in our domain 

entity ontology. 

4.6.2 Auto-generation 

Frame Translation 

As mentioned, events have frame semantic structure: frames have many of the same 

parameters as events, allowing us to directly map between frame elements and event 

parameters (see Chapter 3).  This also means we can use pre-existing frames as a 

starting point to generate primitive event models.  With FrameNet available in OWL 

format, we can use the OWL-S-to-X-nets tool described in the previous section to 

semi-automate this translation process.  There are challenges to this, though, as 
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FrameNet tags do not automatically map onto event model parameters.  This is laid 

out in greater detail in (Chang, Narayanan et al. 2002).  For OWL-S-to-X-nets 

translations, manual correction is required. 

4.6.3 Models built 

We have developed several dynamic event models using our framework.  With them, 

we have been able to test our systems’ inference ability on a number of topics of 

interest.  The X-net models we built include those of: 

• Treaty negotiation and enactment  

• General weapon procurement by a country 

• Biological weapon production by a country 

• The events of the 2006 Lebanon War 

• Technology pathway alternatives (three sets of models) 

• The judicial process 

• The stages of employment 

• and others 

The breadth of models is representative of the coverage capability of our design.  We 

highlight a few of these models, below.  We describe the technology pathways in 

Section 7.5.1. 
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Treaty model 

The treaty model is an abstract model that describes the process of creating, enacting, 

and executing a treaty with respect to a country.  Before use, this model must be 

instantiated with a particular country and a particular treaty.  Above is a screenshot of 

the model from our X-net editor. 

The process starts with the requirement that the country has the goal of creating 

the treaty and is ready to proceed.  This enables event progress to the point of a 

proposal for the treaty to be submitted.  This spins off negotiation on the proposal, 

which continues until a proposal is accepted.  At this point, the county’s 

representative signs the agreement and then ratifies it.  The treaty is then in effect.  

Should the treaty be violated, leading to a breach, the treaty will be enforced. 

The Places and Transitions have names corresponding to the state or action 

represented.  This is just aesthetic, though.  More importantly, each Place and 
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Transition has a set of entity-restricted frames that provide linguistic descriptions of 

the particular state or action.  For example, the “sign_agreement(v_country, v_treaty)” 

Transition is linked to the following frame: 

Frame: Sign_agreement
   Signatory: <v_country> 
  Agreement: <v_treaty>

 

In this abstract model, v_country is a variable initially restricted to be of the domain 

entity type, <Country>; and v_treaty is a variable restricted to <Treaty> (see more 

on abstract models Section 4.1.5).  This means the action of signing the agreement can 

match with a specific instance of any particular country (like <England>, which is a 

subtype of <Country>) signing any particular treaty (like <Geneva Conventions>, 

which is a subtype of <Treaty>). 

This simple model was manually generated. 
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Weapons procurement 

The weapons procurement model describes two major paths a country can take in 

obtaining a weapon: acquiring a ready-made weapon or developing one, in-house.  

This abstract model, shown above, has to be instantiated with a country and a weapon 

sought before being used. 

The model starts when enabled (shown enabled with a token).  Enabling the 

model leads to a decision to obtain a weapon.  A choice is encoded: choice 1) 

acquire a ready-made weapon, and choice 2) develop weapon in-house.  A decision 

to acquire a weapon leads to another choice: to buy, smuggle, or steal the weapon.  

A decision to develop the weapon in-house leads to concurrent actions,  to obtain 

weapon expertise and materials, and at the same time to obtain a weapon 

factory.  With both sets of actions completed, weapons can be manufactured and 
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tested repeatedly until a weapon passes the test.  At that point, weapons can be 

stockpiled, and then used or destroyed. 

In this model, we constrain most Places to a capacity of one token, because each 

Place represents a state that is either true (one token) or currently false (no tokens).  

We use enable arcs (dashed arrows) in the weapons development track so as to not 

remove states that continue to hold as the process proceeds (e.g. obtained expertise is 

not lost as the weapon is built).  In addition, we bias some of the choice points, like 

the simulation of testing the weapon; there we set an 80% fail rate per attempt. 

Here, too, we use entity-restricted frames for linguistic descriptions of the 

constituent states and actions.  In this model, there is greater frame support, with 

many actions having multiple descriptions.  “Buy weapon”, for example, uses seven 

entity-restricted frames: Commercial_transaction, Commerce_goods-transfer, 

Commerce_money-transfer, Commerce_buy, Commerce_sell, Commerce_collect, and 

Commerce_pay. 

This model was manually generated in consultation with Subject Matter Experts. 
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Biological weapons production 

The biological weapons production model is significantly more complicated than the 

weapons procurement model, as can be gleaned from the above screenshot.  Without 

going into detail, the model depicts both the production of the pathogen (the bottom of 

the model), and the delivery system (the top of the model), to produce a full weapon 

(the right-most Place). 

This model, too, was manually generated with input from Subject Matter Experts. 
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Judicial process 

The judicial process model is an abstract model that follows the scenarios described in 

our motivating example from Section 3.1.  It tracks a suspect accused of a crime 

through the judicial process.  It was derived directly from FrameNet frames, 

demonstrating the potential for semi-automated translation.  Each Place represents a 

frame in FrameNet.  The Places were linked together based on the FrameNet Frame-

to-Frame relations between the frames that helped generate those Places.  The most 

pertinent relations are: Subframe-of, Precedes, Is-preceded-by. 

The process starts with a crime committed: 

Frame: Committing_crime
   Crime: <v_crime> 
  Perpetrators: <v_suspect>

 

Again, like the Treaty model, we use variables to link constraints across the model.  

Here we use v_crime, initially set to a type of <Crime>, and v_suspect, initially set to 

a type of <Person>.  It continues with the investigation of the crime: 
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Frame: Criminal_investigation
   Incident: <v_crime> 
  Suspect: <v_suspect>

 

and so on, through the arrest, notification of charges, plea, bail, trial, jury 

deliberation, verdict, sentencing, and possible penalty.  Each Place is linked to 

the frame that was used to generate it. 
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Lebanon War of 2006 

The ‘Lebanon War of 2006’ model is a specific model, requiring no instantiation.  It is 

designed to map out the major events of the conflict by that name, as well as a few 

alternative scenarios that did not take place. 

The main scenario starts with Hezbollah’s goal to get Israel to release 

Hezbollah captives (the Place on the furthest left of the screenshot of the model).  

This begat Hezbollah’s kidnapping Israeli soldiers to use as collateral.  Israel 

formulated their own goals of destroying Hezbollah and attempting to get 

Hezbollah to release the Israeli soldiers.   This escalates into a number of attacks 

and counter attacks, with casualties and property damage on both sides. 

In addition to mapping out the scenario that did happen, we also modeled a few 

simple additional scenarios, one relating to an Israeli goal to destroy Lebanon 

(bottom of model), and another related to an Israeli goal to take over Lebanon (top 
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of model).  This enables an analyst to test what may have happened if conditions had 

been different.  (We explore two such questions in Section 6.7.1.) 
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5 Applying Event Modeling to Answer Selection 

Before applying our event modeling framework to a full-fledged NLP application, we 

decided to test it on a simpler problem.  Answer selection is the process of choosing 

the best answer to a natural language question from a list of pre-chosen candidates.  

The difficulty in the task is assessing the relative relevancy of candidates that each 

contain the keywords used in a question asked. 

For event-related questions, we hypothesized that our event ontology would 

improve the relevancy assessment.  Specifically, we theorized that: 

3) Keywords extracted from a question are related to one another and thus 

extracting relational information in a question and in a set of answer 

candidates should enable higher precision measurement of the relevancy of the 

candidates; and 

4) Analyzing these relations in the context of a relevant, expressive model of the 

event in question provides a valuable link between the information sought in 

the question and the information contained in a good answer. 

For us, the Answer Selection task provided an initial test of our approach for modeling 

events. 

The system we designed relies on our event description work (Section 3.3), as well 

as our methods for linking language to event models (Chapter 4).  In Section 5.1, we 

discuss the external tools that provide our system the answer candidates from which 

to select.  In Section 5.2, we provide an example scenario that motivates our approach.  

We then describe our system at a high level (Section 5.3) and in detail (Section 5.4), 

before discussing the results of a simple assessment of the system (Section 5.5). 
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Answer Selection is a stepping stone to a full Question Answering system.  We will 

describe our Question Answering system in Chapter 6 that builds upon our Answer 

Selection results.4 

Early version of event modeling framework 

The Answer Selection system was designed using an early incarnation of our event 

modeling framework; it tests only a portion of our framework’s eventual functionality 

and uses some methods later improved.  This is observable in two ways: 1) this 

system uses event models composed of event schema instances (as described in 

Section 3.3) and does not utilize our X-net design (Section 3.4); and 2) the system uses 

PropBank predicate-argument structures rather than FrameNet frames to linguistically 

describe events (Kingsbury and Palmer 2002; Palmer, Gildea et al. 2005).  

In Chapter 4, we laid out our methodology for linking language to event models 

using frames.  The key features of frames that are required for these algorithms also 

exist in PropBank predicate-argument structures. FrameNet frames are (and can be 

thought of as) a richer type of predicate-argument structure: predicates evoke frames 

and arguments to frames are frame elements.  For the remainder of the chapter, we 

will reference these algorithms with the caveat that we use predicate-argument 

structures, but leave to the reader the mental substitution of ‘predicate-argument 

structure’ for ‘frame’ in the algorithm. 

                                              

4 Due to the overlap in the design of the Answer Selection system and Question Answering 

system, there is some repetition in our discussion of the two systems.  For clarity, Chapter 5 

and Chapter 6 do not rely on one another. 
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indexing and retrieval 
based on lexico-semantic

knowledge 
answer candidates keyword recognition 

5.1 System context 

This Answer Selection work was a component of a larger project, AQUINAS.  Our 

partner team from the University of Texas, Dallas (UTD), supplied and managed a 

suite of NLP tools that provided a front-end to our work.  As shown in Figure 5-1, this 

component of the overall system has a three-stage pipeline: question processing, 

document processing, and answer processing.  Its output, predicate-argument 

structure annotated question and answer data, is passed to our Answer Selection 

Engine, which ranks the answer candidates and selects the best. 

The Question Processing stage of the AQUINAS system has a few key components.  

Three operations apply to the question: 1) its keywords are extracted for the 

Document Processing stage; 2) the question is syntactically parsed; and 3) any domain 

entities are tagged.  The syntactic analysis and entity tags are used to help identify 

Figure 5-1: AQUINAS Answer Selection System flowchart 
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PropBank predicate-argument structures (pred-args) in the question.  These pred-args 

are then fed as the first of two inputs to the Answer Selection Engine. 

During the Document Processing stage, the system selects answer candidates using 

the keywords extracted from the question.  The documents are pre-processed with the 

same tools used in the Question Processing stage: they are syntactically parsed and 

domain entity tagged, before pred-args are identified.  The documents are indexed, 

stored both as text and in predicate-argument form.  From this database, answer 

candidates are chosen using a number of heuristics. 

In the Answer Processing stage, the AQUINAS system forwards the answer 

candidates, annotated for predicate-argument structures, to the Answer Selection 

Engine. 

The Answer Selection Engine thus requires candidate answers in a structured form.  

This needs: an information retrieval (IR) system, syntactic and semantic parsing 

capabilities, and domain entity tagging.  In the AQUINAS system, these tools are 

provided by UTD.  Their work is outside the scope of our research, but can be read 

about here (Harabagiu, Bejan et al. 2005). 

5.2 Motivating example 

In this chapter, we will use the following example question from an evaluation of the 

system to drive the explanation: 

Does Pakistan possess the technological infrastructure to 
produce biological weapons? 

 

In addition, we will focus on one of the answer candidates provided for the question: 
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While Pakistan is not known to possess biological weapons 
(BW), it has talented biomedical and biochemical scientists 
and well-equipped laboratories, which would allow it to 
quickly establish a sophisticated BW program, should the 
government so desire. (Pakistan Country Profile, CNS 2004) 

 

5.3 System modules and processing flow 

Shown in Figure 5-2, the Answer Selection Engine executes when the question and 

answer candidates are input.  The system uses the question to select a relevant event 

model, which extends the range of what the system knows to be relevant in an answer.  

The system uses this information to score the relevancy of each answer candidate, 

finally ranking them and selecting the best answer to return. 

Each phase of the system accomplishes a distinct task: 

• Activating the system: The question and the answer candidates are each 

presented in two sets: 1) PropBank-defined pred-args; and 2) domain entity tags. 

• The alignment phase: The pred-args and entities are interrelated.  The system 

combines them, as appropriate, into entity-bound pred-args. 

• The model selection phase: The question pred-args act as keys for looking up 

event models that describe the main underlying state or action in question. 

• The answer candidate scoring phase: The pred-args of each answer 

candidate are compared to the pred-args of the model and scored accordingly. 

• The candidate ranking phase: The system rank orders the answer candidates 

based on the score, and outputs the ranking, tagging the highest ranked 

candidate as the “selected” answer. 
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Example 

In our example, the questioner asks about the current state of Pakistan’s biological 

weapons infrastructure.  The UTD front-end system provides to the Answer Selection 

Engine this question, as well as a set of candidate answers to the question.  Those data 

come annotated for pred-args and tagged for domain entities.  The pred-args and entity 

tags of the question are aligned, and the resulting entity-bound pred-args key into our 

event ontology, selecting our Biological Weapons Production model as being most 

relevant to the question.  (A later version of our Biological Weapons Production model 

is shown in X-net form in Section 4.6.3.) 

The pred-args of each answer candidate are compared against the pred-args of the 

model, scoring the candidate’s relevance to the topic of Pakistan’s biological weapons 

program.  Among the candidates considered is the one mentioned in Section 5.2.  

Unlike many other candidates, this one has a number of pred-args that overlap with 

the those in the model’s description, resulting in a high score.  This high score places 

it at the top of the candidate ranking, and the candidate is selected as the best answer 

to the question. 

Figure 5-2: Answer Selection Engine 
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• Question Text 
[text] 

• Question Pred-args 
[text-bound pred-args] 

• Question Entities 
[domain entity ontology tags] 

• Answer Candidate Pred-args 
[text-bound pred-args] 

front-end 
{external} 

Input 

Figure 5-3: Front-end interface

• Answer Candidate Entities 
[domain entity ontology tags] 

• Documents (pre-indexed) 
[text] 

Output 

5.4 Modules 

In this section, we discuss the main modules of our Answer Selection Engine.  

tails the API of the front-end component of the AQUINAS system.  

5.4.1 Front-end 

The front-end system performs a number of critical tasks, as explained in Section 5.1.  

t processes the question and provides candidate answers to the 

e 

with arguments bound to the text strings fulfilling the semantic roles of the predicate. 

Section 5.4.1 de

Each subsequent subsection details one module shown in Figure 5-2.  The subsections 

are concluded by a discussion of our running Pakistan infrastructure example, 

explaining the progress of the system during the stage discussed. 

At a high level, i

question.  As shown in Figure 5-3, it provides both the question and answer 

candidates in predicate-argument and domain entity form.  The processed question 

will allow the system to select an event model used in the answer selection analysis. 

The pred-args annotated in the question and answer candidate text are PropBank 

pred-args.  For each sentence, the analysis produces the predicates of the sentenc
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Input Output 

Figure 5-4: Front-end example

“Does Pakistan possess 
the technological infra-
structure to produce 
biological weapons?” 

