
D3: Declarative Distributed Debugging

Byung-Gon Chun
Kuang Chen
Gunho Lee
Randy H. Katz
Scott Shenker

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2008-27

http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-27.html

March 31, 2008

Copyright © 2008, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Acknowledgement

We would like to thank Rodrigo Fonseca and George Porter for their help
on X-Trace and Andy Konwinski and Matei Zaharia for providing us X-
Trace enabled Hadoop. We also thank Joe Hellerstein and Petros Maniatis
for their valuable feedback.

D3: Declarative Distributed Debugging

Byung-Gon Chun†, Kuang Chen⋆, Gunho Lee⋆, Randy Katz⋆, Scott Shenker⋆†
†International Computer Science Institute, ⋆University of California at Berkeley

Abstract
Large-scale distributed systems, like MapReduce, are in-
creasingly being used, but debugging such systems is still
very difficult. In this paper, we propose D3, a new de-
bugging system that answers diverse debugging queries
by processing logs formally and efficiently. D3 speci-
fies queries concisely in a declarative language and ex-
ecutes the queries in a distributed fashion, thereby low-
ering debugging overhead and bandwidth consumed. We
demonstrate the effectiveness of our D3 design on a local
cluster with Hadoop, an open-source MapReduce frame-
work.

1 Introduction
Distributed programs are becoming larger and more so-
phisticated. For example, typical MapReduce [10] ap-
plications run on thousands of nodes, and have complex
threads of execution that span multiple distributed com-
ponents. However, our ability to build such programs is
outstripping our ability to debug them.

Debugging1 typically relies on logs that capture such
execution, which are produced locally by nodes in the
systems. In most cases, these logs are specific to appli-
cations and generated byprintf statements annotated by
developers. These logs are scattered everywhere, numer-
ous, and large.

Common approaches to debugging performcentral-
ized log processing. In a debugging system, a central-
ized node collects logs from other nodes, stores them,
and processes them to answer debugging questions. Such
a system often usesad hocscripts for processing logs.

These approaches have the following weaknesses.
Fetching logs to a centralized point is inefficient and not
scalable. Large and numerous logs require significant
bandwidth. Furthermore, debugging is often like look-
ing for a needle in a haystack; to find answers most logs
are not necessary and do not need to be fetched. Using ad
hoc scripts causes troubleshooters to focus on low-level
details like how to parse and interpret logs rather than on
high-level query goals.

Moreover, centralized processing becomes more chal-
lenging as the scale of systems increases, systems run

1We use the term "debugging" broadly to represent both code de-
bugging in development and test stages and troubleshooting of running
applications in deployment stages.

in wide-area networks, and troubleshooters want to do
online debugging, which notifies automatically, in real
time, when faults or performance problems occur. In ad-
dition, if systems operate across multiple administrative
domains (due to privacy concerns or policy issues) do-
mains may not want to ship their logs to the centralized
point; however, they may be willing to expose summary
results computed locally on their logs. To solve these
problems and challenges, we need smart log processing
that is a more efficient and formal way to process logs
for debugging.

In this paper, we present D3, our new approach to de-
bugging distributed systems. In contrast to traditional ap-
proaches, D3 isdistributedanddeclarative. D3 does not
move logs but sends debugging queries to nodes, pro-
cesses logs locally in situ, and receives concise query re-
sults from nodes. In particular, it supports queries that
trace particular execution paths of interest across multi-
ple distributed components. D3 specifies queries declar-
atively to separatewhat to queryfrom how to query.
Once queries and logs are specified compactly in high-
level rules, D3 translates these specifications into low-
level code and executes it on its distributed query engine.

Our D3 design is a hybrid approach, combining the
insights and implementations of three existing systems
(Section 2). D3 combines a high-level declarative lan-
guage for debugging specifications and a distributed
database based on P2 [17] with execution tracing by X-
Trace [11] and resource utilization monitoring by Gan-
glia [1]. To illustrate D3’s expressiveness, we show how
D3 can implement distributed matching in one rule, dis-
tributed queries following the paths of specific execu-
tions in six rules, and distributed join of tracing and re-
source utilization data in three rules (Section 3). Through
these examples and discussion we show that D3 can ex-
press diverse debugging queries.

