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ABSTRACT

Resampling Methods for Protein Structure Prediction

by

Benjamin Norman Blum

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Michael I. Jordan, Chair

Ab initio protein structure prediction entails predictingthe three-dimensional confor-

mation of a protein from its amino acid sequence without the use of an experimentally

determined template structure. In this thesis, I present a new approach to ab initio protein

structure prediction that divides the search problem into two parts: sampling in a space of

discrete-valued structural features, and continuous search over conformations while con-

straining the desired features. Both parts are carried out using Rosetta, a leading structure

prediction algorithm. Rosetta is a Monte Carlo energy minimization method requiring

many random restarts to find structures near the correct, ornativestructure. Our meth-

ods, which we callresamplingmethods, make use of an initial round of Rosetta-generated

local minima to learn properties of the energy landscape that guide a subsequent “resam-

pling” round of Rosetta search toward better predictions. One of the main innovations of

this thesis is to attempt to deduce from the initial set of Rosetta models not the entire na-

tive conformation but rather a few specificfeaturesof the native conformation. Features

include backbone torsion angles, per-residue secondary structure, exposure of residues to

solvent, and a three-tiered hierarchy of beta pairing features. For each feature there is one

“native” value: the one found in the native structure. Native feature values are generally

enriched in structures with low energy, as the native structure of a protein is significantly

lower in energy than non-native structures and the energy ofa protein is to some extent

the sum of spatially local contributions. We have developedtwo methods for feature-space
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resampling based on this observation. The first method employs feature selection methods

to identify structural feature values that give rise to low energy, which are then enriched in

the resampling round. The second, more sophisticated method updates the sampling distri-

bution for all features at once, not just a selected few, by predicting the likelihood that each

feature value is native. Our results indicate that both methods, especially the second one,

yield structure predictions significantly better than those produced by Rosetta alone.
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Chapter 1

Introduction

1.1 Proteins

Proteins are biological macromolecules that perform essential functions in all living organ-

isms. They are composed of amino acid residues joined together by peptide bonds into

long polypeptide chains. There are twenty naturally occurring varieties of amino acid that

appear in proteins, each defined by a chemically uniqueside chain. Their precise sequence

in a protein is encoded by the sequence of DNA base pairs in that protein’s gene. This

amino acid sequence is known as a protein’sprimary structure.

Proteins also have structure at other levels of resolution.Contiguous regions of the

amino acid sequence form two main varieties ofsecondary structure, characterized by

regular hydrogen bond patterns:alpha helicesand beta strands. Multiple beta strands

(possibly distant in sequence) bind together to formbeta pleated sheets. Beta strands bind

together in two orientations: anti-parallel and parallel.Occasionally one or more residues

in one strand do not form hydrogen bonds to any residues on theopposite strand; such

occurrences are known asbeta bulges.

At the global level, thetertiary structureof a protein—its three-dimensional conform-

ation—is formed by packing secondary structure elements together into one or more glob-

ular domains. During the folding process, the protein searches through its degrees of free-

dom for lower energy states. Each residue in an amino acid sequence has two primary

degrees of freedom: rotation around theCα–N bond, referred to as the phi torsion an-
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gle, and rotation around theCα–C bond, referred to as the psi torsion angle. The primary

driving force behind the folding process is hydophobic burial—it is energetically favorable

for polar side chains to be exposed to solvent and hydrophobic side chains to be buried in

the protein’s hydrophobic core. The protein backbone is itself highly polar, but within

secondary structure elements all hydrogen bond donors and acceptors on the backbone are

satisfied, so helices and sheets can pass through the core of the protein without incurring

an energetic penalty.

Some proteins are composed of multiple polypeptide chains;the arrangement of these

chains with respect to one another comprises the protein’squaternary structure.

For the reader interested in a very thorough and accessible introduction to protein struc-

ture and function,[Branden and Tooze, 1999] is an excellent reference.

The recent explosion in available genome data has brought with it an explosion in the

number of known amino acid sequences of proteins. It has not,however, illuminated the

precisefunctionof these proteins. Secondary structure can be predicted with fairly high

accuracy from sequence information, but it is the tertiary (and quaternary, if applicable)

structure of a protein that most directly determines its biological function. Enzymes, for

instance, which catalyze specific chemical reactions, depend on very precise catalytic ge-

ometry of anactive siteto bind to one or moresubstrates. Neither the location of this active

site nor its geometry can be determined reliably without knowing the tertiary structure of

the enzyme. Thus, in order to reap the full rewards from the new wealth of genome data,

we must know the tertiary structure of the proteins that genes encode.

Unfortunately, the tertiary structure of a protein is quitechallenging to determine. Ex-

perimental methods currently in use, including nuclear magnetic resonance spectroscopy

[Wüthrich, 1990] and the higher resolution x-ray diffraction method[Kendrewet al., 1958],

are time- and resource-intensive. As a result, the number ofknown protein sequences now

far outstrips the capacity of experimentalists to determine their structures. Fewer than

50,000 proteins have (at time of writing) had their structures experimentally determined

[RCSB, 2008], out of a pool of about 1,000,000 known amino acid sequences[UniProt
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Consortium, 2008]. In nature, the amino acid sequence of a protein uniquely (toa good ap-

proximation) determines the conformation it will fold into[Anfinsen, 1973]. If it were pos-

sible to predict this tertiary structure from primary structure using computational means,

the impact on the current state of biological knowledge would be enormous. This is the

protein structure prediction problem.

1.2 Protein structure prediction

Protein structure prediction has progressed mightily in the past thirty years. Although

computational methods are not yet nearly as reliable as experimental methods, predicted

structures are in some cases very close to the resolution of experimentally determined struc-

tures. Progress in the field has been particularly easy to measure since the establishment of

the biannual meeting on Critical Assessment of techniques for protein Structure Prediction

(CASP)[Moult et al., 1995], a blind structure prediction benchmark in which essentially

all leading researchers in the field participate. Every two years, a pool of proteins for which

structures have been determined but not yet released are presented as challenges to the com-

putational groups. Afterwards, the predictions are compared with the true structures and

the various methods are assessed against one another.

Protein structure prediction is a wide and varied field, but historically algorithms have

been subdivided into three primary categories: homology modeling, fold recognition, and

ab initio modeling. In homology modeling, a target protein is modeled using a template

protein with experimentally determined structure. The template, or “homolog,” is identified

by sequence similarity to the target. If no such sequence homolog exists, it may still be the

case that the target protein adopts a fold similar to one in the database of solved structures;

in this case, a suitable template might be identified using a fold recognition algorithm.

These methods are also referred to as “threading” algorithms, since testing the match to the

template typically involves threading the target sequencethrough the structure of the tem-

plate and evaluating some simplified physical energy potential. The final category, ab initio

modeling, refers to structure prediction in the absence of any structural template, and gen-
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erally entails searching through conformation space for the global free energy minimum, as

captured by some kind of energy function. This categorization of prediction methods was

reflected in the categories of CASP competition up until CASP6; however, starting with

CASP7[Moult et al., 2007], homology modeling and fold recognition have been joined

into a single template-based modeling (also called comparative modeling) category, with

the easiest targets (those having very high sequence similarity to their templates) placed in

a “high-accuracy modeling” category. This reflects a shift in thinking within the field—

homology modeling and fold recognition methods differ onlyin the distance of structural

homologs that they can detect, and the primary distinction is between template-based mod-

eling and ab initio modeling, with the former category accounting for about 85% of CASP7

targets[Moult et al., 2007].

Applications of structure prediction are numerous, and depend on the accuracy of

the prediction. At the atomic level of resolution—models within 1Å–1.5Å of the native

conformation—the precise catalytic geometry of the activesite of enzymes is in place, so

catalytic mechanisms can be inferred. Protein-protein docking can be performed, and po-

tential ligands can be screened automatically[Xu et al., 1996]. This level of resolution

is currently only reliably achievable by comparative modeling using close sequence ho-

mologs[Baker andS̆ali, 2001]. At the coarser resolutions currently attainable by ab initio

methods, predictions can be used for molecular replacementin X-ray crystallography and

hence to produce high-resolution structures[Qianet al., 2007], or to identify likely active

sites or functional relationships to proteins with similarstructure.

1.2.1 Template-based modeling

Modeling based on templates predates the computational age; the first model derived from

a template was built by hand[Browneet al., 1969]. Comparative methods were among

the first computational techniques for protein structure prediction[Blundell et al., 1987].

Early influential methods include assembling large fragments of aligned structure from

multiple templates[Levitt, 1992] and satisfying inter-residue distance constraints derived
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from templates[S̆ali and Blundell, 1993].

Template-based modeling has four basic steps: identification of the templates, align-

ment of the target to the templates, building the model, and assessing the model[Martı́-

Renomet al., 2000]. The historical distinction between homology modeling andfold

recognition lies primarily in the manner in which the first two steps are carried out. In

homology modeling, templates are found using simple sequence-sequence matching via

BLAST or other methods[Altschul et al., 1990; Joneset al., 1992; Vingron and Water-

man, 1994] or sequence-profile matching via PsiBLAST[Altschul et al., 1997]. Many

sophisticated methods exist for finding templates much moredistant in sequence, includ-

ing profile-profile matching[Godzik, 2003; Jaroszewskiet al., 2000a; 2000b], Hidden

Markov Models[Karplus et al., 1998], threading the target onto the proposed template

structure[Jones, 1999; Davidet al., 2000; Skolnicket al., 2004; Zhou and Zhou, 2005], and

“meta-server” predictions combining all of the above[Wallneret al., 2003; Fischer, 2003;

Ginalskiet al., 2003]. Both optimal alignment to the template and refinement of themodel

once it has been built from the template remain large unsolved problems. CASP7 was the

first occasion in which the majority of submitted predictions for each target were better than

the best experimental template with a perfect alignment butno refinement[Moult et al.,

2007]. Leading methods for refinement include minimizing an all-atom forcefield[Misura

et al., 2004] and assembling large fragments from multiple templates[Zhang, 2007]. Once

the backbone of the model has been built, specific methods exist for modeling loops be-

tween secondary structure elements[Fiseret al., 2000] and placing side chains[Boweret

al., 1997], although these steps are often embedded within the model-building and refine-

ment steps in comparative modeling algorithms.

1.2.2 Ab initio modeling

Ab initio modeling starts with the assumption that the native conformation is the global

free energy minimum[Anfinsenet al., 1961; Anfinsen, 1973], although there are in fact

important exceptions to this rule[Baker and Agard, 1994]. In theory, then, the native
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conformation can be found by energy minimization in conformation space without recourse

to a structural template. The idea is appealing—an accurateab initio structure prediction

method would be wholly general and hence would make template-based modeling methods

unnecessary. However, in practice the ab initio modeling problem is much harder than

the comparative modeling problem and current methods do notapproach the accuracy of

template-based methods. Conformation space is very high-dimensional and the energy

landscape is riddled with local minima.

Important research in this area concentrates both on improving the accuracy of energy

functions and on simplifying the search space via discretization or reduced representations

of structure. Energy potentials fall into two categories: physical terms, including elec-

trostatic, solvation, and van der Waals interactions, and statistical terms derived from the

set of experimentally determined protein structures[Sippl, 1995; Koppensteiner and Sippl,

1998]. Interactions between protein and solvent are typically captured using an implicit

solvent model rather than with explicit solvent molecules.The most sophisticated energy

functions now include a mix of statistical and physical potentials, and appear increasingly

capable of discerning the native conformation from other conformations[Vorobjevet al.,

1998; Lazaridis and Karplus, 1999; Rapp and Friesner, 1999;Petrey and Honig, 2000;

Leeet al., 2001].

The choice of the conformation space in which to search is a crucial one. If it is too

reduced, the native structure might not be contained withinit, and the closest point to the

native in the reduced space might not be discernible as near-native by the energy func-

tion. Search-space reduction is generally necessary, however, because the full conforma-

tion space is too large to search effectively. Backbone torsion angles can be limited to a

discrete set of commonly observed values[Park and Levitt, 1995] or drawn from fragments

of true protein structure from proteins in the database of experimentally determined struc-

tures[Sippl et al., 1992; Bowie and Eisenberg, 1994; Jones, 1997; Simonset al., 1997].

Side chains in nature typically assume conformations from adiscrete pool of rotamers,

so search over side chain conformations can be discretized as well [R. L. Dunbrack and
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Karplus, 1994]. An even greater simplification can be achieved by abstracting side chains

as super-atoms located at the centroids of the side chains orat the beta carbon, with statisti-

cal interaction potentials between side chains that average out internal degrees of freedom

[Simonset al., 1997].

Search itself is usually carried out using some kind of MonteCarlo procedure, includ-

ing simulated annealing[Simonset al., 1997] and genetic algorithms[Pedersen and Moult,

1995]. Many current methods produce, rather than a single local minimum of the energy

function, a pool of candidates resulting from numerous search trajectories. A single pre-

diction is then chosen from this pool by one of a variety of methods[Park and Levitt, 1996;

Huanget al., 1996; Samudrala and Moult, 1998].

