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ABSTRACT

Resampling Methods for Protein Structure Prediction
by
Benjamin Norman Blum
Doctor of Philosophy in Computer Science
University of California, Berkeley

Professor Michael I. Jordan, Chair

Ab initio protein structure prediction entails predictitite three-dimensional confor-
mation of a protein from its amino acid sequence without tee of an experimentally
determined template structure. In this thesis, | presemwaapproach to ab initio protein
structure prediction that divides the search problem i parts: sampling in a space of
discrete-valued structural features, and continuouskearer conformations while con-
straining the desired features. Both parts are carried singuRosetta, a leading structure
prediction algorithm. Rosetta is a Monte Carlo energy mimation method requiring
many random restarts to find structures near the correatative structure. Our meth-
ods, which we callesamplingmethods, make use of an initial round of Rosetta-generated
local minima to learn properties of the energy landscapeghige a subsequent “resam-
pling” round of Rosetta search toward better predictionse Of the main innovations of
this thesis is to attempt to deduce from the initial set ofd@smodels not the entire na-
tive conformation but rather a few specifieaturesof the native conformation. Features
include backbone torsion angles, per-residue secondargtste, exposure of residues to
solvent, and a three-tiered hierarchy of beta pairing featuFor each feature there is one
“native” value: the one found in the native structure. Natigature values are generally
enriched in structures with low energy, as the native stinecof a protein is significantly
lower in energy than non-native structures and the energy mbtein is to some extent

the sum of spatially local contributions. We have develaperimethods for feature-space
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resampling based on this observation. The first method grapéature selection methods
to identify structural feature values that give rise to lavergy, which are then enriched in
the resampling round. The second, more sophisticated mefghdates the sampling distri-
bution for all features at once, not just a selected few, legioting the likelihood that each
feature value is native. Our results indicate that both oathespecially the second one,

yield structure predictions significantly better than #npsoduced by Rosetta alone.
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Chapter 1

Introduction

1.1 Proteins

Proteins are biological macromolecules that perform e@sgddanctions in all living organ-
isms. They are composed of amino acid residues joined tegéthpeptide bonds into
long polypeptide chains. There are twenty naturally oéogrvarieties of amino acid that
appear in proteins, each defined by a chemically ungige chain Their precise sequence
in a protein is encoded by the sequence of DNA base pairs tnptioéein’s gene. This
amino acid sequence is known as a protgmimary structure

Proteins also have structure at other levels of resolutiGantiguous regions of the
amino acid sequence form two main varietiessetondary structutecharacterized by
regular hydrogen bond patternalpha helicesand beta strands Multiple beta strands
(possibly distant in sequence) bind together to féweta pleated sheet8eta strands bind
together in two orientations: anti-parallel and paral@tcasionally one or more residues
in one strand do not form hydrogen bonds to any residues ooppesite strand; such
occurrences are known hsta bulges

At the global level, theertiary structureof a protein—its three-dimensional conform-
ation—is formed by packing secondary structure elemeggstb@r into one or more glob-
ulardomains During the folding process, the protein searches throtgytieagrees of free-
dom for lower energy states. Each residue in an amino acides®g has two primary

degrees of freedom: rotation around thg—/N bond, referred to as the phi torsion an-



gle, and rotation around th@&,—C' bond, referred to as the psi torsion angle. The primary
driving force behind the folding process is hydophobic @bt is energetically favorable
for polar side chains to be exposed to solvent and hydrogtsatié chains to be buried in
the protein’s hydrophobic core. The protein backbone fitsighly polar, but within
secondary structure elements all hydrogen bond donorscaeghers on the backbone are
satisfied, so helices and sheets can pass through the cdre pifdtein without incurring
an energetic penalty.

Some proteins are composed of multiple polypeptide chélresarrangement of these
chains with respect to one another comprises the protgu@sernary structure

For the reader interested in a very thorough and accesaibteluction to protein struc-
ture and function[Branden and Tooze, 19P& an excellent reference.

The recent explosion in available genome data has broughtit\an explosion in the
number of known amino acid sequences of proteins. It hashowtever, illuminated the
precisefunctionof these proteins. Secondary structure can be predictddfaiity high
accuracy from sequence information, but it is the tertiayd( quaternary, if applicable)
structure of a protein that most directly determines itddgal function. Enzymes, for
instance, which catalyze specific chemical reactions, mi&p@ very precise catalytic ge-
ometry of aractive siteo bind to one or morsubstratesNeither the location of this active
site nor its geometry can be determined reliably withoutvking the tertiary structure of
the enzyme. Thus, in order to reap the full rewards from thve wealth of genome data,
we must know the tertiary structure of the proteins that gameode.

Unfortunately, the tertiary structure of a protein is qukallenging to determine. Ex-
perimental methods currently in use, including nuclear meéig resonance spectroscopy
[Wiithrich, 1990 and the higher resolution x-ray diffraction metHé@ndrewet al.,, 1954,
are time- and resource-intensive. As a result, the numblen@i/n protein sequences now
far outstrips the capacity of experimentalists to deteartimeir structures. Fewer than
50,000 proteins have (at time of writing) had their struetuexperimentally determined

[RCSB, 2008, out of a pool of about 1,000,000 known amino acid sequefidagrot
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Consortium, 200B In nature, the amino acid sequence of a protein uniquely ¢iood ap-
proximation) determines the conformation it will fold irftanfinsen, 1978 If it were pos-
sible to predict this tertiary structure from primary stwe using computational means,
the impact on the current state of biological knowledge wdag enormous. This is the

protein structure prediction problem.

1.2 Protein structure prediction

Protein structure prediction has progressed mightily & plast thirty years. Although
computational methods are not yet nearly as reliable asriexeetal methods, predicted
structures are in some cases very close to the resolutioqpefienentally determined struc-
tures. Progress in the field has been particularly easy tsuneaince the establishment of
the biannual meeting on Critical Assessment of technigoiegrbtein Structure Prediction
(CASP)[Moult et al,, 1994, a blind structure prediction benchmark in which essetial
all leading researchers in the field participate. Every tearg, a pool of proteins for which
structures have been determined but not yet released aepee as challenges to the com-
putational groups. Afterwards, the predictions are combavith the true structures and
the various methods are assessed against one another.

Protein structure prediction is a wide and varied field, bstdnically algorithms have
been subdivided into three primary categories: homologgetiog, fold recognition, and
ab initio modeling. In homology modeling, a target protesmmodeled using a template
protein with experimentally determined structure. Theptate, or “homolog,” is identified
by sequence similarity to the target. If no such sequenceolagrexists, it may still be the
case that the target protein adopts a fold similar to onedrddtabase of solved structures;
in this case, a suitable template might be identified usinglé fecognition algorithm.
These methods are also referred to as “threading” algositsimce testing the match to the
template typically involves threading the target sequehosugh the structure of the tem-
plate and evaluating some simplified physical energy piatkerthe final category, ab initio
modeling, refers to structure prediction in the absencengfséructural template, and gen-
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erally entails searching through conformation space fegtbbal free energy minimum, as
captured by some kind of energy function. This categoaratif prediction methods was
reflected in the categories of CASP competition up until CBSRowever, starting with
CASP7[Moult et al, 2007, homology modeling and fold recognition have been joined
into a single template-based modeling (also called contiparmnodeling) category, with
the easiest targets (those having very high sequence stynitatheir templates) placed in
a “high-accuracy modeling” category. This reflects a shifthinking within the field—
homology modeling and fold recognition methods differ omthe distance of structural
homologs that they can detect, and the primary distincidoeiween template-based mod-
eling and ab initio modeling, with the former category aatting for about 85% of CASP7
targetdMoult et al., 2007.

Applications of structure prediction are numerous, andedepon the accuracy of
the prediction. At the atomic level of resolution—modelghin 1A-1.5A of the native
conformation—the precise catalytic geometry of the acéite of enzymes is in place, so
catalytic mechanisms can be inferred. Protein-proteirkidlgccan be performed, and po-
tential ligands can be screened automaticBXy et al, 1994. This level of resolution
is currently only reliably achievable by comparative manglusing close sequence ho-
mologs[Baker andSali, 2001. At the coarser resolutions currently attainable by abdnit
methods, predictions can be used for molecular replacemefitay crystallography and
hence to produce high-resolution structuif®san et al,, 2007, or to identify likely active

sites or functional relationships to proteins with simgaucture.

1.2.1 Template-based modeling

Modeling based on templates predates the computationattagrst model derived from
a template was built by harl[@rowneet al, 1969. Comparative methods were among
the first computational techniques for protein structuedpmtion[Blundell et al.,, 1987.
Early influential methods include assembling large fragimeri aligned structure from

multiple templategLevitt, 1992 and satisfying inter-residue distance constraints dérive
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from template$Sali and Blundell, 19983

Template-based modeling has four basic steps: identdicati the templates, align-
ment of the target to the templates, building the model, asgssing the modéMarti-
Renomet al, 2004. The historical distinction between homology modeling doidi
recognition lies primarily in the manner in which the firstatwteps are carried out. In
homology modeling, templates are found using simple serpisaquence matching via
BLAST or other method$Altschul et al, 1990; Jonegt al, 1992; Vingron and Water-
man, 1994 or sequence-profile matching via PsiBLA$Altschul et al, 1997. Many
sophisticated methods exist for finding templates much md@tant in sequence, includ-
ing profile-profile matchindGodzik, 2003; Jaroszewslt al, 2000a; 2000 Hidden
Markov Models[Karpluset al, 1999, threading the target onto the proposed template
structurg Jones, 1999; Daviet al., 2000; Skolniclet al., 2004; Zhou and Zhou, 2095nd
“meta-server” predictions combining all of the abdVeallneret al., 2003; Fischer, 2003;
Ginalskiet al., 200d. Both optimal alignment to the template and refinement ofioeel
once it has been built from the template remain large unggtveblems. CASP7 was the
first occasion in which the majority of submitted predicgdar each target were better than
the best experimental template with a perfect alignmennbutefinemenfMoult et al,
2007. Leading methods for refinement include minimizing an &diraforcefield[Misura
et al, 2004 and assembling large fragments from multiple templBZésng, 200¥. Once
the backbone of the model has been built, specific methods feximodeling loops be-
tween secondary structure elemelseret al, 2004 and placing side chairf8ower et
al., 1997, although these steps are often embedded within the maidldify and refine-

ment steps in comparative modeling algorithms.

1.2.2 Ab initio modeling

Ab initio modeling starts with the assumption that the mratonformation is the global
free energy minimunfAnfinsenet al, 1961; Anfinsen, 1973 although there are in fact

important exceptions to this rullBaker and Agard, 1994 In theory, then, the native
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conformation can be found by energy minimization in confation space without recourse
to a structural template. The idea is appealing—an accatataitio structure prediction

method would be wholly general and hence would make templased modeling methods
unnecessary. However, in practice the ab initio modelirabl@m is much harder than
the comparative modeling problem and current methods damatoach the accuracy of
template-based methods. Conformation space is very higbrsional and the energy
landscape is riddled with local minima.

Important research in this area concentrates both on inmgdkie accuracy of energy
functions and on simplifying the search space via dis@&bn or reduced representations
of structure. Energy potentials fall into two categorie$tygical terms, including elec-
trostatic, solvation, and van der Waals interactions, datistical terms derived from the
set of experimentally determined protein structd@ippl, 1995; Koppensteiner and Sippl,
1999. Interactions between protein and solvent are typicalgtwad using an implicit
solvent model rather than with explicit solvent molecul€se most sophisticated energy
functions now include a mix of statistical and physical s, and appear increasingly
capable of discerning the native conformation from otherfaonations|Vorobjevet al,
1998; Lazaridis and Karplus, 1999; Rapp and Friesner, 1B88ey and Honig, 2000;
Leeet al, 2001.

The choice of the conformation space in which to search isiai@rone. If it is too
reduced, the native structure might not be contained withend the closest point to the
native in the reduced space might not be discernible asmedame by the energy func-
tion. Search-space reduction is generally necessary, \esweecause the full conforma-
tion space is too large to search effectively. Backbonddnrangles can be limited to a
discrete set of commonly observed vallieark and Levitt, 1996or drawn from fragments
of true protein structure from proteins in the database pédrentally determined struc-
tures[Sippl et al, 1992; Bowie and Eisenberg, 1994; Jones, 1997; Sinevas, 1997.
Side chains in nature typically assume conformations frodisarete pool of rotamers,

so search over side chain conformations can be discretzeeth[R. L. Dunbrack and
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Karplus, 1994 An even greater simplification can be achieved by abst@daiide chains
as super-atoms located at the centroids of the side chaatsloe beta carbon, with statisti-
cal interaction potentials between side chains that aeeoaginternal degrees of freedom
[Simonset al, 1997.

