
Answering Questions about Complex Events

Steve Sinha

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2008-175

http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-175.html

December 19, 2008

Copyright 2008, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Answering Questions about Complex Events

by

Steven Kumar Sinha

B.S. (Carnegie Mellon University) 2001

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

GRADUATE DIVISION

of the

UNIVERSITY OF CALIFORNIA, BERKELEY

Committee in charge:

Professor Jerome Feldman, Chair

Professor Srini Narayanan

Professor Charles Fillmore

Professor Dan Klein

Fall 2008

Answering Questions about Complex Events

Copyright 2008

by

Steven Kumar Sinha

Abstract

Answering Questions about Complex Events

by

Steven Kumar Sinha

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Jerome Feldman, Chair

Reasoning about event structure is a fundamental research problem in Artificial

Intelligence. Event scenarios and procedures are inherently about change of state. To

understand them and answer questions about them requires a means of describing,

simulating and analyzing the underlying processes, taking into account preconditions

and effects, the resources they produce and consume, and their interactions with each

other. We propose a novel, comprehensive event schema that covers many of the

parameters required and has explicit links to language through FrameNet. Based on

the event schema, we have implemented a dynamic model of events capable of

simulation and causal inference. We describe the results of applying this event

reasoning platform to question answering and system diagnosis, providing responses

to questions on justification, temporal projection, ability and 'what-if' hypotheticals, as

well as complex problems in diagnosis of systems with incomplete knowledge.

Professor Jerome Feldman

Dissertation Committee Chair

1

Contents

1 Introduction .. 1
1.1 Solution Approach ... 1

1.1.1 Events & Event Questions .. 2
1.1.2 Inferences with events.. 5
1.1.3 Language .. 5

1.2 Applications .. 6
1.2.1 Answer Selection .. 6
1.2.2 Question Answering ... 7
1.2.3 Pathway Classification .. 7

1.3 Contributions .. 9
1.4 Road map .. 9

2 Reasoning about Events .. 11
2.1 Event Models in AI .. 11

2.1.1 Logical AI ... 12
2.1.2 Graphical Models of Actions ... 13
2.1.3 Event Models for Transactions on the Semantic Web: 14
2.1.4 Event Models in Linguistics and NLP ... 16

2.2 Question Answering (QA) research .. 17
2.2.1 Motivation to use event models in QA .. 17
2.2.2 State of the Art ... 18
2.2.3 Related Work in QA ... 19

3 Expressive schema and dynamic models of events 21
3.1 Motivating example ... 21
3.2 Objectives ... 22
3.3 Describing events .. 24
3.4 Dynamic modeling of events ... 27

3.4.1 X-nets ... 28
3.4.2 Representing complex events with dynamic models 33
3.4.3 Analysis ... 39

3.5 Inferring target information ... 44
3.5.1 Justification .. 44
3.5.2 Temporal Projection ... 46
3.5.3 Ability .. 46
3.5.4 “What-if” Hypothetical ... 48

3.6 Pathway classification ... 48
3.6.1 Pathways and Hypotheses .. 49
3.6.2 Hypothesis Disambiguation .. 50
3.6.3 Probes and optimal probe design .. 50

i

4 Bridge to Applications ... 57
4.1 Interface between language and models ... 58

4.1.1 Background on Frames and FrameNet .. 58
4.1.2 Frame matching ... 62
4.1.3 Linking entities to bindings .. 63
4.1.4 Semantic relevance matching.. 67
4.1.5 Linking event scenario models to frames 68

4.2 Determining data and simulation goal: Question Analysis 71
4.3 Selecting Models for Questions .. 73
4.4 Acquiring and Incorporating data .. 75

4.4.1 Acquiring relevant data through query expansion 76
4.4.2 Incorporating data .. 78

4.5 Extracting and composing answers .. 79
4.6 Building Models .. 79

4.6.1 Manual generation .. 80
4.6.2 Auto-generation .. 81
4.6.3 Models built ... 82

5 Applying Event Modeling to Answer Selection .. 92
5.1 System context .. 94
5.2 Motivating example ... 95
5.3 System modules and processing flow ... 96
5.4 Modules .. 98

5.4.1 Front-end ... 98
5.4.2 Alignment ... 100
5.4.3 Model Selection ... 101
5.4.4 Answer Candidate Scoring ... 105
5.4.5 Candidate Ranking .. 107

5.5 Evaluation .. 107

6 Applying Event Reasoning to Question Answering 109
6.1 System context ... 110
6.2 Motivating example .. 112
6.3 System modules and processing flow .. 112
6.4 Modules ... 116

6.4.1 Pre-system: Question Analysis ... 116
6.4.2 Alignment (Question) ... 119
6.4.3 Model Selection ... 121
6.4.4 Background Fill ... 127
6.4.5 Query Expansion system (Output of Stage I) 130
6.4.6 External: Passage Analysis ... 131
6.4.7 Alignment (Passage) ... 133
6.4.8 Passage Frame Mapping .. 134

ii

6.4.9 Simulation and Analysis .. 135
6.4.10 Answer Extraction (Output of system) ... 139

6.5 Back-off strategies .. 141
6.6 Implementation details ... 141
6.7 Results ... 142

6.7.1 Examples of answering target question types 142
6.7.2 Evaluations and Demonstrations .. 148

7 Applying Event Reasoning to Pathway Classification 153
7.1 Task and System context .. 154

7.1.1 PCLASS system ... 154
7.1.2 Probes ... 156
7.1.3 System design scope .. 158

7.2 System modules and process flow ... 159
7.2.1 System outputs .. 160

7.3 Module details .. 162
7.3.1 Model Initialization ... 162
7.3.2 Input Processing (per step) ... 165
7.3.3 Simulation step .. 166
7.3.4 Results Processing (per step) .. 167

7.4 Implementation details ... 168
7.5 Demonstrations .. 169

7.5.1 Demo Models .. 169
7.5.2 Results .. 173

8 Conclusions and Future Work .. 178
8.1 The next generation of event modeling and reasoning 179
8.2 Additional event-related question types .. 180
8.3 Language processing support for Question Answering 182
8.4 Closing thoughts ... 186

Bibliography ... 187

iii

List of Figures

Figure 1-1: Event schema instance example – Car Design ... 4
Figure 1-2: Pathway Classification example – Biological Pathway 8
Figure 3-1: Event Schema ... 23
Figure 3-2: X-net basic simulation semantics .. 28
Figure 3-3: Full X-net graphical key .. 29
Figure 3-4: Basic event schema parameters ... 34
Figure 3-5: Event controller template .. 36
Figure 3-6: Composite Event Control constructs ... 37
Figure 3-7: Reachability Analysis Token Requirements ... 42
Figure 5-1: AQUINAS Answer Selection System flowchart 94
Figure 5-2: Answer Selection Engine flowchart ... 97
Figure 5-3: Front-end interface ... 98
Figure 5-4: Front-end example .. 99
Figure 5-5: Alignment interface ... 100
Figure 5-6: Alignment example .. 101
Figure 5-7: Model Selection interface ... 102
Figure 5-8: Model Selection example ... 104
Figure 5-9: Answer Candidate Scoring interface ... 105
Figure 5-10: Answer Candidate Scoring example ... 105
Figure 5-11: Candidate Ranking interface .. 107
Figure 5-12: Candidate Ranking example ... 107
Figure 6-1: AQUINAS QA System flowchart .. 110
Figure 6-2: Event Scenario QA Engine flowchart ... 113
Figure 6-3: Question Analysis interface ... 117
Figure 6-4: Question Analysis example .. 118
Figure 6-5: Question Alignment interface .. 119
Figure 6-6: Question Alignment example ... 120
Figure 6-7: Model Selection interface ... 121
Figure 6-8: Context Structure algorithm ... 124
Figure 6-9: Model Selection example ... 125
Figure 6-10: Background Fill interface ... 128
Figure 6-11: Background Fill example .. 129
Figure 6-12: Query Expansion interface ... 130
Figure 6-13: Query Expansion example.. 131
Figure 6-14: Passage Analysis interface .. 131
Figure 6-15: Passage Analysis example .. 132
Figure 6-16: Passage Alignment interface ... 133
Figure 6-17: Passage Alignment example ... 133
Figure 6-18: Passage Frame Mapping interface .. 134
Figure 6-19: Passage Frame Mapping example ... 135

iv

Figure 6-20: Simulation and Analysis interface .. 136
Figure 6-21: Simulation and Analysis example ... 138
Figure 6-22: Answer Extraction interface ... 139
Figure 6-23: Answer Extraction example.. 140
Figure 6-24: Hypothetical Prediction example – Part 1 ... 143
Figure 6-25: Hypothetical Prediction example – Part 2 ... 145
Figure 6-26: Ability example .. 146
Figure 7-1: PCLASS system flowchart .. 155
Figure 7-2: Change of Rate .. 156
Figure 7-3: Segment Delay ... 156
Figure 7-4: Pathway Inference Engine flowchart ... 159
Figure 7-5: Pathway Probability Distribution Functions ... 162
Figure 7-6: Pathway segment controller template .. 164
Figure 7-7: Demo 1 – Products S & N model .. 170
Figure 7-8: Demo 2 – Public and Private product model .. 171
Figure 7-9: Demo 3 - Two public, one private product model 172
Figure 7-10: Hypothesis 2 (Prod A & B) ... 174
Figure 7-11: Hypothesis 1 (Prod A) .. 174
Figure 7-12: Demo 2 probe effects ... 176
Figure 8-1: Issues in models for counterfactuals... 181

v

Acknowledgments

My work

First and foremost, I wish to thank my advisor, Srini Narayanan. A Berkeley Ph.D.

alum himself, Srini represents what the rest of us in this graduating batch should hope

to be as researchers: broadly and deeply curious, highly capable, and ridiculously

smart. I, for one, feel truly privileged that he volunteered his time to mentor and

advise me, and I greatly appreciate that I can call him my friend.

I also wish to thank my other advisor, Jerry Feldman, for providing me an amazing

environment for learning and conducting research. It is his research vision that gave

genesis to our group, and I am grateful to him for the opportunity to be a part of the

team. Jerry has always been there any time I needed him, and I thank him for that.

In addition, I would like to thank Chuck Fillmore and Dan Klein for providing

their insights during my qualifiers and beyond. I especially appreciate Chuck and his

FrameNet team for their frame semantics research, the fruits of which I used in many

components of my own research efforts.

My families

In my time at Berkeley, I have come to have many extended families, each of which

has played a significant part in making my experience here so enjoyable.

Of course, I wish to thank my direct family first. My parents have been

unwavering in their support. I could always call them for love and understanding,

and I very much appreciated that. To Terry and Vinod: I think I’ve turned out pretty

well, and that is due in no small measure to your efforts. Thank you. I love you both.

vi

And though my parents live far away, my other relatives keep me feeling

connected: Joyce & Ed, Chris & Julie & Elisha, Sangeeta & Ken & Ryan & Alisha; and

further away: Leela & Janine, and Dolly & Neeraj & Muski & Vijaya – thank you, too.

Day in day out, though, my housemates have been most present in my life. To:

Yatish Patel, Sonesh Surana, and Melissa Ho, as well as their significant others and

stream of friends, especially Jen Sloan and Divya Ramachandran: you’re my family,

too, and I love you dearly.

I also wish to acknowledge my computer science brethren from the early years.

From my first office: Satrajit Chatterjee, my brother in arms; Sailesh Krishnamurthy,

my older, wiser brother; and I have to add, Manikandan Narayanan, truly a most

wonderful human being (seeing him always made me happy). And my CS social

committee: Shyam Lakshmin! and Rachel Rubin, Hayley Iben, Pushkar Joshi, Kaushik

Datta, Brian Milch, Mark Whitney, Nemanja Isailovic... and many others. Good times.

More recently, I have had the pleasure of the company of my ICSI colleagues and

friends: Eva Mok, Joe Makin, Nancy Chang, Johno Bryant, Leon Barrett, Michael

Ellsworth, Josef Ruppenhofer, Collin Baker... and the aforementioned Srini Narayanan,

Jerry Feldman, and Chuck Fillmore. I especially want to thank Eva, who has been a

significant source of friendship and support throughout my time at ICSI. And Joe

Makin, for saying the darndest things that sparked the best conversations not to get

work done to.

Also, from all my activities away from work, I thank my MOT China people

(Jihong Sanderson and our whole team, most notably Andreas Schmidt), my GSC

people (top of the list: Carolyn White), and most recently, my Obama campaign

people (my brother Gregory H. Smith and his sister Polly Furth, Nick & Scott, the

vii

viii

Tompkins, the Holidays, the Gonders, Doug, and all of the amazing volunteers) for all

of the wonderful times.

And I have to add in here (because they don’t really fit into any category above):

Ruth Keeling, who’s awesome, and whose friendship, support, and tea I have greatly

appreciated. And my dearest Mary Zimmerle, who knows she’s awesome. Though I

haven’t seen her frequently enough in these recent years (in some part because of this

dissertation work), her friendship is one I always cherish.

My support

ARDA / DTO / IARPA: no matter how many times it’s changed its name, it has

continued to support me throughout my education here at Berkeley, and I appreciate

that. Putting a face to the organization: Steve Maiorano has been a wonderful friend

to our group and to me, and I want to thank him, especially.

My home

Finally, I wish to thank and acknowledge the University of California, Berkeley. I

have gotten so much out of my time here. In a sense, my Ph.D. work was just my day

job. Here I have had the privilege of taking courses in business, political science,

public policy, Mandarin, economics, rhetoric, linguistics, geography, music... (Thanks

to all the incredible professors who have allowed me to sit in on their courses!)

Beyond classes, I have had the opportunity to run student groups, I have had the

flexibility to travel the world... I have lost track of the number of amazing experiences

I have had while here. My years here have been some of the most personally

enriching yet. It’s somewhat depressing to think about life without the Berkeley

community, but if the litany of friends above is any indication, I don’t think it will be

leaving me any time soon, no matter where I go.

1 Introduction

Imagine that you are an analyst for General Motors. The company has been facing

stiff competition from foreign auto makers who are producing significant numbers of

smaller, more fuel-efficient vehicles. The Boss comes in and asks: “Is our Lansing,

Michigan plant capable of producing hybrid cars? I can give you a list of the inventory,

the machine types, the employee list...” Later, he comes back and says, “If needed,

we could invest $10 million dollars, could it be upgraded sufficiently?”

Information analysts are swamped with data, from which they are being asked to

answer complex questions such as these. The questions are, implicitly or explicitly,

about events and their interactions. Currently, there is no system, or for that matter,

no framework from which a system can be built, to tackle the complex reasoning

required to answer them. This task of reasoning about events is a fundamental

research problem in Artificial Intelligence.

1.1 Solution Approach

Events unfold over time, changing state based on conditions in their environment. To

reason about events requires a means of describing, simulating, and analyzing their

underlying dynamic processes. For our dissertation work, we designed an event

modeling and inference framework to answer event-related questions. The task

required certain features of the framework. It must capture event interactions,

including contingent causal and temporal relations between multiple events. It must

be able to model contextual information about events. In addition, it must also be

able to reason about evolving events with uncertain and partially ordered trajectories,

be able to represent sequentiality and concurrency, and be able to support

1

asynchronous control. To be effective, the framework should be general enough to

represent events across multiple domains. All of this will facilitate answering

questions1 about how states evolve over time and how states and actions interact with

one another.

1.1.1 Events & Event Questions

What do we mean by events, though? As we discuss in Chapter 2, there is a rich

history of event reasoning work in AI employing many different representations of

events. For example, representations for planning, for event recognition, and for

event extraction, frequently include the event’s name, its preconditions and effects,

and perhaps its participants. Each of these features is necessary, but even together

they are not sufficient for answering typical complex questions asked about events.

Specifically, in Section 3.2, we identify five prominent question types relating to

events from which we wish to be able to infer answers when having only incomplete

information.

• Justification: questions asking about a state that must be verified and justified

e.g. “Did Toyota complete production of its next-generation Priuses?”

• Temporal Projection / Prediction: questions projected a state into the future

e.g. “Will Ford start manufacturing fuel-cell cars in the next five years?”

• Ability: questions asking about whether an actor can (as opposed to will)

commit an action or reach a state

e.g. “Can Chrysler produce electric cars?”

1 Note: in this work, we will be using the term “question” loosely, to cover queries

including but not limited to those in natural language form.

2

• ‘What-if’ Hypothetical: questions hypothesizing changes to a state, and then

asking a Justification, Temporal Projection, or Ability question about that new

state

e.g. “If GM had access to cheap rechargeable batteries, could it manufacture

plug-in hybrids for under $20,000?”

• Hypothesis Disambiguation: questions about the structure of an event when only

limited segments of it are observable and multiple hypotheses are possible

e.g. “Is Honda prototyping a new luxury car or a sports car?”

To represent the underlying events in questions like these, we designed an event

schema that describes structure beyond preconditions and effects. As we detail in

Section 3.3, the parameters of a basic event also include resources that the event

produces and consumes, its data inputs and outputs, the duration of the event, and the

time and place of the event, among others. Events are not isolated from each other,

either, and their relationships with one another go beyond generic causation. Our

schema distinguishes events that ‘enable’, ‘disable’, ‘suspend’, ‘resume’, ‘abort’, etc.,

other events. It also captures patterns of sub-events that compose a larger-scale event

(‘sequentially’, ‘concurrently’, in a ‘loop’, as ‘alternatives’ to one another, etc.). In

addition, the schema recognizes the different levels of granularity at which events can

also be construed (“Trip to Europe” vs. “Catch a cab”, “Drive to Airport”, “Fly to

Europe”...). This thorough representation of events provides valuable details about

the dynamic characteristics of an event.

3

Decide

Design

Mass Produce

Sell Lease

Alternative sub-events

Acquire

Merger

License

Joint Venture Develop

or

Obtain
Expertise

Manufacture
Prototype

Test
Prototype

Obtain Materials

Obtain Factory

Concurrent sub-events Repeat-until sub-events

Sequential sub-events

Creates state or resource Needs state or resource

Figure 1-1: Event schema instance example – Car Design

alternative

In Figure 1-1, we show an example of an event schema instance, depicted in

graphical form. The figure shows an expansion of our car design and production

event, a complex scenario similar to one we used in an evaluation of our work. On

the left side of the figure, there is a simplified high-level sequence of events: Decide (to

design a new car), Design (the car), and Mass Produce (the car), followed by an implicit

choice, between Sell (the car) or Lease (the car). Design can be broken down into

alternative sub-events: Acquire or Develop, which in turn can be further broken down

into sub-events organized using the various patterns shown. There are multiple

alternative methods to Acquire a design, including Merging the company with another

firm with a design, Licensing a design, or entering a Joint Venture with another

company with a design. To Develop a design requires a sequential series of sub-events:

Obtain Expertise (e.g. learn about new technologies); Obtain Materials and Obtain

Factory (which can be done concurrently); and Manufacture Prototype and Test

4

Prototype (which are repeated until a successful test). The end result of both the

Acquire and Design actions is a car design that can be mass produced.

1.1.2 Inferences with events

A static event schema instance, though, does not have the runtime semantics to

simulate the execution of an event scenario unfolding over time, as is necessary for

our task. We require a dynamic model of events. In Section 3.4, we discuss our use

of X-nets, a formalism extending Generalized Stochastic Petri Nets (GSPNs: Bause and

Kritzinger 1996), originally used by Srini Narayanan in his dissertation work on aspect

and metaphor understanding (Narayanan 1997). X-nets can represent sequentiality, as

well as concurrency and synchronization, alternatives, stochasticity, and

asynchronous control (see 4.6.3 for an X-net representation of a scenario of similar

structure to our Car Design event). In addition, X-nets can support a number of

analysis routines that can test the potential of a state to evolve into a new state of

interest given an event structure. At the end of Chapter 3, we describe procedures we

developed to infer answers to our five target question types using these event analysis

routines.

1.1.3 Language

To reason about complex events also requires an interface from our event models to

data sources. Events, while independent of language themselves, are frequently

discussed in natural language, yielding copious data in that form. We exploit semantic

frames as an intermediate structure and interface between event descriptions in

natural language and event models that produce inferences to answer questions. The

link between events and semantic frames (specifically through FrameNet:

5

http://framenet.icsi.berkeley.edu) is made explicit in Chapter 4. The frame structure

in language provides a bi-directional mapping from language to event models,

enabling us to link information found in text about an event of interest to models that

represent that event.

1.2 Applications

From the work we describe in Chapters 3 and 4, we have: 1) a means of describing

events comprehensively; 2) a modeling system that captures the inherent dynamics of

events; 3) a set of useful inference techniques we can use on the event models; and 4)

specific procedures to answer our target question types.

To test this event modeling and reasoning framework, we applied it to three

applications: Answer Selection, Question Answering, and Pathway Classification.

1.2.1 Answer Selection

Before applying our event modeling framework to a full-fledged NLP application, we

decided to test it on a simpler problem. Answer selection is the process of choosing

the best answer to a natural language question from a list of pre-chosen candidates. It

is closely related to calculating the relevance of a returned answer for a search query.

The difficulty in the task is assessing the relative relevancy of candidates that each

contain the relations queried in the question asked.

For event-related questions, we hypothesized that an ontology of event models

would improve the relevancy assessment. Specifically, we theorized that:

1) Keywords extracted from a question are related to one another and thus

extracting relational information in a question and in a set of answer

6

candidates should enable higher precision measurement of the relevancy of the

candidates; and

2) Analyzing these relations in the context of a relevant, expressive model of the

event in question provides a valuable link between the information sought in

the question and the information contained in a good answer.

For us, the Answer Selection task provided an initial test of our approach for modeling

events. We describe the details of our experiments in Chapter 5.

1.2.2 Question Answering

Boosted by initial successes with Answer Selection, we applied out event reasoning

framework to the full task of automated Question Answering (QA). The challenging

goal in QA is to find or create focused answers to natural language questions. The

system we designed used the preprocessed language about events in question to select

a relevant event model. It then uses the model to select relevant evidence and

simulation to infer missing information required for the answer. We implemented the

algorithms of Chapter 3 to solve Justification, Temporal Projection, Ability, and

Hypothetical questions. These question types had previously not been answerable with

automated systems. We describe the details of this system and the results of three

demonstrations in Chapter 6.

1.2.3 Pathway Classification

Our third system tackles a different task that can be addressed using event modeling

and reasoning: the classification of dynamic system pathways. A pathway can be any

set of activities, organized around temporal and causal structure, that serves a

particular goal. Car production is one example. The biological pathway shown in

7

Figure 1-2: Pathway Classification example – Biological Pathway

Figure 1-2, is another. Here, each line connecting two dots represents a pathway

segment (a particular activity, e.g. research, testing, production, etc.) unfolding over

time (each vertical bar represents one month in the 18 month pathway). Based on the

resources allocated by an external actor to the segment, the progress towards

completion of the segment may be slowed or stopped.

To classify an unknown, partially-observable pathway requires comparing the

behavior of the unknown pathway to the expected behavior of each pathway

hypothesis. The task distinguishes itself because uncertainty exists about the actual

structure and use of the events of interest. In addition, interventions on the pathway

(called probes) may be required to elicit outputs that distinguish the hypotheses. We

designed a system to test probes and classify pathways. Our simulation system is

specially designed to handle data input that changes over time steps based on the

incremental results of the simulated pathway. We describe the details of this system

and three demonstrations of it, in Chapter 7.

8

1.3 Contributions

The work of this dissertation produced the following novel results:

• An expressive framework and relational schema for representing event

structure, a dynamic model of pathway processes and complex events capable

of simulation and inference, and a method to that uses semantic frames to

translate from a natural language description of a particular event to a dynamic

model form.

• A system to solve Justification, Temporal Projection, Ability, and ‘What-if’

Hypothetical questions with incomplete information. With caveats, this is the

first such system to demonstrate promise at answering these question types in

the Question Answering domain in an evaluation.

• A system to model and simulate complex dynamic system pathways, and

evaluate probes, in the service of answering the Hypothesis Disambiguation

questions at the heart of Pathway Classification tasks.

In this work, we showed not only the benefits of our event framework approach, but

also areas for future work needed to facilitate the development of more robust

automated systems that answer questions about complex events.

1.4 Road map

Chapter 2 situates this work within the event modeling and Question Answering

literature. Chapter 3 puts forward the objectives of the dissertation, specifying five

event-related question types we wish to be able to answer. It then describes our

comprehensive event schema, our dynamic event modeling representation (X-nets),

and methods for converting descriptions to dynamic models. In addition, it lays out

analysis routines that can be performed on X-nets and specific procedures we used to

9

answer our target question types. Chapter 4 describes the glue that connects the

theoretical work of Chapter 3 to the applications of Chapters 5 and 6. Specifically,

Chapter 4 discusses our interface between language and event models, and provides

solutions for selecting, instantiating, and filling models with data based on a question

asked. Chapter 5 describes our first evaluation of our event modeling framework:

Answer Selection. Chapter 6 follows with a description of our work on Question

Answering. Chapter 7 details our final system designed for Pathway Classification.

Finally, Chapter 8 reviews our conclusions and future work.

Readers interested in the theoretical underpinnings of our work are directed to

Chapter 3. Those interested in applications of language and FrameNet will wish to

also consult Chapter 4. Readers interested in our Question Answering system may

concentrate on Chapters 3, 4, and 6. Readers exclusively interested in pathway

modeling and probe design may read only Chapter 3 (concentrating on Section 3.6)

and Chapter 7. Chapters 5, being a preliminary test of our work before tackling the

full Question Answering task described in Chapter 6, may be skipped by most people.

10

2 Reasoning about Events

Before we dive into our model and its applications, we first describe our notion of

events and situate it in the wider context of work within Artificial Intelligence (AI)

and Natural Language Processing (NLP). There is a rich history of event reasoning

work in AI starting from early work on situation calculus (McCarthy and Hayes 1969)

and robot planning (STRIPS: Fikes and Nilsson 1971) to work in probabilistic models

of planning, events and causality (Astrom 1965; Pearl 2001), employing many different

representations of events. In recent years, there has been an increased interest in

event recognition and extraction within Natural Language Processing (Bethard 2007;

Chambers, Wang et al. 2007; Chambers and Jurafsky 2008). Work in planning

frequently focuses on the preconditions and effects of events leaving implicit the

cause/effect relationship between two events. Work on event extraction focuses on

the predication features (the name of the event and the participants of the events).

These features are all necessary, but not sufficient for answering the complex

questions we care about, as we will describe in Chapter 3.

We start by situating our work in the context of event representation and

reasoning in other fields of AI including logical AI and planning, Web services on the

semantic web, and in Computational Linguistics.

2.1 Event Models in AI

Reasoning about actions and events is a significant subfield within AI. Our aim here

is not to survey the field, but to outline significant approaches and developments that

are relevant to our goal of connecting inference and reasoning about processes to

answering questions about events.

11

We start with a brief description of the logical approach to reasoning about events,

which identified important problems and provided a solid understanding of the issues

involved. We then describe critical progress in probabilistic reasoning about actions

that directly informed our modeling approach from the very beginning. We follow by

describing recent efforts related to the semantic web that significantly enhance

interoperability and reuse of models across different event and process descriptions,

ontologies, and models.

2.1.1 Logical AI

In AI, formal approaches to model the ability to reason about changing environments

have a long tradition. This research area was initiated by McCarthy (McCarthy 1958)

who claimed that reasoning about actions plays a fundamental role in common sense.

A decisive advantage of deductive approaches to reason about actions is the

universality inherent in any logical framework. A purely logical axiomatization which

is suitable for temporal prediction can just as well be employed to answer more

general questions, such as postdiction (i.e. what can be concluded form the current

state as to states in the past) and planning (i.e. how to act in order that the system

evolves into a desired state). Deductive approaches have suffered from several well

known problems, the most famous of which is the Frame problem pertains to

compactly specifying aspects of world that are unchanged when an action is executed.

A number of associated problems and proposed solutions can be found in (Lifschitz

1989). Additionally, formal theories of action and change often make the assumption

that (Gelfond and Lifschitz 1993) environmental changes only occur as a result of

some agent initiated action. This assumption is unduly restrictive and renders such

systems incapable of dealing with complex environments where state transitions may

12

occur independent of agent initiated action. In most complex environments, the

world continues to evolve between agent actions. These problems combined with the

need to generate real time behavior in complex and dynamic environments renders

deliberative reasoning about the effects of low level action too expensive and thus

impractical. Recognition of this fact in AI and Robotics has resulted in various

proposals for the representation and use of compiled plans and behaviors (Nilsson

1984; Rosenschein 1985; Brooks 1986; Agre and Chapman 1987; Arkin 1990). The

basic idea is that rather than divide overall process of acting in the world into

functional components (such as planning, execution, and perception) one could

instead divide the process into task specific pre-compiled plans for various behaviors.

The basic insight here is that the necessity to act fast in an uncertain and dynamic

world requires reactive planning agents (biological or robotic) to develop

representations that can tightly couple action, execution monitoring, error correction

and failure recovery. Narayanan (1999) contains a full comparison of our event model

to these techniques in logical AI and classical planning.

2.1.2 Graphical Models of Actions

There has been a considerable amount of work initiated by Pearl (2001) and colleagues

on graphical models of actions. The basic idea is to use a causal network graph to

represent a set of autonomous mechanisms where inter-mechanism interactions are

captured through links in the graph. Each action implies an intervention on this graph

resulting in isolating an autonomous mechanism through local surgery on the causal

graph. This allows for a uniform structure that can reason about both observations

and actions. Pearl develops an extensive framework that can deal with many issues in

causal inference including predictions, diagnosis, and counterfactual reasoning. Our

13

work derives a lot from the work in probabilistic representation of actions.

Specifically, (Narayanan 1999) outlines an initial integration of the two lines of work

that specifically addresses the frame problem (and the qualification and ramification

subproblems) in a framework that combines our representation and model of event

structure with the graphical model for inference. Chapter 8 outlines a companion

thesis that is focused more directly on a more expressive probabilistic representation

and manipulation of complex behavior. The main difference between our approach

and the work of Pearl and colleagues is in the representation of actions and events. In

previous approaches, actions are typically treated as atomic (either effect axioms in

the logical approach, or single mechanism in the probabilistic work). Our approach,

in contrast, models actions with internal structure that includes resource production

and consumption, internal phases, and composite actions that include concurrency

and synchronization. As shown in subsequent chapters of the thesis, such an

expressive model of event structure is essential to handle the kinds of event and action

related questions that users routinely ask of complex scenarios. The work here also

connects to recent work on planning using Partially Observable Markov Decision

Processes (POMDP) and to work on concurrent models of computation such as

Stochastic Petri Nets (Bause and Kritzinger 1996) for representing complex processes.

Chapter 3 describes the connection to concurrent models in greater detail. A

companion thesis by Leon Barrett (see Chapter 8 for a brief description) is exploiting

this connection for planning and reasoning about complex behaviors.

2.1.3 Event Models for Transactions on the Semantic Web:

More recently, there have been efforts toward the idea of creating a database out of

the web. This idea (called the Semantic Web) has the goal of enabling access Web

14

resources by content rather than just by keywords. In the last decade, the Semantic

Web community has developed a new generation of Web markup languages such as

OWL (McGuinness, Van Harmelen et al. 2004). These languages enable the creation

of ontologies for any domain and the instantiation of these ontologies in the

description of specific Web sites. These languages are also amenable to efficient

reasoning procedures and thus reasoning applications can be built to automatically

determine the logical consequences of the ontological statements.