• Question Text 

• Question Entities 

o “Pakistan”  <Pakistan> 
o “the technological infrastructure”  

<Technology Infrastructure> 
o “biological weapons”  <Biological WMD> 

• Documents 

Including passage: 
“While Pakistan is not 
known to possess 
biological weapons 
(BW), it has talented 
biomedical and 
biochemical scientists 
and well-equipped 
laboratories, which 
would allow it to 
quickly establish a 
sophisticated BW 
program, should the 
government so desire.” 

o “Pakistan”  <Pakistan> 
o “biomedical scientists”  <Biomedical Scientist> 
o “biochemical scientists”  <Biochemical Scientist> 
o “laboratories”  <Laboratory>... 

• Answer Candidate Entities (shown: Candidate #5) 

possess (“Pakistan”, “biological weapons”, “not known”) 
has (“Pakistan”, “biomedical scientists”, “talented”) 
has (“Pakistan”, “biochemical scientists”, “talented”) 
has (“Pakistan”, “laboratories”, “well-equipped”)... 

• Answer Candidate Pred-args (shown: Candidate #5) 

possess (“Pakistan”, “the technological infrastructure”) 
produce (“Pakistan”, “biological weapons”) 

• Question Pred-args 

The domain entities extracted from the text include traditional named entities, as 

well as more general types, as described in Section 4.1.3.  These extracted entities are 

fine-grained categories, representing the most specific relevant type in the domain 

ont

Figure 5-4 shows the results of the front-end system on the text of our example.  The 

question analysis produces two pred-args and three domain entities.  The documents 

 the passage extracted as Candidate #5.  That candidate 

ology. 

 (Note again: the methods used for predicate-argument annotation and domain 

entity tagging are outside the scope of this work.) 

Running example: Front-end 

indexed in the system include

has, among others, the four pred-args and four domain entities shown. 
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• Question Pred-args 
[entity-bound pred-args] align 

Input Output 

Figure 5-5: Alignment interface

• Question Pred-args 
[text-bound pred-args] 

• Question Entities 
[domain entity ontology tags] 

• Answer Candidate Pred-args 
[text-bound pred-args] 

• Answer Candidate Entities 
[domain entity ontology tags] 

• Answer Candidate Pred-args 
[entity-bound pred-args] 

5.4.2 Alignment 

The form of linguistic description used in our Answer Selection Engine is entity-bound 

n in Figure 5-5, though, the inputs to the Engine are text-bound 

In Figure 5-6, we show the entity-bound pred-args that result from aligning the text-

that are entered into the Alignment module in our 

pred-args.  As show

pred-args and domain entities.  Text bindings have too many surface realizations to 

facilitate direct comparison of the underlying meaning, which is required in later 

modules.  The purpose of the Alignment module is to substitute each text-binding in a 

pred-arg with the entity tagged to the semantic head of the binding text.   When no tag 

is available, the system does not set an entity binding, and the information is not 

carried on.  (See Section 4.1.3 for a further discussion on using domain entity 

bindings.) 

Running example: Alignment 

bound pred-args and entities 

ongoing example. 
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Input Output 

Figure 5-6: Alignment example

• Question Pred-args (entity-bound)

possess (<Pakistan>, <Technology Infrastructure>) 
produce (<Pakistan>, <Biological WMD>) 

• Question Pred-args 
(see Figure 5-4 output) 

• Question Entities 
(see Figure 5-4 output) 

• Answer Candidate Pred-args 
(see Figure 5-4 output) 

• Answer Candidate Entities 
(see Figure 5-4 output) 

• Answer Candidate Pred-args (entity-bound) 

possess (<Pakistan>, <Biological WMD>) 
has (<Pakistan>, <Biomedical Scientists>) 
has (<Pakistan>, <Biochemical Scientists>) 
has (<Pakistan>, <Laboratory>) 

5.4.3 Model Selection 

The Model Selection module: 1) selects a model that describes the type of event in 

question; and 2) “instantiates” the model, tuning it to the specific event instance in 

question.  As shown in Figure 5-7, this is accomplished with the aid of the pred-args of 

the question and the event model ontology.  We use a number of the methodologies 

described in Chapter 4 to accomplish these tasks (with minor modification, due to use 

of pred-args instead of frames in linguistic descriptions and semantic analysis). 

Selecting a model from the Event Ontology 

The Model Selection module selects a model from the Event Ontology.  The Event 

Ontology for this Answer Selection system is a database of event model descriptions, 

each composed of Event Schema instances (discussed in Section 3.3, and shown in 

Figure 3-4).  Each Event Schema instance has linguistic descriptions, in entity-

restricted pred-arg form, of an event’s constituent states and actions (see Section 4.1.5 

for explanation of “entity-bound” vs. “entity-restricted” distinction). 

In selecting a model, we implement the algorithm of Section 4.3.  The system 

treats each model in the database as a single set of entity-restricted pred-args, grouping 
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• Event Model Ontology 
[Event model descriptions 
composed of Event Schema 
instances, indexed by entity-
restricted pred-args] 

Output 

• Question Pred-args 
[entity-bound pred-args] 

Input 

model selection 
• Event Model (Instantiated) 

[Event model description, with 
updated linguistic descriptions]

Figure 5-7: Model Selection interface

all of the pred-args related to that model.  It then computes the set intersection 

between the pred-arg set of each model in the database and the set of entity-bound 

pred-args in the question.  The model with the ‘largest’ intersection is selected.  The 

underlying rational is, relations in the question related to any part of the model is 

proof of relevance of the model to the question, and the larger the connection the 

better. 

The method of scoring the intersection between a model set and the question set is 

to sum all of the pred-arg match scores between the pred-args of the two sets.  We 

implement the frame matching algorithm described in Section 4.1.4 (applied to pred-

args instead of frames), extending it (as mentioned) to use part-of and relationship-of 

relations in the domain entity ontology, just as it does subtype-of relations. 

Instantiating an abstract model 

A model selected may be abstract or specific, as discussed in Section 4.1.5.  An 

abstract model is applicable to multiple scenarios and ideally uses linguistic 

descriptions that are general enough to encompass all of the scenarios intended, but 

specific enough to only cover those scenarios (e.g. the Treaty model, Section 4.6.3).  A 

specific model will cover only one scenario (e.g. a model of a particular historical 

event). 
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Abstract models must be instantiated to be used.  If an abstract model is chosen, 

the linguistic descriptions that made it applicable to multiple scenarios must be 

focused to only apply to the scenario asked about in the question.  As mentioned in 

Section 4.1.5, abstract models use variables in their linguistic descriptions, restricting 

(in this case) argument bindings in those pred-arg-based descriptions, not directly to 

domain entity categories, but instead to variables set to domain entity categories.  

When the value of any one variable is changed, it can affect multiple linguistic 

descriptions across the model.  The selection of which variables are changed is based 

on the matches between question pred-args and model pred-args.  We use the 

algorithm of Section 4.3 to update the model, making it as specific as the question’s 

entity-bindings.  

Once a model is instantiated, the variable values will not change.  As such, for the 

rest of the chapter, we will ignore this redirection of restrictions through variables and 

use reified specialized entity restrictions. 

103 



Includes: 
o Bioweapons 

Production model 
restricted to: 
<Country>, 
<Biological WMD> 

• Event Model Ontology 

• Question Pred-args 
(see Figure 5-6 output) o Bioweapons Production model 

restricted to: <Pakistan>,<Biological WMD> 
pred-args include: 
// Preconditions for the Develop Expertise stage 
possess(<Pakistan>, <Bio Expert> ) 
possess(<Pakistan>, <Bio Laboratory> ) 
has(<Pakistan>, <Bio Expert> ) 
has(<Pakistan>, <Bio Laboratory>) 
... 
 
// Process of building weapon  
manufacture(<Pakistan>, <Biological WMD> ) 
produce (<Pakistan>, <Biological WMD> ) 
... 
 
// Effect of building weapon 
possess(<Pakistan>, <Biological WMD> ) 
has(<Pakistan>, <Biological WMD> ) 

• Event Model (Instantiated) 

Output Input 

Figure 5-8: Model Selection example

Running example: Model Selection 

Figure 5-8 shows the model selected based on the pred-args of the question.  

Specifically, the question has two pred-args: 

• possess (<Pakistan>, <Technology Infrastructure>) 

• produce (<Pakistan>, <Biological WMD>) 

The first, when used to index into the event model database, is too general and 

returns nothing.  The second matches with the Bioweapons Production model, which 

contains: 

• produce (v_country, v_weapon),  

where v_country is initially set to <Country>, and v_weapon is initially set to 

<Biological WMD>).  This will produce a model match score of 0.95, higher than any 

other potential match.  As such, the Bioweapons Production model is chosen.  Then, 
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Output 

• Answer Candidate pred-args
[entity-bound pred-args, 
one set per candidate] 

• Event Model 
[Event model description] 

Input 

answer candidate 
scoring 

• Answer Candidate scores 
[array: candidate ID, score] 

Figure 5-9: Answer Candidate Scoring interface 

• Answer Candidate  
pred-args 
(see Figure 5-6 output) 

• Event Model 
(see Figure 5-8 output) o Candidate #1, Score: 0 

o Candidate #2, Score: 0 
o Candidate #3, Score: 0.3 
o Candidate #4, Score: 0 
o Candidate #5, Score: 3.9 
o ... 

• Answer Candidate scores 

Output Input 

Figure 5-10: Answer Candidate Scoring example 

v_country is updated to <Pakistan> and v_weapon stays as <Biological WMD>.  

The resulting model is shown. 

5.4.4 Answer Candidate Scoring 

To rank the answer candidates and select a final answer, the system must first score 

the relevance of each candidate.  As shown in Figure 5-9, the Answer Candidate 

Scoring module uses the event model selected to test and score each answer candidate, 

returning an array of candidate scores to the Candidate Ranking module. 

The scoring algorithm used by the module is a modified form of the algorithm 

used to select a model.  Instead of scoring the entity-bound pred-arg set of the 

question against the entity-restricted pred-arg set of each model the system considers 

for selection (as is done in the Model Selection module), the Answer Candidate 

Scoring module scores the entity-restricted pred-arg set of the selected model against 

the entity-bound pred-arg set of each answer candidate.  We use the following scoring 
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function (similar to our algorithm in Section 4.3, using a pred-arg matching algorithm 

similar to frame matching algorithm of Section 4.1.4): 

For each answerCandidate
For each acPredArg 

 Find potential matches of acPredArg in model 
totalPredArgScore += thisPredArgScore 

Scores[acID] = totalPredArgScore 
Return Scores 

 

Running example: Answer Candidate Scoring 

In Figure 5-10, we show the results of scoring the set of answer candidates for the 

question.  Specifically, we highlight the scoring of Candidate #5: “While Pakistan is 

not known to possess biological weapons (BW), it has talented biomedical and 

biochemical scientists and well-equipped laboratories, which would allow it to quickly 

establish a sophisticated BW program, should the government so desire.”  

Each of the candidate’s four pred-args matches with a pred-arg in the Bioweapons 

Production Model.  Using pred-arg match scoring where penaltyspec=0 and penaltygen 

= 0.2 (see Section 4.1.4): 

• possess (<Pakistan>, <Biological WMD>) matches exactly, for a score of 1 

• has (<Pakistan>, <Biomedical Scientists>) & has(<Pakistan>, <BioExpert>) 

have a more-specific match, for a score of 1 

• has (<Pakistan>, <Biochemical Scientists>) & has(<Pakistan>, <Bio 

Expert>) have a more-specific match, for a score of 1 

• has (<Pakistan>, <Laboratory>) & has (<Pakistan>, <Bio Laboratory>) 

have a less-specific match, for a score of 0.9 

The total score is: 3.9. 
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Output 

• Answer Candidate scores 
[array: candidate ID, score]

Input 

candidate ranking 
• Answer Candidate rank 

[array: candidate ID, rank] 

• Answer Candidate scores 
(see Figure 5-10 output) o Candidate #5, Rank: 1 (i.e. selected) 

o Candidate #3, Rank: 2 
o Candidate #1, Rank: 3 
o Candidate #2, Rank: 4 
o Candidate #4, Rank: 5 
o ... 

• Answer Candidate rank 

Output Input 

Figure 5-11: Candidate Ranking interface

Figure 5-12: Candidate Ranking example

5.4.5 Candidate Ranking 

The Candidate Ranking module collects the answer candidate scores, ranks the 

candidates in order of decreasing score, and packages and returns this list to the user 

(Figure 5-11). 

Running example: Candidate Ranking 

As shown in Figure 5-12, the final results in our example put Candidate #5 at the top 

of the ranking. 

5.5 Evaluation 

The Answer Selection task , as stated at the onset of the chapter, provided an initial 

test of our event modeling approach.  Specifically, we wished to evaluate whether the 

use of relational structures (in this case, predicate-argument structures) could improve 

precision in the selection of answers, while the use of event models could extend 

recall of relevant answers. 
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To facilitate our experiment, we used the AnswerBank corpus (UTD-created for 

AQUINAS).  The corpus has approximately 2700 questions with gold-standard 

answers drawn from a large set of public documents related to national security.  

More than half of the questions are event-related, and are either justification, projection, 

ability, or hypothetical questions (as defined in 3.2). 

We setup a test of 12 event-related questions, each randomly selected from the 

AnswerBank corpus, filtered to pertain to the topic of weapons procurement or 

production.  We submitted the questions to the UTD front-end system and received its 

top seven ranked answer candidates for each.  In addition to the seven candidates 

returned, we included the gold-standard answer from AnswerBank, when not already 

included in the original seven (in all but one case, we added the gold-standard answer).  

The pred-args and domain entities were hand-corrected to ensure gold-standard 

annotations.  For each question, we entered its pred-args and domain entities, and 

those of its answer candidates, into our Answer Selection Engine.  In each case, the 

system cleanly separated the gold-standard answer from the rest, selecting the gold-

standard answer as best. 

An analysis of the test set of questions and answer candidates revealed that most 

(78 of 84) of the answer candidates returned by the front-end system were irrelevant 

to the question, though they contained the question’s keywords.  While this validated 

our approach to increase precision in answer selection and demonstrated the difficulty 

of answering complex event-related questions with traditional NLP tools, we 

concluded that the design of the next stage Question Answering system (Chapter 6) 

should emphasize mechanisms to increase the retrieval of information relevant to the 

question. 
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6 Applying Event Reasoning to Question Answering 

Automated Question Answering (QA) is a challenging research problem in the Natural 

Language Processing (NLP) community.  The task is to find or create focused answers 

to natural language questions.  This can be contrasted with a typical information 

retrieval search that retrieves a list of documents or passages that contain a given set 

of keywords.  For our research, the QA problem is a good test of the event reasoning 

framework we developed, to see if our techniques can help provide solutions for 

complex, event-related queries (in a closed domain). 

In Chapter 3, we discussed our design for describing, modeling, simulating, and 

analyzing events.  In Chapter 4, we described our solution for linking language 

semantics with event models, providing a means for selecting a model capable of 

reasoning about an event of interest, and a mechanism for incorporating linguistic 

evidence about an event in a relevant model.  We put a subset of these capabilities 

together in our Answer Selection system (of Chapter 5)5.  To build a full-fledged QA 

system, though, requires incorporating all of these features, as well as a number of 

additional tools. 

In Section 6.1, we describe the context in which we built our QA system, 

including a review of the auxiliary tools required to enable our system to work.  

Subsequent to that, we provide a high level overview of the system (Section 6.3), 

before detailing each of its components (Section 6.4).  Then we briefly discuss back-off 

                                              

5 Due to the overlap in the design of the Answer Selection system and Question Answering 

system, there is some repetition in our discussion of the two systems.  For clarity, Chapter 5 

and Chapter 6 do not rely on one another. 
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strategies to handle cases where certain resources are not available (Section 6.5) and a 

few implementation notes (Section 6.6), before describing the results of evaluations of 

the system (Section 6.6). 

6.1 System context 

Our QA research was conducted within the context of a larger project (AQUINAS).  