Search itself is usually carried out using some kind of MdDaéelo procedure, includ-
ing simulated annealinggimonset al,, 1997 and genetic algorithm{$edersen and Moult,
1995. Many current methods produce, rather than a single locairmim of the energy
function, a pool of candidates resulting from numerousdesmajectories. A single pre-
diction is then chosen from this pool by one of a variety ofmoets[Park and Levitt, 1996;
Huanget al, 1996; Samudrala and Moult, 1998

Our work is built upon RosettBimonset al, 1997, a particularly successful ab initio
modeling algorithm which generated a great deal of excitérize the promise of ab initio
methods when it significantly advanced the field in CA$Bdnneatet al, 2001. Since
then, progress in Rosetta has been only incremental, gthoo other methods have con-
vincingly overtaken ifMoult et al, 2007. We discuss Rosetta in some detail in the next

section.

1.3 Rosetta

Rosetta is one of the leading methods for ab initio protefncstire prediction today.
Rosetta uses a Monte Carlo search procedure to minimizeeagyefunction that is suffi-
ciently accurate that the conformation found in nature {tfaive” conformation) is often
the conformation with lowest energy.

Each Rosetta search trajectory proceeds through two stagesitial low-resolution
search stage in which side chains are represented as dsnividhout internal degrees
of freedom, followed by a high-resolution refinement stage/hich all atoms are placed
and the energy function is closer to the true physical eneiiirough the low-resolution
energy function is not physically realistic and cannot galte distinguish the native con-
formation from Rosetta local minima, the global conforroatlargely comes together in

7



the low-resolution stage. The high-resolution stage sitiee global conformation in mi-
nor ways, largely to accommodate the placement of side shdihe output of the low-
resolution stage can be regarded as a proposed backboneaimtavhlace side chains; the
refinement stage evaluates the proposal, subjecting itmommodification along the way.

One might suggest using the all-atom energy function thimoug search. The low-
resolution model cannot, however, be generated using lHagaah energy function, for two
main reasons: first, there are too many degrees of freedom alhatoms are included,
so search in this space is very slow; second, the high-résolanergy function is much
rougher and prone to energetic traps. In order to allow tkdirfg protein to arrive at the
final folded state, some degree of flailing is required, aedthatom energy function, with
its strict adherence to physical laws, is not sympathetilatiing. The native conformation
is generally lower in all-atom energy than Rosetta localimathat have gone through the
high-resolution refinement stage.

In the low-resolution stage, the primary search movefragment replacememhove,
in which a sequence of contiguous residues—either thremer although in principle any
size would work—have their backbone torsion angles replagigh angles drawn from
a fragment of protein structure in the PDB (the database pémmentally determined
protein structures). This is the key innovation that ereBlesetta’s success. Rather than
search over individual torsion angles, the conformatiam jcanp between locally viable
structures. For a new target on which Rosetta is to be rdrgganent poois generated
ahead of time. This pool contains, for evérgmeof three or nine residues in the protein,
a set of 200 fragments drawn from the PDB. In a protein of lengtesidues, there are
n — k + 1 frames of lengtht, for a total of(n — k£ + 1) * 200 fragments of lengttk in
the pool. The fragments are chosen by sequence similaribettarget protein’s sequence
within the frame, and by matching the predicted secondancttre of the target to the
actual secondary structure of the fragment in the prot@mfwhich it derives. The same
fragment pool is used for every search trajectory, with manaposals drawn out of it at

random. After a fragment replacement, local minimizatoperformed and then the move
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is accepted or rejected based on a Metropolis-style eneitgyion.

Finding the global minimum of the energy function is venryfidiilt because of the high
dimensionality of the search space and the very large numfbeical minima. Rosetta
employs a number of strategies to combat these issues,dptithary one is to perform
a large number of random restarts. Thanks to a very larde-sitstributed computing
platform called Rosetta@home, composed of more than fondieal thousand volunteer
computers around the world, up to several million local miaiof the energy function (we
will call them “models”) can be computed for each target szgpe. Computational costs
for Rosetta are high. Each Rosetta model takes approxiyrfdteen minutes of CPU time
to compute on a 1GHz CPU, and a typical data set for a singlettaonsists of on the

order of100, 000 models.

1.4 Resampling

The fundamental insight behimdsamplingmethods, which are the focus of the remainder
of this thesis, is that a random-restart strategy throwyangreat deal of information from
previously computed local minima. In particular, previaasnples from conformation
space might suggest regions of uniformly lower energy; éhe® regions in which we
might wish to concentrate further sampling. This intuitieads to a class of methods
that we callstructure-basedesampling methods. We discuss past work in this area in
Section 1.4.1, and illustrate some of the drawbacks of {hysa@ach with two of our own
attempts at structure-based resampling methods. Thestsefiotivate the innovation that
constitutes the main original contribution of this thesshifting search into a discrete-
valued structural feature space, and identifying natikefeaturesrather than attempting

to identify native-likestructures In Section 1.4.2 we discuss the limited past work that has
been performed in feature-based resampling—primarilyeieralgorithms, which differ

significantly from our methods—and introduce our own altjons in this area.



1.4.1 Structure-based resampling

Structure-based resampling methods work by identifyinlgegiregions of conformation
space or individual structures from the initial samplingmd that show promise, and con-
centrating further search around them. The fundamentallsarek of methods in this class
is that they are limited to enrichment of regions of confalioraspace which have already
been explored, whereas the native conformation will noegaly lie within these regions.

In “conformation space annealinff’eeet al, 1997, a pool of random starting struc-
tures is gradually refined by local search, with low energycstires giving rise to children
that eventually replace the higher energy starting strastuWhile the method does prove
successful in some cases, it is limited to local exploratibareas of conformation space
already sampled. New areas of conformation space are exbbyrthe introduction of new
random seed structures, but for larger proteins, the chafreceandom structure being close
enough to the native structure to give rise to near-natige@edants may be vanishingly
small. In[Brunette and Brock, 2005a Rosetta-based resampling method is presented that
operates by identifying “funnels” in conformation spacel aoncentrating sampling on
the low-energy funnels. Funnels are discovered by meansaninstrained conformational
search, so this method too entails enrichment of regioeadjyr seen. On targets for which
Rosetta produces occasional successes, their methodicgigtly improves sampling of
near-native conformations; however, it is not effectivepooteins for which Rosetta pro-
duces no native-like structures.

Similar resampling strategies have been developed forgkeparpose global optimiza-
tion. These include fitting a smoothessponse surfac® the local minima already gath-
ered[Box and Wilson, 195lland using statistical methods to identify good startingnfsoi
for optimization[Boyan and Moore, 20Q1 Unfortunately, as we shall see in our own ef-
forts in the next section, conformation space is very highemsional and very irregular,
so response surfaces do not generalize well beyond the $gammoints to which they are
fitted. Generally, the correct (or “native”) structure wibtht be in the span of the points seen
so far—if it were, the first round of Rosetta sampling wouldtatly have been successful.

10



The method ofBoyan and Moore, 20Q1s intriguing as a precursor to feature-based re-
sampling, since it entails the careful design of features itentify good starting points
for search. Search is divided into two stages: first, searthis feature space to identify a
good starting point for further optimization, and, secahe, optimization itself. However,
the feature space response surface is fitted using poie@dgliseen, so, as in the case of

response-surface fitting, does not necessarily genegadiziethe span of these points.
Response surface fitting

As an initial attempt at developing resampling methods fotgin structure prediction, we
investigated a response surface fitting approach. Our gasaltw fit a smoothed energy
surface to the Rosetta models seen so far and then to minthigeurface to find new
starting points for local optimization of the Rosetta eydrigction.

The first task was to define the conformation space. The mastaigpace is defined
in terms of the conformational degrees of freedom, the pHi@si angles. However, it is
difficult to fit a response surface in the space of torsionesmecause the energy function
is highly irregular in this space; a slight change in a sirigksion angle typically causes
large global structural changes, which in turn cause langegy changes. Instead, we took
the three-dimensional coordinates of the backbone atoroarasonformation space, with
all models in the set aligned to a reference model. Therehaee tbackbone atoms per
residue and three coordinates per backbone atom, ser@sidue protein is represented by
a 9n-dimensional vector. Even for small proteins of only arodfdesidues this space is
very high-dimensional, but we found that most of the strradtuariation in sets of Rosetta
models was captured by the fidgt principal components. This step is related to the reduc-
tion of conformation space to principal components of gtriad variation by{Qianet al,
2004. Data were sufficient to fit a response surface in tH@sgimensions.

Along certain directions, energy gradients were deteetalvht pointed toward the
native structure. One such direction was the first princguathponent for protein 1nOu

(Figure 1.1.a; in this graph, the native structure is regméed as an ensemble of Rosetta-
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Figure 1.1: (a) Rosetta models (black) and relaxed nativiee) projected onto the first
principal component. (b) Models and natives projected @medhird principal component.

minimized structures that started at the native conformmatiHowever, in most directions
the gradient did not point toward the natives (Figure 1.1AYyesponse surface fitted to
the Rosetta models shown in these graphs will therefore thigireenergy in the vicinity of
the natives; and, in fact, minimization of the responseag@fdid not result in near-native
structures.

There are several lessons to be learned from this failurst, Bhese observations point
toward a feature-based strategy: rather than fitting a resgpsurface to all the dimensions
jointly, one might more profitably identify a few dimensiotst are associated with clear
score gradients fit surfaces to these. Second, the higbestg models should be disre-
garded as uninformative; some steric clash or other av@dsuctural flaw makes them

inviable, and they should not be considered in the fit.

Neighbor score

These considerations were taken into account in our nexthattto fit a response surface.
Rather than use Cartesian coordinates, we designed as&uepresentation to get directly
at the main factor responsible for the energy gradient thatssfolding in nature: burial
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Figure 1.2: One component of the neighbor score, fitted tidwes20 of 1opd. The blue
points indicate models taken into account in fitting the $o@sve, shown in green. These
points are the best 10% of models by energy within each birherhorizontal axis. The
red points indicate the relaxed native population.

of hydrophobic residues. The degree of burial of each res@hn be approximated by
the number of other residues whose centroids are withfadftthe centroid of the given
residue. The structure representation for each model s daheector of length equal to
the number of residues in the protein, with each entry bewegneighbor count for the
associated residue.

In keeping with the observations at the end of the previootiase we fit a separate
response surface to each dimension of this space. One spdnse surface, for residue

20 of protein 1opd, is shown in Figure 1.2. Each black or bloiatrepresents one of the
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Figure 1.3: (a) Energy versus RMSD for the top 5% of modelslfgpd, out of a run of
200,000. (b) Neighbor score versus RMSD.

10,000 models generated in an initial sampling round. The phbints represent the best
10% of these models by energy in each of the possible intagsrabong the horizontal
axis. In keeping with the observation that only low-energyngs are informative about
the quality of regions of conformation space, these are tiye moints to which the curve
is fitted. The curve itself is shown in green. Note that in ttase the red points, the
relaxed native population, are centered at the minimumecttirve. This holds generally
true for nearly all residues. This is a remarkable generldhout Rosetta sampling—the
consensus value for any individual feature is nearly alwagyd, but there are few (if any)
models that have all the consensus features.

The global neighbor score is derived by adding the per-uesiteighbor scores for all
residues. Since the natives are near the minima of most sé tt@mponent scores, this in
effect measures the number of residues in each model thaearehe native value. The
correlation of the resulting global neighbor score with RDA® the native is, as shown in
Figure 1.3.b, quite impressive; far superior to the coti@ebetween energy and RMSD

shown in Figure 1.3.a (note that these models are the logvesgy 5% from a large sam-
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Figure 1.4: (a) Correlation of neighbor score with RMSD warsorrelation of energy with
RMSD for the 28 proteins in our benchmark, in runs of 20,00@et®. (b) Same as (a)
except limited to the top 5% of models from runs of 200,000.

pling round, which accounts for the flat energy cutoff at the of the plot).

This holds generally true across our 28 protein benchmarKiséigure 1.4 we show
the correlation between the neighbor score and RMSD vehsusdrrelation between en-
ergy and RMSD for all 28 proteins, in two different-sized gdimg rounds. These results
are somewhat remarkable—in extreme cases, the neighba Isas a correlation coeffi-
cient of around8 while energy has a coefficient 6f15.