Among the most important Web resources are those that provide services. Web

services are web sites that do not merely provide static information but allow one to

effect some action or change in the world, such as the sale of a product or the control

of a physical device. To make use of a Web service, a software agent needs a

computer-interpretable description of the service, and the means by which it is

accessed. An important goal for Semantic Web markup languages, then, is to establish

a framework within which these descriptions are made and shared. Web sites should

be able to employ a standard ontology, consisting of a set of basic classes and

properties, for declaring and describing services, and the ontology structuring

mechanisms of OWL provide an appropriate, Web-compatible representation language

framework within which to do this.

A collaborative effort by researchers at several organizations has resulted in just an

ontology called OWL-S or OWL for Services (Martin, Burstein et al. 2004). OWL-S is a

markup language for describing both atomic and composite transactions on the web

using a formal model of events and processes. OWL-S service descriptions enable

programmatic access for service discovery, monitoring, simulation, analysis, and

composition.

15

The OWL-S model of web services is closely related to the event model described

in this thesis. Indeed, our event model implemented the first Distributed OPErational

(DOPE) semantics of the OWL-S language (Narayanan and McIllraith 2002). Models

that are described in OWL-S can be compiled automatically to our event models.

Details of the process and our use of the models are described in Chapter 4. The

connection to OWL-S allows our event models to be compiled directly from process

and event descriptions on the Semantic web.

2.1.4 Event Models in Linguistics and NLP

Events are central to language and a subject of obvious interest to linguists. The

description of events in language can rely on a variety of devices including predication,

modification, and reference. Vexing problems in event interpretation such as

linguistic aspect and contingent causal relations have led researchers in Formal

Semantics to propose ontological schemes such as the Vendler-Dowty-Taylor (VDT)

verb classification. Extensions and computational models of event structure have

been proposed to handle some of the compositional issues in interpreting expressions

about events (Moens and Steedman 1988; Steedman 1996). More recently, basic ideas

from Frame Semantics and Formal Lexical Semantics have been used to build wide-

coverage open domain semantic resources such as FrameNet and VerbNet. Resources

such as FrameNet function as a semantic basis for extracting event information from

textual sources. Chapters 3-6 details our use of FrameNet as a structured intermediate

representation to connect language to event models. (Narayanan 1999) details an

expressive model of event structure using a structured dynamic system (called X-

schemas) that was used in solving hard problems linguistic aspect and metaphoric

language about events. Our work is a direct follow-on to Srini Narayanan’s thesis

16

work on active event representation for understanding aspect and metaphor

(Narayanan 1997). His work on X-schemas is a cornerstone of our QA engine.

2.2 Question Answering (QA) research

The typical formulation of the QA task is: a user inputs a natural language question,

and the system responds with an answer (the exact answer, or a passage or document

containing the answer). The task comes in two flavors: open-domain (where a

question can be on any topic) and closed-domain (where a question is on a

prespecified topic, e.g. one about cooking, travel, or international terrorism). Open

domain QA frequently leverages the Web as a large corpus. With broader coverage

required, though, it is a challenge to get and exploit deep domain specific knowledge;

for that reason, we chose to work in a closed-domain environment for our research.

Event scenario QA represents a specialization of the general QA problem, focusing on

complex question types that need additional semantic resources, as we detail in the

Chapters 3 and 4.

2.2.1 Motivation to use event models in QA

The driving rationale for our approach is that humans appear to have limited need for

factoid question answering, and instead much more need to have systems that can

deal with complex reasoning about causes, effects, and chains of hypotheses.

This is borne out through a number of studies, as well as our own empirical

analysis. As cited in (Yin 2004; Aouladomar 2005), procedural questions make up the

second largest set of queries on web search engines, after factoids. In our own

analysis of the AQUINAS AnswerBank corpus. The corpus, produced by the

University of Texas, Dallas (UTD), has 2692 question/answer pairs generated to

17

resemble intelligence analysts’ queries about weapons programs and proliferation

issues, approximately half of the questions were found to be event related.

As discussed in 2.2.3, most work in QA during the first half of this decade was

focused on improving performance in factoid answering systems. Even in recent

years, only a few groups have been working on solving event related questions. It is

still a problem waiting for an adequate solution.

2.2.2 State of the Art

We used the UTD-LCC state-of-the-art QA System (Pasca and Harabagiu 2001) as a

baseline for our task. The UTD QA system uses a component-based flexible

architecture with modules that a) process the question by linking it to an entry in an

ontology of answer-types, b) use a variety of IR techniques to retrieve relevant answer

passages, and c) extract the answer passage ranked highest amongst the candidates.

The system is trained to handle questions related to a closed domain of documents

from the Center for Nonproliferation Studies.

State-of-the-art QA systems such as the UTD system and others (Ramakrishnan,

Chakrabarti et al. 2004) rely on standard IR techniques (like TF-IDF; Salton, Wong et

al. 1975) along with enhancements that expand the query. Such modifications include

search patterns and heuristics based on word clusters, synonym sets, and lexical

chains, which are a) derived using machine learning techniques, b) extracted from

lexical resources such as WordNet or c) a combination of a) and b). Selecting answer

passages relies on a quantitative measure that evaluates the degree to which a passage

shares the words in the expanded query keyword set.

18

2.2.3 Related Work in QA

While question answering as a domain is not a new area of research (e.g. Lehnert

1978), it is only over the past half dozen years that the field has really taken off,

stimulated by new funding (AQUAINT) and large evaluations (TREC QA Track).

Many projects during this period have focused on improving factoid QA performance,

which has, indeed, improved as a result (Pasca and Harabagiu 2001).

Using lexico-semantic resources, such as WordNet, PropBank, and FrameNet, has

become more popular, though the use of FrameNet is still relatively rare (Fellebaum

1998; Kingsbury and Palmer 2002; Palmer, Gildea et al. 2005; Ruppenhofer, Ellsworth

et al. 2006). One group actively experimenting with FrameNet for QA is at Saarland

University. Gerhard Fliedner, in cooperation with the SALSA group, is using frame

annotations as a basis of comparison between questions and answers in a prototype

QA system for German (Fliedner 2006). He has developed a number of innovative

techniques to merge frames that we plan on looking at further for possible adoption

(Fliedner 2004; Fliedner 2005).

Attempts at answering procedural questions has some history, the most recent of

which comes from France and England. Farida Aouladomar, a computational linguist

at IRIT in France, has done significant work in analyzing questions about procedures

and texts which explain those procedures (Aouladomar 2005). Her goal is to answer

“How” questions (mostly geared towards French). Compared to the system proposed

in this document, her work is most similar to our model selection component (outlined

in Chapter 5). Aouladomar’s analysis of procedural texts may assist us in the future for

extracting event model structure in additional test domains. Ling Yin at ITRI at the

19

University of Brighton, UK, has also done some procedural question analysis (Yin

2004).

One other group has worked on answering prediction questions using simulation.

Back in 1994, Jeff Rickel and Bruce Porter, at UT Austin, built a system for answering

questions of scientific models (Rickel and Porter 1994). In this system, there was no

tie to natural language. Instead, interactions were through predicate calculus. Their

system focused on automatically building models of necessary and sufficient

differential equations chains for solving a question posed to the system. Our work

may be able to supply a means of interacting with and using natural language with

their scientific model solver. In more recent work, Porter and colleagues have been

using an ontology and lexicon to build on this early work. They have been working in

the area of question answering for scientific domains. The input to their system is still

a logical representation of the textual material (Barker, Porter et al. 2001; Barker,

Chaudhri et al. 2004). They have built a library of generic concepts and use a

Knowledge-Base and reasoner to answer questions about advanced placement

Chemistry. Our system differs from these previous systems in the complexity of

question types, the connection to language using a wide coverage resource (FrameNet)

and the ability to reason with dynamic and uncertain input and knowledge.

20

3 Expressive schema and dynamic models of events

Events and procedures are complex. They are dynamic, unfolding over time. They

are inherently about change of state, with outcomes contingent on resources. What

makes them interesting is their structure, which dictates the conditions required to

bring an event to a particular state, and the possible and likely evolutions going

forward from a state. To understand events and reason about them requires a means

of describing, simulating, and analyzing the underlying processes, taking into account

preconditions and effects, the resources they produce and consume, and their

interactions with each other.

We developed a novel, comprehensive event schema that covers many of the

parameters required to do complex reasoning about events (Section 3.3). Based on this

schema, we further designed a dynamic model of events capable of simulation and

causal inference (3.4). With this framework in hand, we have formulated and adapted

existing algorithms (3.5) to infer the information required to answer common

questions about events (detailed in 3.2).

3.1 Motivating example

Here is a motivating example. Take a process like the one that commences when a

crime is reported. Here in the United States, the police investigate the alleged crime

and come to one of two conclusions: there was or there was not a crime. If there was

a crime, suspects are identified and pursued, often leading to the arrest of the suspect.

The suspect is brought before a judge and notified of the charges, after which he

enters a plea. If needed, the judge sets bail and the case goes to trial. A jury is

sometimes selected, the case is deliberated, and a verdict is entered. If found guilty,

21

the suspect is sentenced and pays for the crime: monetarily, in prison, or with his life.

If innocent, the suspect is released and the investigation is potentially restarted.

3.2 Objectives

As humans, we can understand the complexities of this judicial process. How, though,

can a computer reason about it? What specific aspects of reasoning would we like a

computer to tackle?

As mentioned, events evolve over time. As they progress, clues are left behind

regarding the path taken. If a suspect in a crime is in front of a judge, there is a trail

of police reports and court filings preceding this court appearance. Given a set of

information, like court filings, we would like a computer system to be able to

determine if there is a causal relationship between that information and a particular

target state of interest. This will allow us to answer a question like, Did Joe appear in

traffic court for speeding? These are justification questions: questions with an

underlying premise (Joe appeared in traffic court for speeding) that require

verification with evidence and a trace of reasoning.

Events can progress in potentially multiple ways. In addition to looking at past

effects, we would like to be able to reason about the possible evolution of a state going

forward. This can come in two forms: a temporal projection or a test of the ability

of an event to reach a target state. The former is an assessment of the likely evolution

of a state: Will Sam testify in front of a jury? The latter is a test of what is possible: Can

Jill evade jail?

22

FRAME
Actor
Theme
Instrument
Patient

PARAMETER
Preconditions
Effects
Resources – In, Out
Inputs
Outputs
Duration
Grounding
 Time, Location

isA

hasFrame hasParameter

construedAs composedB

EVENT

Not all reasoning, though, is based on states as they actually exist(ed). Many times

we wish to reason about what could have been or could be. We wish to be able to

find causal chains from an altered set of evidence (a hypothetical state) to a target

state, such as: If the murder weapon is thrown out as evidence, will Mike be convicted?

Also, our knowledge about the structure of an event is not always complete. In

analyzing an event, we may not be in a position to observe it actually happening;

instead we may only have access to incomplete and uncertain snapshots of the

progress. We would like to be able to disambiguate between hypotheses of the

type of event occurring based on that evidence. Based on the court proceedings, is the

defendant being tried under a civil law or religious law system?

These are each types of event-related questions we seek to be able to answer:

justification, temporal projection, ability, hypothetical, and hypothesis disambiguation.

We identify solutions to each in Section 3.5, after describing in the upcoming sections

a common framework for representing and analyzing the events.

Figure 3-1: Event Schema

y

COMPOSITE
EVENT

CONSTRUAL
Phase (enable, start, finish,
 ongoing, cancel)
Manner (scales, rate, path)
Zoom (expand, collapse)

RELATION(e1,e2)
Subevent
Enable/Disable
Suspend/Resume
Stop/Restart
Cancel/Undo
Mutually Exclusive
Coordinate/Synch

eventRelation

CONSTRUCT
Sequence
Concurrent/Conc. Sync
Choose/Alternative
Iterate/RepeatUntil(while)
If-then-Else/Conditional

23

3.3 Describing events

Having a standardized event representation is crucial to being able to reason about a

significant number of event-related scenarios. It allows us to develop algorithmic

solutions to common complex questions, such as those described in Section 3.2.

In designing an ontology of events, we have identified a number of critical features

required to provide significant coverage and usability for reasoning tasks. First, an

event representation must be fine-grained to capture the wide range of possible events

and their interactions. Next, it must be context-sensitive in order to adapt to a dynamic

and uncertain environment. Thirdly, it should be cognitively motivated to allow

humans to easily add content, query, and make sense of the information returned.

Finally, event descriptions should allow for elaboration, so that new domain models

can specialize existing representations without changing the basic primitives.

We have developed a parameterized model of the structure of events and

processes that meets these criteria. Figure 3-1 shows the basic schema of events. We

describe its main elements here.

1) All events have a basic structure: A basic event is comprised of a set of inputs,

outputs, preconditions, effects (direct and indirect), and a set of resource

requirements (consuming, producing, sharing and locking). Events are

grounded at a time and place and have a duration. The hasParameter link in

Figure 3-1 depicts the set of parameters in the domain of the basic event type.

We discuss this further in Section 3.4.2.

2) Events have a frame semantic structure: Events, though occurring independent of

language, are described in language using Frame-like relations (Fillmore 1982).

Frames are labeled entities comprised of a collection of roles that include major

24

syntactic and semantic sub-categorization information. The relation hasFrame

in Figure 3-1 is a many-to-many link since an individual event may have

multiple frames and a single frame could capture multiple events. Many frame

roles used when describing an event have corresponding event parameters,

allowing for tight integration of language and event structure. See Chapter 4

for more details.

3) Composite events have rich temporal structure and evolution trajectories: The fine-

structure of events is composed of key states (such as enabled, ready, ongoing,

done, suspended, canceled, and stopped) and a partially ordered directed graph

of transitions that represents possible evolution trajectories between these

states (transitions include: prepare, start, interrupt, finish, cancel, iterate,

resume, restart). Each of these transitions may be atomic, timed, stochastic or

hierarchical (with a recursively embedded event-structure).

4) Composite events are composed of process primitives: Verbal aspect (the temporal

structure of events (Narayanan 1997)) discriminates between events that are

punctual, durative, (a)telic, (a)periodic, (un)controllable, (ir)reversible, ballistic,

or continuous. Each type of event relates to a particular internal structure,

which draw upon a set of process primitives and control constructs (sequence,

concurrent, choice, conditionals, etc.). These primitives specify a partial

execution ordering over subevents. The composedBy relation in Figure 3-1

shows the various process decompositions. Figure 3-6 describes them in

greater detail.

5) Composite events support various construals: Composite events can be viewed at

different granularities using operations for elaboration (zoom-in) and collapse

(zoom-out) (Narayanan, 1997). In addition, specific parts and participants of a

25

composite event can be focused on, profiled and framed. Construal operations

are shown in Figure 3-1 through the construedAs relation.

6) Events relate to each other in regular patterns: A rich theory of inter-event

relations allows sequential and concurrent enabling, disabling, or modifying

relations. Examples include interrupting, starting, resuming, canceling,

aborting or terminating relations, as shown in Figure 3-1 through the

eventRelation relation.

Example

Any specific action can be described in structured form, as an instantiation of the

event schema. We can use feature-structures to formally specify the components of

the event. (A feature-structure is a collection of attributes, values, and constraints.)

Take our example of going to trial.

Composite Event: CriminalTrial
 Precondition: crimeAlleged, suspectApprehended
 Effect: verdictRendered
 Resource-In: [judge, 1], [court, 1], [clerk, 1], [prosecutionTeam, 1],
 [defenseTeam, 1], [defendant, 1], [juryPool, 24]
 Input: charges
 Duration: 3-hours
 Subevent: [sequence JurySelection, EvidenceExamination, VerdictFinding]
 Frame: Trial
 Element: Defendant - <Person>
 Element: Judge - <Judge>
 Element: Prosecution - <DistrictAttorney>
 Element: Defense - <DefenseAttorney>
 ...

A trial is a composite event, having fine-grained structure. At the basic level, it has

certain preconditions (Precondition), such as a crime being alleged (crimeAlleged) and

a suspect being apprehended (suspectApprehended). The effect (Effect) of the trial is

that a verdict is rendered (verdictRendered). These are states – they occur or they

26

don’t. The mechanics of a jury trial require a set of resources (Resource-In): a judge, a

court, a clerk, a prosecution team, a defense team, a defendant, and pool of potential

jurors. Resource requirements are specified with tuples of the resource name and the

amount required. Certain information is also required (Input), namely the charges

against the defendant. A prototypical trial will take 3 hours, in this example

(Duration). In that time, certain subevents are executed. The trial is composed of a

sequence of subevents, namely jury selection (JurySelection), the examination of

witnesses and evidence (EvidenceExamination), and the jury deliberation and finding

of verdict (VerdictFinding). Each subevent may, itself, be a composite event. With

these different levels of granularity, we can construe the trial event as either a single,

high-level event, or as a sum of its sub-parts. In addition to this structure, each action

and sub-action can be described in frame form, in this case, the Trial frame provides

one such grounding in language, with its various elements and bindings (see Chapter 4

for more information about frames).

This representation provides the first step in the apparatus needed for complex

reasoning about events: for tasks ranging from planning to simulation.

3.4 Dynamic modeling of events

Complex reasoning about event interactions requires not only an event description,

but also a dynamic model that can simulate the execution of the event unfolding over

time. We can instantiate such a model with facts about a particular event, enabling us

to project which situations are likely or possible based on the consumption and

production of resources and the creation and elimination of states.

Take, for example, our simplified trial process. In a particular instance, a suspect,

Joe, may be arrested for theft. We may wish to know whether it is possible for him to

27

Place Transition

Token

Arc

P-1 T-1

P-2

P-3

P-1 T-1

P-2

P-3

Before

Figure 3-2: X-net basic simulation

After

be convicted. If we know that there is no judge available, an attempt to simulate a

trial will fail, and it won’t be possible to reach a verdict. If the necessary resources

for a trial do exist, then an analysis should determine that after three hours in court,

the defendant may be convicted.

To create dynamic models to analyze this and more complicated scenarios, we use

a computational modeling framework known as X-nets (Section 3.4.1). They support

many of the event primitives described in the event schema (Section 3.4.2). Most

importantly, they support both simulation of the underlying event and algorithms for

analysis and inference (Section 3.4.3).

3.4.1 X-nets

Events, as mentioned, are about state changes. A method for dynamic modeling of

events requires two key pieces, then: a way of storing state and a way of changing

state. X-nets have these two main components. Places hold resource and condition

state. Transitions are active elements that create, destroy, and test the resources and

conditions encoded in Places. Together, they provide a solution for representing the

dynamics of events and the means of simulating them.

Figure 3-2 shows the basic semantics with a subset of the features of X-nets. In

the first frame (Before), Place P-1 is shown containing one token, representing either

28

Hierarchical Transition

Place Instantaneous
Transition

Token

Resource Arc

Timed Transition
Enable Arc

Inhibitory Arc

Figure 3-3: Full X-net graphical key

one unit of a resource or the existence of a condition. Places P-2 and P-3 have no

tokens. An Arc exists from P-1 to Transition T-1 representing a resource dependence.

P-1 must have adequate resources (one token by default) for T-1 to execute (also

known as “firing”). T-1 will fire in this case, resulting in the second frame (After).

Here T-1 has consumed the resource from P-1. The Arcs from T-1 to P-2 and P-3

represent resource production; T-1 creates resources in P-2 and P-3 when firing. Each

firing thus changes the overall state of the X-net. We call this distribution of tokens

over Places a marking, in this case going from [1, 0, 0] to [0, 1, 1] (for [P-1, P-2, P-3]).

This simple, abstract model can represent a specific event. For example, Joe buys

a can of soda. P-1 represents Joe’s money, in this case, one token is $1. T-1

represents the buying operation. P-2 represents Joe having a soda, and P-3 is the

receipt. Joe has a $1, he executes the buying operation, the $1 is consumed, and he

gains a soda and a receipt. Dynamic modeling allows us to make different inferences

based on the evidence available. Had Joe had no money, he would not have been able

to buy the can of soda.

In full, the X-net representation directly captures a number of additional features

of events. (See Figure 3-3 for some.)

• Events unfold in uncertain ways. X-nets support stochasticity in transitions.

29

• Some events take time and some do not. X-nets provide instantaneous

Transitions and timed Transitions.

• For conceptualization and display, it can be useful to abstract away subevents,

collapsing an X-net as a special Transition in another X-net. We flatten these

“hierarchical” Transitions at X-net creation time.

• The existence of certain resources and conditions can have both positive and

negative impact on an event’s execution. X-nets provide inhibitor arcs for

those cases where a satisfied condition should prevent a Transition from

executing.

• Not all resources and conditions required for the execution of an event should

be consumed during the execution of the event. Enable arcs can be used to

test-but-not-consume resources and conditions.

All of these features combined provide us the building blocks to represent the

complex event structures described in Section 3.3. At their core, X-net Transitions

represent simple events. We are able to chain several events together through their

common conditions and resources to represent a larger scenario. In the next section

(Section 3.4.2), we will show the mapping from event description to X-net.

Background

Narayanan, in his 1997 work on aspect and metaphor understanding, proposed using

modified Petri Nets for modeling actions. His Action Execution Schema (X-schema)

extended basic Place-Transition Nets (P-T Nets) with stochastic transitions and

hierarchical transitions, bounded colored tokens (tokens that are typed), and enable

and inhibitor arcs (for k-safe nets). The resulting semantics could cleanly and

30

efficiently capture sequentiality and concurrency, while providing asynchronous

control. (Narayanan 1997; Narayanan 1999)

Simulating and analyzing events to answer questions has computational

requirements similar to the features provided in Narayanan’s X-schema design. In

following up his work, we use a subset of the proposed Petri Net extensions. Our

design supports stochasticity and enable and inhibitor arcs, but we leave out colored

tokens and hierarchical transitions (which can be decomposed and flattened with

finite nets). The resulting design, as with X-schemas, is built upon Generalized

Stochastic Petri Nets (GSPNs) (Ajmone Marsan, Balbo et al. 1995; Narayanan 1999).

We describe our extended version of GSPNs, below.

Formal definition

Formally defined, a GSPN is an 8-tuple, GSPN = (P, T, T1, T2, I-, I+, W, M0) where

• P = {p1, ..., pn} is a finite, non-empty set of places,

• T = {t1, ..., tn} is a finite, non-empty set of transitions,

• T1 ⊆ T is the set of timed transitions, T1≠∅

• T2 ⊂ T denotes the set of immediate transitions, T1 ∩ T2 = ∅, T = T1 ∪ T2

• P ∩ T = ∅

• I-, I+ : P × T → N0 are the backward and forward incidence functions,

respectively (these are the incoming and outgoing resource arc weights, w.r.t.

the transition)

• W = (w1, ..., w|T|) is an array whose entry wi R+

o is a rate of negative exponential distribution specifying the firing delay

when transition ti is a timed transition, or

31

o is a firing weight when transition ti is an immediate transition

• M0 : P → N0 is the initial marking; for each place, a number of tokens

Note: if T1 = ∅, then the net is a weighted Place-Transition net. If T2 = ∅, then the

definition of GSPN coincides with the definition of a Stochastic Petri Net. (definition

adapted from Bause and Kritzinger 1996) Our design relaxes the constraint that T1
 ≠ ∅,

thus supporting both GSPNs and basic P-T Nets.

Modifications to traditional GSPNs that we use in X-nets:

• C = {c1, ..., c|P|} is an array of place capacities whose entry ci ∈ N0, if present,

represents an inclusive upper bound on marking value for place pi,

• E : P × T → N0 are enable arc weights, not separately defined from I+ and I- as

they are syntactic sugar, providing equal additive influence to I+ and I=,

• N : P × T → N0 are inhibitor arc weights

• Π : T → N are transition priority levels

Real-time simulation semantics

Petri Nets follow a well-defined simulation semantics that specify how states change.

With any given marking, the next state is determined by executing the net firing rule.

• At statei with marking Mi, a transition tj is enabled iff, for each place pk,

Mi[k] ≥ I-[k, j] (i.e. resource and enable arcs satisfied), Mi[k] ≠ ck (i.e. place

capacity has not been reached), Mi[k] !≥ N[k, j] (i.e. not disabled by inhibitor

arcs), and no other transition th can be enabled with Πh > Πj (i.e. highest

priority transition with necessary resources).

32

• When an enabled transition tj fires, for each place pk, Mi+1[k] = Mi[k] - I-[k, j] +

I+[k, j] (i.e. consume and produce tokens)

• For all enabled immediate transitions, firing order is determined by sampling

from a discrete uniform distribution

• When no immediate transitions are enabled, timed transitions can fire after a

delay determined by sampling the negative exponential distribution

(() 1 i

i

x
XF x e λ−= −), where the rate of transition ti is λi. Race condition

semantics are employed (when enabled, a transition waits for its sampled delay,

then, if its incoming tokens are still available, it fires).

3.4.2 Representing complex events with dynamic models

Our event schema provides a structured form that explicitly captures many of the

features of events. Our X-net framework provides the raw materials for representing

complex events in a dynamic model. Next, we detail how to map the structure

described in event schema instances to dynamic X-net models.

Basic Event

In Section 3.3 (Figure 3-1), we described a number of event parameters that provide a

description of the basic structure of an event. They include inputs, output,

preconditions, effects, resources, duration, time, and place. Each can be translated

into a piece of X-net structure.

In the simple atomic case, the event itself translates into a single Transition t,

representing the action of executing that event. The event parameters are attribute

tuples, as defined in Figure 3-4, which constrain the mapping from description to X-

net structure.

33

Precondition
 name unique tag
 frameSet set of frames grounding object in language
 ‘consuming’ | flag: remove condition upon event firing
 ‘negative’ if satisfied, event cannot fire
 ‘motivation’ flag: precondition represents the motivation
Resource-In
 name unique tag
 frameSet set of frames grounding object in language
 amount amount of resource required
 max maximum resource possible
 ‘test’ | flag: do not remove tokens upon event firing
 ‘negative’ if satisfied, event cannot fire
Effect
 name unique tag
 frameSet set of frames grounding object in language
Resource-Out
 name unique tag
 frameSet set of frames grounding object in language
 amount amount of resource required
 max maximum resource possible

 (bold = required)

Figure 3-4: Basic event schema

• Precondition: translates into an incoming Place p (with a directed arc from p

to t), with Capacity cp = 1. By default, the arc connecting p to t (I-[p,t]) is an

Enable arc (s.t. I+[p,t] = I-[p,t]). If flagged as ‘consuming’, the arc will be a

standard Resource arc. If set as ‘negative’, the arc is an Inhibitor arc. The arc

weight is 1 (I-[p,t] = 1).

• Resource-In: translates into an incoming Place p. By default, Capacity cp is

not set (i.e. infinity), and the arc weight is 1 (I-[p,t] = 1), unless otherwise

specified by ‘max’ and ‘amount’, respectively. If flagged as ‘test’, the arc is set

to be an Enable arc. If flagged as ‘negative’, the arc is set to be an Inhibitor arc.

• Effect: is similar to a Precondition, but instead translates into an outgoing

Place p (with a directed arc from t to p), with Capacity cp = 1 and arc weight 1

(I+[p,t] = 1).

34

• Resource-Out: translates into an outgoing Place p. Again, by default,

Capacity cp is not set, and the arc weight is 1 (I+[p,t] = 1), unless otherwise

specified by ‘max’ and ‘amount’.

• An event Duration can be directly translated into the rate parameter of t. The

existence of a duration implies Transition t is timed; the lack of a duration

parameter implies t is immediate.

• Input, Output, and Grounding parameters (and the frameSet attribute of the

aforementioned parameters) are not taken into account by the simulation firing

rule, and are thus not mapped over to the simulatable model. (Inputs are, for

example, credit card numbers needed for a Buying event. The Precondition of

having a credit card is sufficient for simulation; the exact number is not

necessary.)

Event-Event Relations

Events can be connected to other events implicitly or explicitly. Implicitly, events

sharing states and resources are automatically connected to one another by common

Places. Explicitly, events can be connected through stated event-event relations

(described in Figure 3-1).

35

Suspended Restart

Start Ongoing Finish

Done

CanceledCancel

Ready

Prepare Enabled

Stop Stopped

Suspend

Iterate

Resume Enable Disable

Undone Undo

Figure 3-5: Event controller

We extend Narayanan’s work on linguistic aspect to provide guidance on how to

connect events related by an evolutionary trajectory. In Figure 3-5 (adapted from

Narayanan 1999), we show a general event controller, where the event in focus is

represented with three components, the starting action, the ongoing state, and the

finishing action (shown contained in the dashed-line hierarchical transition). Other

events related to the focal event are linked according to the design shown. For

example, an event that suspends the focal event will be linked so as to remove the

ongoing control token when fired, preventing the focal event from finishing. (Note:

each hierarchical transition represents a sub-net that can be expanded; thus our

suspend is a placeholder for the event that is suspending the focal event.) The control

states (ready, suspended, stopped, etc.) are added to connect the related events and to

mark event evolution progress; they assist in answering questions about the current

phase an event may be in. (Not all relations shown may be used in a description; the

unused portions of the design are collapsed.)

36

Subevent expansion

Figure 3-6: Composite Event Control

Event 1

Event 2

Event 1

Event 2

Event 1 Event 2

Ready Ongoing Done

Starting... ...Finishing
<subevents>

Sequence

Concurrency & Synchronization

Alternative

Repeat Until

If / Then / Else

Condition

Event

Then EventCondition

Else Event

37

Composite Events

Control constructs in composite events can also explicitly define the layout of a set of

(sub)events. In an event description, composite events can be specified as a recursive

3-tuple in the form of <constructType event event>, where each ‘event’ can be atomic

or composite. In Figure 3-6 (adapted from Narayanan 1997), we demonstrate the

expressive power of X-nets to represent these control constructs for composite events.

Frames

Frames capture the way in which language describes events; specifically, they capture

roles and profiled participants, aspectual structure, instruments, and other grounding

constructs such as location and time. These frame elements, when extracted from the

linguistic input, can provide parameters to an event simulation. In Section 4.1, we

will discuss our use of frames to help setup event simulations. To enable this effort,

X-nets created from Event Schema instances must retain links to all linguistic

descriptions of the underlying events.

As mentioned in Section 3.3, frames can be associated with the main action of the

event, or its parameters. Frames associated with the main action are directly linked to

the corresponding Transition. Those associated with a particular parameter (as

specified in the attribute tuple under ‘frameSet’) are directly linked to the

corresponding Place.

Linking and Tuning Event Models for Larger Scenarios

Event schema instances are a starting point for creating dynamic X-net models. Our

method provides a default mapping from a schema instance to a model, but it requires

a model designer to tune models to meet an analysis goal.

38

First, a model designer may have access to an event ontology consisting of

relatively primitive event schema instances. Building up a larger event scenario may

requires piecing together smaller composite and basic events. This can be semi-

automated based on common resources shared between these pieces, leaving control

structure linking to the designer.

The designer must then tune X-net parameters such as immediate transition

weights and transition priorities, to achieve accurate stochastic behavior model-wide.

3.4.3 Analysis

Questions about events, as discussed in Section 3.2, require complex reasoning to

answer. In a question about the ability of an actor to do something not yet done, for

example, we wish to be able to figure out if a particular state is reachable given the

current state. It may be likely or not. It may be inevitable or it may be one of ten-

thousand possible evolutions.

X-net modeling, by virtue of its simulation semantics, gives us the direct ability to

simulate single paths of potential evolution of events. While this is an important

building block for more complex analysis, it is insufficient for our needs on its own.

GSPNs (and by extension, X-nets) are amenable to a number of analysis techniques,

chief among them for our purposes: reachability.

Reachability (Forward)

Reachability analysis produces an exhaustive set of states that are achievable through

simulation given the initial marking. As we will discuss in Section 3.5, this is an

important component of our algorithms to solve justification, temporal projection, and

ability questions.

39

Our method to calculate the forward reachable set of states is to construct a

coverability tree. Coverability analysis is a special form of reachability analysis that

handles both bounded and unbounded nets. (To be bounded, the number of tokens in

the net cannot grow beyond some fixed value.) The deterministic version of the

algorithm we use to construct coverability trees is adapted from (Murata 1989).