We have evaluated the feasibility of D3 using an
X-Trace enabled Hadoop [2], an open-source MapRe-
duce [10] framework, in our local cluster with respect
to query conciseness and network efficiency (Section 4).
We find that D3 rules are compact and easy to customize.
Furthermore, D3 can save bandwidth by not fetching un-
necessary logs to a centralized point. In the queries we
ran, we achieved two orders of magnitude bandwidth re-
duction even though the tracing and resource utilization
data we collected were coarse grained. We discuss re-

1

lated work in Section 5, and conclude in Section 6.

2 D3 Architecture
The D3 system architecture implements the principles of
declarative, distributed debugging. In this section, we
first motivate our architecture by discussing user debug-
ging requirements and discuss how users may use D3 for
debugging. We then describe the high-level D3 system
model focusing on how different components fit together
to realize D3 and explain main components.

2.1 Debugging Distributed Systems
Distributed systems can incur faults or performance
problems when components of the systems fail or there
are unintended interactions between components. Anal-
ogous to local debuggers that locate bugs in a program,
a distributed debugging tool is used to localize hard or
performance faults in a distributed system. Typically, a
user takes a top-down approach, looking first at higher
level behavior, then drilling down lower, following the
tracks of unintended actions. A key difference from local
debugging is that events are causally dependent across
nodes. Thus, we need to trace across nodes in the net-
work. This can be done by explicitly tracking or heuris-
tically inferencing causality across nodes.

Debugging performance problems is especially diffi-
cult in large-scale systems. For performance debugging,
it is useful to monitor system resource utilization infor-
mation alongside application states. With this informa-
tion, the user can figure out, for example, what oper-
ations are bottlenecks during particular execution time
spans.

The user needs to gain various views on subsets of the
logs and interactions in the system. In a large-scale sys-
tem, creating a single global, master view may incur high
communication overhead and latency. Instead, the user
should specify subsets of nodes that involve particular
threads of execution. In addition, the debugging system
must be scalable as the debugged system scales.

2.2 D3 System Model
Thus motivated, we envision the following D3 debug-
ging model. Debugging is done in three steps: a user
writes query programs in our high-level declarative lan-
guage (called NDLog, as explained later)2, the user cre-
ates data models of logs (along with relations, etc.), and
the user applies programs to incoming data.

This system model leads to the design of D3 archi-
tecture shown in Figure 1. D3 nodes form a distributed
query engine. In each node, a trace-enabled application
produces logs from its execution tracer and a resource

2It might be through a sophisticated GUI-based debugging toolthat
compiles user actions down into the appropriate lower-layeractions
described in our language.

� � � � � � �� �	
� � �
� � �
 �� � � � �� � � � �� � � �� �
� � �
� � � � �� � � � � � � � � � � �� � � �� � � � � � � � �

� � � �
 � � � � � ��� � � �
� � � �
 � �� � � � �� � � �� � � � � �� �
� � � �� � � � � � � � �

� � � �

� � �
 �� � � � �� � �
�� � � �� �� � � � � � � �
� � � � � � � �� � � ��
 � � �� � � �� � �
�� � � ��

� � �
�� � � ��
Figure 1: The D3 system ties together distributed ap-
plications that generate execution logs with declarative
debugging queries. Local logs are streamed into a local
D3 process, and queries are processed in a distributed
manner.

utilization monitor produces logs from its logger. The
local logs are imported into a local D3 query process
through user-providedadaptersor standard D3 adapters.
The declarative programs written in our language pro-
cess these local logs and produce high-level information
useful for debugging. These programs are compiled and
executed by thedistributed query engine. The user typ-
ically selects a node as thefront node, which serves as
a portal from which a query may be issued, and query
results may be retrieved.