Our partner team from the University of Texas, Dallas (UTD), supplied and managed 

a suite of NLP tools that complimented our work (and others).  As shown in Figure 6-1, 

we broke down the QA task into a three-stage pipeline: question processing, 

document processing, and answer processing.  Our work, the Event Scenario QA 

Engine, supports and interacts with the pipeline at various stages. 

Figure 6-1: AQUINAS QA System flowchart 
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Question Processing has a number of components.  A question needs to be 

syntactically parsed, and its domain entities need be to recognized from an ontology 

and extracted.  This assists in identifying: the frame structures in the question, the 

type of question being asked, and the form of answer being requested.  For event 

related questions, our Event Scenario QA Engine is activated for further processing of 

these inputs.  For non-event related questions, the AQUINAS system extracts 

keywords from the question and continues on to Document Processing. 

The Document Processing stage returns passages with information relevant to 

answering the question asked of the system.  To do so, the AQUINAS system indexes 

the documents with lexico-semantic information, like frames, entities, and other 

keywords, ahead of time.  It syntactically parses them, recognizes domain entities, and 

identifies frame structures.  With this retrieval capability, for event related questions, 

the Event Scenario QA Engine can request documents using frame encoded 

information requests.  For non-event related questions, the keywords extracted from 

the question in the Question Processing stage can be used to index into the document 

database. 

In the final stage, Answer Processing, the AQUINAS system either presents the 

information inferred by the Event Scenario QA Engine (for event related questions), or 

it uses its own mechanism to process the retrieved documents and extract answers (for 

non-event questions). 

We thus found that, to build a full QA system capable of answering event related 

natural language questions, our event reasoning framework needs to be bolstered by: 

an information retrieval (IR) system, syntactic and semantic parsing capabilities, 

domain entity tagging, question analysis, and answer presentation modules.  In the 

AQUINAS system, we used the UTD IR and parsing tools.  Their work, done in 
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coordination with the Language Computer Corporation (LCC), is outside the scope of 

our research, but can be read about here (Harabagiu, Bejan et al. 2005).  For our 

design of the Event Scenario QA Engine, we assumed gold standard quality output 

from these tools.  (The form and nature of that output is part of our research, and is 

discussed in Section 4.2 and further in this chapter.) 

6.2 Motivating example 

Throughout the next sections of the chapter, we describe the details of our Event 

Scenario QA Engine.  We use the following example question, taken from an 

evaluation of the system, to drive the explanation: 

Is Iran a signatory to the Chemical Weapons Convention? 

 

The following relevant passage will also be used to help infer an answer to the 

question: 

Being one of the few countries in the world that has 
experienced chemical warfare on the battlefield, Iran ratified 
the Chemical Weapons Convention in 1997. 

 

6.3 System modules and processing flow 

In Figure 6-2, we show our Event Scenario QA Engine flowchart.  The system is 

broken down into two stages: question processing (Stage I), and data processing 

(Stage II).  The processed question suggests which data should be used in Stage II to 

infer an answer.  There is a break in control at the end of the first stage when the 
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system sends out an expanded query to the AQUINAS program to retrieve relevant 

data. 

In the first stage, the system attempts to identify an appropriate model of the type 

of event in question.  It then tries to fill in any information it already knows about the 

scenario based on internal information resources.  That which it cannot retrieve from 

internal resources but recognizes as valuable for inference, it requests.  More 

specifically: 

• Activating the system: This stage starts by accepting three pieces of 

information about the question: the frames of the question, the domain entities 

in the question, and the type of the question (prediction, hypothetical, 

justification, etc.). 

Figure 6-2: Event Scenario QA Engine 
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• The alignment phase: The frames and entities, though analyzed by two 

separate external algorithms, are interrelated.  The system combines them into 

a unified (partial) semantic representation of the question, composed of entity-

bound frames. 

• The model match phase: The entity-bound frames act as keys for looking up 

event models that describe the main underlying state or action in question.  

Centering on the main state or action in question, the system dynamically 

determines a context structure for the answer, which includes slots for 

information causally-relevant to the answer being sought.  The most significant 

subset of the context structure will eventually be returned as the answer; this 

subset is called the answer structure. 

• The background fill phase: The system adds in as much of the information to 

the context structure as is available from internal resources that have relational 

querying capability (e.g. RDBMSs).  (This is especially valuable for reusing 

cached data.) 

• The query expansion phase: Typically, the context structure cannot be filled 

with internal information alone.  The system requests all remaining missing 

information from an external program.  (As mentioned in Section 6.1, we use 

the UTD IR program.) 

In the second stage, the system incorporates new information retrieved from the 

external program and uses it to infer information to fill the answer context structure. 

• The alignment phase: The frames and entities analyzed from the retrieved 

passages are once again aligned to produce entity-bound frames. 
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• The passage frame mapping phase: With the data now in a processable form, 

the system attempts to fill in as many remaining empty context structure slots 

as possible. 

• The simulation & analysis phase: Typically, some information will still not 

be available.  To derive the full answer, the system attempts to simulate the 

event with the information it has, leading to inferences about the missing 

information.  The exact method of inference in the simulation phase is based 

on the type of question asked, as discussed in Section 3.5. 

• The answer extraction phase: The system extracts the answer structure from 

the context structure and returns it to be presented to the user. 

The system is capable of using models with information pre-coded in them.  In 

those cases, we can collapse the two stages into one, bypassing the passage retrieval 

and processing steps. 

Example 

We can use our example about Iran signing the Chemical Weapons Convention (CWC) 

to detail the components of the Event Scenario QA Engine. 

This engine can handle questions about complex events and processes.  Were this 

Iran question asked of the AQUINAS system (Section 6.1), it would detect that the 

question is about an event (the signing of the CWC), and would forward it to our 

Event Scenario QA Engine after processing the question text into frames and domain 

entities. 

In this scenario, our event system aligns the frames and entities of the question, 

and uses the resulting entity-bound frames to key into our event ontology, selecting 

our Treaty model (described in Section 4.6.3) as being most relevant to the question.  
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After selecting the model, the system determines a context structure for the answer, 

focusing on the signing action in the Treaty model.  During the Background Fill phase, 

the system fills the context structure with as much contextual information as possible 

about Iran signing the CWC from internal resources, after which information still 

missing in the context structure is requested from an external system. 

That search returns passages like the one described in Section 6.2, discussing 

Iran’s ratification of the CWC.  Using this passage, the system add the ratification fact 

into the context structure and maps it onto the model.  Being a ‘justification’ question, 

the system then runs an analysis projecting the data forwards and backwards, as 

dictated in Section 3.5.  This shows that ratification of the CWC can only occur after 

signing the CWC.  That information is then packaged and returned for presentation to 

the questioner. 

6.4 Modules 

In this section, we detail each of the main modules of our Event Scenario QA Engine, 

as depicted in Figure 6-2.  Each subsection on a module is concluded by a discussion 

of our running Treaty example, explaining the progress of the system during the stage 

discussed. 

6.4.1 Pre-system: Question Analysis 

The correct input form of the question is critical to enabling the functionality of the 

event reasoning framework.  The system relies on external analysis of the question 

text to produce three pieces of information: 1) the frames in the question, 2) the 

domain entities in the question, and 3) the question type (see Figure 6-3).  Together 

they form a structured, partial semantic representation of the question text that will 
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• Question Text 
[text] 

• Question Frames 
[text-bound frames] 

• Question Entities 
[domain entity ontology tags] 

• Question Type 
[enumerated type] 

question analysis
{external} 

Input Output 

Figure 6-3: Question Analysis interface

allow the system to: select an appropriate event model, request relevant data, and 

properly process that data to answer the question.   

The frames analyzed in the questions are FrameNet frames (as discussed in 

Section 4.1.1).  The output of the analysis is, for each frame evoked, the frame name 

and its constituent frame elements (FEs) bound to text (“text-bound frames”).   

The domain entities extracted from the question include traditional named entities, 

as well as more general types, as described in Section 4.1.3.  These extracted entities 

are fine-grained categories, representing the most specific relevant type in the domain 

ontology.   

Finally, the system receives question type information.  Event questions our QA 

system handles come in one of four types: justification, prediction, hypothetical, and 

ability (defined in Section 3.2). 

(Note again: the methods used for parsing, tagging, and analysis of the question are 

outside the scope of this work.) 

117 



“Is Iran a signatory to 
the Chemical Weapons 
Convention?” 

• Question Text 

• Question Type 

o Justification 

• Question Entities 

o “Iran”  <Iran> 
o “Chemical Weapons Convention”  

<Chemical Weapons Convention> 

Frame: Sign_agreement 
   Signatory: “Iran” 
   Agreement: “to the Chemical Weapons Convention” 

• Question Frames 

Output Input 

Figure 6-4: Question Analysis example

Running example: Question Analysis 

Our question, “Is Iran a signatory to the Chemical Weapons Convention?”, when 

entered into the AQUINAS system, is analyzed in three ways (see Figure 6-4).  The 

UTD front-end (ideally):  

1) extracts the Sign_agreement frame, with the Signatory FE bound to “Iran”, and 

Agreement FE bound to “to the Chemical Weapons Convention”; 

2) tags the words “Iran” and “Chemical Weapons Convention” with <Iran> and 

<Chemical Weapons Convention>, respectively; and 

3) determines that the question is a justification question.  (Recall from Section 3.2, 

justification questions have an underlying premise (Iran is a signatory to the 

CWC) that require verification.) 

All three analysis results are passed as input to the Event Scenario QA Engine. 
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• Question Entities 
[domain entity ontology tags] 

Figure 6-5: Question Alignment interface 

Output 

align 

Input 

• Question Frames 
[text-bound frames] 

• Question Frames 
[entity-bound frames] 

6.4.2 Alignment (Question) 

In order to connect questions with relevant event models, and event models with 

relevant data, we require a consistent, precise structural form to describe the question, 

the data, and the event model.  As discussed in Section 4.1, we chose frames (with 

elements linked to domain entities) as the common form for capturing semantic 

information across our system. 

The Alignment module is responsible for taking raw text-bound frame annotations 

(frames with frame elements bound to text) and domain entity tags of a particular 

phrase, and combining them into entity-bound frames (frames with frame elements 

bound to domain entities), as shown in Figure 6-5. 

Text bindings have too many surface realizations to facilitate direct comparison of 

the underlying meaning, which is required in later modules.  The system, instead, 

replaces the textual frame element (FE) bindings in the frame parse with the “best” 

entity tagged to words enclosed in the binding text.  The most significant issue is how 

to determine what constitutes the “best” entity amongst multiple options.  We use one 

of two heuristics: 

• Selecting a proper subtype of the FrameNet FE’s Semantic Type 

• Selecting the semantic head of FE binding 
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Input Output 

Figure 6-6: Question Alignment example

• Question Frames (entity-bound) 

Frame: Sign_agreement 
• Question Entities 

(see Figure 6-4 output) 

• Question Frames 
(see Figure 6-4 output) 

   Signatory: <Iran> 
   Agreement: <Chemical Weapons Convention> 

FrameNet frames provide Semantic Types for some FEs.  As described in 

Section 4.1.1, Semantic Types provide guidance of acceptable roll fillers using 

ontological categories.  Unfortunately, not all FEs are tagged with these, and those that 

are use tags that provide limited guidance due to their high-level of generality.  In any 

case, the Semantic Types must map onto whichever domain entity ontology the 

system references; this enables the system to check that a selected entity is a proper 

subtype of the Semantic Type.  When choosing among multiple valid subtypes, the 

most specific entity in the ontology is selected. 

When the Semantic Type is unavailable, insufficient, or not mappable to the 

domain ontology, we use the entity capturing the semantic head of the FE binding text. 

Note that there are not always appropriate entities tagged within an FE binding 

text string.  In these cases, the system does not set an entity binding, and the 

information is not kept. 

Running example: Question Alignment 

In our example, the frame and entities input into the system would produce the 

aligned entity-bound frame seen in Figure 6-6.   There is only one entity enclosed in 

the text, “Iran”, bound to the Signatory role of the Sign_agreement frame.  For the 

phrase, “to the Chemical Weapons Convention”, there are in fact five entities we have 

in our domain entity ontology: <Chemical>, <Weapon>, <Convention>, 
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• Question Type 
[enumerated type] 

• Context Structure 
[feature structure] 

• Event Model Ontology 
[X-nets, indexed by  
entity-restricted frames] 

Output 

• Question Frames 
[entity-bound frames] 

Input 

model selection 
• Event Model 

[X-net (Instantiated)] 

Figure 6-7: Model Selection interface

<Chemical Weapon>, and <Chemical Weapons Convention>.  The most specific 

type in the semantic head is <Chemical Weapons Convention>, so it is selected. 

6.4.3 Model Selection 

The Model Selection module accomplishes a number of tasks for the system: 1) it 

selects a model that can simulate the event in question; 2) it instantiates the model, 

tuning it to the specific event instance in question; and 3) it calculates the context 

structure for determining the answer.  (See the module interface in Figure 6-7.)  In 

Chapter 4, we discussed a number of key methodologies to accomplish these tasks.  In 

this section, we put them together. 

Selecting a model from the Event Ontology 

To select a model requires access to an ontology of event models, in the form of a 

database of X-nets.  (The models described in Section 4.6.3 exemplify the models that 

would be available in such a database.)  The system queries this database using the 

frames of the question as search keys.  Each X-net is composed of Places (representing 

states and resources) and Transitions (representing actions), which in turn have a 

number of linguistic descriptions in entity-restricted frame form.  Based on the 
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semantic similarity between the entity-bound frames of the question and the entity-

restricted frames used to describe the states and actions of each model, the output of 

the search is the most relevant model for the question in X-net form (see 

Sections 4.1.5 for explanation of “entity-bound” vs. “entity-restricted” distinction; 

recall that, structurally, they are equivalent, which facilitates the matching algorithm). 

We implemented the model matching algorithm of Section 4.3.  The system treats 

each model in the database as a single set of entity-restricted frames, grouping all of 

the frames related to that model (those representing its Places and Transitions).  It 

then computes the set intersection between the frame set of each model in the 

database and the set of entity-bound frames in the question.  The model with the 

‘largest’ intersection is selected.  The underlying rationale is that relations in a 

question related to any part of a model is an indication of relevance of the model to 

the question, and the larger the connection the better. 

The method of scoring the intersection between a model set and the question set is 

to sum all of the frame match scores between the frames of the two sets.  We 

implement the frame matching algorithm described in Section 4.1.4, extending it (as 

mentioned) to use part-of and relationship-of relations in the domain entity ontology, 

just as it does with subtype-of relations. 

Instantiating an abstract model 

The model selected from the event model database may be “abstract” or “specific”.  An 

abstract model, as discussed in Section 4.1.5, is applicable to multiple scenarios and 

ideally uses linguistic descriptions that are general enough to encompass all of the 

scenarios covered by the X-net structure, but specific enough to only cover those 
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scenarios (e.g. the Treaty model, Section 4.6.3).  A specific model will cover only one 

scenario (e.g. the Lebanon War of 2006 model, Section 4.6.3). 

Abstract models must be instantiated to be used.  If an abstract model is chosen, 

the linguistic descriptions that made it applicable to multiple scenarios must be bound 

to the scenario asked about in the question.  As discussed in Section 4.1.5, abstract 

models use variables in their linguistic descriptions, restricting frame element 

bindings in those frame-based descriptions not directly to domain entity categories, 

but instead to variables set to domain entities categories.  By using this indirection, a 

change to entity restrictions used in the linguistic description of one action or state can 

be propagated throughout the model.  The selection of which variables are changed is 

based on the matches between question frames and model frames.  We use the 

algorithm of Section 4.3 to update the model, restricting the model to the scenario 

referenced in the question’s entity-bindings.  

