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Abstract

Optimization and Reconstruction over Graphs

by

Samantha J. Riesenfeld

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Richard M. Karp, Chair

We study several instances of the following combinatorial optimization problem:

Efficiently find a graph that satisfies, to the extent possible, a given set of constraints.

The thesis begins with two NP-hard problems: The Minimum-Degree Minimum

Spanning Tree (MDMST) problem is to find, given a graph, an MST of minimum

degree. The Minimum Bounded-Degree Spanning Tree (MBDST) problem is to find,

given a graph and an integer B, a minimum-cost tree in the set of spanning trees of

degree at most B.

We present the first polynomial-time constant-factor approximation algorithm for

the MDMST problem, which uses the push-relabel framework developed by Gold-

berg [20] for the max-flow problem. It improves Fischer’s local-search algorithm [14].

Via an analysis by Könemann and Ravi [34], our algorithm implies the first polynomial-

time constant-factor bi-criteria approximation algorithm for the MBDST problem. It

also works for a new generalization of the MDMST problem.

Other results include the first true MBDST approximation algorithms: a polynomial-

time algorithm incurring no error in cost, and a quasi-polynomial-time algorithm,

based on augmenting paths, that significantly improves the error in degree by finding

a spanning tree of optimal cost and degree B+O( log n
log log n

). Our cost-bounding method

requires finding MSTs that meet both upper and lower degree bounds.
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The second part of the thesis considers the problem of reconstructing a directed

graph, given the vertices and an oracle for the reachability relation. We show this

reduces to the problem of sorting a partially ordered set (poset).

Sorting algorithms obtain information about a poset by queries that compare

two elements. We give an algorithm that sorts a width-w poset of size n and has

query complexity O(wn + n log n), meeting the information-theoretic lower bound.

We describe a variant of Mergesort that has query complexity O(wnlogn), matching

the upper bound shown by Faigle and Turán [13], and total complexity O(w2n log n).

The exact total complexity of sorting remains unresolved.

We also give upper and lower bounds for several related problems, including find-

ing the minimal elements in a poset, which we show has query and total complexity

Θ(wn), and its generalization, k-selection.

Prof. Richard M. Karp

Dissertation Committee Chair
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Chapter 1

Introduction

This thesis is an examination, using a set of diverse but fundamental tools, of sev-

eral instances of the following combinatorial optimization problem: Efficiently find a

graph that satisfies, to the extent possible, a given set of constraints.

We study natural variants of well-known problems, such as finding a minimum

spanning tree and sorting a linear order, that have received a thorough treatment by

classical theory. Yet the questions we consider here remained unresolved for years.

This thesis presents our contributions towards their resolution.

1.1 Bounded-degree spanning trees

A classic optimization problem in graph theory is to find, given a weighted graph

G = (V,E, c), where c is a cost function on the edges, a minimum-cost set of edges

that connects all of the vertices, known as a minimum spanning tree (MST). Due

partly to the broad applicability of MSTs and their special structure, the problem

is by now well understood, and several polynomial-time algorithms for solving it are

known [25, 44, 50].

In applications that involve MSTs, however, it may be desirable to enforce addi-

1



tional constraints on the degrees of vertices [45]. For example, for efficient, robust

network routing, a multicast network would ideally minimize both the total cost of

the network and the maximum work done by any router. In graph-theoretic terms,

this translates to minimizing both the cost of the spanning tree and its degree, i..e

the maximum degree of any vertex in the tree. Of course, there may not exist an

MST whose degree is minimum with respect to all spanning trees.

The Minimum-Degree Minimum Spanning Tree (MDMST) problem is one way to

formulate these competing constraints which guarantees that a solution exists. Given

a graph G, the MDMST problem is to find an MST whose degree is minimized over

all MSTs of G. Even in the unweighted case, it generalizes the Hamiltonian Path

problem and is therefore NP-hard.

A more general bi-criteria formulation is the Minimum Bounded-Degree Spanning

Tree (MBDST) problem, which requires, as additional input, an upper bound B

on the degrees of the vertices. An MBDST solution is a minimum-cost tree among

the spanning trees, if any, that respect the degree bounds. The MBDST problem

generalizes the Traveling Salesman Path problem (TSPP), which corresponds to the

case when the degrees are restricted uniformly to 2. (Note that we do not assume

that the cost function respects the triangle inequality.) Since TSPP is NP-hard to

approximate within any polynomial factor, approximations for the MBDST problem

must relax the degree constraints, unless P equals NP.

The study of the MDMST and MBDST problems has encompassed several funda-

mental and aesthetic algorithmic techniques, including local search [14], alternating

or augmenting paths [16, 5] (as in matching, e.g. [10]), graph decompositions proving

structural properties [16, 5, 6], linear programming duality [34, 5], the primal-dual

method [35], the push-relabel framework [6] (from max flow [20]), and most recently,

polyhedral techniques [19, 48].

In the next section, we briefly summarize related work. A more illustrative and

2



complete review of previous techniques and related work is provided in Chapter 2. To

facilitate the presentation of results, we introduce the following terminology: Given

a weighted graph G = (V,E, c), let n be the number of vertices, let ∆opt(G) be the

degree of an optimal MDMST solution, and let coptB
(G) be the cost of an optimal

MBDST solution for degree bound B.

Algorithms for the MBDST problem are either what we call bi-criteria approxi-

mation algorithms, which give guaranteed approximations of both the optimal cost

coptB
(G) and the degree B, or true approximation algorithms, which obtain optimal

cost coptB
(G) and a guaranteed approximation of the degree B.

1.1.1 A brief history

Goemans conjectured1 more than 15 years ago that the MBDST problem could be

solved approximately in polynomial time to get a tree of cost exactly coptB
(G) and

degree at most B+1, which is the optimal result if P does not equal NP. Shortly there-

after, Fürer and Raghavachari resolved the problem in the simpler case of unweighted

graphs, in which the MDMST and MBDST problems are essentially equivalent. They

gave a polynomial-time algorithm, reminiscent of Edmonds’ algorithm for unweighted

matching [10], that finds a spanning tree of degree ∆opt(G) + 1.

Initial efforts at solving the MBDST problem focused on finding bi-criteria approx-

imations. Ravi et al [45, 46] described the first polynomial-time bi-criteria approxi-

mation algorithm for the MBDST problem, which achieves approximation factors of

O(log n) for both degree and cost.

Prior to the initial publication [5, 6] of the results in this thesis, the best results

for the MDMST and MBDST problems were by Fischer [14], and by Könemann

and Ravi [34, 35], respectively. Fischer [14] gave an MDMST algorithm based on

local search that, for any constant b > 1, finds a spanning tree of degree at most

1The conjecture is unpublished but is referenced in recent work [19].
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b∆opt(G)+logb n. Using a Lagrangian relaxation of the MDBST dual linear program,

Könemann and Ravi showed that an MDMST algorithm can be used as a black box in

a bi-criteria approximation algorithm for the MBDST problem. They rely on Ficher’s

MDMST algorithm to obtain a MBDST algorithm that, for any constants b > 1, β >

0, finds a spanning tree of cost at most (1+ 1
β
)coptB

(G) and degree bB(1+β)+ logb n.

While this expression represents a continuum in the cost-degree trade-off, one can

observe that the algorithm always either violates the degree constraints or exceeds

the optimal cost by a factor of two.

1.1.2 Main results

In Chapters 3 and 4, we present several algorithms for the MDMST and MBDST

problems, including: the first polynomial-time constant-factor approximation algo-

rithm for the MDMST problem; the first polynomial-time MBDST algorithm that

approximates both degree and cost to within a constant factor; the first polynomial-

time true approximation algorithm for the MBDST problem, which removes the error

in cost completely; and a quasi-polynomial-time MBDST approximation algorithm

that significantly improves the error in degree bounds (and still obtains optimal cost).

Specifically, our major result in Chapter 3 is a polynomial-time MDMST approx-

imation algorithm that finds an MST of degree at most 2∆opt(G) + O(
√

∆opt(G)).

This algorithm uses the push-relabel framework invented by Goldberg [20] for the max

flow problem (and fully developed by Goldberg and Tarjan [22]). Our adaptation of

this framework allows the MDMST algorithm to explore a more general, interdepen-

dent set of moves than is available to a simple local search. To our knowledge, this

work is the first use of the push-relabel technique in an approximation algorithm for

an NP-hard problem.

With the cost-bounding techniques of Könemann and Ravi [34], the push-relabel
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MDMST algorithm implies a polynomial-time algorithm for the MBDST problem

that, for any constant β > 0, finds a spanning tree of cost at most (1 + 1
β
)coptB

(G)

and degree 2B(1+β)+O(
√

B(1 + β)), thus giving the first bi-criteria constant-factor

approximation.

Goemans [19] recently introduced an MDMST algorithm that finds an MST of

optimal cost ∆opt(G) + 2. His algorithm first computes an extremal solution to

a linear programming relaxation and then runs matroid-intersection algorithms on

instances derived from the solution.

Using a lemma of Goemans [19] that characterizes the support of an extremal

solution to the linear program, we show that running our push-relabel algorithm in

place of the matroid-intersection algorithms gives a different MDMST algorithm that

also finds an MST of degree ∆opt(G) + 2.

The results in Chapter 4 are based on a different approach, leading to true approx-

imation algorithms for the MBDST problem. The first result is a polynomial-time

MBDST algorithm that, for any constant b ∈ (1, 2), finds a spanning tree of optimal

cost coptB
(G) and degree b

2−b
B+O(logb n). The main technical contribution is a novel

cost-bounding technique requiring a modified MDMST algorithm that also respects

certain lower bounds on the degrees of vertices.

We then present a quasi-polynomial MBDST algorithm that finds a spanning tree

of cost coptB
(G) and degree B + O( log n

log log n
). If the degree bound B is ω( log n

log log n
), our

algorithm guarantees an approximation factor of (1 + o(1)) while still maintaining

optimal cost. In addition to the cost-bounding techniques already described, the

main technical contribution is the use of augmenting paths, as opposed to the single

edge-swaps of local search [14], to find low-degree MSTs.

5



1.1.3 A generalization of the MDMST problem

Regarded abstractly, the MDMST problem requires us to optimize the maximum

degree in a graph G of a minimum-cost base in the graphic matroid, or spanning-tree

matroid, of G. We also treat a more general setting where the (hyper)graph and

the matroid are not specially related: Given a k-ary hypergraph G = (V,E) and a

weighted matroid M = (E, I, c) such that the ground set of M is the edge set of G,

the Minimum-Degree Minimum Cost Base (MDMCB) problem is to find a minimum-

cost base T of M that minimizes the degree of T in G. (Complete definitions of the

terms and problem are given in Chapter 3, Section 3.6.)

One concrete example of this setting is a network in which each link is controlled by

a subset of a set of autonomous entities, with the restriction that no link is controlled

by more than k entities. The MDMCB problem in this case is to build an MST of

the network such that the maximum number of links controlled by a single entity is

minimized. Other natural combinatorial optimization problems can also be formalized

as instances of the MDMCB problem.

To our knowledge, the MDMCB problem has not been addressed previously.

The push-relabel algorithm for the MDMST problem generalizes in a straightfor-

ward way to the MDMCB problem. Given a k-ary hypergraph G = (V,E) and

a weighted matroid M with E as the ground set, the push-relabel MDMCB al-

gorithm outputs in polynomial-time an MCB of M that has degree in G at most

k2∆opt(G,M) + O(k
3
2

√

∆opt(G,M)), where ∆opt(G,M) is the degree of an optimal

solution.

1.1.4 Recent work

Since the initial publication of these results [5, 6], the landscape has changed dramat-

ically.
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Ravi and Singh [47] presented an MDMST algorithm that outputs an MST of

degree at most ∆opt(G) + k, where k is the number of distinct weight classes. This

bound is incomparable with the results presented here.

The techniques in the aforementioned work of Goemans [19] also work for the

MBDST problem, giving an algorithm that finds a spanning tree of cost coptB
(G) and

degree B + 2.

Progress culminated in an MBDST algorithm by Singh and Lau [48] that finds a

spanning tree of optimal cost coptB
(G) and degree B + 1. Their result is based on an

adaptation of an iterative rounding technique introduced by Jain [26].

While the recent results of Goemans [19] and of Singh and Lau [48] dominate

our results for the MDMST and MBDST problems, the techniques developed in this

thesis may be of independent interest. Moreover, we do not see an obvious way

to adapt their techniques—the uncrossing lemma and the use of the Nash-Williams

theorem [40]—to the more general setting of the MDMCB problem.

1.2 Sorting and selection in posets

The previous section deals with the problem of, given a graph, finding a subgraph that

meets certain constraints. In this section, we turn to the problem of reconstructing

a directed graph G = (V,E), given only the set V and an oracle for the reachability

relation in G, that is, a procedure that tells, for a given pair x, y ∈ V , whether x is

reachable from y in G, or vice versa. Clearly, the problem is solvable in polynomial-

time: a simple algorithm might query the oracle on every potential edge. The question

is how efficiently G can be recovered.

As an example, suppose we are given a set of biological variables in a system and

an experimental procedure which can determine, for any pair of variables, if one is

dependent, directly or indirectly, on the other. How many experiments do we need

7



to perform in order to reconstruct the web of dependencies?

In Chapter 5, Section 5.8.2, we show that these problems essentially reduce to the

problem of sorting a partially ordered set.

1.2.1 Sorting

Classically, sorting is the process of determining the underlying linear ordering of a

set S of n elements. Comparison algorithms, in which direct comparisons between

pairs of elements of S are the only means of acquiring information about the linear

ordering, form an important subclass, including such familiar algorithms as Heapsort,

Quicksort, Mergesort, Shellsort and Bubblesort.

We extend the theory of comparison sorting to the case where the underlying

structure of the set S is a partial order, in which an element may be larger than,

smaller than, or incomparable to another element, and the “larger-than” relation is

transitive and irreflexive. Such a set is called a partially ordered set, or poset.

This extension is applicable to many ranking problems where certain pairs of

elements are incomparable. Examples include ranking college applicants, conference

submissions, tennis players, strains of bacteria according to their evolutionary fitness,

and points in Rd under the coordinate-wise dominance relation.

The algorithms described in Chapters 5 and 6 gather information by queries to

an oracle. The oracle’s response to a query involving elements x and y is either the

relation between x and y or a statement of their incomparability. In many applica-

tions, a query may involve extensive effort (for example, running an experiment to

determine the relative evolutionary fitness of two strains of bacteria, or comparing

the credentials of two candidates for nomination to a learned society). We therefore

consider two measures of complexity for an algorithm or problem: the query complex-

ity, which is the number of queries performed, and the total complexity, which is the
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number of computational operations of all types performed (basic operations include

standard data structure operations involving one or two elements of the poset).

1.2.2 Reconstructing directed graphs

A partial order on a set can be thought of as the reachability relation of a directed

acyclic graph (DAG). More generally, a transitive relation (which is not necessarily

irreflexive) can be thought of as the reachability relation of a general directed graph.

In applications, such as the system of biological variables described earlier, the relation

represents the direct and indirect causal influences among a set of variables, processes,

or components of a system.

We show that with negligible overhead, the problem of sorting a transitive relation

reduces to the problem of sorting a partial order. Our algorithms thus allow one to

reconstruct general directed graphs, given an oracle for queries on reachability from

one node to another. As directed graphs are the basic model for many real-life

networks including social, information, biological and technological networks (see [41]

for a survey), our algorithms provide a potential tool for the reconstruction of such

networks.

1.2.3 Posets in other contexts

There is a vast literature on algorithms for determining properties of an initially

unknown total order by means of comparisons. Partial orders often arise in these

studies as a representation of the “information state” at a general step of such an

algorithm. In such cases the incomparability of two elements simply means that their

true relation has not been determined yet. The present work is quite different, in that

the underlying structure to be discovered is a partial order, and incomparability of

elements is inherent, rather than representing temporary lack of information. Never-

9



theless, the body of work on comparison algorithms for total orders provides valuable

tools and insights that can be extended to the present context (e.g. [1, 15, 28, 32, 39]).

1.2.4 Related work

The model considered here was previously considered by Faigle and Turán [13], who

presented two algorithms for the problem of sorting a partial ordered set, which is

termed “identification” of a poset. Only the query complexity of these algorithms is

analyzed. We formally describe their results in Chapter 5.

A recent paper [42] considers an extension of the searching and sorting problem

to partial orders that are either trees or forests.

1.2.5 The k-selection problem

A natural problem closely related to sorting is the problem of finding the minimal

elements of a poset. For example, given a set of college applications, one may only be

interested in finding the set of best applications, which are mutually incomparable,

rather than in ranking all applications.

This problem generalizes to the k-selection problem, which is to find the set of

elements in the bottom k levels of a given poset. We do not know of any previous

results for k-selection in posets, though the problem has been studied in the setting

of linear orders [17].

1.2.6 Main results

A precise statement of the problem and our results requires a few definitions which

we defer to Chapter 5. Roughly speaking, the width of a poset is a measure of its

complexity. The sorting problem is then defined as: Given a set of n elements and a

bound w on the width, completely determine the partial order on the elements.
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In Chapter 5, we give the first algorithm of optimal query complexity O(wn +

n log n), meeting the information-theoretic lower bound. This algorithm is based on

a careful analysis of the structure of the poset. Natural generalizations of techniques

from sorting linear orders do not yield optimal query complexity. We are able to

give a generalization of Mergesort, however, which has query complexity O(wnlogn),

matching the best previously obtained, and total complexity O(w2n log n). It remains

an open question whether optimal query complexity can be achieved efficiently.

We also give algorithms, which are loosely based on a generalization of Quick-

sort, for the related problems of computing a linear extension of a given poset and

computing the heights of all elements.

Finally, we generalize our sorting algorithms to two variants of the sorting model:

the case when an upper bound on w is not known a priori and the case of a general

transitive relation, or equivalently, the reachability relation for a directed graph.

In Chapter 6, we focus on the k-selection problem. We give upper and lower

bounds on the query and total complexity within both deterministic and randomized

models of computation. For the case of k = 1, we show that the query and total

complexity are Θ(wn). Though we make use of results known for the special case of

linear orders, our results require new techniques, particularly to meet the challenge

of proving lower bounds.

1.3 Bibliographic notes

The results in Chapters 2–4 first appeared in [5, 6] and are based on joint work with

Kamalika Chaudhuri, Satish Rao, and Kunal Talwar. The results in Chapter 5 first

appeared in [8] and are based on joint work with Constantinos Daskalakis, Elchanan

Mossel, Richard M. Karp, and Elad Verbin.
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Chapter 2

Technical Introduction

In this chapter, we give a formal introduction to the Mininum-Degree Minimum

Spanning Tree and the Minimum Bounded-Degree Spanning Tree problems, for which

several algorithms are presented in Chapters 3 and 4.