Unfortunately, resampling with the neighbor score as aritiatél potential did not
result in structures nearer to the native. The problem isfolar first, burial only occurs
in the final stages of Rosetta search, so the new potentiezdgasver-compression early
on; second, and more importantly, the relaxed natives didcare as well as the lowest-
scoring models for any of the 28 proteins in our benchmarkmaost cases they scored
nearly as well, but because they do not score lower, there is no gpacdkent that can
be followed to find them. Thus, the neighbor score is usefly tor enrichment of areas
already seen—the classic pitfall of response surface mdstho

There are several lessons to be learned from this efforst, Festricting attention to
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the lowest-energy models and treating features as indepémeere successful strategies.
Second, some method is required for extending search imMoaneas of conformation
space. Figure 1.2 contains a clue. The fitted curve is cldmantypdal; another minimum
appears worth exploring. The same is true for the curveslfitiother residues. Perhaps
the natives sit within a combination of minima that neveregg within the initial sampling
round. If there were a method to sample other combinatioes;auld explore structures
with low neighbor scores in new regions of conformation gpddnfortunately, it is quite
difficult to produce a structure with a specific string of éiagr counts. Other types of

structural features, however, are easier to control.

1.4.2 Feature-based resampling

The intuition behind feature-based resampling methodsasdven if no models from the
initial sampling round are near the native conformatioeytmay contain native-likéea-
tureswhich can be recombined to create new, more native-likestras. In the extreme
case, a model for a two-domain protein may have one domarectand the other incor-
rect; intermixing this model with another that has the ott@mmnain correct would result in
a wholly correct prediction.

Feature-based resampling methods in the literature agelJarestricted to genetic al-
gorithms. After each round or “generation” of search, a newnd of structures is created
in which features of the best structures in the previous igdiom are recombined with one
another. The feature recombination step in genetic alyostis intrinsically random—no
attempt is made to identify those features most responBiblihe success of low-energy
structures and to recombine these. Structure represamdadind feature types differ be-
tween methods. Methods exist for Cartesian spRedow and Scheraga, 1996ut nearly
all methods in the literature represent proteins as strifigsrsion anglegDandekar and
Argos, 1992; Judsoet al, 1993; Bowie and Eisenberg, 1994; Pedersen and Moult, 1995;
Cui et al, 1999, occasionally discretized on a lattifleandekar and Argos, 1992Per-

residue torsion angle features are natural and easy to wititkywe employ them too—but
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they fail to capture larger-scale elements of protein stmgc Although a string of torsion
angles is a complete description of a protein’s backbonéocoration, the properties of
protein structure that lead to strong variations in enerfystance, hydrogen bonding
between beta strands—depend on the precise spatial iatemnships between residues
distant in sequence, and hence follow only indirectly frarsion angles. A more pow-
erful feature-space representation would include thegelascale features. This avenue
has been explored in a limited wligetersen and Taylor, 2003ut only in the search for
the boundaries of secondary structure elements, not theirwafich distant secondary
structure elements interrelate. No matter what structepeesentation is used, genetic al-
gorithms explore new regions of conformation space by featcombination but do so in
an undirected fashion.

Another approach to feature recombination is givefnadley and Baker, 2006em-
ploying beta strand pairing features similar to (thoughdernthan) the ones we introduce
in Chapter 3. An initial sampling round is used to generatetafstrand pairing features,
defined as regions in the contact plot. In the resamplingdpbata contacts are enforced
via bridges in thdold treg a constraint system we also employ. However, no systeriatic
fort is made to identify beta contacts most likely to be pnesethe native structure; some
common Rosetta sampling pathologies (for instance, a tayde form beta hairpins) are
avoided via the stochastic application of score penalbas,in large part resampling is
spread evenly among a subset of pairings gleaned from l@sggrstructures in the first
round and passing certain hand-crafted topology filters: seme targets, search in the
resampling round only constrains a single beta contaat)tieg in no feature recombina-
tion; for others, two contacts are constrained, allowingratéd level of recombination.
Our methods aim to allow unlimited recombination of natieattires, to systematically
constrain beta contacts likely to be native at a higher tzea beta contacts less likely to
be native, and to resample other kinds of features (suchrsistdeatures) within the same

framework.
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Our approach

We have developed an approach that avoids the limitatiostroéture-based resampling
methods by recombining structural features to explore mgions of conformation space,
and avoids the limitations of genetic algorithms and otleatdre-based resampling meth-
ods by predicting likely native features to recombine arg dptimal rates at which to
combine them. Our work rests on two assumptions. First, warae that even if no sin-
gle local minimum computed in the first round of search &lashe native feature values,
many or all features will assume their native values in atisameof the models. Second,
we assume that energy contributions from features areafigitidependent, so that native
feature values will be associated, on average, with lowiergy models.

In Chapter 2, we describe a resampling algorithm that engdlegture selection meth-
ods, including both decision trees and Least Angle RegregsiARS)[Efronet al., 2004,
to identify structural features that best account for epgggiation in the initial set of mod-
els. Certain of these feature values (those associatedawtkenergy) are predicted to be
present in the native conformation. Stochastically camséd Rosetta search is used to
generate a set of models enriched for these key featuresvaldewever, no attempt is
made to quantify the probability of a feature value beingveataind hence to discriminate
between near-certain predictions and less likely ones pstlicted native feature values
are enriched at the same rate.

In Chapter 3, we develop a statistical model for predictibnativeness probabilities
and a resampling technique that exploits the model to emative feature values fall
features, not just a selected few. The model incorporatesriaty of statistics gathered
from an initial pool of generated models. In order to learactly how much weight to as-
sign to energy differences, sampling rate differences aner “meta-features,” the model
is trained on a pool of Rosetta structures for 28 alpha/betiims with known native con-
formations. The training process allows us to sidestep tieevability of structure-based
resampling methods and our own previous work to patholdgi¢ise energy function by

learning exactly how much to trust energy as an indicatoabieness. The feature distri-
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bution in models generated by standard Rosetta can be szjasdRosetta’s initial beliefs
about which feature values are native; the model yields aatagl distribution that com-
bines energy information with the other meta-featuredding an improved assessment of
nativeness.

By recombining features predicted likely to be native, ogtimods create models in the
resampling round with novel combinations of native feagufghis is particularly apparent
in the resampling of beta strand pairing features, in whiative pairings never seen to-
gether in the control population are present in the resasinpd@ulation. Our results show

that this methodology leads to significantly improved sinue predictions.
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Chapter 2

Native feature selection

2.1 Overview

In this chapter we present a resampling algorithm in whichuee selection methods are
used to identify a few native feature values for enrichmarfurther search. The experi-
ments presented in this chapter are on a smaller scale amdghiés less promising than
those for the main work of this thesis, described in the neapter. However, these results
are an important precursor to our later work and are founcheshany of the same ideas.
The limitations of the algorithm described in this chapter an important motivation for
the methods presented in the next chapter.

The native feature selection method contrasts with stradbased resampling methods,
which concentrate search around a few promisiingcturesalready seen, by concentrating
search on promisinfgatures For most targets, the first round of search will not generate
any models with all the native features. However, many ed@ature values are present
in at least some of the models. If these feature values camemtified and combined with
each other, then sampling can be improved.

The algorithm has three steps, each mapping from one stalicapresentation space
to another (Figure 2.1). In the first step, described in $ac#.2, we project the initial
set of Rosetta models from continuous conformation spatceardiscrete feature space.
The structural features that we have designed characteigpnéficant aspects of protein

structure and are largely sufficient to determine a uniqudazmation. In the second step,
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Figure 2.1: Flowchart of resampling method.

described in Section 2.3, we use feature selection methotigling both decision trees and
Least Angle Regression (LAR$Efronet al., 2004 to identify structural features that best
account for energy variation in the initial set of models. t&a then predict that certain of
these feature values (generally, those associated witlete@igy) are present in the native
conformation. In the third step, described in Section 2& stochastically constrain these
feature values in a new round of Rosetta search to generatedd siodels enriched for
these key feature values.

In Section 2.5, we show the results of Rosetta search biaseatds selected feature
values. In Section 2.6, we conclude with a discussion of #sellts achieved with this
method, as well as some of the drawbacks that led to the dawneliot of the method de-

scribed in the next chapter.

2.2 Discretization

The discretization step significantly reduces the searecesmvhile preserving essential
structural information. For the purpose of the work desatim this chapter, we make use
of two types of structural features: torsion angle featares beta contact features.
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Figure 2.2: (a) Bins in Ramachandran plot. (b) Structuredsfj.1 Two helices are visi-

ble behind a beta pleated sheat consisting of four strahddydttommost three paired in
the anti-parallel orientation and the topmost two pairethia parallel orientation. In this
“cartoon” representation of structure, individual atomes ot rendered.

2.2.1 Torsion angle features

Torsion features are residue-specific. The observed valutee ¢ and« angles for in-
dividual residues are strongly clustered in the databasmoleked protein structures (the
PDB), as illustrated in the Ramachandran plot. In order to diste the possible torsion
angles for each residue, we divide the Ramachandran ptofont regions, referred to as
“A)“B,” “E,” and “G” (Figure 2.2.a) roughly correspondintp clusters in thé®DB. A fifth
letter, “O,” indicates a cis peptide bond and does not depenglor ). A protein with70
amino acid residues ha@¥ torsion angle features, each with possible values A, B, E, G,

and O.

2.2.2 Beta contact features

Of the two kinds of protein secondary structure, Rosettalipte alpha helix structure
somewhat more accurately than beta sheet structure. Timslasge part because local
contacts are easier to form during the Rosetta search gredrsalpha helices, the hy-
drogen bonds are all local, whereas in beta sheets the bandsechetween residues that

are quite distant along the chain. Beta contact featurewalk to identify promising beta
22



contacts undersampled by Rosetta and hence to improvet&esgeedictions of beta sheet
structure.

A beta contact feature for residuésind j indicates the presence of two backbone
hydrogen bonds betweémnd;. We use the same definition of beta pairing as the standard
secondary structure assignment algorithm Df&&bsch and Sander, 1983 he bonding
pattern can be either parallel (as between the red residuegure 2.2.b) or antiparallel
(as between the blue residues). Furthermore, the pleatindhave one of two different
orientations. A beta pairing feature is defined for everlér{i, j, o) of residue numbers
i andj and orientations € {parallel antiparalle}. The possible values of a beta pairing
feature are 0, indicating no pairing, and P1 or P2, indicgpileating of orientation 1 or 2,

respectively.

2.3 Prediction of native features

Let X1, Xo, ..., X, be all features, and let', 27, .. ., 2" represent the possible values of
featureX;. Let us consider the sdt:’} of feature values for all andj as a set of 0-1
valued functions, with’ (d) taking the valud to indicate that featuré; assumes value/

in conformationd. For modeling purposes, let us assume that each feature #ahas an
independent energetic effect; if present, it brings witmitaverage energy bonb{s Under

these assumptions, the full energy of a conformati@@modeled as

Eo+) Y bl al(d) +N,
i

whereE) is a constant offset andf is Gaussian noise. This model is partially justified by
the fact that the true energy is indeed a sum of energies foaal Interactions, and our
features capture local structural information. Our hypsth is that native feature values
have lower energy on average even if other native featurgeesadre not present. We are
therefore only interested in finding feature values withgh¢s below zero.

In order to identify a small set of potentially native feawalues, we usé, regular-

ization, or lasso regressiditibshirani, 199§, to find a sparse model with only negative
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weights. The minimization performed is

argminz (E(d) — Ey— ZZbﬁ xi(d)) + C’ZZ b

deD 7

whereE(d) is the computed Rosetta energy of modeind C is a regularization constant.
The small set of feature values that receive non-zero wegtet those that best account for
low energy in the initial population. These are the featwaki®@s we can most confidently
predict to be native. The Least Angle Regression algorit&fron et al, 2004 allows
us to efficiently compute the trajectory of solutions for alues ofC' simultaneously.
Experience with Rosetta has shown that constraining marettén or fifteen torsion feature
values can hamper search more than it helps; if there arefearfragments available for
a given position that satisfy all torsion constraints, teklof mobility at that position can
be harmful. We typically take the point in the LARS trajegttinat gives fifteen feature

values.

2.3.1 Decision trees for beta contact features

Beta contact features are less suited to the lasso regneapjmroach than torsion an-
gle features, because independence assumptions are nalichs kor instance, contact
(1, 7, paralle) and contact: + 1, j + 1, paralle) are redundant and will usually co-occur,
whereas contagt, j, paralle) and contacti — 1, j + 1, paralle)) are mutually exclusive and
will never co-occur. However, these two pairings can gige tio otherwise very similar
structures, and hence might both be energetically faverdbLARS gives strong negative
weights to each, then we may attempt to enforce both at once.