Our work is built upon Rosetta[Simonset al., 1997], a particularly successful ab initio

modeling algorithm which generated a great deal of excitement for the promise of ab initio

methods when it significantly advanced the field in CASP4[Bonneauet al., 2001]. Since

then, progress in Rosetta has been only incremental, although no other methods have con-

vincingly overtaken it[Moult et al., 2007]. We discuss Rosetta in some detail in the next

section.

1.3 Rosetta

Rosetta is one of the leading methods for ab initio protein structure prediction today.

Rosetta uses a Monte Carlo search procedure to minimize an energy function that is suffi-

ciently accurate that the conformation found in nature (the“native” conformation) is often

the conformation with lowest energy.

Each Rosetta search trajectory proceeds through two stages: an initial low-resolution

search stage in which side chains are represented as centroids without internal degrees

of freedom, followed by a high-resolution refinement stage in which all atoms are placed

and the energy function is closer to the true physical energy. Although the low-resolution

energy function is not physically realistic and cannot generally distinguish the native con-

formation from Rosetta local minima, the global conformation largely comes together in
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the low-resolution stage. The high-resolution stage alters the global conformation in mi-

nor ways, largely to accommodate the placement of side chains. The output of the low-

resolution stage can be regarded as a proposed backbone on which to place side chains; the

refinement stage evaluates the proposal, subjecting it to minor modification along the way.

One might suggest using the all-atom energy function throughout search. The low-

resolution model cannot, however, be generated using the all-atom energy function, for two

main reasons: first, there are too many degrees of freedom when all atoms are included,

so search in this space is very slow; second, the high-resolution energy function is much

rougher and prone to energetic traps. In order to allow the folding protein to arrive at the

final folded state, some degree of flailing is required, and the all-atom energy function, with

its strict adherence to physical laws, is not sympathetic toflailing. The native conformation

is generally lower in all-atom energy than Rosetta local minima that have gone through the

high-resolution refinement stage.

In the low-resolution stage, the primary search move is afragment replacementmove,

in which a sequence of contiguous residues—either three or nine, although in principle any

size would work—have their backbone torsion angles replaced with angles drawn from

a fragment of protein structure in the PDB (the database of experimentally determined

protein structures). This is the key innovation that enables Rosetta’s success. Rather than

search over individual torsion angles, the conformation can jump between locally viable

structures. For a new target on which Rosetta is to be run, afragment poolis generated

ahead of time. This pool contains, for everyframeof three or nine residues in the protein,

a set of 200 fragments drawn from the PDB. In a protein of length n residues, there are

n − k + 1 frames of lengthk, for a total of(n − k + 1) ∗ 200 fragments of lengthk in

the pool. The fragments are chosen by sequence similarity tothe target protein’s sequence

within the frame, and by matching the predicted secondary structure of the target to the

actual secondary structure of the fragment in the protein from which it derives. The same

fragment pool is used for every search trajectory, with moveproposals drawn out of it at

random. After a fragment replacement, local minimization is performed and then the move
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is accepted or rejected based on a Metropolis-style energy criterion.

Finding the global minimum of the energy function is very difficult because of the high

dimensionality of the search space and the very large numberof local minima. Rosetta

employs a number of strategies to combat these issues, but the primary one is to perform

a large number of random restarts. Thanks to a very large-scale distributed computing

platform called Rosetta@home, composed of more than four hundred thousand volunteer

computers around the world, up to several million local minima of the energy function (we

will call them “models”) can be computed for each target sequence. Computational costs

for Rosetta are high. Each Rosetta model takes approximately fifteen minutes of CPU time

to compute on a 1GHz CPU, and a typical data set for a single target consists of on the

order of100, 000 models.

1.4 Resampling

The fundamental insight behindresamplingmethods, which are the focus of the remainder

of this thesis, is that a random-restart strategy throws away a great deal of information from

previously computed local minima. In particular, previoussamples from conformation

space might suggest regions of uniformly lower energy; these are regions in which we

might wish to concentrate further sampling. This intuitionleads to a class of methods

that we callstructure-basedresampling methods. We discuss past work in this area in

Section 1.4.1, and illustrate some of the drawbacks of this approach with two of our own

attempts at structure-based resampling methods. These efforts motivate the innovation that

constitutes the main original contribution of this thesis:shifting search into a discrete-

valued structural feature space, and identifying native-like featuresrather than attempting

to identify native-likestructures. In Section 1.4.2 we discuss the limited past work that has

been performed in feature-based resampling—primarily genetic algorithms, which differ

significantly from our methods—and introduce our own algorithms in this area.
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1.4.1 Structure-based resampling

Structure-based resampling methods work by identifying either regions of conformation

space or individual structures from the initial sampling round that show promise, and con-

centrating further search around them. The fundamental drawback of methods in this class

is that they are limited to enrichment of regions of conformation space which have already

been explored, whereas the native conformation will not generally lie within these regions.

In “conformation space annealing”[Leeet al., 1997], a pool of random starting struc-

tures is gradually refined by local search, with low energy structures giving rise to children

that eventually replace the higher energy starting structures. While the method does prove

successful in some cases, it is limited to local explorationof areas of conformation space

already sampled. New areas of conformation space are explored by the introduction of new

random seed structures, but for larger proteins, the chanceof a random structure being close

enough to the native structure to give rise to near-native descendants may be vanishingly

small. In[Brunette and Brock, 2005], a Rosetta-based resampling method is presented that

operates by identifying “funnels” in conformation space and concentrating sampling on

the low-energy funnels. Funnels are discovered by means of unconstrained conformational

search, so this method too entails enrichment of regions already seen. On targets for which

Rosetta produces occasional successes, their method significantly improves sampling of

near-native conformations; however, it is not effective onproteins for which Rosetta pro-

duces no native-like structures.

Similar resampling strategies have been developed for general-purpose global optimiza-

tion. These include fitting a smoothedresponse surfaceto the local minima already gath-

ered[Box and Wilson, 1951] and using statistical methods to identify good starting points

for optimization[Boyan and Moore, 2001]. Unfortunately, as we shall see in our own ef-

forts in the next section, conformation space is very high-dimensional and very irregular,

so response surfaces do not generalize well beyond the span of the points to which they are

fitted. Generally, the correct (or “native”) structure willnot be in the span of the points seen

so far—if it were, the first round of Rosetta sampling would already have been successful.
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The method of[Boyan and Moore, 2001] is intriguing as a precursor to feature-based re-

sampling, since it entails the careful design of features that identify good starting points

for search. Search is divided into two stages: first, search in this feature space to identify a

good starting point for further optimization, and, second,the optimization itself. However,

the feature space response surface is fitted using points already seen, so, as in the case of

response-surface fitting, does not necessarily generalizepast the span of these points.

Response surface fitting

As an initial attempt at developing resampling methods for protein structure prediction, we

investigated a response surface fitting approach. Our goal was to fit a smoothed energy

surface to the Rosetta models seen so far and then to minimizethis surface to find new

starting points for local optimization of the Rosetta energy function.

The first task was to define the conformation space. The most natural space is defined

in terms of the conformational degrees of freedom, the phi and psi angles. However, it is

difficult to fit a response surface in the space of torsion angles because the energy function

is highly irregular in this space; a slight change in a singletorsion angle typically causes

large global structural changes, which in turn cause large energy changes. Instead, we took

the three-dimensional coordinates of the backbone atoms asour conformation space, with

all models in the set aligned to a reference model. There are three backbone atoms per

residue and three coordinates per backbone atom, so ann-residue protein is represented by

a 9n-dimensional vector. Even for small proteins of only around70 residues this space is

very high-dimensional, but we found that most of the structural variation in sets of Rosetta

models was captured by the first10 principal components. This step is related to the reduc-

tion of conformation space to principal components of structural variation by[Qianet al.,

2004]. Data were sufficient to fit a response surface in these10 dimensions.

Along certain directions, energy gradients were detectable that pointed toward the

native structure. One such direction was the first principalcomponent for protein 1n0u

(Figure 1.1.a; in this graph, the native structure is represented as an ensemble of Rosetta-
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(a) (b)

Figure 1.1: (a) Rosetta models (black) and relaxed natives (blue) projected onto the first
principal component. (b) Models and natives projected ontothe third principal component.

minimized structures that started at the native conformation). However, in most directions

the gradient did not point toward the natives (Figure 1.1.b). A response surface fitted to

the Rosetta models shown in these graphs will therefore havehigh energy in the vicinity of

the natives; and, in fact, minimization of the response surface did not result in near-native

structures.

There are several lessons to be learned from this failure. First, these observations point

toward a feature-based strategy: rather than fitting a response surface to all the dimensions

jointly, one might more profitably identify a few dimensionsthat are associated with clear

score gradients fit surfaces to these. Second, the highest-scoring models should be disre-

garded as uninformative; some steric clash or other avoidable structural flaw makes them

inviable, and they should not be considered in the fit.

Neighbor score

These considerations were taken into account in our next attempt to fit a response surface.

Rather than use Cartesian coordinates, we designed a structure representation to get directly

at the main factor responsible for the energy gradient that spurs folding in nature: burial
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Figure 1.2: One component of the neighbor score, fitted to residue 20 of 1opd. The blue
points indicate models taken into account in fitting the loess curve, shown in green. These
points are the best 10% of models by energy within each bin on the horizontal axis. The
red points indicate the relaxed native population.

of hydrophobic residues. The degree of burial of each residue can be approximated by

the number of other residues whose centroids are within 10Å of the centroid of the given

residue. The structure representation for each model is then a vector of length equal to

the number of residues in the protein, with each entry being the neighbor count for the

associated residue.

In keeping with the observations at the end of the previous section, we fit a separate

response surface to each dimension of this space. One such response surface, for residue

20 of protein 1opd, is shown in Figure 1.2. Each black or blue point represents one of the
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Figure 1.3: (a) Energy versus RMSD for the top 5% of models for1opd, out of a run of
200,000. (b) Neighbor score versus RMSD.

10,000 models generated in an initial sampling round. The blue points represent the best

10% of these models by energy in each of the possible integer bins along the horizontal

axis. In keeping with the observation that only low-energy points are informative about

the quality of regions of conformation space, these are the only points to which the curve

is fitted. The curve itself is shown in green. Note that in thiscase the red points, the

relaxed native population, are centered at the minimum of the curve. This holds generally

true for nearly all residues. This is a remarkable general fact about Rosetta sampling—the

consensus value for any individual feature is nearly alwaysright, but there are few (if any)

models that have all the consensus features.

The global neighbor score is derived by adding the per-residue neighbor scores for all

residues. Since the natives are near the minima of most of these component scores, this in

effect measures the number of residues in each model that arenear the native value. The

correlation of the resulting global neighbor score with RMSD to the native is, as shown in

Figure 1.3.b, quite impressive; far superior to the correlation between energy and RMSD

shown in Figure 1.3.a (note that these models are the lowest-energy 5% from a large sam-
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Figure 1.4: (a) Correlation of neighbor score with RMSD versus correlation of energy with
RMSD for the 28 proteins in our benchmark, in runs of 20,000 models. (b) Same as (a)
except limited to the top 5% of models from runs of 200,000.

pling round, which accounts for the flat energy cutoff at the top of the plot).

This holds generally true across our 28 protein benchmark set. In Figure 1.4 we show

the correlation between the neighbor score and RMSD versus the correlation between en-

ergy and RMSD for all 28 proteins, in two different-sized sampling rounds. These results

are somewhat remarkable—in extreme cases, the neighbor score has a correlation coeffi-

cient of around.8 while energy has a coefficient of0.15.

Unfortunately, resampling with the neighbor score as an additional potential did not

result in structures nearer to the native. The problem is two-fold: first, burial only occurs

in the final stages of Rosetta search, so the new potential forces over-compression early

on; second, and more importantly, the relaxed natives did not score as well as the lowest-

scoring models for any of the 28 proteins in our benchmark. Inmost cases they scored

nearly as well, but because they do not score lower, there is no scoregradient that can

be followed to find them. Thus, the neighbor score is useful only for enrichment of areas

already seen—the classic pitfall of response surface methods.

There are several lessons to be learned from this effort. First, restricting attention to
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the lowest-energy models and treating features as independent were successful strategies.

Second, some method is required for extending search into new areas of conformation

space. Figure 1.2 contains a clue. The fitted curve is clearlybimodal; another minimum

appears worth exploring. The same is true for the curves fitted to other residues. Perhaps

the natives sit within a combination of minima that never appears within the initial sampling

round. If there were a method to sample other combinations, we could explore structures

with low neighbor scores in new regions of conformation space. Unfortunately, it is quite

difficult to produce a structure with a specific string of neighbor counts. Other types of

structural features, however, are easier to control.