1. Label the initial marking M0 as the root and tag it “new”
2. While “new” marking exist, do the following:

2.1. Select a new marking M
2.2. If M is identical to a marking on the path from the root to

M, then tag M “old” and go to another new marking.
2.3. If no transitions are enabled at M, tag M “dead-end”
2.4. While there exist enabled transitions at M, do the following

for each enabled transition t at M:
2.4.1. Obtain the marking M’ that results from firing t at M
2.4.2. On the path from the root to M if there exists a

marking M’’ such that M’[p] ≥ M’’[p] for each place p
and M’ ≠ M’’, i.e., M’’ is coverable, then replace M’[p]
by ω for each p such that M’[p] > M’’[p] && cp = ∅
(ω represents “infinity”)

2.4.3. Introduce M’ as a node, draw an arc with label t from
M to M’, and tag M’ “new”

 adapted from Murata 1989

Line 2.4.2 of the algorithm is responsible for handling unbounded nets. It relies on

the monotonicity property of Petri Nets, that transitions that can fire with a certain

number of tokens can also fire with more tokens. This property is violated by the

existence of inhibitor arcs. As such, for models with inhibitor arcs, our design only

supports analysis of bounded nets; in that situation, we ignore line 2.4.2. There is

literature on subclasses of Petri Nets with inhibitor arcs where modified coverability

analysis is still possible. This is not a part of our design, but we reference readers to

(Busi 2002), for one approach.

40

For nets with stochasticity, we can convert the net into a Markov Chain and use

Forward-Backward and Viterbi algorithms to estimate the likelihood of particular

reachable states or paths (see Bause and Kritzinger 1996).

Backwards Reachability

Justification, ability, and other analyses do not only rely on projecting evidence

forward. As we will discuss in Section 3.5, information about a current state can

provide clues of what has already happened, not just what may happen in the future.

Backwards reachability analysis is an important tool that can provide an exhaustive

set of states that may have generated a given state. With it, in our simplified judicial

process example, we can infer that someone who was convicted must have gone

through a trial.

Backwards reachability is more complicated than forward reachability,

unfortunately. Unlike determining the forward reachable set, where standard Petri

Net firing rule semantics are employed, techniques for calculating the backwards

reachable set require structural model intervention or a significant change to the

simulation firing rule. We provide a brief explanation of solutions customized for our

task of answering event-related questions. A full solution is outside the scope of this

work.

There are two types of Petri Net circuits that require attention, as seen in Figure

3-7. In the first circuit, forward analysis requires tokens on all incoming arcs, leading

to token creation on all outgoing arcs when the transition is simulated to fire. In

backward analysis, though, any token on an outgoing arc is taken as evidence that the

Transition may have fired, which requires projecting tokens on each of the incoming

arcs. This is a relaxed constraint for cases of incomplete information. Likewise, in

41

the second circuit, forward analysis requires that only one of the Transitions must

have fired to create a token in the outgoing Place. In backwards analysis, any token

in the Place means either Transition may have fired and thus both possibilities are

reachable.

To run a backwards direction analysis, we can reverse the incidence matrices

(swap I+ and I-) and consult a secondary firing function that reflects this different logic

when running reachability analysis. Alternatively, we can keep a modified version of

the net that has been patched following the template shown in Figure 3-7 (unit arc

weights on added section). Then we can reverse the incidence matrices and run a

standard reachability analysis on this net. Both of these methods are computationally

expensive compared to reachability in the forward direction, since the new firing

semantics (and modified net alternative) lead to more state paths being followed.

The structural solution is unnecessarily expensive for our design, though. In our

task, we focus on the state of a limited number of Places (typically only one) per

analysis. Rather than analyzing an X-net to determine if a particular full marking is

Figure 3-7: Reachability Analysis Token Requirements

All All

Forward Analysis

Any

All Any

Backward Analysis Circuit Patch

1)

All2)

42

reachable from a given state, only a partial marking is relevant; the parts of a full

marking that do not influence the distribution of tokens over the Places in focus can

be ignored. This assumption allows us to devise a much more efficient algorithm.

We use a modified breadth-first search (BFS) on the net in the forward direction

from the target, at each step checking if any Place on the search path has a token in

the marking. There are two types of paths we cut short at a transition: a) those where

we know the transition cannot have fired due to a known lack of required tokens, and

b) those where we know the transition must have been inhibited. The pseudo-code is

shown here. Note with respect to case (a), in certain situations, we have evidence

that tokens do not exist and can specify this in the net by setting the related Place’s

capacity to 0. This is further explained in Section 4.4.

1. For each target X-net object (Place or Transition)
1.1. Push target on new Queue q
1.2. While q not empty (and timeout depth not reached)

1.2.1. Pull out object o
1.2.2. If o is a Place,

1.2.2.1. For each Transition t where I-[o,t] > 0
If

a) for each Place p where I-[p,t] > 0, cp ≠ 0 (i.e. p
is not guaranteed to have no tokens, which
would be specified by setting place capacity to
0), and

b) for each Place p where N[p,t] > 0 && ∉ t’
where I+[p,t’] > 0, M[p] < N[p,t] (i.e. t is not
guaranteed to be inhibited),

then push t onto q
1.2.3. If o is a Transition,

1.2.3.1. For each Place p where I+[p,o] > 0
If M[p] > I+[p,o],
then tag target as reachable and return to 1.
else push p onto q

2. Return reachability status of targets

43

3.5 Inferring target information

With the ability to transform detailed descriptions of events into active representations

on which analysis can be performed, we come back to our main goal of answering

complex event-related questions. For four question types (Justification, Temporal

Projection, Ability, and Hypothetical), we have developed analysis routines that

calculate causal chains from evidence to information targets.

While a query may ask about multiple pieces of information and our routines can

be modified to meet such a request, we currently focus on and optimize for single

targets per question. That target can be an event or a state or resource; for example,

the question could be about the act of running (did/can/will X run?) or it could be

about the state of reaching a goal. For basic event models, this translates into

analyzing evidence about the X-net Transition corresponding with an event in

question or the X-net Place corresponding with a state in question. When X-nets

model the control structure of events (Figure 3-5), questions can be about a fine-

grained internal state of an event, again corresponding to a specific Place.

In Chapter 4, we will discuss how to acquire and automatically place evidence into

a model. Next, though, we describe how to process evidence based on the question

type.

3.5.1 Justification

In Justification questions, Target Time (the temporal point at which the event in

question took place) is before Analysis Time (the point at which evidence is collected

and analyzed to answer the query). Thus, some available evidence related to the

event may have been generated before the target event (information about

preconditions and required resources) and some after (information about effects and

44

generated resources), both of which are potentially relevant to the task of attempting

to justify a claim in question.

Target Resulting
evidence

Causative
evidence

Forward Analysis Backward Analysis

Analysis Time

?

Target Time

To apply both sets of evidence, we combine forward and backward reachability

analysis, to find viable causal chains that would show the possible existence of the

state in question. Forward analysis can extend from the ‘earliest’ evidence in the

model up to the target (‘early’, in terms of causally preceding). Backward analysis can

extend from analysis time back to the target (evidence will not exist for events that

have not yet occurred).

We can handle negative evidence (evidence that a state did not occur or an action

did not take place) by disabling the corresponding Place or Transition. With a Place,

we can set its capacity to 0; with a Transition, we can set its rate to 0. This prevents

non-viable causal chains from being inferred.

If we find a viable causal chain, we can conclude that there is a possible

justification of the claim in question. With a stochastic X-net, we can calculate the

probability of that chain.

45

3.5.2 Temporal Projection

In Projection questions, Target Time is ahead of Analysis Time. We have evidence

from before Target Time, but not between Target Time and Analysis Time, nor after

Target Time.

Target Precondition / Resource-In
Evidence

Forward Analysis

Analysis Time

?

Target Time

Here we only use forward reachability analysis to find causal chains, using

evidence available before Analysis Time to project what may occur going forward, up

until the target event.

Negative evidence that relates to events occurring before analysis time is handled

similarly to Justification questions, by disabling the related Place or Transition.

Negative evidence that relates to events occurring after Analysis Time is ignored (the

rationale being, though it did not occur does not mean it will not occur).

3.5.3 Ability

The unique feature of Ability questions is that they take the motivation of the actor in

question out of the analysis. Analysis Time can come before or after Target Time.

The question can be asking about an actor’s ability to do an action in the future (can X

do Y?) or in the past (could X have done Y?). The latter has an underlying Justification

question and can be handled similarly. The former can be handled in one of two

ways: 1) taking into account evidence of previous occurrences of the action in

46

question, making the ceteris paribus assumption that previous occurrences do not

affect the actor’s ability to execute again; or 2) ignoring the evidence. The first choice

leads to similar analysis to Justification questions; the second, more restrictive choice

leads to similar analysis to Projection questions. An analyst choosing between the two

options can look to the resource requirements of the target action for guidance: actions

consuming few or easily replaceable resources, for example, may lead to a bias

towards (1) – an external Bayesian reasoning system can assist here.

Target Resulting
evidence

Causative
evidence

Forward Analysis Backward Analysis

?

Target Time

Motivation
evidence

(add) Analysis Time?

No matter the underlying question type, we need to make two manipulations to

the model to prepare it for reachability analysis. For all Precondition Places that are

tagged as representing motivation of the actor in question that come causally before

the target, we add a token and convert all outgoing arcs to Enable arcs. This removes

the influence of the motivation, or, more accurately, assumes motivation.

There is one exception: Preconditions that are positive preconditions to some

actions (linked by Enable and Resource arcs) and negative preconditions to other

actions (linked by Inhibitor arcs). To maintain the modeled mutual exclusivity

between the positive and negative cases, analysis has to be run under both cases: 1)

Resource and Enable arcs as Enable arcs, with Inhibitor arcs as Inhibitor arcs; and 2)

Resource and Enable arcs as Inhibitor arcs, with Inhibitor arcs as Enable arcs. The

47

analysis grows exponentially with the number of mutual exclusion cases related to the

motivation of the actor in question. (For most models, this will tend to be very small.)

Once the model is manipulated, if the underlying question is a Justification

question or we choose to use evidence of previous ability, we use forward and

backward reachability analysis, just as in the Justification question case. For

underlying Projection questions, we use forward analysis up to the target.

3.5.4 “What-if” Hypothetical

Ability questions can be construed as one type of hypothetical: if X has/had the

motivation, will/did X do Y? Our design can handle other similar questions: if X

has/had some resource or precondition, will/did/can X do Y? Specifically, our design

supports simple cases of hypothesized added evidence. We add the hypothesized

evidence to the known evidence and then analyze the underlying question, be it

Justification, Projection, or Ability. Analyzing both the base case and the hypothetical

and calculating the delta determines the salient effect of the hypothetical.

There is plenty of future work to be done here around more complex model

intervention (Pearl 2001), specifically about identifying stale evidence to be

manipulated given hypothesized new evidence. Such a solution is crucial to solving

counterfactuals.

3.6 Pathway classification

In Section 3.5, we described analysis routines to infer information targets described

within a particular model. Our active event modeling framework also lends itself to

analysis for classifying a partially observable model, based on its output, as fitting one

of a given set of hypotheses about the its structure and use. The questions that can be

48

answered are thus not only about a specific state or action within a known model, but

also about the makeup and use of the model itself. This additional question type

requires a different analytic approach, which we detail below.

3.6.1 Pathways and Hypotheses

Consider a complex dynamic system with multiple uses. Let us assume that each use

constrains the possible evolution trajectories. We refer to a set of possible evolution

trajectories that serve a particular goal as a pathway. A pathway is thus an

assemblage of complex events that share a single goal. For instance, a metabolic

pathway in biology refers to the set of processes that result in a specific set of

interacting proteins and possibly a set of outputs. Similarly an automobile production

pathway corresponds to a set of related processes that result in the production of an

automobile. We can encode one or more related pathways in an event model.

Assume we know multiple related different development pathways and we are

interested in ascertaining which of these pathways is actually being pursued in a

certain situation. We can call each such known type of pathway a hypothesis for the

unknown pathway instance. In many circumstances, only some of the individual

pathway processes (pathway segments) are observable, and further even those

segments that are observable can have noise in the measurements of relevant features

of the pathways. This can complicate analysis to disambiguate between the

hypotheses when attempting to classify the pathway of interest.

49

3.6.2 Hypothesis Disambiguation

If there are no shared segments between pathway hypotheses, we can just look at the

values of observable segments (whether they occur, or how quickly they proceed), and

based on this set, decide which of the hypotheses is being pursued.

The more interesting question occurs when some of the segments (both observable

and unobservable) are shared between the pathways. In this case, the question is

essentially one of hypothesis disambiguation. Given the data and hypothesis, we

construct a set of simulations under the different hypotheses and use this as training

data for a classifier. The features are pathway segment initiation and durations under

the different hypotheses. The classes are the different hypotheses. Using this data, we

can train a classifier (e.g. SVM, Naïve Bayes) to learn the mapping from features to

classes. Then in an unseen situation (test case), we can use the classifier to assign the

most likely class to the observed data.

3.6.3 Probes and optimal probe design

Given the default set of inputs for an unknown pathway, the observations of the

evolution of the pathway, made using the default set of observable pathway segments,

may be insufficient for hypothesis disambiguation. The observations expected under

each hypothesis for that input set may be indistinguishable.

The question then becomes one of constructing probes. Probes are external

events that are interventions designed to produces effects on the observable segments.

They can be passive (measurements on observables; e.g. monitoring an additional

resource) or active (structural or input changes to the pathway; e.g. changing the

resource profile for a specific segment). The effect of a probe can manifest itself

50

differently for each hypothesis, ideally creating better separation in the expected

observations and thus greater diagnosticity.

Probes inherently trade the cost of probing (how easy is it, how detectable it is,

monetary expense, etc.) with the value of the information obtained. We propose a

method for calculating the information value of probes. When weighted by the costs

of the probes (which are application specific), we can use the information value metric

to choose the optimal probe to help us answer Hypothesis Disambiguation questions. In

Chapter 7, we describe a multi-university project that use our event model to build

biological pathway simulations which are then used by another team (from CMU) to

build optimal probes for hypothesis disambiguation.

The mutual information between a hypothesis set and a probe

There are two sets of evaluation measures that have to be combined to produce an

overall system diagnosticity measure. One is the utility of the model and the second is

the utility of a probe given a model.

1. Model Utility: how good is the model in evaluating the posterior probability of

multiple hypothesis given a set of observable values.

2. Probe Utility: given the model, how diagnostic are a chosen set of noisy

measurements (passive probes) and interventions (active probes).

We define the overall system utility as a combination of the model and probe

utility. Next, we outline the evaluation metrics for each of the component utilities.

Evaluating model utility

Our basic question pertains to the degree to which the model is able to diagnose a

given sets of observations correctly as evidence of specific hypotheses. Our baseline

for evaluation is a prior assignment of probabilities to each competing hypothesis

51

(based on the current best information available). The question then is how much can

the model improve over the baseline if it has access to specific observations (time

series of values for specific observable variables).

The evaluation method is as follows:

1. An expert provides a prior over the hypotheses.

2. A case generator generates cases that are values of subsets of observables. The

case generator (independent from the model) may use a (weighted)

combination of:

a. Expert knowledge

b. Historical gold standard cases

c. Sampling techniques (Latin Hypercube Design, model MCMC)

(The first two have a high weight, the third low weight.)

3. The ability of the model to evaluate the hypotheses (given the prior) is

evaluated. We can use any of the following criteria:

a. Ordinal rankings

b. ROC curves2

c. Brier scores3

2 Curves of True Positive rate (TPR or Sensitivity) verses False Positive Rate (FPR = 1 -

specificity). Here we assume the prior over hypotheses is P(H) and the True Positive

probability () ()* (| ()) ()* .P TP P h P True P h P h TPF= =

3 Least Mean Square of misclassification. 2(() ())
i
P i X i−∑ , where ()P i and 1 ()P i− are

the classifier probability for a binary hypothesis and () 0,X i 1= is the correct hypothesis for

the instance i

52

d. AUC (Area under the ROC).

ROC and AUC are especially good: a) they are invariant to skews in the class

distributions (change over time); b) they allow discrete and continuous classifiers; c)

can be extended to the multiclass case, and c) per example costs can be incorporated.

They are widely used in medical diagnosis and in machine learning and classification

(Swets 1988; Mossman 1999; Lachiche and Flach 2003).

Evaluating probe utility

With the model utility measurement as a baseline, we wish to determine how much

we can improve diagnosticity by a careful design of measurements and interventions.

The value is of the information obtained by the probe is thus this improvement of

diagnosticity.

There has been an explosion of statistical approaches to measuring value of

information in recent years within the fields of machine learning and planning (e.g.

NIPS 2005 Workshop on Value of Information in Inference, Learning and Decision-

Making). We propose the use of entropy reduction for determining the value of

probes.

The basic method for measuring entropy reduction is determining the difference

between the prior uncertainty over a given set of hypotheses, and the posterior

uncertainty over those hypotheses after the use of a given probe (measurement or

intervention). Take ()H C as the prior entropy over the different hypotheses C

. The conditional entropy is defined as the posterior entropy given the probe, (ic C∈)

P , and the result of the probe is a set of observables Q with post probe

distributions of their values (

O∈

iq Q∈).

53

The reduction in uncertainty (the probe utility) is thus given by the mutual

information (,)I C P between the hypothesis C and the probe P :

 (,) () (|)I C P H C H C P= − (3.1)

Decomposing the terms, we get:

1() ()*
()ic i
i

H C P c log
P c

=∑ (3.2)

Using the chain rule, we decompose the second term:

 (|) (|) (|)H C P H C Q H Q P= + (3.3)

Here, the first term is the conditional entropy in the hypotheses (C) given the

observation set (Q), and the second term is the sensor model that provides the

conditional entropy of the observations (Q) given the probe (P).

Expanding the first term of Equation (3.3), we get:

 (|) (|)* (|)
jq j jH C Q P q Q H C q=∑ (3.4)

1(|) (|)

(|)ij c i j
i j

H C q P c q log
P c q

=∑ (3.5)

Combining Equations (3.4) and (3.5) we get:

1(|) (|)* (|)

(|)j iq j c i j
i j

H C Q P q Q P c q log
P c q

=∑ ∑ (3.6)

Using the definition of entropy,
1(|) (|)

(|)
H Q P P Q P log

P Q P
= we get the overall

conditional entropy of the hypothesis given the probe ((|)H C P).

1 1(|) (|)* (|) (|)

(|) (|)j iq j c i j
i j

H C P P q Q P c q log P Q P log
P c q P Q P

= +∑ ∑ (3.7)

Plugging this back into Equation (3.1), we get the total change in entropy for the

probe given a model which is the diagnosticity of the probe.

54

Still to be explained is the sensor model, (|)P Q P . The two types of probes,

measurement (passive probe) and intervention (active probe), have different sensor

models, which we describe in turn.

For an intervention (into the real world), we do not know which observables are

going to be impacted, nor how they will be impacted (what the new distribution is

over the impacted observables). By contrast, in the case of a measurement, we know

(by definition) which variables are being observed and can have a model of

measurement errors to generate the new distribution over possible values of the

observed variables.

Thus, for interventions, there is uncertainty over which variables are impacted

and the distributions over the observables given the impacted variables. Let be the

set of observables, and

O

(|)P Q P ()Q O∈ the probability of an observable variable Q

being impacted by the probe.

 (|) (|)* (| ,)
ji q QQ O

P Q P P Q P P q Q P∈∈
= j∑∑ (3.8)

This is the sensor model of the intervention probe and its impact on observables.

This model has to be designed using understanding of the effect of the probe on the

system. The model can be explicit or can be acquired from domain expertise.

In the case of a measurement, we know which variables are impacted (Qs), leading

to:

 (|) (| ())
jm q Q j jP Q P P q Probe q∈=∑ (3.9)

Here is the measurement error model (what is the probability

that the value obtains when a probe returns a value). This model can come

(| ())jP q Probe q

jq

j

jq

55

from domain expertise and sensor models of measurements, but also from model

exploration to estimate the measurement parameters.

Plugging Equation (3.8) as the value of into Equation (|)iP Q P (3.7) gives us the

measure of the diagnosticity of an intervention. Plugging Equation (3.9) as the value

of into Equation (|)mP Q P (3.7) gives us the measure of the diagnosticity of a

measurement probe.

Calculating the optimal probe

We can thus use Equation (3.1) (expanded, as above) to test the value of information

of each potential probe. Weighting (,)I C P for each P by the cost of P , we can

calculate the overall utility for the probes, and select the best one for a given question.

Chapter 7 details the use of the pathway model in a multi-university effort to

determine optimal probes for a complex set of biological pathways.

56

4 Bridge to Applications

Chapter 3 laid out the key theoretical components of our event modeling and

reasoning framework, as well as our goals for utilizing this platform to answer

complex-but-common questions related to the structure of events (Section 3.2). To

fulfill our goal and build applications to answer such question, though, requires the

addition of a number of tools and techniques for managing and interacting with event

models.

Our design uses a structured representation of language based on FrameNet

frames to mediate between natural language and event models (4.1). Our

representation extends the general structure of frames with domain specific ontologies

and named entities, allowing us to better constrain the information that is extracted

from a question and any text used to answer it (4.1.3). Frames of this form extracted

from a question can be used for selecting a model of the event in question (4.3).

Furthermore, frames of this form extracted from evidence related to a question can be

used to add data to a pertinent model (4.4).

The ability of an application to process questions using our representation requires

certain preprocessing of the natural language input, which we have identified (4.2).

We have also devised a mechanism by which an application can extract information

related to an answer, after it has been inferred using our event reasoning framework

(4.5). In addition, we have guidance for model designers on methods to populate the

event ontology, which is necessary for any event reasoning to take place using our

framework (4.6).

This work comes to fruition in the applications we describe in Chapters 5 (Answer

Selection), 6 (Question Answering), and 7 (Pathway inference).

57

4.1 Interface between language and models

Event analysis requires a dynamic event model that a) captures the structure and the

set of possible evolutions of an event and b) incorporates state information resulting in

a specific instantiation for simulation and analysis. An application thus need a means

of finding an appropriate event model for a desired analysis, and a means of finding

and incorporating state information into the model.

Natural language is both the easiest form for users to specify their analysis

requests and it is also the form in which significant amounts of event-related

knowledge is available (corpora, etc). Unfortunately, natural language is capable of

encoding an unrestricted set of concepts in a wide variety of forms. In its raw form, it

is too unwieldy to map directly to models; we need a formal, precise intermediate

representation to work with, instead.

Fortunately, there are now robust efforts to develop open domain semantic

resources that we can exploit for this purpose. As we have discussed, events

inherently have frame semantic structure. We chose frames as the intermediate

structured language in our design. We can use this structured representation on two

fronts: to describe queries and data, and to describe event models. In our frame-based

approach to answering event-related questions, we use FrameNet (Fillmore, Johnson

et al. 2003), which we explore next.

4.1.1 Background on Frames and FrameNet

In 1976, Charles Fillmore proposed that the meaning of a word in a phrase is based on

its relation to its semantic frames (Fillmore 1976). Frames he defined as “schematic

representations of the conceptual structures and patterns of beliefs, practices,

institutions, images, etc. that provide a foundation for meaningful interaction in a

58

given speech community” (Fillmore, Johnson et al. 2003). For us, frame annotations

of a phrase are formal, precise structures that can capture the meaning from the

words in the phrase and the relational form that binds them together.

In our work, we employ FrameNet, a lexico-semantic database of frames in the

English language. The FrameNet project works to identify significant frames in

language, their frame elements, as well as lexemes that evoke those frames. In

addition, the project maintains a corpus of annotated sentences that demonstrate the

use of these frames in language.

FrameNet is a mature research project devoted to the specification and analysis of

frames in English and other languages. A number of other groups research tools to

improve and simplify automated frame annotation of natural language text (e.g.

University of Saarlandes’ Shalmaneser tool). Coverage and performance of these

resources should only improve over time.

FrameNet frame attributes

FrameNet frames have a number of key components. Each frame is tagged with a

name: a mnemonic descriptor related to the target concept represented. In addition,

frames have an argument structure of thematically-tagged variables known as Frame

Elements (FEs), each describing the types of entities that can participate in the frame.

Certain FEs are labeled as being core to the frame, having the property that without a

participant semantically filling the specified role, the event described in the frame

could not occur. Some FEs have Semantic Types that provide guidance of acceptable

roll fillers using very high level ontological categories (mappable to WordNet’s synset

hierarchy). FrameNet also documents frame-to-frame relations, including inheritance,

causation, part-of, perspectivization, and temporal ordering. Each frame comes with

59

the Lexical Units (LUs) that evoke the frame, and annotated sentences

demonstrating the use of the frame in various syntactic forms. A full description of

these attributes can be found here (Ruppenhofer, Ellsworth et al. 2006).

The end result is a frame like Commerce_buy, which describes “a basic

commercial transaction involving a buyer and a seller exchanging money and goods,

taking the perspecitive of the buyer”. It is evoked by lexical units like ‘buy’ and

‘purchase’. (FrameNet: http://framenet.icsi.berkeley.edu)

Frame: Commerce_buy
 Element (core): Buyer
 Element (core): Goods
 Element: Duration (Type: Duration)
 Element: Manner (Type: Manner)
 Element: Means (Type: State_of_affairs)
 Element: Money
 Element: Place (Type: Locative_relation)
 Element: Purpose (Type: State_of_affairs)
 Element: Purpose_of_goods
 Element: Rate
 Element: Reason (Type: State_of_affairs)
 Element: Recipient
 Element: Seller (Type: Source)
 Element: Time (Type: Time)
 Element: Unit

 Inherits From: Getting
 Is Inherited By: Renting
 Perspective on: Commerce_goods-transfer

Frame annotations

Frames are, in and of themselves, abstract schemas. It is through frame annotation

that meaning in a sentence is extracted in frame form.

Take, for example, the sentence “Alice and Bob purchased a car from the dealer at

the Ford showroom.” Evoked by the predicate, “purchase”, a frame annotation of this

sentence will result in the frame:

60

Frame: Commerce_buy
 Buyer: “Alice and Bob”
 Goods: “a car”
 Seller: “the dealer”
 Place: “the Ford showroom”

This frame instance binds a subset of its elements to words in the sentence that fulfill

corresponding roles. In this case, “Alice and Bob” are determined to fill the Buyer slot;

“a car” fills the Goods slot, “the dealer” is the Seller, and “the Ford showroom” is the

Place. The frame thus captures the actors, the theme, their roles, and the relations

between them in this sentence.

Frames abstract away (or provide the means to abstract away) from a number of

natural language idiosyncrasies, including:

• Predicate word choice – collapsing synonyms to a single representation

• Syntactic phrasing – collapsing various syntactic realizations of the same

concept

• Perspective of actors – collapsing to the unperspectivized event

The above sentence could have used the predicate “to buy” rather than “to purchase”,

without affecting the annotation. So too could it have moved some of its clauses

around, like moving the location to the beginning (“Alice and Bob, at the Ford

showroom, purchased a car from the dealer.”), without significant effect to the

meaning of the sentence and thus no change to that frame annotation. Moreover, it

could have been written from the perspective of the dealer selling Alice and Bob a car,

which would connect back to the same unperspectivized ‘Commerce_goods-transfer’

frame that ‘Commerce_buy’ does, with approximately the same role bindings.

(Methods used in the annotation process are beyond the scope of this dissertation.)

61

4.1.2 Frame matching

We use frames with bindings as the functional units for linguistic descriptions in our

designs: for event-related queries, for evidence required for deriving answers to a

query, and for event models.

Frames provide us with structured representations of language. We can compare

and match not only which frame is used to describe two pieces of data, but also the

bindings of roles essential to a particular analysis. This allows us to extract crucial

relational information from language to select and instantiate event models.

In the simplest case, we can attempt to match query frames to evidence frames

directly. To demonstrate the approach and its drawbacks, let us consider one of the

questions that was used in an evaluation we will discuss later (Chapter 6), regarding

the subject of weapons production:

What countries have provided Iran with ballistic missiles and
missile-related technology?

The passage provided with a possible answer to the question was:

The continued willingness of the Democratic People's Republic
of Korea (DPRK), the People's Republic of China (PRC), and
Russia to provide Iran with both missiles and missile-related
technology that at the very least exceed the intentions of the
Missile Technology Control Regime (MTCR). This has been
complemented, to a lesser extent, by the willingness of other
nations (e.g., Libya and Syria) to cooperate within the realm of
ballistic missile development.

Frame analysis of the question leads to the following pertinent frame:

62

Frame: Supply
 Supplier: “What countries”
 Recipient: “Iran”
 Theme: “with ballistic missiles and missile-related
 technology”

and analysis of the provided passage leads to this frame:

Frame: Supply
 Supplier: “the Democratic People's Republic
 of Korea (DPRK), the People's Republic
 of China (PRC), and Russia”
 Recipient: “Iran”
 Theme: “with both missile and missile-related
 technology”

The annotation extracts structures that humans can see yields an answer to the

question posed: the relational constraints of the question frame are fulfilled by the

passage frame. Unfortunately, while we can automatically determine that the frames

are of the same type (Supply), the role bindings are still unstructured and do not

match up perfectly. The Recipient and Theme bindings refer to common objects

across the two frames, but in the case of the Theme, use slightly different strings.

Matching frames to frames directly is insufficient for our needs.

4.1.3 Linking entities to bindings

We would like to be able to match related frames, but, as mentioned above, raw

frame annotations bind strings to frame roles. There are many surface realizations of

the concepts underlying the strings, which are difficult to anticipate in advance,

making it difficult to find links between frames that match in meaning but not form.

Furthermore, frame representations of natural language phrases do not automatically

63

incorporate domain related knowledge such as domain ontologies and constraints. To

get to a form for our intermediate representation that provides for robust semantic

comparison between items, we extended FrameNet frames to incorporate domain

ontologies of entities that capture relations between entities.

Named entity classes

Named entity (NE) tagging provides an off-the-shelf solution for collapsing strings to a

unified representation of underlying concepts, in this case named entity types. We

can link the text string bound to frame elements with the NE class associated with the

semantic head of the string. Unfortunately, our investigation of easily available

named entity recognizers (NERs) found the range of classes produced by each to be

inadequate. For example, the ACE program specifies five entity types (Person, Geo-

Political Entity, Organization, Facility, and Location); MUC-7 specifies seven; IREX

has eight (Chinchor 1998; Sekine and Isahara 2000; Doddington, Mitchell et al. 2004).

With the number of classes in the range of five to ten, and the fact that NERs are

technically only supposed to capture rigid designators (like proper names), the best

frame-and-entity annotation of our question, “What countries have provided Iran with

ballistic missiles and missile-related technology?”, would be:

Frame: Supply
 Supplier: < >
 Recipient: <Geo-Political Entity>
 Theme: < >

with analysis of the passage providing the frame:

64

Frame: Supply
 Supplier: <Geo-Political Entity, Geo-Political Entity,
 Geo-Political Entity>
 Recipient: <Geo-Political Entity>
 Theme: < >

(As here, we use brackets to denote entity classes. These classes shown are ACE tags.)

Obviously, the representation is impoverished in both breadth and depth of

coverage of concepts. These named entities are insufficient for representing important

fine-grain distinctions in any particular domain.

Hierarchical domain ontology

Our design, instead, requires the use of fine-grained hierarchical domain ontologies

that cover detailed information about the domains in question. Such an ontology

captures general and specific types and super-type/sub-type relationships, amongst

others.