We begin by reviewing basic definitions and terminology. In Section 2.2, we cover

in detail the previous work on these problems, in order to give a context for our results

and techniques. Our main contributions to the area are described in Section 2.3. We

also give a synopsis of more recent work in Section 2.4. Section 2.5 introduces a

combinatorial concept used by all of our algorithms to guarantee the near-optimality

of their output. In Section 2.6, we present a linear programming analysis which

explains our cost-bounding techniques and illustrates the close relationship between

the two problems. Section 2.7 ends the chapter with a proof that the analysis of the

best previously known MDMST algorithm is tight.

2.1 Preliminary definitions

Let V be a set of vertices, E ⊆ {{u, v} : u, v ∈ V } a set of edges, and c : E → R+ a

function that assigns a nonnegative real number, called a cost or weight, to each edge.

13



The triple G = (V,E, c) is a weighted graph. A spanning tree T ⊆ E is a minimal

subset of edges that connects all of the vertices. For a subset E ′ ⊆ E of edges, we

denote by c(E ′) =
∑

e∈E′ c(e) the cost of E ′. A minimum spanning tree (MST) is a

spanning tree whose cost is minimized over all spanning trees.

For a vertex v and subset E ′ ⊆ E of edges, we denote by degE′(v) the degree

in E ′ of v, i.e. the number of edges in E ′ incident on v. For a tree T , the degree

of T is defined as the maximum degree in T of any vertex, and we denote it by

∆(T ) = maxu∈V degT (u). When T is obvious from context, we simply write its

degree as ∆.

A matroid is defined to be a pair M = (E, I), where E is a ground set of elements

and I is a family of independent sets such that (i) ∅ ∈ I, (ii) A ∈ I, B ⊆ A imply

that B ∈ I, and (iii) A,B ∈ I, |A| > |B| imply that there exists e ∈ A \ B with

B∪{e} ∈ I. A maximum-cardinality independent set of M is called a base of M . We

recall the fact that, as a collection of bases, the MSTs of a graph G form a matroid

on the edges of G.

Definitions related only to the MDMCB problem are reserved for Chapter 3, Sec-

tion 3.6.

We also recall a few definitions introduced in Chapter 1: For a given graph G =

(V,E), let ∆opt(G) = minMST T ∆(T ) be the minimum degree of an MST of G, and

let coptB
(G) be the minimum cost of a spanning tree in the set {T : ∆(T ) ≤ B}.

2.1.1 Swaps

A basic approach to exploring the space of MSTs is to compute an arbitrary MST T ,

and then repeatedly update T by performing what we call edge swaps.

Let e be an edge in an MST T . For some edge e′ ∈ E, we say that the pair (e, e′) is

a swap with respect to T , or that e and e′ may be swapped, if the following conditions
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hold: (a) e′ /∈ T , (b) the unique cycle in T ∪ {e′} contains e, and (c) c(e) = c(e′).

When we perform the swap (e, e′), we remove e from T and add e′ to produce another

MST T ′.

We shall repeatedly make use of the exchange property of the minimum spanning

tree matroid. This property states that for any two MSTs T , T ′, and for any edge

e′ ∈ T ′ such that e′ 6∈ T , there exists an edge e ∈ T such that e 6∈ T ′ and (e, e′) is a

swap. Moreover, for any edge e ∈ T such that e 6∈ T ′, there is an edge e′ ∈ T ′ such

that (e, e′) is a swap with respect to T . Additionally, the exchange property continues

to hold if we force T, T ′ to contain a set F of edges, and exclude a set R of edges; in

this case e (respectively e′) lies outside F ∪R if e′ (respectively e) does.

2.1.2 Problem definitions

Chapter 1 introduced the Minimum-Degree Minimum Spanning Tree (MDMST) and

Minimum Bounded-Degree Spanning Tree (MBDST) problems. We recall their defi-

nitions here:

MDMST Problem: Given a weighted graph G = (V,E, c), find a minimum span-

ning tree of minimum degree ∆opt(G).

MBDST Problem: Given a weighted graph G = (V,E, c) and a degree bound

B > 0, find a spanning tree of minimum cost coptB
(G) in the set {T ⊆ E : ∆(T ) ≤ B}.

2.2 Previous techniques

We look first at the special case of unweighted graphs, for which a solution to the

MDMST problem immediately gives a solution to the MBDST problem.
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2.2.1 Unweighted graphs

The MBDST and MDMST problem are different generalizations of the same un-

weighted problem: given an unweighted graph G = (V,E), find a spanning tree of G

of minimum degree ∆opt(G).

Fürer and Raghavachari [16] gave an elegant combinatorial algorithm for this

problem that outputs an MST with degree ∆opt(G) + 1. Like Edmonds’ classic algo-

rithm [10] for unweighted matching, it finds an alternating sequence of edge additions

and deletions in a laminar family of subtrees of G such that the sequence results in

the improvement of a node, which in this case means a reduction in the node’s degree.

The sequence has the attribute that it improves a high-degree node without creating

any new high-degree nodes.

While there is a node in the current tree of degree at least ∆opt(G) + 1, the

Fürer -Raghavachari algorithm either finds an improving sequence of edge swaps or it

produces a certificate that the maximum degree of any spanning tree must be at least

∆opt(G). The certificate consists of a set S of nodes whose removal leaves at least

∆opt(G)|S| connected components in the graph, implying that the average degree

of S in any spanning tree must be at least ∆opt(G). We call such a combinatorial

certificate a witness.

The laminar structure underlying the sequence of swaps depends on the property

that an edge e′ ∈ E that is not in a spanning tree T can replace any tree edge e on

the unique cycle in T ∪ {e′}. In other words, for every edge e, e 6= e′, on the cycle in

T ∪{e′}, (e, e′) is a swap. This property is not maintained in weighted graphs because

a non-tree edge can only replace other tree edges of equal cost. The structure of an

improving sequence of swaps in a weighted graph can therefore be significantly more

complicated.
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2.2.2 Local search

In the general case of the MDMST problem, Fischer [14] gave the only approximation

algorithm known prior to the initial publication [5, 6] of the results in this thesis.

Given a graph G, his algorithm begins by computing an arbitrary MST and proceeds

by executing any swap that improves a degree-d node without introducing new degree-

d nodes, for selected high values of d. He shows that when the tree is locally optimal,

the maximum degree of the tree is at most b∆opt(G) + logb n, for any b > 1. In

Section 2.7, we show that this analysis is tight; hence, to improve the approximation

factor, a search algorithm must look beyond single-swap improvements.

2.2.3 Bi-criteria approximation algorithms

The first bi-criteria approximation algorithm for the MBDST problem was given by

Ravi et al [45]. Based on a technique for augmenting matchings, the algorithm finds

a tree of cost O(coptB
(G) · log n) and degree O(B log n).

Before the results in this thesis were first published [5, 6], the best results for

the MBDST problem were given by Könemann and Ravi [33, 34], via an analysis

of a linear programming relaxation for the MBDST problem. The analogy with the

general matching problem is perhaps made even more clear in the weighted case, as

the approach taken by Könemann and Ravi follows the line taken by Edmonds’ [9] in

his weighted matching algorithm. The weighted-matching algorithm can be viewed

as first finding a solution to the dual of the matching problem: it finds an assignment

of penalties to nodes that can be thought of as increasing the cost of adjacent edges,

and then it finds a maximal packing of dual variables for subsets of nodes of the

graph. Once the dual solution is known, one can ignore the values of the weights on

the tight edges and rely solely on an un-weighted matching algorithm.

Similarly, the algorithm of Könemann and Ravi first solves the dual of a linear
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programming relaxation for the MBDST problem1, where the degree constraint B is

relaxed slightly to B(1 + β), for β > 0. The dual solution is likewise interpreted as

an assignment of penalties to nodes, and the algorithm then runs a combinatorial

subroutine on a graph in which the edge costs are modified by the dual penalties.

In this case, however, the combinatorial subroutine must produce an MST that has

minimum degree relative to all MSTs in the graph with modified edge costs. In other

words, the combinatorial subroutine must solve the MDMST problem. Könemann

and Ravi show that the cost of an MST in the graph with modified edge costs is at

most (1 + 1
β
)coptB

(G). By using Fischer’s algorithm [14] to find an MST that has

approximately minimum degree, they obtain an algorithm that, for any constants

b > 1, β > 0, finds a spanning tree T of the original graph such that T has cost at

most (1 + 1
β
)coptB

(G) and degree bB(1 + β) + logb n.

In a subsequent paper [35], Könemann and Ravi use primal-dual techniques to

avoid the initial step of solving the linear program and obtain similar results for

non-uniform degree bounds.

The Euclidean version of the MBDST problem has also been widely studied (for

example, [43, 30, 4, 27, 49]). These results are generally of a different nature than

those presented here, since they rely strongly on the fact that the cost function

respects the triangle inequality.

2.3 Our results and techniques

Our results for the MDMST and MBDST problems are based on two different ap-

proaches. The first approach is to significantly improve upon Fischer’s approxima-

tion algorithm [14] for the MDMST problem. The result is the first constant-factor

approximation algorithm for the MDMST problem, which finds an MST of degree

1As in the case of Edmonds’ non-bipartite matching algorithm, the linear program and its dual
are of exponential size, though their solutions can be found in polynomial time.
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2∆opt(G) + O(
√

∆opt(G)). This algorithm uses the push-relabel framework devel-

oped by Goldberg [20] for the max flow problem; the details of the algorithm are

presented in Chapter 3. In Section 2.3.1 below, we discuss the techniques involved.

We also show that the push-relabel MDMST algorithm works in a more general set-

ting, described formally in Chapter 3, Section 3.6.

Using the analysis of Könemann and Ravi [34], the push-relabel MDMST al-

gorithm implies an MBDST algorithm that finds a spanning tree of cost at most

(1 + 1
β
)coptB

(G) and of degree 2B(1 + β) + O(
√

B(1 + β)), for any β > 0. It is the

first algorithm to approximate both the degree and the cost to within a constant

factor.

For the special case of B = 2, i.e. for TSPP, this MBDST algorithm outputs a

tree of cost within a (1 + ǫ)-factor of the optimal solution and of maximum degree

O(1
ǫ
) for any ǫ > 0.2 Previous algorithms would produce a tree with near-logarithmic

degree and cost within a constant factor of the optimal.

Subsequent to the initial publication [6] of this result, Goemans [19] gave an algo-

rithm for the MDMST problem that outputs an MST of degree at most ∆opt(G) + 2.

His algorithm first computes an extremal solution to a natural linear-programming re-

laxation for the problem, and then runs matroid-intersection algorithms on instances

derived from the LP solution. Using a lemma of Goemans [19], we show that running

our push-relabel MDMST algorithm in place of the second step gives a different al-

gorithm that also finds an MST of degree at most ∆opt(G) + 2.

As discussed in Section 2.2.3, the method used by Könemann and Ravi [34] to

solve the MBDST problem introduces a trade-off between degree and cost that always

creates a constant-factor error either in the degree or the cost. Our second approach

2Our work does not assume that the cost function respects the triangle inequality; when the
triangle inequality holds, Hoogeveen [23] gives a 3

2
-approximation to TSPP based on Christofides’

algorithm.
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to the MBDST problem is based on an adaptation of the linear programming analysis

that shows how this error can be avoided.

Recall that MBDST algorithm by Könemann and Ravi includes a subroutine that

finds an approximate MDMST on a graph whose edge costs have been modified by

the dual penalties. We show that an MST (of the modified graph) in which the nodes

with positive dual penalties have high degree has low cost in the original graph. Thus,

an algorithm that finds an MST of low degree which also meets certain lower degree

bounds on the nodes with positive dual penalties, can be used as a subroutine to

find an MBDST of optimal cost. In other words, it can be used to obtain a true

approximation algorithm for the MBDST problem. We present this argument, along

with the analysis of Könemann and Ravi, in Section 2.6.

This cost-bounding technique motivates the group of algorithms presented in de-

tail in Chapter 4, which are designed to find MSTs that meet both upper and lower

degree bounds. Together these results imply two true approximation algorithms for

the MBDST problem: a polynomial-time algorithm that finds a spanning tree of

cost coptB
(G) and degree b

2−b
B + O(logb n) for any constant b ∈ (1, 2), and a quasi-

polynomial-time algorithm that finds a spanning tree of cost coptB
(G) and degree

B + O( log n
log log n

). A discussion of the techniques involved in these algorithms follows

below, in Section 2.3.2.

For the sake of a simpler exposition, we describe our MBDST results in the setting

of a uniform degree bound B. The results given in Chapter 4 imply analogous results

even in the case of more general non-uniform degree bounds. Since our polynomial-

time approximation algorithm is based on the Fischer algorithm, it extends as does

the algorithm by Könemann and Ravi [35] to non-uniform degree bounds, except that

it achieves cost optimality. Our quasi-polynomial-time algorithm extends in an even

more straightforward way to non-uniform degree bounds since the error is additive

rather than multiplicative.
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Figure 2.1: Graph G and a locally optimal tree. The shaded triangles represent
subtrees identical to the corresponding ones shown rooted at the same level. The
bold nodes represent a path and the bold dotted edges correspond to a set of edges
going to similar nodes in the subtrees denoted by shaded triangles.

2.3.1 The push-relabel framework

While Fischer’s MDMST algorithm [14] is locally optimal with respect to single edge-

swaps, the push-relabel MDMST algorithm, described in detail in Chapter 3, explores

a more general set of moves that may consist of long sequences of branching, inter-

dependent changes to the tree.

To illustrate the limitations of other algorithms, we describe here a pathological

MST T in a graph G (see Figure 2.1): The tree T has a long path consisting of

O(n) nodes ending in a node u of degree d. Each edge on the path has cost ǫ. Each

child of u has degree 2. An edge between u and one of its children has cost 1. The

child of each child of u has degree d − 1. An edge between a degree-2 node and its

child has cost ǫ. Each child of a degree-(d− 1) node has degree 2. An edge between

a degree-(d − 1) node and one of its children costs 2. The child of each child of a

degree-(d − 1) node has degree (d − 2). An edge between a degree-2 node and its

child has cost ǫ. In general, each child of a degree-(d− i) node has degree 2, and an
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edge between a degree (d− i)-node and one of its children costs i + 1. The child of a

child of a degree-(d− i) node has degree d− i− 1. An edge between a degree-2 node

and its child has cost ǫ. And so on, until we get to the leaves. In addition, every

degree-(d − i) node has a cost-i edge to one of the nodes on the path. For some d

such that d = O( log n
log log n

), the number of nodes in the graph is O(n).

Note that an MST of G with optimal degree consists of the path, the other cost-ǫ

edges, and the non-tree edges. It has maximum degree three. On the other hand,

every cost-neutral swap that improves the degree of a degree-(d − i) node in the

current tree increases the degree of a degree-(d − i − 1) node. Hence the tree T is

locally optimal for the algorithms of [14, 34]. Moreover, all the improving edges are

incident on a single component of low-degree nodes; one can verify that even the

algorithms given in Chapter 4, Section 4.5, starting with this tree will not be able

to improve its degree. In fact, a slightly modified instance, G′, where several of the

non-tree edges are incident on the same node on the path, is not improvable beyond

O(d). Techniques that do not discriminate between different nodes of degree less than

d− 1 cannot distinguish between G and G′.

On the other hand, the push-relabel MDMST algorithm may perform a swap that

improves the degree of a degree-d node by creating one or more new degree-d nodes.

In turn, it attempts to improve the degree of these new degree-d nodes, which cannot

necessarily be improved independently since their improvements may rely on the same

edge or use edges that are incident to the same node. Moreover, this effect snowballs

as more and more degree-d nodes are created.

It is surprising that the push-relabel framework can be delicately adapted to ex-

plore these sequences. In this framework, each node is assigned a label and each

high-degree node is assigned an “excess”. The basic idea that we borrow from Gold-

berg [20] is that “excess” is permitted to flow only from a higher-labeled node to
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lower-labeled nodes, that is, it is “pushed” downward. A node is allowed to increase

its label when it is unable to get rid of its excess. For max flow, the excess assigned

to a node comes from a preflow, while in our case, the excess refers to excess degree.

Thus, a high-degree node may only relieve a unit of excess degree using a non-tree

edge that is incident to nodes of lower labels. While two high-degree nodes may be

created by a swap, they are guaranteed to have lower labels than the label of the node

initiating the swap. Though the algorithm may end up undoing a previous swap, the

labels ensure that this process cannot continue indefinitely.

Intuitively, the difference between this algorithm and a local-search algorithm like

that of Fischer[14] is that the push-relabel scheme distinguishes between the degree

of a node and the node’s ability to decrease its degree. The label acts roughly as a

proxy for the ease with which a node is able to absorb or rid itself of degree. While

a local-search algorithm avoids moves that increase the degree of a high-degree node,

the push-relabel algorithm tries to avoid moves that increase the degree of a node

with a high label.

We define a notion of a feasible labeling and prove that our MDMST algorithm

maintains one. This property is crucial for proving that the algorithm outputs a

witness, or a combinatorial certificate that the tree has near-optimal degree, when it

terminates. During the course of the algorithm, there is eventually a label p∗ such

that the number of nodes with label at least p∗ is not much larger than the number

of nodes with label at least p∗ + 1. We use feasibility to show that all nodes with

labels at least p∗ must have high average degree in any MST, thus obtaining a lower

bound on ∆opt(G). This degree lower bound also holds for any fractional MST of the

graph G.

To our knowledge, this algorithm represents the first application of the push-

relabel technique to an NP-hard problem. We are intrigued by the possibility that

the push-relabel framework may be extended to search what may appear to be com-
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plicated neighborhood structures for other optimization problems.

2.3.2 True MBDST approximation algorithms

In Section 2.6, we reduce the problem of getting a true approximation algorithm

for the MBDST problem, i.e. one that produces a tree of optimal cost coptB
(G), to

the problem of finding an MST that meets both upper and lower bounds on degree.

Hence, the algorithms presented in detail in Chapter 4 are designed to solve the fol-

lowing problem, which may be of independent interest. It is called the Minimum

Spanning Tree with Degree Bounds (MSTDB) problem:

MSTDB Problem: Given a weighted graph G = (V,E, c), a degree upper bound

BH , a subset of vertices L ⊆ V , and a degree lower bound BL, find, if one exists, a

minimum spanning tree of G such that no vertex has degree more than BH and all

vertices in L have degree at least BL.