1.4.2 Feature-based resampling

The intuition behind feature-based resampling methods is that even if no models from the

initial sampling round are near the native conformation, they may contain native-likefea-

tureswhich can be recombined to create new, more native-like structures. In the extreme

case, a model for a two-domain protein may have one domain correct and the other incor-

rect; intermixing this model with another that has the otherdomain correct would result in

a wholly correct prediction.

Feature-based resampling methods in the literature are largely restricted to genetic al-

gorithms. After each round or “generation” of search, a new round of structures is created

in which features of the best structures in the previous generation are recombined with one

another. The feature recombination step in genetic algorithms is intrinsically random—no

attempt is made to identify those features most responsiblefor the success of low-energy

structures and to recombine these. Structure representations and feature types differ be-

tween methods. Methods exist for Cartesian space[Rabow and Scheraga, 1996], but nearly

all methods in the literature represent proteins as stringsof torsion angles[Dandekar and

Argos, 1992; Judsonet al., 1993; Bowie and Eisenberg, 1994; Pedersen and Moult, 1995;

Cui et al., 1998], occasionally discretized on a lattice[Dandekar and Argos, 1992]. Per-

residue torsion angle features are natural and easy to work with—we employ them too—but
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they fail to capture larger-scale elements of protein structure. Although a string of torsion

angles is a complete description of a protein’s backbone conformation, the properties of

protein structure that lead to strong variations in energy—for instance, hydrogen bonding

between beta strands—depend on the precise spatial interrelationships between residues

distant in sequence, and hence follow only indirectly from torsion angles. A more pow-

erful feature-space representation would include these larger-scale features. This avenue

has been explored in a limited way[Petersen and Taylor, 2003], but only in the search for

the boundaries of secondary structure elements, not the wayin which distant secondary

structure elements interrelate. No matter what structure representation is used, genetic al-

gorithms explore new regions of conformation space by feature recombination but do so in

an undirected fashion.

Another approach to feature recombination is given by[Bradley and Baker, 2006], em-

ploying beta strand pairing features similar to (though cruder than) the ones we introduce

in Chapter 3. An initial sampling round is used to generate a set of strand pairing features,

defined as regions in the contact plot. In the resampling round, beta contacts are enforced

via bridges in thefold tree, a constraint system we also employ. However, no systematicef-

fort is made to identify beta contacts most likely to be present in the native structure; some

common Rosetta sampling pathologies (for instance, a tendency to form beta hairpins) are

avoided via the stochastic application of score penalties,but in large part resampling is

spread evenly among a subset of pairings gleaned from low-energy structures in the first

round and passing certain hand-crafted topology filters. For some targets, search in the

resampling round only constrains a single beta contact, resulting in no feature recombina-

tion; for others, two contacts are constrained, allowing a limited level of recombination.

Our methods aim to allow unlimited recombination of native features, to systematically

constrain beta contacts likely to be native at a higher rate than beta contacts less likely to

be native, and to resample other kinds of features (such as torsion features) within the same

framework.
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Our approach

We have developed an approach that avoids the limitations ofstructure-based resampling

methods by recombining structural features to explore new regions of conformation space,

and avoids the limitations of genetic algorithms and other feature-based resampling meth-

ods by predicting likely native features to recombine and the optimal rates at which to

combine them. Our work rests on two assumptions. First, we assume that even if no sin-

gle local minimum computed in the first round of search hasall the native feature values,

many or all features will assume their native values in at leastsomeof the models. Second,

we assume that energy contributions from features are partially independent, so that native

feature values will be associated, on average, with lower-energy models.

In Chapter 2, we describe a resampling algorithm that employs feature selection meth-

ods, including both decision trees and Least Angle Regression (LARS)[Efronet al., 2004],

to identify structural features that best account for energy variation in the initial set of mod-

els. Certain of these feature values (those associated withlow energy) are predicted to be

present in the native conformation. Stochastically constrained Rosetta search is used to

generate a set of models enriched for these key feature values. However, no attempt is

made to quantify the probability of a feature value being native, and hence to discriminate

between near-certain predictions and less likely ones. Allpredicted native feature values

are enriched at the same rate.

In Chapter 3, we develop a statistical model for prediction of nativeness probabilities

and a resampling technique that exploits the model to enrichnative feature values forall

features, not just a selected few. The model incorporates a variety of statistics gathered

from an initial pool of generated models. In order to learn exactly how much weight to as-

sign to energy differences, sampling rate differences, andother “meta-features,” the model

is trained on a pool of Rosetta structures for 28 alpha/beta proteins with known native con-

formations. The training process allows us to sidestep the vulnerability of structure-based

resampling methods and our own previous work to pathologiesin the energy function by

learning exactly how much to trust energy as an indicator of nativeness. The feature distri-
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bution in models generated by standard Rosetta can be regarded as Rosetta’s initial beliefs

about which feature values are native; the model yields an updated distribution that com-

bines energy information with the other meta-features, yielding an improved assessment of

nativeness.

By recombining features predicted likely to be native, our methods create models in the

resampling round with novel combinations of native features. This is particularly apparent

in the resampling of beta strand pairing features, in which native pairings never seen to-

gether in the control population are present in the resampled population. Our results show

that this methodology leads to significantly improved structure predictions.
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Chapter 2

Native feature selection

2.1 Overview

In this chapter we present a resampling algorithm in which feature selection methods are

used to identify a few native feature values for enrichment in further search. The experi-

ments presented in this chapter are on a smaller scale and theresults less promising than

those for the main work of this thesis, described in the next chapter. However, these results

are an important precursor to our later work and are founded on many of the same ideas.

The limitations of the algorithm described in this chapter are an important motivation for

the methods presented in the next chapter.

The native feature selection method contrasts with structure-based resampling methods,

which concentrate search around a few promisingstructuresalready seen, by concentrating

search on promisingfeatures. For most targets, the first round of search will not generate

any models with all the native features. However, many native feature values are present

in at least some of the models. If these feature values can be identified and combined with

each other, then sampling can be improved.

The algorithm has three steps, each mapping from one structural representation space

to another (Figure 2.1). In the first step, described in Section 2.2, we project the initial

set of Rosetta models from continuous conformation space into a discrete feature space.

The structural features that we have designed characterizesignificant aspects of protein

structure and are largely sufficient to determine a unique conformation. In the second step,
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Figure 2.1: Flowchart of resampling method.

described in Section 2.3, we use feature selection methods including both decision trees and

Least Angle Regression (LARS)[Efronet al., 2004] to identify structural features that best

account for energy variation in the initial set of models. Wecan then predict that certain of

these feature values (generally, those associated with lowenergy) are present in the native

conformation. In the third step, described in Section 2.5, we stochastically constrain these

feature values in a new round of Rosetta search to generate a set of models enriched for

these key feature values.

In Section 2.5, we show the results of Rosetta search biased towards selected feature

values. In Section 2.6, we conclude with a discussion of the results achieved with this

method, as well as some of the drawbacks that led to the development of the method de-

scribed in the next chapter.

2.2 Discretization

The discretization step significantly reduces the search space while preserving essential

structural information. For the purpose of the work described in this chapter, we make use

of two types of structural features: torsion angle featuresand beta contact features.
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Figure 2.2: (a) Bins in Ramachandran plot. (b) Structure of 1dcj. Two helices are visi-
ble behind a beta pleated sheat consisting of four strands, the bottommost three paired in
the anti-parallel orientation and the topmost two paired inthe parallel orientation. In this
“cartoon” representation of structure, individual atoms are not rendered.

2.2.1 Torsion angle features

Torsion features are residue-specific. The observed valuesof theφ andψ angles for in-

dividual residues are strongly clustered in the database ofsolved protein structures (the

PDB), as illustrated in the Ramachandran plot. In order to discretize the possible torsion

angles for each residue, we divide the Ramachandran plot into four regions, referred to as

“A,” “B,” “E,” and “G” (Figure 2.2.a) roughly correspondingto clusters in thePDB. A fifth

letter, “O,” indicates a cis peptide bond and does not dependonφ or ψ. A protein with70

amino acid residues has70 torsion angle features, each with possible values A, B, E, G,

and O.

2.2.2 Beta contact features

Of the two kinds of protein secondary structure, Rosetta predicts alpha helix structure

somewhat more accurately than beta sheet structure. This isin large part because local

contacts are easier to form during the Rosetta search process—in alpha helices, the hy-

drogen bonds are all local, whereas in beta sheets the bonds can be between residues that

are quite distant along the chain. Beta contact features allow us to identify promising beta
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contacts undersampled by Rosetta and hence to improve Rosetta’s predictions of beta sheet

structure.

A beta contact feature for residuesi and j indicates the presence of two backbone

hydrogen bonds betweeni andj. We use the same definition of beta pairing as the standard

secondary structure assignment algorithm DSSP[Kabsch and Sander, 1983]. The bonding

pattern can be either parallel (as between the red residues in Figure 2.2.b) or antiparallel

(as between the blue residues). Furthermore, the pleating can have one of two different

orientations. A beta pairing feature is defined for every triple (i, j, o) of residue numbers

i andj and orientationso ∈ {parallel, antiparallel}. The possible values of a beta pairing

feature are 0, indicating no pairing, and P1 or P2, indicating pleating of orientation 1 or 2,

respectively.

2.3 Prediction of native features

LetX1, X2, . . . , Xn be all features, and letx1
i , x

2
i , . . . , x

mi

i represent the possible values of

featureXi. Let us consider the set{xj
i} of feature values for alli andj as a set of 0-1

valued functions, withxj
i (d) taking the value1 to indicate that featureXi assumes valuexj

i

in conformationd. For modeling purposes, let us assume that each feature valuexj
i has an

independent energetic effect; if present, it brings with itan average energy bonusbji . Under

these assumptions, the full energy of a conformationd is modeled as

E0 +
∑

i

∑

j

bji x
j
i (d) +N ,

whereE0 is a constant offset andN is Gaussian noise. This model is partially justified by

the fact that the true energy is indeed a sum of energies from local interactions, and our

features capture local structural information. Our hypothesis is that native feature values

have lower energy on average even if other native feature values are not present. We are

therefore only interested in finding feature values with weights below zero.

In order to identify a small set of potentially native feature values, we useL1 regular-

ization, or lasso regression[Tibshirani, 1996], to find a sparse model with only negative
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weights. The minimization performed is

argmin
(b,E0)

∑

d∈D

(

E(d) − E0 −
∑

i

∑

j

bji x
j
i (d)

)2

+ C
∑

i

∑

j

|bji |,

whereE(d) is the computed Rosetta energy of modeld and C is a regularization constant.

The small set of feature values that receive non-zero weights are those that best account for

low energy in the initial population. These are the feature values we can most confidently

predict to be native. The Least Angle Regression algorithm[Efron et al., 2004] allows

us to efficiently compute the trajectory of solutions for allvalues ofC simultaneously.

Experience with Rosetta has shown that constraining more than ten or fifteen torsion feature

values can hamper search more than it helps; if there are veryfew fragments available for

a given position that satisfy all torsion constraints, the lack of mobility at that position can

be harmful. We typically take the point in the LARS trajectory that gives fifteen feature

values.

2.3.1 Decision trees for beta contact features

Beta contact features are less suited to the lasso regression approach than torsion an-

gle features, because independence assumptions are not as valid. For instance, contact

(i, j, parallel) and contact(i + 1, j + 1, parallel) are redundant and will usually co-occur,

whereas contact(i, j, parallel) and contact(i−1, j+1, parallel) are mutually exclusive and

will never co-occur. However, these two pairings can give rise to otherwise very similar

structures, and hence might both be energetically favorable. If LARS gives strong negative

weights to each, then we may attempt to enforce both at once.

These considerations motivate a different approach to betacontact features. The pro-

teins we are considering consist of no more than six beta strands; the precise pairings

between these strands are therefore defined by at most five beta contact features. Using a

decision tree, we divide the population of models into non-overlapping clusters defined by

several beta contact feature values each. Lasso regressionis then employed in each cluster

separately to determine likely native torsion feature values.
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We use decision trees of depth three. At each node, a beta contact feature is selected to

use as a split point and a child node is created for each of the three possible values 0, P1,

and P2. Our strategy is to choose split points which most reduce entropy in the features.

The beta contact feature is therefore chosen whose mutual information with the other beta

contact features is maximized, as approximated by the sum ofthe marginal mutual infor-

mations with each other feature. The score for featureXi from the set{X1, X2, . . . , Xn}

is

MI(Xi) =

n
∑

j 6=i

I(Xj;Xi) ≈ I(Xi;X1, . . . , Xi−1, Xi+1, . . . , Xn),

where

I(Xi;Xj) =
∑

xi∈Xi

∑

xj∈Xj

P (Xi = xi, Xj = xj) log

(

P (Xi = xi, Xj = xj)

P (Xi = xi)P (Xj = xj)

)

,

all probabilities being empirical probabilities observedwithin the subpopulation defined by

the current decision tree node. The high-scoring feature ischosen as the split point.