For our evaluation dealing with the topic of Weapons Production, we developed

our own hierarchical concept ontology of approximately 250 classes, up to seven

levels deep, coded in OWL (McGuinness, Van Harmelen et al. 2004). It encodes

inheritance relationships, as well as part-of and representative-of relationships that

provide a basic level of support for metonymy reasoning. Here is a partial snapshot of

the ontology:

65

Thing
 ├── Action
 ├── Agreement
 ├── Date
 ├── Design
 ├── Infrastructure
 └── Locale
 ├── Disposal_Facility
 ├── Education_Facility
 ├── Manufacturing_Facility
 ├── Military_Base
 └── Political_Locale
 ├── City
 └── Country
 ├── Afghanistan
 ├── Australia
 ├── Austria
 │ ...
 ├── China
 │ ...
 ├── Iran
 │ ...
 ...
 ...
 ...

The level of detail of the ontology, frame and ontological entity analysis of our

example question leads to the following frame:

and analysis of the passage leads to this frame:

Frame: Supply
 Supplier: <Country>
 Recipient: <Iran>
 Theme: <Ballistic_missile>

Frame: Supply
 Supplier: <North_Korea, China, Russia>
 Recipient: <Iran>
 Theme: <Missile>

66

With the domain ontology, we are able to automatically reason that a) North Korea,

China, and Russia are all subtypes of Country, and thus match with the question

frame’s Supplier element; and b) that ballistic missiles are a type of missile; thus the

passage frame’s theme may be relevant.

Access to hierarchical domain ontologies and tools to tag strings with ontological

entities is essential for effective frame matching.

To provide a starting point for domain ontology creation, there are publicly

available ontologies to use and extend, including WordNet’s synset hierarchy, the

SUMO/MILO ontology, and Cyc (Lenat and Guha 1990; Fellebaum 1998; Niles and

Pease 2001). In our work, we only did a cursory exploration of using these ontologies;

it is an area for future work.

4.1.4 Semantic relevance matching

A structured representation of language content facilitates the comparison of questions

and data, as we have shown. For a representation using frames with entity fillers, we

have developed a simple, formal method of comparison to determine similarity and

relevance of a candidate frame to a target frame. (Here, the target frame represents

the search template that we use to find data of relevance; potentially relevant data is

represented by the candidate frame.)

We require that a target frame and candidate frame match in terms of frame name.

Then, for each frame element (FE), we look at the entities bound and compare and

score using a set of scoring parameters (penaltygen, penaltyspec, penaltymiss, penaltymismatch;

different penalties can be used for core FEs and non-core FEs). FE match scores range

from 0 to 1, real-value.

67

1. If the entities match perfectly, that is a full FE match.
scoreFE = 1

2. If the target’s entity type is more general than the candidate’s entity, the
FEs match imperfectly, and the FE match score is penalized, proportional
to the degree of separation in the type super/sub-type hierarchy.
scoreFE = (1 - penaltygen)deg

3. Similarly, if the target’s entity type is more specific than the model
entity’s, the FEs match imperfectly, and the FE match score can be
penalized, proportional to the degree of separation in the type hierarchy.
scoreFE = (1 - penaltyspec)deg

4. If the target frame has an element filled that the candidate frame does
not, either the FE match is 0 or the full frame match is rejected or
otherwise severely penalized.
scoreFE = 0 | scoreFrame = 0 | scoreFrame -= penaltymiss

5. If the candidate frame has an element filled that the target frame does
not, the FE is ignored.

6. If the target’s entity and candidate’s entity do not match and have no
inheritance relationship, either the full frame match is rejected or it is
severely penalized.
scoreFrame = 0 | scoreFrame -= penaltymismatch

Note that relevance is asymmetric, as a candidate frame describing a state or action

more specific than a target frame may be deemed more relevant than a case where a

candidate frame is more general than a target. Frame match scores are normalized

sums of their constituent FE match scores (normalized to 1 by dividing by number of

FEs in target frame).

The algorithm can be extended to use relations beyond super-type and sub-type to

establish a partial match between entities. As mentioned, relations like part-of and

representative-of, are two that we have explored that help in many metonymic

situations. (<George Bush> instead of <United States>, for example, matching a

<Country> entity restriction.)

4.1.5 Linking event scenario models to frames

The ability to use frames to directly connect questions about complex events to

‘smoking-gun’ answer data only exists in limited situations. Our work focuses on

68

using simulation and dynamic event analysis to facilitate the use of indirectly related

information to answer such queries. We design for the use of frame annotated queries

to guide the selection of a relevant event model; this model, in turn, provides guidance

on the (frame annotated) data that can be used to answer the question.

As briefly mentioned in Section 3.4.2 (Figure 3-4), our dynamic models contain a

number of frame ‘hooks’ that attach to the Places and Transitions. These frame hooks

act as linguistic descriptions of the states, resources, and actions represented by the

Places and Transitions. For our purposes, the hooks are also patterns that match the

entity-bound frames of questions and data. The hooks themselves are entity-restricted

frames. We distinguish “entity-bound” frames from “entity-restricted” frames to

denote the difference in derivation. “Entity-bound” frames are typically extracted

from analyzed text and are as specific as possible in terms of the constituent frame

and entities used to represent the desired meaning. “Entity-restricted” frames are

defined at the time of model creation, and are as general as possible, yet specific

enough to match only what is relevant to the model. They are structurally the same:

frames with entity role fillers linked to hierarchical domain ontology entities.

When designing a model, a modeler has a desired meaning in mind for each state,

resource, and action they depict. Attaching frame hooks to these units formalizes the

meaning such that the model can interact with queries and data. With the ability to

select specific frames and entities to describe each unit, the modeler can calibrate

which information matches and which information is deemed too general or irrelevant.

Continuing our weapons production example, an event model can depict the high-

level process of manufacturing a weapon or the specific process of manufacturing a

ballistic missile. The first model is relevant to a all weapons, while the second is only

relevant to ballistic missile production. The same frame, Manufacturing, can be used

69

in describing both models, but its Product element should be restricted to the

ontological entity Weapon in the first case, and Ballistic_missile in the second.

Abstract models

A SME may wish to design an abstract model, like one of the process of a person

buying a car, that can cover multiple instances with different buyers and different

cars. To do so requires not just using a general entity category restriction in all

relevant frame hook slots across the model, like <Person> for all buyer slots. Also, it

requires linking all such restrictions together such that if one restriction is tightened,

all related restrictions are tightened – if we wish to specialize the Person Buying Car

scenario model to apply specifically to Joe, any place the buyer has a role should have

a tightened restriction of <Joe>.

Our approach is to use a layer of indirection, setting entity-restrictions in frame

hooks to an entity category variable; subsequently, that variable can be set to, in this

example, originally <Person>, then <Joe>.

Frame: Commerce_buy
 Buyer: v_buyer
 Goods: v_car

Using this technique, it is easy to manage interrelated entity restrictions across a

model. Note that this only works in one direction; models can be made more specific

Frame: Commerce_pay
 Buyer: v_buyer
 Goods: v_car

Specialize
v_buyer = <Person> = <Joe>
v_car = <Car> = <Ferrari>

70

in their entity restrictions and still be structurally accurate, but that need not be true

in the reverse.

Abstract models are a key component of our overall event modeling framework,

providing a tool for tractable coverage over multiple event instances without the need

of a SME to create unique models for each instance.

4.2 Determining data and simulation goal: Question Analysis

Before simulation and event analysis can commence in the service of answering a

question, certain processes are required of other systems to analyze the question. For

one, the frames and entities in the question have to be extracted, so as to provide a

form that can be compared to model frame hooks and frame-encoded data. In

addition, the question type has to be ascertained, be it Justification, Prediction, Ability,

Hypothetical, or Hypothesis Disambiguation. Also, some determination has to be made

on what, if any, post-processing is required to extract the exact answer from the

structure resulting from event simulation.

Question Frame and Entity Analysis

Question frames (extended with domain entities) can be used to help determine which

event model out of a set would be most useful for analyzing an event in question. It

can furthermore pinpoint which action or state in that model is specifically in question.

To acquire frames and entities from a raw text query requires extraction tools for each.

Many groups are actively working in the area of semantic parsing (aka semantic

role labeling, semantic analysis), and for our work we wished to use the best existing

tool to extract frames from text. Specifically, we looked to the work of University of

Texas at Dallas (Harabagiu, Bejan et al. 2005) and Saarland University (Erk and Pado

71

2006) for two approaches for automated frame analysis. Our work used the resulting

analyses of the UTD system, as well as hand generated, gold standard parses by the

FrameNet group.

Entity tagging is also an active area of research. Stanford University has recently

done some interesting work (Klein, Smarr et al. 2003; Krishnan and Manning 2006), as

one example. Unfortunately, no off-the-shelf approaches were able to perform with

sufficient accuracy at the fine-grained level we needed. For our work using our

Weapons Production ontology, we used a customized in-house entity tagger created by

a member of our research group, Javier Rey. We used this tagger in conjunction with

hand generated and corrected analysis.

Question Type Classification

The question type directs which event analysis method is used, as described in

Section 3.5. While the complete technique of classifying the question type of a raw

text query is outside the scope of our research, note that there are a number of lexical

cues that highly correlate with certain question types. For example, ability questions

typically have the words “can”, “could”, “able”, “capable”, etc. in them. Hypotheticals

have words like “if”. Predication questions are frequently in the future tense. For our

work, we used mostly hand generated question type analysis, created internally and

by UTD.

Support for peripheral event-related questions

Many event-related questions ask a fundamental question about whether a state or

action did, can, or will exist. Many other event-related questions ask about a specific

detail of an event that is not critical to simulation or other dynamic analysis, but may

be contained in structured data generated by simulation. An example of this might be

72

a question about the location of an event (“where x”). To take structured data

resulting from an event analysis and extract from it one particular piece of interest

requires a postprocessing step to be applied to that structure.

That step can be a relational lookup, like for a location. It can be a token count,

like for a question about the size of a resource (“how many”). It could also be a simple

token existence test, like for a basic Justification question (“did x”). For example, in the

question “Did Joe buy a car?”, the test is simply, was the Joe buy car action reached?

Alternatively, the question could be, “What car did Joe buy?”, in which case the answer

should be a relational argument, specifically the information bound to the Goods

frame element of the Commerce_buy frame attached to the Joe buy car action.

In this work, we delegated post-processing of data for these type of questions to an

external presentation engine that used hand generated functions.

4.3 Selecting Models for Questions

To use event analysis to assist in answering a question, we require a method to select

an event model based on the question being asked. Our approach, as alluded to in

Section 4.1.5, is to search for matches between the frame representation of the

question and frame-form descriptions of our event models in our event ontology.

Scoring models

Our simple heuristic approach extends scoring semantic relevance of an individual

frame to another, to scoring a match of frames from a question to frames from a

model. The easiest method is to look at question frames as one set and model frames

(all the frame hooks connected to states, resources, and actions for a particular

dynamic model) as another set, and then calculate the largest set intersection. Scoring

73

a set intersection is taking the sum total of frame matches (Section 4.1.4) between the

sets.

For each model
For each question frame

Find potential matches of qFrame in model
totalFrameScore += thisFrameScore

Score[modelID] = totalFrameScore
Return argmaxID Score[ID]

This method values a match between any question frame and any event model frame

equally, not taking into account whether the model frame represents a peripheral or

core component of the model. The scoring approach can be further strengthened by

weighting the value of a frame match by a measurement of the relative relevance to

the model of the particular state/resource/action represented by the event frame

matched. This can be dynamically approximated by the centrality of the model

component in the model graph; or it can be supplied as an extra model parameter by

the model designer. The highest scoring event scenario model is used for analyzing

the event in question.

Instantiating an abstract model

Abstract models (Section 4.1.5) must be instantiated after selection, binding the model

to the specific event instance asked about in the question. This is carried out based on

the frame matches used to select the model. For each frame match between question

frames and model frames (i.e. the frame match score is above zero), the frame element

restriction of the model is compared to the frame element binding of the question, and

altered according to the following algorithm:

74

1. For each pair of matching frames {modelFrame, questionFrame}
1.1. For each FE, fe, of the questionFrame

1.1.1. If questionFrame[fe] binding is more specific than
modelFrame[fe] restriction,

1.1.1.1. If modelFrame[fe] restriction is basic domain entity,
Set modelFrame[fe] restriction to questionFrame[fe]
binding

1.1.1.2. If modelFrame[fe] restriction is through a variable,
Set modelFrame[fe] variable to questionFrame[fe]
binding

1.1.2. If modelFrame[fe] restriction does not exist,
Set modelFrame[fe] restriction to questionFrame[fe] binding

Note, as stated in Section 4.1.5, restrictions in a model are only made more

specific; never more general.

4.4 Acquiring and Incorporating data

An event model selected for a question, whether abstract or specific, requires data

about the event in question in order to provide analysis. These data can be pieces of

contextual background information (e.g. Alice owns a car) or control information (e.g.

at the time to be analyzed, Alice is at home). Combined, we can simulate and analyze

the particular event at a particular state to infer new information (e.g. Alice is able to

drive to work).

Data for analysis

Pieces of information in X-nets are represented by tokens. These tokens represent

either, a) a condition being satisfied, or b) a quantity of a resource, depending on the

meaning of the Place where it resides (recall Section 3.4.2). The goal in searching for

information about an event instance is finding evidence that informs the model about

the state or resource represented by each Place of interest in an X-net.

75

4.4.1 Acquiring relevant data through query expansion

In selecting a model based on question frames, not only is a model chosen, but also

information targets within the model: specific Places and Transitions within frame

hooks that match the query frames. If direct evidence about these information targets

can be found, no further event reasoning is needed to answer the question. However,

for those situations where X-net analysis is needed to infer these information targets,

the analysis routines (described in Section 3.5) require contextual information. The

more information that can be added to an X-net simulation, the more thorough an

analysis can be completed.

Models, though, can be large, and processing information requests about every

aspect of a large model can be expensive. Each piece of data with the potential of

enlightening an X-net about contextual information sought, requires frame and entity

extraction. To limit the scope of information requests, we can dynamically select

subsections of the model most relevant to the information targets of the question.

Relevancy of a particular Place or Transition in the X-net is directly proportional to

the causal influence that X-net object has to the X-net objects representing the

information targets.

We select the contextual information targets using a depth-limited breadth-first

search:

76

1. Initialize new Set queryExpansion
2. Push all query targets on new Queue currentExpansionBwd
3. For depth = 0..max // search causal predecessors

3.1. Initialize new Queue nextExpansion
3.2. For each target object o in currentExpansionBwd

3.2.1. Add o to queryExpansion
3.2.2. For each object o’ where

 (if o is a Place) I+[o,o’] > 0 (or)
 (if o is a Transition) I-[o’,o] > 0,
add o’ to nextExpansion

3.3. currentExpansionBwd = nextExpansion
4. Push all query targets on new Queue currentExpansionFwd
5. For depth = 0..max // search causal successors

5.1. Initialize new Queue nextExpansion
5.2. For each target object o in currentExpansionFwd

5.2.1. Add o to queryExpansion
5.2.2. For each object o’ where

 (if o is a Place) I-[o,o’] > 0 (or)
 (if o is a Transition) I+[o’,o] > 0,
add o’ to nextExpansion

5.3. currentExpansionFwd = nextExpansion
6. Return combined set of frame hooks from queryExpansion set

The algorithm selects all of the X-net objects that have a causal path to the objects

representing the information targets of the query, within a certain path distance. (The

depth parameter quantifies the tradeoff between search completeness and expense.)

These context objects are chosen because of their potential affect on the analysis

routines used to infer the question targets. The algorithm harvests the frame-hooks

for each object, combining them into a single set. This set represents a query

expansion (beyond the original information targets), containing structured information

requests in entity-restricted frame form for contextual data required for analysis.

Note that the algorithm should be adapted slightly when selecting contextual

information targets for answering a Temporal Projection question. As discussed in

Section 3.5, our method to analyze models for Projection questions only touches X-net

objects that are causally before the objects of the analysis targets. As such, sections 4

and 5 are not required in the above algorithm, because that information is not used.

77

4.4.2 Incorporating data

Data found matching information targets of a model (from the question or from

context), can be incorporated into the model in the form of tokens or changes to the

behavior of the model. When doing so, it is important to distinguish evidence that

explicitly supports a condition being satisfied, evidence that explicitly states that a

condition is not satisfied, and a situation where there is no evidence. We have

developed the following table for incorporating data when matches are found between

model query frames (e.g. frames from a model-based expanded query, as above) and

data frames (e.g. frames extracted from data retrieved based on the expanded query):

1. If the query is about a state,
evidence of the state existing will result in a token added to the
corresponding Place.

2. If the query is about a resource,
evidence of the amount of resource existing will result in a comparable
number of tokens (in N0) added to the corresponding Place.

3. If the query is about an action,
evidence of the action taking place will result in a pseudo-‘firing’ of the
corresponding Transition: without consuming tokens on incoming arcs,
resources and states created by the action are added to the Places on the
outgoing arcs. (recall X-net semantics: Section 3.4.1)

4. If the retrieved evidence is explicitly negative
(e.g. the queried fact is not true; there is no resource)
• For Justification questions:

o a state or resource:
the capacity of the corresponding Place is set to 0

o an action:
the firing rate of the corresponding Transition is set to 0

• For Non-Justification questions:
o a state or resource:

any existing marking is removed from the corresponding Place
5. If there are multiple references to evidence about:

• a state: only one token is added
• a resource: the largest referenced quantity is used
• an action: the action is only fired once

78

4.5 Extracting and composing answers

Applications using our event reasoning framework require a means to extract data

relevant to the answer of a question after completing an analysis of the underlying

event. While we are not tackling natural language generation, we have developed a

method to return more detailed and complete answer data.

Users rarely want a one bit answer, “yes” or “no”, to a question; instead they

frequently wish for a small amount of context that provides insights to answer.

Similar to the query expansion algorithm described above in Section 4.4, it is possible

to dynamically and automatically select a set of contextually relevant actions and

states closely causally related to (and including) the state or action in question. We

call this the Answer Structure. The Answer Structure is a feature structure with slots

for information related to each of the designated contextually relevant actions and

states. The goal of a system can then be to fill this Answer Structure, instead of just

the information directly targeted in the question. After all analysis is complete,

information about each element of the Answer Structure can be returned. This comes

in a few flavors: the information was retrieved from a data source, the information

was inferred through X-net analysis, or no information was found. The last group (no

information found) can act as feedback and can lead to a second round of searching

for the missing information (e.g. from additional resources). How the elements of the

Answer Structures can best be presented is application dependent and an open

question beyond the scope of our research.

4.6 Building Models

Event scenario models can represent a wide range of situations – everything from

basic embodied actions, like walking, grasping, kicking, etc., to higher level processes,

79

like device manufacturing, to specific historical accounts, like the D-Day Battle of

Normandy in WWII. We require a tractable solution to populate our event ontology

with models such as these, as needed. This entails a means to manually generate

models and/or mechanisms to semi-automate or fully automate the creation of basic

models within a domain of interest.

4.6.1 Manual generation

The process of creating a model can be split into two stages: describing the event

structure, and providing the frame hooks to ground the events in structured language.

A Subject Matter Expert (SME) is required for each.

A model designer needs either a tool for describing events (Section 3.3) and a tool

for converting the description into an X-net (Section 3.4.2), or tool to directly create X-

nets. In addition, the designer also needs a tool to load descriptions or X-net models

and append frame hooks to individual event objects.

PIPE2 Editor and OWL Translator

For our work, we modified a version of the Platform Independent Petri-net Editor 2

(PIPE2) (Akharware 2005), a Petri Net editing package, as described in Section 6.6.

This provided us a GUI for the creation, saving, loading, and editing of X-nets. Our

package also provides for adding entity-restricted frame-based linguistic descriptions

of each Place and Transition in a model.

In addition, a member of our team, John Denero, created an OWL-S–to–X-net

translator, providing the means for event descriptions encoded in OWL-S (the

semantic markup language for services: Martin, Burstein et al. 2004) to be translated

into X-nets. This allows for 1) event models to be described using popular packages

80

like the Protégé Ontology Editor (http://protege.stanford.edu); and 2) those

descriptions to automatically generate X-nets.

Model-language design approach

In creating models, each model element requires a linguistic description using frames

and entities that describe the represented state, action, or resource. We used a couple

of techniques to generate those entity-restricted frame descriptions.

For frames, first, we take a word or a few different words that describe the state or

action and look up which frame(s) they evoke, using FrameNet’s lexical-unit-to-frame

map. Then, for each frame, we use the FrameNet frame-to-frame relations to find

related frames that may also be employed in language used to describe this action

(many related frames will be relevant to the event at hand, some will not).

Once a set of frames is selected, the frame elements need to be restricted with the

appropriate domain entity category, the most general entity category that still restricts

the model to appropriate data. We use keyword search to find entities in our domain

entity ontology.

4.6.2 Auto-generation

Frame Translation

As mentioned, events have frame semantic structure: frames have many of the same

parameters as events, allowing us to directly map between frame elements and event

parameters (see Chapter 3). This also means we can use pre-existing frames as a

starting point to generate primitive event models. With FrameNet available in OWL

format, we can use the OWL-S-to-X-nets tool described in the previous section to

semi-automate this translation process. There are challenges to this, though, as

81

FrameNet tags do not automatically map onto event model parameters. This is laid

out in greater detail in (Chang, Narayanan et al. 2002). For OWL-S-to-X-nets

translations, manual correction is required.

4.6.3 Models built

We have developed several dynamic event models using our framework. With them,

we have been able to test our systems’ inference ability on a number of topics of

interest. The X-net models we built include those of:

• Treaty negotiation and enactment

• General weapon procurement by a country

• Biological weapon production by a country

• The events of the 2006 Lebanon War

• Technology pathway alternatives (three sets of models)

• The judicial process

• The stages of employment

• and others

The breadth of models is representative of the coverage capability of our design. We

highlight a few of these models, below. We describe the technology pathways in

Section 7.5.1.

82

Treaty model

The treaty model is an abstract model that describes the process of creating, enacting,

and executing a treaty with respect to a country. Before use, this model must be

instantiated with a particular country and a particular treaty. Above is a screenshot of

the model from our X-net editor.

The process starts with the requirement that the country has the goal of creating

the treaty and is ready to proceed. This enables event progress to the point of a

proposal for the treaty to be submitted. This spins off negotiation on the proposal,

which continues until a proposal is accepted. At this point, the county’s

representative signs the agreement and then ratifies it. The treaty is then in effect.

Should the treaty be violated, leading to a breach, the treaty will be enforced.

The Places and Transitions have names corresponding to the state or action

represented. This is just aesthetic, though. More importantly, each Place and

83

Transition has a set of entity-restricted frames that provide linguistic descriptions of

the particular state or action. For example, the “sign_agreement(v_country, v_treaty)”

Transition is linked to the following frame:

Frame: Sign_agreement
 Signatory: <v_country>
 Agreement: <v_treaty>

In this abstract model, v_country is a variable initially restricted to be of the domain

entity type, <Country>; and v_treaty is a variable restricted to <Treaty> (see more

on abstract models Section 4.1.5). This means the action of signing the agreement can

match with a specific instance of any particular country (like <England>, which is a

subtype of <Country>) signing any particular treaty (like <Geneva Conventions>,

which is a subtype of <Treaty>).

This simple model was manually generated.

84

Weapons procurement

The weapons procurement model describes two major paths a country can take in

obtaining a weapon: acquiring a ready-made weapon or developing one, in-house.

This abstract model, shown above, has to be instantiated with a country and a weapon

sought before being used.

The model starts when enabled (shown enabled with a token). Enabling the

model leads to a decision to obtain a weapon. A choice is encoded: choice 1)

acquire a ready-made weapon, and choice 2) develop weapon in-house. A decision

to acquire a weapon leads to another choice: to buy, smuggle, or steal the weapon.

A decision to develop the weapon in-house leads to concurrent actions, to obtain

weapon expertise and materials, and at the same time to obtain a weapon

factory. With both sets of actions completed, weapons can be manufactured and

85

tested repeatedly until a weapon passes the test. At that point, weapons can be

stockpiled, and then used or destroyed.

In this model, we constrain most Places to a capacity of one token, because each

Place represents a state that is either true (one token) or currently false (no tokens).

We use enable arcs (dashed arrows) in the weapons development track so as to not

remove states that continue to hold as the process proceeds (e.g. obtained expertise is

not lost as the weapon is built). In addition, we bias some of the choice points, like

the simulation of testing the weapon; there we set an 80% fail rate per attempt.

Here, too, we use entity-restricted frames for linguistic descriptions of the

constituent states and actions. In this model, there is greater frame support, with

many actions having multiple descriptions. “Buy weapon”, for example, uses seven

entity-restricted frames: Commercial_transaction, Commerce_goods-transfer,

Commerce_money-transfer, Commerce_buy, Commerce_sell, Commerce_collect, and

Commerce_pay.

This model was manually generated in consultation with Subject Matter Experts.

86

Biological weapons production

The biological weapons production model is significantly more complicated than the

weapons procurement model, as can be gleaned from the above screenshot. Without

going into detail, the model depicts both the production of the pathogen (the bottom of

the model), and the delivery system (the top of the model), to produce a full weapon

(the right-most Place).

This model, too, was manually generated with input from Subject Matter Experts.

87

Judicial process

The judicial process model is an abstract model that follows the scenarios described in

our motivating example from Section 3.1. It tracks a suspect accused of a crime

through the judicial process. It was derived directly from FrameNet frames,

demonstrating the potential for semi-automated translation. Each Place represents a

frame in FrameNet. The Places were linked together based on the FrameNet Frame-

to-Frame relations between the frames that helped generate those Places. The most

pertinent relations are: Subframe-of, Precedes, Is-preceded-by.

The process starts with a crime committed:

Frame: Committing_crime
 Crime: <v_crime>
 Perpetrators: <v_suspect>

Again, like the Treaty model, we use variables to link constraints across the model.

Here we use v_crime, initially set to a type of <Crime>, and v_suspect, initially set to

a type of <Person>. It continues with the investigation of the crime:

88

Frame: Criminal_investigation
 Incident: <v_crime>
 Suspect: <v_suspect>

and so on, through the arrest, notification of charges, plea, bail, trial, jury

deliberation, verdict, sentencing, and possible penalty. Each Place is linked to

the frame that was used to generate it.

89

Lebanon War of 2006

The ‘Lebanon War of 2006’ model is a specific model, requiring no instantiation. It is

designed to map out the major events of the conflict by that name, as well as a few

alternative scenarios that did not take place.

The main scenario starts with Hezbollah’s goal to get Israel to release

Hezbollah captives (the Place on the furthest left of the screenshot of the model).

This begat Hezbollah’s kidnapping Israeli soldiers to use as collateral. Israel

formulated their own goals of destroying Hezbollah and attempting to get

Hezbollah to release the Israeli soldiers. This escalates into a number of attacks

and counter attacks, with casualties and property damage on both sides.

In addition to mapping out the scenario that did happen, we also modeled a few

simple additional scenarios, one relating to an Israeli goal to destroy Lebanon

(bottom of model), and another related to an Israeli goal to take over Lebanon (top

90

of model). This enables an analyst to test what may have happened if conditions had

been different. (We explore two such questions in Section 6.7.1.)

91

5 Applying Event Modeling to Answer Selection

Before applying our event modeling framework to a full-fledged NLP application, we

decided to test it on a simpler problem. Answer selection is the process of choosing

the best answer to a natural language question from a list of pre-chosen candidates.

The difficulty in the task is assessing the relative relevancy of candidates that each

contain the keywords used in a question asked.

For event-related questions, we hypothesized that our event ontology would

improve the relevancy assessment. Specifically, we theorized that:

3) Keywords extracted from a question are related to one another and thus

extracting relational information in a question and in a set of answer

candidates should enable higher precision measurement of the relevancy of the

candidates; and

4) Analyzing these relations in the context of a relevant, expressive model of the

event in question provides a valuable link between the information sought in

the question and the information contained in a good answer.

For us, the Answer Selection task provided an initial test of our approach for modeling

events.

The system we designed relies on our event description work (Section 3.3), as well

as our methods for linking language to event models (Chapter 4). In Section 5.1, we

discuss the external tools that provide our system the answer candidates from which

to select. In Section 5.2, we provide an example scenario that motivates our approach.

We then describe our system at a high level (Section 5.3) and in detail (Section 5.4),

before discussing the results of a simple assessment of the system (Section 5.5).

92

Answer Selection is a stepping stone to a full Question Answering system. We will

describe our Question Answering system in Chapter 6 that builds upon our Answer

Selection results.4

Early version of event modeling framework

The Answer Selection system was designed using an early incarnation of our event

modeling framework; it tests only a portion of our framework’s eventual functionality

and uses some methods later improved. This is observable in two ways: 1) this

system uses event models composed of event schema instances (as described in

Section 3.3) and does not utilize our X-net design (Section 3.4); and 2) the system uses

PropBank predicate-argument structures rather than FrameNet frames to linguistically

describe events (Kingsbury and Palmer 2002; Palmer, Gildea et al. 2005).

In Chapter 4, we laid out our methodology for linking language to event models

using frames. The key features of frames that are required for these algorithms also

exist in PropBank predicate-argument structures. FrameNet frames are (and can be

thought of as) a richer type of predicate-argument structure: predicates evoke frames

and arguments to frames are frame elements. For the remainder of the chapter, we

will reference these algorithms with the caveat that we use predicate-argument

structures, but leave to the reader the mental substitution of ‘predicate-argument

structure’ for ‘frame’ in the algorithm.

4 Due to the overlap in the design of the Answer Selection system and Question Answering

system, there is some repetition in our discussion of the two systems. For clarity, Chapter 5

and Chapter 6 do not rely on one another.

93

indexing and retrieval
based on lexico-semantic

knowledge
answer candidates keyword recognition

5.1 System context

This Answer Selection work was a component of a larger project, AQUINAS. Our

partner team from the University of Texas, Dallas (UTD), supplied and managed a

suite of NLP tools that provided a front-end to our work. As shown in Figure 5-1, this

component of the overall system has a three-stage pipeline: question processing,

document processing, and answer processing. Its output, predicate-argument

structure annotated question and answer data, is passed to our Answer Selection

Engine, which ranks the answer candidates and selects the best.

The Question Processing stage of the AQUINAS system has a few key components.

Three operations apply to the question: 1) its keywords are extracted for the

Document Processing stage; 2) the question is syntactically parsed; and 3) any domain

entities are tagged. The syntactic analysis and entity tags are used to help identify

Figure 5-1: AQUINAS Answer Selection System flowchart

syntactic
parsing

domain entity
recognition

syntactic
parsing

domain entity
recognition

Documents

Question Processing Document Processing Answer Processing

Answer Selection Engine (UC Berkeley / ICSI)

identification of
pred/arg structures

identification of
pred/arg structures

PropBank

94

PropBank predicate-argument structures (pred-args) in the question. These pred-args

are then fed as the first of two inputs to the Answer Selection Engine.

During the Document Processing stage, the system selects answer candidates using

the keywords extracted from the question. The documents are pre-processed with the

same tools used in the Question Processing stage: they are syntactically parsed and

domain entity tagged, before pred-args are identified. The documents are indexed,

stored both as text and in predicate-argument form. From this database, answer

candidates are chosen using a number of heuristics.

In the Answer Processing stage, the AQUINAS system forwards the answer

candidates, annotated for predicate-argument structures, to the Answer Selection

Engine.

The Answer Selection Engine thus requires candidate answers in a structured form.

This needs: an information retrieval (IR) system, syntactic and semantic parsing

capabilities, and domain entity tagging. In the AQUINAS system, these tools are

provided by UTD. Their work is outside the scope of our research, but can be read

about here (Harabagiu, Bejan et al. 2005).

