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COSI: A Public-Domain Design Framework for
the Design of Interconnection Networks

Alessandro Pinto, Luca P. Carloni and Alberto L. Sangiovanni-Vincentelli ∗

The COmmunication Synthesis Infrastructure (COSI), a public-domain design
framework for the design exploration and synthesis of interconnection networks,
is presented. The framework embodies a methodology based on the platform-
based design principles and is used to define specific design flows for a variety of
applications. In this paper, we focus on a design flow for on-chip interconnect
design.

Time-to-market, NREs, and error-free implementation requirements are exposing the increasing importance
of composable designs, whereby complex systems are built out of possibly pre-designed and pre-verified compo-
nents. Composability implies that the components maintain their properties/behavior when composed; thus inter-
faces and communication become essential elements for methodologies of this kind. For example, system-on-chip
architectures, distributed embedded systems and even microprocessors are designed today using pre-existing IPs.
In the case of microprocessors, the classical single-core architecture has been largely abandoned due to the dif-
ficulties of increasing clock speed with strict power consumption constraints and of verifying its correctness.
Multi-core architectures are the choice for future generations of microprocessors. These architectures require
great attention to the design of the interconnect infrastructure and of the communication protocols. In the design
of distributed embedded controllers such as UAV navigation systems, communication plays a fundamental role in
ensuring the correct behavior of the design since delay and throughput affect the control algorithm in substantial
ways. In this paper, we focus on the design of the communication infrastructure for on-chip architectures, albeit
our approach can be (and has been) extended to distributed system design. In particular, we are interested in the
design of cost-effective networks-on-chip (NoC) that must meet a set of given throughput and latency constraints.

The problem of designing an optimal network is not new. It has been extensively studied by computer scien-
tists and operations researchers for the design of data networks and transportation networks [7]. Most network
optimization problems are NP-hard, but for many of them approximation algorithms have been proposed. For
several important applications, the design problem reduces to determining which network among those belonging
to a certain class (e.g. having a particular topology) satisfies a given budget constraint and minimizes a given
objective function. These problems, known as bi-criteria network design problems, are also NP-hard. The opti-
mal solution can be approximated with an algorithm running in polynomial time only if the budget constraint is
relaxed [12].

The large body of approximation and heuristic algorithms that were developed for network optimization can be
applied to the synthesis and optimization of on-chip interconnection networks provided they are properly adapted
and combined with accurate models of performance and cost of the building blocks. The opportunities offered to
chip designers are noteworthy. However, if the designer has to spend time to implement these algorithms fighting
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with design software, then these opportunities will remain largely untapped.
COSI (COmmunication Synthesis Infrastructure) is a public-domain design framework constructed to allow

researchers and designers to contribute, combine, and compare optimization algorithms, communication pro-
tocols, partial designs, and models for interconnection design. COSI embodies a methodology based on the
Platform-Based Design paradigm [5, 13]. Specifically, COSI enforces a clean separation among network specifi-
cation, the library of building blocks that can be instanced and composed to derive the network implementation,
the models of performance and cost associated with each of them, and the optimization algorithms that are used
to explore the design space. Adopting this methodology allows comparing different interconnection topologies
and different building blocks thus smoothing out preconceived ideas about efficiency of particular interconnection
schemes.

At present, COSI includes various utility functions to: floor-plan a chip, parse the floor-plan results and de-
rive an internal representation, analyze the network synthesis results, compute metrics of interest such as cost and
performance of the entire network, generate graphical representations of the network as well as SYSTEMC mod-
els that can be used for simulation. This framework can be used to provide robust design flows for interconnect
synthesis and can also help researchers and designers in the development of models, library elements and opti-
mization algorithms, in the comparison of different optimization strategies and in the evaluation of the efficiency
of different heuristic algorithms.

In this paper, we briefly present the model for communication synthesis that is the foundation of COSI. Then,
we describe the key aspects of the software engineering of COSI . We show also that it is possible to use COSI to
develop design flows for on-chip network synthesis and to evaluate alternative optimization approaches. Finally,
we point out that COSI can be applied to the synthesis of network in different application domains, e.g. control
networks for building automation.