These considerations motivate a different approach todmttact features. The pro-
teins we are considering consist of no more than six betaddrathe precise pairings
between these strands are therefore defined by at most fixetetact features. Using a
decision tree, we divide the population of models into near@pping clusters defined by
several beta contact feature values each. Lasso regressimn employed in each cluster

separately to determine likely native torsion feature galu
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We use decision trees of depth three. At each node, a betactdeature is selected to
use as a split point and a child node is created for each ohtiee possible values 0, P1,
and P2. Our strategy is to choose split points which mostaedumtropy in the features.
The beta contact feature is therefore chosen whose mufoatation with the other beta
contact features is maximized, as approximated by the suimeaiarginal mutual infor-

mations with each other feature. The score for feafirérom the set{ X, X», ..., X,,}

is
= Z](vaXz) ~ [(XZ7X17 s 7Xi—17Xi+17 s 7Xn)a
J#i
where
P(X; =z, X, = z;)
XZ X = x; 1 : et J ,
X)= 2, D P(Xi=an Xy =)log (P(Xz‘ = ;) P(X; :%‘))
z;€X; Tj€X;

all probabilities being empirical probabilities obserweithin the subpopulation defined by
the current decision tree node. The high-scoring featuthasen as the split point.

Since some clusters are sampled more heavily than otherigwlest energy within a
cluster is not a fair measure of its quality, even though ringple, we care only about the
lowest achievable energy. Instead, we uselthie percentile energy to evaluate clusters.
Its advantage as a statistic is that its expectation is noemdent on sample size, but it
often gives a reasonably tight upper bound on achievablggnas a reasonable medium
between including enough leaves to ensure the presence oétive topology among them
and restricting sampling to few enough leaves that samplitige native topology is not di-
luted too much, we restrict resampling to the three lowestrgy leaves. Ideally, we would
concentrate our sampling entirely on the best leaf, butesime cannot generally identify
which one it is, we have to hedge our bets. This tradeoff isataristic of resampling

methods.

2.4 Resampling

In the resampling round, we wish to search for new structgueged in some way by the

predicted native feature values identified by the methodkenprevious section. LARS
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Figure 2.3: LARS prediction accuracy when fitted to total glagon and to the three
decision-tree leaves with lowest 10th percentile eneygietered here by average RMSD.

gives us a set of feature values that have a strong effect engyenOur hypothesis is that
feature values strongly associated with lower energiegnehg those selected by LARS
and given negative weights—are more likely to be native, thad feature values given
positive weights by LARS are more likely to be non-nativeisltypothesis is born out by
our experiments on a benchmark sebamall alpha/beta proteins. The LARS prediction
accuracy is given in Figure 2.3. This chart shows, for eactepm, the fraction of LARS-
selected feature values correctly labeled as native omadine by the sign of the LARS
weight. Fifteen LARS feature values were requested peeprofThe “low energy leaf”
predictions were the result of running LARS only on modelthwithe best three leaves of
the beta contact decision tree, which were generally ckostiie native than the population

at large. Perhaps as a result, LARS generally achievedegrpegdiction accuracy when
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restricted to their associated subpopulations. Leavesaated by average RMSD, so “low
energy leaf 1,” the “best” leaf, consists of models which dasest, on average, to the
native conformation. The best leaf consisted of only nativetacts for all proteins except
1n0Ou and logw, but in both these cases it contained strgcgaeerally lower in RMSD
than the population at large and resampling achieved ingmnewts over plain Rosetta
sampling. In general, LARS performed better on the leavaswiere closer to the native
structure, although there were a few notable exceptions.

It is clear from Figure 2.3 that LARS is informative about imatfeature values for
most proteins. However, we cannot rely wholly on its pradits. If we were simply to
constrain every LARS feature value, then Rosetta would miwve the correct structure,
since some incorrect feature values would be present inyewedel. Our resampling
strategy is therefore to flip a coin at the beginning of thed®asrun to decide whether or
not to constrain a particular LARS feature value. Coins appdd independently for each
LARS feature value. Resampling improves on unbiased Rosathpling if the number
of viable runs (runs in which no non-native feature values emforced) is sufficiently
high that the benefits from the enforcement of native featatees are visible. We have
achieved some success by enforcing LARS feature valuesprithability 30% each, as
demonstrated in the results section.

Greater LARS accuracy can be achieved by restricting adtemd models within the
clusters identified by the beta contact decision tree metBod resampling strategy, given
a decision tree, is to sample evenly from each of the top tlm@ees as ranked by0™
percentile energy. Within the subpopulation of models @efiby each leaf, we select
torsion feature values using LARS.

It remains to describe the means by which we constrain festurorsion features are
easier to constrain than beta contact features; a torsigle deature value can be con-
strained in Rosetta search simply by rejecting all propdssginent replacement moves
that place torsion angles outside the desired bins. Stohgsrsion feature values are re-

ferred to adarcodedn Rosetta, and the apparatus for defining and constraihem tvas
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RMSD of low-energy model

Lowest RMSD of 25 low-energy models

Decision-tree LARS-only Decision-tree LARS-only

Control Resamp Control Resamp| Control Resamp Control Resamp
1di2 2.35 2.14 2.76 0.97 1.78 1.34 1.82 0.73
1dtj 3.20 1.53 5.28 1.88 1.46 1.53 1.95 1.59
1dcj 2.35 3.31 2.34 2.11 2.19 1.86 1.71 1.88
logw 5.22 3.99 3.03 2.80 3.12 2.6 2.08 2.48
2reb 1.15 1.17 1.07 1.27 0.89 0.93 0.83 0.86
2tif 5.68 4.57 3.57 6.85 3.32 3.27 3.27 2.61
1nOu 11.89 11.60 | 11.93 3.54 9.78 3.19 3.54 2.84
1hz6A 2.52 1.06 3.36 4.68 2.38 1.06 1.97 1.19
1mkyA || 10.39 8.21 4.60 4.58 3.43 3.25 3.33 4.23
Mean difference -0.8 -1.03 -1.04 -0.23
Median difference  -1.11 -0.23 -0.33 -0.36
Number improved 7/9 6/9 719 5/9

Table 2.1: Results for the resampling rounds compared waitiirol rounds of search for
two resampling schemes: “LARS-only”, in which only torsifeatures were constrained,
and “decision-tree,” in which torsion features and beta@cts were constrained. Results
presented are the RMSD to native of the single lowest enemggengenerated during
search and the lowest RMSD of th& lowest energy models generated during search.

developed in-house by Rosetta developers.

Beta contact features are enforced in Rosetta by means atigebin thefold tree
[Bradley and Baker, 2006A pseudo-backbone-bond is introduced between the twduesi
to be glued together. This introduces a closed loop into #ukltione topology of the pro-
tein. Torsion angles within the loop can no longer be altevétout breaking the loop,
so, in order to permit further fragment replacements, a autghainbreak”) must be in-
troduced somewhere else in the loop. The backbone now thke®tm of a tree rather
than a chain. After a Rosetta search trajectory terminateaitempt is made to close the

chainbreak with local search over several torsion anglestbier side of it.

2.5 Results

We tested two Rosetta resampling schemes over a set of 9ladphgroteins of between
59 and 81 residues. In the first scheme (referred to henbedefLARS-only”),15 LARS-
predicted torsion feature values were constrained at 36&tiéncy. In the second (referred

to henceforth as “decision-tree”), three subpopulatioesvdefined for each protein using
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a decision tree, and within each subpopulationi_LARS-predicted torsion feature values
were constrained at frequencies heuristically determarethe basis of several meta-level
“features of features,” including the rate of the featurkiga occurrence in the first round
of Rosetta sampling and the magnitude of the regressiorhivieigthe feature value. This
heuristic is a precursor of the nativeness predictors iméxt chapter, but was not trained;
the weights were set by hand. Each resampling scheme wasacethagainst a control
population generated at the same time. Exactly the sameenwhinodels were generated
for the control and resampled populations. The control as&dmpled populations for
the LARS-only scheme consist of about 200,000 models eatte pbpulations for the
decision-tree scheme consist of about 30,000 models eaehtpodimitations in available
compute time. The difference in quality between the two @rmiopulations is partially
explained by the different numbers of samples in each, artihjpa by changes in Rosetta
in the time between the generation of the two datasets.

Our two primary measures of success for a resampling run @tre kased on root-
mean-square distance to the native structure. Root-ntpsare distance (RMSD) is a
standard measure of discrepancy between two structurés ddéffined as the square root
of the mean of the squared distances between pairs of cormdsy backbone atoms in
the two structures, under the alignment that minimizes dqiantity. Our first measure
of success is the RMSD between the native structure and westescoring model. This
measures Rosetta’s performance if forced to make a singtiqgtion. Our second measure
of success is lowest RMSD among the twenty-five top-scorindets. This is a smoother
measure of the quality of the lowest scoring Rosetta moadeld, gives some indication
of the prediction quality if more sophisticated minimaesgion methods are used than
Rosetta energy ranking. Structures At ftom the native have atomic-level resolution—
thisis the goal. Structures at betwedhahd 42 generally have several important structural
details incorrect. In proteins the size of those in our bematk, structures more thai\s
from the native are poor predictions.

Both resampling schemes achieved some success. The panlmemmeasures are shown
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Figure 2.4: Relation of prediction accuracy to resamplingriovement in LARS-only runs.

in Table 2.5. The decision-tree scheme performed more stemély and achieved larger
improvements on average; it improved the low-energy RMSD of the 9 benchmark
proteins, with a significant median improvement of JAlParticuIarIy exciting are the
atomic-resolution prediction for 1hz6 and the nearly ateneisolution prediction for 1dtj.
In both these cases, plain Rosetta sampling performed demasily worse. The LARS-
only scheme was successful as well, providing improved $tveeergy predictions on 6
of the 9 benchmark proteins with a median improvement of &. Zhe LARS-only low-
energy prediction for 1di2 is atomic-resolution at Oa.aiway from the native structure, as
compared to 2.9 for the control run. In general, improvements correlatethwARS
accuracy (Figure 2.4). The two notable exceptions were, Zmgbwhich plain Rosetta

search performs so well that constraints only hurt samplamgl 1nOu, for which plain
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Rosetta search concentrates almost entirely on a clusterimdorrect topology at 14.
Certain LARS-selected feature values, when enforcedchwgidmpling over to a cluster at
around A. Even when incorrect feature values are enforced withim ¢huster, sampling
is much improved.

The cases in which the decision-tree scheme did not yieldawsga low-energy pre-
dictions are interesting in their own right. In the case ofjliesampling does yield lower
RMSD structures—the top 25 low rms prediction is superiog ¢he minimum RMSD
from the set is 1.35, nearly atomic resolution, as comparddd5s for the control run—but
the Rosetta energy function does not pick them out. Thisestgghat better techniques
for selecting predictions from the model pool would imprae algorithms. In the case
of 2reb, the unbiased rounds of Rosetta sampling were sessfct that they would have
been difficult to improve on. This emphasizes the point takaampling cannot hurt us too
much. If a plain Rosetta sampling roundoinodels is followed by a resampling round
of n models, then no matter how poor the resampled models arglisgnefficiency is
decreased by at most a factorofsince we could have generateghlain Rosetta samples
in the same time). The danger is that resampling may oveergewo broad, false energy
wells, achieving lower energies in the resampling rouncheékieugh RMSD is higher. This
appears to occur with 2tif, in which the LARS-only low-engprediction has significantly
lower energy than the control prediction despite being nfadher from the native. Once

more, better techniques for selecting a single predictiodehmight help.

2.6 Discussion and Conclusions

Our results demonstrate that the native feature sele@mmique improves structure pre-
diction on a majority of the proteins in our benchmark sete TWRS-only method sig-
nificantly improves Rosetta predictions in 3 of the 9 tesesasnd marginally improves
two more. The decision tree method expands the set of peoteinwhich we achieve im-
provements, including an additional atomic-level praditt It is important to note that
significant improvements over Rosettaamy proteins are hard to achieve; if our methods
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achieved one or two significantly improved predictions, weuld count them a success.
Rosetta is the state of the art in protein structure premhctand it has undergone years
of incremental advances and optimizations. Surpassingeit®rmance is very difficult.
Furthermore, it doesn’t hurt Rosetta too badly if a resangpdicheme performs worse than
unbiased sampling on some proteins, since models from thiased sampling round that
precedes the resampling round can be used as predictioredlas w

The decision tree and LARS allow us to pick out a few featutaeathat we can fairly
confidently concentrate our attention on. However, in baites, there are tradeoffs to be
weighed when deciding how many feature values to selectel§&lect very few, they are
more likely to be native; however, there is less to be gaineeriching them. If we select
too many, the accuracy of LARS and the decision tree goes damdthe harm from all
the incorrect feature values we are enriching outweigh®#mefit from the native feature
values. In this chapter, we have chosen compromises betlesa two extremes by hand:
three decision tree leaves were resampled for each prataififteen torsion feature values
were enriched within each of these leaves. It would be mdisfgag, however, to have
this compromise chosen automatically. Even better, if eatudre selection methods were
able to give us some measure of ttenfidenceof their predictions, perhaps we could
avoid the penalty when large numbers of feature values égeted. Predictions with low
confidence could be enriched very slightly, while prediesiavith high confidence could
be constrained nearly all the time. In fact, if the confidenaee reliable enough, we might
be able to do away with the feature selection entirely andmgde every single feature at

once. This is the approach of the next chapter.
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Chapter 3

Nativeness prediction

3.1 Overview

In Chapter 1, we discussed limitations of structure-bassdmpling methods, and in par-
ticular of response surface fitting—these methods amouwemiichment of regions of con-
formation space that have already been explored. We alsastied the limitations of ex-
isting feature-based resampling methods, particularhete algorithms—these methods
blindly recombine features from successétriuctures rather than seeking out successful
features In Chapter 2, a method was described to predict likely edBature values using
feature selection methods. These features were then stardily constrained in a sub-
sequent resampling round, resulting in a few significantrompments over plain Rosetta
sampling. However, there was no way to be certain which ptiesis were correct. The
method was limited to enrichment of just a few native featakies in order to avoid
enriching too many incorrect non-native feature values.