5.2 Motivating example

In this chapter, we will use the following example question from an evaluation of the

system to drive the explanation:

Does Pakistan possess the technological infrastructure to
produce biological weapons?

In addition, we will focus on one of the answer candidates provided for the question:

95

While Pakistan is not known to possess biological weapons
(BW), it has talented biomedical and biochemical scientists
and well-equipped laboratories, which would allow it to
quickly establish a sophisticated BW program, should the
government so desire. (Pakistan Country Profile, CNS 2004)

5.3 System modules and processing flow

Shown in Figure 5-2, the Answer Selection Engine executes when the question and

answer candidates are input. The system uses the question to select a relevant event

model, which extends the range of what the system knows to be relevant in an answer.

The system uses this information to score the relevancy of each answer candidate,

finally ranking them and selecting the best answer to return.

Each phase of the system accomplishes a distinct task:

• Activating the system: The question and the answer candidates are each

presented in two sets: 1) PropBank-defined pred-args; and 2) domain entity tags.

• The alignment phase: The pred-args and entities are interrelated. The system

combines them, as appropriate, into entity-bound pred-args.

• The model selection phase: The question pred-args act as keys for looking up

event models that describe the main underlying state or action in question.

• The answer candidate scoring phase: The pred-args of each answer

candidate are compared to the pred-args of the model and scored accordingly.

• The candidate ranking phase: The system rank orders the answer candidates

based on the score, and outputs the ranking, tagging the highest ranked

candidate as the “selected” answer.

96

Example

In our example, the questioner asks about the current state of Pakistan’s biological

weapons infrastructure. The UTD front-end system provides to the Answer Selection

Engine this question, as well as a set of candidate answers to the question. Those data

come annotated for pred-args and tagged for domain entities. The pred-args and entity

tags of the question are aligned, and the resulting entity-bound pred-args key into our

event ontology, selecting our Biological Weapons Production model as being most

relevant to the question. (A later version of our Biological Weapons Production model

is shown in X-net form in Section 4.6.3.)

The pred-args of each answer candidate are compared against the pred-args of the

model, scoring the candidate’s relevance to the topic of Pakistan’s biological weapons

program. Among the candidates considered is the one mentioned in Section 5.2.

Unlike many other candidates, this one has a number of pred-args that overlap with

the those in the model’s description, resulting in a high score. This high score places

it at the top of the candidate ranking, and the candidate is selected as the best answer

to the question.

Figure 5-2: Answer Selection Engine

Q Pred/arg
 annotated
Q Entity
 tagged

Q

model
selection

model answer
candidate
scoring

candidate
ranking

answer
candidates
w/scores

selected
answer

PropBank Entity Ont Event Ont

Question

align

AC Pred/arg
 annotated

AC Entity
 tagged

align ACs

Answer Candidates

97

• Question Text
[text]

• Question Pred-args
[text-bound pred-args]

• Question Entities
[domain entity ontology tags]

• Answer Candidate Pred-args
[text-bound pred-args]

front-end
{external}

Input

Figure 5-3: Front-end interface

• Answer Candidate Entities
[domain entity ontology tags]

• Documents (pre-indexed)
[text]

Output

5.4 Modules

In this section, we discuss the main modules of our Answer Selection Engine.

tails the API of the front-end component of the AQUINAS system.

5.4.1 Front-end

The front-end system performs a number of critical tasks, as explained in Section 5.1.

t processes the question and provides candidate answers to the

e

with arguments bound to the text strings fulfilling the semantic roles of the predicate.

Section 5.4.1 de

Each subsequent subsection details one module shown in Figure 5-2. The subsections

are concluded by a discussion of our running Pakistan infrastructure example,

explaining the progress of the system during the stage discussed.

At a high level, i

question. As shown in Figure 5-3, it provides both the question and answer

candidates in predicate-argument and domain entity form. The processed question

will allow the system to select an event model used in the answer selection analysis.

The pred-args annotated in the question and answer candidate text are PropBank

pred-args. For each sentence, the analysis produces the predicates of the sentenc

98

Input Output

Figure 5-4: Front-end example

“Does Pakistan possess
the technological infra-
structure to produce
biological weapons?”

• Question Text

• Question Entities

o “Pakistan” <Pakistan>
o “the technological infrastructure”

<Technology Infrastructure>
o “biological weapons” <Biological WMD>

• Documents

Including passage:
“While Pakistan is not
known to possess
biological weapons
(BW), it has talented
biomedical and
biochemical scientists
and well-equipped
laboratories, which
would allow it to
quickly establish a
sophisticated BW
program, should the
government so desire.”

o “Pakistan” <Pakistan>
o “biomedical scientists” <Biomedical Scientist>
o “biochemical scientists” <Biochemical Scientist>
o “laboratories” <Laboratory>...

• Answer Candidate Entities (shown: Candidate #5)

possess (“Pakistan”, “biological weapons”, “not known”)
has (“Pakistan”, “biomedical scientists”, “talented”)
has (“Pakistan”, “biochemical scientists”, “talented”)
has (“Pakistan”, “laboratories”, “well-equipped”)...

• Answer Candidate Pred-args (shown: Candidate #5)

possess (“Pakistan”, “the technological infrastructure”)
produce (“Pakistan”, “biological weapons”)

• Question Pred-args

The domain entities extracted from the text include traditional named entities, as

well as more general types, as described in Section 4.1.3. These extracted entities are

fine-grained categories, representing the most specific relevant type in the domain

ont

Figure 5-4 shows the results of the front-end system on the text of our example. The

question analysis produces two pred-args and three domain entities. The documents

 the passage extracted as Candidate #5. That candidate

ology.

 (Note again: the methods used for predicate-argument annotation and domain

entity tagging are outside the scope of this work.)

Running example: Front-end

indexed in the system include

has, among others, the four pred-args and four domain entities shown.

99

• Question Pred-args
[entity-bound pred-args] align

Input Output

Figure 5-5: Alignment interface

• Question Pred-args
[text-bound pred-args]

• Question Entities
[domain entity ontology tags]

• Answer Candidate Pred-args
[text-bound pred-args]

• Answer Candidate Entities
[domain entity ontology tags]

• Answer Candidate Pred-args
[entity-bound pred-args]

5.4.2 Alignment

The form of linguistic description used in our Answer Selection Engine is entity-bound

n in Figure 5-5, though, the inputs to the Engine are text-bound

In Figure 5-6, we show the entity-bound pred-args that result from aligning the text-

that are entered into the Alignment module in our

pred-args. As show

pred-args and domain entities. Text bindings have too many surface realizations to

facilitate direct comparison of the underlying meaning, which is required in later

modules. The purpose of the Alignment module is to substitute each text-binding in a

pred-arg with the entity tagged to the semantic head of the binding text. When no tag

is available, the system does not set an entity binding, and the information is not

carried on. (See Section 4.1.3 for a further discussion on using domain entity

bindings.)

Running example: Alignment

bound pred-args and entities

ongoing example.

100

Input Output

Figure 5-6: Alignment example

• Question Pred-args (entity-bound)

possess (<Pakistan>, <Technology Infrastructure>)
produce (<Pakistan>, <Biological WMD>)

• Question Pred-args
(see Figure 5-4 output)

• Question Entities
(see Figure 5-4 output)

• Answer Candidate Pred-args
(see Figure 5-4 output)

• Answer Candidate Entities
(see Figure 5-4 output)

• Answer Candidate Pred-args (entity-bound)

possess (<Pakistan>, <Biological WMD>)
has (<Pakistan>, <Biomedical Scientists>)
has (<Pakistan>, <Biochemical Scientists>)
has (<Pakistan>, <Laboratory>)

5.4.3 Model Selection

The Model Selection module: 1) selects a model that describes the type of event in

question; and 2) “instantiates” the model, tuning it to the specific event instance in

question. As shown in Figure 5-7, this is accomplished with the aid of the pred-args of

the question and the event model ontology. We use a number of the methodologies

described in Chapter 4 to accomplish these tasks (with minor modification, due to use

of pred-args instead of frames in linguistic descriptions and semantic analysis).

Selecting a model from the Event Ontology

The Model Selection module selects a model from the Event Ontology. The Event

Ontology for this Answer Selection system is a database of event model descriptions,

each composed of Event Schema instances (discussed in Section 3.3, and shown in

Figure 3-4). Each Event Schema instance has linguistic descriptions, in entity-

restricted pred-arg form, of an event’s constituent states and actions (see Section 4.1.5

for explanation of “entity-bound” vs. “entity-restricted” distinction).

In selecting a model, we implement the algorithm of Section 4.3. The system

treats each model in the database as a single set of entity-restricted pred-args, grouping

101

• Event Model Ontology
[Event model descriptions
composed of Event Schema
instances, indexed by entity-
restricted pred-args]

Output

• Question Pred-args
[entity-bound pred-args]

Input

model selection
• Event Model (Instantiated)

[Event model description, with
updated linguistic descriptions]

Figure 5-7: Model Selection interface

all of the pred-args related to that model. It then computes the set intersection

between the pred-arg set of each model in the database and the set of entity-bound

pred-args in the question. The model with the ‘largest’ intersection is selected. The

underlying rational is, relations in the question related to any part of the model is

proof of relevance of the model to the question, and the larger the connection the

better.

The method of scoring the intersection between a model set and the question set is

to sum all of the pred-arg match scores between the pred-args of the two sets. We

implement the frame matching algorithm described in Section 4.1.4 (applied to pred-

args instead of frames), extending it (as mentioned) to use part-of and relationship-of

relations in the domain entity ontology, just as it does subtype-of relations.

Instantiating an abstract model

A model selected may be abstract or specific, as discussed in Section 4.1.5. An

abstract model is applicable to multiple scenarios and ideally uses linguistic

descriptions that are general enough to encompass all of the scenarios intended, but

specific enough to only cover those scenarios (e.g. the Treaty model, Section 4.6.3). A

specific model will cover only one scenario (e.g. a model of a particular historical

event).

102

Abstract models must be instantiated to be used. If an abstract model is chosen,

the linguistic descriptions that made it applicable to multiple scenarios must be

focused to only apply to the scenario asked about in the question. As mentioned in

Section 4.1.5, abstract models use variables in their linguistic descriptions, restricting

(in this case) argument bindings in those pred-arg-based descriptions, not directly to

domain entity categories, but instead to variables set to domain entity categories.

When the value of any one variable is changed, it can affect multiple linguistic

descriptions across the model. The selection of which variables are changed is based

on the matches between question pred-args and model pred-args. We use the

algorithm of Section 4.3 to update the model, making it as specific as the question’s

entity-bindings.

Once a model is instantiated, the variable values will not change. As such, for the

rest of the chapter, we will ignore this redirection of restrictions through variables and

use reified specialized entity restrictions.

103

Includes:
o Bioweapons

Production model
restricted to:
<Country>,
<Biological WMD>

• Event Model Ontology

• Question Pred-args
(see Figure 5-6 output) o Bioweapons Production model

restricted to: <Pakistan>,<Biological WMD>
pred-args include:
// Preconditions for the Develop Expertise stage
possess(<Pakistan>, <Bio Expert>)
possess(<Pakistan>, <Bio Laboratory>)
has(<Pakistan>, <Bio Expert>)
has(<Pakistan>, <Bio Laboratory>)
...

// Process of building weapon
manufacture(<Pakistan>, <Biological WMD>)
produce (<Pakistan>, <Biological WMD>)
...

// Effect of building weapon
possess(<Pakistan>, <Biological WMD>)
has(<Pakistan>, <Biological WMD>)

• Event Model (Instantiated)

Output Input

Figure 5-8: Model Selection example

Running example: Model Selection

Figure 5-8 shows the model selected based on the pred-args of the question.

Specifically, the question has two pred-args:

• possess (<Pakistan>, <Technology Infrastructure>)

• produce (<Pakistan>, <Biological WMD>)

The first, when used to index into the event model database, is too general and

returns nothing. The second matches with the Bioweapons Production model, which

contains:

• produce (v_country, v_weapon),

where v_country is initially set to <Country>, and v_weapon is initially set to

<Biological WMD>). This will produce a model match score of 0.95, higher than any

other potential match. As such, the Bioweapons Production model is chosen. Then,

104

Output

• Answer Candidate pred-args
[entity-bound pred-args,
one set per candidate]

• Event Model
[Event model description]

Input

answer candidate
scoring

• Answer Candidate scores
[array: candidate ID, score]

Figure 5-9: Answer Candidate Scoring interface

• Answer Candidate
pred-args
(see Figure 5-6 output)

• Event Model
(see Figure 5-8 output) o Candidate #1, Score: 0

o Candidate #2, Score: 0
o Candidate #3, Score: 0.3
o Candidate #4, Score: 0
o Candidate #5, Score: 3.9
o ...

• Answer Candidate scores

Output Input

Figure 5-10: Answer Candidate Scoring example

v_country is updated to <Pakistan> and v_weapon stays as <Biological WMD>.

The resulting model is shown.

5.4.4 Answer Candidate Scoring

To rank the answer candidates and select a final answer, the system must first score

the relevance of each candidate. As shown in Figure 5-9, the Answer Candidate

Scoring module uses the event model selected to test and score each answer candidate,

returning an array of candidate scores to the Candidate Ranking module.

The scoring algorithm used by the module is a modified form of the algorithm

used to select a model. Instead of scoring the entity-bound pred-arg set of the

question against the entity-restricted pred-arg set of each model the system considers

for selection (as is done in the Model Selection module), the Answer Candidate

Scoring module scores the entity-restricted pred-arg set of the selected model against

the entity-bound pred-arg set of each answer candidate. We use the following scoring

105

function (similar to our algorithm in Section 4.3, using a pred-arg matching algorithm

similar to frame matching algorithm of Section 4.1.4):

For each answerCandidate
For each acPredArg

 Find potential matches of acPredArg in model
totalPredArgScore += thisPredArgScore

Scores[acID] = totalPredArgScore
Return Scores

Running example: Answer Candidate Scoring

In Figure 5-10, we show the results of scoring the set of answer candidates for the

question. Specifically, we highlight the scoring of Candidate #5: “While Pakistan is

not known to possess biological weapons (BW), it has talented biomedical and

biochemical scientists and well-equipped laboratories, which would allow it to quickly

establish a sophisticated BW program, should the government so desire.”

Each of the candidate’s four pred-args matches with a pred-arg in the Bioweapons

Production Model. Using pred-arg match scoring where penaltyspec=0 and penaltygen

= 0.2 (see Section 4.1.4):

• possess (<Pakistan>, <Biological WMD>) matches exactly, for a score of 1

• has (<Pakistan>, <Biomedical Scientists>) & has(<Pakistan>, <BioExpert>)

have a more-specific match, for a score of 1

• has (<Pakistan>, <Biochemical Scientists>) & has(<Pakistan>, <Bio

Expert>) have a more-specific match, for a score of 1

• has (<Pakistan>, <Laboratory>) & has (<Pakistan>, <Bio Laboratory>)

have a less-specific match, for a score of 0.9

The total score is: 3.9.

106

Output

• Answer Candidate scores
[array: candidate ID, score]

Input

candidate ranking
• Answer Candidate rank

[array: candidate ID, rank]

• Answer Candidate scores
(see Figure 5-10 output) o Candidate #5, Rank: 1 (i.e. selected)

o Candidate #3, Rank: 2
o Candidate #1, Rank: 3
o Candidate #2, Rank: 4
o Candidate #4, Rank: 5
o ...

• Answer Candidate rank

Output Input

Figure 5-11: Candidate Ranking interface

Figure 5-12: Candidate Ranking example

5.4.5 Candidate Ranking

The Candidate Ranking module collects the answer candidate scores, ranks the

candidates in order of decreasing score, and packages and returns this list to the user

(Figure 5-11).

Running example: Candidate Ranking

As shown in Figure 5-12, the final results in our example put Candidate #5 at the top

of the ranking.

5.5 Evaluation

The Answer Selection task , as stated at the onset of the chapter, provided an initial

test of our event modeling approach. Specifically, we wished to evaluate whether the

use of relational structures (in this case, predicate-argument structures) could improve

precision in the selection of answers, while the use of event models could extend

recall of relevant answers.

107

To facilitate our experiment, we used the AnswerBank corpus (UTD-created for

AQUINAS). The corpus has approximately 2700 questions with gold-standard

answers drawn from a large set of public documents related to national security.

More than half of the questions are event-related, and are either justification, projection,

ability, or hypothetical questions (as defined in 3.2).

We setup a test of 12 event-related questions, each randomly selected from the

AnswerBank corpus, filtered to pertain to the topic of weapons procurement or

production. We submitted the questions to the UTD front-end system and received its

top seven ranked answer candidates for each. In addition to the seven candidates

returned, we included the gold-standard answer from AnswerBank, when not already

included in the original seven (in all but one case, we added the gold-standard answer).

The pred-args and domain entities were hand-corrected to ensure gold-standard

annotations. For each question, we entered its pred-args and domain entities, and

those of its answer candidates, into our Answer Selection Engine. In each case, the

system cleanly separated the gold-standard answer from the rest, selecting the gold-

standard answer as best.

An analysis of the test set of questions and answer candidates revealed that most

(78 of 84) of the answer candidates returned by the front-end system were irrelevant

to the question, though they contained the question’s keywords. While this validated

our approach to increase precision in answer selection and demonstrated the difficulty

of answering complex event-related questions with traditional NLP tools, we

concluded that the design of the next stage Question Answering system (Chapter 6)

should emphasize mechanisms to increase the retrieval of information relevant to the

question.

108

6 Applying Event Reasoning to Question Answering

Automated Question Answering (QA) is a challenging research problem in the Natural

Language Processing (NLP) community. The task is to find or create focused answers

to natural language questions. This can be contrasted with a typical information

retrieval search that retrieves a list of documents or passages that contain a given set

of keywords. For our research, the QA problem is a good test of the event reasoning

framework we developed, to see if our techniques can help provide solutions for

complex, event-related queries (in a closed domain).

In Chapter 3, we discussed our design for describing, modeling, simulating, and

analyzing events. In Chapter 4, we described our solution for linking language

semantics with event models, providing a means for selecting a model capable of

reasoning about an event of interest, and a mechanism for incorporating linguistic

evidence about an event in a relevant model. We put a subset of these capabilities

together in our Answer Selection system (of Chapter 5)5. To build a full-fledged QA

system, though, requires incorporating all of these features, as well as a number of

additional tools.

In Section 6.1, we describe the context in which we built our QA system,

including a review of the auxiliary tools required to enable our system to work.

Subsequent to that, we provide a high level overview of the system (Section 6.3),

before detailing each of its components (Section 6.4). Then we briefly discuss back-off

5 Due to the overlap in the design of the Answer Selection system and Question Answering

system, there is some repetition in our discussion of the two systems. For clarity, Chapter 5

and Chapter 6 do not rely on one another.

109

strategies to handle cases where certain resources are not available (Section 6.5) and a

few implementation notes (Section 6.6), before describing the results of evaluations of

the system (Section 6.6).

6.1 System context

Our QA research was conducted within the context of a larger project (AQUINAS).

Our partner team from the University of Texas, Dallas (UTD), supplied and managed

a suite of NLP tools that complimented our work (and others). As shown in Figure 6-1,

we broke down the QA task into a three-stage pipeline: question processing,

document processing, and answer processing. Our work, the Event Scenario QA

Engine, supports and interacts with the pipeline at various stages.

Figure 6-1: AQUINAS QA System flowchart

syntactic
parsing

domain entity
recognition

identification of
frame structures

identification of
question type &

answer type

Event Scenario QA Engine (UC Berkeley / ICSI)

recognition of
answer structure

keyword recognition candidate answer
processing

presentation

Question Processing Document Processing Answer Processing

indexing and retrieval
based on lexico-semantic

knowledge

syntactic
parsing

domain entity
recognition

identification of
frame structures

 Documents FrameNet

= event question action = non-event question action

110

Question Processing has a number of components. A question needs to be

syntactically parsed, and its domain entities need be to recognized from an ontology

and extracted. This assists in identifying: the frame structures in the question, the

type of question being asked, and the form of answer being requested. For event

related questions, our Event Scenario QA Engine is activated for further processing of

these inputs. For non-event related questions, the AQUINAS system extracts

keywords from the question and continues on to Document Processing.

The Document Processing stage returns passages with information relevant to

answering the question asked of the system. To do so, the AQUINAS system indexes

the documents with lexico-semantic information, like frames, entities, and other

keywords, ahead of time. It syntactically parses them, recognizes domain entities, and

identifies frame structures. With this retrieval capability, for event related questions,

the Event Scenario QA Engine can request documents using frame encoded

information requests. For non-event related questions, the keywords extracted from

the question in the Question Processing stage can be used to index into the document

database.

In the final stage, Answer Processing, the AQUINAS system either presents the

information inferred by the Event Scenario QA Engine (for event related questions), or

it uses its own mechanism to process the retrieved documents and extract answers (for

non-event questions).

We thus found that, to build a full QA system capable of answering event related

natural language questions, our event reasoning framework needs to be bolstered by:

an information retrieval (IR) system, syntactic and semantic parsing capabilities,

domain entity tagging, question analysis, and answer presentation modules. In the

AQUINAS system, we used the UTD IR and parsing tools. Their work, done in

111

coordination with the Language Computer Corporation (LCC), is outside the scope of

our research, but can be read about here (Harabagiu, Bejan et al. 2005). For our

design of the Event Scenario QA Engine, we assumed gold standard quality output

from these tools. (The form and nature of that output is part of our research, and is

discussed in Section 4.2 and further in this chapter.)

6.2 Motivating example

Throughout the next sections of the chapter, we describe the details of our Event

Scenario QA Engine. We use the following example question, taken from an

evaluation of the system, to drive the explanation:

Is Iran a signatory to the Chemical Weapons Convention?

The following relevant passage will also be used to help infer an answer to the

question:

Being one of the few countries in the world that has
experienced chemical warfare on the battlefield, Iran ratified
the Chemical Weapons Convention in 1997.

6.3 System modules and processing flow

In Figure 6-2, we show our Event Scenario QA Engine flowchart. The system is

broken down into two stages: question processing (Stage I), and data processing

(Stage II). The processed question suggests which data should be used in Stage II to

infer an answer. There is a break in control at the end of the first stage when the

112

system sends out an expanded query to the AQUINAS program to retrieve relevant

data.

In the first stage, the system attempts to identify an appropriate model of the type

of event in question. It then tries to fill in any information it already knows about the

scenario based on internal information resources. That which it cannot retrieve from

internal resources but recognizes as valuable for inference, it requests. More

specifically:

• Activating the system: This stage starts by accepting three pieces of

information about the question: the frames of the question, the domain entities

in the question, and the type of the question (prediction, hypothetical,

justification, etc.).

Figure 6-2: Event Scenario QA Engine

Q

model
selection

passage
frame

mapping

model
w/context
structure

simulation
& analysis

further
marked
model

Belief State / DB

FrameNet

filled
context

structure

Entity Ont

background
fill

query
expansion

partially
marked
model

Stage I

Stage II

entity
restricted

frames

Analyst input

Question

answer
extraction

answer
structure

FrameNet Entity Ont Event Ont

P Frame
 annotated
P Entity
 tagged

P

Passages

align
align

Q Frame
 annotated
Q Entity
 tagged

Q Analysis

113

• The alignment phase: The frames and entities, though analyzed by two

separate external algorithms, are interrelated. The system combines them into

a unified (partial) semantic representation of the question, composed of entity-

bound frames.

• The model match phase: The entity-bound frames act as keys for looking up

event models that describe the main underlying state or action in question.

Centering on the main state or action in question, the system dynamically

determines a context structure for the answer, which includes slots for

information causally-relevant to the answer being sought. The most significant

subset of the context structure will eventually be returned as the answer; this

subset is called the answer structure.

• The background fill phase: The system adds in as much of the information to

the context structure as is available from internal resources that have relational

querying capability (e.g. RDBMSs). (This is especially valuable for reusing

cached data.)

• The query expansion phase: Typically, the context structure cannot be filled

with internal information alone. The system requests all remaining missing

information from an external program. (As mentioned in Section 6.1, we use

the UTD IR program.)

In the second stage, the system incorporates new information retrieved from the

external program and uses it to infer information to fill the answer context structure.

• The alignment phase: The frames and entities analyzed from the retrieved

passages are once again aligned to produce entity-bound frames.

114

• The passage frame mapping phase: With the data now in a processable form,

the system attempts to fill in as many remaining empty context structure slots

as possible.

• The simulation & analysis phase: Typically, some information will still not

be available. To derive the full answer, the system attempts to simulate the

event with the information it has, leading to inferences about the missing

information. The exact method of inference in the simulation phase is based

on the type of question asked, as discussed in Section 3.5.

• The answer extraction phase: The system extracts the answer structure from

the context structure and returns it to be presented to the user.

The system is capable of using models with information pre-coded in them. In

those cases, we can collapse the two stages into one, bypassing the passage retrieval

and processing steps.

Example

We can use our example about Iran signing the Chemical Weapons Convention (CWC)

to detail the components of the Event Scenario QA Engine.

This engine can handle questions about complex events and processes. Were this

Iran question asked of the AQUINAS system (Section 6.1), it would detect that the

question is about an event (the signing of the CWC), and would forward it to our

Event Scenario QA Engine after processing the question text into frames and domain

entities.

In this scenario, our event system aligns the frames and entities of the question,

and uses the resulting entity-bound frames to key into our event ontology, selecting

our Treaty model (described in Section 4.6.3) as being most relevant to the question.

115

After selecting the model, the system determines a context structure for the answer,

focusing on the signing action in the Treaty model. During the Background Fill phase,

the system fills the context structure with as much contextual information as possible

about Iran signing the CWC from internal resources, after which information still

missing in the context structure is requested from an external system.

That search returns passages like the one described in Section 6.2, discussing

Iran’s ratification of the CWC. Using this passage, the system add the ratification fact

into the context structure and maps it onto the model. Being a ‘justification’ question,

the system then runs an analysis projecting the data forwards and backwards, as

dictated in Section 3.5. This shows that ratification of the CWC can only occur after

signing the CWC. That information is then packaged and returned for presentation to

the questioner.

6.4 Modules

In this section, we detail each of the main modules of our Event Scenario QA Engine,

as depicted in Figure 6-2. Each subsection on a module is concluded by a discussion

of our running Treaty example, explaining the progress of the system during the stage

discussed.

6.4.1 Pre-system: Question Analysis

The correct input form of the question is critical to enabling the functionality of the

event reasoning framework. The system relies on external analysis of the question

text to produce three pieces of information: 1) the frames in the question, 2) the

domain entities in the question, and 3) the question type (see Figure 6-3). Together

they form a structured, partial semantic representation of the question text that will

116

• Question Text
[text]

• Question Frames
[text-bound frames]

• Question Entities
[domain entity ontology tags]

• Question Type
[enumerated type]

question analysis
{external}

Input Output

Figure 6-3: Question Analysis interface

allow the system to: select an appropriate event model, request relevant data, and

properly process that data to answer the question.

The frames analyzed in the questions are FrameNet frames (as discussed in

Section 4.1.1). The output of the analysis is, for each frame evoked, the frame name

and its constituent frame elements (FEs) bound to text (“text-bound frames”).

The domain entities extracted from the question include traditional named entities,

as well as more general types, as described in Section 4.1.3. These extracted entities

are fine-grained categories, representing the most specific relevant type in the domain

ontology.

Finally, the system receives question type information. Event questions our QA

system handles come in one of four types: justification, prediction, hypothetical, and

ability (defined in Section 3.2).

(Note again: the methods used for parsing, tagging, and analysis of the question are

outside the scope of this work.)

117

“Is Iran a signatory to
the Chemical Weapons
Convention?”

• Question Text

• Question Type

o Justification

• Question Entities

o “Iran” <Iran>
o “Chemical Weapons Convention”

<Chemical Weapons Convention>

Frame: Sign_agreement
 Signatory: “Iran”
 Agreement: “to the Chemical Weapons Convention”

• Question Frames

Output Input

Figure 6-4: Question Analysis example

Running example: Question Analysis

Our question, “Is Iran a signatory to the Chemical Weapons Convention?”, when

entered into the AQUINAS system, is analyzed in three ways (see Figure 6-4). The

UTD front-end (ideally):

1) extracts the Sign_agreement frame, with the Signatory FE bound to “Iran”, and

Agreement FE bound to “to the Chemical Weapons Convention”;

2) tags the words “Iran” and “Chemical Weapons Convention” with <Iran> and

<Chemical Weapons Convention>, respectively; and

3) determines that the question is a justification question. (Recall from Section 3.2,

justification questions have an underlying premise (Iran is a signatory to the

CWC) that require verification.)

All three analysis results are passed as input to the Event Scenario QA Engine.

118

• Question Entities
[domain entity ontology tags]

Figure 6-5: Question Alignment interface

Output

align

Input

• Question Frames
[text-bound frames]

• Question Frames
[entity-bound frames]

6.4.2 Alignment (Question)

In order to connect questions with relevant event models, and event models with

relevant data, we require a consistent, precise structural form to describe the question,

the data, and the event model. As discussed in Section 4.1, we chose frames (with

elements linked to domain entities) as the common form for capturing semantic

information across our system.

The Alignment module is responsible for taking raw text-bound frame annotations

(frames with frame elements bound to text) and domain entity tags of a particular

phrase, and combining them into entity-bound frames (frames with frame elements

bound to domain entities), as shown in Figure 6-5.

Text bindings have too many surface realizations to facilitate direct comparison of

the underlying meaning, which is required in later modules. The system, instead,

replaces the textual frame element (FE) bindings in the frame parse with the “best”

entity tagged to words enclosed in the binding text. The most significant issue is how

to determine what constitutes the “best” entity amongst multiple options. We use one

of two heuristics:

• Selecting a proper subtype of the FrameNet FE’s Semantic Type

• Selecting the semantic head of FE binding

119

Input Output

Figure 6-6: Question Alignment example

• Question Frames (entity-bound)

Frame: Sign_agreement
• Question Entities

(see Figure 6-4 output)

• Question Frames
(see Figure 6-4 output)

 Signatory: <Iran>
 Agreement: <Chemical Weapons Convention>

FrameNet frames provide Semantic Types for some FEs. As described in

Section 4.1.1, Semantic Types provide guidance of acceptable roll fillers using

ontological categories. Unfortunately, not all FEs are tagged with these, and those that

are use tags that provide limited guidance due to their high-level of generality. In any

case, the Semantic Types must map onto whichever domain entity ontology the

system references; this enables the system to check that a selected entity is a proper

subtype of the Semantic Type. When choosing among multiple valid subtypes, the

most specific entity in the ontology is selected.

When the Semantic Type is unavailable, insufficient, or not mappable to the

domain ontology, we use the entity capturing the semantic head of the FE binding text.

Note that there are not always appropriate entities tagged within an FE binding

text string. In these cases, the system does not set an entity binding, and the

information is not kept.

Running example: Question Alignment

In our example, the frame and entities input into the system would produce the

aligned entity-bound frame seen in Figure 6-6. There is only one entity enclosed in

the text, “Iran”, bound to the Signatory role of the Sign_agreement frame. For the

phrase, “to the Chemical Weapons Convention”, there are in fact five entities we have

in our domain entity ontology: <Chemical>, <Weapon>, <Convention>,

120

• Question Type
[enumerated type]

• Context Structure
[feature structure]

• Event Model Ontology
[X-nets, indexed by
entity-restricted frames]

Output

• Question Frames
[entity-bound frames]

Input

model selection
• Event Model

[X-net (Instantiated)]

Figure 6-7: Model Selection interface

<Chemical Weapon>, and <Chemical Weapons Convention>. The most specific

type in the semantic head is <Chemical Weapons Convention>, so it is selected.