1 A Model for Communication Synthesis
In this section, we summarize the COSI model that consists of: quantities that “measure” performance of

a communication component, communication structures that capture the behavior and the structure of the com-
ponents and of composition rules that allow to form composite components out of existing ones. A complete
presentation of this model is given in [9].

Design constraints and component capabilities (i.e. performance figures) are expressed with quantities. A
quantity q ranges on a partially-ordered domain Dq. We assume that the domain of a quantity contains the special
value ⊥ denoting ”no value” and it may contain the special value > denoting ”any value”. Quantities can be
very general. For instance the ports of a component are pairs composed of a tag and an interface specification.
Figure 1(a) shows the domains of the quantities involved in the description of an interface which is a tuple of
four quantities: the type τ denoting the interface protocol, the width w in number of bits, the speed f in Hz, and
the direction io indicating if an interface is input, output or bidirectional. The domain of a quantity is ordered
according to a relation that ranks each value in terms of performance and/or constraint. For instance, the speed and
width of an interface follow the ordering of natural numbers since an interface offering a broader bit parallelism
and operating at a faster speed dominates a slower and narrower one. The domain of quantity io is ordered by
the following relations: ⊥< in < inout and ⊥< out < inout, but in and out are incomparable. The type domain
is unordered. The domain of the tuple of quantities that specify an interface is the cross product of the domains
Dτ, Dw, D f and Dio which is sorted according to the order induced by the single quantities. Figure 1 shows the
ordering relation among some elements of Dw×D f ×Dio.

Quantities are attached to the components of a communication network to characterize its properties. In fact,
we represent networks by mathematical objects called communication structures. A communication structure is
a tuple N(C ,Q,L) where C is a set of components (i.e. nodes and links), Q is a set of quantity variables and L
is a set of configurations, i.e a set of functions l : C → DQ that associate quantity values to components. The
set of all communication structures is also partially ordered by a relation that is induced by the partial order
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Figure 1: Example of quantity domain (a), communication structure ordering (b) and example of a library of
components, their instantiation and their composition (c).

defined on DQ, and by component containment. For instance, Figure 1(b) shows the ordering relation among a
subset of communication structures where the set Q contains two quantities: b that represents bandwidth and t
that represents delay. Intuitively, N7 ≤ N5 because N7 has less components and and the components that are in
common are configured to perform better in N5 than in N7. N5 and N6 are incomparable.

The specification of the communication requirements of an SoC is captured by a communication structure
NC(C ,QC,LC) where QC contains the quantity variables representing the constraints, and LC defines their values
such as end-to-end bandwidth and latency requirements. The design space, i.e. the set of all communication
architectures that can be used to implement a communication system in a particular technology, is implicitly
defined by a library of communication structures Ni(Ci,QP,Li)∈L , called library elements, and by a composition
rule denoted by ||. The set QP contains the quantity variables representing performance, and Li defines the
performance space of the library element Ni. The composition rule dictates how to assemble the library elements
to derive a complex network. Figure 1(c) shows a simple example of library of communication structures that
contains a node with three inputs and three outputs and two links, each able to sustain a different bandwidth
level. Library elements can be instantiated by renaming their nodes. For instance, N1 is renamed by a renaming
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function r1 such that vertex v ends up being called n1. Instances of library elements can be composed together
to form larger networks such as the communication structure N in Figure 1(c). The definition of the composition
operator can be rather involved and depends on the properties that the composite network is required to satisfy. In
general, the composition of two communication structures contains the union of their components and combines
the configurations appropriately (e.g., the set of flows on a common link is the union of the set of flows associated
with that link in the communication structures being composed). A particular composition of library elements is
called platform instance, and the set of all valid platform instances is called platform.

An example of how quantities are combined is shown in Figure 1(c). Node v2 belonging to the link of capacity
10 is renamed as n1 and so is node v. The interface of v2 in the library has value>meaning that the link is able to
connect any two interfaces while the interface of n1 is the tuple (τ1,w1, f1, in). When the two nodes are combined
together we take the join of the two interfaces with respect to the order shown in Figure 1(a), (i.e. the “least
common denominator” of their features).

When marching down from the specification towards the implementation of a communication system, more
details are added to the communication structures by augmenting and refining the set of quantities associated
with the components. For instance, routing tables are added after the choice of the routing algorithm is made.
Communication structures at different abstraction levels can be related by abstraction functions.