In this chapter we introduce a more sophisticated resamphiathod that makes use
of a statistical model for prediction of nativeness probaés to alter Rosetta’s sampling
distribution forall features, not just a selected few. We present evidence ts#tR’s ini-
tial sampling distribution represents Rosetta’s initialiéfs about which feature values are
native, beliefs based primarily on sequence informatiah@nRosetta’s low-resolution en-
ergy potential. The statistical model updates these Iseltefake into account information

from Rosetta’s full-atom energy potential and other sogiroe “meta-features.”
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Our specific choice of features is guided by the need to fincdbmtapt local determi-
nants of global structure whose native values can be dieddayour predictor. But simply
assessing how likely feature values are to be native doesoha our overall problem—we
must also resample protein configurations from the feategalesentation. In this chapter
we develop two new approaches to resampling from the targettalition provided by the
nativeness predictor. The first is referred tdragment repickingand it involves changing
the fragment pool available to Rosetta. For simple featsues as torsion features this is
relatively easy to do, but for more complex features suchete jpairing features it is diffi-
cult to adjust the fragment pool directly so as to match thgetadistribution. We have thus
developed a second approach which extends the stochassitaiot methodology used in
Chapter 2 to allow a richer distribution over constraintislis necessary for stochastic
enforcement of beta sheet features, since these featurasafoested hierarchy—the draw
of constraints at the bottom of the hierarchy depends onrthegifrom higher up.

Our resampling approach has three steps (Figure 3.1). Tstefid third step corre-
spond closely to the similarly named steps in Chapter 2.drfitht, or “discretization” step,
we project an initial set of Rosetta models for the targetgagnofrom conformation space
into a discretized feature space. Each model is represestedstring of discrete-valued
features of three types: torsion features of the same kinldas® used in Chapter 2, with
values corresponding to bins in the Ramachandran plotrgseiue secondary structure
features; and a three-level hierarchy of beta structutefes with values corresponding to
topologies, registers, and contacts. Rosetta’s margamp8ng ratePs,m,for each feature
can be regarded as an initial sequence-based belief abaocth Wadature value is native;
native feature values are, in general, sampled by Roseti@hér rates than non-native
feature values (Figure 3.2). In the second, or “predictstep, we update Rosetta’s initial
beliefs using information about which feature values aseasted with low energies in the
initial set of Rosetta models to derive a new belief disttidn Fpyeq in which many native
feature values appear at significantly higher rates. Intind,tor “resampling” step, we use

Rosetta to sample a new set of models that match this updetidbuation over features;
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Figure 3.1: Flow-chart outline of the new resampling methduk process has three steps:
discretization of initial models into feature strings, gition of likely native feature values,
and resampling with Rosetta to produce models with theseriegalues. The colored grids
represent marginal sampling distributions over the torfgatures associated with residues
49-64 of protein 1dcj, with possible values “A,” “B,” “E,” “Gand “O,” corresponding to
bins in the Ramachandran plot (Figure 2.2.a). The spectwn® from blue, representing
sampling rates near 0%, through green, representing ra@ss0%, to red, representing
rates near 100%. Each column represents the distributienagingle feature. A black
outline indicates the native feature value. The top gridiceghe sampling distribution
observed in the initial round of Rosetta search, and theobogrid depicts the predicted
native probabilities, which are used as targets in the rpBaground of search.
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Figure 3.2: Torsion feature values pooled together frommehbmmark set of 28 proteins and
divided into bins according t®s.mp Bins are labeled by their upper bounds. The height
of each bar indicates the proportion of the feature valudkinvthe bin that are native.
The linear relationship suggests that the Rosetta samategf a feature value is roughly
eqgual to the chance that the feature value is native.

this is done by fragment repicking and by applying stockasinstraints during search. As

the flow-chart suggests, the cycle can be iterated.

3.2 Discretization

The features used in this method fall into five classes: aar&atures, per-residue sec-
ondary structure features, and three separate classesachet features. We will gen-
erally denote theé™ feature in a set byX;, and its possible values by}, 2, ..., 2™, with
one of these, denoted hy, being the native one. We will occasionally be loose with our

terminology and refer to a feature that assumes its nativee\as a native feature.
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3.2.1 Torsion features

Torsion features are defined exactly as in Chapter 2. Eagtueebas an associated torsion

feature, which takes values in the Ramachandran plot bifisBX “E,” “G,” and “O.”

3.2.2 Secondary structure features

Secondary structure features are also associated witlesiegidues. They take values
in the standard alphabet “E,” “H,” and “L,” indicating wheththe residue particiates in a

sheet, helix, or loop.

3.2.3 Beta sheet features

The beta structure of a protein conformation can be parseevatral different levels, illus-
trated in Figure 3.3. At the topmost level is ttegology which identifies the beta strands
that pair with each other. We describe a topology by the seaofngsthat compose it.
Each pairing has an associated orientation (either aallphor parallel). Each protein has
a single topology feature, whose possible values are thalgesets of pairings.

At the second level, a pairing between two strands may beeghin several different
ways. The alignment between residues in the two stranddlezidheregister. A register
may contain one or motgeta bulgesin which one or more residues do not pair with any
residues on the opposite strand. A register includes thgigo®f all bulges along the
pairing and the alignments in each bulge-free segment. Rating has an associated
pairing feature, whose domain is the set of all registergHat pairing ever observed in
the initial sampling round. Pairing features are definedgisin agglomerative clustering
of registers from the initial sampling round, with a distamoetric that depends upon the
locations of the centers of both paired strands in the reqgist

At the third and final level, a single register is consisteithva large set of possible
beta contacts. A register prototype is built up from theahgampling round by merging
all beta contacts ever observed to participate in the mgi¥he merging process generally

results in a prototype that extends too far in each directioa native conformation will
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NATIVE

Figure 3.3: Beta topology, pairing, and contact featuresthA top level is a single topol-

ogy feature, with each value a possible topology. One sugbladgy consists of several
pairings, each of which has an associated pairing feathoeyrs in the middle level. The

values of the pairing feature are all possible registerchEagister is associated with a
set of contact features, shown in the bottom level. In thengxe, the register has two
bulge-free regions, each associated with a contact featroled in gray. The values of

a contact feature are all possible contacts within the regithe contacts present in the
native structure are circled in blue. To constrain the mategister, one native constraint
must be chosen from each contact feature.
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have only a subset of beta contacts present in the nativeteegirototype. In order to
enforce a register, one constraint is required in each Hudgeregion, so a contact feature
is created for each such region whose possible values apesdible contacts from that
region to enforce. This feature type differs from the otheithat multiple different values

may be native.

Example 1. The native topology for 1di2 includes a beta sheet with tisteends, strand
A running from residue 19 to residue 25, strand B running fresidue 33 to residue 39,
and strand C running from residue 43 to residue 48. Strandad\Rpair, as do strands B
and C, so this topology has two associated pairing featu&&sand BC.

We will examine pairing feature AB in detail. The possiblkiga for a pairing feature
are registers, which we define as a set of beta contacts, daghioh will be denoted by a

pair (i, j) of residue numbers. The possible registers for pairing Afhuite:

R1: {(18,40), (19,39), ..., (27,31)}
R2: {(18,40),(19,39),...,(22,36), (24,35), ..., (27,32)}

R3: {(20,40), (21, 39),...,(27,33)}

RegisterR2 differs from registerR1 in having a beta bulge—residue 23 doesn’t pair with
any residue on strand B. Note that the beta contacts in treggsters extend slightly outside
the areas designated strand in the native structure, bexthey include all beta contacts
ever observed in the initial sampling round.

Each register brings with it one or more contact features tor each bulge-free region
in the register. The number of such features is thereforegraater than the number of
bulges in the register. For example, registe2 has two contact features, one with five
possible values{(18, 40), (19, 39), (20, 38), (21, 37), (22, 36) }, and one with four possible
values,{(24, 35), (25, 34), (26, 33), (27, 32) }. In order to constrain this register, two beta
contact constraints must be chosen to enforce, one froma@ablese two contact features.

Note that for beta contact features, multiple values mighnhtive. Selecting any of the
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native contacts counts as a success.

Beta features are hierarchical; each pairing feature tceested with the topology from
which it derives. If two different topologies both contaletsame pairing, a copy of the
pairing feature is created for each. This distinction isamg@nt for the prediction step, in
which the predicted distribution over registers may depamthe topology. However, due
to the partially independent energetic contributions Giedent features, models with a non-
native topology that nonetheless includes a native strairthg can in fact be informative
about the correct register for that pairing; if a given régiss energetically favorable even
in models with incorrect global topology, it is more likely be the native register. There-
fore, in predicting which register is the native value foraarmg feature, we collect energy
and distribution statistics both for models within the par®pology and for all models
with the pairing. Beta contact features, too, are assatiatth a particular topology, so

also give rise to these two classes of statistics.

3.3 Prediction

In the prediction step of our algorithm, we interpret Rasstteature sampling distribution
Psamd X;) as Rosetta’s initial beliefs about which value for featiregs native. We update
these beliefs usingraativeness predictdhat incorporates boths,md X ;) and various other

features-of-features, oneta-featuresto arrive at a new belief distributioR,eq( X ).

3.3.1 Form of the nativeness predictor

We build a set of five predictors, one for each class of feat(tiersion, secondary struc-
ture, topology, pairing, and contact). Each such nativepesdictor can be viewed as an
ensemble of logistic regression models for each featurbenctass, with the regression
weights tied together.

Let X1, Xs, ..., X, beallfeatures from a single class (for example, all torgeatures).
Let 2}, 2%, ..., 2" represent the possible values of featifg and letz} be the native

value. Each feature valuzé—for instance, bin “B” of torsion angle 34 for protein 1dcj, o
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the beta barrel topology for protein 1acf—has a correspandumeric meta-feature vector
[Psamd ), loWE(z] ), minE(z?), . . .] consisting of a mix of energy and distribution statistics
from the initial round of Rosetta models. Brief descrip8ai the meta-features we use are
given in Table 3.1, along with the predictive power of eachr(eeasured by the percentage
of native feature values from all proteins in our benchmhbek tan be identified using this
meta-feature alone). A justification for our choice of mfgatures is given in the next
section. Note that even thoudh.mpis in some sense “special,” as it gives the prior belief
distribution to be updated, it is treated just like the ottmata-features for the purpose of
the predictor.

Some meta-features are transformed, either to make thegesacomparable to one
another or for reasons of mathematical convenience; fdameg, thepsamp(x{) term is
transformed tdog(Psamd ). Let fix(2)) be thek™ transformed meta-feature of and

let ®(z7) be the vector of all single transformed meta-feature ternt their pairwise
combinations. We compute the dot product between a weigttowe and ®(z7) via
B'(x]) = i Brw fu(@]) fror(]) + 324 B fr(x]). The presence of the pairwise com-
binations of features allows our model to take joint effénte account. Given a weight

vector(, the predicted probability thaa;’f is native in our model is

; B ()

e ) Z;’?;l Bl

The form of the predictor allows it to outpiit,n,unmodified, given the proper setting of
the weights (one folog( Psamp @and zero for all others), so it is theoretically possibletfe
trained predictor to make no changes to the Rosetta sangibirgpution. This is why we

transformPsampto log( Psamp in the meta-feature vector.