To solve the MSTDB problem, we develop algorithms for enforcing upper and

lower bounds separately and then show how to carefully combine them to simul-

taneously enforce the high- and low-degree constraints. Despite the appearance of

symmetry, the algorithms enforcing lower bounds on degree require new ideas and

may be of independent interest. When each distinct algorithm terminates, it pro-

vides a combinatorial certificate, which we call a witness, of the near-optimality of its

output. To introduce the structure of a witness and its use, we describe a simplified

version of a witness below in Section 2.5.

Our polynomial-time algorithm for the MSTDB problem, described in detail in

Chapter 4, Section 4.3, is a combination of two adaptations of Fischer’s algorithm,

one of which enforces lower bounds on degrees. For any b > 1, this algorithm finds,
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if one exists, an MST of G that has degree at most bBH + logb n and in which the

nodes in L have degree at least BL/b− logb n.

At the cost of a quasi-polynomial running time, we improve the error in degree

bounds significantly. Our approach relies on illustrative analogy with bipartite match-

ing: Consider the problem on bipartite graphs of assigning each node on the “left” to

a node on the “right” while minimizing the maximum degree of any node on the right.

Let ∆′
opt be the maximum degree of a node on the right in an optimal solution. This

problem can naturally be solved using matching algorithms. Suppose instead that we

find a locally optimal solution where, for each node on the left, all of its neighbors

have degree within 1 of each other. One can then prove that every node on the right

has degree at most b∆′
opt + logb n, for b > 1. The proof uses Hall’s Theorem to show

that any breadth-first search in the graph of matched edges is shallow; the depth of

such a search bounds the maximum degree of this graph. This is the principle behind

Fischer’s algorithm [14] for finding an MST of degree b∆opt(G) + logb n, for b > 1.

For the bipartite-graph problem above, an augmenting- or alternating-path algo-

rithm for matching gives a much better solution than the locally greedy algorithm.

Based on this insight, we make use of augmenting paths in the design of an MSTDB

algorithm that finds an MST of degree at most BH + O( log n
log log n

) and in which the

nodes in L have degree at least BL−O( log n
log log n

). The algorithm is presented in detail

in Chapter 4, Section 4.5. In contrast to Fisher’s local single-swap approach, our

algorithm looks for a sequence of edge swaps in order to decrease the degree of one

high-degree node. This introduces significant complications, since every swap in the

sequence changes the structure of the tree, thereby changing the set of existing swaps.

Both MSTDB algorithms imply MBDST approximation algorithms with analo-

gous guarantees on degree. These results are described in Chapter 4, Sections 4.4

and 4.6.
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2.4 Recent progress

There has been significant progress since the results in this thesis were initially pub-

lished [5, 6]. Ravi and Singh [47] gave an algorithm for the MDMST problem with

an additive error of k, where k is the number of distinct weight classes. We note that

this bound is incomparable to those presented here.

As described in Section 2.3, the work of Goemans [19] provides an algorithm for

the MDMST problem that achieves an additive error of 2. His techniques work more

generally for the MBDST problem, giving a spanning tree of cost coptB
(G) and degree

B + 2. One of the major contributions of this work is the characterization of an

extremal solution to the linear programming relaxation for the MBDST problem as

a laminar family of tight constraints.

Ultimately, Singh and Lau [48] achieved the goal of an MBDST algorithm that

finds a spanning tree of cost coptB
(G) and degree B + 1, which is the optimal result

if P is not equal to NP . Their algorithm is an adaptation of the iterative-rounding

techniques introduced by Jain [26]. The result relies on a polyhedral characterization

similar to that shown by Goemans.

Though our results for the MDMST and MBDST problems have been surpassed,

our techniques may be of interest in their own right and potentially useful in future

work. Furthermore, some of the tools used by Goemans and by Singh and Lau,

such as the uncrossing lemma and the Nash-Williams theorem [40], do not appear to

generalize readily to the MDMCB problem, described in Chapter 3, Section 3.6.

There have also been significant recent developments in what is known about

degree-bounded variants of other graph problems. In particular, Lau et al [38] gave a

bi-criteria approximation algorithm for a generalization of the MBDST problem called

the element-connectivity Survivable Network Design problem with degree constraints

on vertices. This result implies, among other things, a constant-factor bi-criteria
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approximation algorithm for the Minimum Bounded-Degree Steiner Tree problem.

2.5 Witnesses

An important aspect of all of the MDMST algorithms presented in this thesis is that

when they terminate, they produce a proof that the degree of the resulting tree is

close to optimal. We call such a combinatorial proof a witness.

To illustrate the structure and properties of a witness, we present here a simplified

version of the witnesses used in Chapter 4 to prove a lower bound on the degree of

an optimal solution. Though it differs in structure, the witness used in Chapter 3 is

based on a similar idea. In Chapter 4, we also describe witnesses that prove an upper

bound on the degree of a subset of nodes.

We first introduce notation for a decomposition of the graph G that forms the

basis for the witnesses produced by the algorithms in Chapter 4. The decomposition

is a partition of the nodes of G into a center set W and k other sets C1, C2, . . . , Ck

called clusters.

For a high-degree witness, the partition has the property that each cluster has at

least one tree edge to W . In fact, it has the stronger property that in any MST of

G, there is at least one edge from Ci to W . See Figure 2.2.

If it is also true that k is large, then the average degree of W in any MST must

be high. The following lemma formalizes this idea. A similar idea was used by [16].

Lemma 2.1. Let V be partitioned into sets of nodes W,C1, C2, . . . , Ck. If for every

cluster Ci, any MST contains an edge connecting Ci to W , then for any MST T of

G, ∆(T ) ≥
⌈

k
|W |

⌉

.

Proof. Since the Ci’s are disjoint and each one contains an edge from Ci to W , the

total degree of W is at least k. Since the maximum degree in W is larger than the

average, the claim follows.
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At least one of
these in every 
MST

Figure 2.2: Example of a simple high-degree witness, as used in Lemma 2.1.

2.6 Cost analysis via linear programs

Given a graph G = (V,E, c), we show here that an MST for a modified cost function

which meets both upper and lower degree bounds is also an MBDST with analogous

degree bounds and optimal cost in G.

For the sake of completeness, we also present the argument of Könemann and

Ravi [34] that an MDMST for a modified cost function is an MBDST with guarantees

on degree and with cost within a constant factor of the optimal.

An integer linear program for the MBDST problem is given by:

coptB
(G) = min

∑

e∈E

cexe

s.t.
∑

e∈δ(v)

xe ≤ B ∀v ∈ V

x ∈ spG,

xe ∈ {0, 1}

(2.1)

where δ(v) is the set of edges of E that are incident to v, and spG is the convex hull

of edge-incidence vectors of spanning trees of G.
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A vector x ∈ spG, the entries of which are not necessarily all integer, is called

a fractional spanning tree. It can be written as a convex combination of spanning

trees of G. In general we use the notation τ and T to refer to a fractional spanning

tree and a strictly integral spanning tree, respectively. For a fractional tree τ with

edge incidence vector x ∈ spG, let degτ (v) =
∑

e∈δ(v) xe. Now we can write the linear

program relaxation of (2.1) by replacing the integrality constraint by 0 ≤ xe ≤ 1.

Because of the integrality of the spanning tree polytope, we can rewrite the relaxation

as:

min
∑

T∈E

c(T )αT

s.t.
∑

T

degT (v)αT ≤ B
∑

T αT ∀v ∈ V

∑

T αT = 1

αT ≥ 0

(2.2)

where we have a variable αT for each spanning tree T of G, i.e. for each vertex of

spG. Now one can write the dual of this linear program:

optLD(B) = max ν

s.t. ν ≤ c(T ) +
∑

v∈V λv(degT (v)−B) ∀T

λv ≥ 0 ∀v ∈ V

(2.3)

The value optLD(B) of an optimal solution to the dual program is a lower bound

on coptB
(G). This dual linear program, though it has exponentially many constraints,

can be solved in polynomial time; in fact it is equivalent to the Lagrangean dual of

(2.1) used by Könemann and Ravi [34]:

max
λ≥0

min
τ∈spG

{c(τ) +
∑

v∈V

λv(degτ (v)−B)}. (2.4)

Let (αB, λB) be a pair of optimal solutions to the primal and dual. Following the
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analysis of [34], let us define a new cost function cλB

, where cλB

(e) = ce + λB
u + λB

v

for an edge e = (u, v). Let OB be the set {T : αB
T > 0} of spanning trees with

positive αB
T values. The complementary slackness conditions then imply that every

T in OB minimizes c(T ) +
∑

v∈V λv(degT (v) − B). Since
∑

v∈V λvB is independent

of T , we conclude that each tree in OB minimizes c(T ) +
∑

v∈V λv degT (v) = cλB

(T );

i.e. every tree in OB is a minimum spanning tree under the cost function cλB

. The

optimal solution to the linear program is then a fractional MST (again under cλB

):

τB =
∑

T∈OB αB
T T . Note that the degree of v in τB is degτB(v) =

∑

T αB
T degT (v).

Let LB =
{

v : λB
v > 0

}

be the set of nodes with positive dual variables in the

optimal solution. Complementary slackness conditions then imply the following claim.

Lemma 2.2. For all v ∈ V , degτB(v) ≤ B, and for all v ∈ LB, degτB(v) = B.

So we are given the existence of a fractional MBDST τ of G such that τ is in

fact a fractional MST under the cost function cλB

and it meets both upper and lower

degree bounds (i.e. no node in τ has degree more than B and every node in LB has

degree exactly B). We show now that an integral MST, under a slightly different cost

function, that meets the lower degree bounds has cost equal to the cost of τ .

More precisely, let B∗ = B(1 + β), for some β > 0. Let TB∗ ∈ OB∗

, so TB∗

is an

MST under the cost function cλB∗

. Let LB∗

be the set of nodes with positive dual

variables in the optimal fractional LP solution with degree bound B∗. Since λB∗

is a

feasible solution for the dual LP (2.3), it is clear that

c(TB∗

) +
∑

v∈V

λB∗

v (degT B∗ (v)−B) ≤ optLD(B) . (2.5)

Further, if TB∗

has the property that for every node v ∈ LB∗

, degT B∗ (v) is at least

B, the second term in the above expression is non-negative and hence c(TB∗

) is at

most optLD(B). To summarize:
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Theorem 2.3. Let T be an MST of G under the cost function cλB∗

such that for

every v ∈ LB∗

, degT (v) ≥ B. Then c(T ) ≤ optLD(B) ≤ coptB
(G).

Moreover, Könemann and Ravi show that even if TB∗

does not meet lower bounds

on the degrees of vertices, the cost of TB∗

is not too large compared to the cost of τ .

Theorem 2.4 (Könemann -Ravi [34]). Let T be an MST of G under the cost function

cλB∗

. Then c(T ) ≤
(

1 + 1
β

)

optLD(B) .

For the sake of completeness, we include a proof of this result. Let τB∗

=
∑

T∈OB∗ αB∗

T T be an optimal solution to the LP (2.2) for degree bound B∗. Since

λB∗

is a feasible solution for the dual LP (2.3) with degree bound B, it is clear that

c(τB∗

) +
∑

v∈V

λB∗

v (degτB∗ (v)−B) ≤ optLD(B) . (2.6)

Recall that we are guaranteed by complementary slackness conditions that if λB∗

v > 0

then degτB∗ (v) = B∗. Using this fact along with (2.6), we get

optLD(B) ≥
∑

v∈V

λB∗

v (degτB∗ (v)−B)

=
∑

v∈V

λB∗

v (B∗ −B)

= β
∑

v∈V

λB∗

v B.

(2.7)

Now let T be any MST of G under the cost function cλB∗

. Then we arrive at the cost
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bound of T in [34] as follows:

c(T ) = cλB∗

(T )−
∑

v∈V

λB∗

v degT (v)

≤ cλB∗

(τB∗

)

≤ optLD(B) +B
∑

v∈V

λB∗

v by (2.6)

≤
(

1 +
1

β

)

· optLD(B) by (2.7),

from which we conclude Theorem 2.4.

2.7 Tightness of Fischer’s analysis

In this section we show that Fischer’s analysis [14] of the local swap heuristic is nearly

tight. Thus previous search techniques that do not consider multiswap improvements,

i.e. augmenting paths, can provably not get a constant multiplicative factor.

Theorem 2.5. Given any integer t > 1, there exists an asymptotic family of (un-

weighted) graphs 〈Gi〉and locally optimal trees 〈Ti〉 such that the maximum degree in

Ti is at least t times the optimum for Gi.

Proof. We first show a family of instances showing a gap of two. We’ll show an

instance where a locally optimal tree has maximum degree c log n while the optimal

solution has degree c′ log n for some c′ ≤ c
2
. The vertex set consists of a root r, and

sets L and R. The vertices in L are labelled by binary strings of length at most d and

the vertices in R are labelled by tuples (x, j) where x is a binary string of length at

most (d− 1) and j is a number between 1 and (d− |x| − 1). It is easy to check that

the total number of vertices is at most (d + 1)2d which is O(n) for d = c log n, c < 1.

There is a white edges from r to each vertex in L. There are red edges between x
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and (x, j) for each j and blue edges between (x, 2i) and x0 and between (x, 2i + 1)

and x1. There are no L-L or R-R edges.

The locally optimal solution uses all white and red edges and thus the node cor-

responding to the empty string has degree d.3 It is easy to check that this solution is

locally optimal for the single swap heuristic. On the other hand, the solution using all

white and blue edges has maximum degree (on vertex labelled 1) equal to 1+
⌈

d−1
2

⌉

.

Further, a slight modification of this tree gives one of degree at most d
2
. Thus the

local optimum has degree at least twice the global one.

To get a gap of t, we use t-ary strings in the definitions of L and R and have

blue edges from (x, j) to xi when (j mod t = i). It is easy to check that for d =

c logt n, c < 1, this construction gives the claimed gap.

Moreover, note that since the above gap is shown for ∆opt(G) = O(log n), the

additive error of the one-swap heuristic is Ω(log n).

3Strictly speaking, r has the highest degree. However, by replacing the r-L edges by a binary
tree with root r and L as the set of leaves, we can get an instance where it has degree 3.
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Chapter 3

A push-relabel MDMST algorithm

In this chapter, we present a constant-factor approximation algorithm for the MDMST

problem.

We begin by defining notation needed to present the algorithm. Section 3.2 de-

scribes our push-relabel algorithm for the MDMST problem. We give two differ-

ent (and incomparable) bounds on the performance of the algorithm in Sections 3.3

and 3.4. In Section 3.4.2, we use a result of Goemans to derive an algorithm with

an additive error of 2. The push-relabel MDMST algorithm implies a result for the

MBDST problem which is summarized in Section 3.5. Finally, in Section 3.6, we define

a generalization of the MDMST problem, called the Minimum-Degree Minimum-Cost

Base (MDMCB) problem, and show that the push-relabel algorithm extends to this

setting.

3.1 Additional notation

For a subset F ⊆ E of edges and a subset U ⊆ V of nodes, let F (U) denote the set of

edges in F that have both endpoints in U , and let F [U ] denote the set of edges incident

on F , i.e. F (U) = {(u, v) ∈ F : u, v ∈ U} and F [U ] = {(u, v) ∈ F : u ∈ U or v ∈ U}.
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For a node u and a tree T , let ST
u denote the set of swaps (e, e′) in T such that e

is incident on u and e′ is not incident on u. We call a swap (e, e′) in ST
u useful for u

because it can be used to decrease the degree of u; i.e. the degree of u in T \{e}∪{e′}

is one less than that in T .

Let N be the set of nonnegative integers. A labeling l of the nodes is a function

l : V → N. For a labeling l and an integer p, let level p be defined as the set

{v : l(v) = p} of nodes that have label p, and let Wp = {v : l(v) ≥ p} be the set of

nodes with labels at least p. For a real number µ ≥ 1, level p is called µ-sparse if

|Wp| ≤ µ |Wp+1|.

Given a labeling l on V , we extend it to a labeling on E by defining l(e) =

max{l(u), l(v)} for e = (u, v). Given a labeling l and an MST T , a swap (e, e′) ∈ ST
u

is called permissible for u if l(u) ≥ l(e′) + 1. We say that a labeling l is feasible for a

tree T if for all nodes u ∈ V , for every swap (e, e′) ∈ ST
u , l(e) ≤ l(e′) + 1.

We defer the definitions for the MDMCB problem to Section 3.6.1.

3.2 The algorithm

Starting with an arbitrary MST of the graph, our algorithm runs in phases. The

idea is to reduce the maximum degree of the tree in each phase using a push-relabel

technique. If we fail to make an improvement in some phase, we find a certificate of

near-optimality.

More formally, let ∆i be the maximum degree of any node in the tree Ti at the

beginning of phase i, also called the ∆i-phase. During the ∆i-phase, either we modify

Ti to get Ti+1 such that the maximum degree in Ti+1 is less than ∆i, or we output a

certificate that ∆i is close to optimal.

For a general phase of the algorithm, let T be the tree at the beginning of the

phase, and let ∆ be the degree of T . The algorithm maintains a labeling l. In
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addition, each node is given an initial excess. (Excess can also be formally defined

as a function from V to N.) The excess of a node is positive if its degree is at least

∆. We call a vertex that has positive excess overloaded. The algorithm maintains the

invariant that the labeling l is feasible with respect to the current tree T . This notion

of feasibility is crucial in establishing a lower bound on the optimal degree when the

algorithm terminates.

The pr-mdmst algorithm takes as input a graph G and a real-valued parameter

µ ≥ 1. The parameter µ determines the termination condition of the main loop

of the algorithm. In Sections 3.3 and 3.4, we derive two different bounds on the

approximation ratio of the algorithm; the parameter µ is chosen appropriately in the

two cases.

We now describe a general phase of the algorithm. See Figure 3.1 for a formal

description. The phase proceeds as follows: The label l(u) of each node u is initialized

to zero. The excess of each node of degree ∆ is initialized to one; the excess of every

other node is initialized to zero.

Let p be the label of the lowest level containing overloaded nodes. If there is an

overloaded node u in level p that has a permissible, useful swap (e, e′) ∈ ST
u , modify

T by deleting e = (u, v) and adding e′ = (u′, v′). Then decrease the excess on u by

one; if v has positive excess, decrement its excess as well. If u′ now has degree ∆

or more, add one to its excess; if v′ has degree ∆ or more, add one to its excess. If

no overloaded node in level p has a permissible, useful swap, then relabel to p + 1

all overloaded nodes in level p. Repeat this loop until either there are no overloaded

nodes or there is a µ-sparse level. Note that if the phase ends for the former reason,

then the tree at the end of the phase has maximum degree at most ∆ − 1. In the

latter case, we show that ∆ is close to the optimal degree.