2.3 Components
We have built D3 by extending existing systems: P2 [17]
as our query engine, X-Trace [11] for execution tracing,
and Ganglia [1] for resource utilization monitoring.
P2: We chose P2 as our distributed query engine because
of its recursion and high-level language support. Recur-
sion across nodes is key to tracing particular execution
paths across nodes of networked systems. P2 executes
distributed algorithms specified in a high-level logic pro-
gramming language NDLog, which is a network-aware
extension of Datalog. NDLog programs are constructed
from rules which specify how tuples of relations are gen-
erated from each other. A relation is described by a list of
fields and a tuple in a relation is an assignment of values
to the fields. In P2, there are materialized and streaming
relations. Materialized relations are like database tables

2

and streaming relations are like events.
The rules of NDLog are translated into a data flow

graph and directly executed. The data flow graph is in-
stantiated on each node and implements the algorithm
specified. Messages traverse the graph for distributed
processing (e.g., distributed join), and can be manipu-
lated by relational operations(join, selection, projection,
aggregation). As well, messages can trigger other mes-
sages or can be generated periodically. We extend P2 to
import different types of static or dynamic logs through
adapters.
X-Trace: X-Trace is a tracing framework which allows
a user to insert tracing metadata on network operations,
on different layers, resulting from the task with the same
task identifier. The result is trace entries that can be used
to construct the task graph, which provides the causal
relationships in a call path. X-Trace requires that imple-
mentations be modified to carry X-Trace metadata. An
X-Trace enabled application logs each tagged operation
locally.

Currently, X-Trace does not log the data for tracing
forward across nodes since distributed processing of logs
(e.g., examining particular execution paths) was not con-
sidered. We added aNextHostfield in X-Trace metadata.
X-Trace enabled applications create aNextHostfield in
the trace entries when they cross node boundaries so that
our distributed query engine can follow execution paths.
Ganglia: Ganglia is a distributed monitoring system for
cluster computing. The system produces resource uti-
lization information for nodes in the cluster. Ganglia is a
full fledged resource utilization monitoring system with
its own statistics and user interface. We use Ganglia as a
local resource monitoring tool and extend it to write the
information to local logs.

3 Logs and Queries

3.1 Adapters and Logs
D3 is designed to be extensible to various log types. The
user creates an NDLog schema for the application log
and builds a log adapter which processes logs produced
by the application and injects tuples to our runtime. To
provide user data to our runtime, the user simply extends
the data producing application to write logs according to
the input format of an existing standard application log
adapter. Alternatively, the user may create a custom ap-
plication log adapter to interpret existing application log
formats. D3 handles both static and dynamic logs. Static
logs include the configurations and policies of systems
and offline logs produced by applications. Dynamic logs
include online logs produced by running applications and
those produced by resource utilization monitors.

Data provided to D3 can be kept in a materialized tu-
ple store or injected as stream events. D3 has the ability

Relation Fields
TraceTask TaskID, OpID, Host, NextHost,

Agent, Label, Timestamp
TraceEdge TaskID, OpID, Type, ParentOpID

Field Description

TaskID The task identifier; same for all opera-
tions of the task.

OpID The operation identifier.
Host The host on which the operation oc-

curs.
NextHost The host at which the next operation

occurs.
Agent The application specific agent respon-

sible for starting the operation.
Label The application specific operation

name.
Timestamp The timestamp in milliseconds.
Type The type of the edge.
ParentOpID The identifier of the parent operation

which led to this operation.

Table 1: Execution tracing data schema — TraceTask
and TraceEdge.

to limit the number of tuples, and to keep logs in differ-
ent time scales in its soft-state table whose record has a
timeout ranging from 0 to∞. In debugging scenarios
where the lastN records or the lastT seconds worth of
records is of interest, the soft-state table makes retiring
tuples easy.