Finally, some quantities can be derived from others. We formally define the notion of a model as a function
that given a component and the value of the quantities associated with it computes the derived quantity. More
generally, given a communication structure and a component belonging to it, a model computes another quantity
relative to that component. For instance, the delay model of a link takes the link configuration, i.e. the positions of
the extreme nodes and the parameters of the silicon implementation, and returns the value of the delay quantity.
Similarly, the input-output delay model of a router takes the router configuration, i.e. the values of the input
commodities, the routing table and the parameter of the silicon technology, and returns the value of the delay
quantity.

2 The Software Infrastructure
The COSI software has a matrix organization (Figure 2) where the columns correspond to aspects of the

communication synthesis design flows while the rows represent different application domains. The elements that
characterize a design flow are:

1. the quantities and communication structures that define the levels of abstraction at which specification,
platform, and implementation are captured;

2. the library of communication components and the performance and cost models used to annotate derived
quantities and compute costs, as well as the composition rules;

3. a platform data structure representing the library and the rules so that the synthesis algorithms can operate;

4. the environment where the network operates, e.g. floor-planning information in the case of chips, and
building geometry in the case of building automation systems;

5. the input/output functions such as parsers and code generators that ease the process of specifying the com-
munication problem and analyzing the results.

We present in detail the first two rows of the matrix organization.
The core package provides basic definitions for widely-used quantities such as positions, flows, and ports.

It also provides the definitions of model graphs and a set of basic algorithms running on weighted graphs. The
on-chip communication package provides specialized definitions for port interfaces (including, for instance, the
number of virtual channels of a router input, the buffer length, and the clock speed), the geometry of a component
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Figure 2: Organization of the COSI software.

and implementation parameters for nodes and links (e.g. global or local interconnect, and shielding). A library of
network components includes several models of routers, point-to-point links, and network interfaces. Different
area and power models are available for these components, including router models that were derived with the
Orion tool [14], the analytical model for metal wires presented by Ho et al. [6], as well as a more recent set of
accurate wire models presented in [3]. All the models are provided for various technology processes, including
90, 65, and 45nm technology.

The environment package captures the occupied and unoccupied areas on the chip as unions of rectangles. A
rich set of input and output functions is also provided. This includes tools to parse the input specification and
the synthesis script, which are given in XML format, to generate graphical views of the synthesized network,
and to produce cycle-accurate SYSTEMC descriptions of the synthesized network. Various algorithms are already
available for on-chip communication synthesis; some of these are presented in Section 4.

The software implementation of COSI has been engineered to support the orthogonalization of concerns
advocated by the Platform-Based Design methodology. Figure 3 shows the class diagram relative to the definition
of communication structures, components, and platforms. The core package includes the basic data structures for
quantities, configurations, and communication structures. A users of COSI defines the quantities together with
their partial order and attaches them to communication structures. For instance, the user can define the interfaces
of IP cores and routers, pass them as parameters to ports, and attach ports to components. Other quantities that
can be defined include: commodities, which represent the flow of packets from a source to a destination, latency
figures, implementation parameters for nodes and wires, and geometry of components on the chip.

The bottom part of Figure 3 shows how components and platforms are captured in COSI. The core package
defines a node and link component as basic objects with ports. Each component in the library must implement
two sets of services: instantiation services, which allow to generate component instances, and performance and
cost computation services, which expose the metrics of each component through models. An instantiation service
returns a communication structure for a given name and configuration of a library element. This method corre-
sponds to the dashed lines of Figure 1(c). Performance and cost models can be developed separately as long as
they implement a service that, given the component name and its configuration, returns a derived quantity associ-
ated with the component (e.g. power, area or latency). Different models can be attached to the same component
that is not aware of the model implementation. Similarly, different nodes and links can belong to a platform that
is not aware of the components’ implementation.
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Figure 3: UML class diagrams of the data structures implemented in COSI for the NoC application domain.