Since some clusters are sampled more heavily than others, the lowest energy within a

cluster is not a fair measure of its quality, even though, in principle, we care only about the

lowest achievable energy. Instead, we use the10th percentile energy to evaluate clusters.

Its advantage as a statistic is that its expectation is not dependent on sample size, but it

often gives a reasonably tight upper bound on achievable energy. As a reasonable medium

between including enough leaves to ensure the presence of the native topology among them

and restricting sampling to few enough leaves that samplingof the native topology is not di-

luted too much, we restrict resampling to the three lowest-energy leaves. Ideally, we would

concentrate our sampling entirely on the best leaf, but since we cannot generally identify

which one it is, we have to hedge our bets. This tradeoff is characteristic of resampling

methods.

2.4 Resampling

In the resampling round, we wish to search for new structuresguided in some way by the

predicted native feature values identified by the methods inthe previous section. LARS
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Figure 2.3: LARS prediction accuracy when fitted to total population and to the three
decision-tree leaves with lowest 10th percentile energies, ordered here by average RMSD.

gives us a set of feature values that have a strong effect on energy. Our hypothesis is that

feature values strongly associated with lower energies—namely, those selected by LARS

and given negative weights—are more likely to be native, andthat feature values given

positive weights by LARS are more likely to be non-native. This hypothesis is born out by

our experiments on a benchmark set of9 small alpha/beta proteins. The LARS prediction

accuracy is given in Figure 2.3. This chart shows, for each protein, the fraction of LARS-

selected feature values correctly labeled as native or non-native by the sign of the LARS

weight. Fifteen LARS feature values were requested per protein. The “low energy leaf”

predictions were the result of running LARS only on models within the best three leaves of

the beta contact decision tree, which were generally closerto the native than the population

at large. Perhaps as a result, LARS generally achieved greater prediction accuracy when
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restricted to their associated subpopulations. Leaves aresorted by average RMSD, so “low

energy leaf 1,” the “best” leaf, consists of models which areclosest, on average, to the

native conformation. The best leaf consisted of only nativecontacts for all proteins except

1n0u and 1ogw, but in both these cases it contained structures generally lower in RMSD

than the population at large and resampling achieved improvements over plain Rosetta

sampling. In general, LARS performed better on the leaves that were closer to the native

structure, although there were a few notable exceptions.

It is clear from Figure 2.3 that LARS is informative about native feature values for

most proteins. However, we cannot rely wholly on its predictions. If we were simply to

constrain every LARS feature value, then Rosetta would never find the correct structure,

since some incorrect feature values would be present in every model. Our resampling

strategy is therefore to flip a coin at the beginning of the Rosetta run to decide whether or

not to constrain a particular LARS feature value. Coins are flipped independently for each

LARS feature value. Resampling improves on unbiased Rosetta sampling if the number

of viable runs (runs in which no non-native feature values are enforced) is sufficiently

high that the benefits from the enforcement of native featurevalues are visible. We have

achieved some success by enforcing LARS feature values withprobability30% each, as

demonstrated in the results section.

Greater LARS accuracy can be achieved by restricting attention to models within the

clusters identified by the beta contact decision tree method. Our resampling strategy, given

a decision tree, is to sample evenly from each of the top threeleaves as ranked by10th

percentile energy. Within the subpopulation of models defined by each leaf, we select

torsion feature values using LARS.

It remains to describe the means by which we constrain features. Torsion features are

easier to constrain than beta contact features; a torsion angle feature value can be con-

strained in Rosetta search simply by rejecting all proposedfragment replacement moves

that place torsion angles outside the desired bins. Stringsof torsion feature values are re-

ferred to asbarcodesin Rosetta, and the apparatus for defining and constraining them was
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RMSD of low-energy model Lowest RMSD of 25 low-energy models
Decision-tree LARS-only Decision-tree LARS-only

Control Resamp Control Resamp Control Resamp Control Resamp
1di2 2.35 2.14 2.76 0.97 1.78 1.34 1.82 0.73
1dtj 3.20 1.53 5.28 1.88 1.46 1.53 1.95 1.59
1dcj 2.35 3.31 2.34 2.11 2.19 1.86 1.71 1.88
1ogw 5.22 3.99 3.03 2.80 3.12 2.6 2.08 2.48
2reb 1.15 1.17 1.07 1.27 0.89 0.93 0.83 0.86
2tif 5.68 4.57 3.57 6.85 3.32 3.27 3.27 2.61
1n0u 11.89 11.60 11.93 3.54 9.78 3.19 3.54 2.84
1hz6A 2.52 1.06 3.36 4.68 2.38 1.06 1.97 1.19
1mkyA 10.39 8.21 4.60 4.58 3.43 3.25 3.33 4.23
Mean difference -0.8 -1.03 -1.04 -0.23
Median difference -1.11 -0.23 -0.33 -0.36
Number improved 7/9 6/9 7/9 5/9

Table 2.1: Results for the resampling rounds compared with control rounds of search for
two resampling schemes: “LARS-only”, in which only torsionfeatures were constrained,
and “decision-tree,” in which torsion features and beta contacts were constrained. Results
presented are the RMSD to native of the single lowest energy model generated during
search and the lowest RMSD of the25 lowest energy models generated during search.

developed in-house by Rosetta developers.

Beta contact features are enforced in Rosetta by means of a bridge in thefold tree

[Bradley and Baker, 2006]. A pseudo-backbone-bond is introduced between the two residues

to be glued together. This introduces a closed loop into the backbone topology of the pro-

tein. Torsion angles within the loop can no longer be alteredwithout breaking the loop,

so, in order to permit further fragment replacements, a cut (or “chainbreak”) must be in-

troduced somewhere else in the loop. The backbone now takes the form of a tree rather

than a chain. After a Rosetta search trajectory terminates,an attempt is made to close the

chainbreak with local search over several torsion angles oneither side of it.

2.5 Results

We tested two Rosetta resampling schemes over a set of 9 alpha/beta proteins of between

59 and 81 residues. In the first scheme (referred to henceforth as “LARS-only”),15 LARS-

predicted torsion feature values were constrained at 30% frequency. In the second (referred

to henceforth as “decision-tree”), three subpopulations were defined for each protein using

28



a decision tree, and within each subpopulation15 LARS-predicted torsion feature values

were constrained at frequencies heuristically determinedon the basis of several meta-level

“features of features,” including the rate of the feature value’s occurrence in the first round

of Rosetta sampling and the magnitude of the regression weight for the feature value. This

heuristic is a precursor of the nativeness predictors in thenext chapter, but was not trained;

the weights were set by hand. Each resampling scheme was compared against a control

population generated at the same time. Exactly the same number of models were generated

for the control and resampled populations. The control and resampled populations for

the LARS-only scheme consist of about 200,000 models each. The populations for the

decision-tree scheme consist of about 30,000 models each, due to limitations in available

compute time. The difference in quality between the two control populations is partially

explained by the different numbers of samples in each, and partially by changes in Rosetta

in the time between the generation of the two datasets.

Our two primary measures of success for a resampling run are both based on root-

mean-square distance to the native structure. Root-mean-square distance (RMSD) is a

standard measure of discrepancy between two structures. Itis defined as the square root

of the mean of the squared distances between pairs of corresponding backbone atoms in

the two structures, under the alignment that minimizes thisquantity. Our first measure

of success is the RMSD between the native structure and the lowest scoring model. This

measures Rosetta’s performance if forced to make a single prediction. Our second measure

of success is lowest RMSD among the twenty-five top-scoring models. This is a smoother

measure of the quality of the lowest scoring Rosetta models,and gives some indication

of the prediction quality if more sophisticated minima-selection methods are used than

Rosetta energy ranking. Structures at 1Å from the native have atomic-level resolution—

this is the goal. Structures at between 2Å and 4Å generally have several important structural

details incorrect. In proteins the size of those in our benchmark, structures more than 5Å

from the native are poor predictions.

Both resampling schemes achieved some success. The performance measures are shown
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Figure 2.4: Relation of prediction accuracy to resampling improvement in LARS-only runs.

in Table 2.5. The decision-tree scheme performed more consistently and achieved larger

improvements on average; it improved the low-energy RMSD in7 of the 9 benchmark

proteins, with a significant median improvement of 1.11Å. Particularly exciting are the

atomic-resolution prediction for 1hz6 and the nearly atomic-resolution prediction for 1dtj.

In both these cases, plain Rosetta sampling performed considerably worse. The LARS-

only scheme was successful as well, providing improved lowest-energy predictions on 6

of the 9 benchmark proteins with a median improvement of 0.23Å. The LARS-only low-

energy prediction for 1di2 is atomic-resolution at 0.97Å away from the native structure, as

compared to 2.97̊A for the control run. In general, improvements correlated with LARS

accuracy (Figure 2.4). The two notable exceptions were 2reb, for which plain Rosetta

search performs so well that constraints only hurt sampling, and 1n0u, for which plain
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Rosetta search concentrates almost entirely on a cluster with incorrect topology at 10̊A.

Certain LARS-selected feature values, when enforced, switch sampling over to a cluster at

around 3̊A. Even when incorrect feature values are enforced within this cluster, sampling

is much improved.

The cases in which the decision-tree scheme did not yield improved low-energy pre-

dictions are interesting in their own right. In the case of 1dcj, resampling does yield lower

RMSD structures—the top 25 low rms prediction is superior, and the minimum RMSD

from the set is 1.35, nearly atomic resolution, as compared to 1.95 for the control run—but

the Rosetta energy function does not pick them out. This suggests that better techniques

for selecting predictions from the model pool would improveour algorithms. In the case

of 2reb, the unbiased rounds of Rosetta sampling were so successful that they would have

been difficult to improve on. This emphasizes the point that resampling cannot hurt us too

much. If a plain Rosetta sampling round ofn models is followed by a resampling round

of n models, then no matter how poor the resampled models are, sampling efficiency is

decreased by at most a factor of2 (since we could have generatedn plain Rosetta samples

in the same time). The danger is that resampling may overconverge to broad, false energy

wells, achieving lower energies in the resampling round even though RMSD is higher. This

appears to occur with 2tif, in which the LARS-only low-energy prediction has significantly

lower energy than the control prediction despite being muchfarther from the native. Once

more, better techniques for selecting a single prediction model might help.

2.6 Discussion and Conclusions

Our results demonstrate that the native feature selection technique improves structure pre-

diction on a majority of the proteins in our benchmark set. The LARS-only method sig-

nificantly improves Rosetta predictions in 3 of the 9 test cases, and marginally improves

two more. The decision tree method expands the set of proteins on which we achieve im-

provements, including an additional atomic-level prediction. It is important to note that

significant improvements over Rosetta onanyproteins are hard to achieve; if our methods
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achieved one or two significantly improved predictions, we would count them a success.

Rosetta is the state of the art in protein structure prediction, and it has undergone years

of incremental advances and optimizations. Surpassing itsperformance is very difficult.

Furthermore, it doesn’t hurt Rosetta too badly if a resampling scheme performs worse than

unbiased sampling on some proteins, since models from the unbiased sampling round that

precedes the resampling round can be used as predictions as well.

The decision tree and LARS allow us to pick out a few feature values that we can fairly

confidently concentrate our attention on. However, in both cases, there are tradeoffs to be

weighed when deciding how many feature values to select. If we select very few, they are

more likely to be native; however, there is less to be gained by enriching them. If we select

too many, the accuracy of LARS and the decision tree goes down, and the harm from all

the incorrect feature values we are enriching outweighs thebenefit from the native feature

values. In this chapter, we have chosen compromises betweenthese two extremes by hand:

three decision tree leaves were resampled for each protein,and fifteen torsion feature values

were enriched within each of these leaves. It would be more satisfying, however, to have

this compromise chosen automatically. Even better, if our feature selection methods were

able to give us some measure of theconfidenceof their predictions, perhaps we could

avoid the penalty when large numbers of feature values are selected. Predictions with low

confidence could be enriched very slightly, while predictions with high confidence could

be constrained nearly all the time. In fact, if the confidences are reliable enough, we might

be able to do away with the feature selection entirely and resample every single feature at

once. This is the approach of the next chapter.
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Chapter 3

Nativeness prediction

3.1 Overview

In Chapter 1, we discussed limitations of structure-based resampling methods, and in par-

ticular of response surface fitting—these methods amount toenrichment of regions of con-

formation space that have already been explored. We also discussed the limitations of ex-

isting feature-based resampling methods, particularly genetic algorithms—these methods

blindly recombine features from successfulstructures, rather than seeking out successful

features. In Chapter 2, a method was described to predict likely native feature values using

feature selection methods. These features were then stochastically constrained in a sub-

sequent resampling round, resulting in a few significant improvements over plain Rosetta

sampling. However, there was no way to be certain which predictions were correct. The

method was limited to enrichment of just a few native featurevalues in order to avoid

enriching too many incorrect non-native feature values.