For our D3 prototype, we designed NDLog schemas of
execution tracing and resource utilization data, and cor-
responding log adapters. The system can easily handle
other types of logs — we list a few of them below.
Execution tracing data: As described above, we are
using X-Trace to instrument the run-time behavior. We
normalize X-Trace log records and create two D3 table
schemas since an X-Trace log record can contain mul-
tiple edges from previous parent events. The schemas
that represent X-Trace tasks and edges are presented in
Table 1.
Resource utilization data: As described above, we are
using Ganglia. This is useful for debugging since it al-
lows for important observations to be made. For in-
stance, we can use resource utilization data to do bot-
tleneck analyses — whether an application’s bottleneck
is CPU or I/O. We can also do correlation analysis be-
tween hotspots and resource utilization. Table 2 shows
the fields of our resource utilization data obtained from
Ganglia.
Other logs: We briefly describe other types of logs,
which are potentially useful for debugging.

System logsOSes create system logs that store activi-
ties of various devices. This is widely used for system

3

Category Fields

CPU CPU speed, Busy CPU, Sys CPU, Free
CPU, CPU WaitIO

Load 1 Min load, 5 Min load
Memory Mem size, Mem act, Free mem
Disk Swap in, Swap out, Disk in, Disk out,

Disk size, Free disk, Swap used
Network Tx rate, Rx rate

Table 2: Main resource utilization fields

management and security auditing. We can use these
logs for debugging hard faults of nodes, for example.

System call logsLocal system call tracking such as
DTrace is useful for debugging when problems occur
during system call invocations.

Policy dataDistributed systems typically use several
different components, which have their own policies
(e.g., load-balancing, fail-over, and access-control poli-
cies). D3 can use this information to detect whether the
system follows the load-balancing policy, or it follows
SLA specifications and monitors for tasks or operations
that most contribute to SLA violation.

Configuration dataNetwork, hardware, software, and
operating system information is useful for debugging
faults occurred under specific configurations or under
misconfigurations. For example, D3 can pinpoint a par-
ticular problem occurs in a particular version of software.

3.2 Queries
Diverse queries can be easily implemented with the D3
system to find hard faults or performance problems —
from queries that simply find events of interest, to queries
that trace an application task’s execution path, to queries
that aggregate statistics on a particular subset of nodes in
a distributed system.

D3 is designed to handle both online and offline
queries. In an offline debugging setting, data is loaded
into the tables of the distributed query engine after ap-
plication execution has been completed, and queries are
posed over the data. In an online setting, log data streams
into soft-state tables in the runtime. Online queries fit
naturally to automated debugging. Users can set up trig-
gers and receive alerts when events of interest occur.

Below, we discuss how to construct a query in our sys-
tem, walk though several representative queries, and then
discuss more sophisticated queries we hope to explore.
Constructing queries: Since we use NDLog, a deduc-
tive query and rule language, we gain its recursive ex-
pressiveness and clean semantics for expressing debug-
ging queries. The ability to create concise and formal
logic-based representations of debugging tasks simplifies
analyzing distributed systems of increasing complexity.

A query in NDLog is a program that runs in the P2
runtime. These programs are made up of rules that spec-

rft taskFound(@F, TID, OpID) :-
taskReq(@Me, F, TID),
TraceTask(@Me, TID, OpID).

Listing 1: An NDLog rule that finds operations with
given TaskID

ify how tuples are generated from each other. The simple
query in Listing 1 is a single rule namedrft. NDLog
rules have three parts: the rule name, head and body. The
head and body are separated by the delimiter:-, and are
mostly easily interpreted from right to left. When the
body is true, the head is true. The distributed nature, or
network-awareness, of this programming model is repre-
sented by the special symbol “@”, which gives a tuple an
intended network destination. For instance, in Listing 1,
the “@” on the right hand side refers the the address:port
of the current location. On the left hand side, “@” repre-
sents the destination that the tuple should be delivered.

Constructing queries is straightforward. The user can
trace execution paths, aggregate statistics, join data to-
gether by identifier, time, or data content. An initial de-
cision point requires that the user takes into account the
available log and trace information. Depending on the
type of query, and whether it is online or offline, the user
must choose to represent the data in the P2 runtime as
a stream, a soft-state tuple store or a regular table. That
done, the user writes NDLog rules that make up a query
program. In the current prototype, queries are based on
execution tracing and resource utilization data. Next, we
describe exemplary NDLog query programs in detail.
Basic queries:We start with a basic query presented in
Listing 1. The query poses the following question: what
is the x-trace report of this TaskID?