The model output by the module will a standard X-net, but the frame descriptions 

will have changed from the X-nets originally selected from the ontology.  The original 

form is appropriate for selection of the model; the latter form is appropriate for 

selecting relevant data to analyze to find an answer to the question.  For an abstract 

model using variables to accomplish this, once the model is instantiated, the variable 

values will not change.  (As such, for the rest of the chapter, we will ignore this 

redirection of restrictions through variables and use reified specialized entity 

restrictions.) 

Calculating the Context Structure and Answer Structure 

The Model Selection module also provides a Context Structure for the answer.  Using 

the question frames to pinpoint the areas of interest within the selected model, the 
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Input parameters: AS_depth, CS_depth
(assert CS_depth > AS_depth) 

Output variables: AS_set, CS_set 
Foreach model state/action matching a question frame 

Add state/action and each ancestor* state/action to 
• AS_set, up to AS_depth state/action generations 
• CS_set, up to CS_depth state/action generations 

For non-prediction questions, add each descendant* 
state/action to 

• AS_set, up to AS_depth state/action generations 
• CS_set, up to CS_depth state/action generations 

*ancestor states/actions are those that causally precede this action/state 
*descendant states/actions are those that causally succeed this action/state 

Figure 6-8: Context Structure algorithm

module uses simulation trajectories to determine which information, if available, 

would be relevant for inferring an answer.  The format of the context structure is a 

feature structure with slots for each piece of information sought.  This information is 

stored in frame-encoded form and tagged with its source. 

The context structure is directly linked to and is not independent of the X-net 

model.  Each slot directly corresponds to a Place or Transition in the model.  

Information found to fill a slot directly translates to tokens or restrictions on the 

related Place or Transition in the model. 

In addition, the system marks a subset of the slots of the Context Structure as 

belonging to the Answer Structure.  While event reasoning for the system requires 

substantial contextual information to infer information targeted in a question (the 

Context Structure), we also believe the questioner will appreciate a subset of this 

context accompanying any direct answer (the Answer Structure).  (See Section 4.5 for 

further discussion).  The Answer Structure will be extracted during the Answer 

Extraction phase, and returned from the system. 

To compute the Context Structure (CS) and Answer Structure (AS), we implement 

a slight variant of the query expansion algorithm described in Section 4.4; this 

algorithm, shown below, creates slots for each X-net object traversed, rather than 

124 



Input Output 

Figure 6-9: Model Selection example

• Event Model (Instantiated) 

o Treaty model 
restricted to: 
<Iran>,<Chemical Weapons Convention> 

• Context Structure (w/Answer Structure †) 

o ongoing(negotiation) 
o accept(proposal) 
o complete(negotiation) 
o accept(Iran, CWC) † 
o sign_agreement(Iran, CWC) † 
o signed(Iran, CWC) † 
o ratify(Iran, CWC) 
o ratified_treaty(Iran, CWC) 

o Justification 

• Event Model Ontology 
(see Section 4.6.3 for e.g.) 

Includes: 
o Treaty model 

restricted to: 
<Country>, 
<Treaty> 

• Question Type 
(from Figure 6-4 output) 

• Question Frames 
(see Figure 6-6 output) 

compiling a list of frames to be included in an expanded query (our system 

accomplishes this in the Query Expansion phase). 

Running example: Model Selection 

In our continuing example, shown in Figure 6-9, the Event Ontology includes the 

Treaty model (described in detail in Section 4.6.3).  The original Treaty model is 

relevant to situations where the principle actor of interest was any country and the 

theme was any treaty.  This is exemplified in the frame hooks used to linguistically 

describe the states and actions represented by the Places and Transitions in the model.  

The “Sign Agreement” Place, for example, has the following frame hook: 

Frame: Sign_agreement
   Signatory: <Country> 
   Agreement: <Treaty> 
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The entity restrictions of the frame require that any question about agreement signing 

will be about a country signing a treaty in order to match with the model.  This is 

specific enough to exclude, for example, home buyers signing mortgage papers. 

In the question, “Is Iran a signatory to the Chemical Weapons Convention?”, the 

frame Sign_agreement matches the Treaty model hook of the “Sign Agreement” 

Transition mentioned above.  In our Weapons Production domain ontology 

(Section 4.1.3), as well as WordNet, we find that the Signatory, <Iran>, is a subtype of 

<Asian Country>, which is a subtype of <Country>.  The Agreement, <Chemical 

Weapons Convention>, is a subtype of <Convention>, which is a subtype of 

<Treaty>.  Thus, for each FE, there is an inexact, but strong match.  We use frame 

match scoring parameters (penaltyspec=0.1; see Section 4.1.4) that only penalize greater 

specificity a small amount, leading to an overall frame match score of close to 1 (1 = 

exact match).  This being the only frame extracted from the question, the model match 

score is the same score.  Finding no other models which match this question frame, 

the Treaty model is selected as the most relevant model for the question. 

The Treaty model begins as an abstract model.  In our example, we match the 

question’s Sign_agreement frames of the question and model to find the relevance of 

the model.  After selection, though, the model still only describes how an unnamed 

country negotiates and completes an unnamed treaty.  The restrictions on the “Sign 

Agreement” Transition can easily be made specific, changing the restriction on the 

Signatory from <Country> to <Iran> and the restriction on the Agreement from 

<Treaty> to <Chemical Weapons Convention>, as specified in the question’s frame.  

However, we would like these restrictions to propagate as appropriate to the frame 

hooks of other Places and Transitions (i.e. the linguistic descriptions of other states 

and actions depicted in the model).  Not only is the signing about Iran and the CWC, 
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but so too is the negotiation, ratification, enforcement, etc.  To do this, the model 

designer can use entity variables to link the FE restrictions of multiple frames in a 

model.  The Treaty model, instead of having <Country> as the restriction on the 

Signatory of the Sign_agreement frame, will have a variable, var_country, as the 

restriction; the initial setting of var_country will be <Country>.  Similarly, the 

restriction on the Ratifier of the Ratification frame hook of the “Ratification” Transition 

will not be <Country>, but will be var_country.  Then, instead of changing the 

restriction on the Signatory from <Country> to <Iran>, the model instantiation 

operation will change the value of the variable attached to Sigantory, var_country, from 

<Country> to <Iran>, thereby in effect changing the restriction on both 

Sign_agreement and Ratification (and others).  Note that specialization of a restriction 

only goes in one direction, taking a general restriction and making it more specific; 

restrictions in the model that are already more specific than those in the question 

frames are left as is. 

Finally, the system computes the Context Structure and Answer Structure of the 

model for this question, with settings: CS_depth = 3 and AS_depth = 1.  With the 

Sign_agreement frame match, the Context Structure algorithm centers its search on the 

Sign Agreement Transition of the model.  The results are a Context Structure of eight 

unfilled slots, shown in Figure 6-9, with the three slots shown with (†) a part of the 

Answer Structure. 

6.4.4 Background Fill 

During the Background Fill phase, the system searches internal resources for facts 

sought in the Context Structure.  This may include cached results of prior event 

analyses, encyclopedic information, expert-inserted background information, 
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• Background DB 
[data, encoded and indexed 
by entity-bound frames] 

• Context Structure 
[feature structure (updated)] 

• Context Structure 
[feature structure] 

Figure 6-10: Background Fill interface

Output 

• Event Model 
[X-net] 

Input 

background fill 
• Event Model 

[X-net (updated)] 

depictions of the belief state of the user, etc.  The information is added to the event 

model in the form of tokens (creating a partial marking), and added to the Context 

Structure in the form of frame-encoded information with source tags. 

Database 

In our system, internal background information is stored in entity-bound frame form 

in a basic relational database.  This information is indexed by frame name.  The 

system searches the database using entity-restricted frames.  For each frame instance 

returned, the FE restrictions of the query are checked against the instance.  For each 

frame match score (see Section 4.1.4) above threshold (default condition is non-zero), 

the frame in the database is returned. 

Retrieval 

The Background Fill module collects all of the entity-restricted frame hooks of the 

states and actions in the Context Structure.  The system then searches the database for 

information matching any frame hook.  Following the template laid out in Section 4.4, 

that information is added to the Context Structure and X-net. 
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Input Output 

Figure 6-11: Background Fill example

• Event Model 

o Treaty model (Iran, CWC) 
tokens in: 
ongoing(negotiation): 1 

• Context Structure 

o ongoing(negotiation) 
o Frame: Negotiation  [Source: BF] 

Interlocutors: <Country> 
Topic: <Chemical Weapons Convention> 

o accept(proposal) 
o complete(negotiation) 
o accept(Iran, CWC) 
o sign_agreement(Iran, CWC) 
o signed(Iran, CWC) 
o ratify(Iran, CWC) 
o ratified_treaty(Iran, CWC) 

• Event Model 
(see Figure 6-9 output) 

• Context Structure 
(see Figure 6-9 output) 

• Background DB 

Includes DB record: 
o Negotiation frame 

bound to: 
<Country>, 
< Chemical 
Weapons 
Convention > 

Running example: Background Fill 

In our example, the fact that ‘165 countries negotiated the Chemical Weapons 

Convention’ is in the internal database.  The ongoing(negotiation) Place in the Treaty 

model represents whether a treaty was negotiated or not, in this case the Chemical 

Weapons Convention.  A token will be added to that Place because of the information 

available in the relational database.  The context structure will keep track of that data 

and its source (BF = Background Fill). 
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• Context Structure 
[feature structure] 

Input 

query expansion 

Output 

• Information query 
[set: entity-restricted frames] 

• Event Model 
[X-net] 

Figure 6-12: Query Expansion interface

6.4.5 Query Expansion system (Output of Stage I) 

The input to the Query Expansion module is a partially filled, instantiated event 

model.  Some information may have been added during the Background Fill phase, 

but most likely there is significant information sought in the context structure still 

missing.  The Query Expansion phase extracts the linguistic descriptions from the 

Places and Transitions linked to the empty slots of the context structure (see Figure 

6-12).  These entity-restricted frames are output as a query for an external program 

that then searches for resources that match the information requests.  This query 

represents an expansion of the original information directly sought in the question. 
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... 

Frame: Ratification 
   Ratifier: <Iran> 
   Proposal: <Chemical Weapons Convention> 

• Context Structure 
(see Figure 6-11 output) 

• Event Model 
(see Figure 6-11 output) Frame: Sign_agreement 

   Signatory: <Iran> 
   Agreement: <Chemical Weapons Convention> 

• Information query 

Output Input 

Figure 6-13: Query Expansion example

• Passage Text 
[text] 

• Passage Frames 
[text-bound frames] 

• Passage Entities 
[domain entity ontology tags] 

passage analysis 
{external} 

Input Output 

Figure 6-14: Passage Analysis interface

Running example: Query Expansion 

In our example, there are seven slots yet to be filled in the context structure.  Each 

slot corresponds to a Place or Transition in the Treaty X-net model, each of which, in 

turn, has a set of linguistic descriptions in entity-restricted frame form.  These frames 

are gathered and output by the system.  As shown in Figure 6-13, they include frame 

descriptions of the sign_agreement(Iran, CWC) Transition, directly referenced in the 

original question, and the ratified_treaty(Iran, CWC) Place, which is indirectly related. 

6.4.6 External: Passage Analysis 

The main source of data used to infer an answer to the question asked comes in the 

passages retrieved.  Similar to the interface to Stage I, the input to the system is text, 

analyzed for frames and entities (see Figure 6-14).  Rather than just the one sentence 
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Input Output 

“Being one of the few 
countries in the world 
that has experienced 
chemical warfare on 
the battlefield, Iran 
ratified the Chemical 
Weapons Convention 
in 1997.” 

• Passage Text 

• Passage Entities 

o “Iran”  <Iran> 
o “Chemical Weapons Convention”  

<Chemical Weapons Convention> 
o “countries”  <Country> 
o “chemical warfare”  <Chemical War> ... 

Frame: Ratification 
   Ratifier: “Iran” 
   Proposal: “the Chemical Weapons Convention” 
   Time: “in 1997” 
   Reason: “Being one of the few countries in the 
   world that has experienced chemical 
   warfare on the battlefield” 

• Passage Frames 

Figure 6-15: Passage Analysis example

entering Stage I (the question), the system receives multiple, potentially multi-

sentence passages in Stage II. 

Running example: Passage Analysis 

Continuing our treaty example, one passage retrieved is: “Being one of the few 

countries in the world that has experienced chemical warfare on the battlefield, Iran 

ratified the Chemical Weapons Convention in 1997.”  Frame parsed, this will include 

the Ratification frame, shown in Figure 6-15.  Tagging the entities of the passage will 

produce: <Country>, <Chemical War>, <Iran>, <Chemical Weapons 

Convention>, and more. 
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• Passage Entities 
[domain entity ontology tags] 

Output 

• Passage Frames 
[text-bound frames] 

Input 

align 
• Passage Frames 

[entity-bound frames] 

Figure 6-16: Passage Alignment interface 

• Passage Entities 
(see Figure 6-15 output) 

• Passage Frames 
(see Figure 6-15 output) 

Frame: Ratification 
   Ratifier: <Iran> 
   Proposal: <Chemical Weapons Convention> 
   Time: <Date> 
   Reason: <Chemical War> 

• Passage Frames (entity-bound) 

Output Input 

Figure 6-17: Passage Alignment example

6.4.7 Alignment (Passage) 

As in Stage I, the frames and entities are aligned before being further analyzed, in this 

case, for facts relevant to the question (see Figure 6-16).  See Section 6.4.2 for a 

description of the alignment method used. 

Running example: Passage Alignment 

In our example, the system aligns the text-bound Ratification frame and the entities of 

the passage to create an entity-bound frame, as seen in Figure 6-17. 
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• Passage Frames 
[entity-bound frames] 

• Context Structure 
[feature structure (updated)] 

• Context Structure 
[feature structure] 

Output 

• Event Model 
[X-net] 

Input 

passage 
 frame mapping 

• Event Model 
[X-net (updated)] 

Figure 6-18: Passage Frame Mapping interface 

6.4.8 Passage Frame Mapping 

In the Passage Frame Mapping module, new data from the passages retrieved is added 

to the model and context structure (see Figure 6-18).  The model and context structure 

is routed from the Background Fill module, and the new data is passed from the 

Alignment module, which provides the data in entity-bound frame form. 

The entity-bound frames are matched to individual Places and Transitions in the 

X-net.  The system inserts evidence into those components using the same scheme 

(depicted in Section 4.4.2) as in the Background Fill phase. 
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• Passage Frames 
(see Figure 6-17 output) 

• Context Structure 
(see Figure 6-11 output) 

o ongoing(negotiation) 
o Frame: Negotiation  [Source: BF] 

Interlocutors: <Country> 
Topic: <Chemical Weapons Convention> 

o accept(proposal) 
o complete(negotiation) 
o accept(Iran, CWC) 
o sign_agreement(Iran, CWC) 
o signed(Iran, CWC) 
o ratify(Iran, CWC) 
o ratified_treaty(Iran, CWC) 

o Frame: Ratification  [Source: Passage #123] 
Ratifier: <Iran> 
Proposal: <Chemical Weapons Convention>
... 

• Context Structure 

Input Output 

• Event Model 
(see Figure 6-11 output) 

• Event Model 

o Treaty model (Iran, CWC) 
tokens in: 
ongoing(negotiation): 1 
ratified_treaty(Iran, CWC): 1 

Figure 6-19: Passage Frame Mapping example 

Running example: Passage Frame Mapping 

In our example, the Ratification frame matches with the ratified_treaty slot in the 

context structure (see Figure 6-19).  The system marks the source of the data (e.g. 

“Passage #123”).  The data translates into a token in the ratified_treaty Place in the 

model. 