In this chapter we introduce a more sophisticated resampling method that makes use

of a statistical model for prediction of nativeness probabilities to alter Rosetta’s sampling

distribution forall features, not just a selected few. We present evidence that Rosetta’s ini-

tial sampling distribution represents Rosetta’s initial beliefs about which feature values are

native, beliefs based primarily on sequence information and on Rosetta’s low-resolution en-

ergy potential. The statistical model updates these beliefs to take into account information

from Rosetta’s full-atom energy potential and other sources, or “meta-features.”

33



Our specific choice of features is guided by the need to find important local determi-

nants of global structure whose native values can be discerned by our predictor. But simply

assessing how likely feature values are to be native does notsolve our overall problem—we

must also resample protein configurations from the featuralrepresentation. In this chapter

we develop two new approaches to resampling from the target distribution provided by the

nativeness predictor. The first is referred to asfragment repicking, and it involves changing

the fragment pool available to Rosetta. For simple featuressuch as torsion features this is

relatively easy to do, but for more complex features such as beta pairing features it is diffi-

cult to adjust the fragment pool directly so as to match the target distribution. We have thus

developed a second approach which extends the stochastic constraint methodology used in

Chapter 2 to allow a richer distribution over constraints. This is necessary for stochastic

enforcement of beta sheet features, since these features form a nested hierarchy–the draw

of constraints at the bottom of the hierarchy depends on the draws from higher up.

Our resampling approach has three steps (Figure 3.1). The first and third step corre-

spond closely to the similarly named steps in Chapter 2. In the first, or “discretization” step,

we project an initial set of Rosetta models for the target protein from conformation space

into a discretized feature space. Each model is representedas a string of discrete-valued

features of three types: torsion features of the same kind asthose used in Chapter 2, with

values corresponding to bins in the Ramachandran plot; per-residue secondary structure

features; and a three-level hierarchy of beta structure features with values corresponding to

topologies, registers, and contacts. Rosetta’s marginal sampling ratePsampfor each feature

can be regarded as an initial sequence-based belief about which feature value is native;

native feature values are, in general, sampled by Rosetta athigher rates than non-native

feature values (Figure 3.2). In the second, or “prediction”step, we update Rosetta’s initial

beliefs using information about which feature values are associated with low energies in the

initial set of Rosetta models to derive a new belief distributionPpred in which many native

feature values appear at significantly higher rates. In the third, or “resampling” step, we use

Rosetta to sample a new set of models that match this updated distribution over features;
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Figure 3.1: Flow-chart outline of the new resampling method. The process has three steps:
discretization of initial models into feature strings, prediction of likely native feature values,
and resampling with Rosetta to produce models with these feature values. The colored grids
represent marginal sampling distributions over the torsion features associated with residues
49–64 of protein 1dcj, with possible values “A,” “B,” “E,” “G,” and “O,” corresponding to
bins in the Ramachandran plot (Figure 2.2.a). The spectrum runs from blue, representing
sampling rates near 0%, through green, representing rates near 50%, to red, representing
rates near 100%. Each column represents the distribution over a single feature. A black
outline indicates the native feature value. The top grid depicts the sampling distribution
observed in the initial round of Rosetta search, and the bottom grid depicts the predicted
native probabilities, which are used as targets in the resampling round of search.
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Figure 3.2: Torsion feature values pooled together from a benchmark set of 28 proteins and
divided into bins according toPsamp. Bins are labeled by their upper bounds. The height
of each bar indicates the proportion of the feature values within the bin that are native.
The linear relationship suggests that the Rosetta samplingrate of a feature value is roughly
equal to the chance that the feature value is native.

this is done by fragment repicking and by applying stochastic constraints during search. As

the flow-chart suggests, the cycle can be iterated.

3.2 Discretization

The features used in this method fall into five classes: torsion features, per-residue sec-

ondary structure features, and three separate classes of beta sheet features. We will gen-

erally denote theith feature in a set byXi, and its possible values byx1
i , x

2
i , . . . , x

mi

i , with

one of these, denoted byx∗i , being the native one. We will occasionally be loose with our

terminology and refer to a feature that assumes its native value as a native feature.
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3.2.1 Torsion features

Torsion features are defined exactly as in Chapter 2. Each residue has an associated torsion

feature, which takes values in the Ramachandran plot bins “A,” “B,” “E,” “G,” and “O.”

3.2.2 Secondary structure features

Secondary structure features are also associated with single residues. They take values

in the standard alphabet “E,” “H,” and “L,” indicating whether the residue particiates in a

sheet, helix, or loop.

3.2.3 Beta sheet features

The beta structure of a protein conformation can be parsed atseveral different levels, illus-

trated in Figure 3.3. At the topmost level is thetopology, which identifies the beta strands

that pair with each other. We describe a topology by the set ofpairings that compose it.

Each pairing has an associated orientation (either antiparallel or parallel). Each protein has

a single topology feature, whose possible values are the possible sets of pairings.

At the second level, a pairing between two strands may be realized in several different

ways. The alignment between residues in the two strands is called theregister. A register

may contain one or morebeta bulges, in which one or more residues do not pair with any

residues on the opposite strand. A register includes the position of all bulges along the

pairing and the alignments in each bulge-free segment. Eachpairing has an associated

pairing feature, whose domain is the set of all registers forthat pairing ever observed in

the initial sampling round. Pairing features are defined using an agglomerative clustering

of registers from the initial sampling round, with a distance metric that depends upon the

locations of the centers of both paired strands in the register.

At the third and final level, a single register is consistent with a large set of possible

beta contacts. A register prototype is built up from the initial sampling round by merging

all beta contacts ever observed to participate in the register. The merging process generally

results in a prototype that extends too far in each direction; the native conformation will
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Figure 3.3: Beta topology, pairing, and contact features. At the top level is a single topol-
ogy feature, with each value a possible topology. One such topology consists of several
pairings, each of which has an associated pairing feature, shown in the middle level. The
values of the pairing feature are all possible registers. Each register is associated with a
set of contact features, shown in the bottom level. In this example, the register has two
bulge-free regions, each associated with a contact featurecircled in gray. The values of
a contact feature are all possible contacts within the region. The contacts present in the
native structure are circled in blue. To constrain the native register, one native constraint
must be chosen from each contact feature.
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have only a subset of beta contacts present in the native register prototype. In order to

enforce a register, one constraint is required in each bulge-free region, so a contact feature

is created for each such region whose possible values are allpossible contacts from that

region to enforce. This feature type differs from the othersin that multiple different values

may be native.

Example 1. The native topology for 1di2 includes a beta sheet with threestrands, strand

A running from residue 19 to residue 25, strand B running fromresidue 33 to residue 39,

and strand C running from residue 43 to residue 48. Strands A and B pair, as do strands B

and C, so this topology has two associated pairing features,AB and BC.

We will examine pairing feature AB in detail. The possible values for a pairing feature

are registers, which we define as a set of beta contacts, each of which will be denoted by a

pair (i, j) of residue numbers. The possible registers for pairing AB include:

R1 : {(18, 40), (19, 39), . . . , (27, 31)}

R2 : {(18, 40), (19, 39), . . . , (22, 36), (24, 35), . . . , (27, 32)}

R3 : {(20, 40), (21, 39), . . . , (27, 33)}

RegisterR2 differs from registerR1 in having a beta bulge—residue 23 doesn’t pair with

any residue on strand B. Note that the beta contacts in these registers extend slightly outside

the areas designated strand in the native structure, because they include all beta contacts

ever observed in the initial sampling round.

Each register brings with it one or more contact features, one for each bulge-free region

in the register. The number of such features is therefore onegreater than the number of

bulges in the register. For example, registerR2 has two contact features, one with five

possible values,{(18, 40), (19, 39), (20, 38), (21, 37), (22, 36)}, and one with four possible

values,{(24, 35), (25, 34), (26, 33), (27, 32)}. In order to constrain this register, two beta

contact constraints must be chosen to enforce, one from eachof these two contact features.

Note that for beta contact features, multiple values might be native. Selecting any of the
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native contacts counts as a success.

Beta features are hierarchical; each pairing feature is associated with the topology from

which it derives. If two different topologies both contain the same pairing, a copy of the

pairing feature is created for each. This distinction is important for the prediction step, in

which the predicted distribution over registers may dependon the topology. However, due

to the partially independent energetic contributions of different features, models with a non-

native topology that nonetheless includes a native strand pairing can in fact be informative

about the correct register for that pairing; if a given register is energetically favorable even

in models with incorrect global topology, it is more likely to be the native register. There-

fore, in predicting which register is the native value for a pairing feature, we collect energy

and distribution statistics both for models within the parent topology and for all models

with the pairing. Beta contact features, too, are associated with a particular topology, so

also give rise to these two classes of statistics.

3.3 Prediction

In the prediction step of our algorithm, we interpret Rosetta’s feature sampling distribution

Psamp(Xi) as Rosetta’s initial beliefs about which value for featureXi is native. We update

these beliefs using anativeness predictorthat incorporates bothPsamp(Xi) and various other

features-of-features, ormeta-features, to arrive at a new belief distributionPpred(Xi).

3.3.1 Form of the nativeness predictor

We build a set of five predictors, one for each class of features (torsion, secondary struc-

ture, topology, pairing, and contact). Each such nativeness predictor can be viewed as an

ensemble of logistic regression models for each feature in the class, with the regression

weights tied together.

LetX1, X2, . . . , Xn be all features from a single class (for example, all torsionfeatures).

Let x1
i , x

2
i , . . . , x

mi

i represent the possible values of featureXi, and letx∗i be the native

value. Each feature valuexj
i—for instance, bin “B” of torsion angle 34 for protein 1dcj, or
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the beta barrel topology for protein 1acf—has a corresponding numeric meta-feature vector

[Psamp(x
j
i ), lowE(xj

i ),minE(xj
i ), . . .] consisting of a mix of energy and distribution statistics

from the initial round of Rosetta models. Brief descriptions of the meta-features we use are

given in Table 3.1, along with the predictive power of each (as measured by the percentage

of native feature values from all proteins in our benchmark that can be identified using this

meta-feature alone). A justification for our choice of meta-features is given in the next

section. Note that even thoughPsamp is in some sense “special,” as it gives the prior belief

distribution to be updated, it is treated just like the othermeta-features for the purpose of

the predictor.

Some meta-features are transformed, either to make their ranges comparable to one

another or for reasons of mathematical convenience; for instance, thePsamp(x
j
i ) term is

transformed tolog(Psamp(x
j
i )). Let fk(x

j
i ) be thekth transformed meta-feature ofxj

i and

let Φ(xj
i ) be the vector of all single transformed meta-feature terms and their pairwise

combinations. We compute the dot product between a weight vector β and Φ(xj
i ) via

βtΦ(xj
i ) =

∑

k 6=k′ βk,k′fk(x
j
i )fk′(xj

i ) +
∑

k βkfk(x
j
i ). The presence of the pairwise com-

binations of features allows our model to take joint effectsinto account. Given a weight

vectorβ, the predicted probability thatxj
i is native in our model is

Ppred(x
j
i ) =

eβtΦ(xj

i
)

∑mi

j′=1 e
βtΦ(xj′

i
)
.

The form of the predictor allows it to outputPsampunmodified, given the proper setting of

the weights (one forlog(Psamp) and zero for all others), so it is theoretically possible forthe

trained predictor to make no changes to the Rosetta samplingdistribution. This is why we

transformPsampto log(Psamp) in the meta-feature vector.