When we receive ataskReq, we lookup the
TID(TaskID) in theTraceTask table. Effectively, we
are joining thetaskReq tuple with matching tuples in
the TraceTask table based on the keyTID. When a
TID is found, we generate a tuple calledtaskFound,
address it to theF(Front) node from which the request
came, and send the details of theTraceTask tuple.

This example in Listing 1 can be easily extended to
implement queries such as distributedgrep. Instead of
matching on a particular task ID, we can query on a
substring or regular expression match of the entire trace
statement. For example, with distributed grep, we can
answer the following question: find all nodes whose logs
contain a particular keyword (e.g., HTTP 500 error).
Execution tracing queries:Listing 2 shows the NDLog
rules for tracing the execution path of a particular task.
This query is the core of causality tracing. By customiz-
ing this query, users can create queries that ask specific
measures of execution paths easily.

4

/* initiate tracing execution paths */
rs trFound(@Me, F, TID, POpID, COpID) :-

trReq(@Me, F, TID), POpID=="00000000",
TraceEdge(@Me, TID, COpID, _, POpID).

/* trace causal paths */
rl trTry(@Me, F, TID, POpID, COpID) :-

trFound(@Me, F, TID, POpID, COpID).
rr trTry(@Y, F, TID, POpID, COpID) :-

trFound(@Me, F, TID, POpID, COpID),
nextHosts(@Me, TID, Y).

rb trFound(@Me, F, TID, COpID, NOpID) :-
trTry(@Me, F, TID, POpID, COpID),
TraceEdge(@Me, TID, NOpID, _, COpID).

/* find next-hop hosts */
rn nextHosts(@Me, TID, NextHost) :-

trFound(@Me, Front, TID, POpID, COpID),
TraceTask(@Me, TID, COpID, _, _, _,
_, _, NextHost), Me!=NextHost.

/* report found tuples to the Front */
rp trReport(@F, Me, TID, POpID, COpID) :-

trFound(@Me, F, TID, POpID, COpID).

Listing 2: NDLog rules that trace the execution paths of
a task.

In short, this query finds the start of a task, and fol-
lows the NextHost information across nodes. At each
step, the trace entry with ourTID of interest is sent to
the Front node as the record of the execution path. This
query starts on rulers. A node starting the task in the
system learns of atrReq received from the Front node,
and checks itsTraceEdge table to see if it has the first
operation of a task. In this case, the rule checks that
POpID is undefined (or equal to “00000000”). In rules
rl andrr, trFound tuples generatetrTrymessages.
rl is a rule for local searching, andrr is a rule for for-
warding the tracing to the next-hop node (NextHost).
In rulerb, on atrTry insert, if the request matches an
TraceEdge, then we issuetrFound tuple. Rulerp
is for reporting; thetrFound tuple triggers a message
trReport to the Front node.

Some other path queries, which we can construct by
customizing the above query, include: find the longest
execution path of this TaskID, find which operation oc-
curred the most number of times, and find the longest or
critical path of this TaskID.
Performance queries:Listing 3 shows the NDLog rules
for averaging CPU utilization for the jobs of a task during
the execution period of the task. This query demonstrates
how D3 expresses performance debugging concisely.

The query consists of only three rules. The first
rulerf1 receives anavgCPUUserReq from the Front
node, and finds an appropriateTraceTask with the la-
bel that indicates the end of a run. The rulerf2 finds

/* find the end of a run */
rf1 runEnd(@Me, F, TID, OpID, Ag, TS) :-

avgCPUUserReq(@Me, F),
TraceTask(@Me, TID, OpID, CID, Host,
Agent, Label, TS, NextHost),

Label=="run end".