6.4.9 Simulation and Analysis 

The Simulation & Analysis module processes the event model, based on the question 

type, with the marking (the group of tokens) derived from background and passage 

information.  The result is used to infer as much of the missing information in the 

Context Structure as possible, tagging the inferences with the source of the data used 

to make the inference.  The Simulation & Analysis module therefore uses the event 
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• Event Model 
[X-net] 

• Context Structure 
[feature structure] 

• Context Structure 
[feature structure (updated)] 

• Question Type 
[enumerated type] 

Output 

• Event Model 
[X-net] 

Input 

simulation & 
analysis 

Figure 6-20: Simulation and Analysis interface 

model, context structure, and question type, to make changes to the context structure 

(see Figure 6-20). 

We implemented the analysis methods for four question type: Justification, 

Temporal Projection, Ability, and Hypothetical, as described in Section 3.5.  The system 

has two main steps in the analyses: depending on the question type, the system will 

make necessary changes to the model to fit assumptions in the question; once 

complete, it will use targeted reachability analysis to infer possible causal chains from 

the data in the Context Structure to the data missing from the Context Structure.  A 

full review of the reachability algorithm we implemented can be found in 

Section 3.4.3. 

Hypotheticals 

Hypothetical questions are treated slightly differently.  Recall from Section 3.5, 

Hypothetical event questions hypothesize an altered state about which a more basic 

question is asked.  The questions input into the system thus have two components: 

the hypothesis and the underlying question.  The underlying questions we handle are 

of the other three question types supported in this system: Justification, Projection, and 

Ability.  The hypotheses we handle are simple additions of information: that some 
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condition holds or some resource is available (e.g. the addition of a car for the 

question: “if Alice had a car, could she get to work?”). 

Hypotheticals frequently are asked to understand the difference between the 

normal state (without the hypothesized change) and the altered state (with the 

hypothesized change).  As such, the system runs analyses twice for Hypotheticals: once 

on the base case (normal state) and once for the hypothesized state.  For the 

hypothesized state, the information from the hypothesis of the question is first added 

to the model, using the same techniques as used for frames extracted from passages in 

the Passage Frame Mapping module.  The result of the analyses is two copies of the 

Context Structure: one for the base case and one for the hypothesized case. 
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Input Output 

Figure 6-21: Simulation and Analysis example 

• Event Model 

o Treaty model (Iran, CWC) 
tokens in: 
ongoing(negotiation): 1 
ratified_treaty(Iran, CWC): 1 

• Context Structure 

o ongoing(negotiation) 
o Frame: Negotiation  [Source: BF] 

Interlocutors: <Country> 

• Event Model 
(see Figure 6-19 output) 

• Context Structure 
(see Figure 6-19 output) 

• Question Type 
(from Figure 6-4 output) 

o Justification 
Topic: <Chemical Weapons Convention> 

o accept(proposal) 
o [Source: Inferred - @ratified_treaty] 

o complete(negotiation) 
o [Source: Inferred - @ratified_treaty] 

o accept(Iran, CWC) 
o [Source: Inferred - @ratified_treaty] 

o sign_agreement(Iran, CWC) 
o [Source: Inferred - @ratified_treaty] 

o signed(Iran, CWC) 
o [Source: Inferred - @ratified_treaty] 

o ratify(Iran, CWC) 
o [Source: Inferred - @ratified_treaty] 

o ratified_treaty(Iran, CWC) 
o Frame: Ratification  [Source: Passage #123] 

Ratifier: <Iran> 
Proposal: <Chemical Weapons Convention>
... 

Running example: Simulation and Analysis 

In our example, analysis of the model showed that if the treaty was ratified by Iran, 

each of the states and actions that causally proceeded it must have also occurred (see 

Figure 6-21).  The missing slots in the context structure are marked accordingly, 

referencing the ratification data as justification for the inference. 
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6.4.10 Answer Extraction (Output of system) 

The principle output of the entire system is a filled Answer Structure (see Figure 6-22).  

The Answer Structure represents the full set of relations deemed relevant to the 

question’s answer.  As mentioned earlier, the Answer Structure is a subset of the 

Context Structure that the system has been filling throughout the input processing 

phases described earlier.  By the end of simulation, as much of the Answer Structure 

is filled as possible.  A portion is filled with background information (“Internal”), a 

portion is filled with information retrieved from passages (“External”), and a further 

portion is inferred through event model analysis (“Inferred”).  Some information also 

may not be found (“Not Found”), which may signify that the relational fact is not true, 

or the event it represents did not happen; alternatively, it may mean information 

about the event was unavailable for retrieval.  The answer structure slots are each 

tagged with one of the four Source tags, to help the user with further analysis. 

Hypotheticals 

The Answer Structure is recomputed for Hypothetical questions.  Instead of the 

procedure used in the Model Selection phase, the Answer Structure is determined by 

comparing the Context Structures output from the Simulation & Analysis phase: one 

from the base case and one from the hypothesized case.  Any differences between the 

• Answer Structure 
[feature structure] 
Source: {Internal | External |  

Inferred | Not Found } 

answer extraction

Input  

• Event Model 
[X-net] 

• Context Structure 
[feature structure] 

Figure 6-22: Answer Extraction interface 
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two Context Structures is deemed pertinent to the answer.  The answer is then 

extracted as above. 

Running example: Answer Extraction 

In our example, the answer structure spanned three slots in the context structure (see 

Figure 6-9): accept(Iran, CWC), sign_agreement(Iran, CWC), and signed(Iran, CWC).  No 

background or passage information was found to fill in any of these slots.  Instead, 

each was inferred through analysis of the data retrieved for the ratified_treaty(Iran, 

CWC) slot (see Figure 6-23).  In addition to returning the information on the three slots 

of the answer structure, the source information (on ratification) is also returned. 

To articulate the information about each slot in the answer structure, the system 

can provide a linguistic description of the slot in frame form.  For example, 

sign_agreement(Iran, CWC) can be translated to: 

 

Frame: Sign_agreement
   Signatory: <Iran> 
   Agreement: <Chemical Weapons Convention> 

Input  
• Answer Structure • Event Model 

(see Figure 6-19 output) o accept(Iran, CWC) 
o [Source: Inferred - @ratified_treaty] 

o sign_agreement(Iran, CWC) • Context Structure 
(see Figure 6-19 output) o [Source: Inferred - @ratified_treaty] 

o signed(Iran, CWC) 
o [Source: Inferred - @ratified_treaty] 

o ratified_treaty(Iran, CWC) 
o Frame: Ratification  [Source: Passage #123] 

Ratifier: <Iran> 
Proposal: <Chemical Weapons Convention> 
... 

Figure 6-23: Answer Extraction example
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and accept(Iran, CWC) can be described using the frame: 

Frame: Respond_to_proposal
   Speaker: <Iran> 
   Proposal: <Chemical Weapons Convention> 

 

6.5 Back-off strategies 

The system is dependent on a number of external resources, each with varying 

coverage.  To handle cases where critical resources are not available, we developed a 

few back-off strategies 

• Event Models: If no model matches the question asked, the system backs off to 

searching for direct frame matches between the question frames and the 

passage frames.  (Fliedner offers a similar solution: Fliedner 2004; Fliedner 

2005)  The set of frames searched for can be increased by using FrameNet’s 

inherent frame-to-frame relations, though precision will decrease.  This latter 

technique was not implemented in our system 

• Frames: FrameNet is an ongoing project covering a significant portion of the 

frames in the English language, but far from all.  While not as rich a semantic 

source, event models can be grounded in language through PropBank 

predicate-argument structure (Palmer, Gildea et al. 2005), as was done in 

Chapter 5, and even just a bag of words optionally linked to WordNet.  The 

latter significantly degrades the precision of the system. 

6.6 Implementation details 

We make note of the following details of our implementation: 

• We coded our system using the Sun Java 6 SDK. 
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• For the Background Fill module, we also used the Java DB (Apache Derby) 

database engine to store known facts. 

• For our simulation analysis and for creating models, we modified Platform 

Independent Petri-net Editor 2 (PIPE2), version 2.4 (Akharware 2005), a Petri 

Net editing package. The modifications provide the ability to: simulate 

simultaneous transition firings, apply capacity restrictions to Places, create test 

and inhibitory arcs, and run coverability analysis.  In addition, our version of 

the editor supports linking frames to Places and Transitions, with the ability to 

store the frame descriptions in a custom XML format along with the base X-net 

representation (in PNML format). 

• For references to frames, we used FrameNet 1.3 (Ruppenhofer, Ellsworth et al. 

2006). 

6.7 Results 

In Chapter 6, we have described an intricate QA system capable of utilizing structured 

linguistic input to catalyze event reasoning to solve difficult event-related questions.  

In Section 6.7.1, we demonstrate how the system handles Prediction, Ability, and 

Hypothetical questions.  In Section 6.7.2, we describe the system’s performance under 

a number of public evaluations. 

6.7.1 Examples of answering target question types 

Throughout the chapter, we have walked through an example Justification question, 

regarding Iran’s signing of the Chemical Weapons Convention.  Next, we will use two 

additional examples to demonstrate the system’s handling of Prediction, Ability, and 

Hypothetical questions, using our model of the Lebanon War of 2006. 
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Hypothetical Prediction question example 

In our third major evaluation of our system (described below: “Demo 3”), it answered 

a number of complex questions related to the Lebanon War of 2006.  A simple version 

of one of the questions is: “If Israel wished to conquer Lebanon, would Israel destroy 

Lebanon’s airports?”  This question is a Hypothetical with an underlying Temporal 

Projection/Prediction query, explicitly hypothesizing Israel’s motivation to conquer 

Lebanon, and then asking whether Lebanon’s airports would be destroyed.  Our 

system handles this question as follows: 

The idealized front-end system analyzes the question for its frames, entities, and 

question type (see Figure 6-24).  The frames of the question (after alignment) key into 

the model database and select the Lebanon War model.  The Lebanon War Model, as 

mentioned in Section 4.6.3, is designed to map the major chronology of the war, as 

Input  
• Question Text • Question Frames 

Frame: ! Desiring “If Israel wished to 
conquer Lebanon, 
would Israel destroy 
Lebanon’s airports?  

   Experiencer: “Israel” 
   Event: F-Conquering 
Frame: Conquering 
   Conquerer: “Israel” 
   Theme: “Lebanon” 
Frame: Destroying 
   Destroyer: “Israel” 
   Undergoer: “Lebanon ’s airports” 

• Question Entities 

o “Israel”  <Israel> 
o “Lebanon” <Lebanon> 
o “airports”  <Airport> 

• Question Type 

o Hypothetical; Underlying type: Prediction 

Figure 6-24: Hypothetical Prediction example – Part 1 
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well as contain a number of alternative scenarios.  (This question asks about one of 

the alternative scenarios.)  It is a specific model, requiring no instantiation (6.4.3). 

To answer a hypothetical (recall from Section 6.4.9), our system compares the 

results of analyzing the underlying question under the hypothetical and baseline 

scenarios; specifically, the system constructs the Answer Structure by calculating the 

delta between the slots filled in Context Structure between the two scenarios. 

An invasion with the intent to occupy is a much larger endeavor than Israel 

actually took on during the Lebanon War.  As such, the outcomes inferred by 

assuming an intent to occupy will not occur in the baseline case.  In the hypothesized 

case, though, the Lebanese airports would likely be destroyed, if the Israeli Air Force 

is battle-ready.  This is depicted in the relevant section of the model, below: 

 

The following steps transpire in the system to achieve this conclusion: 

1. Question Analysis & Alignment: the question is entered as frames and entities 

(Figure 6-24), and they are aligned 
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2. Model Selection: 

2.1. the Destroying frame keys into the model database, matching the “Lebanese 

airports destroyed” Place in the Lebanon War model 

2.2. the Context Structure is created, with a depth of 2 (Section 6.4.3) 

3. Background Fill: no information is available 

4. Query Expansion: the remaining Context Structure slots regarding “Israel launch 

generalized air strike of Lebanon”, “Israeli goal: take over Lebanon”, and “Israel 

Air Force battle-ready” are requested 

5. Passage Analysis, Alignment, and Mapping: With the passage shown in Figure 6-25, 

a token is added to the “Israel Air Force battle-ready” Place. 

6. Simulation & Analysis: The question type, Hypothetical, forks off two processes: 

one for the base case, and one for the hypothetical case 

6.1. The base case runs as a normal prediction question, using Forward 

Reachability analysis to ascertain that the Lebanese airports will not be 

destroyed. 

6.2. The hypothetical case adds in the influence of the hypothetical.  The frames of 

the antecedent of the question match with the “Israeli goal: take over Lebanon” 

Place.  Because of this is information, the Place received a token.  Reachability 

Input  
• Passage Text • Passage Frames 

“The Israeli air force is 
ready for any airstrike, 
anywhere.” 

Frame: Activity_ready_state  
   Protagonist: “Israeli air force” 
   Activity: “any airstrike, anywhere ” 

• Passage Entities 

o “Israeli air force”  <Israel Air Force> 
o “any airstrike, anywhere” <Airstrike> 

Figure 6-25: Hypothetical Prediction example – Part 2 
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analysis is run again, this time reaching the conclusion that Lebanese airports 

will be destroyed. 

7. Answer Extraction: The different resulting Context Structures from the two X-net 

analyses are contrasted; the Lebanese airport destruction is computed to be 

different, and that fact is returned for presentation to the user, along with a 

reference to the passage used in the inference. 

Ability question example 

Ability questions are handled quite similarly.  As stated in Section 3.5, Ability 

questions are implicit Hypotheticals: they use a hypothesis of the existence of an 

actor’s intent, in order to ascertain whether the actor can reach a target state.  For the 

question, “Can Israel blockade Lebanese ports?”, we can assume any necessary 

precondition towards the state in question that involves the motivation of Israel. 

The system approaches this question after the initial question analysis by the 

front-end system (shown in Figure 6-26).  Note that the question type analysis 

identifies both the question type (Ability), as well as the principle actor whose ability is 

in question (“Israel”).  This allows the system to find objects in the model eventually 

Input  
• Question Text • Question Frames 

Frame: Hindering “Can Israel blockade 
Lebanese ports?      Hindrance: “Israel” 

   Action: “Lebanon ’s airports” 

• Question Entities 

o “Israel”  <Israel> 
o “Lebanese ports” <Lebanon> <Ports> 

• Question Type 

o Ability (“Israel”) 

Figure 6-26: Ability example
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selected that are marked as representing the motivation of that actor.  For each such 

Place, a token is added, and outgoing arcs are made to be enable arcs (see 

Sections 3.4.1 and 3.5 for review). 

In this situation, once again, the Lebanon War model is selected based on the 

question.  The “Israeli goal: take over Lebanon”, tagged by the designer as motivation 

(“Israeli goal”), is assumed to be true and a token is added to its Place.  With the 

addition of the knowledge that the “Israel Navy is battle-ready”, a simple inference 

leads the system to conclude that Israel could blockade the Lebanese ports. 

This transpires as follows: 

1. Question Analysis & Alignment: the question is entered as frames and entities 

(Figure 6-26), and they are aligned 

2. Model Selection: 

2.1. the Hindering frame keys into the model database, matching the “Lebanese 

ports blocked” Place in the Lebanon War model 

2.2. the Context Structure is created, with a depth of 2 (Section 6.4.3) 

3. Background Fill: the fact that “Israel Navy is battle-ready” is retrieved from 

internal resources. 

4. Query Expansion: the remaining Context Structure slots regarding “Israel launch 

maritime blockade of Lebanon” and “Lebanese ports blocked” are requested 

5. Passage Analysis, Alignment, and Mapping: no passages are found 

6. Simulation & Analysis: The question type, Ability uses basic Forward and 

Backward Reachability analysis to ascertain that the Lebanese ports could be 

blockaded. 