If some node gets label n, there is guaranteed to be a 1-sparse level. Thus each

node gets relabeled at most n times per phase, for any choice of the input parameter
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Algorithm pr-mdmst(G,µ)

T ← arbitrary MST of G.
Repeat

∆← maximum degree over nodes in T .
Initialize labels to 0.
Put excess of 1 on nodes with degree ∆.
Put excess of 0 on all other nodes.
Repeat

p← lowest level that contains an overloaded node.
Select the set Up ← overloaded nodes with label p.
If there is a node u ∈ Up that has a permissible, useful swap (e, e′)

where e = (u, v)
T ← T \ {e} ∪ {e′};
Set excess on the endpoints of e to 0;
For each endpoint of e′ that has degree ∆ or more

set its excess to 1.
else

Relabel all nodes in Up to p + 1.
until there are no more overloaded nodes

or there is a µ-sparse level.
until there is a µ-sparse level p∗.
Let F ⊂ T be the edges in T not incident on Wp∗+1.
Output tree T and the pair Wp∗ = (F,Wp∗).

Figure 3.1: A push-relabel algorithm for the MDMST problem.

µ ≥ 1. The total number of iterations of the inner loop in any phase of the algorithm is

therefore bounded by n2. Since each phase (except the last) decreases the maximum

degree of T by one, there are at most n phases. The algorithm therefore runs in

polynomial time.

The algorithm outputs a tree T and a pair Wp∗ = (F,X), where F is a forest on

G and X is a subset of nodes. In the rest of this section, we show how to interpret

(F,X) as a certificate that the degree of T is close to ∆opt(G). We do this in two

different ways, in Sections 3.3 and 3.4, leading to two incomparable bounds on the

approximation ratio of the algorithm.
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Remark. In Section 3.3, we set µ to a constant larger than 2. In this case, the number

of relabels per node is bounded by log2 n, resulting in a faster algorithm.

Remark. The argument in Section 3.4 works even if the algorithm chooses an arbitrary

set of overloaded nodes in the Select step of the algorithm in Figure 3.1 (instead of

using the lowest overloaded level). This leads to a simpler algorithm.

3.2.1 Feasibility

We first prove a crucial lemma.

Lemma 3.1. The algorithm always maintains a feasible labeling.

Proof. We prove this by induction on the number of iterations in a phase. At the

beginning of any phase, all labels are zero, which is a feasible labeling. In one step of

the algorithm, we either update a label or perform a permissible swap (e, e′). Since

we increment the label of a node only when it has no permissible swaps, feasibility is

maintained in the first case.

In the second case, since we change the structure of the tree, the set of available

swaps may change. Consider a feasible swap (e, e′), where e = (u, v) and e′ = (u′, v′),

and the swap is permissible for u or v (or both). Let T be the tree before the (e, e′)

swap, and let T ′ be the tree after the swap. Consider a swap (f, f ′) in T ′. To show

that feasibility is maintained, we need to show that l(f) ≤ l(f ′) + 1.

If the swap (f, f ′) already exists in T , feasibility holds inductively. However, the

swap may have been missing in the tree T , but may appear in tree T ′ for one of the

following three reasons.

• f ′ ∈ T and hence not available for the swap: See Figure 3.2(a). In this case,

f ′ = e. The cycle formed by adding f ′ to T ′ includes e′ and f , otherwise T

already has a cycle. Moreover c(f) = c(f ′) = c(e′). Therefore (f, e′) is a swap
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Figure 3.2: Proof of Lemma 3.1.
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in T , and feasibility in T implies that l(f) ≤ l(e′)+1. On the other hand, since

(e, e′) is a permissible swap in T , l(e) ≥ l(e′)+1. Thus l(f) ≤ l(e′)+1 ≤ l(e) =

l(f ′).

• f 6∈ T and hence not available for the swap: See Figure 3.2(b). In this case,

f = e′. As (e, e′) is a swap in T and (e′, f ′) is a swap in T ′, the cycle formed by

adding f ′ to T includes e, and (e, f ′) is a valid swap in T . l(e) ≤ l(f ′) + 1 by

feasibility of T , and l(e) = l(e′) + 1 by permissibility. Thus l(f) = l(e′) ≤ l(f ′).

• f ∈ T and f ′ 6∈ T : See Figures 3.2(c) and 3.2(d). Since (e, e′) is a swap in

T , there is a unique cycle in T ∪ e′ that contains e. If f does not lie on this

cycle, as illustrated in Figure 3.2(c), the swap (f, f ′) already exists in T and the

claim holds by induction. Otherwise the cycle in T ∪e′ contains f , and the only

structure in which this happens is illustrated in Figure 3.2(d). An MST of G

cannot contain the heaviest edge of any cycle in G. Since e′ is the missing edge

of the cycle in T ∪ e′, it must be the case that c(e′) ≥ c(f) = c(f ′). Similarly,

since f ′ is the missing edge of the cycle in T ∪f ′, c(f ′) ≥ c(e) = c(e). Therefore

c(e) = c(e′) = c(f) = c(f ′). Moreover, (f, e′) and (e, f ′) are both available

swaps in T . Thus l(f) ≤ l(e′) + 1 = l(e) ≤ l(f ′) + 1.

We have shown that, in all cases, the swap (f, f ′) is feasible. Hence the induction

holds.

3.2.2 The witness

In this section, we describe the witness produced by the push-relabel algorithm at

termination to guarantee the near-optimality of the output. Its structure is different

from the witness introduced in Chapter 2, Section 2.5, though it is based on a similar

idea.
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The witness consists of a forest F ⊆ E that is contained in some MST of G, along

with a subset X ⊂ V . A pair (F,X) is a witness if it has the following property: for

every MST T of G containing F , every edge in T \ F is incident on X.

Lemma 3.2. [14] Let W = (F,X) be a witness for a graph G = (V,E) as defined

above. Then any (fractional) minimum spanning tree of G has maximum degree at

least

|V | − |F | − 1

|X| .

Proof. Consider an MST T of G, and let T ′ be an MST containing F that has maximal

intersection with T . By the exchange property, T ′ \F is contained in T . The witness

property implies that every edge in T ′\F is incident on X. Since there are |V |−|F |−1

edges in T ′ \ F , the average degree of X in T ′ \ F , and therefore in T , is at least

|V |−|F |−1
|X|

. Since a fractional MST is a convex combination of integral ones, the claim

follows.

We now show that the pair (F,X) output by the algorithm pr-mdmst is a witness.

Lemma 3.3. Let T be the MST of G and l : V → N the labeling when the algorithm

pr-mdmst terminates. For any integer p, let F be the subset of edges in T that are

not incident on Wp+1, and let X = Wp. Then Wp = (F,X) is a witness.

Proof. Assume the contrary, and let T ′ be an MST of G that contains F and also

contains an edge e′ 6∈ F not incident on Wp. By the exchange property, there is an

edge e ∈ T \ F such that (e, e′) is a swap in T . Since e ∈ T \ F , it is incident on

Wp+1 and thus l(e) ≥ p + 1. On the other hand, e′ is not incident on Wp and thus

l(e′) ≤ p− 1. This, however, contradicts the feasibility of the labeling.

41



3.2.3 Involuntary losses

Let p∗ be the µ-sparse level used by the algorithm to compute a witness. From

Lemma 3.2 and Lemma 3.3, it follows that any (fractional) MST of G has degree at

least

|V | − |F | − 1

|Wp∗|
.

This ratio can be rewritten as

(|V | − |F | − 1)

|Wp∗+1|
· |Wp∗+1|
|Wp∗|

.

Note that the numerator of the first term is precisely the number of edges incident

on Wp∗+1 in T . The second term is bounded by 1
µ
, where µ is the sparseness of level

p∗. The next lemma follows immediately.

Lemma 3.4. Let T be the MST of G, l : V → N the labeling, and p∗ the µ-sparse

level when the algorithm pr-mdmst terminates. Let T [Wp∗+1] be the set of edges in

T incident on Wp∗+1. Then any (fractional) MST of G has degree at least

1

µ
· |T [Wp∗+1]|
|Wp∗+1|

.

Thus, to prove a lower bound on ∆opt(G), we need to lower bound |T [Wp∗+1]|.

Towards this end, we distinguish between two different ways a node can lose degree

during the course of the algorithm.

We say that a swap (e, e′) executed by the algorithm causes a loss in degree to a

node u if e is incident on u. A loss in degree to a node u that is caused by a swap (e, e′)

is called a voluntary loss if u is overloaded before the swap is executed; otherwise it is

called an involuntary loss. By definition, voluntary losses do not decrease the degree
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of a node below ∆− 1. Note that every swap (e, e′) executed by the algorithm causes

a voluntary loss to at least one endpoint of e (and an involuntary loss to at most one

endpoint of e).

Suppose the algorithm terminates with a µ-sparse level in the ∆-phase. The

last time it is relabeled, each node in Wp∗+1 has degree at least ∆ and is therefore

overloaded. If each node in Wp∗+1 suffered only voluntary losses in degree since its

last relabeling, then its degree in T would be at least ∆−1. However, a node in Wp∗+1

may also suffer from involuntarily losses, which may decrease its degree arbitrarily.

Hence a node-by-node analysis is insufficient. To get a lower bound on the average

degree of Wp∗+1 in T , we instead bound the total number of involuntary losses to

nodes in Wp∗+1. We do this in two different ways in the next two sections.

3.3 A constant-factor approximation

In this section, we show that the algorithm outputs a tree T of degree

∆ ≤ 2∆opt(G) + O(
√

∆opt(G)).

To bound the number of involuntary losses, we define a partitioning of the swaps

executed by the algorithm into cascades. Each cascade can be charged to a relabel,

which enables us to bound the number of involuntary losses to Wp∗+1 in terms of the

size of this set.

3.3.1 Cascades

Recall that, for an integer p, Up is defined to be the set of overloaded nodes in level

p. For the purpose of analysis, we introduce the notion of flagging a node. The flag

indicates that the node has been relabeled but its excess has not been removed. In
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addition, we give each node an overloading-swap field. The overloading-swap field of

a node u points to the swap that put excess on it after its last relabel. We start with

all the flags cleared and all overloading-swap fields set to null.

In each iteration of the ∆-phase of the algorithm, we find the lowest p such that

Up is non-empty, i.e. there is an overloaded node with label p. If we can find any

swap (e, e′) that is permissible and useful for a node in Up, we execute the swap and

clear flags (if set) on the endpoints of e. Moreover, for each endpoint u′ of e′ that is

now overloaded, we set the overloading-swap field of u′ to (e, e′). If there is no swap

that is permissible and useful for a node in Up, we increment the label of, set the flag

on, and clear the overloading-swap field for each node in Up.

The following lemma shows that no node has excess larger than one during the

course of the algorithm, which implies, in particular, that the overloading-swap field

is never overwritten before it is cleared to null.

Lemma 3.5. During the ∆-phase, no node ever has degree more than ∆.

Proof. We use induction on the number of swaps executed during the phase. In the

beginning of the phase, the maximum degree is ∆. Any swap (e, e′) decreases the

degree of a node in Up and adds at most one to the degree of a node with strictly

lower label. By choice of p, all nodes with lower labels have degree at most ∆ − 1

before the swap. Since a swap adds at most one to the degree of any vertex, the

induction holds. The lemma follows.

We define the label of a swap (e, e′) to be the label of e when the swap is executed.

We call a swap a root swap if it is useful for a flagged node. Note that a flagged node

has its overloading-swap field set to null. Let (e, e′) be a non-root swap that occurs

in the sequence of swaps executed by the algorithm. The swap (e, e′) is executed in

order to relieve the excess of an endpoint u of e. Let (f, f ′) be the swap pointed to

by the overloading-swap field for node u when swap (e, e′) is executed. Thus (f, f ′) is
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the last swap in the sequence that increases the degree of u and precedes (e, e′). We

call (f, f ′) the parent swap of (e, e′). Note that the flagging procedure ensures that

every non-root swap executed by the algorithm has a parent.

A label-p swap, by definition, reduces the degree of a node with label p. Since

excess flows from a higher-labeled node to a lower-labeled node, the label of every

non-root swap is strictly smaller than the label of its parent. The parent relation

naturally defines a directed graph on the set of swaps, each component of which is an

in-tree rooted at one of the root swaps. We define a cascade to be the set of swaps in

a component of this DAG. In other words, a cascade corresponds to the set of swaps

sharing the same root swap as an ancestor. Note that the cascades may be interleaved

in the sequence of swaps executed by the algorithm. The label of a cascade is defined

to be the label of the root swap in it.

Each swap is the parent of at most two swaps which each have a strictly smaller

label. Thus it follows that:

Lemma 3.6. A label-p cascade contains at most 2p−q label-q swaps.

We say that an involuntary loss is contained in a cascade if some swap in the

cascade causes it. Since each swap causes at most one involuntary loss, the lemma

above implies:

Corollary 3.7. A label-p cascade contains at most (2p−q+1− 1) involuntary losses to

nodes with labels at least q.

Proof. An involuntary loss to a label-r node must be caused by a swap with label

at least r. The bound follows by summing the number of swaps with label r, for r

between q and p.
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3.3.2 Computing the approximation ratio

Armed with the bound of Corollary 3.7, we now proceed to lower bound ∆opt(G).

Recall from Section 3.2.3 that it suffices to lower bound the average degree of Wp∗+1

in T , where Wp∗ is a µ-sparse level and T is the tree output by the algorithm.

Lemma 3.8. Let p be an integer greater than p∗. Then |Wp| > µ |Wp+1|.

Proof. Each iteration of a phase of the algorithm decreases the size of at most one

level p and increases the size of the level p + 1. Thus the only level that can go from

not being µ-sparse to being µ-sparse is level p. Since the algorithm terminates as

soon as it finds a µ-sparse level, it terminates with exactly one µ-sparse level.

Lemma 3.9. The number of involuntary losses to nodes in Wp∗+1 is at most

2 |Wp∗+1|
(

µ

µ− 2

)

.

Proof. Each involuntary loss to a node in Wp∗+1 occurs in a cascade, and by Corol-

lary 3.7, the number of involuntary losses to nodes in Wp∗+1 in a label-p cascade is

at most 2p−p∗ . The total number of involuntary losses to nodes in Wp∗+1 during the

course of the phase is at most

∑

p≥p∗+1

2p−p∗|Wp| <
∑

p≥p∗+1

2p−p∗ |Wp∗+1|
µ p−p∗−1

= 2 |Wp∗+1|
∑

p≥p∗+1

(

2

µ

)p−p∗−1

= 2|Wp∗+1|
(

µ

µ− 2

)
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We are now ready to establish the approximation ratio of the algorithm.

Theorem 3.10. Given a graph G and a constant µ > 2, the pr-mdmst algorithm

obtains in polynomial time an MST of degree ∆, where

∆ ≤ µ ∆opt(G) + 2 +
2µ

µ− 2
.

Proof. The pr-mdmst algorithm, when executed on graph G, terminates with a tree

T and a pairWp∗ = (F,X). We now compute the number |T [Wp∗+1]| of edges incident

on Wp∗+1 in T . Each node in Wp∗+1 has degree at least (∆−1) after its last voluntary

loss, and it may then suffer some involuntary losses. Using the bound from Lemma 3.9,

the sum of degrees of nodes in Wp∗+1 in T is at least
(

∆− 1− 2µ
µ−2

)

|Wp∗+1|. Since

there are at most |Wp∗+1| − 1 edges in T that have both endpoints in Wp∗+1, the

number of edges in T that are incident on Wp∗+1 is at least
(

∆− 2− 2µ
µ−2

)

|Wp∗+1|.

Thus from Lemma 3.4,

∆opt(G) ≥
(

∆− 2− 2µ

µ− 2

)

1

µ
.

Rearranging, we get ∆ ≤ µ ∆opt(G) + 2 + 2µ
µ−2

.

Setting µ to be 2 + 2√
∆opt(G)

, we get

∆ ≤ 2∆opt(G) + 4
√

∆opt(G) + 4.

Corollary 3.11. Given a graph G, there is a polynomial-time algorithm that outputs

an MST of degree ∆, where

∆ ≤ 2∆opt(G) + O(
√

∆opt(G)).
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3.4 An additive approximation

In this section, we show a different upper bound on the performance of the algorithm

that is better than the bound in the previous section if the graph G is everywhere-

sparse, i.e. for every subset U of nodes, the induced subgraph on U is sparse.

More precisely, for a graph G, let the local density s(G) be defined as the density

of the densest subgraph of G:

s(G) = max
U⊂V

{ |E(U)|
|U |

}

.

We show that on input G and µ = 1, the pr-mdmst algorithm outputs an MST of

degree at most ∆opt(G)+s(G). In Section 3.4.2, we combine this result with a lemma

from Goemans [19] to get a (∆opt(G) + 2)-algorithm.

3.4.1 A density-based bound

Let T be the tree and Wp∗ the witness output by the pr-mdmst algorithm on input

G and µ = 1. Let ∆ be the degree of T . Since µ = 1, the sets Wp∗ and Wp∗+1 must

be equal, and hence, level p∗ is empty when the algorithm terminates. The following

lemma bounds |T [Wp∗+1]|.

Lemma 3.12. Let T be the MST, l the labeling, and p∗ the empty level when the

algorithm pr-mdmst terminates. Let E(Wp∗+1) be the set of edges in G that have

both endpoints in Wp∗+1. Then the number of edges in T that are incident on Wp∗+1

is at least

(∆− 1) |Wp∗+1|+ 1− |E(Wp∗+1)| .

Proof. For a node u ∈ Wp∗+1, let T [u] ⊂ T be the set of edges in T incident on u, and
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let L[u] ⊂ E be the set of edges that node u loses involuntarily after its last voluntary

loss. Since each node has degree at least ∆− 1 after its last voluntary loss, it follows

that

|T [u]| ≥ ∆− 1− |L[u] \ T [u]| .

Moreover, if v is the last node to be relabeled, |T [v]| ≥ ∆. Thus the sum of degrees

of nodes in Wp∗+1 in T is at least

(∆− 1) |Wp∗+1|+ 1−
∑

u∈Wp∗+1

|L[u] \ T [u]| .

An edge (u, v) may be in L[u] or L[v] but not both. It follows that

∑

u∈Wp∗+1

|L[u] \ T [u]| ≤
∣

∣∪u∈Wp∗+1
(L[u] \ T [u])

∣

∣ .

Recall that every involuntary loss to a node in Wp∗+1 comes from an edge in E(Wp∗+1).

Thus each edge in ∪u∈Wp∗+1
(L[u] \ T [u]) is in E(Wp∗+1) \ T (Wp∗+1).