3.3.2 Choice of meta-features

We designed our meta-features to encompass both sequence information and all-atom en-

ergy information. The value of sequence information in native feature prediction has been

established by the success of sequence-based secondary structure predictors like Psipred
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Torsion meta-feature Accuracy
Psamp Rosetta sampling rate 88.9%
lowE 10

th percentile energy of models with the feature value 76.4%
minE minimum energy of models with the feature value 87.7%
Pfrag rate of occurence of the feature value in the fragments 86.2%
loop indicates either an E or O torsion feature value
Ppred output of nativeness predictor 91.1%

Secondary structure meta-feature Accuracy
Psamp Rosetta sampling rate 87.2%
lowE 10

th percentile energy of models with the feature value 72.8%
minE minimum energy of models with the feature value 86.2%

Ppsipred secondary structure prediction from Psipred 87.7%
Pjufo secondary structure prediction from JUFO 80.9%
Ppred output of nativeness predictor 91.8%

Topology meta-feature Accuracy
Psamp Rosetta sampling rate 21.4%
lowE 10

th percentile energy of models with the feature value 21.4%
minE minimum energy of models with the feature value 46.4%

co approximate contact order of a structure with the given topology
Ppred output of nativeness predictor 60.7%

Register meta-feature Accuracy
Psamp Rosetta sampling rate 54.0%
lowE 10

th percentile energy of models with the feature value 44.7%
minE minimum energy of models with the feature value 61.2%
bulge indicates the presence of at least one beta bulge in the register
Ppred output of nativeness predictor 57.6%

Contact meta-feature Accuracy
Psamp Rosetta sampling rate 85.4%
lowE 10

th percentile energy of models with the feature value 68.9%
edgedist distance (in residue numbers) of a contact from either end ofa pairing 92.2%
oddpleat indicates an anomaly in the pleating pattern

Ppred output of nativeness predictor 88.3%

Table 3.1: Meta-features by feature class. Accuracy indicates the percentage of native feature
values from all proteins in our benchmark correctly identified by the meta-feature, i.e. those for
which the meta-feature is highest (or lowest, in the case of energy-based meta-features) among all
values for the associated feature. Accuracy values have been omitted for meta-features that are only
informative in conjunction with other meta-features and sohave no predictive value on their own.
Ppred, the output of the nativeness predictor, is not a meta-feature; it is included here for comparison.
The accuracy ofPpred is not always as high as the accuracy of each of its constituent meta-features
because it optimizes sampling efficiency, a different metric than accuracy.
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[Jones, 1999]. We hypothesize that energy statistics from an initial round of sampling

provide a valuable, non-redundant source of additional predictive power. Our hypothesis

depends on global energy receiving approximately independent contributions from local

structural features, so that native features will generally be associated with lower energies

even when paired with non-native features. This hypothesisis motivated by the fact that the

global energy is a sum of terms from physically local interactions. In order to capture these

two sources of information, three meta-features are commonto nearly all our predictors:

Psamp, the Rosetta sampling distribution,lowE, the 10th percentile energy of models with

the feature value, andminE, the minimum energy of models with the feature value.

Psamp contains primarily local sequence information. This can bededuced from the

Rosetta search procedure: the principal Rosetta search move is to replace the torsion angles

in a contiguous series of residues with a fragment selected at random from a fragment pool,

which is itself derived by matching the local sequence and predicted secondary structure

in the sequence being folded with the local sequence and actual secondary structure of

fragments from structures in the PDB. The distribution of secondary structure features in

the fragment pool, and hence in Rosetta models, is thereforeclosely related to sequence-

based secondary structure predictions from Psipred[Jones, 1999], JUFO[Meiler et al.,

2001], and SAM[Karplus et al., 1998]. The Monte Carlo search procedure selectively

rejects some fragment replacement moves, but only on the basis of a low-resolution energy

function that discriminates plausible tertiary structures from implausible ones. The high

resolution refinement step in Rosetta, which does employ an all-atom energy function, does

not generally modify conformations enough to alter the values of our structural features.

The meta-featureslowEandminE, on the other hand, are direct measures of the lowest

all-atom energies achievable in models with a given featurevalue. The very lowest energy

models seen in search determine the value ofminE, while lowE, whose expected value does

not depend on the sample size, is a fairer measure of energy for promising feature values

which are sampled very rarely and hence do not have a chance toappear in a low energy

structure.
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Each feature class also brings with it one or more additionalclass-specific meta-features.

Many of these meta-features are designed to ameliorate common modeling pathologies.

For example, Rosetta sampling is biased toward short-rangepairings, as these are easier

to form; the contact order[Plaxcoet al., 1998] of a topology is a useful meta-feature for

correcting this bias, although not predictive of native topologies on its own.

Psampfor a pairing feature indicates the distribution of registers only among models with

that pairing’s parent topology;lowE andminEare similarly restricted to models with the

parent topology. For pairing or contact features, energy ordistribution statistics may also

be computed over all models that have that pairing, not just those with the parent topology,

in which case they will be marked by the superscriptall.

3.3.3 Training

The free parameters in the predictor are the components of the weight vectorβ, which must

be fitted by maximizing an objective function. Rather than fitsome standard measure of

belief accuracy, we aim to directly maximize the predictor’s effectiveness as input to our

resampling method. As we will outline later in Section 3.4, the resampling step of our

algorithm attempts to modify Rosetta search to sample features according to the distribu-

tion Ppred instead of according toPsamp. Accordingly, we use as an objective function the

sampling efficiencyof Ppred, which we define as
∏n

i=1 Ppred(x
∗
i ), the estimated probability

of encountering a fully native structure in a single Rosettarun with feature distribution

Ppred. The inverse of this quantity can be regarded as an approximation, ignoring correla-

tions between features, of the expected number of Rosetta samples required to produce a

native-like structure. In order to incorporate training data from multiple proteins into the

objective function, the sampling efficiencies of each of theproteins in the training set are

multiplied (in fact, since we work on a log scale for numerical stability, their logarithms

are summed).

We fit β using the standard BFGS variant of Newton’s method[Broyden, 1970]. The

fitted weights for the various predictors (trained on a benchmark of 28 proteins) are shown
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Torsion predictor
Psamp Pfrag lowE minE loop

Psamp 1.11 -0.16 -0.17 -0.43 -0.083
Pfrag 0.51 0.35 -0.022 -0.16
lowE -0.11 0.094 0.21
minE -0.90 -0.24
loop 0.29

Secondary structure predictor
Psamp minE lowE Ppsipred Pjufo

Psamp 1.36 -0.35 -0.29 2.35 -0.24
minE -0.27 -0.23 1.39 0.081
lowE 0.43 0.28 -0.38

Ppsipred 1.10 -0.54
Pjufo 0.06

Topology predictor
Psamp co lowE minEall

Psamp 1.49 -1.57 0.82 -1.37
co -0.22 -0.043 -1.45

lowE 4.19 -2.11
minEall 2.27

Register predictor
P

all
samp minE lowEall bulge

P
all
samp 0.53 -0.042 0.13 1.06

minE -0.86 0.29 0.50
lowEall 0.55 0.074

bulge 0.50
Contact predictor

P
all
samp lowEall edgedist oddpleat

P
all
samp 1.05 2.57 1.79 0.00038

lowEall -0.29 1.28 -0.48
edgedist -0.14 -0.12
oddpleat -0.45

Table 3.2: Predictor weights for the five feature classes. Weights for individual meta-
features are on the diagonal, weights for pairwise terms areelsewhere.

in Table 3.2.

3.4 Resampling

Our results show that native features are generally more probable inPpred, the output dis-

tribution of the nativeness predictor, than in Rosetta’s initial sampling distributionPsamp

(Section 3.5.1). This motivates usingPpred as a target distribution for Rosetta. In particular,

letting Presamp(x
j
i ) denote the sampling rate in Rosetta of feature valuexj

i after our frag-

ment repicking and stochastic constraint protocols have been imposed, our approach aims

to setPresamp(x
j
i ) = Ppred(x

j
i ). In this section we considerPpred solely as a nativeness belief

distribution from some unspecified source, putting aside for the moment the fact that we

assumedPresamp = Ppred in training the predictors, and provide some justification for this

particular relationship betweenPresampandPpred.

There are many ways to use a nativeness belief distributionPpred in defining a resam-
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pling distribution, and the choice depends in general on howmany samples we are permit-

ted. If we are to sample only a single conformation, we shouldmaximize our chance of

sampling a native one. The probability of seeing the fully native feature stringx∗ in any sin-

gle Rosetta trajectory is, under our independence model,Presamp(x∗) =
∏k

i=1 Presamp(Xi =

x∗i ). But we are not sure, a priori, of which values are in fact the native ones. Under our

belief distributionPpred, the chance thatx is the native feature string is (making the same in-

dependence assumption for beliefs as for sampling distributions)Ppred(x) =
∏n

i=1 Ppred(xi).

Theexpectedchance of seeing the native in any given sample, with respectto our beliefs, is

then
∑

x Ppred(x)Presamp(x). Maximization of this expectation with respect toPresamp, sub-

ject to normalization constraints, can be solved in closed form using a standard Lagrangian

multiplier argument. The maximum is given byPresamp(x̂) = 1 for x̂ = argmaxPpred(x)

and0 elsewhere. Given just a single sample, the optimal strategyis to try our single best

guess for the native feature string.

At the other extreme, in the limit of infinite samples, the chance of sampling feature

string x at least once is the step functionI(Presamp(x) > 0), which takes the value1 if

Presamp(x) > 0 and0 otherwise. The expected chance of seeing a native structureis then
∑

x Ppred(x)I(Presamp(x) > 0). This expectation reaches its optimum value of1 whenever

Presamp(x) > 0 for all x such thatPpred(x) > 0. For very large numbers of samples, the

optimum strategy is to spread sampling as evenly as possible. If, for instance, we are

permitted as many samples as there are joint feature strings, the optimal strategy is to try

each string exactly once.

For intermediate numbers of samples, a closed-form solution is more difficult to obtain.

In addition, one is not typically sure, a priori, of how much sampling one is going to do. We

choose to interpolate between the two extremes by minimizing the expected log number

of samples required to sample a single native string,
∑

x Ppred(x) log(1/Presamp(x)). This

is equivalent to maximizing
∑

x Ppred(x) log(Presamp(x)), in which the termlog(Presamp(x))

interpolates between the objective functionsPresamp(x), which grows linearly in the value

of Presamp, andI(Presamp(x) 6= 0), which jumps immediately to1. Solving this optimization
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yieldsPresamp(x) = Ppred(x), which is the strategy that we have adopted.

We force Rosetta to sample according to the updatedPpred feature distribution both by

applying stochastic constraints and by picking new fragments. The former approach proves

more effective for beta topology, pairing, and contact features, while the latter approach is

the most successful for torsion features.

3.4.1 Stochastic constraints

A beta contact can be enforced by means of a bridge in thefold tree[Bradley and Baker,

2006] with an attendant chainbreak introduced in a nearby loop. A register can be enforced

by means of one or more bridges. In general,b+1 bridges will be required to constrain a

register withb bulges, one in each bulge-free segment.

In order to effect a desired feature distribution, models are generated using different

sets of bridge constraints. Each Rosetta search trajectorybegins with a random draw of

constraints from a hierarchical data structure called aconstraint tree. The leaves of a con-

straint tree are constraints. The non-leaf nodes are of two kinds: aggregator nodesand

selector nodes. Selector nodes have their outgoing edges labeled with probabilities. Each

selector node selects at most one of its children at random according to the distribution on

its outgoing edges and passes to its parent the constraints passed up from this child. If the

edge probabilities sum to one, exactly one child will alwaysbe selected; if they do not, it

is possible that no child will be selected. An aggregator node aggregates constraints from

each of its children and passes them up to its parent.

The constraint tree to enforce a distribution over beta structures has five levels. The

root node is a selector node which selects among topologies according to the probabilities

emerging from the topology predictor. Within each topology, an aggregator node adds

in constraints for each of the pairings that compose the topology. Within each pairing,

a selector node selects among registers according to the probabilities computed by the

register predictor. Within a register, an aggregator node adds in one constraint from each

contiguous bulge-free region. Finally, within a bulge-free region a selector node picks
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a beta contact to enforce according to the probabilities from the contact predictor. An

example constraint tree for a protein with three strands (A,B, and C) is shown in Figure 3.4.

Only one path through the tree is shown, in which strands A andB pair and B and C pair,

and a register is chosen for the BC pairing with a single beta bulge, but constraints are

stochastically passed up from other paths as well.

3.4.2 Stochastic constraints for torsion angles

It is possible in principle to use the constraint tree approach for torsion constraints as well,

although the approach has serious drawbacks; we describe ithere mainly to highlight the

strengths of the fragment repicking method.

The constraint tree to enforce a torsion distribution is simple in structure. The root

is an aggregator node with a selector node child for each torsion feature. The selector

node for torsion featureXi has five leaf children, one for each possible Ramachandran

bin. Constraints are therefore chosen independently for each torsion angleXi. It remains

to determine the selection probabilities{bji}
5
j=1. bji is the chance that valuexj

i will be

enforced. The selection probabilities must sum to at most1; 1−
∑5

j=1 b
j
i is the probability

that no constraint will be activated for featureXi. The torsion predictor gives us a target

marginal sampling distributionPpred(Xi). We could certainly arrive at this distribution

by settingbji = Ppred(Xi = xj
i ), but then we would be constraining every single torsion

angle on every run. With this strategy, the chance of constraining all native features on a

given run is vanishingly small (the chance of a fully native feature string is higher without

constraints because native feature values are positively correlated). Furthermore, even if

all constraints happen to be correct, constraining every single torsion angle doesn’t give

Rosetta the mobility it requires to form strand pairings andother global structural features.