3.3.2 Choice of meta-features

We designed our meta-features to encompass both sequémceation and all-atom en-
ergy information. The value of sequence information inveateature prediction has been

established by the success of sequence-based secondatyrstipredictors like Psipred
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Torsion meta-feature Accuracy

Psamp | Rosetta sampling rate 88.9%
lowE | 10" percentile energy of models with the feature value 76.4%
minE | minimum energy of models with the feature value 87.7%
Prag | rate of occurence of the feature value in the fragments 86.2%
loop | indicates either an E or O torsion feature value
Porea | output of nativeness predictor 91.1%
Secondary structure meta-feature Accuracy
Psamp | Rosetta sampling rate 87.2%
lowE | 10" percentile energy of models with the feature value 72.8%
minE | minimum energy of models with the feature value 86.2%
Pysipred | S€CONdary structure prediction from Psipred 87.7%
Puto | secondary structure prediction from JUFO 80.9%
Pyrea | output of nativeness predictor 91.8%
Topology meta-feature Accuracy
Psamp | Rosetta sampling rate 21.4%
lowE | 10" percentile energy of models with the feature value 21.4%
minE | minimum energy of models with the feature value 46.4%
co | approximate contact order of a structure with the given liogpp
Pyred | output of nativeness predictor 60.7%
Register meta-feature Accuracy
Psamp | Rosetta sampling rate 54.0%
lowE | 10" percentile energy of models with the feature value 44.7%
minE | minimum energy of models with the feature value 61.2%
bulge | indicates the presence of at least one beta bulge in thaeegis
Pyrea | output of nativeness predictor 57.6%
Contact meta-feature Accuracy
Psamp | Rosetta sampling rate 85.4%
lowE | 10" percentile energy of models with the feature value 68.9%
edgedist| distance (in residue numbers) of a contact from either eradpafiring 92.2%
oddpleat| indicates an anomaly in the pleating pattern
Pyrea | output of nativeness predictor 88.3%

Table 3.1: Meta-features by feature class. Accuracy indicates theepésige of native feature
values from all proteins in our benchmark correctly ideetifby the meta-feature, i.e. those for
which the meta-feature is highest (or lowest, in the caseefgy-based meta-features) among all
values for the associated feature. Accuracy values havedradted for meta-features that are only
informative in conjunction with other meta-features anchage no predictive value on their own.
Pyred, the output of the nativeness predictor, is not a meta-feaitis included here for comparison.
The accuracy oFpreq is Not always as high as the accuracy of each of its constitneta-features
because it optimizes sampling efficiency, a different rodtran accuracy.
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[Jones, 1999 We hypothesize that energy statistics from an initial baf sampling
provide a valuable, non-redundant source of additionaliptee power. Our hypothesis
depends on global energy receiving approximately indegendontributions from local
structural features, so that native features will gengtal associated with lower energies
even when paired with non-native features. This hypothesi®tivated by the fact that the
global energy is a sum of terms from physically local intéiats. In order to capture these
two sources of information, three meta-features are commaomarly all our predictors:
Psamp the Rosetta sampling distributiolowE, the 10th percentile energy of models with
the feature value, amahinE, the minimum energy of models with the feature value.

Psamp contains primarily local sequence information. This candeduced from the
Rosetta search procedure: the principal Rosetta search istavreplace the torsion angles
in a contiguous series of residues with a fragment sele¢teshdom from a fragment pool,
which is itself derived by matching the local sequence ardlipted secondary structure
in the sequence being folded with the local sequence andlastgondary structure of
fragments from structures in the PDB. The distribution afoselary structure features in
the fragment pool, and hence in Rosetta models, is therefosely related to sequence-
based secondary structure predictions from Psipdedes, 1999 JUFO [Meiler et al,
2001, and SAM[Karpluset al, 1999. The Monte Carlo search procedure selectively
rejects some fragment replacement moves, but only on the dfees low-resolution energy
function that discriminates plausible tertiary structufeom implausible ones. The high
resolution refinement step in Rosetta, which does employl-atamn energy function, does
not generally modify conformations enough to alter the galaf our structural features.

The meta-featurdewE andminE, on the other hand, are direct measures of the lowest
all-atom energies achievable in models with a given featahee. The very lowest energy
models seen in search determine the valumioE, while lowE, whose expected value does
not depend on the sample size, is a fairer measure of energydmising feature values
which are sampled very rarely and hence do not have a charaqgtar in a low energy

structure.

43



Each feature class also brings with it one or more additiclaak-specific meta-features.
Many of these meta-features are designed to ameliorate conmodeling pathologies.
For example, Rosetta sampling is biased toward short-rpagegs, as these are easier
to form; the contact orddiPlaxcoet al, 1999 of a topology is a useful meta-feature for
correcting this bias, although not predictive of nativediogies on its own.

Psampfor a pairing feature indicates the distribution of registenly among models with
that pairing’s parent topologyowE andminE are similarly restricted to models with the
parent topology. For pairing or contact features, energgigiribution statistics may also
be computed over all models that have that pairing, not haste with the parent topology,

in which case they will be marked by the superscaiibt

3.3.3 Training

The free parameters in the predictor are the components @feight vectors, which must
be fitted by maximizing an objective function. Rather tharsfime standard measure of
belief accuracy, we aim to directly maximize the predicda@ffectiveness as input to our
resampling method. As we will outline later in Section 3He resampling step of our
algorithm attempts to modify Rosetta search to sample feataccording to the distribu-
tion P,eq instead of according tés.mp Accordingly, we use as an objective function the
sampling efficiencyf Pyeq, Which we define a$[" | Poed(z}), the estimated probability
of encountering a fully native structure in a single Rosetita with feature distribution
Pyea. The inverse of this quantity can be regarded as an appréiximagnoring correla-
tions between features, of the expected number of Rosettplea required to produce a
native-like structure. In order to incorporate trainingadom multiple proteins into the
objective function, the sampling efficiencies of each ofphateins in the training set are
multiplied (in fact, since we work on a log scale for numekistability, their logarithms
are summed).

We fit 3 using the standard BFGS variant of Newton’s metfBbyden, 1970 The

fitted weights for the various predictors (trained on a bematk of 28 proteins) are shown
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Torsion predictor

Secondary structure predictor

Psamp  Prag  loWE minE loop Psamp MINE  loWE  Pysipred ~ Flufo
Psamp | 111 -0.16 -0.17 -0.43 -0.083 Psamp| 1.36 -0.35 -0.29 235 -0.24
Prrag 051 035 -0.022 -0.16 minE -0.27 -0.23 1.39 0.081
lowE -0.11 0.094 0.21 lowE 0.43 0.28 -0.38
minE -0.90 -0.24 Psipred 1.10 -0.54
loop 0.29 Puo 0.06

Topology predictor Register predictor
Psamp  cO  lowE ming | P&, minE lowE" bulge
Psamp | 1.49 -1.57 0.82 -1.37 P& | 0.53 -0.042 0.13 1.06
co -0.22 -0.043 -1.45 minE -0.86 0.29 0.50
lowE 419  -211 lowE™ 0.55 0.074
minE®"! 2.27 bulge 0.50
Contact predictor

| P&, lowE" edgedist oddpleat

pa 1 1.05 2.57 1.79 0.00038

jowES! -0.29 1.28 -0.48

edgedist -0.14 -0.12

oddpleat -0.45

Table 3.2: Predictor weights for the five feature classes.ighite for individual meta-
features are on the diagonal, weights for pairwise termglamvhere.

in Table 3.2.

3.4 Resampling

Our results show that native features are generally moriegiile in Fpeq, the output dis-
tribution of the nativeness predictor, than in Rosettaiahsampling distributionPsamp
(Section 3.5.1). This motivates usiiyq as a target distribution for Rosetta. In particular,
letting Presamp(x{ ) denote the sampling rate in Rosetta of feature va:EUefter our frag-
ment repicking and stochastic constraint protocols haea lilposed, our approach aims
t0 SetPresamd ) = Ppred(). In this section we conside?,.q solely as a nativeness belief
distribution from some unspecified source, putting asidelfe moment the fact that we
assumedesamp = Fpred IN training the predictors, and provide some justificationthis
particular relationship betwe&fesampand Pyreq.

There are many ways to use a nativeness belief distribiipain defining a resam-
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pling distribution, and the choice depends in general on imamny samples we are permit-
ted. If we are to sample only a single conformation, we showdimize our chance of
sampling a native one. The probability of seeing the fulljneefeature string* in any sin-
gle Rosetta trajectory is, under our independence matighn{x*) = Hle Presamd Xi =
x}). But we are not sure, a priori, of which values are in fact tatve ones. Under our
belief distributionFyq the chance thatis the native feature string is (making the same in-
dependence assumption for beliefs as for sampling disioits) Pyrea(X) = [, Pored(:)-
Theexpectedhance of seeing the native in any given sample, with respextr beliefs, is
then) . Pored(X) PesamdX). Maximization of this expectation with respect Bysamp Sub-
ject to normalization constraints, can be solved in closechfusing a standard Lagrangian
multiplier argument. The maximum is given BYesamdX) = 1 for X = argmax Pyred(X)
and0 elsewhere. Given just a single sample, the optimal stragetytry our single best
guess for the native feature string.

At the other extreme, in the limit of infinite samples, the mt@ of sampling feature
string x at least once is the step functi@ii PesamdX) > 0), which takes the value if
PresamdX) > 0 and0 otherwise. The expected chance of seeing a native strusttinen
>« Pored(X)Z (Presamd X) > 0). This expectation reaches its optimum valud efhenever
PresamdX) > 0 for all x such thatP,eq(x) > 0. For very large numbers of samples, the
optimum strategy is to spread sampling as evenly as posslbldor instance, we are
permitted as many samples as there are joint feature sttimg®ptimal strategy is to try
each string exactly once.

For intermediate numbers of samples, a closed-form soligimore difficult to obtain.
In addition, one is not typically sure, a priori, of how muemgpling one is going to do. We
choose to interpolate between the two extremes by minimithe expected log number
of samples required to sample a single native strng,Fpred(X) 10g(1/FesamdX)). This
is equivalent to maximizing _, Ppred(X) log(Pesamd X)), in Which the termog(Pesamd X))
interpolates between the objective functidfs.amdx), which grows linearly in the value

Of Presamp aNAZ (Pesamd X) # 0), which jumps immediately td. Solving this optimization
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yields PesamdX) = FPpred(X), Which is the strategy that we have adopted.

We force Rosetta to sample according to the upd#igd feature distribution both by
applying stochastic constraints and by picking new fragmerhe former approach proves
more effective for beta topology, pairing, and contactdess, while the latter approach is

the most successful for torsion features.

3.4.1 Stochastic constraints

A beta contact can be enforced by means of a bridge iridldetree [Bradley and Baker,
2004 with an attendant chainbreak introduced in a nearby looggister can be enforced
by means of one or more bridges. In geneball bridges will be required to constrain a
register withb bulges, one in each bulge-free segment.

In order to effect a desired feature distribution, modets generated using different
sets of bridge constraints. Each Rosetta search trajebegins with a random draw of
constraints from a hierarchical data structure calledrstraint tree The leaves of a con-
straint tree are constraints. The non-leaf nodes are of imtdsk aggregator nodesnd
selector nodesSelector nodes have their outgoing edges labeled withapibties. Each
selector node selects at most one of its children at randaording to the distribution on
its outgoing edges and passes to its parent the constraisggg up from this child. If the
edge probabilities sum to one, exactly one child will alwhgsselected; if they do not, it
is possible that no child will be selected. An aggregatorenaggregates constraints from
each of its children and passes them up to its parent.

The constraint tree to enforce a distribution over betacttines has five levels. The
root node is a selector node which selects among topolog@sding to the probabilities
emerging from the topology predictor. Within each topologg aggregator node adds
in constraints for each of the pairings that compose thelégyo Within each pairing,
a selector node selects among registers according to thmalptties computed by the
register predictor. Within a register, an aggregator nattésan one constraint from each

contiguous bulge-free region. Finally, within a bulgeefreegion a selector node picks
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Topology

Figure 3.4: The constraint tree to effect a predicted diigtion over all three levels of beta
sheet features. Aggregator nodes are marked with a “+” alettee nodes are marked
with a “?”. The selection probabilities labeling the outggiedges from the three levels of
selector nodes going from top to bottom are chosen by thddgp@redictor, the register

predictor, and the contact predictor, respectively.
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a beta contact to enforce according to the probabilitiesrftbe contact predictor. An
example constraint tree for a protein with three strand8(4nd C) is shown in Figure 3.4.
Only one path through the tree is shown, in which strands ARpdir and B and C pair,
and a register is chosen for the BC pairing with a single batgeh but constraints are

stochastically passed up from other paths as well.

3.4.2 Stochastic constraints for torsion angles

It is possible in principle to use the constraint tree apgindar torsion constraints as well,
although the approach has serious drawbacks; we deschiecitmainly to highlight the
strengths of the fragment repicking method.