6.4.3 Model Selection

The Model Selection module accomplishes a number of tasks for the system: 1) it

selects a model that can simulate the event in question; 2) it instantiates the model,

tuning it to the specific event instance in question; and 3) it calculates the context

structure for determining the answer. (See the module interface in Figure 6-7.) In

Chapter 4, we discussed a number of key methodologies to accomplish these tasks. In

this section, we put them together.

Selecting a model from the Event Ontology

To select a model requires access to an ontology of event models, in the form of a

database of X-nets. (The models described in Section 4.6.3 exemplify the models that

would be available in such a database.) The system queries this database using the

frames of the question as search keys. Each X-net is composed of Places (representing

states and resources) and Transitions (representing actions), which in turn have a

number of linguistic descriptions in entity-restricted frame form. Based on the

121

semantic similarity between the entity-bound frames of the question and the entity-

restricted frames used to describe the states and actions of each model, the output of

the search is the most relevant model for the question in X-net form (see

Sections 4.1.5 for explanation of “entity-bound” vs. “entity-restricted” distinction;

recall that, structurally, they are equivalent, which facilitates the matching algorithm).

We implemented the model matching algorithm of Section 4.3. The system treats

each model in the database as a single set of entity-restricted frames, grouping all of

the frames related to that model (those representing its Places and Transitions). It

then computes the set intersection between the frame set of each model in the

database and the set of entity-bound frames in the question. The model with the

‘largest’ intersection is selected. The underlying rationale is that relations in a

question related to any part of a model is an indication of relevance of the model to

the question, and the larger the connection the better.

The method of scoring the intersection between a model set and the question set is

to sum all of the frame match scores between the frames of the two sets. We

implement the frame matching algorithm described in Section 4.1.4, extending it (as

mentioned) to use part-of and relationship-of relations in the domain entity ontology,

just as it does with subtype-of relations.

Instantiating an abstract model

The model selected from the event model database may be “abstract” or “specific”. An

abstract model, as discussed in Section 4.1.5, is applicable to multiple scenarios and

ideally uses linguistic descriptions that are general enough to encompass all of the

scenarios covered by the X-net structure, but specific enough to only cover those

122

scenarios (e.g. the Treaty model, Section 4.6.3). A specific model will cover only one

scenario (e.g. the Lebanon War of 2006 model, Section 4.6.3).

Abstract models must be instantiated to be used. If an abstract model is chosen,

the linguistic descriptions that made it applicable to multiple scenarios must be bound

to the scenario asked about in the question. As discussed in Section 4.1.5, abstract

models use variables in their linguistic descriptions, restricting frame element

bindings in those frame-based descriptions not directly to domain entity categories,

but instead to variables set to domain entities categories. By using this indirection, a

change to entity restrictions used in the linguistic description of one action or state can

be propagated throughout the model. The selection of which variables are changed is

based on the matches between question frames and model frames. We use the

algorithm of Section 4.3 to update the model, restricting the model to the scenario

referenced in the question’s entity-bindings.

The model output by the module will a standard X-net, but the frame descriptions

will have changed from the X-nets originally selected from the ontology. The original

form is appropriate for selection of the model; the latter form is appropriate for

selecting relevant data to analyze to find an answer to the question. For an abstract

model using variables to accomplish this, once the model is instantiated, the variable

values will not change. (As such, for the rest of the chapter, we will ignore this

redirection of restrictions through variables and use reified specialized entity

restrictions.)

Calculating the Context Structure and Answer Structure

The Model Selection module also provides a Context Structure for the answer. Using

the question frames to pinpoint the areas of interest within the selected model, the

123

Input parameters: AS_depth, CS_depth
(assert CS_depth > AS_depth)

Output variables: AS_set, CS_set
Foreach model state/action matching a question frame

Add state/action and each ancestor* state/action to
• AS_set, up to AS_depth state/action generations
• CS_set, up to CS_depth state/action generations

For non-prediction questions, add each descendant*
state/action to

• AS_set, up to AS_depth state/action generations
• CS_set, up to CS_depth state/action generations

*ancestor states/actions are those that causally precede this action/state
*descendant states/actions are those that causally succeed this action/state

Figure 6-8: Context Structure algorithm

module uses simulation trajectories to determine which information, if available,

would be relevant for inferring an answer. The format of the context structure is a

feature structure with slots for each piece of information sought. This information is

stored in frame-encoded form and tagged with its source.

The context structure is directly linked to and is not independent of the X-net

model. Each slot directly corresponds to a Place or Transition in the model.

Information found to fill a slot directly translates to tokens or restrictions on the

related Place or Transition in the model.

In addition, the system marks a subset of the slots of the Context Structure as

belonging to the Answer Structure. While event reasoning for the system requires

substantial contextual information to infer information targeted in a question (the

Context Structure), we also believe the questioner will appreciate a subset of this

context accompanying any direct answer (the Answer Structure). (See Section 4.5 for

further discussion). The Answer Structure will be extracted during the Answer

Extraction phase, and returned from the system.

To compute the Context Structure (CS) and Answer Structure (AS), we implement

a slight variant of the query expansion algorithm described in Section 4.4; this

algorithm, shown below, creates slots for each X-net object traversed, rather than

124

Input Output

Figure 6-9: Model Selection example

• Event Model (Instantiated)

o Treaty model
restricted to:
<Iran>,<Chemical Weapons Convention>

• Context Structure (w/Answer Structure †)

o ongoing(negotiation)
o accept(proposal)
o complete(negotiation)
o accept(Iran, CWC) †
o sign_agreement(Iran, CWC) †
o signed(Iran, CWC) †
o ratify(Iran, CWC)
o ratified_treaty(Iran, CWC)

o Justification

• Event Model Ontology
(see Section 4.6.3 for e.g.)

Includes:
o Treaty model

restricted to:
<Country>,
<Treaty>

• Question Type
(from Figure 6-4 output)

• Question Frames
(see Figure 6-6 output)

compiling a list of frames to be included in an expanded query (our system

accomplishes this in the Query Expansion phase).

Running example: Model Selection

In our continuing example, shown in Figure 6-9, the Event Ontology includes the

Treaty model (described in detail in Section 4.6.3). The original Treaty model is

relevant to situations where the principle actor of interest was any country and the

theme was any treaty. This is exemplified in the frame hooks used to linguistically

describe the states and actions represented by the Places and Transitions in the model.

The “Sign Agreement” Place, for example, has the following frame hook:

Frame: Sign_agreement
 Signatory: <Country>
 Agreement: <Treaty>

125

The entity restrictions of the frame require that any question about agreement signing

will be about a country signing a treaty in order to match with the model. This is

specific enough to exclude, for example, home buyers signing mortgage papers.

In the question, “Is Iran a signatory to the Chemical Weapons Convention?”, the

frame Sign_agreement matches the Treaty model hook of the “Sign Agreement”

Transition mentioned above. In our Weapons Production domain ontology

(Section 4.1.3), as well as WordNet, we find that the Signatory, <Iran>, is a subtype of

<Asian Country>, which is a subtype of <Country>. The Agreement, <Chemical

Weapons Convention>, is a subtype of <Convention>, which is a subtype of

<Treaty>. Thus, for each FE, there is an inexact, but strong match. We use frame

match scoring parameters (penaltyspec=0.1; see Section 4.1.4) that only penalize greater

specificity a small amount, leading to an overall frame match score of close to 1 (1 =

exact match). This being the only frame extracted from the question, the model match

score is the same score. Finding no other models which match this question frame,

the Treaty model is selected as the most relevant model for the question.

The Treaty model begins as an abstract model. In our example, we match the

question’s Sign_agreement frames of the question and model to find the relevance of

the model. After selection, though, the model still only describes how an unnamed

country negotiates and completes an unnamed treaty. The restrictions on the “Sign

Agreement” Transition can easily be made specific, changing the restriction on the

Signatory from <Country> to <Iran> and the restriction on the Agreement from

<Treaty> to <Chemical Weapons Convention>, as specified in the question’s frame.

However, we would like these restrictions to propagate as appropriate to the frame

hooks of other Places and Transitions (i.e. the linguistic descriptions of other states

and actions depicted in the model). Not only is the signing about Iran and the CWC,

126

but so too is the negotiation, ratification, enforcement, etc. To do this, the model

designer can use entity variables to link the FE restrictions of multiple frames in a

model. The Treaty model, instead of having <Country> as the restriction on the

Signatory of the Sign_agreement frame, will have a variable, var_country, as the

restriction; the initial setting of var_country will be <Country>. Similarly, the

restriction on the Ratifier of the Ratification frame hook of the “Ratification” Transition

will not be <Country>, but will be var_country. Then, instead of changing the

restriction on the Signatory from <Country> to <Iran>, the model instantiation

operation will change the value of the variable attached to Sigantory, var_country, from

<Country> to <Iran>, thereby in effect changing the restriction on both

Sign_agreement and Ratification (and others). Note that specialization of a restriction

only goes in one direction, taking a general restriction and making it more specific;

restrictions in the model that are already more specific than those in the question

frames are left as is.

Finally, the system computes the Context Structure and Answer Structure of the

model for this question, with settings: CS_depth = 3 and AS_depth = 1. With the

Sign_agreement frame match, the Context Structure algorithm centers its search on the

Sign Agreement Transition of the model. The results are a Context Structure of eight

unfilled slots, shown in Figure 6-9, with the three slots shown with (†) a part of the

Answer Structure.

6.4.4 Background Fill

During the Background Fill phase, the system searches internal resources for facts

sought in the Context Structure. This may include cached results of prior event

analyses, encyclopedic information, expert-inserted background information,

127

• Background DB
[data, encoded and indexed
by entity-bound frames]

• Context Structure
[feature structure (updated)]

• Context Structure
[feature structure]

Figure 6-10: Background Fill interface

Output

• Event Model
[X-net]

Input

background fill
• Event Model

[X-net (updated)]

depictions of the belief state of the user, etc. The information is added to the event

model in the form of tokens (creating a partial marking), and added to the Context

Structure in the form of frame-encoded information with source tags.

Database

In our system, internal background information is stored in entity-bound frame form

in a basic relational database. This information is indexed by frame name. The

system searches the database using entity-restricted frames. For each frame instance

returned, the FE restrictions of the query are checked against the instance. For each

frame match score (see Section 4.1.4) above threshold (default condition is non-zero),

the frame in the database is returned.

Retrieval

The Background Fill module collects all of the entity-restricted frame hooks of the

states and actions in the Context Structure. The system then searches the database for

information matching any frame hook. Following the template laid out in Section 4.4,

that information is added to the Context Structure and X-net.

128

Input Output

Figure 6-11: Background Fill example

• Event Model

o Treaty model (Iran, CWC)
tokens in:
ongoing(negotiation): 1

• Context Structure

o ongoing(negotiation)
o Frame: Negotiation [Source: BF]

Interlocutors: <Country>
Topic: <Chemical Weapons Convention>

o accept(proposal)
o complete(negotiation)
o accept(Iran, CWC)
o sign_agreement(Iran, CWC)
o signed(Iran, CWC)
o ratify(Iran, CWC)
o ratified_treaty(Iran, CWC)

• Event Model
(see Figure 6-9 output)

• Context Structure
(see Figure 6-9 output)

• Background DB

Includes DB record:
o Negotiation frame

bound to:
<Country>,
< Chemical
Weapons
Convention >

Running example: Background Fill

In our example, the fact that ‘165 countries negotiated the Chemical Weapons

Convention’ is in the internal database. The ongoing(negotiation) Place in the Treaty

model represents whether a treaty was negotiated or not, in this case the Chemical

Weapons Convention. A token will be added to that Place because of the information

available in the relational database. The context structure will keep track of that data

and its source (BF = Background Fill).

129

• Context Structure
[feature structure]

Input

query expansion

Output

• Information query
[set: entity-restricted frames]

• Event Model
[X-net]

Figure 6-12: Query Expansion interface

6.4.5 Query Expansion system (Output of Stage I)

The input to the Query Expansion module is a partially filled, instantiated event

model. Some information may have been added during the Background Fill phase,

but most likely there is significant information sought in the context structure still

missing. The Query Expansion phase extracts the linguistic descriptions from the

Places and Transitions linked to the empty slots of the context structure (see Figure

6-12). These entity-restricted frames are output as a query for an external program

that then searches for resources that match the information requests. This query

represents an expansion of the original information directly sought in the question.

130

...

Frame: Ratification
 Ratifier: <Iran>
 Proposal: <Chemical Weapons Convention>

• Context Structure
(see Figure 6-11 output)

• Event Model
(see Figure 6-11 output) Frame: Sign_agreement

 Signatory: <Iran>
 Agreement: <Chemical Weapons Convention>

• Information query

Output Input

Figure 6-13: Query Expansion example

• Passage Text
[text]

• Passage Frames
[text-bound frames]

• Passage Entities
[domain entity ontology tags]

passage analysis
{external}

Input Output

Figure 6-14: Passage Analysis interface

Running example: Query Expansion

In our example, there are seven slots yet to be filled in the context structure. Each

slot corresponds to a Place or Transition in the Treaty X-net model, each of which, in

turn, has a set of linguistic descriptions in entity-restricted frame form. These frames

are gathered and output by the system. As shown in Figure 6-13, they include frame

descriptions of the sign_agreement(Iran, CWC) Transition, directly referenced in the

original question, and the ratified_treaty(Iran, CWC) Place, which is indirectly related.

6.4.6 External: Passage Analysis

The main source of data used to infer an answer to the question asked comes in the

passages retrieved. Similar to the interface to Stage I, the input to the system is text,

analyzed for frames and entities (see Figure 6-14). Rather than just the one sentence

131

Input Output

“Being one of the few
countries in the world
that has experienced
chemical warfare on
the battlefield, Iran
ratified the Chemical
Weapons Convention
in 1997.”

• Passage Text

• Passage Entities

o “Iran” <Iran>
o “Chemical Weapons Convention”

<Chemical Weapons Convention>
o “countries” <Country>
o “chemical warfare” <Chemical War> ...

Frame: Ratification
 Ratifier: “Iran”
 Proposal: “the Chemical Weapons Convention”
 Time: “in 1997”
 Reason: “Being one of the few countries in the
 world that has experienced chemical
 warfare on the battlefield”

• Passage Frames

Figure 6-15: Passage Analysis example

entering Stage I (the question), the system receives multiple, potentially multi-

sentence passages in Stage II.

Running example: Passage Analysis

Continuing our treaty example, one passage retrieved is: “Being one of the few

countries in the world that has experienced chemical warfare on the battlefield, Iran

ratified the Chemical Weapons Convention in 1997.” Frame parsed, this will include

the Ratification frame, shown in Figure 6-15. Tagging the entities of the passage will

produce: <Country>, <Chemical War>, <Iran>, <Chemical Weapons

Convention>, and more.

132

• Passage Entities
[domain entity ontology tags]

Output

• Passage Frames
[text-bound frames]

Input

align
• Passage Frames

[entity-bound frames]

Figure 6-16: Passage Alignment interface

• Passage Entities
(see Figure 6-15 output)

• Passage Frames
(see Figure 6-15 output)

Frame: Ratification
 Ratifier: <Iran>
 Proposal: <Chemical Weapons Convention>
 Time: <Date>
 Reason: <Chemical War>

• Passage Frames (entity-bound)

Output Input

Figure 6-17: Passage Alignment example

6.4.7 Alignment (Passage)

As in Stage I, the frames and entities are aligned before being further analyzed, in this

case, for facts relevant to the question (see Figure 6-16). See Section 6.4.2 for a

description of the alignment method used.

Running example: Passage Alignment

In our example, the system aligns the text-bound Ratification frame and the entities of

the passage to create an entity-bound frame, as seen in Figure 6-17.

133

• Passage Frames
[entity-bound frames]

• Context Structure
[feature structure (updated)]

• Context Structure
[feature structure]

Output

• Event Model
[X-net]

Input

passage
 frame mapping

• Event Model
[X-net (updated)]

Figure 6-18: Passage Frame Mapping interface

6.4.8 Passage Frame Mapping

In the Passage Frame Mapping module, new data from the passages retrieved is added

to the model and context structure (see Figure 6-18). The model and context structure

is routed from the Background Fill module, and the new data is passed from the

Alignment module, which provides the data in entity-bound frame form.

The entity-bound frames are matched to individual Places and Transitions in the

X-net. The system inserts evidence into those components using the same scheme

(depicted in Section 4.4.2) as in the Background Fill phase.

134

• Passage Frames
(see Figure 6-17 output)

• Context Structure
(see Figure 6-11 output)

o ongoing(negotiation)
o Frame: Negotiation [Source: BF]

Interlocutors: <Country>
Topic: <Chemical Weapons Convention>

o accept(proposal)
o complete(negotiation)
o accept(Iran, CWC)
o sign_agreement(Iran, CWC)
o signed(Iran, CWC)
o ratify(Iran, CWC)
o ratified_treaty(Iran, CWC)

o Frame: Ratification [Source: Passage #123]
Ratifier: <Iran>
Proposal: <Chemical Weapons Convention>
...

• Context Structure

Input Output

• Event Model
(see Figure 6-11 output)

• Event Model

o Treaty model (Iran, CWC)
tokens in:
ongoing(negotiation): 1
ratified_treaty(Iran, CWC): 1

Figure 6-19: Passage Frame Mapping example

Running example: Passage Frame Mapping

In our example, the Ratification frame matches with the ratified_treaty slot in the

context structure (see Figure 6-19). The system marks the source of the data (e.g.

“Passage #123”). The data translates into a token in the ratified_treaty Place in the

model.

6.4.9 Simulation and Analysis

The Simulation & Analysis module processes the event model, based on the question

type, with the marking (the group of tokens) derived from background and passage

information. The result is used to infer as much of the missing information in the

Context Structure as possible, tagging the inferences with the source of the data used

to make the inference. The Simulation & Analysis module therefore uses the event

135

• Event Model
[X-net]

• Context Structure
[feature structure]

• Context Structure
[feature structure (updated)]

• Question Type
[enumerated type]

Output

• Event Model
[X-net]

Input

simulation &
analysis

Figure 6-20: Simulation and Analysis interface

model, context structure, and question type, to make changes to the context structure

(see Figure 6-20).

We implemented the analysis methods for four question type: Justification,

Temporal Projection, Ability, and Hypothetical, as described in Section 3.5. The system

has two main steps in the analyses: depending on the question type, the system will

make necessary changes to the model to fit assumptions in the question; once

complete, it will use targeted reachability analysis to infer possible causal chains from

the data in the Context Structure to the data missing from the Context Structure. A

full review of the reachability algorithm we implemented can be found in

Section 3.4.3.

Hypotheticals

Hypothetical questions are treated slightly differently. Recall from Section 3.5,

Hypothetical event questions hypothesize an altered state about which a more basic

question is asked. The questions input into the system thus have two components:

the hypothesis and the underlying question. The underlying questions we handle are

of the other three question types supported in this system: Justification, Projection, and

Ability. The hypotheses we handle are simple additions of information: that some

136

condition holds or some resource is available (e.g. the addition of a car for the

question: “if Alice had a car, could she get to work?”).

Hypotheticals frequently are asked to understand the difference between the

normal state (without the hypothesized change) and the altered state (with the

hypothesized change). As such, the system runs analyses twice for Hypotheticals: once

on the base case (normal state) and once for the hypothesized state. For the

hypothesized state, the information from the hypothesis of the question is first added

to the model, using the same techniques as used for frames extracted from passages in

the Passage Frame Mapping module. The result of the analyses is two copies of the

Context Structure: one for the base case and one for the hypothesized case.

137

Input Output

Figure 6-21: Simulation and Analysis example

• Event Model

o Treaty model (Iran, CWC)
tokens in:
ongoing(negotiation): 1
ratified_treaty(Iran, CWC): 1

• Context Structure

o ongoing(negotiation)
o Frame: Negotiation [Source: BF]

Interlocutors: <Country>

• Event Model
(see Figure 6-19 output)

• Context Structure
(see Figure 6-19 output)

• Question Type
(from Figure 6-4 output)

o Justification
Topic: <Chemical Weapons Convention>

o accept(proposal)
o [Source: Inferred - @ratified_treaty]

o complete(negotiation)
o [Source: Inferred - @ratified_treaty]

o accept(Iran, CWC)
o [Source: Inferred - @ratified_treaty]

o sign_agreement(Iran, CWC)
o [Source: Inferred - @ratified_treaty]

o signed(Iran, CWC)
o [Source: Inferred - @ratified_treaty]

o ratify(Iran, CWC)
o [Source: Inferred - @ratified_treaty]

o ratified_treaty(Iran, CWC)
o Frame: Ratification [Source: Passage #123]

Ratifier: <Iran>
Proposal: <Chemical Weapons Convention>
...

Running example: Simulation and Analysis

In our example, analysis of the model showed that if the treaty was ratified by Iran,

each of the states and actions that causally proceeded it must have also occurred (see

Figure 6-21). The missing slots in the context structure are marked accordingly,

referencing the ratification data as justification for the inference.

138

Output

6.4.10 Answer Extraction (Output of system)

The principle output of the entire system is a filled Answer Structure (see Figure 6-22).

The Answer Structure represents the full set of relations deemed relevant to the

question’s answer. As mentioned earlier, the Answer Structure is a subset of the

Context Structure that the system has been filling throughout the input processing

phases described earlier. By the end of simulation, as much of the Answer Structure

is filled as possible. A portion is filled with background information (“Internal”), a

portion is filled with information retrieved from passages (“External”), and a further

portion is inferred through event model analysis (“Inferred”). Some information also

may not be found (“Not Found”), which may signify that the relational fact is not true,

or the event it represents did not happen; alternatively, it may mean information

about the event was unavailable for retrieval. The answer structure slots are each

tagged with one of the four Source tags, to help the user with further analysis.

Hypotheticals

The Answer Structure is recomputed for Hypothetical questions. Instead of the

procedure used in the Model Selection phase, the Answer Structure is determined by

comparing the Context Structures output from the Simulation & Analysis phase: one

from the base case and one from the hypothesized case. Any differences between the

• Answer Structure
[feature structure]
Source: {Internal | External |

Inferred | Not Found }

answer extraction

Input

• Event Model
[X-net]

• Context Structure
[feature structure]

Figure 6-22: Answer Extraction interface

139

Output

two Context Structures is deemed pertinent to the answer. The answer is then

extracted as above.

Running example: Answer Extraction

In our example, the answer structure spanned three slots in the context structure (see

Figure 6-9): accept(Iran, CWC), sign_agreement(Iran, CWC), and signed(Iran, CWC). No

background or passage information was found to fill in any of these slots. Instead,

each was inferred through analysis of the data retrieved for the ratified_treaty(Iran,

CWC) slot (see Figure 6-23). In addition to returning the information on the three slots

of the answer structure, the source information (on ratification) is also returned.

To articulate the information about each slot in the answer structure, the system

can provide a linguistic description of the slot in frame form. For example,

sign_agreement(Iran, CWC) can be translated to:

Frame: Sign_agreement
 Signatory: <Iran>
 Agreement: <Chemical Weapons Convention>

Input
• Answer Structure • Event Model

(see Figure 6-19 output) o accept(Iran, CWC)
o [Source: Inferred - @ratified_treaty]

o sign_agreement(Iran, CWC) • Context Structure
(see Figure 6-19 output) o [Source: Inferred - @ratified_treaty]

o signed(Iran, CWC)
o [Source: Inferred - @ratified_treaty]

o ratified_treaty(Iran, CWC)
o Frame: Ratification [Source: Passage #123]

Ratifier: <Iran>
Proposal: <Chemical Weapons Convention>
...

Figure 6-23: Answer Extraction example

140

and accept(Iran, CWC) can be described using the frame:

Frame: Respond_to_proposal
 Speaker: <Iran>
 Proposal: <Chemical Weapons Convention>

6.5 Back-off strategies

The system is dependent on a number of external resources, each with varying

coverage. To handle cases where critical resources are not available, we developed a

few back-off strategies

• Event Models: If no model matches the question asked, the system backs off to

searching for direct frame matches between the question frames and the

passage frames. (Fliedner offers a similar solution: Fliedner 2004; Fliedner

2005) The set of frames searched for can be increased by using FrameNet’s

inherent frame-to-frame relations, though precision will decrease. This latter

technique was not implemented in our system

• Frames: FrameNet is an ongoing project covering a significant portion of the

frames in the English language, but far from all. While not as rich a semantic

source, event models can be grounded in language through PropBank

predicate-argument structure (Palmer, Gildea et al. 2005), as was done in

Chapter 5, and even just a bag of words optionally linked to WordNet. The

latter significantly degrades the precision of the system.

6.6 Implementation details

We make note of the following details of our implementation:

• We coded our system using the Sun Java 6 SDK.

141

• For the Background Fill module, we also used the Java DB (Apache Derby)

database engine to store known facts.

• For our simulation analysis and for creating models, we modified Platform

Independent Petri-net Editor 2 (PIPE2), version 2.4 (Akharware 2005), a Petri

Net editing package. The modifications provide the ability to: simulate

simultaneous transition firings, apply capacity restrictions to Places, create test

and inhibitory arcs, and run coverability analysis. In addition, our version of

the editor supports linking frames to Places and Transitions, with the ability to

store the frame descriptions in a custom XML format along with the base X-net

representation (in PNML format).

• For references to frames, we used FrameNet 1.3 (Ruppenhofer, Ellsworth et al.

2006).

6.7 Results

In Chapter 6, we have described an intricate QA system capable of utilizing structured

linguistic input to catalyze event reasoning to solve difficult event-related questions.

In Section 6.7.1, we demonstrate how the system handles Prediction, Ability, and

Hypothetical questions. In Section 6.7.2, we describe the system’s performance under

a number of public evaluations.

6.7.1 Examples of answering target question types

Throughout the chapter, we have walked through an example Justification question,

regarding Iran’s signing of the Chemical Weapons Convention. Next, we will use two

additional examples to demonstrate the system’s handling of Prediction, Ability, and

Hypothetical questions, using our model of the Lebanon War of 2006.

142

Output

Hypothetical Prediction question example

In our third major evaluation of our system (described below: “Demo 3”), it answered

a number of complex questions related to the Lebanon War of 2006. A simple version

of one of the questions is: “If Israel wished to conquer Lebanon, would Israel destroy

Lebanon’s airports?” This question is a Hypothetical with an underlying Temporal

Projection/Prediction query, explicitly hypothesizing Israel’s motivation to conquer

Lebanon, and then asking whether Lebanon’s airports would be destroyed. Our

system handles this question as follows:

The idealized front-end system analyzes the question for its frames, entities, and

question type (see Figure 6-24). The frames of the question (after alignment) key into

the model database and select the Lebanon War model. The Lebanon War Model, as

mentioned in Section 4.6.3, is designed to map the major chronology of the war, as

Input
• Question Text • Question Frames

Frame: ! Desiring “If Israel wished to
conquer Lebanon,
would Israel destroy
Lebanon’s airports?

 Experiencer: “Israel”
 Event: F-Conquering
Frame: Conquering
 Conquerer: “Israel”
 Theme: “Lebanon”
Frame: Destroying
 Destroyer: “Israel”
 Undergoer: “Lebanon ’s airports”

• Question Entities

o “Israel” <Israel>
o “Lebanon” <Lebanon>
o “airports” <Airport>

• Question Type

o Hypothetical; Underlying type: Prediction

Figure 6-24: Hypothetical Prediction example – Part 1

143

well as contain a number of alternative scenarios. (This question asks about one of

the alternative scenarios.) It is a specific model, requiring no instantiation (6.4.3).

To answer a hypothetical (recall from Section 6.4.9), our system compares the

results of analyzing the underlying question under the hypothetical and baseline

scenarios; specifically, the system constructs the Answer Structure by calculating the

delta between the slots filled in Context Structure between the two scenarios.

An invasion with the intent to occupy is a much larger endeavor than Israel

actually took on during the Lebanon War. As such, the outcomes inferred by

assuming an intent to occupy will not occur in the baseline case. In the hypothesized

case, though, the Lebanese airports would likely be destroyed, if the Israeli Air Force

is battle-ready. This is depicted in the relevant section of the model, below:

The following steps transpire in the system to achieve this conclusion:

1. Question Analysis & Alignment: the question is entered as frames and entities

(Figure 6-24), and they are aligned

144

Output

2. Model Selection:

2.1. the Destroying frame keys into the model database, matching the “Lebanese

airports destroyed” Place in the Lebanon War model

2.2. the Context Structure is created, with a depth of 2 (Section 6.4.3)

3. Background Fill: no information is available

4. Query Expansion: the remaining Context Structure slots regarding “Israel launch

generalized air strike of Lebanon”, “Israeli goal: take over Lebanon”, and “Israel

Air Force battle-ready” are requested

5. Passage Analysis, Alignment, and Mapping: With the passage shown in Figure 6-25,

a token is added to the “Israel Air Force battle-ready” Place.

6. Simulation & Analysis: The question type, Hypothetical, forks off two processes:

one for the base case, and one for the hypothetical case

6.1. The base case runs as a normal prediction question, using Forward

Reachability analysis to ascertain that the Lebanese airports will not be

destroyed.

6.2. The hypothetical case adds in the influence of the hypothetical. The frames of

the antecedent of the question match with the “Israeli goal: take over Lebanon”

Place. Because of this is information, the Place received a token. Reachability

Input
• Passage Text • Passage Frames

“The Israeli air force is
ready for any airstrike,
anywhere.”

Frame: Activity_ready_state
 Protagonist: “Israeli air force”
 Activity: “any airstrike, anywhere ”

• Passage Entities

o “Israeli air force” <Israel Air Force>
o “any airstrike, anywhere” <Airstrike>

Figure 6-25: Hypothetical Prediction example – Part 2

145

Output

analysis is run again, this time reaching the conclusion that Lebanese airports

will be destroyed.

7. Answer Extraction: The different resulting Context Structures from the two X-net

analyses are contrasted; the Lebanese airport destruction is computed to be

different, and that fact is returned for presentation to the user, along with a

reference to the passage used in the inference.

Ability question example

Ability questions are handled quite similarly. As stated in Section 3.5, Ability

questions are implicit Hypotheticals: they use a hypothesis of the existence of an

actor’s intent, in order to ascertain whether the actor can reach a target state. For the

question, “Can Israel blockade Lebanese ports?”, we can assume any necessary

precondition towards the state in question that involves the motivation of Israel.

The system approaches this question after the initial question analysis by the

front-end system (shown in Figure 6-26). Note that the question type analysis

identifies both the question type (Ability), as well as the principle actor whose ability is

in question (“Israel”). This allows the system to find objects in the model eventually

Input
• Question Text • Question Frames

Frame: Hindering “Can Israel blockade
Lebanese ports? Hindrance: “Israel”

 Action: “Lebanon ’s airports”

• Question Entities

o “Israel” <Israel>
o “Lebanese ports” <Lebanon> <Ports>

• Question Type

o Ability (“Israel”)

Figure 6-26: Ability example

146

selected that are marked as representing the motivation of that actor. For each such

Place, a token is added, and outgoing arcs are made to be enable arcs (see

Sections 3.4.1 and 3.5 for review).

In this situation, once again, the Lebanon War model is selected based on the

question. The “Israeli goal: take over Lebanon”, tagged by the designer as motivation

(“Israeli goal”), is assumed to be true and a token is added to its Place. With the

addition of the knowledge that the “Israel Navy is battle-ready”, a simple inference

leads the system to conclude that Israel could blockade the Lebanese ports.

This transpires as follows:

1. Question Analysis & Alignment: the question is entered as frames and entities

(Figure 6-26), and they are aligned

2. Model Selection:

2.1. the Hindering frame keys into the model database, matching the “Lebanese

ports blocked” Place in the Lebanon War model

2.2. the Context Structure is created, with a depth of 2 (Section 6.4.3)

3. Background Fill: the fact that “Israel Navy is battle-ready” is retrieved from

internal resources.