/* find the start and end of the run */
rf2 runStartEnd(@Me, F, TID, Ag, SOpID,

STS, EOpID, ETS) :-
runEnd(@Me, F, TID, EOpID, Ag, ETS),
TraceEdge(@Me, TID, EOpID, _, SOpID, _),
TraceTask(@Me, TID, SOpID, _, _,
_, SLabel, STS, _),

SLabel=="run start".

/* mean of CPU user during the run */
rc avgCPUUser(@F, TID, Ag,

AVG<CpuUser>) :-
runStartEnd(@Me, F, TID, Ag, _,
STS, _, ETS),

ganglia(@Me, TS, _,_,_,CpuUser,_),
TS in [STS, ETS].

Listing 3: NDLog rules that find average CPU utiliza-
tion.

the start of the same run and summarizes the information
in the tuplerunStartEnd. Note that bothrf1 and
rf2 can fire multiple tuples. The rulerc finds all CPU
data in the relevant time period and computes the aver-
age with theAVG function. The result is sent back to the
Front node.

Some other performance queries, which we can con-
struct by customizing the above query, include: find
paths of tasks whose latency is over x seconds, find all
paths which took more than y seconds, and find resource
utilization and jobs run in a time span.

More sophisticated queries: System developers often
want to know how an input change (e.g., workload or
system code change) affects the system behavior.Delta
queriesaddress this problem. Given the delta of an input
change, we keep track of the delta of an output change
such as execution time and resource utilization changes.
If the output is deviant beyond a threshold, we can pin-
point the change of input that affects the system behavior.

An invariant querycan be seen as an assertion state-
ment in a distributed system. Users can specify invari-
ants in a D3 declarative language; these invariants can
then be checked in a distributed fashion. If an invariant
violation occurs, D3 can automatically generate an alert
for the users. For example, the load balancing policy may
specify that all packets in a session must go to the same
host. We hope to investigate these queries in the future.

5

4 Preliminary Evaluation
We developed a prototype D3 implementation by inte-
grating P2 [17], X-Trace [11], and Ganglia [1] in C++
and Java. We implemented adapters and log generators
for X-Trace and Ganglia data, and extended P2 to sup-
port features required for our log processing.

We ran our experiments in a local cluster consist-
ing of 16 machines. We used an X-Trace instrumented
version of Hadoop 1.2.4 [2], a widely-used large-scale
data processing application. It produces X-Trace logs
at important execution points to capture the causality of
events of Hadoop MapReduce and Distributed File Sys-
tem. As workload, we used a Hadoop wordcount appli-
cation, which counts the occurrences of each word from
input files, with a 16GB input file.
Query conciseness:We implemented NDLog rules pre-
sented in Listings 1, 2, and 3 run for our experiments.
The rules of the queries are simple. Our common data
loading module for all our queries consists of six state-
ments. As we exclude common data loading rules, we
can write the matching query in one rule, the execution
tracing query in six rules, and the performance query in
three rules. Listing 3 computes average CPU utilization
per node. By adding extra rules that define a set of nodes
(e.g., nodes in the same rack in a data center), we com-
puted the statistics aggregated over the set easily.
Network usage efficiency:For the performance query
shown in Listing 3, we report bandwidth usage averaged
over four runs. The size of raw log files was 4.28GB,
which represents the network usage of a centralized ap-
proach, and the network usage of D3 was 62KB, which
accounts for the bytes transferred for executing the query
and reporting the result of the query. Network band-
width required for the D3 query is approximately two
orders of magnitude less than the size of total log files.
This improvement is achieved even though tracing and
resource utilization data that we collected were coarse
grained. The X-Trace instrumented Hadoop contained
only 76 method calls manually annotated.
Hadoop troubleshooting: We used D3 to analyze the
characteristics of Hadoop execution runs. We report an
instance of our experiments that displayed performance
problems. The entire Hadoop job took approximately 16
minutes. The job consisted of 346 map tasks and 1 re-
duce task. We obtained the statistics of nodes: the num-
ber of tasks executed and the minimum, maximum, and
mean of task execution time per node, each of which was
represented by one rule.