3 An On-Chip Communication Synthesis Design Flow in COSI

Figure 4 shows how COSI-OCC, a design flow for on-chip communication synthesis, was built using COSI.
The sequence of operations that are typically performed to synthesize an on-chip communication architecture are
represented by numbered arrows. The input to COSI-OCC is a project file that contains pointers to the communica-
tion specification and to the library. All input/output files are in XML format. The communication specification
contains a list of IP cores and inter-core communication constraints. The specification is parsed to yield an in-
ternal communication structure NC where each node represents an IP core and the links represent constraints.
The library/model file contains the description of each library element and the models associated with them.
The platform is constructed by taking components from the library and attaching models to them. The platform
also contains rules such as: restriction on the position of nodes, topological constraints, and requirements on the
implementation like deadlock freedom. The project file includes also the optimization parameters such as the
relative weight of power and area cost.

If there are unplaced IP cores, PARQUET [1] is used to floor-plan the chip (Step 2). The third step of a typi-
cal flow consists of selecting an algorithm that takes the specification and the platform description and derives a
communication implementation NI . The COSI-OCC distribution includes a set of algorithms to solve some vari-
ants of the communication synthesis problem. The outputs that are then used for analysis are generated in Step
4. COSI-OCC includes a set of code generators to produce an SVG graphical representation and a DOT logical
representation of NI . A SYSTEMC netlist can be generated from NI by assembling the SYSTEMC-view of each
element, which can be instanced from the library that is contained in SysCLib, also part of the COSI-OCC distribu-
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tion. The generation of the SYSTEMC netlist is a further refinement of NI that requires to set up protocol-related
information like the weights for the weighted fair queuing algorithm, which is used by the routers to schedule
flits. More information on COSI-OCC is available on the COSI project web site [4].

4 COSI Capabilities
In this section we illustrate the capabilities of the COSI infrastructure. Due to lack of space, we only report

a set of results concerning the implementation and test of four network optimization algorithms, and refer the
reader to previous papers that show how COSI has been used also for other purposes. In particular, in [9] we
conducted a study on the power, area and performance trade-offs of a NoC as a function of router sizes at different
technology nodes. We also interfaced COSI with an integer linear programming solver to evaluate the quality of
our heuristic algorithm (called heuristic H1 later in this section). In [3] we evaluated the impact of the accuracy
of wire models on system-level design choices. We integrated accurate delay models for wires that rely on the
characterization of intermediate and global metal lines and minimum-size inverters at different technology nodes.
In particular, it was possible to evaluate the sensitivity to modeling errors of system-level optimization techniques.
Finally, in [8] we showed how the infrastructure can be used to solve the communication synthesis problem for
bus-based building automation networks.

Here we compare the performance achieved by four different algorithms for NoC optimization. The first
algorithm considered here, which was described in detail in [9]), solves the degree constrained multi-commodity
flow problem. The algorithm is composed of two main steps. After parsing the specification of the SoC and
running the floor-planner, the first step consists in finding an initial solution without taking into consideration
constraints on the node degrees. In the second step an iterative procedure removes degree violations by deleting
links and/or adding routers. The initial solution is reached with the same technique that is used by algorithms
for global routing. A path is found for each constraint one at a time (the actual implementation of the procedure
depends on the composition rules). If the implementation network satisfies the degree constraints, the algorithm
stops returning a solution. Otherwise, the second step of the algorithm uses a “rip-up and reroute” approach
to remove one link at a time. For each link connected to nodes with degree violation, all source-destination
paths containing that link are attempted to be re-routed and replaced in the communication implementation with
new paths. However, if one of these paths cannot be removed due, for instance, to bandwidth constraints, the
algorithm back-tracks by reinserting the link and all the paths. If the re-routing procedure finds an implementation
that satisfies the composition rules, the algorithm ends with success. If the procedure fails, a new attempt to
reach a feasible solution is made after adding a new node (router). The idea is that when a new node is added,
multiple links entering/exiting a node can be merged/split into/from one link, thereby reducing the degree of the
node. However, if no node can be added (e.g., because delay constraints would be violated) the algorithm ends
with an empty implementation, thus implying that no solution was found. We call this heuristic algorithm H1.
An alternative heuristic H2, a variation of H1, is obtained by combining the two steps. The communication
constraints that are part of the specification are considered one at the time as in H1. However, differently from
H1, degree violations are now corrected as soon as they appear. After routing a constraints along a path, the
algorithm checks if there are nodes with degree violations and attempts to remove them using the same procedure
adopted in the second step of heuristic H1.