An edge (u, v) in T (Wp∗+1) contributes to both T [u] and T [v]. Thus the number

of edges in T incident on Wp∗+1 is

∑

u∈Wp∗+1

|T [u]| − T (Wp∗+1)

≥ (∆− 1) |Wp∗+1|+ 1−
∣

∣∪u∈Wp∗+1
(L[u] \ T [u])

∣

∣− T (Wp∗+1)

≥ (∆− 1) |Wp∗+1|+ 1− |E(Wp∗+1) \ T (Wp∗+1)| − T (Wp∗+1)

≥ (∆− 1) |Wp∗+1|+ 1− |E(Wp∗+1)|

We now use the bound on |T [Wp∗+1]| in Lemma 3.12 to prove a lower bound on

∆opt(G).
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Theorem 3.13. Let T and Wp∗ be the output of the pr-mdmst algorithm given a

graph G and µ = 1. Then the degree ∆ of T is bounded by ∆opt(G) +
⌈

s(G)
⌉

.

Proof. From Lemma 3.12, the number of edges in T incident on Wp∗+1 is at least

(∆− 1) |Wp∗+1|+ 1− |E(Wp∗+1)| .

By the definition of local density,

|E(Wp∗+1)|
|Wp∗+1|

≤ s(G).

Lemma 3.4 then implies that

∆opt(G) ≥ ∆− s(G)− 1 +
1

|Wp∗+1|
.

Since ∆opt(G) is an integer, we conclude that ∆opt(G) ≥ ∆−
⌈

s(G)
⌉

.
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3.4.2 An additive error of 2

Goemans [19] shows that the support of the natural linear program from the MDMST

problem is sparse. Given a graph G, he considers the following linear program:

min c(x) =
∑

e

cexe

subject to:

∑

e

cexe = C∗

x(E(S)) ≤ |S| − 1 S ⊂ V

x(E(V )) = |V | − 1

x(δ(v)) ≤ k v ∈ V

xe ≥ 0 e ∈ E

where C∗ is the cost of an MST in G. One can do a binary search on the value of k

to find the smallest k for which a solution exists, i.e. to find a lower bound on the

value of ∆opt(G). Let x∗ be an optimal extreme-point solution to the above linear

program for a graph G and for k ≤ ∆opt(G). Let E∗ denote the support of x∗, i.e.

E∗ = {e ∈ E : x∗
e > 0}. Theorem 5 in Goemans [19] can be paraphrased as:

Theorem 3.14 (Goemans [19, Theorem 5]). The local density of the graph G∗ =

(V,E∗) is less than 2.

We first argue that ∆opt(G) = ∆opt(G
∗). Since x∗

e = 0 for all e 6∈ E∗, it follows that

x∗ is a feasible solution to the linear program for G∗ = (V,E∗), and so ∆opt(G
∗) ≤

∆opt(G). Since G∗ is a subgraph of G, ∆opt(G
∗) ≥ ∆opt(G). We conclude that

∆opt(G) = ∆opt(G
∗).

Since the linear program can be solved efficiently, we can compute the graph G∗

51



in polynomial time. Our (∆opt(G) + 2)-algorithm computes the graph G∗ and then

runs the algorithm pr-mdmst with input G∗ and µ = 1. By Theorem 3.13, the tree

T output by the algorithm has degree most ∆opt(G) + 2. Theorem 3.15 summarizes.

Theorem 3.15. Given a graph G, there is a polynomial-time algorithm that computes

an MST of G with degree at most ∆opt(G) + 2.

3.5 An MBDST algorithm

From Theorem 2.4 and Theorem 3.11, we derive the following theorem.

Theorem 3.16. For any β > 0, there is a polynomial-time algorithm that, given a

graph G and degree bound B, computes a spanning tree T with maximum degree at

most 2 (1 + β) B + O(
√

(1 + β) B) and cost at most
(

1 + 1
β

)

coptB
(G).

For example, for β = 1, we produce a spanning tree of cost at most twice the

optimal and of degree at most 4B + 4
√

2B + O(1).

3.6 The MDMCB problem

In this section, we consider a generalization of the MDMST problem.

3.6.1 Definitions

Recall that a matroid is defined to be a pair M = (E, I), where E is a ground set of

elements and I is a family of independent sets such that (i) ∅ ∈ I, (ii) A ∈ I, B ⊆ A

imply that B ∈ I, and (iii) A,B ∈ I, |A| > |B| imply that there exists e ∈ A \ B

with B ∪ {e} ∈ I. A maximum-cardinality independent set of M is called a base of

M .
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Let c : E → R+ be a non-negative cost function on the ground set of M . A base T

of M that minimizes the cost c(T ) =
∑

e∈T c(e) is referred to as a minimum-cost base

(MCB). Let xT ∈ {0, 1}|E| be the incidence vector of an MCB T . We say a vector

x ∈ [0, 1]|E| is a fractional MCB if it is the convex combination of incidence vectors

of MCB’s.

Recall that a hypergraph G = (V,E) consists of a set of nodes V and hyperedges

E ⊆ 22V

, i.e. each hyperedge is a subset of vertices. We say G is a k-ary hypergraph

if the cardinality of each edge in E is at most k. If u ∈ e, we say that node u is

an endpoint of e and that e is incident on u. For a subset F ⊆ E of edges and

a node u ∈ V , we define the degree of u in F to be |{e ∈ F : u ∈ e}|. The degree

of F is then defined as the maximum over u ∈ V of the degree of u in F , i.e.

maxu |{e ∈ F : u ∈ e}|. Further, let F (U) and F [U ] denote the sets {e ∈ F : e ⊂ U}

and {e ∈ F : e ∩ U 6= ∅} respectively.

We can now formally define the minimum-degree minimum-cost base (MDMCB)

problem. The input to the problem is a k-ary hypergraph G = (V,E) and a matroid

M with E as its ground set.

MDMCB Problem: Given a k-ary hypergraph G = (V,E) and a weighted matroid

M = (E, I, c), find an MCB of M that has minimum degree in G.

Let ∆opt(G,M) denote the optimal degree for an instance of MDMCB.

3.6.2 The MDMCB algorithm

Our algorithm for MDMCB is a generalization of the pr-mdmst algorithm. To define

it formally, we first define some analogous concepts. Given an MCB T of a matroid

M , a pair (e, e′) of elements in E is a swap in T if e ∈ T , e′ 6∈ T , and T \ {e} ∪ {e′}

is also an MCB of M . The label and excess of a node in V can be defined exactly as

in Section 3.2. A labeling l : V → N is extended to a labeling on the ground set E
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as follows: for e ∈ E, l(e) = maxu∈e l(u).

For a node u ∈ V , we let ST
u denote the set of swaps (e, e′) in T such that e is

incident on u but e′ in not incident on u. We call a swap (e, e′) in ST
u useful for u

because it can be used to decrease the degree of u. We say a swap (e, e′) in T is

feasible for a labeling l if l(e) ≤ l(e′) + 1. As in Section 3.2, a labeling l : V → N is

defined to be feasible for an MCB T if for all nodes u ∈ V , for all swaps (e, e′) ∈ ST
u ,

l(e) ≤ l(e′) + 1. Given a labeling l and an MCB T , a swap (e, e′) ∈ ST
u is called

permissible for u if l(u) ≥ l(e′) + 1.

Our pr-mdmcb algorithm is defined exactly as the push-relabel algorithm de-

scribed in Figure 3.1, except that it takes as input a k-ary hypergraph G = (V,E)

and a weighted matroid M on ground set E, in addition to the parameter µ. To

prove that the pr-mdmcb algorithm works correctly, we first show that feasibility is

maintained in any iteration of the algorithm.

3.6.3 Feasibility

Lemma 3.17. The pr-mdmcb algorithm always maintains a feasible labeling.

Proof. As in Lemma 3.1, we show this by induction on the number of iterations in a

phase. In the beginning of any phase of the algorithm, all nodes and hence all edges

e have label 0, which is a feasible labeling. In one step of the algorithm, we either

update a label or execute a permissible swap (e, e′). Since we increment the label of

a node only when it has no permissible swaps, feasibility is maintained in the first

case.

To prove that feasibility is maintained when a permissible swap is executed, we

make use of the rank function r : 2E → N of the matroid M . For a subset E ′ ⊆

E, the rank r(E ′) is defined to be maxF⊆E′:F∈I |F |. For any subsets A,B ⊆ E,

the rank function r satisfies (i) r(A) ≤ |A|, (ii) r(A) ≤ r(B) if A ⊆ B, and (iii)
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r(A ∪ B) + r(A ∩ B) ≤ r(A) + r(B). Note that A is a base of M if and only if

r(A) = r(M).

Let T be the current MCB after executing a sequence of swaps, so that the labeling

l is feasible for T . Let (e, e′) be the permissible swap executed in the current iteration,

and let (f, f ′) be a swap in T ′ = T \ {e} ∪ {e′}. If (f, f ′) is a swap in T , then by the

inductive condition, l(f) ≤ l(f ′) + 1.

Thus it remains to consider a pair (f, f ′) that is a swap in T ′ but not in T . There

are three cases:

• f ′ ∈ T and hence not available for the swap: In this case, e = f ′. We observe

that T \ {f} ∪ {e′} = (T \ {e} ∪ {e′}) \ {f} ∪ {f ′} = T ′ \ {f} ∪ {f ′}, which

is an MCB of M since (f, f ′) is a swap in T ′. Thus the pair (f, e′) is a swap

in T . By feasibility of (f, e′) and permissibility of (e, e′), we conclude that

l(f) ≤ l(e′) + 1 = l(e) = l(f ′).

• f 6∈ T and hence not available for the swap: In this case e′ = f . We observe

that T \ {e} ∪ {f ′} = (T \ {e} ∪ {e′}) \ {f} ∪ {f ′} = T ′ \ {f} ∪ {f ′}, which

is an MCB of M since (f, f ′) is a swap in T ′. Thus the pair (e, f ′) is a swap

in T . By permissibility of (e, e′) and feasibility of (e, f ′), we conclude that

l(f) = l(e′) = l(e)− 1 ≤ l(f ′).

• f ∈ T and f ′ 6∈ T : Note that since (f, f ′) is not a swap in T but is a swap in

T ′, r(T \ {f} ∪ {f ′}) = r(M)− 1.

We first claim that T \{e}∪{f ′} is a base of M . Suppose not. Then r(T \{e}∪

{f ′}) = r(M)−1. By submodularity of the rank function, r(T \{e, f}∪{f ′})+

r(T ∪{f ′}) ≤ r(T \ {e}∪ {f ′}) + r(T \ {f}∪ {f ′}). Thus r(T \ {e, f}∪ {f ′}) =

r(M)−2 so that r(T \{e, f}∪{e′, f ′}) ≤ r(M)−1, which contradicts that fact

that (f, f ′) is a swap in T ′.

We now argue that T \ {f} ∪ {e′} is also a base of M . Suppose not. Then
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r(T \ {f} ∪ {e′}) = r(M) − 1. Once again submodularity tells us that r(T \

{f}∪{e′, f ′})+ r(T \{f}) ≤ r(T \{f}∪{e′})+ r(T \{f}∪{f ′}) ≤ 2r(M)− 2.

Thus r(T \ {f} ∪ {e′, f ′}) ≤ r(M) − 1. This then implies that r(M) = r(T ′ \

{f} ∪ {f ′}) = r(T \ {e, f} ∪ {e′, f ′}) ≤ r(M) − 1, which again contradicts the

fact that (f, f ′) is a swap in T ′.

Since T , T \ {e} ∪ {f ′}, and T \ {f} ∪ {e′} are all bases of M , and T is an

MCB, it follows that c(f ′) ≥ c(e) and c(e′) ≥ c(f). Since c(e) = c(e′) and

c(f) = c(f ′), we conclude that c(e) = c(f). Thus (e, f ′) and (f, e′) are both

swaps in T . By feasibility of these swaps and permissiblity of (e, e′), we conclude

that l(f) ≤ l(e′) + 1 = l(e) ≤ l(f ′) + 1.

We have shown that, in all cases, the swap (f, f ′) is feasible. Hence the induction

holds.

3.6.4 The witness

The concept of the witness generalizes to the MDMCB problem. We define a witness

to be a pair (F,X) where F ⊆ E is a subset of some MCB and X ⊆ V has the

property that in any MCB T of M containing F , each edge in T \F is incident on X

in G. The following lemma is analogous to Lemma 3.2 and follows from essentially

the same arguments.

Lemma 3.18. Let W = (F,X) be a witness as defined above for a hypergraph G

and a matroid M . Then any (fractional) MCB of M has maximum degree at least

r(M)−|F |
|X|

in G.

3.6.5 A constant-factor approximation

We now give generalizations of other results from Sections 3.2 and 3.3. Generalizations

of Lemmas 3.3, 3.4, 3.5, and 3.8 are immediate. The observation that each swap is a
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parent of at most k swaps leads to Lemma 3.19, which is an analogue of Lemma 3.6.

Corollary 3.20 is analogous to Corollary 3.7.

Lemma 3.19. A label-p cascade contains at most kp−q label-q swaps.

Corollary 3.20. A label-p cascade contains at most (kp−q+1 − 1) involuntary losses

to nodes with labels at least q.

Proof. From Lemma 3.19, the total number of swaps with label at least q in a label-p

cascade is at most kp−q+1−1
k−1

. The corollary follows from the fact that each swap causes

at most (k − 1) involuntary losses.

Lemma 3.21. The number of involuntary losses to nodes in Wp∗+1 is at most

k|Wp∗+1|(
µ

µ− k
).

The proof of Lemma 3.21 is analogous to the proof of Lemma 3.9.

We conclude with an approximation guarantee for the matroid variant of the pr-

mdmst algorithm:

Theorem 3.22. Given a k-ary hypergraph G = (V,E), a weighted matroid M =

(E, I, c), and a real-valued parameter µ > k, the pr-mdmcb algorithm obtains in

polynomial time an MCB of degree ∆, where ∆ ≤ kµ ∆opt(G,M) + 1 + kµ
µ−k

.

Proof. On input(G,M, µ), the pr-mdmst algorithm terminates with a maximum

independent subset T and a pair Wp∗ = (F,X). We now compute the number

|T [Wp∗+1]| of edges in T incident on Wp∗+1. Each node in Wp∗+1 has degree at least

(∆ − 1) after its last voluntary loss, and it may then suffer some involuntary losses.

Using the bound from Lemma 3.21, the total loss in degree to Wp∗+1 from involuntary

losses is kµ
µ−k
|Wp∗+1|. The sum of degrees in T of nodes in Wp∗+1 is therefore at least

(∆ − 1 − kµ
µ−k

) |Wp∗+1|. Since each edge is incident on at most k nodes, the number
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|T [Wp∗+1]| of edges in T incident on Wp∗+1 is at least ( 1
k
) times this sum of degrees.

Thus from the generalization of Lemma 3.4,

∆opt(G,M) ≥
(

∆− 1− kµ

µ− k

)

1

kµ
.

Rearranging, we get

∆ ≤ kµ ∆opt(G,M) + 1 +
kµ

µ− k

Remark: The bound above does not strictly generalize the bound in Theorem 3.10

since we do not have the structure necessary the bound the number of edges internal

to Wp∗+1 as we did in the proof of Theorem 3.10. Instead we use a cruder argument

to lower bound the cardinality of T [Wp∗+1].

Choosing µ = k +
√

k
∆opt(G,M)

, we get the following bound.

Corollary 3.23. Given a hypergraph G and a matroid M , there is a polynomial-time

algorithm that outputs an MCB of degree ∆, where

∆ ≤ k2∆opt(G,M) + 2k
3
2

√

∆opt(G,M) + k + 1.

3.6.6 A density-based bound

In this section, we generalize the result of Section 3.4.1. We first define a notion of

density for a hypergraph. Given a hypergraph G = (V,E) and a subset U ⊆ V , we

define the density of U to be the ratio
P

e∈E[U ](|e∩U |−1)

|U |
. In other words, each edge e

incident on U contributes |e ∩ U | − 1 to the numerator. The local density s(G) of

a hypergraph G is the defined to be the maximum density of any subset of V , i.e.

s(G) = maxU⊆V

P
e∈E[U ](|e∩U |−1)

|U |
.
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Let T be the tree and Wp∗ the witness output by the pr-mdmcb algorithm on

input (G,M) and µ = 1. Let ∆ be the degree of T . Since µ = 1, the sets Wp∗ and

Wp∗+1 must be equal, and hence, level p∗ is empty when the algorithm terminates.

The following lemma is an analogue of Lemma 3.12.

Lemma 3.24. Let T be the MCB, l the labeling, and p∗ the empty level when the

algorithm pr-mdmcb terminates. Then the number of edges in T that are incident

on Wp∗+1 is at least (∆− 1) |Wp∗+1|+ 1−∑u∈E[Wp∗+1](|e ∩Wp∗+1| − 1).

Proof. For a node u ∈ Wp∗+1, let T [u] ⊂ T be the set of edges in T incident on u,

and let L[u] ⊂ E be the set of edges that node u loses involuntarily after its last

voluntary loss. Since each node has degree at least ∆− 1 after its last voluntary loss,

it follows that |T [u]| ≥ ∆ − 1 − |L[u] \ T [u]|. Moreover, if v is the last node to be

relabeled, |T [v]| ≥ ∆. Thus the sum of degrees of nodes in Wp∗+1 in T is at least

(∆− 1) |Wp∗+1|+ 1−∑u∈Wp∗+1
|L[u] \ T [u]|.

An edge e may be in L[u] for at most |e ∩Wp∗+1| − 1 nodes u ∈ e. It follows that

∑

u∈Wp∗+1

|L[u] \ T [u]| ≤
∑

e∈∪u∈Wp∗+1
(L[u]\T [u])

|e ∩Wp∗+1| − 1.

Moreover, ∪u∈Wp∗+1
(L[u] \ T [u]) is a subset of E[Wp∗+1] \ T [Wp∗+1].

An edge e in T [Wp∗+1] contributes to T [u] for each endpoint u ∈ e ∩Wp∗+1, and

thus is counted |e ∩Wp∗+1| times in the sum of degrees of nodes in Wp∗+1 in T . Thus
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the number |T [Wp∗+1]| of edges in T incident on Wp∗+1 is

∑

u∈Wp∗+1

|T [u]| −
∑

e∈T (Wp∗+1)

(|e ∩Wp∗+1| − 1)

≥ (∆− 1) |Wp∗+1|+ 1−
∑

u∈Wp∗+1

|L[u] \ T [u]| −
∑

e∈T (Wp∗+1)

(|e ∩Wp∗+1| − 1)

≥ (∆− 1) |Wp∗+1|+ 1−
∑

u∈E[Wp∗+1]\T [Wp∗+1]

(|e ∩Wp∗+1| − 1)−
∑

e∈T (Wp∗+1)

(|e ∩Wp∗+1| − 1)

= (∆− 1) |Wp∗+1|+ 1−
∑

u∈E[Wp∗+1]

(|e ∩Wp∗+1| − 1)

We now use the above bound on |T [Wp∗+1]| to prove a lower bound on ∆opt(G,M).