7. Answer Extraction: The resulting Context Structure from the X-net analysis 

provides that the Lebanese port could be blockaded based on the assumed 
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motivation and the background fact about the Israeli Navy, and that fact is 

returned for presentation to the user. 

6.7.2 Evaluations and Demonstrations 

We conducted our Question Answering work in partnership with our teammates at 

the University of Texas, Dallas, Stanford University, and the Language Computer 

Corporation, as a part of the AQUINAS project (Answering Questions Using INference 

and Advanced Semantics).  The AQUINAS project was funded under the ARDA 

AQUAINT program (Advanced QUestion Answering for INTelligence).  As a part of 

this program, we took part in a number of evaluations of our system.  Many of the 

preceding examples used in this dissertation were pulled from these evaluations. 

At the outset, it must be made clear that these evaluations were pilot studies and 

made assumptions that are detailed further in individual subsections.  Taken together, 

they point to the potential of our techniques to significantly improve the state of the 

art in semantic question answering. 

Demo 1 – Entailment Evaluation 

After our initial Answer Selection success (discussed in Section 5.5), we tested the 

preliminary version of our full QA system on an entailment task evaluation.  Ten 

research teams from universities and industry participated, split into two groups of 

five.  Each team supplied, ahead of time, their own data set of 30 to 40 questions to be 

tested by all the teams in their group. 

In the entailment task, each question is paired with a short passage, generally not 

longer than three sentences.  The objective for each question is to determine if the 

passage entails an answer to the question, and if so, what that answer is.  Most 
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questions required only “yes”, “no”, or “unknown” (not knowable with available 

information) answers, though a handful (like our example in Section 4.1.2) required a 

specific named entity.  A typical example from the evaluation is: 

Passage: In the early 1990s, Iran reportedly acquires 120 
tons of castor beans, used in the production of the toxin ricin. 

Question: Is there evidence that Iran has attempted to 
produce ricin?

Answer: “Yes”
(Because): Acquisition of a component of something is a 
necessary step in producing something. 

 

(providing the reasoning was not required). 

We tested our system against the data sets of our evaluation group: two teams 

from the Language Computer Corporation (LCC), Stanford University, and the 

University of Texas, Dallas (UTD), as well as our own data set, for a total of 131 

questions.  Across the five teams (and five data sets), we performed the best on four of 

the five sets.  This table shows the percent (%) correct answers achieved by each team 

on each dataset: 

 ICSI Data LCC 1 Data LCC 2 Data UTD Data Stanford Data
ICSI 73.28 83.96 70.99 67.17 51.14
LCC 1 35.87 76.33 42.74 35.11 54.19
LCC 2 51.14 56.48 51.90 49.61 45.03
UTD 58.77 59.54 59.54 59.54 57.25
Stanford 51.90 69.46 56.48 50.38 63.35

 

Our results, though, come with a number of caveats.  We assumed gold standard 

text analysis, frame parsing, entity tagging, question analysis, and model invocation.  

We also had a number of relevant event models already available for these particular 

data sets.  For any remaining event-related questions that we did not have models for, 

we created small, course-grain models that were sufficient for the analysis required.  
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For any other question, we backed-off to finding frame matches between the passage 

and question, and used positive matches as indication of a positive entailment.  Due to 

the limited size of the total data set and the nature of the evaluation, it was possible to 

pre-construct much of the data required for analysis with our system. 

Demo 2 – Question Answering 

To better test our system’s ability to use complex event structures, we participated in 

another public AQUAINT-related demonstration.  Together with our partner teams, 

we tasked ourselves with trying to answer a series of questions about the complex 

scenario of: North Korea’s development of biological weapons. 

We designed our intricate Biological Weapons Production model, described in 

Section 4.6.3, to assist us in answering 15 selected questions, including these two 

examples: 

Is there evidence North Korea is building a BW research 
laboratory? 

What are the effects of North Korea acquiring a BW delivery 
system? 

 

As compared with Demo 1, here we did not have access to gold-standard frame 

annotations of the data required to answer these questions.  Instead, we received data 

at run-time from the UTD front-end system (as described in Section 6.1).  At the time 

of the demo, though, the front-end system was not yet capable of accepting our 

expanded query of entity-restricted frames at the end of our system’s first stage (recall 

Figure 6-2).  Instead, it was only able to provide data passages initially retrieved based 

on the text of the question.  Just as in the Answer Selection evaluation (Section 5.5), 

the vast majority of the passages were not applicable to the event question at hand, 
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and the frames of the passages would not match any of the slots in the Context 

Structure we computed for the questions.  The limited relevant data we were able to 

extract from the passages provided by the front-end were typically insufficient to infer 

substantial new facts. 

For example, the question, “Is North Korea capable of producing weaponized 

anthrax?”, focuses the attention of the system on the action of ‘production of anthrax’ 

in the model.  This action is only enabled at the culmination of many research and 

development steps, each with multiple dependencies.  Receiving information on North 

Korea’s development of a biology research lab, while being a relevant detail, is 

causally distant from the ‘production’ action.  Without information on whether North 

Korea has acquired a strain of the anthrax virus, the model cannot infer further 

progress by the country towards full production of the weaponized form. 

Two positive outcomes were achieved in this demonstration.  Firstly, when, for 

any of our questions, we bypassed the passage input and directly added information 

requested by the system (empty slots in the Context Structure), we were able to infer 

significant data in the Answer Structure.  Secondly, the passages retrieved by the 

front-end system that did match with our context structures, were relevant to the 

question asked. 

Demo 3 – Question Answering 

So as to show the ability of the system to answer complex questions about complex 

scenarios while relying on natural language input, we took part in a third 

demonstration.  Here we developed a model about a specific event: the Lebanon War 

of 2006, between Israel and Lebanon/Hezbollah. 
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We selected six questions.  Ahead of time, we ran them through the first half of 

our system (to the point of Query Expansion).  We submitted the expanded query to 

our partner team, who returned 100 passages per queried Context Structure slot, 

receiving approximately 2400 passages in total.  We filtered out passages that were 

obviously irrelevant and that would not produce frame annotations that would match 

with our model.  From the remainder, we selected the top 10 to 15 results and hand 

annotated and entity tagged them.  With this data, we attempted to answer the 

questions. 

We were able to answer all six questions, two of which were used as examples in 

the preceding section (Section 6.7.1).  The limited scope and deep, high-quality data 

set were instrumental in achieving this outcome. 
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7 Applying Event Reasoning to Pathway Classification 

Classification of dynamic system pathways is a challenging and important research 

problem that can be addressed using event modeling and reasoning.  As mentioned in 

Section 3.6, pathways are evolution trajectories of complex dynamic systems that 

serve a particular goal.  To classify an unknown, partially-observable pathway 

requires comparing the behavior of the unknown pathway to the expected behavior of 

each pathway hypothesis.  This task provides a valuable test of our event reasoning 

framework, because, unlike our previous examples in Question Answering and 

Answer Selection, here uncertainty exists about the actual structure and purpose of 

the events of interest. 

In Chapter 3, we described our methodology for creating active event models; 

with Section 3.6, we detailed the analysis routines required to use the models in 

pathway classification tasks.  In this chapter, we apply these techniques to a system 

built for pathway classification, and we demonstrate its capability on models an order 

of magnitude more complex than those used in Chapters 5 and 6. 

In Section 7.1, we describe a classification system in which we created a central 

component, the Pathway Inference Engine, and we contrast this work with our 

Question Answering work.  We then give an overview of our engine, highlighting its 

deliverables to the classification system (Section 7.2).  We detail each module of the 

engine in Section 7.3, and we provide implementation details in Section 7.4.  Finally, 

in Section 7.5, we describe multiple demonstrations of the system. 
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7.1 Task and System context 

A pathway can be any set of activities, organized around temporal and causal 

structure, that proceed from a starting point to a terminal point in the service of a 

designated task.  They can be complex processes that include redundancy and 

alternative options, with individual segments of a pathway creating and consuming 

resources and changing state.  In real-world pathways, though, not all segments may 

be observable, and one may wish analyze a pathway to estimate its unobservable 

segments and/or the intent of those who manage it.  We seek to facilitate these 

analyses. 

7.1.1 PCLASS system 

Our pathway inference research was conducted within the context of a larger project 

(PCLASS).  The project’s overall system, diagramed in Figure 7-1, is designed to 

classify a partially-observable real world production pathway as fitting one of a given 

set of hypotheses about it.  (It thus attempts to answer Hypothesis Disambiguation 

questions, one of our objectives stated in Section 3.2.)  Classification problems are 

well understood in the probabilistic modeling literature (Weiss and Kulikowski 1991; 

Michie, Spiegelhalter et al. 1994).  Our task is to use pathway simulation and analysis 

techniques to compile hypotheses about complex stochastic, dynamic systems into a 

form where standard techniques can be applied (as described in Section 3.6.2). 

The system is executed in three stages with respect to a particular pathway of 

interest and a probing strategy (described below).  The first stage provides the data, 

given the probing strategy, that will later be used to train a classifier for each 

hypothesis class.  The second stage records observations of the real pathway, given 
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the same probing strategy.  And the third stage computes a posterior distribution over 

the hypotheses for the pathway being classified. 

The first stage (“Stage I”) has four major components.  A query enters the system, 

specifying a set of hypotheses about the structure of the pathway, and its decision 

making (management’s) structure and intent.  Each hypothesis consists of a (partially 

known) stochastic, dynamic model of the full pathway, and a (hypothesized) model of 

its management.  The “Hypothesis iterator” submits each hypothesis in turn to our 

“Pathway Inference Engine” and the “Management System”.  The Pathway Inference 

Engine and Management System simulate the evolution of the hypothesized models, 

with the Management System simulating the management model’s dynamic allocation 

Figure 7-1: PCLASS system flowchart 

Hypothesis 
iterator 

Probing Strategy

Pathway Inference Engine 
((UUCC  BBeerrkkeelleeyy  //  IICCSSII)) 

Stage I 

Stage II 

Q 

Management System

Hypothesis 
measurement 

Management (Real World) 

Unknown Pathway (Real World)

Pathway 
measurement 

Stage III 

Pathway classification A
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Figure 7-2: Change of Rate Figure 7-3: Segment Delay

of resources to the pathway model, and the Pathway Inference Engine simulating the 

pathway’s use of those resources.  As the simulation progresses, observable features of 

the pathway are sampled (“Hypothesis measurement”).  These samples (with 

simulated measurement error) are the data used to train the classifier of the 

hypothesis. 

The second stage (“Stage II”) has three components.  The observable features of the 

real-world “Unknown Pathway” are measured (“Pathway measurement”) through a 

sampling process similar to that in Stage I.  These observations are used to classify the 

pathway and its management (“Management”) as fitting one of the hypotheses. 

In the final stage (“Stage III”), the classification task is executed (“Pathway 

classification”), calculating the posterior distribution of the hypotheses given the 

observations.  The system chooses the most probable hypothesis class from the 

distribution.  

7.1.2 Probes 

In certain scenarios (especially those where the different hypotheses share many 

pathway segments), the posterior distributions over hypotheses given observations 

will not provide a clear classification without intervention.  A strong correlation may 
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exist between the real pathway and multiple hypotheses with respect to the behavior 

of the observable segments. 

As described in Section 3.6.3, a probe may be able to tease apart the hypotheses.  

Consider a pathway segment that uses a certain amount of resources to complete a 

task over a certain amount of time.  By actively probing the segment, resources used 

by the segment can be slowed, stopped, or delayed.  The effects of the probe will be 

manifested at multiple points.  In Figure 7-2, we show the direct effect of a slowdown 

of resource inputs for a given segment on that same segment.  Compared to the 

default, unprobed simulation (dotted line), the probed simulation (solid line) shows a 

negative change of rate to completion (x-axis is time, y-axis is percent completion).  In 

Figure 7-3, we show how a delay in resources of one segment can affect the time to 

completion of another segment.  By slowing down the completion of a segment that 

enables the one shown, this segment will have a delayed start (solid line) compared to 

the unprobed scenario (dotted line).  Of course, the results of a probe can be even 

more dramatic if it fully stops the resources to a segment, leading all segments reliant 

on its completion to fail to start.  If a probe can have varying, unique effects on the set 

of hypotheses in a question, classifications of a real pathway will be more clear cut. 

Probe strategies 

Optimal probe strategies for pathway classification are highly dependent on what type 

of pathway the user is trying to identify, and their means and constraints on 

manipulating resource allocations (active probes) or providing new observations or 

measurements (passive probes) for that pathway.  While it is situation dependent, our 

system can facilitate the design of such strategies by providing the platform for 

evaluating the value of information of each candidate probe.  In Section 3.6.3, we lay 
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out in detail the process for calculating the entropy reduction provided by a probe for 

a set of hypotheses.  In evaluations of probes for the PCLASS system, this entropy 

reduction value is calculated and submitted to a probe strategy tool that uses 

stochastic search algorithms to generate improved probes (this is outside the scope of 

our work). 

7.1.3 System design scope 

Our piece of the PCLASS system is the Pathway Inference Engine.  Our focus is on 

modeling and simulating complex pathways, and providing meaningful measurements 

of their progress.  To accomplish this, we fully exercise the ability of our event 

modeling framework to represent complex technology pathways, and extend it to 

handle dynamic data input.  Our system design does not cover resource allocation and 

management, nor the components in Stages II or III.  That work, implemented by our 

research partners, is outside the scope of our research and is not discussed further 

here. 

Key differences with Question Answering research 

There are a number of significant differences that we wish to highlight between this 

system and the Question Answering system (described in Chapter 6). 

• The level of complexity of the models tested is significantly higher.  This is 

possible because in this work we remove the dependency on external language 

processing systems that constrain the type and amount of data that can be 

input into our system.  With greater and more direct access to data, we have 

been able to test complex single models, as well as multiple models interacting 

with one another.  Those pathway models incorporate the event controller 
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(Section 3.4.2) for each segment, directly informing how we simulate and 

assess progress. 

• The resource allocation to the models is interactive during a simulation.  This 

significantly increases the dynamic range of the evolution of the pathway 

response.  It also allows for more accurately modeling the ability of actors to 

change behavior during a simulation, based on incremental results. 

• Real valued data can be used through input mapping functions.  This increases 

the scope of models to be able to handle uncountably infinite data sets. 

• The system solves a different type of question, Hypothesis Disambiguation. 

7.2 System modules and process flow 

Our Pathway Inference Engine has a simple sequence of modules with a loop, as 

shown in Figure 7-4.  For each hypothesis, the PCLASS system activates our 

component to simulate the hypothesized pathway model over time.  Snapshots of the 

status and level of completion for each of the segments of the pathway model are sent 

to the Management System at each simulation step.  They are also sent to the greater 

PCLASS system in order to build the hypothesis classifier. 

Specifically: 

Figure 7-4: Pathway Inference Engine flowchart 
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• The model initialization phase: The system loads the model structure for a 

given hypothesis and initializes it with a set of input parameters.  These input 

parameters specify the resource requirements, minimum duration, and level of 

observation uncertainty of each segment. 

• The input processing phase: The system goes into a simulation loop.  At each 

step, it receives and processes sample resources allocated by the external 

Management System. 

• The step simulation phase: The system then simulates forward for a set 

amount of time.  Segments ready to start, start.  Segments ongoing and with 

resources, continue or complete. 

• The result processing phase: Finally, the system computes for each segment a) 

its new status; and b) a measurement of its level of completion.  This 

information is relayed back to the Management System to help it determine 

how to allocate resources in the next step.  It is also communicated to the 

Hypothesis Measurement module (see Figure 7-1) which stores the values for 

observable segments and later uses them to calculate the hypothesis classifier. 

7.2.1 System outputs 

The Pathway Inference Engine is responsible for generating simulated observation 

data for each segment of a given hypothesis model, for each time step, for a set of 

input data.  The key measurement for each segment is its observed degree of 

completion (0% = not started, 100% = finished).  Observations, though, can be noisy.  