The constraint tree to enforce a torsion distribution ispdérin structure. The root
is an aggregator node with a selector node child for eaclotofeature. The selector
node for torsion featureX; has five leaf children, one for each possible Ramachandran
bin. Constraints are therefore chosen independently fcn &&sion angleX;. It remains
to determine the selection probabiliti¢s/}>_,. b is the chance that value/ will be
enforced. The selection probabilities must sum to at mpst- Z?zl v/ is the probability
that no constraint will be activated for featukg. The torsion predictor gives us a target
marginal sampling distributio®,4(X;). We could certainly arrive at this distribution
by settingb{ = Pored Xi = xi) but then we would be constraining every single torsion
angle on every run. With this strategy, the chance of comstigaall native features on a
given run is vanishingly small (the chance of a fully natieature string is higher without
constraints because native feature values are positieetglated). Furthermore, even if
all constraints happen to be correct, constraining everglsitorsion angle doesn'’t give
Rosetta the mobility it requires to form strand pairings atiter global structural features.
In order to maximize Rosetta’s search mobility and to all@mdficial feature correlations,
we apply afew constraints as possible in order to hit our target distidout,q. If, for
instance Pyred(X;) = Psamd X;), we do not enforce any constraints gy at all.

The desired selection probabilities can be computed by sneba simple constrained
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optimization. IfPsamp(x{) is the sampling rate ofzf then the new sampling rate under
selection distribution{t/}?_, will be b + (1 — 3=°_, b/) Peamg#}). We wish to mini-

mize 235:1 b/, the chance of applying a constraint for featufg subject to the condi-

tions Pyed(2]) = bl + (1 — 37" b)) Peamg(z]) for all j, -7 b < 1, andb] > 0 for all
j. These conditions permit a one-manifold of solutioh$: = Pyed(x]) — aPsamd])

for any a. It can easily be verified that when ai] are assigned using this formula,
Poed(z]) = b + (1 — > b)) Psamgdx}) for all j. The higher the value of,, the less
constrainedX; will be; in fact, « is exactly the probability that no constraint is enforced
at X;. But « is limited by the non-negativity constraints éh Its maximum permitted
value ismin; Ppred(:cf)/Psamp(x{). This value ofx yields the selection probabilities that we
employ.

Unfortunately, this torsion constraint enforcement scheloes not grant perfect con-
trol over the torsion distribution. The relation betweermnr target probabilities and the
observed sampling rates in a resampling round with tors@rsitaints is shown in Fig-
ure 3.5.a. In this plot, we first begin to see the limitatiohshe independence model of
sampling. In some cases we are quite far from hitting ouretadgstribution. The primary
reason is the presence of correlations between featuresidtance, constraining a residue
to have its torsion angles in the helical region of the Raraadhan plot (region A) often
has the side effect of forcing adjacent residues to be helgaell. This effect motivates
the move to a Markovian model of the feature distribution.alMarkovian model, ran-
dom variables in a set are assumed to be independent of aell @hdom variables when
conditioned on their immediate neighbors in a chain. Forabdes{X;, X5,...,X,}, a
jointdistributionP (X, X5, ..., X,,) can be decomposed as the product of local conditional
probabilitiesP (X)) P(X5| X;)P(X3|Xs) - - - P(X,|X,,—1). In order to capture effects from
both the left and the right, we represent the joint distitiuis a mixture of chains flowing

left and right:

P(Xy, Xy, Xn) = 5 [P(X0) - P(Xa| Xpoa) + P(X0[X5) - - - P(X0)]

N —
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The marginal distributio(X;) can now be calculated by

% > P(Xi)P(Xi|Xi1) + Y P(Xipn) P(Xi|Xin1)

Xit1
This model is a reasonable approximation of the distrilbutibtorsion features, since the
conformation of a residue is most immediately affected leydbnformations of its prede-
cessor and successor in the chain. We wish to determineldatioa probabilities{b{};T’Z1
to make the marginal distribution of; match the targeB,q(-X;) under the conditional
distributions given byPsamp.

The key is to assume that we have already applied stochaststraints taX;’s neigh-
bors,X,_; and.X;, to make their marginal distributions mat€heq(X;—1) and Pyred(Xi11)-
We also assume that the conditional distributions are aotgtl by constraints, in the sense
that if X,;_; is constrained to be{_l, andX; and X;,, are unconstrained, the distribution
we’'d expect to observe of; is Psamd Xi| Xi—1 = x{_l). By our simplistic mixture of left-
and right-flowing chains, we mix the contributions 8f_; and X;,; with equal weights.
Then the distribution we expect to observeXf, given whatever stochastic constraints

have been applied to its neighbors but before any have be@iedpo X, is

1
r;red(Xi) = 5 Z Ppred(Xi—l)Psamr(Xi|Xi—1) + Z Ppred(Xi+1)Psamr(Xz‘|Xi—1)

X1 Xit1

Now we can simply choose selection probabilitiesorto bring 77).4(X;) up to our target
Pored(X;), using exactly the same method that we used to bRpg{X;) up to Ppred(X;)
in the previous section. By taking pairwise conditionakett into account in applying
stochastic constraints, we achieve sampling rates signtficcloser to their targets (Fig-
ure 3.5.b).

Unfortunately, stochastic enforcement of torsion comstsantroduces a host of prob-
lems. Enforcing too many constraints in a given run can desgelRa the search mobility it
requires to minimize energy. Constraint of a residue to@t@rsion bin limits the number
of fragments from the fragment pool available as moves fat tbsidue. Most seriously,

the independent enforcement of torsion constraints mdeatscbntradictory constraints
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Figure 3.5: Observed sampling rates versus targets foiotofeature values under (a)
constraint enforcement, (b) Markovian constraint enforeet, and (c) fragment repicking.
Target rates are given b eq.

are sometimes constrained simultaneously. For instagacent residues might be con-
strained to be helix and strand. In the previous chapter,woad this difficulty by con-
straining only a few torsion features, generally distans@éguence. In this chapter, we

present a new approach: fragment repicking.

3.4.3 Fragment repicking

Rosetta sampling rates for torsion features are closelelated with rates of occurrence
of those features in the set of fragments used for Rosettplsagn We can therefore
change Rosetta sampling rates significantly by repickiagrfrents. [f5,eq is our target
distribution, with marginal distributioft,eq(-X;) for each torsion featur&’;, then we repick
fragment files in such a way that the rate of occurrence of ealtle for featureX; in the
fragment file closely matches the rate givenBy.q(X;). The fragment files are picked
using a simple greedy quota-satisfaction method.

The fragment-picking method of distribution enforcemesnt Beveral important advan-
tages over stochastic constraints. First, it provides rfragaments for rare native features,
increasing the likelihood that one of them will be near thewveageometry. Second, and
most significantly, it sidesteps some of the inadequacié@ssohdependence model. When

the marginal distributions P,y are matched, correlations between nearby torsion fea-

52



tures come along for free within the fragments. Rather thaombination of helical and
strand residues, fragments will generally consist of dichakor all strand residues.

The fragment-picking method has one major disadvantageelation between frag-
ment probabilities and sampling rates is only loose, sa tightrol over feature frequen-
cies cannot be achieved by this method alone (Figure 3.5ldpwever, tests including
corrective constraints on under-sampled feature valugaduhe techniques described in
Section 3.4.2) have not resulted in improvements to our atkthAllowing Rosetta to
under-sample features from the repicked fragments mayctrbfaa valuable check on our
predictions if they are in strong disagreement with Ro&elttav resolution energy function.
Fragment repicking remains the most effective method we fiaund for modification of

torsion feature distributions.

3.5 Results and Discussion

We present results demonstrating both the accuracy of divenass predictors and the
success of our resampling method in predicting proteircaires. All results are from a
benchmark set of 28 proteins ranging in size from 51 to 12@8uwes. For each test protein,
nativeness predictors are trained only on the other pr@iaithe benchmark, so no testing

is performed on training data.

3.5.1 Nativeness predictor accuracy

Structures generated by Rosetta do contain native featlwewat higher rates, on average,
than non-native values, but by updating Rosetta beliefsgusinergy information, we sig-
nificantly increase the number of native feature values $eagtt higher rates. Across our
benchmark, most native torsion values were more likely entpdated distributioteq
output by our nativeness predictors thamigm, (Figure 3.6).

The nativeness predictor generally identifies native festmore accurately than any
single meta-feature—the feature value for whigfq is highest is more likely to be native

than the feature value for which other meta-features areesig(or lowest, in the case of
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energy-based meta-features). This is shown in Figure Jh&rewve display the number of
native torsion values correctly identified b}eq and by two different meta-features for two
different proteins, overlaid on a histogram of the numbenative torsion values present
in models generated in the initial sampling round. The yelirow indicates the native
structure, with all torsion angles correct. The red arrodiagates the number of native
torsion values correctly identified bys.mp, The blue arrow indicates the number of native
torsion values correctly identified in the lowest energy elqthinE). The purple arrow
indicates the number of native torsion values correctlpiidied by Fy,.q. By incorporating
information from both sources using fitted weights, theveatess predictaP,.q performs
better than either one alone. Results are similar for matragiroteins in our benchmark.
Figure 3.8.a shows the number of native torsion featureegatnissed bys,mp (Rosetta’s
prior beliefs), versus by.q (the updated beliefs from our nativeness predictor). For 24
out of 28 proteins in the benchmark sg},.q performs as well or better.

In order to compare the accuracy of our nativeness predm&ihodology against a
standard benchmark, we specialized to secondary-steuptediction and trained a per-
residue secondary structure predictor for comparisomatRisipredJones, 1999 a stan-
dard sequence-based predictor, with accuracy defined &sthien of residues for which
the native value was given the highest probability. Psigrpediction was used as a meta-
feature in this predictor, so training could have recapied Psipred by placing all weight
on this meta-feature to the exclusion of all others. Instéadistributed weight between
Psipred,Psamp @and various energy terms. Figure 3.8.b shows that ourpogttictor is more
accurate on our benchmark set, echoing previous resultsatiny that low-resolution ter-
tiary structure prediction can inform secondary structprediction[Meiler and Baker,
2003. Mean prediction accuracy is 88.4% for our predictor, asgamd to 84.5% for
Psipred. Accuracy increases in 22 of 28 targets. The cortipntame required for our
method may make it impractical for use as a secondary steigiedictor—our predic-
tions were performed using 20000 Rosetta samples for eagdt+abut this test does give

some indication of the power of energy information in nate&ture prediction. This infor-
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Figure 3.6: Subclassification of torsion feature valuesnfféigure 3.2 byF.q Feature
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ondary structure predictor accuracy on 28-protein benckma

mation is clearly not available to a predictor like Psiprelaiah only takes sequence data
within a local window into account.

Our resampling strategy is to substitUteq for Psamp @s Rosetta’s sampling distri-
bution, so the most important measure of the accurady,@j is its effectiveness in this
capacity. This can be estimated in advance of performing¢hgal resampling. In section
Section 3.3.3, we defined sampling efficiency to be the chahgampling an all-native fea-
ture string in a single Rosetta search trajectory. Assuithatgfeatures are sampled at least
partially independently, the sampling efficiency@f.q can be estimated dg;"_, Pyred(})
for all native feature values;. The log ratio (to base ten) between this sampling effi-
ciency and the sampling efficiency 6%.mpis shown for torsion features in Figure 3.9 and
for topology and pairing features in Figure 3.10. The expedafficiency gains for tor-
sion angle features are rough estimates, since some nattsiert feature values are in fact
highly correlated. The efficiency increases for beta togplteatures are more realistic,
since there is only one topology feature per protein and én@accorrelation effect. The

hashed bars in Figure 3.10 indicate the additional expedt®iency gain from resampling
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slightly, but this decrease is more than made up for by theease in sampling of the native
registers within that topology.
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of pairing featuresFyeq placed a median 5.3-fold higher probability on the natiyotogy
than Psamp (the median sampling rate for native topologies was 0.07)mény cases, the
increase was much greatdyq further placed a median 2.25-fold higher joint probabil-
ity on the co-occurence of all the native registers withia tfative topology (the median

sampling rate for individual native registers within nattopologies was 0.44).

3.5.2 Resampling

We employ two techniques to guide Rosetta search towardatgettfeature distribution
Pyeq: fragment repicking to enforce torsion feature distribng, and stochastic beta bridge
constraints to enforce topologies, registers, and cantae found per-residue secondary
structure features difficult to constrain by these methad$fisse features were not used in
the resampling round.

For each of the 28 benchmark proteins, ranging in size frono5128 residues, we
generated 20000 models as input to our resampling methagmIdgy, pairing, contact,
and torsion predictors were trained from these data setgréd@nt training on the test set,
a different predictor was trained for each protein in thedemark from the model sets for
the other 27 proteins. We repicked fragments for each prdiased on the distribution
produced by the torsion predictor. Three resampled sete When generated: one with
the repicked fragment file$r&g), one with stochastically constrained beta pairing fezgur
(betg), and one with bothf(ag+betd. In each case, 10000 new models were sampled for
each protein.