Theorem 3.25. Let T and Wp∗ be the output of the pr-mdmcb algorithm given

a hypergraph G, a matroid M , and µ = 1. Then the degree ∆ of T is at most

∆opt(G,M) +
⌈

s(G)
⌉

.

Proof. From Lemma 3.24, the number of edges in T incident on Wp∗+1 is at least

(∆− 1) |Wp∗+1|+ 1−∑u∈E[Wp∗+1](|e ∩Wp∗+1| − 1). By the definition of local density,

the ratio

P
u∈E[Wp∗+1](|e∩Wp∗+1|−1)

|Wp∗+1| is at most s(G). An analogue of Lemma 3.4 then

implies that ∆opt(G,M) ≥ ∆ − s(G) − 1 + 1

|Wp∗+1| . Since ∆opt(G,M) is an integer,

we conclude that ∆opt(G,M) ≥ ∆−
⌈

s(G)
⌉

.

We note that we are not aware of an analogue of Theorem 3.14 for the MDMCB

problem. Such an analogue would imply an additive approximation via Theorem 3.25.
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Chapter 4

MSTs with degree bounds

In Chapter 2, we show that the problem of finding an MBDST can be reduced to

the problem of finding an actual MST, under a different cost function, that satisfies

upper and lower bounds on the degrees of nodes. This secondary problem is the main

subject of this chapter.

We begin by giving a formal definition of the Minimum Spanning Tree with Degree

Bounds (MSTDB) problem, as well as some necessary notation. In Section 4.3, we

describe polynomial-time algorithms that enforce upper bounds and lower bounds

separately; the algorithms are then carefully combined to obtain a polynomial-time

algorithm for the MSTDB problem. Section 4.4 presents the corresponding result

for the MBDST problem. In Sections 4.5, we show how to replace the sub-routines

of Section 4.3 with algorithms based on augmenting paths that achieve much better

approximations in degree but may take quasi-polynomial time. The corresponding

result for the MBDST problem appears in Section 4.6.

61



4.1 The MSTDB problem

In Chapter 2, Section 2.6, we show that a true approximation algorithm for the

MBDST problem can be obtained from an algorithm that finds an MST that meets

upper and lower bounds on degree. Hence, we formally define the Minimum Spanning

Tree with Degree Bounds (MSTDB) problem as follows:

MSTDB Problem: Given a weighted graph G = (V,E, c), a degree upper bound

BH , a subset of vertices L ⊆ V , and a degree lower bound BL, find, if one exists, a

minimum spanning tree of G such that no vertex has degree more than BH and all

vertices in L have degree at least BL.

Note that an MST with these degree bounds may not exist in the graph. In this

case, we would like an algorithmic solution to provide a proof of non-existence.

4.2 Additional notation

For a tree T , let dL
min(T ) = minv∈L degT (v). For symmetry of notation, we let

dmax(T ) = ∆(T ) = maxv∈V degT (v). For an integer d > 0 and a tree T , let S≥d

be the set of nodes with degree at least d in T , and let SL
≤d be the subset of nodes in

L that have degree at most d.

For a tree T and a cluster C ⊆ V of nodes, we say C is internally connected in T

if the induced subgraph (C, TC) is connected, where TC = {(u, v) ∈ T : u, v ∈ C}.

4.3 MSTDB: A Polynomial-time algorithm

Our polynomial-time algorithm MstdbP for the MSTDB problem is based on Fischer’s

algorithm [14] for finding a minimum-degree MST of a graph. Our algorithm finds an
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MST such that (a) every vertex has degree at most bBH + logb n and (b) all vertices

in L have degree at least BL/b− logb n. If it fails, it finds a combinatorial witness to

show that there exists no MST of the graph in which all vertices have degree at most

BH and the vertices in L have degree at least BL.

Starting with an arbitrary MST, our MstdbP algorithm proceeds in phases of im-

provement. Each phase is essentially a combination of the two algorithms MaxdmstP

and MindmstP, which are described in Sections 4.3.1 and 4.3.2. The MaxdmstP al-

gorithm is essentially Fischer’s algorithm, and MindmstP is a somewhat symmetric

version of Fischer’s algorithm that finds an MST in which a given set of nodes have

maximum minimum degree.

To measure the progress made by our algorithm, we define a potential function

φ(T ) on the set of all MSTs. The potential function has two components: φH(T ) and

φL(T ). The potential function φH(T ) decreases as we move towards a tree in which

more vertices satisfy a degree upper bound of BH , and the potential function φL(T )

decreases as we move towards a tree in which more vertices in L satisfy the degree

lower bound of BL. The potential functions are defined as follows:

φH(T ) =
∑

v

5deg(v)−BH

φL(T ) =
∑

v∈L

5BL−deg(v)

φ(T ) = φH(T ) + φL(T )

Note that for d > BH , performing a swap that decreases the number of vertices

with degree at least d in a tree T decreases the potential φH(T ), since the swap

does not increase the number of vertices with degree at most d − 1 by more than

2. Similarly, for d < BL, the potential φL(T ) decreases if a swap is performed that

decreases the number of vertices in L with degree at most d, since the swap does not
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Algorithm MaxdmstP(G, T,X, d)

Let T ⊆ T be a Steiner tree on S≥(d−1).
Freeze the edges of T incident on S≥(d−1).
if there is an (X, d)-deflating swap (e, e′) where e is not frozen

then output T \ {e} ∪ {e′}.

Figure 4.1: Pseudo-code for MaxdmstP.

increase the number of vertices in L with degree at least d + 1 by more than 2.

4.3.1 The MaxdmstP algorithm

Given an MST T of G, let T ⊆ T be a Steiner tree on the nodes of S≥(d−1) (the

Steiner nodes are the nodes in V \ S≥(d−1)). We say that we freeze the edges of T

incident on S≥(d−1), meaning that the edges of T that are incident on S≥(d−1) are not

allowed to be removed by any swap. For a subset X ⊆ V , an integer d > 0, and a tree

T on G, a swap (e, e′) is called (X, d)-deflating if e is incident on S≥d but not on X,

and e′ is not incident on S≥(d−1). In other words, the swap (e, e′) decreases the degree

of a node in S≥d without increasing the degree of a node in S≥(d−1) or decreasing the

degree of a node in X. We look for (X, d)-deflating swaps (e, e′) where e is not frozen.

Given an MST T , a set X of nodes, and an integer d, the MaxdmstP algorithm is

very simple: first freeze the edges of T incident on S≥(d−1) as above. Find and execute

an (X, d)-deflating swap (e, e′) where e is not frozen, if it exists. See Figure 4.1 for a

formal description.

When the MaxdmstP and MindmstP algorithms are combined later, X corresponds

to the set of low-degree nodes. Since we do not want the low-degree nodes to lose

degree, we disallow deletion of edges incident on them. The Steiner tree T is frozen

to help create the witness when the algorithm fails to find a swap.

To show that the MaxdmstP algorithm works as promised, we need to use a some-
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what more complicated witness than the one described in Chapter 2, Section 2.5.

A witness W consists of a partition of the nodes into a center set U and clusters

C1, C2, . . . , Ck, a set W ⊇ U of nodes, and a set F of frozen edges. The witness W

must have the property that any MST that includes the edges in F must contain

at least one edge from each Ci to W . Thus this witness is similar to the witness

described in Chapter 2 except for the set F of frozen edges. See Figure 4.2.

Intuitively, W is a set of high-degree vertices, and U is a set of “incurably” high-

degree nodes; i.e. their degree cannot be decreased without increasing the degree of

W . The set F of frozen edges is useful technically in the proofs. If the size of F is

small and k is large, then any MST must use a large number of edges incident on W .

Lemma 4.1 (Witness to high optimal degree). A high-degree witness W =

({U,C1, C2, . . . , Ck},W, F ) certifies that any fractional MST τ of G has maximum

degree at least
(

k − 2 |F |
|W |

)

Proof. First we restrict ourselves to MSTs that contain all the edges in F . The proof

in this case is identical to that of Lemma 2.1 except for the following difference: Unlike

the witness in Lemma 2.1, W may not be disjoint from the Ci’s. However any edge

that simultaneously connects Ci and Cj to W (i.e. an edge from Ci ∩W to Cj ∩W )

contributes two units of degree to W . The bound in Lemma 2.1 therefore continues

to hold.

In any MST that does not contain all the edges of F , the total degree of W can be

smaller by at most 2 |F |. The average degree of W is therefore at least (k−2 |F |)/ |W |

in any MST of G. Since a fractional MST is a convex combination of MSTs, the

average degree bound also holds for any fractional MST.

If the MaxdmstP algorithm fails to find a swap, we can create a witness as follows.
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W

C1

At least one of
these in every 
MST

U

Figure 4.2: Example of a high-degree witness, as used in Lemma 4.1. The double
edges are frozen.

Let U = S≥d be the center set. Let C1, C2, . . . , Ck be the connected components

obtained by deleting the nodes in U from the current MST T . We set F to be the

union of the set of edges of T incident on S≥(d−1) and the set of edges in T belonging to

X ×S≥d. Finally W is the set S≥(d−1). Theorem 4.2 calculates the guarantees offered

by this witness. With some foresight, we assume that X is chosen appropriately.

Theorem 4.2 ([14]). Suppose we are given as input an MST T , an integer d and

a set of nodes X such that X = SL
≤(BL+BH−d+1). When the algorithm MaxdmstP is

called on this input, it either outputs a tree with potential function value at most

φ(T )− 5d−BH−1, or finds a witness W that certifies that for any fractional MST τ of

G,

dmax(τ) ≥ (d− 3)
|S≥d|
∣

∣S≥(d−1)

∣

∣

− 2 |X|
∣

∣S≥(d−1)

∣

∣

− 4.

Proof. The first part of the theorem holds if there is an (X, d)-deflating swap in

T . Executing the swap reduces the degree of at least one node in S≥d and does

not increase the degree of any node in S≥(d−1). Hence φH(T ) decreases by at least

3(5d−BH−1). Since a swap decreases the degree of at most two nodes, both outside

X = SL
≤(BL+BH−d+1), φL(T ) increases by at most 2(5BL−(BL+BH−d+1)) = 2(5d−BH−1).
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The claim follows.

Otherwise let W = ({U,C1, . . . , Ck},W, F ) be defined as above. We first argue

thatW is a witness. Suppose otherwise, i.e. that there is a tree T ′ containing F that

has no edge going from Ci to W . The proof will show that the existence of such a T ′

contradicts the failure to find an (X, d)-deflating swap.

Let Ti be the set of edges in T from U to Ci. We first argue that |Ti \ F | ≤ 1.

By definition of Ci, it is a connected component of T \ Ti and is therefore internally

connected in T \ (Ti \F ). Moreover, T \ (Ti \F ) contains T so that U is connected in

T \ (Ti \ F ). Hence if there were two edges in (Ti \ F ) connecting Ci to U , T would

have a cycle.

Thus |Ti \ F | ≤ 1. Since T ′ contains F but has no edges from U ⊆ W to Ci,

the set Ti ∩ F is empty and Ti contains a single edge, say ei. The discussion above

implies that Ci is a component of T \ {ei}. By the exchange property, T \ {ei} can

be completed from T ′; that is, there is an edge e′i ∈ T ′ such that (ei, e
′
i) is a swap

with respect to T . Since e′i must be incident on Ci, it is not incident on W and thus

(ei, e
′
i) must be an (X, d)-deflating swap. Since no such swaps exist for T , we derive

a contradiction.

Finally, note that

|F | ≤ 2
∣

∣S≥(d−1)

∣

∣+ (|S≥d|+ |X| − 1),

since the average degree of S≥(d−1) in the Steiner tree T is at most two, and the

second constituent of F is a forest on S≥d ∪ X. Moreover, k ≥ (d − 2) |S≥d|, since

each edge from S≥d to V \ S≥d deleted during the construction of W contributes an

additional component, and the average external degree of S≥d is at least (d− 2). The

claim follows from Lemma 4.1.
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Algorithm MindmstP(G, T, L, Y, d)

if there is a (Y, d)-inflating swap (e, e′)
then output T \ {e} ∪ {e′}

else Create Witness.

Figure 4.3: Pseudo-code for MindmstP.

4.3.2 The MindmstP algorithm

Here we give an algorithm for the nearly symmetric problem of finding an MST that

respects degree lower bounds for a subset L of the vertices.

For an MST T , subsets L, Y ⊆ V of vertices, and an integer d > 0, a swap (e, e′)

is called (Y, d)-inflating if e′ is incident on SL
≤d but not on Y and e is not incident on

SL
≤(d+1). That is, a (Y, d)-inflating swap is one that increases the degree of a node in

SL
≤d without increasing the degree of a node in Y or decreasing the degree of a node

in SL
≤(d+1).

The MindmstP algorithm is very natural: given Y ⊆ V , d > 0, and an MST T ,

execute a (Y, d)-inflating swap, if one exists. See Figure 4.3 for a formal description.

We define the witness WL,P provided by the MindmstP algorithm as follows. Let

V be partitioned into sets U,C1, C2, . . . , Ck. Let W be a subset of U , and let Y ⊂

V be disjoint from U . Let R ⊆ (Y × W ) be a subset of the edges between Y

and W . Finally, let H be another set of edges incident on W . A witness WL,P =

({U,C1, . . . , Ck},W, Y,R,H) is a decomposition of the graph such that in any MST

T that contains the edges in H and excludes the edges in R, for each i, 1 ≤ i ≤ k,

there is at most one edge in T between Ci and W that does not belong to H. See

Figure 4.4 for an illustration.

The witness is in spirit very similar to the high-degree witness. Intuitively, U is

a set of low degree vertices, and W is a set of “incurably” low-degree nodes in L,

i.e. their degree cannot be increased without taking degree away from U . The set Y
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can be thought of as a set of high-degree nodes and R as a set of edges from high-

degree nodes to low-degree nodes; these constituents of the witness are needed later

when the MindmstP algorithm is combined with the MaxdmstP algorithm to prevent

the MindmstP algorithm from raising the degree of high-degree nodes. The set H

of edges is useful technically in the proofs to ensure certain connectivity properties

within W .

Lemma 4.3. Given a graph G = (V,E), a low-degree witness

WL,P = ({U,C1, . . . , Ck},W, Y,R,H)

certifies that in every fractional MST τ of G,

dL
min(τ) ≤ k + |U |+ 2 |W |+ |Y |+ |H| − 2

|W | .

Proof. First let us consider an integral MST T such that T contains H and excludes

R. The existence of the witness WL,P guarantees that for each i, 1 ≤ i ≤ k, T has at

most one edge between Ci and W that is not in H. This implies that W cannot have

total degree in T more than k+ |U |+ |W |−2, since of the (k+ |U |−1) edges incident

on W , at most |W |− 1 can have both endpoints in W . In an arbitrary integral MST,

the total degree of W cannot be improved to more than

k + |U |+ 2 |W |+ |Y |+ |H| − 2

since one could replace the |H| edges in H, and add at most |Y |+ |W |−1 of the edges

from R. Since a fractional MST is just a convex combination of integral MSTs, the

upper bound on the total degree of W remains the same, and the claim follows.
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W

C1

U

At most one of
these in any 
MST

Figure 4.4: Example of a low-degree witness, as used in Lemma 4.3. The double-edges
are in H. (R and Y are not shown.)

If the MindmstP algorithm fails to make a swap, we create a witness as follows.

Let U = SL
≤(d+1), let W = SL

≤d, and let C1, . . . , Ck be the components that remain

when U is removed from T . Choose a Steiner tree T on U such that T ⊆ T , and

let H be the set of edges in T that are incident on U . Let R be the set of edges

of G between Y and W that are not in T , that is, R = (Y ×W ) \ T . Let WL,P =

({U,C1, . . . , Ck},W, Y,R,H). The following theorem quantifies the quality of the

witness, when the algorithm produces one. With some foresight, we assume the set

Y is chosen appropriately.

Theorem 4.4. Suppose we are given as input a graph G = (V,E), an MST T ,

subsets L, Y ⊆ V and an integer d > 0. Then the algorithm MindmstP when called

with Y = S≥(BL+BH−d−1), either produces a tree T with potential function value at

most φ(T ) − 5BL−d−1, or finds a witness WL,P that certifies that for any fractional

MST τ of G

dL
min(τ) ≤ (d + 3)

∣

∣

∣
SL
≤(d+1)

∣

∣

∣

∣

∣SL
≤d

∣

∣

+
|Y |
∣

∣SL
≤d

∣

∣

+ 2.
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Proof. In the case that the algorithm finds a (Y, d)-inflating swap, we increase the

degree of some node in SL
≤d, and affect the degree of at most three other nodes by

one. Moreover, we do not decrease the degree of any node in SL
≤(d+1). It follows that

the potential function decreases by the claimed amount.

Suppose then that the algorithm fails to find a swap. Let T be the tree for which

the algorithm creates a witness. We show first that

WL,P = ({U,C1, . . . , Ck} ,W, Y,R,H)

defined as above is a witness. Assume otherwise: that is, there is some MST T ′

containing H and excluding R such that for some i, 1 ≤ i ≤ k, there are two edges

e′1, e
′
2 between Ci and W in T ′ that do not belong to H. (Note that Ci need not be a

connected component in T ′.) At least one of these two edges, say e′2, is not in T . By

the construction of the clusters, T has at most one edge, say ei, that is not in H and

that is between W and Ci.

The proof argues that the existence of e′1 and e′2 in T ′ contradicts the failure to

find a (Y, d)-inflating swap. We consider two cases:

Case 1: e′1 ∈ T , i.e. ei = e′1. Since T and T ′ are both MSTs and e′2 6∈ T , there

is an edge e2 ∈ T different from e′1 such that (e2, e
′
2) is a swap with respect to T .

Since (e2, e
′
2) is not (Y, d)-inflating, e2 must be incident on U = SL

≤(d+1). Consider

T2 = T \ {e2} ∪ {e′2}. Since e2 is not internal to Ci, Ci is still internally connected in

T2. Let u′
1 and u′

2 be the endpoints of e′1 and e′2, respectively, in W . There is a simple

path in T2 from u′
1 to u′

2 that contains the edges e′1 and e′2. Since u′
1, u

′
2 ∈ W ⊆ U ,

there is a path in T from u′
1 to u′

2. This path also exists in T2, since e2 6∈ H is incident

on U , while all Steiner tree edges incident on U are in H. Thus there are two distinct

simple paths from u′
1 to u′

2 in T2, contradicting the acyclicity of T2.