From the query results shown in Table 3, we observe
that nodes 2, 4, and 13 have larger maximum execution
time than the other nodes have. Node 13 runs a single
big reduce task for the entire job, so it takes more time
to finish this task. This is a normal behavior given our

Node
MapReduce task time (s) CPU usage (%)
Min. Max. Mean User WaitIO

1 2.8 102.7 47.7 90.1 0.0
2 129.7 281.8 203.9 55.3 29.6
3 2.7 100.2 83.9 90.6 0.0
4 203.6 274.0 240.3 42.0 39.3
5 3.5 99.7 83.1 88.2 0.0
6 3.2 100.8 83.3 88.4 0.0
7 3.4 127.2 77.0 88.4 0.0
8 4.8 101.2 89.0 89.0 0.2
9 3.1 98.1 71.8 89.2 0.0
10 0.3 108.8 35.6 89.8 0.0
11 87.7 99.4 94.3 91.8 0.0
12 2.8 105.3 54.3 90.0 0.0
13 0.2 688.3 45.8 83.9 0.4
14 82.0 102.5 93.2 87.8 0.0
15 81.1 103.5 92.5 87.5 0.0
16 90.4 101.1 96.3 88.6 0.0

Table 3: Local statistics

Hadoop setup. However, behaviors of nodes 2 and 4 are
hard to explain. The minimum task execution time of
the nodes exceeds the maximum task execution time of
the other mapper nodes. This is not likely to be within a
normal variance.

To examine what caused this performance problem in
nodes 2 and 4, we retrieved resource utilization statistics.
We collected the mean CPU usage in user mode during
processing particular tasks by running rules in Listing 3.
We also collected the CPU usage of waiting I/O by re-
placing the third rule of Listing 3. The results show that
CPUs of nodes 2 and 4 spent significant time in waiting
I/O; this is the major cause of the performance problem.
We could debug problems of Hadoop execution by writ-
ing simple, concise D3 queries.

5 Related Work
D3 is different from other work due to its approach to dis-
tributed and declarative debugging. D3’s key debugging
primitive is analyzing particular threads of execution by
tracing the execution paths recursively.

Project 5 [5] and WAP5 [20] aim to debug distributed
systems by taking a black-box debugging approach.
Magpie [7] and Pinpoint [8] take a gray-box debugging
approach that combines prior knowledge, observations,
and inference. Pip [19] detects deviation of distributed
systems by comparing actual behavior with expected be-
havior. Sherlock [6], Shrink [15], and SCORE [16] are
the systems that localize hard faults or performance prob-
lems. They infer dependencies among components and
build models for fault localization. All these approaches
collect traces at a centralized point for processing.

Friday [12] supports distributed watchpoints and

6

breakpoints (as in localgdb for local program debug-
ging). Friday is not scalable to large systems and not
efficient for debugging high-level goals. Singh et al. [21]
developed an execution tracing of P2 NDLog rules. This
system enables debugging P2 rules by following P2 rule
and element execution and storing execution information
into P2 tables. In contrast, D3 targets debuggingnative
applications using P2.

Both Sawzall [18] and Pig [3] are designed for ana-
lyzing large data set atop MapReduce. D3 is tailored
towards debugging and supports both online and offline
queries. Splunk [4] is a commercial IT search engine that
indexes logs. It collects all indexes in a centralized point,
and uses keyword queries instead of formal declarative
queries.

Distributed triggers [14] were proposed for distributed
network monitoring (e.g., distributed rate limiting, quota
management, and intrusion detection). Other query
driven approaches in network monitoring and manage-
ment include Sophia [22], PIER [13], and Knowledge
plane [9].

6 Conclusion
In this paper, we have presented a new debugging sys-
tem, D3, that realizes formal debugging of distributed
systems efficiently. The key insight is that one should
leverage the fact that queries are simple but logs are large
and numerous, and focus on high-level debugging goals
instead of low-level details. Thus, rather than using a
centralized and ad hoc approach, D3 takes a distributed
and declarative approach. The preliminary evaluation of
our D3 prototype is promising. We hope to report our
long term experience of D3 with distributed applications
and to run large-scale experiments in Amazon’s EC2/S3
cluster in the future.