In order to maximize Rosetta’s search mobility and to allow beneficial feature correlations,

we apply asfewconstraints as possible in order to hit our target distribution Ppred. If, for

instance,Ppred(Xi) = Psamp(Xi), we do not enforce any constraints forXi at all.

The desired selection probabilities can be computed by means of a simple constrained
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optimization. IfPsamp(x
j
i ) is the sampling rate ofxj

i , then the new sampling rate under

selection distribution{bji}
5
j=1 will be bji + (1 −

∑5
j=1 b

j
i )Psamp(x

j
i ). We wish to mini-

mize
∑5

j=1 b
j
i , the chance of applying a constraint for featureXi, subject to the condi-

tionsPpred(x
j
i ) = bji + (1 −

∑mi

j=1 b
j
i )Psamp(x

j
i ) for all j,

∑mi

j=1 b
j
i ≤ 1, andbji ≥ 0 for all

j. These conditions permit a one-manifold of solutions:bji = Ppred(x
j
i ) − αPsamp(x

j
i )

for any α. It can easily be verified that when allbji are assigned using this formula,

Ppred(x
j
i ) = bji + (1 −

∑mi

j=1 b
j
i )Psamp(x

j
i ) for all j. The higher the value ofα, the less

constrainedXi will be; in fact, α is exactly the probability that no constraint is enforced

at Xi. But α is limited by the non-negativity constraints onbji . Its maximum permitted

value isminj Ppred(x
j
i )/Psamp(x

j
i ). This value ofα yields the selection probabilities that we

employ.

Unfortunately, this torsion constraint enforcement scheme does not grant perfect con-

trol over the torsion distribution. The relation between our target probabilities and the

observed sampling rates in a resampling round with torsion constraints is shown in Fig-

ure 3.5.a. In this plot, we first begin to see the limitations of the independence model of

sampling. In some cases we are quite far from hitting our target distribution. The primary

reason is the presence of correlations between features. For instance, constraining a residue

to have its torsion angles in the helical region of the Ramachandran plot (region A) often

has the side effect of forcing adjacent residues to be helical as well. This effect motivates

the move to a Markovian model of the feature distribution. Ina Markovian model, ran-

dom variables in a set are assumed to be independent of all other random variables when

conditioned on their immediate neighbors in a chain. For variables{X1, X2, . . . , Xn}, a

joint distributionP (X1, X2, . . . , Xn) can be decomposed as the product of local conditional

probabilitiesP (X1)P (X2|X1)P (X3|X2) · · ·P (Xn|Xn−1). In order to capture effects from

both the left and the right, we represent the joint distribution as a mixture of chains flowing

left and right:

P (X1, X2, . . . , Xn) =
1

2
[P (X1) · · ·P (Xn|Xn−1) + P (X1|X2) · · ·P (Xn)] .
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The marginal distributionP (Xi) can now be calculated by

1

2





∑

Xi−1

P (Xi−1)P (Xi|Xi−1) +
∑

Xi+1

P (Xi+1)P (Xi|Xi+1)



 .

This model is a reasonable approximation of the distribution of torsion features, since the

conformation of a residue is most immediately affected by the conformations of its prede-

cessor and successor in the chain. We wish to determine the selection probabilities{bji}
mi

j=1

to make the marginal distribution ofXi match the targetPpred(Xi) under the conditional

distributions given byPsamp.

The key is to assume that we have already applied stochastic constraints toXi’s neigh-

bors,Xi−1 andXi+1, to make their marginal distributions matchPpred(Xi−1) andPpred(Xi+1).

We also assume that the conditional distributions are unaffected by constraints, in the sense

that ifXi−1 is constrained to bexj
i−1, andXi andXi+1 are unconstrained, the distribution

we’d expect to observe ofXi is Psamp(Xi|Xi−1 = xj
i−1). By our simplistic mixture of left-

and right-flowing chains, we mix the contributions ofXi−1 andXi+1 with equal weights.

Then the distribution we expect to observe ofXi, given whatever stochastic constraints

have been applied to its neighbors but before any have been applied toXi, is

P ′
pred(Xi) =

1

2





∑

Xi−1

Ppred(Xi−1)Psamp(Xi|Xi−1) +
∑

Xi+1

Ppred(Xi+1)Psamp(Xi|Xi−1)



 .

Now we can simply choose selection probabilities forXi to bringP ′
pred(Xi) up to our target

Ppred(Xi), using exactly the same method that we used to bringPsamp(Xi) up toPpred(Xi)

in the previous section. By taking pairwise conditional effects into account in applying

stochastic constraints, we achieve sampling rates significantly closer to their targets (Fig-

ure 3.5.b).

Unfortunately, stochastic enforcement of torsion constraints introduces a host of prob-

lems. Enforcing too many constraints in a given run can deny Rosetta the search mobility it

requires to minimize energy. Constraint of a residue to a rare torsion bin limits the number

of fragments from the fragment pool available as moves for that residue. Most seriously,

the independent enforcement of torsion constraints means that contradictory constraints
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Figure 3.5: Observed sampling rates versus targets for torsion feature values under (a)
constraint enforcement, (b) Markovian constraint enforcement, and (c) fragment repicking.
Target rates are given byPpred.

are sometimes constrained simultaneously. For instance, adjacent residues might be con-

strained to be helix and strand. In the previous chapter, we avoided this difficulty by con-

straining only a few torsion features, generally distant insequence. In this chapter, we

present a new approach: fragment repicking.

3.4.3 Fragment repicking

Rosetta sampling rates for torsion features are closely correlated with rates of occurrence

of those features in the set of fragments used for Rosetta sampling. We can therefore

change Rosetta sampling rates significantly by repicking fragments. IfPpred is our target

distribution, with marginal distributionPpred(Xi) for each torsion featureXi, then we repick

fragment files in such a way that the rate of occurrence of eachvalue for featureXi in the

fragment file closely matches the rate given byPpred(Xi). The fragment files are picked

using a simple greedy quota-satisfaction method.

The fragment-picking method of distribution enforcement has several important advan-

tages over stochastic constraints. First, it provides morefragments for rare native features,

increasing the likelihood that one of them will be near the native geometry. Second, and

most significantly, it sidesteps some of the inadequacies ofthe independence model. When

the marginal distributions inPpred are matched, correlations between nearby torsion fea-

52



tures come along for free within the fragments. Rather than acombination of helical and

strand residues, fragments will generally consist of all helical or all strand residues.

The fragment-picking method has one major disadvantage: correlation between frag-

ment probabilities and sampling rates is only loose, so tight control over feature frequen-

cies cannot be achieved by this method alone (Figure 3.5.c).However, tests including

corrective constraints on under-sampled feature values (using the techniques described in

Section 3.4.2) have not resulted in improvements to our method. Allowing Rosetta to

under-sample features from the repicked fragments may in fact be a valuable check on our

predictions if they are in strong disagreement with Rosetta’s low resolution energy function.

Fragment repicking remains the most effective method we have found for modification of

torsion feature distributions.

3.5 Results and Discussion

We present results demonstrating both the accuracy of our nativeness predictors and the

success of our resampling method in predicting protein structures. All results are from a

benchmark set of 28 proteins ranging in size from 51 to 128 residues. For each test protein,

nativeness predictors are trained only on the other proteins in the benchmark, so no testing

is performed on training data.

3.5.1 Nativeness predictor accuracy

Structures generated by Rosetta do contain native feature values at higher rates, on average,

than non-native values, but by updating Rosetta beliefs using energy information, we sig-

nificantly increase the number of native feature values sampled at higher rates. Across our

benchmark, most native torsion values were more likely in the updated distributionPpred

output by our nativeness predictors than inPsamp(Figure 3.6).

The nativeness predictor generally identifies native features more accurately than any

single meta-feature—the feature value for whichPpred is highest is more likely to be native

than the feature value for which other meta-features are highest (or lowest, in the case of
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energy-based meta-features). This is shown in Figure 3.7, where we display the number of

native torsion values correctly identified byPpred and by two different meta-features for two

different proteins, overlaid on a histogram of the number ofnative torsion values present

in models generated in the initial sampling round. The yellow arrow indicates the native

structure, with all torsion angles correct. The red arrow indicates the number of native

torsion values correctly identified byPsamp. The blue arrow indicates the number of native

torsion values correctly identified in the lowest energy model (minE). The purple arrow

indicates the number of native torsion values correctly identified byPpred. By incorporating

information from both sources using fitted weights, the nativeness predictorPpred performs

better than either one alone. Results are similar for most other proteins in our benchmark.

Figure 3.8.a shows the number of native torsion feature values missed byPsamp (Rosetta’s

prior beliefs), versus byPpred (the updated beliefs from our nativeness predictor). For 24

out of 28 proteins in the benchmark set,Ppred performs as well or better.

In order to compare the accuracy of our nativeness predictormethodology against a

standard benchmark, we specialized to secondary-structure prediction and trained a per-

residue secondary structure predictor for comparison against Psipred[Jones, 1999], a stan-

dard sequence-based predictor, with accuracy defined as thefraction of residues for which

the native value was given the highest probability. Psipred’s prediction was used as a meta-

feature in this predictor, so training could have recapitulated Psipred by placing all weight

on this meta-feature to the exclusion of all others. Instead, it distributed weight between

Psipred,Psamp, and various energy terms. Figure 3.8.b shows that our jointpredictor is more

accurate on our benchmark set, echoing previous results indicating that low-resolution ter-

tiary structure prediction can inform secondary structureprediction[Meiler and Baker,

2003]. Mean prediction accuracy is 88.4% for our predictor, as compared to 84.5% for

Psipred. Accuracy increases in 22 of 28 targets. The computation time required for our

method may make it impractical for use as a secondary structure predictor—our predic-

tions were performed using 20000 Rosetta samples for each target—but this test does give

some indication of the power of energy information in nativefeature prediction. This infor-

54



0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Frequency in Rosetta models

P
ro

p
o

rt
io

n
 o

f 
fe

a
tu

re
 v

a
lu

e
s
 t
h

a
t 
a

re
 n

a
ti
v
e

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

All features
Values with Ppred ≥ Psamp

Values with Ppred < Psamp

Figure 3.6: Subclassification of torsion feature values from Figure 3.2 byPpred. Feature
values given higher probability byPpred than byPsamp are significantly more likely to be
native. The central gray bars are the same as in Figure 3.2.

82 84 86 88 90 92 94 96 98 10
0

10
2

10
4

10
6

10
8

11
0

11
2

11
4

11
6

11
8

12
0

12
2

Psamp

minE
Ppred

Native

55 57 59 61 63 65 67 69 71 73 75 77 79

Psamp

minE
Ppred

Native

(a) (b)

Figure 3.7: (a) Number of native feature values for 1acf identified by several different
meta-features. Red arrow: number of native feature values identified byPsamp. Blue arrow:
minE. Purple arrow:Ppred. Yellow arrow: native. Each column of the histogram shows the
number of 1acf models from a pool of 20000 generated by Rosetta that had the indicated
number of native torsion feature values. (b) Native featurevalue counts for 1mky.

55



0 5 10 15

0
5

10
15

Native feature values missed by Psamp

N
at

iv
e 

fe
at

ur
e 

va
lu

es
 m

is
se

d 
by

 P
pr

ed

0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

0
.6

5
0

.7
5

0
.8

5
0

.9
5

Psipred accuracy

N
a

ti
v
e

n
e

s
s
 p

re
d

ic
to

r 
a

c
c
u

ra
c
y

(a) (b)

Figure 3.8: (a) Number of native feature values misidentified byPsampandPpred. (b) Sec-
ondary structure predictor accuracy on 28-protein benchmark.

mation is clearly not available to a predictor like Psipred which only takes sequence data

within a local window into account.

Our resampling strategy is to substitutePpred for Psamp as Rosetta’s sampling distri-

bution, so the most important measure of the accuracy ofPpred is its effectiveness in this

capacity. This can be estimated in advance of performing theactual resampling. In section

Section 3.3.3, we defined sampling efficiency to be the chanceof sampling an all-native fea-

ture string in a single Rosetta search trajectory. Assumingthat features are sampled at least

partially independently, the sampling efficiency ofPpred can be estimated as
∏n

i=1 Ppred(x
∗
i )

for all native feature valuesx∗i . The log ratio (to base ten) between this sampling effi-

ciency and the sampling efficiency ofPsamp is shown for torsion features in Figure 3.9 and

for topology and pairing features in Figure 3.10. The expected efficiency gains for tor-

sion angle features are rough estimates, since some native torsion feature values are in fact

highly correlated. The efficiency increases for beta topology features are more realistic,

since there is only one topology feature per protein and hence no correlation effect. The

hashed bars in Figure 3.10 indicate the additional expectedefficiency gain from resampling
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of pairing features.Ppred placed a median 5.3-fold higher probability on the native topology

thanPsamp (the median sampling rate for native topologies was 0.07). In many cases, the

increase was much greater.Ppred further placed a median 2.25-fold higher joint probabil-

ity on the co-occurence of all the native registers within the native topology (the median

sampling rate for individual native registers within native topologies was 0.44).