Case 2: e′1 6∈ T . This case is similar, except that we have to do a little more work
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to get to T2. Since e′1 exists in T ′ but not in T , there is an edge e1 ∈ T such that

(e1, e
′
1) is a swap with respect to T . The lack of (Y, d)-inflating swaps for T implies

that e1 must be incident on U . Let T1 = T \{e1}∪{e′1}. The edge e′2 can be swapped

in for some edge e2 6= e′1 in T1. We next argue that e2 is incident on U . Assume the

contrary. Then (e2, e
′
2) is a (Y, d)-inflating swap with respect to T1. The algorithm’s

failure to find a (Y, d)-inflating swap implies that (e2, e
′
2) is not a swap with respect

to T . However, a simple structural argument then shows that (e2, e
′
1) is a swap with

respect to T . Moreover, it is (Y, d)-inflating, which contradicts the failure to find a

(Y, d)-inflating swap. Thus, both e1 and e2 are incident on U and not internal to Ci.

We conclude that Ci is internally connected in T2, which leads to a contradiction by

an argument analogous to Case 1.

The only thing that remains is to prove the quality of the witness WL,P . Since

the components C1, . . . , Ck are created by removing SL
≤(d+1) from T , we have

k ≤ (d + 1)
∣

∣SL
≤(d+1)

∣

∣ .

Since the edges in H are in a Steiner tree and incident on SL
≤(d+1), there are at most

∣

∣

∣
SL
≤(d+1)

∣

∣

∣
− 1 of them. Lemma 4.3 then implies the claim.

4.3.3 The MstdbP algorithm

Now we describe our MstdbP algorithm more completely. Recall that our MstdbP al-

gorithm works in phases. Each phase employs algorithms MaxdmstP and MindmstP to

improve either a high-degree vertex or a low-degree vertex in L; when both improve-

ments fail, their failure is justified by two combinatorial witnesses. See Figure 4.5 for

a formal description.

Let us now look into a phase of the algorithm in more detail. Each phase of

MstdbP begins by picking a δ such that
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∣

∣SL
≤(BL−δ+1)

∣

∣ ≤ b
∣

∣SL
≤(BL−δ)

∣

∣ and
∣

∣S≥(BH+δ−1)

∣

∣ ≤ b
∣

∣S≥(BH+δ)

∣

∣

where b > 1 is an input parameter. It is easy to show that one can always find such

a δ in any range of size at least 2 logb n, and hence in particular, between

max{dmax(T )−BH , BL − dL
min(T )} − 2 logb n

and

max{dmax(T )−BH , BL − dL
min(T )}.

If δ < 0, we are done; we assume δ > 0 for the rest of this section.

For the rest of the phase, vertices with degree at least BH + δ are considered

“high-degree” vertices and those in L with degree at most BL − δ are considered

“low-degree”. We employ MaxdmstP and MindmstP to reduce the degree of a high-

degree vertex and increase the degree of a low-degree vertex respectively. As alluded

to earlier, we need to ensure that the improvements they perform do not interfere.

For this purpose, we disallow the MaxdmstP algorithm from removing edges incident

on X = SL
≤(BL−δ+1), and disallow the MindmstP algorithm from adding edges to Y =

S≥(BH+δ−1). Each subroutine either improves the potential significantly or returns

a combinatorial witness. Each phase runs these two subroutines. The algorithm

terminates if one of two things happen: the algorithm finds an MST with the required

degree guarantees, or both subroutines output combinatorial witnesses on a particular

tree T .

Lemma 4.5 guarantees that the algorithm terminates quickly. Theorem 4.6 shows

that when both MaxdmstP and MindmstP fail with two combinatorial witnesses, at

least one of the witnesses is good.

Lemma 4.5. Algorithm MstdbP terminates in polynomial time.
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Algorithm MstdbP(G,BL, BH , L, b)

Start with arbitrary minimum spanning tree T .
repeat

Compute δ so that
∣

∣

∣
SL
≤(BL−δ+1)

∣

∣

∣
≤ b

∣

∣

∣
SL
≤(BL−δ)

∣

∣

∣
and

∣

∣S≥(BH+δ−1)

∣

∣ ≤ b
∣

∣S≥(BH+δ)

∣

∣.

Call MaxdmstP with d = BH + δ and X = SL
≤(BL−δ+1).

Call MindmstP with d = BL − δ and Y = S≥(BH+δ−1).
until both calls fail.

Figure 4.5: Pseudo-code for MstdbP.

Proof. Let T be the tree at the beginning of a particular phase and T ′ be the tree at

the end of the phase. At the end of this phase, at least one of the following is true:

(i) T ′ has a potential function value at most φ(T )− 5δ−1.

(ii) MaxdmstP and MindmstP both output combinatorial witnesses and the algorithm

terminates.

The first step happens when one or both of MaxdmstP and MindmstP succeed; in

this case Theorems 4.2 and 4.4 imply the claimed decrease in potential. Moreover,

note that

δ ≥ max{dmax(T )−BH , BL − dL
min(T )} − 2 logb n

so that dmax(T ) − BH ≤ δ + 2 logb n and BL − dL
min(T ) ≤ δ + 2 logb n. The total

potential is then

φ(T ) ≤ n · 51+2 logb n5δ−1.

Thus, the decrease in potential is at least φ(T )/(n · 51+2 logb n) in each phase, and

the potential function decreases by half after (n · 51+2 logb n) phases. Since each node

contributes at most 2 · 5n to the initial potential, the initial potential is at most

exponential in n. The algorithm therefore terminates in polynomial time.
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4.4 MBDST: A polynomial-time algorithm

Theorem 4.6. Given a gragh G, a degree bound B, and b ∈ (1, 2), there is a polyno-

mial time algorithm that computes a spanning tree T with cost at most coptB
(G) and

degree at most b
2−b

B + O(logb n).

Proof. For a fixed B′, suppose that we compute cλB′

and set L to be the set of nodes

with a positive λu. Thus we have a fractional spanning tree τ that has maximum

degree dmax(τ) at most B′ and dL
min(τ) at least B′. Executing MstdbP(G,B′, B′, L, b)

on this cost function produces a spanning tree T and witnesses that certify that

B′ ≥ dmax(τ) ≥ B′ + δ − 3

b
− 2

∣

∣

∣
SL
≤(B′−δ+1)

∣

∣

∣

∣

∣S≥(B′+δ−1)

∣

∣

− 4

and

B′ ≤ dL
min(τ) ≤ b(B′ − δ + 3) +

∣

∣S≥(B′+δ−1)

∣

∣

∣

∣

∣
SL
≤(B′−δ)

∣

∣

∣

+ 2.

By our choice of δ, at least one of the following inequalities holds:

2b

∣

∣

∣
SL
≤(B′−δ+1)

∣

∣

∣

∣

∣S≥(B′+δ−1)

∣

∣

< 2b

and
∣

∣S≥(B′+δ−1)

∣

∣

∣

∣

∣
SL
≤(B′−δ)

∣

∣

∣

< 2b.

This is because the product of the terms on the left of each inequality is at most

2b2 < 4b2. In either case, this implies that

δ ≤ (b− 1)B′ + 5 + 6b.
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However,

δ ≥ max{dmax(T )−B′, B′ − dL
min(T )} − 2 logb n,

so that

dmax(T ) ≤ bB′ + 5 + 6b + 2 logb n

and

dL
min(T ) ≥ (2− b)B′ − 5− 6b− 2 logb n.

For 1 < b < 2 and

B = (2− b)B′ − 5− 6b− 2 logb n,

which means that we have computed a tree T such that dL
min(T ) ≥ B and

dmax(T ) ≤ b

2− b
B +

2

2− b
(5 + 6b + 2 logb n).

Theorem 2.3 implies T has cost at most coptB
(G) and degree at most

b

2− b
B + O(logb n).

4.5 MSTDB: A quasi-polynomial-time algorithm

In this section, we describe our quasi-polynomial time algorithm MstdbQ for the

MSTDB problem. Given a graph G = (V,E), a set L of nodes, a degree upper bound

BH and a degree lower bound BL, the MstdbQ algorithm finds an MST T such that

(a) every vertex has degree at most BH + O( log n
log log n

) and (b) every vertex in L has

degree at least BL−O( log n
log log n

). If it fails, it produces a combinatorial witness to show

that there exists no MST in the graph with degree at most BH in which the vertices
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in L have degree at least BL.

This algorithm uses the same framework as the algorithm in Section 4.3. Start-

ing with an arbitrary MST, it proceeds in phases of improvement. Each phase is

essentially a combination of the two algorithms MaxdmstQ and MindmstQ, which are

described in Sections 4.5.1 and 4.5.2. The MaxdmstQ algorithm attempts to decrease

the degree of a node with high degree, and MindmstQ symmetrically attempts to

increase the degree of a node in L which has low degree. If they both fail, the com-

binatorial witnesses they provide can be combined to produce a witness to the fact

that there exists no MST in the graph with degree at most BH in which the vertices

in L have degree at least BL.

To measure the progress made by our algorithm, we define a potential function

φQ(T ) on the set of all MSTs as follows:

φQ(T ) =
∑

v

(2n)deg(v)−BH +
∑

v∈L

(2n)BL−deg(v).

While our algorithms MaxdmstQ and MindmstQ execute several swaps in order to

improve the degree of one node, we nevertheless ensure that the potential decreases

in each phase. Note that we have replaced the 5 in the definition of φ by 2n; this is

necessary to ensure the decrease in potential.

4.5.1 The MaxdmstQ algorithm

Before describing our algorithm formally, we introduce some more definitions and

notation. Let T be the MST of G at the beginning of the current phase of the

algorithm. Recall that dmax(T ) denotes the maximum degree over all vertices in the

current MST T .

Given an MST T , a set X of nodes, and an integer d, the aim of the MaxdmstQ

algorithm is to reduce the degree of some vertex with degree at least d without
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reducing the degree of any vertex in X or increasing the degree of any vertex with

degree at least d − 1. This is achieved via a series of edge swaps. We show that

for appropriately chosen X, the algorithm outputs a tree T ′ that has lower potential

φQ(T ′) than T . If it fails to do this, it outputs a combinatorial witness proving a

lower bound on maximum degree of any MST.

Throughout the MaxdmstQ algorithm, we maintain a center set W ⊂ V , and a

partition C = {C1, . . . , Ck} of V \W into clusters. The initial center set W0 is S≥(d−1),

and the initial clusters are the connected components created by deleting W0 from T .

In general, though, a cluster defined during the course of the MaxdmstQ algorithm

is not necessarily internally connected. We also maintain a set R of restricted edges,

that will not be allowed to be added to the tree; R is initially empty.

We use W to refer generally to the center set, and Wi to denote the center set at

some specific iteration i of this phase. For a node u ∈ W , the clusters connected to

u by tree edges are called the children clusters of u.

Let T ⊆ T be a Steiner tree on the nodes of W0 (the Steiner nodes are the nodes

in V −W0). We say that we freeze the edges of T incident on W0, meaning that the

edges of T that are incident on W0 are not allowed to be removed by any swap. As

we show later, freezing these edges ensures that executing the edge swaps at the end

of a phase of the algorithm results in a tree.

Unlike the MaxdmstP algorithm of Section 4.3.1, the MaxdmstQ algorithm does

not restrict itself to making only (X, d)-deflating swaps. It instead finds a sequence of

swaps that has a similar effect. More precisely, given a set X of nodes, a sequence of

swaps (e1, e
′
1), (e2, e

′
2), . . . , (ek, e

′
k) is called an (X, d)-deflating sequence if (a) e1 has

exactly one endpoint in S≥d, (b) for all i, 1 ≤ i < k, e′i and ei+1 have a common

endpoint in S≥(d−1), (c) for all i, 1 ≤ i ≤ k, ei is not incident on X, and (d) after

all swaps in the sequence are performed, no node in S≥(d−1) has larger degree than it

does in T .
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The aim of the MaxdmstQ algorithm is to construct an (X, d)-deflating sequence

of swaps from swaps of a particular type. Given a set X of nodes, and a partition

of all the nodes into a center set W and a set C of clusters, a swap (e, e′) is called

(X,W )-deflating if (a) e′ is an inter-cluster edge, and (b) e has exactly one endpoint

in W and is not incident on X. Recalling the definition of an (X, d)-deflating swap

from Section 4.3.1, we note that an (X,W )-deflating swap is not necessarily (X, d)-

deflating, since e′ may be incident on S≥(d−1), or e itself may be incident on W \S≥d.

The algorithm repeatedly finds (but does not perform) an (X,W )-deflating swap

(e, e′) such that e is not frozen and e′ is not in R. After finding such a swap, it then

removes the endpoint u of e that is in W from W and performs a merge step in which

a new cluster Cu is formed by merging u with some other clusters. This swap (e, e′) is

called the u-deflating swap. The restrict step (see Figure 4.6) of the algorithm prevents

the swapping in of an edge between two nodes that initially have degree (d− 1) in T .

The process is repeated until we either run out of (X,W )-deflating swaps that don’t

use frozen or restricted edges, or we remove a vertex u with degree at least d from W .

In the former case, we construct a witness. In the latter case, we execute a particular

(X, d)-deflating sequence of swaps, specified below, that decreases the degree of u.

Figure 4.7 illustrates a run of the MaxdmstQ algorithm.

In order to specify the sequence of swaps executed at the end of the run of the

MaxdmstQ algorithm, we first define, for any node u that is removed from W , the

u-deflating sequence of swaps. It is defined inductively, as follows. Let (e, e′) be the

u-deflating swap, defined during the course of the MaxdmstQ algorithm. Note that

because of the restrict step of the algorithm, at most one endpoint of e′ is in the initial

center set W0. If neither of the endpoints of e′ is in W0, the u-deflating sequence is

defined to contain just the u-deflating swap (e, e′). If one of the endpoints, say u′, of

e′ is in W0, the u-deflating sequence is defined inductively by adding the swap (e, e′)

to the beginning of the u′-deflating sequence. Since u′ must be removed from the
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Algorithm MaxdmstQ(G, T,X, d)

Initialize W = S≥(d−1), R = ∅.
Let C be the components formed upon deleting W from T .
Let T ⊆ T be a Steiner tree on S≥(d−1).
Freeze the edges of T incident on S≥(d−1).
repeat

Find an (X,W )-deflating swap (e = (u, v), e′ = (u′, v′))
such that e is not frozen and e′ 6∈ R.

if no such swap exists
break out of loop.

Let u be the endpoint of e in W .
Remove u from W . Call (e, e′) the u-deflating swap.
Merge: Form a new cluster Cu by merging u

with the cluster containing u′,
the cluster containing v′,
and all the children clusters of u.

Restrict: For each edge (u,w) such that w ∈ S≥(d−1) \W ,
add (u,w) to R.

until some node u ∈ S≥d is removed from W .
if removed a node u ∈ S≥d from W

then execute (X, d)-deflating sequence of swaps,
starting with the u-deflating swap.

Figure 4.6: Pseudo-code for MaxdmstQ.
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S≥ d

W0=S≥ (d-1) W1

S≥ d

e1
e1’

e2

e2’

(a) (b)

e1 e1’

W2

S≥ d S≥ d

W3

e3

e3’

(c) (d)

f

e1 e1’e1 e1’

e2

e2’

e2

e2’
e3

e3’

Figure 4.7: A possible partial run of the MaxdmstQ algorithm. The frozen edges are
shown by double lines. In each step, a swap is discovered that leads to the removal
of a vertex from the center set W and the merging of some clusters. In step (c), the
edge labeled f is added to R. Finally, in step (d), a vertex in S≥d is removed from
W . The execution (not shown) of the swaps (e3, e

′
3) and (e1, e

′
1) end this run.
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center set before u is, this sequence is well-defined.

If u is the vertex of degree at least d removed from W , then the sequence of swaps

executed in the last step of the algorithm is the u-deflating sequence. Lemmas 4.7

and 4.8 show that this sequence is in fact an (X, d)-deflating sequence. If the algo-

rithm terminates instead by running out of (X,W )-deflating swaps, Lemma 4.9 and

Theorem 4.11 show that we can interpret the remaining structure as a witness to the

fact that the maximum degree of T is close to optimal.

For any node u removed from the center set, recall that Cu denotes the cluster

formed by the merge step after u is removed (see Figure 4.6 for a precise definition);

note that since new clusters are formed by merging old clusters, a cluster Cu formed

during one iteration lies wholly within some cluster in all subsequent iterations.

Lemma 4.7. Suppose we remove a vertex u from the center set Wi in some iteration

i. If we execute the u-deflating sequence, then (a) the degree of u decreases by one,

(b) no node in S≥(d−1) has larger degree than it does in T , and (c) the degree of no

node changes by more than one.

Proof. We prove this by induction on the length of the u-deflating sequence. We

strengthen the claim to add the condition that (d) the degree of every node outside

Cu is unchanged.

In the base case, when the u-deflating sequence contains only one swap (e, e′) with

the endpoints of e′ outside S≥(d−1), the conditions (a),(b), and (c) follow immediately,

and (d) follows from the merge step.

Now suppose that the claim holds for the u′-deflating sequence, which is aug-

mented with the swap (e, e′) to form the u-deflating sequence. The swap (e =

(u, v), e′ = (u′, v′)) increases the degree of u′ by one and the u′-deflating sequence

decreases it by one; thus the degree of u′ is unchanged. By construction v′ is outside

S≥(d−1), and thus we have proved (a) and (b). The edge (u, v) does not lie on the
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path from u to u′ in T , since if it did, it would be in T and hence frozen. Also, v

is in the same cluster as v′; if it were not, the path in T from u to v′ would contain

another node from W0, and thus (u, v) would be in T and hence frozen. Since the

edge (u′, v′) is an inter-cluster edge, v′ lies outside Cu′ , and thus so does v. Part (d)

of the inductive hypothesis then implies that the degrees of v and v′ are unaffected

by the u′-deflating sequence. Thus (c) follows. Finally the merge step implies that u,

v, v′, and Cu′ all lie within Cu, and thus (d) is true as well.

We next show that executing the u-deflating sequence of swaps results in a tree.

If executed in isolation, any single swap in the sequence obviously does not introduce

a cycle. However, it is not as clear that doing them simultaneously does not disrupt

the tree structure. In fact, the frozen edges of the Steiner tree play a crucial role here.

Lemma 4.8. For any u ∈ W0, the graph produced after performing the u-deflating

sequence of swaps is a tree.

Proof. Let (e1, e
′
1), (e2, e

′
2), . . . , (ek, e

′
k) be the u-deflating sequence of swaps, so that

e1 is incident on u, and e′i and ei+1 share an endpoint. Let Tj be the graph resulting

after we execute the first j of these swaps, i.e. T0 = T and Tj = Tj−1 \ {ej} ∪ {e′j}.