As specified above, one of the model initialization parameters for each segment is the 

degree to which observations are rated to be uncertain (levels: deterministic, small 

uncertainty, large uncertainty).  The engine generates a distribution (a probability 
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density function) over the degree of completion of a segment, based on its level of 

uncertainty. 

Specifically, pathway observations have the following features: (adapted from an 

unpublished PCLASS design specification)  

• The degree of completion of a pathway segment is a percentage (0–100%). 

• Each distribution over the degree of completion is discretized and represented 

as a histogram of 12 bins.  Each bin represents the probability that the degree 

of completion (%) is within certain bounds:   

Bin 1 0% (not started) 

Bin 2 0.01 – 10.00% complete 

Bin 3 10.01 – 20.00% complete 

. . .  

Bin 11 90.01 – 99.99% complete 

Bin 12 100% complete (finished) 

• Different levels of known uncertainty associated with observations for each 

segment will produce distributions with different levels of variance in the 

estimate.  (See example in Figure 7-5, for a segment “P9”) 

o Deterministic (level “1”): The observation has no uncertainty; when the 

segment is active it is clearly observable. 

o Small uncertainty (level “2”): A small amount of uncertainty in 

observations as to when a segment is staring, active and stopping. 

o Larger uncertainty (level “3”): A large amount of uncertainty in 

observations as to when a segment is staring, active and stopping. 
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A simulation thus creates a matrix of distributions: one per segment per simulation 

time step.  This is the data used to create hypothesis classifiers. 

7.3 Module details 

In this section, we detail each module depicted in Figure 7-4. 

7.3.1 Model Initialization 

Pathway models are composed of interconnected segments.  In Section 3.4.2, we 

discussed a general, common event controller (Figure 3-5), relating events to other 
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Figure 7-5: Pathway Probability Distribution Functions 
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events based on their trajectories.  Here we are able to deploy that controller, using a 

subset of the relations, as shown in Figure 7-6.   We replicate the structure for each 

segment, but must tune the resource requirements in the controller for the scenario. 

The Model Initialization phase is activated by a set of hypothesis parameters.  

These parameters are composed of three principle pieces: 1) a model identifier; 2) a set 

of constraints for each segment of the model; and 3) the simulation step size.   

• The identifier is a single field specifying which pathway model to load from an 

internal database.  This pathway model is a dynamic event model (an X-net) 

depicting the interconnected structure of the pathway’s segments. 

• The constraints are specified with three parameters for each segment: 1) the 

amount of resources required to complete the segment, specified as a vector of 

[resource type, amount] pairs; 2) the amount of time (duration) required to 

complete the segment when operating with adequate resources; and 3) the 

observation level of uncertainty (as described in Section 7.2.1). 

• The step size is a single value representing the period between simulation steps 

(the internal clock increment). 

The system retrieves the pathway model structure from its database keyed by the 

given identifier, then tunes the behavior of the model’s segments using the supplied 

parameters to match the desired behavior. 

Tuning the model with the constraint parameters is accomplished primarily 

through the tuning of the functions mapping simulation step inputs to X-net tokens 

(explained in the next section) and the setting of certain Transition delays.  Within the 

X-net, we treat the amount of resources required to complete an entire segment as a 

percentage – specifically 100%, represented by a required total of 100 tokens (we can 
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use 1000 to increase in precision, if desired).  The ‘Progress’-‘Finish’ arc is thus fixed 

with a weight of 100.  We assume that with adequate resources, progress in a segment 

is made uniformly.  The value of ( 100* simulationStepSize
sementDuration

) specifies then the 

maximum number of tokens that can be consumed by the ‘Use’ Transition per 

simulation step.  To achieve this, we set the delay on the ‘Use’ Transition to 

(
100

segmentDuration
). 

As an example, if a segment representing an event that takes 4 weeks to 

accomplish, and the simulation step was 1 week, each week, at most 25% of the task 

could be completed (with our assumption of uniform progress).  Thus each week, at 

max, 25 tokens could be consumed by ‘Use’ and created in ‘Progress’.  We achieve 

this in our model by setting the delay on ‘Use’ to (4 weeks/100), which entails up to 25 

firings within the time of one simulation step.  At the end of four weeks, 100 tokens 

should be in ‘Progress’, allowing ‘Finish’ to fire. 

Figure 7-6: Pathway segment controller 
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7.3.2 Input Processing (per step) 

With a tuned model in hand, the system is prepared to accept resource inputs from 

the Management System.  To support scenarios where interim outcomes can affect 

external decisions that can subsequently change long term trajectories, we require a 

system that can accept dynamic, incremental input.  This moves beyond the single 

instance input system described in Section 4.4 and implemented in the Question 

Answering system of Chapter 6. 

Each step of simulation begins with an input of the current state of the model, and 

the set of new resources allocated by the resource management system.  The model is 

passed either from the Model Initialization module or from the result processing 

module after the last step of simulation.  The new resources are passed from the 

Management System in the form of a set of R+ valued vectors, one vector per segment. 

We can represent the resource requirement parameters of a segment as the vector 

1..NX , and we can represent the resource inputs of that segment for the current 

simulation step as the vector x1..N.  The system maps these inputs to tokens to be 

placed in the ‘Resource’ Place of the segment (Figure 7-6).  The function mapping the 

inputs calculates the number of tokens using the following equation: 
1..

100 * i

i N i

x
N X=

⎡ ⎤∑ .  

The system verifies that, over all simulation steps thus far, the aggregate total of the ith 

resource is not greater than iX .  For each segment in the pathway model, the system 

applies this input mapping. 

There is an underlying simplifying assumption we use in our system: that the 

Management System distributes different types of resources to a segment uniformly, 

as a percentage of the total required amount of each resource.  (An alternative 
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interpretation also supported: the relative distribution of different resources for a 

particular simulation step doesn’t affect that step’s progress, in and of itself.)  This 

allows our system to collapse all input resources into one group of tokens (which are 

untyped in our design).  (Note that the system is capable of simulating more complex 

resource interactions within segments by using custom segment structures represented 

in the X-net.  For this project, we did not require support for such detail.) 

7.3.3 Simulation step 

Instead of applying a reachability algorithm (Section 3.4.2), projecting all possible 

paths forward with the given set of resources, we require our system to simulate 

forward for a fixed amount of time, before receiving new resources and stepping again.  

(Note that while there is uncertainty in measurements of progress towards completion 

of a segment, the structure of pathway segments does not allow for competition 

between resources during simulation and thus there will not be multiple potential 

trajectories within a step; any resource competition is resolved in the Management 

System prior to allocation.) 

Our X-net simulation and analysis engine, built to follow the simulation semantics 

described in Section 3.4.1, supports this need.  After receiving new input for a 

simulation step, the system can simulate forward the progress enabled by those 

resources (and any leftover resources unused from previous steps).  The simulation 

step size is the amount of time simulated.  Immediate Transitions fire as they become 

enabled.  For segments in the state of ‘Ongoing’ that have tokens in ‘Resources’, the 

‘Use’ Transition will theoretically fire as many times as it can within the step period 

(refer back to Figure 7-6).  For performance purposes, we collapse the potential 

numerous firings per simulation step into one bulk move of up to the maximum 
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number of tokens consumed under normal firing semantics from ‘Resources’ to 

‘Progress’.  This token count represents the mean of the stochastic (exponential) 

distribution.  With the work of the segment simulated and the progress computed 

(displayed in the tokens in ‘Progress’), the system fires any newly enabled Immediate 

Transitions (‘Finish’ and ‘Test Ready’ transitions, if possible). 

7.3.4 Results Processing (per step) 

At the conclusion of each simulation step, two vectors are computed.  One is the 

estimated level of completion of each segment (as a discrete distribution over 

percentage complete, as described in Section 7.2.1).  The second is the segment status: 

“Completed”, “Ongoing”, “Ready” to receive resources, or “Not ready”.  These vectors 

are passed externally to the Management System, as well as the Hypothesis 

Measurement module. 

Status outputs are most useful to the Management System, providing it direction 

on which segments to provide with resources in the next step.  When a simulation 

step is complete, retrieving the current status of each pathway segment is 

accomplished by analysis of the X-net marking.  If there is a token in ‘Done’, the 

segment is “Complete”.  If not, but there is a token in ‘Ongoing’, the segment is 

“Ongoing”.  If not ‘Ongoing’, but there is a token in ‘Ready for Resources’, the 

segment is “Ready for Resources”.  If not, the segment is “Not ready”. 

The level of completion is also quickly read from the model.  If the segment is 

“Complete”, it is 100% complete.  If not, the number of tokens in ‘Progress’ specifies 

the mean estimate of the percent complete. 

The Management System always receives precise, complete information. 
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The Hypothesis Measurement receives a distribution reflecting the uncertainty of 

the simulated observation (Section 7.2.1).  We use beta distributions for the non-

deterministic observations, with a higher variance for those observations specified as 

having larger uncertainty. 

7.4 Implementation details 

The Pathway Inference Engine uses an underlying X-net simulation and analysis 

engine similar to the version used in the QA system described in Chapter 6.  It uses a 

modified version of the Platform Independent Petri-net Editor 2 (PIPE2), version 2.4,  

with the modifications providing an ability to: simulate simultaneous transition firings, 

apply capacity restrictions to Places, create test and inhibitory arcs, and run 

coverability analysis.  All code is in Java 6.  Pathway models are stored in Petri Net 

Markup Language (PNML: ISO 2008), and resource requirements are stored in tab-

separated format. 

Due to the regularity of the control structure employed in the models (Figure 7-6), 

we were able to heavily optimize the firing functions of PIPE2, leading to a 115x 

improvement in runtime speed.  This enabled a significant increase in the number of 

simulations our system could achieve during tests. 

The Pathway Inference Engine connects to the rest of the PCLASS system through 

the Backplane engine of one of our research partners.  The Backplane provides an API 

through which our system connects to the Management System and Hypothesis 

Measurement module. 
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7.5 Demonstrations 

We evaluated this system in three multi-university demonstrations.  The purpose of 

the demos was to test and show how active probes could increase diagnosticity, 

providing greater separation of hypotheses.  This is an important step before 

classifying a real unknown pathway.  The challenge is, with only nominal probes 

(probes that expose only observables in a model that are available without any 

significant effort), the observables available and the values obtained from the 

observables may make hypotheses statistically indistinguishable (the entropy given the 

observables will still be high).  By perturbing the inputs and/or exposing additional 

observables, the hypothesis measurements may allow for a cleaner classification of an 

unknown pathway. 

7.5.1 Demo Models 

For each demo, we used elaborate pathway model(s) of technology development, with 

two hypotheses.  The technology pathways include such stages as R&D, pilot 

production, testing, and full production, split amongst multiple segments. 

Demo 1 model 

In the first model, shown in Figure 7-7, a company may be making one or two 

products.  Hypothesis 1: the company is just making “S” (the Safe product); 

Hypothesis 2: the company is making both “S” and “N” (the Not safe product). 

The arcs shown in the figure are pathway segments, activities required to 

complete the production of either “S” or “N” (e.g. “S20” is for “S”, “N29” is for “N”).  

Nodes represent synchronization points: arcs going into nodes represent all the 

segments that must complete to enable all the outgoing segments.  The one major 
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Figure 7-7: Demo 1 – Products S & N model 

exception are arcs labeled “a” or “b”, which are alternative segments.  For example, 

segment “S15” has two alternative segments (“S15a” and “S15b”); completion of any of 

the three segments is sufficient to enable “S16” and “S20”, if “S14” is also complete.  

(One minor clarification: at the diamond node, “N18” enables “N19”, but not “S19”.)  

At full speed, the entire pathway takes 18 months to complete (represented by the 

vertical lines).  Arcs that are completely vertical are segments that complete in zero 

time. 

The pathway has a dependency of “N” on “S”, but not vice versa.  (Note that any 

connections between “N” and “S” segments go from “S” to “N”.)  Furthermore, in this 

scenario, only a subset of “S” segments are observable; no “N” segments are.  Thus, 

the company’s choice to create “N” or not create “N” cannot be observed directly.  
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Figure 7-8: Demo 2 – Public and Private product model 

Instead, it can only be surmised by any effects it may have on observable “S” 

segments. 

The model has 82 segments in total, each of which translate into a pathway 

segment controller (Figure 7-6).  In total, this model has 410 Places and 328 

Transitions. 

Demo 2 model 

In the second demo, the scenario was somewhat similar.  A company has two 

potential products, one publically observable (Product A), and another not (Product B).  

Each follows the same pathway structure, shown in Figure 7-8, but with different 

resource requirements.  The development of the products run independently from one 

another, except for the allocation of resources which the management can shift 

between the projects.  In this scenario, the private product, if it exists, starts seven 

months later than the public product. 
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Figure 7-9: Demo 3 - Two public, one private product model 

Hypothesis 1 speculates that the company is only producing Product A and all 

resources are allocated to it.  Hypothesis 2 believes that the company is producing 

Product A and Product B, and resources have to be split between the two. 

The complete model for each product has 29 segments, translating into 145 Places 

and 116 Transitions. 

Demo 3 model 

The third demo significantly extended the scenario in Demo 2.  There are three 

potential products a company may be making: Products A, B, and C (the Product C 

pathway is shown in Figure 7-9).  They each have seven stages, running from 

Hypothesis, to Production, to Testing.  The pathways share structure for each stage 

except for the third stage, where Products A and B have mutually exclusive segments, 

and Product C has a combination of the segments of Products A and B.  In addition, 

Product B has a few dependencies from Product A, and Product C has a few 

dependencies from both Product A and Product B.  If the company is producing 

Products A or B, it will be observable.  Product C, if produced, will not be directly 

observable. 

Once again, there are two hypotheses.  Hypothesis 1: the company only produces 

Products A and B.  Hypothesis 2: the company produces all three products.  
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Individually, the Product A model has 67 segments, for a total of 335 Places and 

268 Transitions.  Product B has 56 segments, for a total of 283 Places and 224 

Transitions.  Finally, Product C has 79 segments, for a total of 397 Places and 316 

Transitions.  In sum, demo 3 required analyzing 1015 Places and 808 Transitions, 

which is the largest model set we tested on our event reasoning framework. 

Variations 

Successive demos increased the complexity of the models and analysis system. 

• Demo 1: There was one model with two pathways.  It was an early demo and 

our system was not required to produce distributions over the degree of 

completion outputs. 

• Demo 2: There were two models with one pathway each.  A distribution stub 

for each the degree of completion was produced and output for each segment 

at each time step. 

• Demo 3: There were three, large models, with dependencies between each 

other.  Our system computed full distributions (as described in Section 7.3.4) of 

the degree of completion output. 

7.5.2 Results 

The task in each of the three demos was to disambiguate between two hypotheses 

being considered.  To do so, the probes used in each case had to be able to provoke a 

different response under the two hypothetical situations.  As discussed in Section 7.1.2, 

this can be accomplished through actions that result in delays or changes of rate in 

pathway segment progress.  In Demos 1 and 2, we were successful in analyzing the 
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Figure 7-10: Hypothesis 2 (Prod A & B)Figure 7-11: Hypothesis 1 (Prod A)

effects of probes that could provoke different responses under the two hypotheses.  

Demo 3 is ongoing work. 

Demo 1 

Figure 7-11 and Figure 7-10 show one result using the Demo 1 model.  (In the figures, 

dotted lines are the baseline, unprobed scenario; solid lines are the probed scenario 

under the hypothesis labeled for the figure.)  Hypothesis 1 imagines the Company 

producing only Product A, the production of which is partially observable.  

Hypothesis 2 imagines the Company producing both Product A and a not-observable 

Product B. 