3.5.2 Resampling

We employ two techniques to guide Rosetta search toward the target feature distribution

Ppred: fragment repicking to enforce torsion feature distributions, and stochastic beta bridge

constraints to enforce topologies, registers, and contacts. We found per-residue secondary

structure features difficult to constrain by these methods so these features were not used in

the resampling round.

For each of the 28 benchmark proteins, ranging in size from 51to 128 residues, we

generated 20000 models as input to our resampling methods. Topology, pairing, contact,

and torsion predictors were trained from these data sets. Toprevent training on the test set,

a different predictor was trained for each protein in the benchmark from the model sets for

the other 27 proteins. We repicked fragments for each protein based on the distribution

produced by the torsion predictor. Three resampled sets were then generated: one with

the repicked fragment files (frag), one with stochastically constrained beta pairing features

(beta), and one with both (frag+beta). In each case, 10000 new models were sampled for

each protein.

Figure 3.11 shows a histogram of the1st percentile RMSD for the resampled popu-

lations, and Figure 3.12 shows a similar histogram of the median RMSD of the best 1%

of models by energy. We compared to a control population withstandard fragments and

no constraints and to a positive control population in whichpurely native beta pairing fea-

ture values were enforced—the best possible beta pairing feature distribution—and torsion

features were sampled based on the repicked fragments. 1% RMSD is a sample-size inde-

pendent measure of the lower limit of RMSDs achieved in a round of search. The median
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1% RMSD Median RMSD of 1% energy
Control Frag Beta Frag+beta Pos. Control Frag Beta Frag+beta Pos.

1di2 2.68 2.31 3.25 2.20 1.96 4.80 3.69 4.59 4.17 2.40
1dtj 2.89 2.16 2.52 2.11 2.55 4.54 2.81 3.04 2.89 3.00
1dcj 3.90 3.34 2.46 2.45 1.99 6.03 5.02 3.99 3.84 2.46

1ogw 3.12 3.10 3.23 3.13 1.99 4.52 4.64 4.12 3.95 2.35
2reb 1.23 1.10 1.23 2.06 1.26 1.36 1.32 1.43 2.84 1.28
2tif 3.16 2.84 4.02 3.77 2.04 4.75 5.60 4.78 4.95 2.66

1n0u 3.73 7.32 3.09 3.07 2.16 7.60 11.66 3.82 3.92 2.74
1hz6A 2.39 2.63 2.17 2.09 1.61 3.32 3.12 3.25 3.22 2.67

1mkyA 3.74 3.61 3.97 3.99 3.24 6.45 5.38 5.52 5.62 4.62
1a19A 3.50 3.21 6.93 5.85 2.97 6.58 6.17 12.61 11.69 7.11

1a68 6.44 5.86 6.85 6.80 6.23 11.33 11.28 8.89 8.40 9.37
1acf 6.91 4.66 5.11 4.64 3.56 13.65 9.95 12.12 11.19 5.82
1aiu 1.72 1.50 2.15 1.69 1.88 2.08 1.70 3.67 2.02 3.50

1bm8 5.63 4.32 6.21 5.52 4.47 11.64 8.77 11.15 11.33 6.33
1cc8A 2.72 2.56 2.73 2.59 1.63 3.66 3.55 4.45 4.99 1.98
1bq9A 4.73 4.02 4.51 3.79 3.50 8.16 6.80 7.93 6.97 6.49

1ctf 4.28 3.56 3.42 3.07 3.19 9.86 5.11 8.04 4.13 5.13
1ig5A 3.02 2.63 2.73 2.33 2.76 4.57 3.65 4.82 3.55 4.39
1iibA 3.13 3.81 3.35 3.70 2.55 9.74 11.24 8.53 11.08 4.17
2ci2I 4.54 6.22 5.18 5.36 2.43 9.57 6.81 7.28 8.76 3.69
2chf 3.46 2.98 3.31 2.98 2.56 6.43 3.29 10.72 8.23 3.80
1opd 3.62 2.81 2.90 2.38 2.01 4.57 3.85 4.26 3.78 3.49
1pgx 1.55 1.56 1.56 1.42 1.29 2.84 2.81 2.06 2.25 1.57
1scjB 2.86 2.50 3.62 3.48 1.88 6.87 2.93 7.39 7.14 2.62

1tig 3.93 3.48 3.14 3.01 2.05 11.42 4.66 4.13 4.00 3.10
1ubi 3.03 2.71 2.96 2.73 1.33 9.06 3.33 4.07 3.47 1.53

5croA 3.21 3.77 2.87 2.91 2.36 8.26 9.34 4.62 7.52 3.96
4ubpA 4.30 4.32 4.58 4.43 3.47 9.53 10.48 10.59 11.50 5.17

Table 3.3: Results from a 28 protein benchmark. The results in the first five columns show
the1st percentile RMSD for resampled populations in which fragments were repicked ac-
cording to the output of the torsion predictor (“frag”), beta topology, registers, and contacts
were stochastically constrained according to the output ofthe beta sheet feature predic-
tors (“beta”), or both (“frag+beta”). Positive controls were also generated using repicked
fragments and all native beta pairing constraints. The results in the rightmost five columns
show the median RMSD of models in the1st percentile by energy.
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RMSD of the best 1% of models by energy is a sample-size independent measure of the

quality of the lowest-energy Rosetta models.

All three of the resampled distributions were shifted toward lower RMSD when com-

pared to the controls (in black). Fragment repicking alone (“ frag”) performed quite well,

decreasing the 1% RMSD by a median 0.32Å, but the modes of the distributions suggest

that while bothfrag andbeta improve on Rosetta, their combinationfrag+betayields the

greatest gains. Several of the improvements of thefrag+betaresults over the controls were

particularly striking. 1acf improved by 2.27Å to 4.64Å, 1dcj improved by 1.45̊A to 2.20Å,

and 1opd improved by 1.24̊A to 2.38Å. However, beta topology resampling also led to

worse predictions for some targets; in fact, the median improvement in 1% RMSD was

smaller (by 0.22̊A) than for fragment repicking alone due to significant losses on a few

targets. These difficult cases can be observed in the right tail of the frag+betahistogram.

In some of these cases, the positive control results, which employ repicked fragments along

with all-native fold tree constraints, were worse than results with repicked fragments alone.

This suggests that these failures may result from limitations in Rosetta’s fold-tree protocol,

possibly from difficulties in closing the chainbreaks that must be introduced when fold tree

constraints are added.

The largest gains were observed in the median RMSD of the low energy models. The

combination of fragment repicking and beta topology resampling yielded a median im-

provement of 0.68̊A over the controls and a mean improvement of 0.92Å. This reflects the

fact that for targets in which Rosetta samples several different competing topologies, beta

feature resampling increases sampling of the native topology so that lower energies for this

topology are achieved.

Numeric results data for all the proteins in our benchmark are given in Table 3.3.

3.6 Conclusion

In this chapter we have introduced a simple statistical model for incorporating energy in-

formation in the prediction of native structural features.The model can be adapted to any
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class of discrete-valued features. When applied to per-residue secondary structure features,

it yields greater prediction accuracy on our test set than Psipred. When applied to per-

residue torsion features, it identifies native values more often than Rosetta sampling. It

also yields notably accurate results in the prediction of native beta strand topologies, where

the predicted distribution,Ppred, places a median 13.6-fold higher probability on the native

topology with all native registers than the Rosetta sampling distribution.

The primary application for our nativeness predictors is a resampling method that im-

proves on Rosetta. In a number of the proteins in our benchmark, the native register for

a pairing was present in the model population but was never present in the sub-population

with the native topology. Our nativeness predictors were often able to identify these two

native feature values separately so that they appeared together in the resampling round.

Our resampling methods, which constrain Rosetta search according to the output of the

nativeness predictors, significantly outperform plain Rosetta ab initio search. The benefits

from resampling of torsion features and of beta topology andpairing features appear to be

cumulative, although topology resampling did run into several problem cases. Resampling

using the combination of feature types achieved lower RMSDsfor most targets and lower

RMSDs among the low-energy models typically used as Rosettapredictions. Improve-

ments were significant within the 1–5Å range of the best Rosetta models for most of these

targets—improvement of the median RMSD of low energy modelsaveraged 0.92̊A. Our

experiments indicate that fragment repicking along with beta topology resampling leads to

significant gains over plain Rosetta results. However, the Rosetta methodology for enforc-

ing pairings—modifications of the fold tree—introduces newsampling challenges, most

notably the closure of chainbreaks. This places a limit on the gains that can currently be

achieved by beta topology resampling. With advances in the Rosetta fold tree protocol, the

accuracy of our beta topology, pairing, and contact predictors has the potential to translate

into even more significant improvements over fragment repicking alone.

The nativeness predictor methodology extends naturally toany new class of discrete-

valued structural features, as long as the sampling distribution of these features can be
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controlled in some way in the resampling round. Our methods might be extended to include

any number of other structural features, such as helix packing or rotamer features, or more

global topological motifs.

Although in this chapter we concentrate our efforts on ab initio modeling, the appli-

cation of our resampling method to comparative modeling would be straightforward. The

principle is very much the same—from an initial pool of candidate conformations, perhaps

derived from a set of different templates, native-like feature values would be identified

using nativeness predictors and enriched in a subsequent resampling round. Nativeness

predictors for comparative modeling might take into account meta-features relating to tem-

plate information, for instance the proportion of templates which have the feature value.

New feature types specific to comparative modeling might also be developed. One par-

ticularly promising possibility is to create a set of local alignment features, one for each

residue (or gap-free block of residues). The alignment feature for a residue would take

values in the possible template residues to which the targetresidue might be aligned. An

initial sampling round in which models are generated for many possible alignments would

give energy information that could be used in a nativeness predictor to identify the correct

alignment.
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Chapter 4

Thesis Conclusion

We have defined a new framework for protein structure prediction, which we call “resam-

pling,” that encompasses a variety of previous algorithms.A resampling method aims to

extract information from previously generated models to guide further rounds of search.

In this thesis we have drawn a distinction between “structure-based” and “feature-based”

resampling methods. Methods in the former category concentrate future search around

the most successful models seen in earlier stages of search;methods in the latter category

recombinefeaturesof models seen in earlier search. A number of successful algorithms

have been introduced which fall into the structure-based category, but structure-based re-

sampling methods do suffer from certain pitfalls. They are generally limited to exploration

of areas of conformation space already seen in the initial round of search; to explore new

areas, they must take small, incremental steps away from areas known to them, and the di-

rection in which to explore is not always clear. Several feature-based resampling algorithms

exist, but by and large they are genetic algorithms, which recombine features blindly from

the best structures in the previous round. Furthermore, thefeature space representations

seldom encapsulate global structural properties.

In this thesis, we have introduced two new feature-based resampling algorithms. As

is inherently the case for feature-based methods, they avoid the pitfalls of structure-based

methods by explicitly recombining features, hence exploring regions of conformation space

never encountered in the initial round. But rather than randomly recombining features

of the most successfulstructures, as in genetic algorithms, they commit wholly to the
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idea offeature-based resampling and explicitly set out to identify successful features. Our

first method, which we call “native feature selection,” usesfeature selection techniques to

extract a few likely native features from models generated in the first round of search. These

features are then enriched in the resampling round. The method produces a few notable

successes, but also several notable failures. Our second method, which we call “nativeness

prediction,” uses a statistical “nativeness predictor” trained to predict the chance that each

feature value ever observed in the initial sampling round isnative. The method generalizes

naturally to many different classes of structural features; we apply it to torsion features,

secondary structure features, and a three-tiered hierarchy of beta topology features in order

to address both local and global structure. Resampling using the output of the nativeness

predictors yields gains over plain Rosetta search both larger and more consistent than the

gains achieved with our first method. In significantly improving a state-of-the-art ab initio

structure prediction algorithm, our method itself achieves state-of-the-art performance.

The work in this thesis opens a number of promising avenues for future research.

Most significantly, our methods could very easily be extended to comparative modeling—

structure prediction using a template protein whose structure has been experimentally de-

termined. As more and more proteins have their structures experimentally determined,

more and more targets have close sequence homologs. As a result, the structure prediction

field seems to be moving increasingly toward comparative modeling. For our methods to

remain relevant, generalization to comparative modeling,as outlined in Section 3.6, is the

natural next step.

The core principle of our resampling work—that statistics derived from an initial sam-

pling round are informative about local structural features—has the potential to be a power-

ful and broadly applicable tool in protein structure prediction. The high dimensionality and

multiple minima that make high resolution protein structure prediction difficult to solve

using traditional methods provide an excellent application for modern machine learning

methods. The intersection between the two fields is just beginning, and we are excited to

see further developments.
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