Figure 3.11 shows a histogram of th& percentile RMSD for the resampled popu-
lations, and Figure 3.12 shows a similar histogram of theiameBMSD of the best 1%
of models by energy. We compared to a control population stiémdard fragments and
no constraints and to a positive control population in wipakely native beta pairing fea-
ture values were enforced—the best possible beta pairatgriedistribution—and torsion
features were sampled based on the repicked fragments. 18DR#a sample-size inde-

pendent measure of the lower limit of RMSDs achieved in a doafrsearch. The median
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Figure 3.11: Histogram of** percentile RMSD for a benchmark set of 28 alpha/beta pro-
teins among models generated by fragment repicking (“Jrdggta topology resampling
(“beta”) and both (“frag+beta”), compared with a controt 8gth no constraints and a
positive control set in which the native beta pairings wer®red.
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Figure 3.12: Histogram of the median RMSD of models in tHepercentile by energy
among models generated by fragment repicking (“frag”alb@pology resampling (“beta”)
and both (“frag+beta”), compared with a control set with mmstraints and a positive
control set in which the native beta pairings were enforced.
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1% RMSD Median RMSD of 1% energy
Control | Frag | Beta | Frag+beta] Pos. || Control | Frag | Beta | Frag+beta| Pos.
1di2| 2.68 | 2.31| 3.25 2.20 1.96 4.80 3.69 | 4.59 4.17 2.40
1dtj | 2.89 | 2.16| 2.52 211 2.55 4.54 2.81 | 3.04 2.89 3.00
1dcj| 3.90 | 3.34| 2.46 2.45 1.99 6.03 5.02 | 3.99 3.84 2.46
logw | 3.12 | 3.10]| 3.23 3.13 1.99 4.52 464 | 4.12 3.95 2.35
2reb| 1.23 | 1.10| 1.23 2.06 1.26 1.36 132 | 1.43 2.84 1.28
2tif 3.16 | 2.84| 4.02 3.77 2.04 4.75 5.60 | 4.78 4.95 2.66
1InOu| 3.73 | 7.32] 3.09 3.07 2.16 7.60 | 11.66| 3.82 3.92 2.74
1hz6A | 2.39 | 2.63| 2.17 2.09 1.61 3.32 3.12 | 3.25 3.22 2.67
ImkyA | 3.74 | 3.61| 3.97 3.99 3.24 6.45 5.38 | 5.52 5.62 4.62
1lal9A| 3.50 | 3.21| 6.93 5.85 2.97 6.58 6.17 | 12.61 11.69 7.11
1la68| 6.44 | 5.86| 6.85 6.80 6.23 | 11.33 | 11.28| 8.89 8.40 9.37
lacf| 691 | 4.66| 5.11 4.64 3.56| 13.65 | 9.95 | 12.12 11.19 | 5.82
laiu| 1.72 | 1.50| 2.15 1.69 1.88 2.08 1.70 | 3.67 2.02 3.50
1bm8| 5.63 | 4.32] 6.21 5.52 4471 11.64 | 8.77 | 11.15 11.33 6.33
1cc8A | 2.72 | 2.56| 2.73 2.59 1.63 3.66 3.55 | 4.45 4.99 1.98
1bg9A | 4.73 | 4.02| 451 3.79 3.50 8.16 6.80 | 7.93 6.97 6.49
letf | 4.28 | 3.56| 3.42 3.07 3.19 9.86 5.11 | 8.04 4.13 5.13
ligbA | 3.02 | 2.63| 2.73 2.33 2.76 4.57 3.65 | 4.82 3.55 4.39
LiibA 3.13 | 381 3.35 3.70 2.55 9.74 | 11.24| 8.53 11.08 | 4.17
2ci2l | 454 | 6.22| 5.18 5.36 2.43 9.57 6.81 | 7.28 8.76 3.69
2chf | 3.46 | 2.98| 3.31 2.98 2.56 6.43 3.29 | 10.72 8.23 3.80
lopd| 3.62 | 2.81| 2.90 2.38 2.01 4.57 3.85 | 4.26 3.78 3.49
lpgx| 1.55 | 1.56| 1.56 1.42 1.29 2.84 2.81 | 2.06 2.25 1.57
1scjB| 2.86 | 2.50| 3.62 3.48 1.88 6.87 293 | 7.39 7.14 2.62
ltig | 3.93 | 3.48]| 3.14 3.01 2.05| 1142 | 466 | 4.13 4.00 3.10
lubi| 3.03 | 2.71| 2.96 2.73 1.33 9.06 3.33 | 4.07 3.47 1.53
5croA | 3.21 | 3.77| 2.87 291 2.36 8.26 9.34 | 4.62 7.52 3.96
4ubpA| 430 | 4.32]| 458 4.43 3.47 9.53 | 10.48| 10.59 11.50 | 5.17

Table 3.3: Results from a 28 protein benchmark. The resulisd first five columns show
the 1% percentile RMSD for resampled populations in which fragteevere repicked ac-
cording to the output of the torsion predictofrélg”), beta topology, registers, and contacts
were stochastically constrained according to the outpuhefbeta sheet feature predic-
tors (“betd), or both (“frag+betd’). Positive controls were also generated using repicked
fragments and all native beta pairing constraints. ThelteButhe rightmost five columns
show the median RMSD of models in th& percentile by energy.

62



RMSD of the best 1% of models by energy is a sample-size indbp# measure of the
quality of the lowest-energy Rosetta models.

All three of the resampled distributions were shifted tavawer RMSD when com-
pared to the controls (in black). Fragment repicking aldieg”) performed quite well,
decreasing the 1% RMSD by a median B32ut the modes of the distributions suggest
that while bothfrag andbetaimprove on Rosetta, their combinatifnag+betayields the
greatest gains. Several of the improvements ofthgt+betaresults over the controls were
particularly striking. 1acf improved by 2.8%o 4.643, 1dcj improved by 1.44 to 2.204,
and lopd improved by 1.24to 2.38A. However, beta topology resampling also led to
worse predictions for some targets; in fact, the median avgment in 1% RMSD was
smaller (by O.Zi‘) than for fragment repicking alone due to significant Iesea a few
targets. These difficult cases can be observed in the rigluftdne frag+betahistogram.
In some of these cases, the positive control results, whgsi@y repicked fragments along
with all-native fold tree constraints, were worse than ltsswith repicked fragments alone.
This suggests that these failures may result from limitetio Rosetta’s fold-tree protocol,
possibly from difficulties in closing the chainbreaks thatsnbe introduced when fold tree
constraints are added.

The largest gains were observed in the median RMSD of the t@kgg models. The
combination of fragment repicking and beta topology redargpyielded a median im-
provement of 0.68 over the controls and a mean improvement of @.9Phis reflects the
fact that for targets in which Rosetta samples severalrdifittcompeting topologies, beta
feature resampling increases sampling of the native tgydo that lower energies for this
topology are achieved.

Numeric results data for all the proteins in our benchmagkgiwen in Table 3.3.

3.6 Conclusion

In this chapter we have introduced a simple statistical rhfmdtencorporating energy in-
formation in the prediction of native structural featur&se model can be adapted to any
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class of discrete-valued features. When applied to p&itresecondary structure features,
it yields greater prediction accuracy on our test set thaprés. When applied to per-
residue torsion features, it identifies native values mdrenathan Rosetta sampling. It
also yields notably accurate results in the prediction tif’edeta strand topologies, where
the predicted distributionf,eq, places a median 13.6-fold higher probability on the native
topology with all native registers than the Rosetta sanggdiistribution.

The primary application for our nativeness predictors issampling method that im-
proves on Rosetta. In a number of the proteins in our bendhriae native register for
a pairing was present in the model population but was neesent in the sub-population
with the native topology. Our nativeness predictors weterofble to identify these two
native feature values separately so that they appeareth&rge the resampling round.
Our resampling methods, which constrain Rosetta searabr@iog to the output of the
nativeness predictors, significantly outperform plain ®tasab initio search. The benefits
from resampling of torsion features and of beta topology@aidng features appear to be
cumulative, although topology resampling did run into sal/problem cases. Resampling
using the combination of feature types achieved lower RMBDmost targets and lower
RMSDs among the low-energy models typically used as Roge#tdictions. Improve-
ments were significant within the 1A5ange of the best Rosetta models for most of these
targets—improvement of the median RMSD of low energy modetyaged 0.9 Our
experiments indicate that fragment repicking along wittaliepology resampling leads to
significant gains over plain Rosetta results. However, thgeiRa methodology for enforc-
ing pairings—maodifications of the fold tree—introduces neampling challenges, most
notably the closure of chainbreaks. This places a limit @ngains that can currently be
achieved by beta topology resampling. With advances in tigeRa fold tree protocol, the
accuracy of our beta topology, pairing, and contact predsdbas the potential to translate
into even more significant improvements over fragment igpgalone.

The nativeness predictor methodology extends naturalfntonew class of discrete-

valued structural features, as long as the sampling digioib of these features can be
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controlled in some way in the resampling round. Our methodéitibe extended to include
any number of other structural features, such as helix pgaki rotamer features, or more
global topological motifs.

Although in this chapter we concentrate our efforts on abamnodeling, the appli-
cation of our resampling method to comparative modelingld/ite straightforward. The
principle is very much the same—from an initial pool of catate conformations, perhaps
derived from a set of different templates, native-like éeatvalues would be identified
using nativeness predictors and enriched in a subsequsarhpting round. Nativeness
predictors for comparative modeling might take into acd¢aoneta-features relating to tem-
plate information, for instance the proportion of tempdatéhich have the feature value.
New feature types specific to comparative modeling migha aks developed. One par-
ticularly promising possibility is to create a set of locigament features, one for each
residue (or gap-free block of residues). The alignmentufeator a residue would take
values in the possible template residues to which the taegadue might be aligned. An
initial sampling round in which models are generated for ynaossible alignments would
give energy information that could be used in a nativenesadigtor to identify the correct

alignment.
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Chapter 4

Thesis Conclusion

We have defined a new framework for protein structure prexgtictvhich we call “resam-
pling,” that encompasses a variety of previous algorithfsesampling method aims to
extract information from previously generated models taguurther rounds of search.
In this thesis we have drawn a distinction between “strgchased” and “feature-based”
resampling methods. Methods in the former category coranfuture search around
the most successful models seen in earlier stages of seaethpds in the latter category
recombinefeaturesof models seen in earlier search. A number of successfulitigts
have been introduced which fall into the structure-baséegoay, but structure-based re-
sampling methods do suffer from certain pitfalls. They areagally limited to exploration
of areas of conformation space already seen in the initiaddoof search; to explore new
areas, they must take small, incremental steps away froas &reown to them, and the di-
rection in which to explore is not always clear. Severaldeatased resampling algorithms
exist, but by and large they are genetic algorithms, whicbhmeine features blindly from
the best structures in the previous round. Furthermorefeideire space representations
seldom encapsulate global structural properties.

In this thesis, we have introduced two new feature-basemhrpbng algorithms. As
is inherently the case for feature-based methods, theyl dkeipitfalls of structure-based
methods by explicitly recombining features, hence expbpregions of conformation space
never encountered in the initial round. But rather than oamg recombining features
of the most successfidtructures as in genetic algorithms, they commit wholly to the
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idea offeaturebased resampling and explicitly set out to identify sustiddeatures. Our
first method, which we call “native feature selection,” ukEsture selection techniques to
extract a few likely native features from models generatete first round of search. These
features are then enriched in the resampling round. Theadgitoduces a few notable
successes, but also several notable failures. Our secahddyevhich we call “nativeness
prediction,” uses a statistical “nativeness predictaairted to predict the chance that each
feature value ever observed in the initial sampling rounthisve. The method generalizes
naturally to many different classes of structural featumes apply it to torsion features,
secondary structure features, and a three-tiered higrafdieta topology features in order
to address both local and global structure. Resamplingyubi@ output of the nativeness
predictors yields gains over plain Rosetta search botletaagd more consistent than the
gains achieved with our first method. In significantly impraya state-of-the-art ab initio
structure prediction algorithm, our method itself achgestate-of-the-art performance.

The work in this thesis opens a number of promising avenuegutare research.
Most significantly, our methods could very easily be extehidecomparative modeling—
structure prediction using a template protein whose siredtas been experimentally de-
termined. As more and more proteins have their structurpsrerentally determined,
more and more targets have close sequence homologs. Adtatfesstructure prediction
field seems to be moving increasingly toward comparativeetiog. For our methods to
remain relevant, generalization to comparative modeksgyutlined in Section 3.6, is the
natural next step.

The core principle of our resampling work—that statistiesivked from an initial sam-
pling round are informative about local structural feasarénas the potential to be a power-
ful and broadly applicable tool in protein structure préidic. The high dimensionality and
multiple minima that make high resolution protein struetprediction difficult to solve
using traditional methods provide an excellent applicafiar modern machine learning
methods. The intersection between the two fields is justimggg, and we are excited to

see further developments.
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