To disambiguate between the two models, we used a complex probe that 

combined two actions, spread out over a short period of time.  The first action was to 

inhibit a subset of the workers needed to produce Product A from going to work; this 

happened early in the production cycle.  The rate change not only threatened progress 

on the pathway segment that used those workers, it also threatened to delay every 

segment dependent on the outcome of that segment.  Without additional personnel, 

nothing could be done to improve the situation.  This was the case under Hypothesis 1. 

The second action, that came soon after the first, would only affect the production 

of Product B (if it were being produced), slowing down one of its resources and 
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leaving idle the personnel who would normally work on the resource.  Under 

Hypothesis 2, the Company would be attempting to produce Product B and thus would 

now have idle workers after the second action of the probe.  The Company, 

threatened by delays to Product A production, would reassign the idle workers from 

Product B to Product A, speeding the production of Product A back up.  While nothing 

could be observed about Product B, affects on its production could manifest 

themselves in observable segments for Product A.  This can be seen in Figure 7-11 and 

Figure 7-10 which show the overall progress of the pathway over time under the two 

hypotheses.  Note that without the probe, entropy for the hypotheses was high (the 

dotted lines were identical, so classification of a real pathway would be impossible).  

With the probe, though, there is separation, entropy is lower, and classification will be 

easier. 
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Figure 7-12: Demo 2 probe effects

Demo 2 

Demo 2 combines finer grain distinctions from each of the individual pathway 

segments into an estimate of the expected behavior of each hypothesis under probed 

conditions.  Figure 7-12 shows the completion progress over time of six segments of 

the model’s 29 under four separate conditions (overlaid): Hypothesis 1 (H1), 

Hypothesis 2 (H2), Hypothesis 1 – Probed (H1P), and Hypothesis 2 - Probed (H2P).  As 

can be seen, the probe starts affecting the pathway after Segment 11 (V1_S11) ; during 

Segment 11, under the four conditions, the behavior of the system is nearly identical, 

with H1 and H1P overlapping, and H2 and H2P overlapping.  In Segment 12 

(following Segment 11), greater discrepancies emerge between the behavior of H2P 

and the other cases.  This discrepancy expands in Segment 13.  By Segment 15, 21, 

and 24, the probe effect has materialized as a significant relative delay under the H2P 

case compared to the H1P case.  This demonstration shows the exact time series 
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effects that will distinguish Hypothesis 1 from Hypothesis 2 in the probed scenario, 

lowering the entropy of the system from the unprobed scenario. 

Demo 3 

Demo 3 integrates a stochastic search algorithm for learning optimal probes (briefly 

mentioned in Section 7.1.2) into the PCLASS system.  This is done in the context of a 

multi-university team effort, where the mutual information measure (between model 

and probe, as described in Section 3.6.3) is integrated into a stochastic search 

algorithm that incrementally changes probe characteristics to better separate the 

pathway hypotheses in our demonstration domain.  The pathway models for this 

demonstration are complete.  The candidate probe search algorithm is currently being 

integrated at the time of this publication.  Results are thus ongoing. 
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8 Conclusions and Future Work 

In this dissertation, we attempted to demonstrate that computer systems need to apply 

detailed, dynamic models of events when attempting to automatically answer 

questions about complex events.  To back up this claim, we 1) chose a representative 

set of event-related question types (a class of questions previously ignored in question 

answering systems because of their difficulty); 2) described an event model that has 

the features necessary to infer information targeted by those question types; 3) 

provided a set of tractable solutions that makes the models accessible for humans and 

computers to interface with; and 4) demonstrated end-to-end system implementations 

that utilize the features of the model to answer questions of our target types. 

Specifically, we focused on five question types, each related to the inherent 

property of events to evolve over time based on their structure and their state and 

resource context.  The modeling and inference framework that we created had an 

ability to simulate and reason about the events underlying these question types due to 

its 1) capturing contingent causal and temporal relations between events; 2) modeling 

contextual information about events; 3) handling uncertain and partially ordered 

trajectories; 4) representing sequentiality and concurrency; and 5) supporting 

asynchronous control.  By exploiting the frame semantic structure of events, our 

model also showed a means of interfacing between event models and language.  These 

features were combined when we showed: 1) analyzing the relations of questions in 

the context of expressive event models improving Answer Selection; 2) simulation and 

analysis of models providing inferences about missing information targeted by  

questions in our Question Answering task; and 3) dynamic simulation of pathways 
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providing the means to do Pathway Classification and probe design.  As a whole, these 

systems covered all five question types. 

The results of our demonstrations were promising.  However, in the case of 

Answer Selection and Question Answering, the language processing systems we relied 

on to setup the question and data for our system faced many long-standing hurdles in 

NLP research that have yet to be solved (Section 8.3).  Without those solutions, the 

test sets we used to demonstrate our approach remained relatively small.  The latest 

research on pathway classification does not require language input and is thus able to 

access larger test sets.  Initial results have been successful, and work is ongoing 

(Section 7.5).  We detail additional ongoing and future work, next. 

8.1 The next generation of event modeling and reasoning 

Within our research group, Leon Barrett is developing an extension of X-nets, called 

Coordinated Probabilistic Relational Models (CPRMs).  CPRMs not only model the 

dynamic structure of events, but also the uncertainty in belief states about events.  

CPRMs will be able to replace X-nets in systems such as our Question Answering 

system of Chapter 6. 

Currently, the QA system is dependent on external evidence supplied by an 

Information Retrieval system.  The system makes an implicit assumption: if evidence 

about a state is not available, that state does not exist.  The system can infer otherwise, 

but only if there is enough indirect evidence to show a causal chain to that state.  

Hence, the burden of proof is on the case for the existence of the state.  With CPRMs, 

we can better integrate beliefs about the values of unknown states, where the beliefs 

are shaped by the evidence that is available.  These beliefs can also be updated during 

simulation, based on the incremental evolution of the event.  This will avoid the 
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erroneous implicit assumption mentioned above and increase the amount of 

information the model can use to infer an answer. 

Separately, in situations where multiple conflicting sources of evidence are 

available with varying levels of trustworthiness, the CPRM can integrate the data into 

a single estimate of the information. (Currently, our system uses the value from the 

first piece of evidence returned.) 

The tradeoff is the increased complication in model design.  However, the payoff 

of access to consistent data we believe would be significant.  We look forward to 

exploring this in greater detail in the future. 

8.2 Additional event-related question types 

Counterfactuals 

In our Question Answering work (Section 3.5, Chapter 6), we attempt to answer 

Hypothetical questions, but only the most basic kind and using only the most basic 

solution: those that hypothesize new positive evidence about a condition or resource.  

In Section 6.7.1, we describe an example of answering a Hypothetical/Projection 

question: “If Israel wished to conquer Lebanon, would Israel destroy Lebanon’s 

airports?”  The question hypothesizes “Israel wishes to conquer Lebanon”, a condition 

that can be added to the model, and then asks a Projection question of that 

hypothesized state (“would Israel destroy Lebanon’s airports?”).  We would like to also 

be able to answer a more difficult hypothetical question, Counterfactuals.  

Counterfactual questions hypothesize a state that runs counter to the known facts 

about the scenario.  It is challenging because, beyond the change to the condition or 

resource explicitly mentioned in the question, additional interventions into the model 
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Figure 8-1: Issues in models for counterfactuals 

may be necessary to remove any historical influence of the now-changed condition or 

resource. 

Take for example Figure 8-1 from our Lebanon War model, along with the 

question, “if Israel did not wish to destroy Hezbollah, would Israel launch a ground 

attack on south Lebanon?”  If we knew in the baseline, real world case (no hypothesis) 

that Israel had troops stationed in northern Israel (which leads to a ground attack on 

southern Lebanon), should that remain a valid fact in the counterfactual scenario?  It 

may have only been a fact because it resulted from a state that is now assumed untrue 

(Israeli goal to destroy Hezbollah). 

A comprehensive computational treatment of counterfactuals culling data from 

natural language, social sciences, and from behavioral psychology is currently being 

completed (Narayanan in preparation).  Details are outside the scope of this 

dissertation. 

State Steering 

In our Pathway Classification work (Section 3.6, Chapter 7), we described the use of 

probes to reveal information about an unknown pathway that might allow us to better 

disambiguate between hypotheses about the pathway (i.e. we were attempting to solve 

the Hypothesis Disambiguation question type).  We do not, though, always seek to 

passively analyze a pathway.  In some cases, we would like to be able to change the 

behavior of a pathway in accordance with a defined policy (i.e. we wish to steer the 
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system to a desired state).  With real world tests of State Steering quite possibly being 

expensive and maybe irreversible, we see an opportunity for our event reasoning 

framework to answer a different question type.  We wish to extend our current 

pathway work to test whether we can use probes to steer the trajectory of a particular 

pathway towards a desirable outcome without reaching any undesirable outcomes.  

The relatively easy case will be for outcomes defined using out observable segment 

outputs.  The more difficult case will be for outcomes defined using a mix of 

observable and hidden segment outputs. 

8.3 Language processing support for Question Answering 

The Natural Language Processing barriers are significant in the Question Answering 

task.  To produce results, we made a number of idealistic assumptions about the form 

of the data our system would receive.  Specifically, we expected gold-standard quality 

frame parses and entity tagging, with entity tags derived from fine-grained, 

hierarchical  domain ontologies.  With it, we achieved strong results.  Unfortunately, 

it is not realistic at this time to have on-the-fly access to such high-quality language 

analysis.  To move towards a fully automated system for Question Answering requires 

certain natural language processing support, which we briefly describe below. 

Frame analysis 

Currently, there are no good off the shelf solutions for frame parsing text.  The 

systems by University of Texas, Dallas (Harabagiu, Bejan et al. 2005) and Saarbrucken 

University (Erk and Pado 2006) and the work by Gildea and Jurafsky (2002)  and by 

Giuglea and Moschitti (2006), demonstrate the great strides made in the task in the 

last few years.  Still, 65% precision and 61% recall, as Gildea and Jurafsky achieved, is 
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not sufficient for finding the data needed to execute inference tasks with our event 

reasoning framework.  We would like to explore improvements in this space. 

Furthermore, FrameNet annotations recognize “null instantiated” frame elements 

(Ruppenhofer, Ellsworth et al. 2006), that the aforementioned systems do not attempt 

to fill.  Null instantiations are conceptually salient frame elements (FEs) that are 

implied in the sentence annotated, but do not appear.  Some null instantiated FEs exist 

in linguistic or discourse context (e.g. across sentence boundaries), but require 

additional analysis to fill (akin to anaphora resolution).  While a full solution may not 

be easily achievable, some low hanging fruit may exist that can be exploited to 

decrease the effective number of null instantiations in frame parses, providing more 

relational information for our event reasoning system to use.  We would like to 

explore this possibility as well. 

Embodied Construction Grammar 

Recent work in our research group has led to the development of a rich semantic 

representation of language that outstrips frames in its representational power.   As an 

alternative to frame analysis, we believe using Embodied Construction Grammar 

(ECG: Bergen and Chang 2002) to analyze the semantic content of questions and 

passages may significantly increase our Question Answering system’s processing 

power.  New ECG analysis tools and demonstrations show the potential for of this 

approach (Bryant 2008; Mok 2008).  Unfortunately, at this time ECG coverage is 

limited, making it difficult to analyze full domains that we may wish to target.  If 

coverage is extended relatively broadly, we would like to integrate ECG-based 

descriptions of events into our event ontology and use ECG annotated questions and 

passages to further test our QA system.  Our group has preliminary work on 
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converting FrameNet frames into ECG representations (Chang, Narayanan et al. 2002), 

which could provide the semantic basis for a significant ECG grammar. 

Entity analysis and relation uses 

Quality, fine-grained entity extraction is critical to our system’s performance (see 

Section 4.1.3).  As such, we are experimenting with our own in-house tool that will 

link concepts found in text to the WordNet graph. We would like to eventually 

connect our ontologies to the SUMO/MILO ontologies, which have additional logical 

inference features (Niles and Pease 2001).  In addition, we would like to explore and 

integrate solutions for automatically extracting fine-grain ontologies targeted to 

particular domains, linking these to SUMO/MILO, if possible.  Each of these steps we 

believe would provide greater coverage for specifying constraints in event models 

using entity-restricted frames, providing higher precision and greater recall in linking 

to relevant questions and finding relevant data. 

Entity references are frequently made using metonymies (e.g. “White House” to 

refer to the US President or his administration).  We tested encoding some of these 

relationships directing in our domain ontology, explicitly specifying a “representative-

of” relation between entities with a metonymic relation, and it helped in a few cases.  

We would like to further explore this and other solutions to this common problem. 

Additional language cues 

Natural language provides additional valuable cues required for accurate event 

inference, but not provided in frame or entity analysis.  Specifically, we would like to 

explore solutions for automatically extracting polarity (i.e. negation) and aspect cues 

from sentences, allowing for more precise intervention on event models (Section 4.4.2) 

and more accurate placement of control tokens, respectively. 
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Another significant issue in analyzing events is resolving discrepancies between 

multiple pieces of evidence that refer to different stages in the evolution of an event.  

Blindly combining evidence such as this can produce partial markings that are 

potentially mutually exclusive from one another, producing inaccurate inferences (e.g. 

evidence that ‘Joe has money’ and ‘Joe buys a car’ – does Joe having money refer to 

the state after Joe bought the car or before?  Does he have the money now?).  To 

accurately infer a state at a particular time requires data to be tagged with the time it 

refers to.  (In addition, as we demonstrated in our Pathway Classification task 

(Chapter 7), precisely timed input to our event reasoning system can enable inferences 

dependent on discrepancies in the timing of certain model output.)  We would like to 

explore the use of TimeML-based systems for tagging and querying temporal 

information from text (e.g. Evita system: Sauri, Knippen et al. 2005). 

Question analysis 

In Section 4.2, we provided guidelines for the question analysis required for our 

applications.  For our demonstrations, we frequently relied on hand-generated 

question classification.  We would like to look at automated solutions for tagging 

questions with their question type. 

In addition, event questions using qualifiers may require translation.  A question, 

“can Joe buy the car for $5000 or less?”, can be translated into a basic Hypothetical: “if 

Joe has $5000, can he buy the car?”  We would also like to pursue solutions to this 

problem. 

Information Retrieval 

Information Retrieval technology used in supplying our Question Answering system 

with data also needs improvement.  Currently, when our system sends out a list of 
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entity-restricted frames to the front-end system for the purpose of retrieving relevant 

passages, the frame-based queries are converted into keyword-based IR queries, losing 

the relational content in the queries.  We would like to look at solutions for indexing 

passage data using entity-bound frames.  As this relies on more robust automated 

frame annotation, we see this as a long-term goal.  Recent commercial work using 

relational information, though, like the Powerset search engine 

(http://www.powerset.com), gives us hope that a nearer-term solution may be 

forthcoming. 

Event Ontology 

In Section 4.6, we discuss a few preliminary efforts to enable model designers to 

populate an event ontology.  To facilitate their efforts, we would like to use 

techniques in event extraction to automatically learn event primitives (single actions 

and constituent parameters).  This would provide building blocks from which larger 

domain scenarios can be assembled by a designer.  We would like to extend the work 

of (Bethard 2007; Chambers, Wang et al. 2007; Chambers and Jurafsky 2008) and 

others to encompass the larger range of event parameters described in Section 3.3. 

8.4 Closing thoughts 

Our work has taken place in a research domain that is in its early adolescence.  We 

have demonstrated a number of valuable techniques for answering questions about 

complex events, showing their viability under engineered environments.  In addition, 

we have shown many promising avenues of future research to make these solutions 

more robust and to extend their capabilities.  We hope our work has set the agenda for 

future enhancements to help the field grow into its full maturity. 
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