Both H1 and H2 solve the problem using a synthesis approach where the network is derived in a constructive
way by adding components as needed after having completed the floor-planning of the SoC. A different approach
is to map the SoC cores onto a pre-defined regular network topology such that the number of hops between com-
municating cores is minimized. To minimize the number of hops corresponds to minimizing power consumption
and delay. We implemented an optimal mapping algorithm along the lines of the one presented in [2], that itera-
tively improves an initial mapping on a regular mesh topology. The initial mapping is computed by placing cores
that communicate at high rate into mesh nodes that are topologically close to each other. At each iteration two
cores are swapped in the mapping and new paths are selected in the mesh network such that the number of hops
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between sources and destinations is minimized. Each time the total communication cost decreases, the solution
is saved as the current optimal solution. Finally, we remove the unused network resources (i.e. links, ports and
routers) and run a floor-plan of the entire chip including the NoC. We call this algorithm Mesh.

The last algorithm proceeds by partitioning the cores in the specification in n parts according to their com-
munication requirements such that the total communication bandwidth among cores belonging to different parts
is minimized. Each partition is implemented by a star topology and the n stars are connected as part of a higher
level network. This network is first assumed to be completely connected. Then, optimal routes are computed for
each source-destination pair. Finally, we remove the unused network resources (i.e. links, ports and routers) and
run a floor-plan of the entire chip including the NoC. We call this algorithm Hstar(n) where n is the number of
partitions.

The development, debugging, and performance assessment of new algorithms in COSI requires minimal effort
since all the services offered by the COSI infrastructure share the same underlying model, i.e. communication
structures. We report that the implementation of Mesh took approximately one day and the implementation of
Hstar(n) took only half a day (since many procedures are shared with the Mesh algorithm).

The results are shows in Figure 5 where the power, area and average number of hops are compared across
the four algorithms. We used a 90nm technology, the Ho [6] model for wires, and the ORION [14] model for
routers. The platform is configured to contain routers with at most five input and five output ports for H1, H2
and Mesh, and at most ten input and ten output ports for Hstar(n). The flit-width is fixed to 32 bits and the clock
frequency to 1GHz. Notice that the number of hops between a source and a destination is structurally bounded
to three in the case of Hstar(n) at the price of higher power consumption. Mesh networks are resource hungry.
Moreover communicating cores can be separated by a large number of hops due to topological constraints. The
two heuristics H1 and H2 return highly customized NoCs that match the number of hops of the one returned by
Hstar while being more efficient in terms of power dissipation and area occupation.

5 Conclusions and Future Work

The design of communication infrastructures is a major aspect of the design of complex systems that range
from SoCs to embedded distributed controllers. The cost-effective design of these infrastructures requires to solve
optimization problems that are in general of high computational complexity. While given a problem domain, the
actual implementation of the optimization algorithms is different, the structure of these optimization problem is
remarkably similar so that a unified framework could be built to ease the construction of specialized design flows.
In this paper, we presented COSI, one such software framework. To be easily customizable and efficient, the
framework has to be based on solid principles that require the formalization of the essence of the problem at
hand. In addition, it has to be built so that it is scalable and can accommodate a variety of building blocks and
performance measure. To demonstrate its use in defining a design flow and in comparing a number of optimiza-
tion algorithms, we presented an on-chip communication synthesis design flow, COSI-OCC, that uses COSI and
includes a rich collection of libraries, models, algorithms and auxiliary tools. We expect that these resources
together with the opportunity of augmenting them will promote collaboration among NoC researchers and de-
signers with complementary skills. While today COSI-OCC targets NoCs, it can (and will) be extended to other
on-chip interconnect structure such as busses, cross-bars and direct connections to allow SoC and microprocessor
designers to choose the most effective infrastructure with no bias towards one or the other solution.

COSI can also be used to define design flows for other application domains by (a) changing the quantities
that characterize communication constraints, cost, and performance, and (b) modeling the library elements to be
used in that application. In particular, we used the COSI infrastructure to build a design flow for the synthesis of
wired and wireless networks for building automation systems [8, 10].
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Figure 5: Comparison of the power, area and average number of hops for different algorithms on a set of bench-
marks taken from the literature [11, 2]: a Multi Window Displayer (MWD), a Video Object Plane Decoder
(VOPD), two VOPDs sharing a memory (dVOPD) and three VOPDs sharing two memories (tVOPD).
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