4. Query Expansion: the remaining Context Structure slots regarding “Israel launch

maritime blockade of Lebanon” and “Lebanese ports blocked” are requested

5. Passage Analysis, Alignment, and Mapping: no passages are found

6. Simulation & Analysis: The question type, Ability uses basic Forward and

Backward Reachability analysis to ascertain that the Lebanese ports could be

blockaded.

7. Answer Extraction: The resulting Context Structure from the X-net analysis

provides that the Lebanese port could be blockaded based on the assumed

147

motivation and the background fact about the Israeli Navy, and that fact is

returned for presentation to the user.

6.7.2 Evaluations and Demonstrations

We conducted our Question Answering work in partnership with our teammates at

the University of Texas, Dallas, Stanford University, and the Language Computer

Corporation, as a part of the AQUINAS project (Answering Questions Using INference

and Advanced Semantics). The AQUINAS project was funded under the ARDA

AQUAINT program (Advanced QUestion Answering for INTelligence). As a part of

this program, we took part in a number of evaluations of our system. Many of the

preceding examples used in this dissertation were pulled from these evaluations.

At the outset, it must be made clear that these evaluations were pilot studies and

made assumptions that are detailed further in individual subsections. Taken together,

they point to the potential of our techniques to significantly improve the state of the

art in semantic question answering.

Demo 1 – Entailment Evaluation

After our initial Answer Selection success (discussed in Section 5.5), we tested the

preliminary version of our full QA system on an entailment task evaluation. Ten

research teams from universities and industry participated, split into two groups of

five. Each team supplied, ahead of time, their own data set of 30 to 40 questions to be

tested by all the teams in their group.

In the entailment task, each question is paired with a short passage, generally not

longer than three sentences. The objective for each question is to determine if the

passage entails an answer to the question, and if so, what that answer is. Most

148

questions required only “yes”, “no”, or “unknown” (not knowable with available

information) answers, though a handful (like our example in Section 4.1.2) required a

specific named entity. A typical example from the evaluation is:

Passage: In the early 1990s, Iran reportedly acquires 120
tons of castor beans, used in the production of the toxin ricin.

Question: Is there evidence that Iran has attempted to
produce ricin?

Answer: “Yes”
(Because): Acquisition of a component of something is a
necessary step in producing something.

(providing the reasoning was not required).

We tested our system against the data sets of our evaluation group: two teams

from the Language Computer Corporation (LCC), Stanford University, and the

University of Texas, Dallas (UTD), as well as our own data set, for a total of 131

questions. Across the five teams (and five data sets), we performed the best on four of

the five sets. This table shows the percent (%) correct answers achieved by each team

on each dataset:

 ICSI Data LCC 1 Data LCC 2 Data UTD Data Stanford Data
ICSI 73.28 83.96 70.99 67.17 51.14
LCC 1 35.87 76.33 42.74 35.11 54.19
LCC 2 51.14 56.48 51.90 49.61 45.03
UTD 58.77 59.54 59.54 59.54 57.25
Stanford 51.90 69.46 56.48 50.38 63.35

Our results, though, come with a number of caveats. We assumed gold standard

text analysis, frame parsing, entity tagging, question analysis, and model invocation.

We also had a number of relevant event models already available for these particular

data sets. For any remaining event-related questions that we did not have models for,

we created small, course-grain models that were sufficient for the analysis required.

149

For any other question, we backed-off to finding frame matches between the passage

and question, and used positive matches as indication of a positive entailment. Due to

the limited size of the total data set and the nature of the evaluation, it was possible to

pre-construct much of the data required for analysis with our system.

Demo 2 – Question Answering

To better test our system’s ability to use complex event structures, we participated in

another public AQUAINT-related demonstration. Together with our partner teams,

we tasked ourselves with trying to answer a series of questions about the complex

scenario of: North Korea’s development of biological weapons.

We designed our intricate Biological Weapons Production model, described in

Section 4.6.3, to assist us in answering 15 selected questions, including these two

examples:

Is there evidence North Korea is building a BW research
laboratory?

What are the effects of North Korea acquiring a BW delivery
system?

As compared with Demo 1, here we did not have access to gold-standard frame

annotations of the data required to answer these questions. Instead, we received data

at run-time from the UTD front-end system (as described in Section 6.1). At the time

of the demo, though, the front-end system was not yet capable of accepting our

expanded query of entity-restricted frames at the end of our system’s first stage (recall

Figure 6-2). Instead, it was only able to provide data passages initially retrieved based

on the text of the question. Just as in the Answer Selection evaluation (Section 5.5),

the vast majority of the passages were not applicable to the event question at hand,

150

and the frames of the passages would not match any of the slots in the Context

Structure we computed for the questions. The limited relevant data we were able to

extract from the passages provided by the front-end were typically insufficient to infer

substantial new facts.

For example, the question, “Is North Korea capable of producing weaponized

anthrax?”, focuses the attention of the system on the action of ‘production of anthrax’

in the model. This action is only enabled at the culmination of many research and

development steps, each with multiple dependencies. Receiving information on North

Korea’s development of a biology research lab, while being a relevant detail, is

causally distant from the ‘production’ action. Without information on whether North

Korea has acquired a strain of the anthrax virus, the model cannot infer further

progress by the country towards full production of the weaponized form.

Two positive outcomes were achieved in this demonstration. Firstly, when, for

any of our questions, we bypassed the passage input and directly added information

requested by the system (empty slots in the Context Structure), we were able to infer

significant data in the Answer Structure. Secondly, the passages retrieved by the

front-end system that did match with our context structures, were relevant to the

question asked.

Demo 3 – Question Answering

So as to show the ability of the system to answer complex questions about complex

scenarios while relying on natural language input, we took part in a third

demonstration. Here we developed a model about a specific event: the Lebanon War

of 2006, between Israel and Lebanon/Hezbollah.

151

We selected six questions. Ahead of time, we ran them through the first half of

our system (to the point of Query Expansion). We submitted the expanded query to

our partner team, who returned 100 passages per queried Context Structure slot,

receiving approximately 2400 passages in total. We filtered out passages that were

obviously irrelevant and that would not produce frame annotations that would match

with our model. From the remainder, we selected the top 10 to 15 results and hand

annotated and entity tagged them. With this data, we attempted to answer the

questions.

We were able to answer all six questions, two of which were used as examples in

the preceding section (Section 6.7.1). The limited scope and deep, high-quality data

set were instrumental in achieving this outcome.

152

7 Applying Event Reasoning to Pathway Classification

Classification of dynamic system pathways is a challenging and important research

problem that can be addressed using event modeling and reasoning. As mentioned in

Section 3.6, pathways are evolution trajectories of complex dynamic systems that

serve a particular goal. To classify an unknown, partially-observable pathway

requires comparing the behavior of the unknown pathway to the expected behavior of

each pathway hypothesis. This task provides a valuable test of our event reasoning

framework, because, unlike our previous examples in Question Answering and

Answer Selection, here uncertainty exists about the actual structure and purpose of

the events of interest.

In Chapter 3, we described our methodology for creating active event models;

with Section 3.6, we detailed the analysis routines required to use the models in

pathway classification tasks. In this chapter, we apply these techniques to a system

built for pathway classification, and we demonstrate its capability on models an order

of magnitude more complex than those used in Chapters 5 and 6.

In Section 7.1, we describe a classification system in which we created a central

component, the Pathway Inference Engine, and we contrast this work with our

Question Answering work. We then give an overview of our engine, highlighting its

deliverables to the classification system (Section 7.2). We detail each module of the

engine in Section 7.3, and we provide implementation details in Section 7.4. Finally,

in Section 7.5, we describe multiple demonstrations of the system.

153

7.1 Task and System context

A pathway can be any set of activities, organized around temporal and causal

structure, that proceed from a starting point to a terminal point in the service of a

designated task. They can be complex processes that include redundancy and

alternative options, with individual segments of a pathway creating and consuming

resources and changing state. In real-world pathways, though, not all segments may

be observable, and one may wish analyze a pathway to estimate its unobservable

segments and/or the intent of those who manage it. We seek to facilitate these

analyses.

7.1.1 PCLASS system

Our pathway inference research was conducted within the context of a larger project

(PCLASS). The project’s overall system, diagramed in Figure 7-1, is designed to

classify a partially-observable real world production pathway as fitting one of a given

set of hypotheses about it. (It thus attempts to answer Hypothesis Disambiguation

questions, one of our objectives stated in Section 3.2.) Classification problems are

well understood in the probabilistic modeling literature (Weiss and Kulikowski 1991;

Michie, Spiegelhalter et al. 1994). Our task is to use pathway simulation and analysis

techniques to compile hypotheses about complex stochastic, dynamic systems into a

form where standard techniques can be applied (as described in Section 3.6.2).

The system is executed in three stages with respect to a particular pathway of

interest and a probing strategy (described below). The first stage provides the data,

given the probing strategy, that will later be used to train a classifier for each

hypothesis class. The second stage records observations of the real pathway, given

154

the same probing strategy. And the third stage computes a posterior distribution over

the hypotheses for the pathway being classified.

The first stage (“Stage I”) has four major components. A query enters the system,

specifying a set of hypotheses about the structure of the pathway, and its decision

making (management’s) structure and intent. Each hypothesis consists of a (partially

known) stochastic, dynamic model of the full pathway, and a (hypothesized) model of

its management. The “Hypothesis iterator” submits each hypothesis in turn to our

“Pathway Inference Engine” and the “Management System”. The Pathway Inference

Engine and Management System simulate the evolution of the hypothesized models,

with the Management System simulating the management model’s dynamic allocation

Figure 7-1: PCLASS system flowchart

Hypothesis
iterator

Probing Strategy

Pathway Inference Engine
((UUCC BBeerrkkeelleeyy // IICCSSII))

Stage I

Stage II

Q

Management System

Hypothesis
measurement

Management (Real World)

Unknown Pathway (Real World)

Pathway
measurement

Stage III

Pathway classification A

155

Figure 7-2: Change of Rate Figure 7-3: Segment Delay

of resources to the pathway model, and the Pathway Inference Engine simulating the

pathway’s use of those resources. As the simulation progresses, observable features of

the pathway are sampled (“Hypothesis measurement”). These samples (with

simulated measurement error) are the data used to train the classifier of the

hypothesis.

The second stage (“Stage II”) has three components. The observable features of the

real-world “Unknown Pathway” are measured (“Pathway measurement”) through a

sampling process similar to that in Stage I. These observations are used to classify the

pathway and its management (“Management”) as fitting one of the hypotheses.

In the final stage (“Stage III”), the classification task is executed (“Pathway

classification”), calculating the posterior distribution of the hypotheses given the

observations. The system chooses the most probable hypothesis class from the

distribution.

7.1.2 Probes

In certain scenarios (especially those where the different hypotheses share many

pathway segments), the posterior distributions over hypotheses given observations

will not provide a clear classification without intervention. A strong correlation may

156

exist between the real pathway and multiple hypotheses with respect to the behavior

of the observable segments.

As described in Section 3.6.3, a probe may be able to tease apart the hypotheses.

Consider a pathway segment that uses a certain amount of resources to complete a

task over a certain amount of time. By actively probing the segment, resources used

by the segment can be slowed, stopped, or delayed. The effects of the probe will be

manifested at multiple points. In Figure 7-2, we show the direct effect of a slowdown

of resource inputs for a given segment on that same segment. Compared to the

default, unprobed simulation (dotted line), the probed simulation (solid line) shows a

negative change of rate to completion (x-axis is time, y-axis is percent completion). In

Figure 7-3, we show how a delay in resources of one segment can affect the time to

completion of another segment. By slowing down the completion of a segment that

enables the one shown, this segment will have a delayed start (solid line) compared to

the unprobed scenario (dotted line). Of course, the results of a probe can be even

more dramatic if it fully stops the resources to a segment, leading all segments reliant

on its completion to fail to start. If a probe can have varying, unique effects on the set

of hypotheses in a question, classifications of a real pathway will be more clear cut.

Probe strategies

Optimal probe strategies for pathway classification are highly dependent on what type

of pathway the user is trying to identify, and their means and constraints on

manipulating resource allocations (active probes) or providing new observations or

measurements (passive probes) for that pathway. While it is situation dependent, our

system can facilitate the design of such strategies by providing the platform for

evaluating the value of information of each candidate probe. In Section 3.6.3, we lay

157

out in detail the process for calculating the entropy reduction provided by a probe for

a set of hypotheses. In evaluations of probes for the PCLASS system, this entropy

reduction value is calculated and submitted to a probe strategy tool that uses

stochastic search algorithms to generate improved probes (this is outside the scope of

our work).

7.1.3 System design scope

Our piece of the PCLASS system is the Pathway Inference Engine. Our focus is on

modeling and simulating complex pathways, and providing meaningful measurements

of their progress. To accomplish this, we fully exercise the ability of our event

modeling framework to represent complex technology pathways, and extend it to

handle dynamic data input. Our system design does not cover resource allocation and

management, nor the components in Stages II or III. That work, implemented by our

research partners, is outside the scope of our research and is not discussed further

here.

Key differences with Question Answering research

There are a number of significant differences that we wish to highlight between this

system and the Question Answering system (described in Chapter 6).

• The level of complexity of the models tested is significantly higher. This is

possible because in this work we remove the dependency on external language

processing systems that constrain the type and amount of data that can be

input into our system. With greater and more direct access to data, we have

been able to test complex single models, as well as multiple models interacting

with one another. Those pathway models incorporate the event controller

158

M

(Section 3.4.2) for each segment, directly informing how we simulate and

assess progress.

• The resource allocation to the models is interactive during a simulation. This

significantly increases the dynamic range of the evolution of the pathway

response. It also allows for more accurately modeling the ability of actors to

change behavior during a simulation, based on incremental results.

• Real valued data can be used through input mapping functions. This increases

the scope of models to be able to handle uncountably infinite data sets.

• The system solves a different type of question, Hypothesis Disambiguation.

7.2 System modules and process flow

Our Pathway Inference Engine has a simple sequence of modules with a loop, as

shown in Figure 7-4. For each hypothesis, the PCLASS system activates our

component to simulate the hypothesized pathway model over time. Snapshots of the

status and level of completion for each of the segments of the pathway model are sent

to the Management System at each simulation step. They are also sent to the greater

PCLASS system in order to build the hypothesis classifier.

Specifically:

Figure 7-4: Pathway Inference Engine flowchart

Management System (external)

loop

model process
inputs

marked
model simulate

step

changed
marked
model

process
results segment

completion
pdf

segment
status

segment
input

initialize
model

odel DB

model
hypoth.
params

159

• The model initialization phase: The system loads the model structure for a

given hypothesis and initializes it with a set of input parameters. These input

parameters specify the resource requirements, minimum duration, and level of

observation uncertainty of each segment.

• The input processing phase: The system goes into a simulation loop. At each

step, it receives and processes sample resources allocated by the external

Management System.

• The step simulation phase: The system then simulates forward for a set

amount of time. Segments ready to start, start. Segments ongoing and with

resources, continue or complete.

• The result processing phase: Finally, the system computes for each segment a)

its new status; and b) a measurement of its level of completion. This

information is relayed back to the Management System to help it determine

how to allocate resources in the next step. It is also communicated to the

Hypothesis Measurement module (see Figure 7-1) which stores the values for

observable segments and later uses them to calculate the hypothesis classifier.

7.2.1 System outputs

The Pathway Inference Engine is responsible for generating simulated observation

data for each segment of a given hypothesis model, for each time step, for a set of

input data. The key measurement for each segment is its observed degree of

completion (0% = not started, 100% = finished). Observations, though, can be noisy.

As specified above, one of the model initialization parameters for each segment is the

degree to which observations are rated to be uncertain (levels: deterministic, small

uncertainty, large uncertainty). The engine generates a distribution (a probability

160

density function) over the degree of completion of a segment, based on its level of

uncertainty.

Specifically, pathway observations have the following features: (adapted from an

unpublished PCLASS design specification)

• The degree of completion of a pathway segment is a percentage (0–100%).

• Each distribution over the degree of completion is discretized and represented

as a histogram of 12 bins. Each bin represents the probability that the degree

of completion (%) is within certain bounds:

Bin 1 0% (not started)

Bin 2 0.01 – 10.00% complete

Bin 3 10.01 – 20.00% complete

. . .

Bin 11 90.01 – 99.99% complete

Bin 12 100% complete (finished)

• Different levels of known uncertainty associated with observations for each

segment will produce distributions with different levels of variance in the

estimate. (See example in Figure 7-5, for a segment “P9”)

o Deterministic (level “1”): The observation has no uncertainty; when the

segment is active it is clearly observable.

o Small uncertainty (level “2”): A small amount of uncertainty in

observations as to when a segment is staring, active and stopping.

o Larger uncertainty (level “3”): A large amount of uncertainty in

observations as to when a segment is staring, active and stopping.

161

P14

P1

P5

P4

P2

P6 P8

P7

P10P9

P13

A simulation thus creates a matrix of distributions: one per segment per simulation

time step. This is the data used to create hypothesis classifiers.

7.3 Module details

In this section, we detail each module depicted in Figure 7-4.

7.3.1 Model Initialization

Pathway models are composed of interconnected segments. In Section 3.4.2, we

discussed a general, common event controller (Figure 3-5), relating events to other

1

2

3

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

N-1 N N+1 N+2 N+3 N+4

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

N-1 N N+1 N+2 N+3 N+4

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

N-1 N N+1 N+2 N+3 N+4

TYPE Before Start Week N to Week N+3 when segment is on After Complete

P14

P1

P5

P4

P2

P6 P8

P7

P10P9

P13

TYPE Before Start Week N to Week N+3 when segment is on After Complete

1

2

3

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

N-1 N N+1 N+2 N+3 N+4
1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

N-1 N N+1 N+2 N+3 N+4
1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

N-1 N N+1 N+2 N+3 N+4

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

N-1 N N+1 N+2 N+3 N+4
1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

N-1 N N+1 N+2 N+3 N+4
1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

N-1 N N+1 N+2 N+3 N+4

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

N-1 N N+1 N+2 N+3 N+4
1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

N-1 N N+1 N+2 N+3 N+4
1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

N-1 N N+1 N+2 N+3 N+4

Figure 7-5: Pathway Probability Distribution Functions

162

events based on their trajectories. Here we are able to deploy that controller, using a

subset of the relations, as shown in Figure 7-6. We replicate the structure for each

segment, but must tune the resource requirements in the controller for the scenario.

The Model Initialization phase is activated by a set of hypothesis parameters.

These parameters are composed of three principle pieces: 1) a model identifier; 2) a set

of constraints for each segment of the model; and 3) the simulation step size.

• The identifier is a single field specifying which pathway model to load from an

internal database. This pathway model is a dynamic event model (an X-net)

depicting the interconnected structure of the pathway’s segments.

• The constraints are specified with three parameters for each segment: 1) the

amount of resources required to complete the segment, specified as a vector of

[resource type, amount] pairs; 2) the amount of time (duration) required to

complete the segment when operating with adequate resources; and 3) the

observation level of uncertainty (as described in Section 7.2.1).

• The step size is a single value representing the period between simulation steps

(the internal clock increment).

The system retrieves the pathway model structure from its database keyed by the

given identifier, then tunes the behavior of the model’s segments using the supplied

parameters to match the desired behavior.

Tuning the model with the constraint parameters is accomplished primarily

through the tuning of the functions mapping simulation step inputs to X-net tokens

(explained in the next section) and the setting of certain Transition delays. Within the

X-net, we treat the amount of resources required to complete an entire segment as a

percentage – specifically 100%, represented by a required total of 100 tokens (we can

163

use 1000 to increase in precision, if desired). The ‘Progress’-‘Finish’ arc is thus fixed

with a weight of 100. We assume that with adequate resources, progress in a segment

is made uniformly. The value of (100* simulationStepSize
sementDuration

) specifies then the

maximum number of tokens that can be consumed by the ‘Use’ Transition per

simulation step. To achieve this, we set the delay on the ‘Use’ Transition to

(
100

segmentDuration
).

As an example, if a segment representing an event that takes 4 weeks to

accomplish, and the simulation step was 1 week, each week, at most 25% of the task

could be completed (with our assumption of uniform progress). Thus each week, at

max, 25 tokens could be consumed by ‘Use’ and created in ‘Progress’. We achieve

this in our model by setting the delay on ‘Use’ to (4 weeks/100), which entails up to 25

firings within the time of one simulation step. At the end of four weeks, 100 tokens

should be in ‘Progress’, allowing ‘Finish’ to fire.

Figure 7-6: Pathway segment controller

Start Ongoing Finish Done

Progress Use

Ready for
Resources

Test
Ready

Enabling
Segment 1

Resources

Enabling
Segment 2

Enabling
Segment 3

...

164

7.3.2 Input Processing (per step)

With a tuned model in hand, the system is prepared to accept resource inputs from

the Management System. To support scenarios where interim outcomes can affect

external decisions that can subsequently change long term trajectories, we require a

system that can accept dynamic, incremental input. This moves beyond the single

instance input system described in Section 4.4 and implemented in the Question

Answering system of Chapter 6.

Each step of simulation begins with an input of the current state of the model, and

the set of new resources allocated by the resource management system. The model is

passed either from the Model Initialization module or from the result processing

module after the last step of simulation. The new resources are passed from the

Management System in the form of a set of R+ valued vectors, one vector per segment.

We can represent the resource requirement parameters of a segment as the vector

1..NX , and we can represent the resource inputs of that segment for the current

simulation step as the vector x1..N. The system maps these inputs to tokens to be

placed in the ‘Resource’ Place of the segment (Figure 7-6). The function mapping the

inputs calculates the number of tokens using the following equation:
1..

100 * i

i N i

x
N X=

⎡ ⎤∑ .

The system verifies that, over all simulation steps thus far, the aggregate total of the ith

resource is not greater than iX . For each segment in the pathway model, the system

applies this input mapping.

There is an underlying simplifying assumption we use in our system: that the

Management System distributes different types of resources to a segment uniformly,

as a percentage of the total required amount of each resource. (An alternative

165

interpretation also supported: the relative distribution of different resources for a

particular simulation step doesn’t affect that step’s progress, in and of itself.) This

allows our system to collapse all input resources into one group of tokens (which are

untyped in our design). (Note that the system is capable of simulating more complex

resource interactions within segments by using custom segment structures represented

in the X-net. For this project, we did not require support for such detail.)

7.3.3 Simulation step

Instead of applying a reachability algorithm (Section 3.4.2), projecting all possible

paths forward with the given set of resources, we require our system to simulate

forward for a fixed amount of time, before receiving new resources and stepping again.

(Note that while there is uncertainty in measurements of progress towards completion

of a segment, the structure of pathway segments does not allow for competition

between resources during simulation and thus there will not be multiple potential

trajectories within a step; any resource competition is resolved in the Management

System prior to allocation.)

Our X-net simulation and analysis engine, built to follow the simulation semantics

described in Section 3.4.1, supports this need. After receiving new input for a

simulation step, the system can simulate forward the progress enabled by those

resources (and any leftover resources unused from previous steps). The simulation

step size is the amount of time simulated. Immediate Transitions fire as they become

enabled. For segments in the state of ‘Ongoing’ that have tokens in ‘Resources’, the

‘Use’ Transition will theoretically fire as many times as it can within the step period

(refer back to Figure 7-6). For performance purposes, we collapse the potential

numerous firings per simulation step into one bulk move of up to the maximum

166

number of tokens consumed under normal firing semantics from ‘Resources’ to

‘Progress’. This token count represents the mean of the stochastic (exponential)

distribution. With the work of the segment simulated and the progress computed

(displayed in the tokens in ‘Progress’), the system fires any newly enabled Immediate

Transitions (‘Finish’ and ‘Test Ready’ transitions, if possible).

7.3.4 Results Processing (per step)

At the conclusion of each simulation step, two vectors are computed. One is the

estimated level of completion of each segment (as a discrete distribution over

percentage complete, as described in Section 7.2.1). The second is the segment status:

“Completed”, “Ongoing”, “Ready” to receive resources, or “Not ready”. These vectors

are passed externally to the Management System, as well as the Hypothesis

Measurement module.

Status outputs are most useful to the Management System, providing it direction

on which segments to provide with resources in the next step. When a simulation

step is complete, retrieving the current status of each pathway segment is

accomplished by analysis of the X-net marking. If there is a token in ‘Done’, the

segment is “Complete”. If not, but there is a token in ‘Ongoing’, the segment is

“Ongoing”. If not ‘Ongoing’, but there is a token in ‘Ready for Resources’, the

segment is “Ready for Resources”. If not, the segment is “Not ready”.

The level of completion is also quickly read from the model. If the segment is

“Complete”, it is 100% complete. If not, the number of tokens in ‘Progress’ specifies

the mean estimate of the percent complete.

The Management System always receives precise, complete information.

167

The Hypothesis Measurement receives a distribution reflecting the uncertainty of

the simulated observation (Section 7.2.1). We use beta distributions for the non-

deterministic observations, with a higher variance for those observations specified as

having larger uncertainty.

7.4 Implementation details

The Pathway Inference Engine uses an underlying X-net simulation and analysis

engine similar to the version used in the QA system described in Chapter 6. It uses a

modified version of the Platform Independent Petri-net Editor 2 (PIPE2), version 2.4,

with the modifications providing an ability to: simulate simultaneous transition firings,

apply capacity restrictions to Places, create test and inhibitory arcs, and run

coverability analysis. All code is in Java 6. Pathway models are stored in Petri Net

Markup Language (PNML: ISO 2008), and resource requirements are stored in tab-

separated format.

Due to the regularity of the control structure employed in the models (Figure 7-6),

we were able to heavily optimize the firing functions of PIPE2, leading to a 115x

improvement in runtime speed. This enabled a significant increase in the number of

simulations our system could achieve during tests.

The Pathway Inference Engine connects to the rest of the PCLASS system through

the Backplane engine of one of our research partners. The Backplane provides an API

through which our system connects to the Management System and Hypothesis

Measurement module.

168

7.5 Demonstrations

We evaluated this system in three multi-university demonstrations. The purpose of

the demos was to test and show how active probes could increase diagnosticity,

providing greater separation of hypotheses. This is an important step before

classifying a real unknown pathway. The challenge is, with only nominal probes

(probes that expose only observables in a model that are available without any

significant effort), the observables available and the values obtained from the

observables may make hypotheses statistically indistinguishable (the entropy given the

observables will still be high). By perturbing the inputs and/or exposing additional

observables, the hypothesis measurements may allow for a cleaner classification of an

unknown pathway.

7.5.1 Demo Models

For each demo, we used elaborate pathway model(s) of technology development, with

two hypotheses. The technology pathways include such stages as R&D, pilot

production, testing, and full production, split amongst multiple segments.

Demo 1 model

In the first model, shown in Figure 7-7, a company may be making one or two

products. Hypothesis 1: the company is just making “S” (the Safe product);

Hypothesis 2: the company is making both “S” and “N” (the Not safe product).

The arcs shown in the figure are pathway segments, activities required to

complete the production of either “S” or “N” (e.g. “S20” is for “S”, “N29” is for “N”).

Nodes represent synchronization points: arcs going into nodes represent all the

segments that must complete to enable all the outgoing segments. The one major

169

Figure 7-7: Demo 1 – Products S & N model

exception are arcs labeled “a” or “b”, which are alternative segments. For example,

segment “S15” has two alternative segments (“S15a” and “S15b”); completion of any of

the three segments is sufficient to enable “S16” and “S20”, if “S14” is also complete.

(One minor clarification: at the diamond node, “N18” enables “N19”, but not “S19”.)

At full speed, the entire pathway takes 18 months to complete (represented by the

vertical lines). Arcs that are completely vertical are segments that complete in zero

time.

The pathway has a dependency of “N” on “S”, but not vice versa. (Note that any

connections between “N” and “S” segments go from “S” to “N”.) Furthermore, in this

scenario, only a subset of “S” segments are observable; no “N” segments are. Thus,

the company’s choice to create “N” or not create “N” cannot be observed directly.

170

Figure 7-8: Demo 2 – Public and Private product model

Instead, it can only be surmised by any effects it may have on observable “S”

segments.

The model has 82 segments in total, each of which translate into a pathway

segment controller (Figure 7-6). In total, this model has 410 Places and 328

Transitions.

Demo 2 model

In the second demo, the scenario was somewhat similar. A company has two

potential products, one publically observable (Product A), and another not (Product B).

Each follows the same pathway structure, shown in Figure 7-8, but with different

resource requirements. The development of the products run independently from one

another, except for the allocation of resources which the management can shift

between the projects. In this scenario, the private product, if it exists, starts seven

months later than the public product.

171

Figure 7-9: Demo 3 - Two public, one private product model

Hypothesis 1 speculates that the company is only producing Product A and all

resources are allocated to it. Hypothesis 2 believes that the company is producing

Product A and Product B, and resources have to be split between the two.

The complete model for each product has 29 segments, translating into 145 Places

and 116 Transitions.

Demo 3 model

The third demo significantly extended the scenario in Demo 2. There are three

potential products a company may be making: Products A, B, and C (the Product C

pathway is shown in Figure 7-9). They each have seven stages, running from

Hypothesis, to Production, to Testing. The pathways share structure for each stage

except for the third stage, where Products A and B have mutually exclusive segments,

and Product C has a combination of the segments of Products A and B. In addition,

Product B has a few dependencies from Product A, and Product C has a few

dependencies from both Product A and Product B. If the company is producing

Products A or B, it will be observable. Product C, if produced, will not be directly

observable.

Once again, there are two hypotheses. Hypothesis 1: the company only produces

Products A and B. Hypothesis 2: the company produces all three products.

172

Individually, the Product A model has 67 segments, for a total of 335 Places and

268 Transitions. Product B has 56 segments, for a total of 283 Places and 224

Transitions. Finally, Product C has 79 segments, for a total of 397 Places and 316

Transitions. In sum, demo 3 required analyzing 1015 Places and 808 Transitions,

which is the largest model set we tested on our event reasoning framework.

Variations

Successive demos increased the complexity of the models and analysis system.

• Demo 1: There was one model with two pathways. It was an early demo and

our system was not required to produce distributions over the degree of

completion outputs.

• Demo 2: There were two models with one pathway each. A distribution stub

for each the degree of completion was produced and output for each segment

at each time step.

• Demo 3: There were three, large models, with dependencies between each

other. Our system computed full distributions (as described in Section 7.3.4) of

the degree of completion output.

7.5.2 Results

The task in each of the three demos was to disambiguate between two hypotheses

being considered. To do so, the probes used in each case had to be able to provoke a

different response under the two hypothetical situations. As discussed in Section 7.1.2,

this can be accomplished through actions that result in delays or changes of rate in

pathway segment progress. In Demos 1 and 2, we were successful in analyzing the

173

Figure 7-10: Hypothesis 2 (Prod A & B)Figure 7-11: Hypothesis 1 (Prod A)

effects of probes that could provoke different responses under the two hypotheses.

Demo 3 is ongoing work.

Demo 1

Figure 7-11 and Figure 7-10 show one result using the Demo 1 model. (In the figures,

dotted lines are the baseline, unprobed scenario; solid lines are the probed scenario

under the hypothesis labeled for the figure.) Hypothesis 1 imagines the Company

producing only Product A, the production of which is partially observable.

Hypothesis 2 imagines the Company producing both Product A and a not-observable

Product B.

To disambiguate between the two models, we used a complex probe that

combined two actions, spread out over a short period of time. The first action was to

inhibit a subset of the workers needed to produce Product A from going to work; this

happened early in the production cycle. The rate change not only threatened progress

on the pathway segment that used those workers, it also threatened to delay every

segment dependent on the outcome of that segment. Without additional personnel,

nothing could be done to improve the situation. This was the case under Hypothesis 1.