Acknowledgments
We would like to thank Rodrigo Fonseca and George
Porter for their help on X-Trace and Andy Konwinski
and Matei Zaharia for providing us X-Trace enabled
Hadoop. We also thank Joe Hellerstein and Petros Mani-
atis for their valuable feedback.

References
[1] Ganglia. http://ganglia.sourceforge.net/.
[2] Hadoop. http://lucene.apache.org/hadoop/.
[3] Pig. http://incubator.apache.org/pig/.
[4] Splunk. http://www.splunk.com/.
[5] M. K. Aguilera, J. C. Mogul, J. L. Wiener,

P. Reynolds, and A. Muthitacharoen. Performance
debugging for distributed systems of black boxes.
In SOSP, 2003.

[6] P. Bahl, R. Chandra, A. Greenberg, S. Kandula,
D. A. Maltz, and M. Zhang. Towards highly re-
liable enterprise network services via inference of
multi-level dependencies. InACM SIGCOMM,
2007.

[7] P. Barham, A. Donnelly, R. Isaacs, and R. Mortier.
Using magpie for request extraction and workload
modelling. InOSDI, 2004.

[8] M. Y. Chen, A. Accardi, E. Kiciman, J. Lloyd,
D. Patterson, A. Fox, and E. Brewer. Path-based
failure and evolution management. InNSDI, 2004.

[9] D. D. Clark, C. Partridge, J. C. Ramming, and J. T.
Wroclawski. A knowledge plane for the internet.
In ACM SIGCOMM, 2003.

[10] J. Dean and S. Ghemawat. MapReduce: Simplified
data processing on large clusters. InOSDI, 2004.

[11] R. Fonseca, G. Porter, R. H. Katz, S. Shenker, and
I. Stoica. X-Trace: A pervasive network tracing
framework. InNSDI, 2007.

[12] D. Geels, G. Altekar, P. Maniatis, T. Roscoe, and
I. Stoica. Friday: Global comprehension for dis-
tributed replay. InNSDI, 2007.

[13] R. Huebsch, J. M. Hellerstein, N. Lanham, B. T.
Loo, S. Shenker, and I. Stoica. Querying the inter-
net with PIER. InVLDB, 2003.

[14] A. Jain, J. M. Hellerstein, S. Ratnasamy, and
D. Wetherall. A wakeup call for internet monitor-
ing systems: The case for distributed triggers. In
HotNets, 2004.

[15] S. Kandula, D. Katabi, and J.-P. Vasseur. Shrink: A
tool for failure diagnosis in ip networks. InMineNet
Workshop, 2005.

[16] R. R. Kompella, J. Yates, A. Greenberg, and
A. Snoeren. Ip fault localization via risk modeling.
In NSDI, 2005.

[17] B. T. Loo, T. Condie, J. M. Hellerstein, P. Maniatis,
T. Roscoe, and I. Stoica. Implementing declarative
overlays. InSOSP, 2005.

[18] R. Pike, S. Dorward, R. Griesemer, and S. Quinlan.
Interpreting the data: Parallel analysis with sawzall.
Scientific Prog. Journal, 13(4):277–298, 2005.

[19] P. Reynold, C. Killian, J. L. Wiener, J. C. Mogul,
M. A. Shah, and A. Vahdat. Pip: Detecting the
unexpected in distributed systems. InNSDI, 2006.

[20] P. Reynolds, J. L. Wiener, J. C. Mogul, M. K.
Aguilera, and A. Vahdat. WAP5: Black-box perfor-
mance debugging for wide-area systems. InWWW,
2006.

[21] A. Singh, P. Maniatis, T. Roscoe, and P. Druschel.
Using queries for distributed monitoring and foren-
sics. InEuroSys, 2006.

[22] M. Wawrzoniak, L. Peterson, and T. Roscoe.
Sophia: An information plane for networked sys-
tems. InHotNets, 2003.

7