The second action, that came soon after the first, would only affect the production

of Product B (if it were being produced), slowing down one of its resources and

174

leaving idle the personnel who would normally work on the resource. Under

Hypothesis 2, the Company would be attempting to produce Product B and thus would

now have idle workers after the second action of the probe. The Company,

threatened by delays to Product A production, would reassign the idle workers from

Product B to Product A, speeding the production of Product A back up. While nothing

could be observed about Product B, affects on its production could manifest

themselves in observable segments for Product A. This can be seen in Figure 7-11 and

Figure 7-10 which show the overall progress of the pathway over time under the two

hypotheses. Note that without the probe, entropy for the hypotheses was high (the

dotted lines were identical, so classification of a real pathway would be impossible).

With the probe, though, there is separation, entropy is lower, and classification will be

easier.

175

Figure 7-12: Demo 2 probe effects

Demo 2

Demo 2 combines finer grain distinctions from each of the individual pathway

segments into an estimate of the expected behavior of each hypothesis under probed

conditions. Figure 7-12 shows the completion progress over time of six segments of

the model’s 29 under four separate conditions (overlaid): Hypothesis 1 (H1),

Hypothesis 2 (H2), Hypothesis 1 – Probed (H1P), and Hypothesis 2 - Probed (H2P). As

can be seen, the probe starts affecting the pathway after Segment 11 (V1_S11) ; during

Segment 11, under the four conditions, the behavior of the system is nearly identical,

with H1 and H1P overlapping, and H2 and H2P overlapping. In Segment 12

(following Segment 11), greater discrepancies emerge between the behavior of H2P

and the other cases. This discrepancy expands in Segment 13. By Segment 15, 21,

and 24, the probe effect has materialized as a significant relative delay under the H2P

case compared to the H1P case. This demonstration shows the exact time series

176

effects that will distinguish Hypothesis 1 from Hypothesis 2 in the probed scenario,

lowering the entropy of the system from the unprobed scenario.

Demo 3

Demo 3 integrates a stochastic search algorithm for learning optimal probes (briefly

mentioned in Section 7.1.2) into the PCLASS system. This is done in the context of a

multi-university team effort, where the mutual information measure (between model

and probe, as described in Section 3.6.3) is integrated into a stochastic search

algorithm that incrementally changes probe characteristics to better separate the

pathway hypotheses in our demonstration domain. The pathway models for this

demonstration are complete. The candidate probe search algorithm is currently being

integrated at the time of this publication. Results are thus ongoing.

177

8 Conclusions and Future Work

In this dissertation, we attempted to demonstrate that computer systems need to apply

detailed, dynamic models of events when attempting to automatically answer

questions about complex events. To back up this claim, we 1) chose a representative

set of event-related question types (a class of questions previously ignored in question

answering systems because of their difficulty); 2) described an event model that has

the features necessary to infer information targeted by those question types; 3)

provided a set of tractable solutions that makes the models accessible for humans and

computers to interface with; and 4) demonstrated end-to-end system implementations

that utilize the features of the model to answer questions of our target types.

Specifically, we focused on five question types, each related to the inherent

property of events to evolve over time based on their structure and their state and

resource context. The modeling and inference framework that we created had an

ability to simulate and reason about the events underlying these question types due to

its 1) capturing contingent causal and temporal relations between events; 2) modeling

contextual information about events; 3) handling uncertain and partially ordered

trajectories; 4) representing sequentiality and concurrency; and 5) supporting

asynchronous control. By exploiting the frame semantic structure of events, our

model also showed a means of interfacing between event models and language. These

features were combined when we showed: 1) analyzing the relations of questions in

the context of expressive event models improving Answer Selection; 2) simulation and

analysis of models providing inferences about missing information targeted by

questions in our Question Answering task; and 3) dynamic simulation of pathways

178

providing the means to do Pathway Classification and probe design. As a whole, these

systems covered all five question types.

The results of our demonstrations were promising. However, in the case of

Answer Selection and Question Answering, the language processing systems we relied

on to setup the question and data for our system faced many long-standing hurdles in

NLP research that have yet to be solved (Section 8.3). Without those solutions, the

test sets we used to demonstrate our approach remained relatively small. The latest

research on pathway classification does not require language input and is thus able to

access larger test sets. Initial results have been successful, and work is ongoing

(Section 7.5). We detail additional ongoing and future work, next.

8.1 The next generation of event modeling and reasoning

Within our research group, Leon Barrett is developing an extension of X-nets, called

Coordinated Probabilistic Relational Models (CPRMs). CPRMs not only model the

dynamic structure of events, but also the uncertainty in belief states about events.

CPRMs will be able to replace X-nets in systems such as our Question Answering

system of Chapter 6.

Currently, the QA system is dependent on external evidence supplied by an

Information Retrieval system. The system makes an implicit assumption: if evidence

about a state is not available, that state does not exist. The system can infer otherwise,

but only if there is enough indirect evidence to show a causal chain to that state.

Hence, the burden of proof is on the case for the existence of the state. With CPRMs,

we can better integrate beliefs about the values of unknown states, where the beliefs

are shaped by the evidence that is available. These beliefs can also be updated during

simulation, based on the incremental evolution of the event. This will avoid the

179

erroneous implicit assumption mentioned above and increase the amount of

information the model can use to infer an answer.

Separately, in situations where multiple conflicting sources of evidence are

available with varying levels of trustworthiness, the CPRM can integrate the data into

a single estimate of the information. (Currently, our system uses the value from the

first piece of evidence returned.)

The tradeoff is the increased complication in model design. However, the payoff

of access to consistent data we believe would be significant. We look forward to

exploring this in greater detail in the future.

8.2 Additional event-related question types

Counterfactuals

In our Question Answering work (Section 3.5, Chapter 6), we attempt to answer

Hypothetical questions, but only the most basic kind and using only the most basic

solution: those that hypothesize new positive evidence about a condition or resource.

In Section 6.7.1, we describe an example of answering a Hypothetical/Projection

question: “If Israel wished to conquer Lebanon, would Israel destroy Lebanon’s

airports?” The question hypothesizes “Israel wishes to conquer Lebanon”, a condition

that can be added to the model, and then asks a Projection question of that

hypothesized state (“would Israel destroy Lebanon’s airports?”). We would like to also

be able to answer a more difficult hypothetical question, Counterfactuals.

Counterfactual questions hypothesize a state that runs counter to the known facts

about the scenario. It is challenging because, beyond the change to the condition or

resource explicitly mentioned in the question, additional interventions into the model

180

Figure 8-1: Issues in models for counterfactuals

may be necessary to remove any historical influence of the now-changed condition or

resource.

Take for example Figure 8-1 from our Lebanon War model, along with the

question, “if Israel did not wish to destroy Hezbollah, would Israel launch a ground

attack on south Lebanon?” If we knew in the baseline, real world case (no hypothesis)

that Israel had troops stationed in northern Israel (which leads to a ground attack on

southern Lebanon), should that remain a valid fact in the counterfactual scenario? It

may have only been a fact because it resulted from a state that is now assumed untrue

(Israeli goal to destroy Hezbollah).

A comprehensive computational treatment of counterfactuals culling data from

natural language, social sciences, and from behavioral psychology is currently being

completed (Narayanan in preparation). Details are outside the scope of this

dissertation.

State Steering

In our Pathway Classification work (Section 3.6, Chapter 7), we described the use of

probes to reveal information about an unknown pathway that might allow us to better

disambiguate between hypotheses about the pathway (i.e. we were attempting to solve

the Hypothesis Disambiguation question type). We do not, though, always seek to

passively analyze a pathway. In some cases, we would like to be able to change the

behavior of a pathway in accordance with a defined policy (i.e. we wish to steer the

181

system to a desired state). With real world tests of State Steering quite possibly being

expensive and maybe irreversible, we see an opportunity for our event reasoning

framework to answer a different question type. We wish to extend our current

pathway work to test whether we can use probes to steer the trajectory of a particular

pathway towards a desirable outcome without reaching any undesirable outcomes.

The relatively easy case will be for outcomes defined using out observable segment

outputs. The more difficult case will be for outcomes defined using a mix of

observable and hidden segment outputs.

8.3 Language processing support for Question Answering

The Natural Language Processing barriers are significant in the Question Answering

task. To produce results, we made a number of idealistic assumptions about the form

of the data our system would receive. Specifically, we expected gold-standard quality

frame parses and entity tagging, with entity tags derived from fine-grained,

hierarchical domain ontologies. With it, we achieved strong results. Unfortunately,

it is not realistic at this time to have on-the-fly access to such high-quality language

analysis. To move towards a fully automated system for Question Answering requires

certain natural language processing support, which we briefly describe below.

Frame analysis

Currently, there are no good off the shelf solutions for frame parsing text. The

systems by University of Texas, Dallas (Harabagiu, Bejan et al. 2005) and Saarbrucken

University (Erk and Pado 2006) and the work by Gildea and Jurafsky (2002) and by

Giuglea and Moschitti (2006), demonstrate the great strides made in the task in the

last few years. Still, 65% precision and 61% recall, as Gildea and Jurafsky achieved, is

182

not sufficient for finding the data needed to execute inference tasks with our event

reasoning framework. We would like to explore improvements in this space.

Furthermore, FrameNet annotations recognize “null instantiated” frame elements

(Ruppenhofer, Ellsworth et al. 2006), that the aforementioned systems do not attempt

to fill. Null instantiations are conceptually salient frame elements (FEs) that are

implied in the sentence annotated, but do not appear. Some null instantiated FEs exist

in linguistic or discourse context (e.g. across sentence boundaries), but require

additional analysis to fill (akin to anaphora resolution). While a full solution may not

be easily achievable, some low hanging fruit may exist that can be exploited to

decrease the effective number of null instantiations in frame parses, providing more

relational information for our event reasoning system to use. We would like to

explore this possibility as well.

Embodied Construction Grammar

Recent work in our research group has led to the development of a rich semantic

representation of language that outstrips frames in its representational power. As an

alternative to frame analysis, we believe using Embodied Construction Grammar

(ECG: Bergen and Chang 2002) to analyze the semantic content of questions and

passages may significantly increase our Question Answering system’s processing

power. New ECG analysis tools and demonstrations show the potential for of this

approach (Bryant 2008; Mok 2008). Unfortunately, at this time ECG coverage is

limited, making it difficult to analyze full domains that we may wish to target. If

coverage is extended relatively broadly, we would like to integrate ECG-based

descriptions of events into our event ontology and use ECG annotated questions and

passages to further test our QA system. Our group has preliminary work on

183

converting FrameNet frames into ECG representations (Chang, Narayanan et al. 2002),

which could provide the semantic basis for a significant ECG grammar.

Entity analysis and relation uses

Quality, fine-grained entity extraction is critical to our system’s performance (see

Section 4.1.3). As such, we are experimenting with our own in-house tool that will

link concepts found in text to the WordNet graph. We would like to eventually

connect our ontologies to the SUMO/MILO ontologies, which have additional logical

inference features (Niles and Pease 2001). In addition, we would like to explore and

integrate solutions for automatically extracting fine-grain ontologies targeted to

particular domains, linking these to SUMO/MILO, if possible. Each of these steps we

believe would provide greater coverage for specifying constraints in event models

using entity-restricted frames, providing higher precision and greater recall in linking

to relevant questions and finding relevant data.

Entity references are frequently made using metonymies (e.g. “White House” to

refer to the US President or his administration). We tested encoding some of these

relationships directing in our domain ontology, explicitly specifying a “representative-

of” relation between entities with a metonymic relation, and it helped in a few cases.

We would like to further explore this and other solutions to this common problem.

Additional language cues

Natural language provides additional valuable cues required for accurate event

inference, but not provided in frame or entity analysis. Specifically, we would like to

explore solutions for automatically extracting polarity (i.e. negation) and aspect cues

from sentences, allowing for more precise intervention on event models (Section 4.4.2)

and more accurate placement of control tokens, respectively.

184

Another significant issue in analyzing events is resolving discrepancies between

multiple pieces of evidence that refer to different stages in the evolution of an event.

Blindly combining evidence such as this can produce partial markings that are

potentially mutually exclusive from one another, producing inaccurate inferences (e.g.

evidence that ‘Joe has money’ and ‘Joe buys a car’ – does Joe having money refer to

the state after Joe bought the car or before? Does he have the money now?). To

accurately infer a state at a particular time requires data to be tagged with the time it

refers to. (In addition, as we demonstrated in our Pathway Classification task

(Chapter 7), precisely timed input to our event reasoning system can enable inferences

dependent on discrepancies in the timing of certain model output.) We would like to

explore the use of TimeML-based systems for tagging and querying temporal

information from text (e.g. Evita system: Sauri, Knippen et al. 2005).

Question analysis

In Section 4.2, we provided guidelines for the question analysis required for our

applications. For our demonstrations, we frequently relied on hand-generated

question classification. We would like to look at automated solutions for tagging

questions with their question type.

In addition, event questions using qualifiers may require translation. A question,

“can Joe buy the car for $5000 or less?”, can be translated into a basic Hypothetical: “if

Joe has $5000, can he buy the car?” We would also like to pursue solutions to this

problem.

Information Retrieval

Information Retrieval technology used in supplying our Question Answering system

with data also needs improvement. Currently, when our system sends out a list of

185

entity-restricted frames to the front-end system for the purpose of retrieving relevant

passages, the frame-based queries are converted into keyword-based IR queries, losing

the relational content in the queries. We would like to look at solutions for indexing

passage data using entity-bound frames. As this relies on more robust automated

frame annotation, we see this as a long-term goal. Recent commercial work using

relational information, though, like the Powerset search engine

(http://www.powerset.com), gives us hope that a nearer-term solution may be

forthcoming.

Event Ontology

In Section 4.6, we discuss a few preliminary efforts to enable model designers to

populate an event ontology. To facilitate their efforts, we would like to use

techniques in event extraction to automatically learn event primitives (single actions

and constituent parameters). This would provide building blocks from which larger

domain scenarios can be assembled by a designer. We would like to extend the work

of (Bethard 2007; Chambers, Wang et al. 2007; Chambers and Jurafsky 2008) and

others to encompass the larger range of event parameters described in Section 3.3.

8.4 Closing thoughts

Our work has taken place in a research domain that is in its early adolescence. We

have demonstrated a number of valuable techniques for answering questions about

complex events, showing their viability under engineered environments. In addition,

we have shown many promising avenues of future research to make these solutions

more robust and to extend their capabilities. We hope our work has set the agenda for

future enhancements to help the field grow into its full maturity.

186

Bibliography

Agre, P. E. and D. Chapman (1987). Pengi: an implementation of a theory of activity.

Proceedings of the Tenth International Joint Conference on Artificial Intelligence

(IJCAI-87), Morgan Kaufmann: 268-272.

Ajmone Marsan, M., G. Balbo, et al. (1995). Modelling with Generalized Stochastic

Petri Nets, J. Wiley.

Akharware, N. (2005). PIPE2: Platform Independent Petri Net Editor.

Aouladomar, F. (2005). Answering Procedural Questions. Knowledge and Reasoning

for Question Answering Workshop, IJCAI05, Edinburgh, Scotland.

Arkin, R. C. (1990). "Integrated Behavioral, Percentual, and World Knowledge in

Reactive Navigation." Robotics and Autonomous Systems 6: 105-122.

Astrom, K. J. (1965). "Optimal control of Markov decision processes with incomplete

state estimation." J1 Math1 Anal1 Applic. 10: 174-205.

Barker, K., V. Chaudhri, et al. (2004). A Question-Answering System for AP Chemistry:

Assessing KR&R Technologies. 9th International Conf on Knowledge

Representation and Reasoning (KR'04), Whistler, British Columbia, Canada, AAAI

Press.

Barker, K., B. Porter, et al. (2001). A Library of Generic Concepts for Composting

Knowledge Bases. 1st Int Conf on Knowledge Capture (K-Cap'01), Victoria, British

Columbia, Canada.

Bause, F. and P. Kritzinger (1996). Stochastic Petri Nets: An Introduction to the

Theory, Vieweg Verlag.

187

Bergen, B. K. and N. C. Chang (2002). Simulation-Based Language Understanding in

Embodied Construction Grammar. Construction Grammar(s): Cognitive and Cross-

language dimensions, John Benjamins.

Bethard, S. J. (2007). Finding event, temporal and causal structure in text: A machine

learning approach. Computer Science. Boulder, CO, University of Colorado at

Boulder. Ph.D.

Brooks, R. A. (1986). "A robust layered control system for a mobile robot." IEEE

Journal of Robotics and Automation 2: 14-23.

Bryant, J. (2008). Best-Fit Constructional Analysis. Computer Science. Berkeley, CA,

University of California, Berkeley. Ph.D.

Busi, N. (2002). "Analysis issues in Petri nets with inhibitor arcs." Theoretical

Computer Science 275: 127-177.

Chambers, N. and D. Jurafsky (2008). Unsupervised Learning of Narrative Event

Chains 46th Annual Meeting of the Association for Computational Linguistics

(ACL-08). Ohio, USA.

Chambers, N., S. Wang, et al. (2007). Classifying Temporal Relations Between Events.

45th Annual Meeting of the Association for Computational Linguistics (ACL-07).

Prague, Czech Republic.

Chang, N., S. Narayanan, et al. (2002). Putting Frames in Perspective. Proc.

Nineteenth International Conference on Computational Linguistics (COLING 2002).

Chinchor, N. (1998). Overview of MUC-7. Seventh Message Understanding

Conference (MUC-7).

188

Doddington, G., A. Mitchell, et al. (2004). The Automatic Content Extration (ACE)

Program - Tasks, Data, and Evaluation. LREC 2004, Lisbon, Portugal.

Erk, K. and S. Pado (2006). Shalmaneser - a flexible toolbox for semantic role

assignment. LREC 2006, Genoa, Italy.

Fellebaum, C. (1998). WordNet: An Electronic Database, MIT Press.

Fikes, R. E. and N. J. Nilsson (1971). "STRIPS: a new approach to the application of

theorem proving to problem solving." Artificial Intelligence 2(3-4): 189-208.

Fillmore, C. (1976). "Frame semantics and the nature of language." Annals of the New

York Academy of Sciences: Conference on the Origin and Development of

Language and Speech 280: 20-32.

Fillmore, C., C. R. Johnson, et al. (2003). "Background to FrameNet." International

Journal of Lexicography 16(3).

Fillmore, C. J. (1982). Frame Semantics. Linguistics in the Morning Calm. Seoul,

Hanshin: 111-38.

Fliedner, G. (2004). Towards Using FrameNet for Question Answering. LREC 2004

Workshop “Building Lexical Resources from Semantically Annotated Corpora”.

Lisbon, Portugal: 61-65.

Fliedner, G. (2005). A Generalized Similarity Measure for Question Answering. 10th

International Conference on Applications of Natural Language to Information

Systems (NLDB), Alicante, Spain, Springer.

189

Fliedner, G. (2006). Towards Natural Interactive Question Answering. 5th

International Conference on Language Resources and Evaluation (LREC 2006),

Genoa, Italy.

FrameNet. (2008). "FrameNet online frame database." 1.3.

from http://framenet.icsi.berkeley.edu.

Gelfond, M. and V. Lifschitz (1993). "Representing Action and Change by Logic

Programs." Journal of Logic Programming 17: 301-322.

Gildea, D. and D. Jurafsky (2002). "Automatic Labeling of Semantic Roles."

Computational Linguistics 28(3): 245-288.

Giuglea, A.-M. and A. Moschitti (2006). Shallow Semantic Parsing Based on FrameNet,

VerbNet and PropBank. European Conference on Artificial Intelligence, Riva del

Garda, Italy.

Harabagiu, S., C. Bejan, et al. (2005). Shallow Semantics for Relation Extraction.

Nineteenth Internatioal Joint Conference on Artificial Intelligence, Edinburgh,

Scotland.

ISO, I. O. f. S. (2008). Software and system engineering -- High-level Petri nets. Part 2:

Transfer Format. ISO/IEC FCD 15909-2.

Kingsbury, P. and M. Palmer (2002). From Treebank to PropBank. Proc. 3rd

International Conference on Language Resources and Evaluation (LREC-2002).

Klein, D., J. Smarr, et al. (2003). Named Entity Recognitino with Character-Level

Models. Seventh Conference on Natural Language Learning at HLT-NAACL 2003,

Edmonton, Canada.

190

http://framenet.icsi.berkeley.edu/

Krishnan, V. and C. D. Manning (2006). An Effective Two-Stage Model for Exploiting

Non-Local Dependencies in Named Entity Recognition. 21st International

Conference on Computational Linguistics and 44th Annual Meeting of the

Association for Computational Linguistics, Sydney, Australia.

Lachiche, N. and P. A. Flach (2003). Improving accuracy and cost of two-class and

multi-class probabilistic classifiers under ROC curves. 20th International

Conference on Machine Learning (ICML '03), Washington, DC, AAAI Press.

Lehnert, W. G. (1978). The Process of Question Answering: a computer simulation of

cognition, Lawrence Erlbaum Associates.

Lenat, D. B. and R. V. Guha (1990). "Building Large Knowledge-Based Systems:

Representation and Inference in the CYC Project."

Lifschitz, V. (1989). Between circumscription and autoepistemic logic. Proceedings of

the First International Conference on Principles of Knowledge Representation and

Reasoning, Morgan Kaufmann: 235-244.

Martin, D. L., M. Burstein, et al. (2004). "OWL-S: Semantic Markup for Web

Services." from http://www.w3.org/Submission/2004/SUBM-OWL-S-20041122/.

McCarthy, J. (1958). Programs with Common Sense. Proceedings of the Symposium on

Mechanisation of Thought Processes, Her Majesty's Stationery Office. 1: 77-84.

McCarthy, J. and P. J. Hayes (1969). Some philosophical problems from the standpoint

of artificial intelligence. Machine Intelligenc1 4, Edinburgh University Press: 463-

502.

McGuinness, D. L., F. Van Harmelen, et al. (2004). "OWL Web Ontology Language

Overview." from http://www.w3.org/TR/2004/REC-owl-features-20040210/.

191

http://www.w3.org/Submission/2004/SUBM-OWL-S-20041122/
http://www.w3.org/TR/2004/REC-owl-features-20040210/

Michie, D., D. J. Spiegelhalter, et al. (1994). Machine Learning, Neural and Statistical

Classification, Ellis Horwood.

Moens, M. and M. Steedman (1988). "Temporal Ontology and Temporal Reference."

Computational Linguistics 14(2): 15-27.

Mok, E. (2008). Contextual Bootstrapping for Grammar Learning. Computer Science.

Berkeley, CA, University of California, Berkeley. Ph.D.

Mossman, D. (1999). "Three-way ROCs." Medical Decision Making 19: 78-89.

Murata, T. (1989). Petri Nets: Properties, Analysis, and Applications. Proc. IEEE-89.

77: 541-576.

Narayanan, S. (1997). Knowledge-based Action Representations for Metaphor and

Aspect (KARMA), Computer Science Division, University of California at Berkeley.

Narayanan, S. (1997). Talking the Talk is Like Walking the Walk: A Computational

Model of Verbal Aspect. Proc. 19th Cognitive Science Society Conference.

Narayanan, S. (1999). Reasoning about Actions in Narrative Understanding. Proc.

Sixteenth International Joint Conference on Artificial Intelligence (IJCAI-99),

Morgan Kaufmann Press.

Narayanan, S. and S. McIllraith (2002). Simulation, Verification, and Automated

Composition of Web Services. Proc. Eleventh International World Wide Web

Conference (WWW2002).

Niles, I. and A. Pease (2001). Towards a Standard Upper Ontology. 2nd International

Conference on Formal Ontology in Information Systems (FOIS-2001), Ogunquit,

Maine.

192

Nilsson, N. J. (1984). Shakey the robot, SRI International.

Palmer, M., D. Gildea, et al. (2005). "The Proposition Bank: A Corpus Annotated with

Semantic Roles." Computational Linguistics 31(1): 71-106.

Pasca, M. and S. Harabagiu (2001). High Performance Question/Answering. The 24th

Annual International ACM SIGIR Conference on Research and Development in

Information Retrieval (SIGIR 2001), New Orleans, LA.

Pearl, J. (2001). Causality: Models, Reasoning, and Inference, Cambridge University

Press.

Ramakrishnan, G., S. Chakrabarti, et al. (2004). Is question answering an acquired

skill? 13th International Conference on World Wide Web (WWW '04), New York,

NY, ACM.

Rickel, J. and B. Porter (1994). Automated modeling for answering prediction

questions: Selecting the time scale and system boundary. Twelfth National

Conference on Artificial Intelligence.

Rosenschein, S. J. (1985). "Formal theories of knowledge in AI and robotics." New

Generation Computing 3(4): 345-357.

Ruppenhofer, J., M. Ellsworth, et al. (2006). FrameNet II: Extended Theory and

Practice.

Salton, G., A. Wong, et al. (1975). "A vector space model for automatic indexing."

Communications of the ACM 18(11): 613-620.

193

194

Sauri, R., R. Knippen, et al. (2005). Evita: A Robust Event Recognizer for QA Systems.

Human Language Technology Conference / Conference on Empirical Methods in

Natural Language Processing (HLT/EMNLP 2005), Vancouver, B.C., Canada.

Sekine, S. and H. Isahara (2000). IREX: IR and IE Evaluation project in Japanese.

LREC-2000, Athens, Greece.

Steedman, M. (1996). Temporality. Handbook of Logic and Language. North Holland,

Elsevier.

Swets, J. A. (1988). "Measuring the accuracy of diagnostic systems." Science 240:

1285-93.

Weiss, S. M. and C. A. Kulikowski (1991). "Computer Systems That Learn:

Classification and Prediction Methods from Statistics, Neural Nets, Machine

Learning, and Expert Systems."

Yin, L. (2004). Topic Analysis and Answering Procedural Questions. Technical Report

Series, Information Technology Research Institute, University of Brighton.

	Answering Questions about Complex Events
	Abstract
	Contents
	List of Figures
	Acknowledgments
	1 Introduction
	1.1 Solution Approach
	1.1.1 Events & Event Questions
	1.1.2 Inferences with events
	1.1.3 Language

	1.2 Applications
	1.2.1 Answer Selection
	1.2.2 Question Answering
	1.2.3 Pathway Classification

	1.3 Contributions
	1.4 Road map

	2 Reasoning about Events
	2.1 Event Models in AI
	2.1.1 Logical AI
	2.1.2 Graphical Models of Actions
	2.1.3 Event Models for Transactions on the Semantic Web:
	2.1.4 Event Models in Linguistics and NLP

	2.2 Question Answering (QA) research
	2.2.1 Motivation to use event models in QA
	2.2.2 State of the Art
	2.2.3 Related Work in QA

	3 Expressive schema and dynamic models of events
	3.1 Motivating example
	3.2 Objectives
	3.3 Describing events
	Example

	3.4 Dynamic modeling of events
	3.4.1 X-nets
	Background
	Formal definition
	Real-time simulation semantics

	3.4.2 Representing complex events with dynamic models
	Basic Event
	Event-Event Relations
	Frames
	Linking and Tuning Event Models for Larger Scenarios

	3.4.3 Analysis
	Reachability (Forward)
	Backwards Reachability

	3.5 Inferring target information
	3.5.1 Justification
	3.5.2 Temporal Projection
	3.5.3 Ability
	3.5.4 “What-if” Hypothetical

	3.6 Pathway classification
	3.6.1 Pathways and Hypotheses
	3.6.2 Hypothesis Disambiguation
	3.6.3 Probes and optimal probe design
	The mutual information between a hypothesis set and a probe
	Evaluating model utility
	Evaluating probe utility
	Calculating the optimal probe

	4 Bridge to Applications
	4.1 Interface between language and models
	4.1.1 Background on Frames and FrameNet
	FrameNet frame attributes
	Frame annotations

	4.1.2 Frame matching
	4.1.3 Linking entities to bindings
	Named entity classes
	Hierarchical domain ontology

	4.1.4 Semantic relevance matching
	4.1.5 Linking event scenario models to frames
	Abstract models

	4.2 Determining data and simulation goal: Question Analysis
	Question Frame and Entity Analysis
	Question Type Classification
	Support for peripheral event-related questions

	4.3 Selecting Models for Questions
	Scoring models
	Instantiating an abstract model

	4.4 Acquiring and Incorporating data
	Data for analysis
	4.4.1 Acquiring relevant data through query expansion
	4.4.2 Incorporating data

	4.5 Extracting and composing answers
	4.6 Building Models
	4.6.1 Manual generation
	PIPE2 Editor and OWL Translator
	Model-language design approach

	4.6.2 Auto-generation
	Frame Translation

	4.6.3 Models built
	Treaty model
	Weapons procurement
	Biological weapons production
	Judicial process
	Lebanon War of 2006

	5 Applying Event Modeling to Answer Selection
	Early version of event modeling framework
	System context
	5.2 Motivating example
	5.3 System modules and processing flow
	Example

	5.4 Modules
	Front-end
	Running example: Front-end

	Alignment
	Running example: Alignment

	Model Selection
	Selecting a model from the Event Ontology
	Instantiating an abstract model
	Running example: Model Selection

	Answer Candidate Scoring
	Running example: Answer Candidate Scoring

	Candidate Ranking
	Running example: Candidate Ranking

	5.5 Evaluation

	6 Applying Event Reasoning to Question Answering
	System context
	6.2 Motivating example
	6.3 System modules and processing flow
	Example

	6.4 Modules
	6.4.1 Pre-system: Question Analysis
	Running example: Question Analysis

	Alignment (Question)
	Running example: Question Alignment

	Model Selection
	Selecting a model from the Event Ontology
	Instantiating an abstract model
	Calculating the Context Structure and Answer Structure
	Running example: Model Selection

	6.4.4 Background Fill
	Database
	Retrieval
	Running example: Background Fill

	Query Expansion system (Output of Stage I)
	Running example: Query Expansion

	External: Passage Analysis
	Running example: Passage Analysis

	Alignment (Passage)
	Running example: Passage Alignment

	Passage Frame Mapping
	Running example: Passage Frame Mapping

	6.4.9 Simulation and Analysis
	Hypotheticals
	Running example: Simulation and Analysis

	Answer Extraction (Output of system)
	Hypotheticals
	Running example: Answer Extraction

	6.5 Back-off strategies
	6.6 Implementation details
	6.7 Results
	6.7.1 Examples of answering target question types
	Hypothetical Prediction question example
	Ability question example

	6.7.2 Evaluations and Demonstrations
	Demo 1 – Entailment Evaluation
	Demo 2 – Question Answering
	Demo 3 – Question Answering

	7 Applying Event Reasoning to Pathway Classification
	7.1 Task and System context
	7.1.1 PCLASS system
	Probes
	Probe strategies

	7.1.3 System design scope

	7.2 System modules and process flow
	7.2.1 System outputs

	Module details
	7.3.1 Model Initialization
	7.3.2 Input Processing (per step)
	7.3.3 Simulation step
	7.3.4 Results Processing (per step)

	7.4 Implementation details
	7.5 Demonstrations
	7.5.1 Demo Models
	Demo 1 model
	Demo 2 model
	Demo 3 model
	Variations

	7.5.2 Results
	Demo 1
	Demo 2
	Demo 3

	8 Conclusions and Future Work
	8.1 The next generation of event modeling and reasoning
	8.2 Additional event-related question types
	Counterfactuals
	State Steering

	8.3 Language processing support for Question Answering
	Frame analysis
	Embodied Construction Grammar
	Entity analysis and relation uses
	Additional language cues
	Question analysis
	Information Retrieval
	Event Ontology

	8.4 Closing thoughts

	Bibliography