We show inductively that Tj is a tree.

The base case is immediate. Suppose that Tj−1 is a tree for some j. It suffices to

show that if ej = (uj, vj) could be replaced by e′j = (u′
j, v

′
j) in T , it is a valid swap in

Tj−1 as well. In other words, if ej lies on the tree path from v′
j to u′

j in T , then ej lies

on the tree path from v′
j to u′

j in Tj−1 as well. Note that by construction ej and e′j−1

share an endpoint uj and that e′j−1 is the first edge in the sequence incident on Cuj
.

Consider the tree path in T from v′
j to u′

j (see Figure 4.8). Note that by con-

struction, all tree edges leaving Cuj
are incident on W0. If the path lies wholly within

Cuj
, then it must still exist in Tj−1, since all deleted edges e1, . . . , ej−1 lie outside Cuj

.

Otherwise this path can be decomposed into three segments P1, P2, and P3, such that
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ej ej’

z

uj’vj’

w

ej-1’
uj

Figure 4.8: Proof of Lemma 4.8. The dotted edges are not in T ; the dashed lines
indicate paths.

v′
j ∈ P1, u′

j ∈ P3, P1 and P3 are maximal paths contained in Cuj
, and P2 is a path

connecting P1 and P2. Without loss of generality, uj (and thus ej) lies in the segment

P1 containing v′
j. Let (w, z) be the last edge on P2; i.e. w ∈ W0 and z is connected

to u′
j by P3.

The paths P1 and P3 are preserved in Tj−1, since deleted edges e1, . . . , ej−1 lie

outside Cuj
. The path P2 \ (w, z) is in the Steiner tree T , since it connects uj to w

in T ; thus the freezing step ensures that it is preserved in Tj−1. Finally, the edge

(w, z) must also exist in Tj−1: If (w, z) 6∈ Tj−1, then Tj−1 \ T must contain an edge

e′i, 1 ≤ i ≤ j − 1, incident on the component of T \ {(w, z)} containing u′
j. Note that

by construction, this component does not contain uj, and therefore e′i 6= e′j−1. Since

this component is contained in Cuj
, then e′i is incident on Cuj

, which contradicts the

observation that e′j−1 is the only edge incident on Cuj
in Tj−1 \ T . Thus we have

shown that the entire v′
j-u

′
j path in T is preserved in Tj−1. The claim follows.
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The MaxdmstQ witness

Now we show how to interpret the structure produced by running the MaxdmstQ

algorithm as a high-degree witness, described in Section 4.3.1. Let W be the center

set, C1, C2, . . . , Ck be the clusters, R the restricted edges, and T the tree when the

algorithm terminates. Let TX be the set of all edges in T in X ×W , and FT be the

set of Steiner tree edges that are frozen by the algorithm. We let F = TX ∪ FT . Let

WQ = ({W,C1, . . . , Ck} ,W, F ). We first argue that WQ is a witness for the graph

with the edges in R deleted.

Lemma 4.9. WQ = ({W,C1, . . . , Ck} ,W, F ) is a high-degree witness for G′ = (V,E\

R).

Proof. Suppose that there is some MST T ′ of G′ containing F that does not contain

an edge from Ci to W .

Let Ti be the set of edges in T connecting Ci to W . By construction, there are no

inter-cluster tree edges, so Ti is non-empty. By the exchange property, there is a set

T ′
i ⊆ T ′ such that T1 = T \ Ti ∪ T ′

i is an MST. Since Ci and V \ Ci are disconnected

in T \ Ti, there must be an edge e′ ∈ T ′
i connecting them. By the exchange property,

there is an edge e ∈ Ti such that (e, e′) is a swap with respect to T . Since e′ ∈ T ′, e′

is not incident on W , and thus (e, e′) is an (X,W )-deflating swap, contradicting our

assumption. Hence the claim.

Lemma 4.10. At most 2|W0| edges are frozen by the algorithm, where W0 is our

initial witness.

Proof. The average degree of a tree is at most two, and the degree of a Steiner vertex

is at least two. Thus the average degree of the terminals in any Steiner tree is at most

two.

Finally, we show that when given an appropriate set X of vertices, the algorithm

either computes a tree with lower potential, or produces a good witness.
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Theorem 4.11. Suppose we are given as input an MST T , an integer d, and a set X

of nodes. Then the algorithm MaxdmstQ, when called with X = SL
≤(BL+BH−d+1) runs

in polynomial time, and either outputs a tree with potential function value at most

φ(T )− (2n)d−BH−1, or finds a witness that certifies that for any fractional MST τ of

G,

dmax(τ) ≥ (d− 2)− 5

∣

∣S≥(d−1)

∣

∣

|S≥d|
− |X|
∣

∣S≥(d−1)

∣

∣

.

Proof. Since there are at most |V | · |E| swaps, each iteration runs in polynomial time.

In each iteration, we remove a vertex from W , and thus the overall algorithm runs in

polynomial time.

From Lemmas 4.7 and 4.8, we see that if the MaxdmstQ algorithm removes a

vertex of degree d from the center set, it produces an MST T ′. In this case, there

is at least one vertex u ∈ S≥d whose degree decreases by one, and no vertex has

its degree raised above d − 1. In addition, the degree of vertices in SL
≤(BL+BH−d+1)

does not decrease, and no vertex has its degree changed by more than one. Thus the

decrease in potential due to u is at least (2n− 1)(2n)d−BH−1, while the total increase

due to the other vertices is at most n(2n)d−BH−1. The claimed decrease in potential

follows.

If the algorithm is unable to improve any vertex of degree d, it instead halts after

t iterations with another MST of degree d. Let W0 = S≥(d−1) be the initial center

set, and let Wt ⊇ S≥d be the final center set. The number of components obtained

by deleting the edges incident to Wt is at least (d − 2)|Wt|. The number of merges

performed by the algorithm is at most |W0 \Wt|: To see this, note that every time

we do a merge in the merge step, we remove a node from W . Therefore the number

of clusters at the end of the algorithm is at least (d− 2)|Wt| − |W0 \Wt|. According

to Lemma 4.9, the witness WQ is a high-degree witness for G′ = (V,E \ R). We can

make use of the lower bound, however, by observing that all edges in R are incident
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on W0 \Wt, so that no MST of G can use more than |W0 \Wt| of these edges. Using

Lemma 4.9, Lemma 4.10, and the fact that the number of edges in T in W0 × X is

at most |W0|+ |X|, we conclude that for any fractional MST τ of G,

dmax(τ) ≥ (d− 2)− 5

∣

∣S≥(d−1)

∣

∣

|S≥d|
− |X|
∣

∣S≥(d−1)

∣

∣

.

4.5.2 The MindmstQ algorithm

Before describing our algorithm formally, we introduce some definitions and notation.

Let T be the MST of G at the beginning of the algorithm. Recall that dL
min(T ) =

minv∈L degT (v) is the minimum degree over all nodes in L in tree T . Recall also that

for a tree T , we denote by SL
≤d the subset of nodes in L which have degree at most d

in T .

The algorithm takes as input the graph G, a tree T , sets L and Y of vertices, and

a positive integer d. The aim of the MindmstQ algorithm is to increase the degree

of some node in SL
≤d without increasing the degree of any vertex in Y or decreasing

the degree of any vertex in SL
≤(d+1). This is achieved via a series of edge swaps. We

show that for appropriately chosen Y , the algorithm outputs a tree T ′ that has lower

potential φQ(T ′) than that of T . If it fails to do this, it outputs a combinatorial

witness proving an upper bound on the degree of L in any MST.

Throughout the MindmstQ algorithm, we maintain a center set W , and a partition

C = {C1, . . . , Ck} of V \W into clusters. The initial center set W0 is SL
≤(d+1), and

the initial clusters are the connected components created by deleting W0 from T . In

general, during the course of the algorithm, a component may be split into several

clusters, though each cluster remains internally connected in T . We use the term

intra-cluster edge to refer to an edge whose endpoints are in the same cluster.
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We also maintain a set N of special nodes and a set F of frozen edges. N is

initially set to SL
≤(d+1) and will be augmented during the algorithm. Let T be a

Steiner tree on N such that T ⊆ T (with V \ N as the Steiner nodes). We freeze

the edges of T adjacent to N— that is, we disallow the algorithm from swapping out

these edges. The set F is initialized to be the set of frozen edges of T . As we show

later, freezing these edges ensures that executing the sequence of edge swaps at the

end of the algorithm results in a tree.

Given a set Y of nodes, a sequence of swaps (e1, e
′
1), (e2, e

′
2), . . . , (ek, e

′
k) is called

a (Y, d)-inflating sequence if (a) e′1 has exactly one endpoint in SL
≤d, (b) for all i, 1 ≤

i < k, ei and e′i+1 have a common endpoint in SL
≤(d+1), (c) for all i, 1 ≤ i ≤ k, e′i is

not incident on Y , and (d) after all swaps in the sequence are performed, no node in

SL
≤(d+1) has smaller degree than it does in T .

The aim of the MindmstQ algorithm is to construct a (Y, d)-inflating sequence of

swaps from swaps of a particular kind. Given a set Y of nodes, and a partition of

all nodes into a center set W and a set C of clusters, a swap (e, e′) is called (Y,W )-

inflating if (a) e is an intra-cluster edge, and (b) e′ has exactly one endpoint in W and

is not incident on Y . Recalling the definition of (Y, d)-inflating swaps in Section 4.3.2,

we note that a (Y,W )-inflating swap (e, e′) may not be (Y, d)-inflating, since e may

be incident on SL
≤(d+1) or e′ may be incident on W \ SL

≤d.

The algorithm repeatedly finds (but does not execute) an (Y,W )-inflating swap

(e, e′) such that the edge e is not frozen. It then removes the endpoint u′ ∈ W of

e′ from W and performs a merge step to create a cluster Cu′ by merging u′ with

some other clusters (see Figure 4.9). The swap (e, e′) is called the u′-inflating swap.

The following split step breaks the cluster containing e. Let u be the endpoint of e

closer to u′ in T . If u is not in W0, we call such a swap a basic swap. If (e, e′) is a

basic swap, the freeze step adds u and v′ to N and augments F appropriately (see

Figure 4.9). Note that for a non-basic swap, u is already in N . In either case, we call
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Algorithm MindmstQ(G, T, L, Y, d)

Initialize W = N = SL
≤(d+1).

Let C be the components formed upon deleting W from T .
Let T ⊆ T be the Steiner tree on N .
Let F be the edges of T incident on N .
repeat

Find a (Y,W )-inflating swap (e = (u, v), e′ = (u′, v′)) such that e 6∈ F .
if no such swap exists

break out of loop.
Let u′ be the endpoint of e′ in W .
Remove u′ from W . Call (e, e′) the u′-inflating swap.
Merge: Form a new cluster Cu′ by merging u′

along with all the children clusters of u′,
except for those which would involve a merge
along an edge between u′ and SL

≤(d+1).

Split the cluster containing (u, v) along e into two clusters Cu and Cv.
Freeze: Let u be the endpoint of e closer to u′ in T .

If u 6∈ W0, add u, v′ to N .
Augment T to a Steiner tree on N
and add the new edges of T incident on N to F .
Call the u-v′ path in T the tail of this swap.

until some node u′ in SL
≤d is removed from W .

if removed a node u′ ∈ SL
≤d from W

then execute the u′-inflating sequence of swaps.

Figure 4.9: Pseudo-code for MindmstQ.

the u-v′ path in T the tail of the swap. The process is repeated until we either run

out of (Y,W )-inflating swaps that don’t involve frozen edges or we remove a vertex

u′ ∈ SL
≤d from W . In the former case, we construct a witness. In the latter case, we

execute a particular (Y, d)-inflating sequence of swaps, specified below, that increases

the degree of u′ by one. As we see in Lemma 4.12, the merge, split, and freeze steps

ensure that we never swap out more than one edge incident on any node, and that

this sequence of swaps results in a tree. Figure 4.10 illustrates a run of the MindmstQ

algorithm.

In order to specify the sequence of swaps executed at the end of the run of the
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L

L
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e2

e2’
e1
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e2’
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e1’

S� d
LS� d

L

Figure 4.10: A possible partial run of the MindmstQ algorithm. The frozen edges
are shown by double lines, and the vertices in N are circled. In each step, a swap is
discovered that leads to the removal of a vertex from the center set W and the merging
and splitting of some clusters. In steps (b) and (c), new edges are also frozen. Finally,
in step (d), a vertex in SL

≤d is removed from W . The execution (not shown) of the
swaps (e3, e

′
3) and (e2, e

′
2) end this run.
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u’1 u’3 = u2
u’2 = u1 u’4=u3

v1

v

v3
v2

u4

v’4v’1 v’3v’2
v4

Figure 4.11: The sequence of swaps. The bold edges are frozen. The dark-colored
nodes are in W0. The paths from ui to v′

i are the tails.

MindmstQ algorithm, we first define, for any node u′ that is removed from W , the

u′-inflating sequence of swaps inductively as follows. Let (e, e′) be the u′-inflating

swap. We shall argue shortly that at most one endpoint of e is in the initial center set

W0. If neither of the endpoints of e is in W0, then the u′-inflating sequence is defined

to contain just the u′-inflating swap (e, e′). If one of the endpoints, say u, of e is in

W0, the u′-inflating sequence is defined inductively by adding the swap (e, e′) to the

beginning of the u-inflating sequence.

If u′ is the vertex of degree at most d removed from W , then the sequence of swaps

executed in the last step of the algorithm is the u′-inflating sequence. Lemma 4.12

shows that this sequence is in fact a (Y, d)-inflating sequence. Theorem 4.15 shows

that if we run out of (Y,W )-inflating swaps, we can turn the resulting structure into

a low-degree witness certifying an upper bound on the degree of L in any MST.

Lemma 4.12. Suppose that we remove a vertex u′ from W . Then if we execute the

u′-inflating sequence of swaps defined above, (a) the degree of u′ increases by 1, (b)

no node in SL
≤(d+1) has smaller degree than it does in T , (c) the degree of no node

changes by more than one, and (d) the resulting graph is a tree.

Proof. Let (e1, e
′
1), (e2, e

′
2), . . . , (ek, e

′
k) be the u′-inflating sequence, where (ei, e

′
i) =

((ui, vi), (u
′
i, v

′
i)), u′ = u′

1, and u′
i+1 ∈ SL

≤(d+1) is the endpoint shared by ei and e′i+1.
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We first observe that for any swap ((ui, vi), (u
′
i, v

′
i)), ui and vi are not both in W0.

This is because at the time of discovery of this swap, (ui, vi) is an intra-cluster edge

in T . The merge step of the algorithm ensures that we never merge clusters along an

edge between two nodes in W0. Thus an edge between two nodes in W0 can never be

an intra-cluster edge.

Recall that for swap (ei, e
′
i), we refer to the endpoint of ei closer to u′

i as ui. Thus

ei is on the u′
i-vi path in T . If vi were in N , then ei would be frozen and we wouldn’t

have chosen the swap (ei, e
′
i). Thus for i < k, vi must be different from u′

i+1 (which

is in SL
≤(d+1) and hence in N). Since ei and e′i+1 share the endpoint u′

i+1, we conclude

that ui = u′
i+1 for i < k. See Figure 4.11.

For i < k, since ui = u′
i+1 is in W0, vi is not in W0. Moreover, (ek, e

′
k) is a basic

swap, so uk and vk are not in W0. It follows that if uk or vi, for any i, is in L, then

it has degree at least d + 2.

Let Tl be the tree resulting from executing the first j swaps, i.e. T0 = T and

Tl = Tl−1 \{el}∪{e′l}. We show inductively that Tl is a tree. Let N = Nt be the final

set of special nodes. We strengthen the inductive claim to add the condition that the

Steiner tree on N is undisturbed during the swaps.

Recall that the tail of swap (ei, e
′
i) is defined to be the ui-v

′
i path in T . We make

the following claims.

Claim 4.13. The tail for swap i for i < k intersects with the Steiner tree T on W0

only in ui.

Proof. Recall that u′
i+1 = ui is in W0. If the tail of the swap i contained a node w ∈ T

different from ui, the edge (ui, vi) would be on the ui-w path and thus frozen.

Claim 4.14. The tail for swap i is vertex-disjoint from the tail for swap j for 1 ≤

i < j ≤ k.
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Proof. First, let i < j < k. We observe that (ui, vi) 6= (uj, vj). This holds because

the splitting step of the algorithm ensures that (uj, vj) is an inter-cluster edge after

the swap ((uj, vj), (u
′
j, v

′
j)) is discovered.

There is a Steiner tree path from ui to uj. Claim 4.13 implies that ei and ej are

not on this path. If the tails of swaps i and j intersected in a node w, there is a

simple path from ui to uj via w, that contains ei and ej and is therefore distinct from

the Steiner tree path. This however contradicts the acyclicity of T .

Now let us look at the tail of swap k. Since this swap is basic, uk and vk are in

N when swap i, i 6= k, is discovered. Suppose that the tail of swap k shares a vertex

w with the tail of swap i, i < k. Then w has a path to ui with ei as its last edge.

Since w lies on the tail of swap k, the tail consists of the v′
k-w path and the uk-w

path. Either the ui-uk path or the ui-v
′
k path must go through w and thus contains

ei. Since v′
k, uk and ui are all in N , ei must be frozen at the time of discovery of the

swap (ei, e
′
i), which contradicts the fact that the swap (ei, e

′
i) was chosen.

Proof of Lemma 4.12, continued. Let Tj be the tree resulting from executing the first

j swaps, i.e. T0 = T and Tj = Tj−1 \ {ej} ∪ {e′j}. Let N = Nt be the final set of

special nodes.

We show inductively that Tj is a tree. The base case is immediate.

Consider the path from u′
j to v′

j in T ; this path contains ej by construction. It is

enough to show that this path exists in Tj−1. This path consists of the u′
j-uj path,

along with the tail of swap j, which is the uj-v
′
j path. Since both uj and u′

j lie in N ,

the path between them is not affected by the first (j − 1) swaps; indeed, each of the

first (j − 1) swaps is a non-basic swap which deletes an edge incident on N , and the

edges from T incident on N are frozen. Since the deleted edges e1, . . . , ej−1 lie on the

first (j − 1) tails, which by Claim 4.14 are disjoint from the tail of swap j, the uj-v
′
j

path in T is preserved in Tj−1. Thus the entire u′
j-v

′
j path in T is preserved in Tj−1.

93



It follows inductively that Tj is a tree, for 1 ≤ j ≤ k, proving part (d) of Lemma 4.12.

We next show parts (a), (b), and (c) of Lemma 4.12. The tail of swap i contains

ui, vi, and v′
i, and the tails of the swaps are vertex-disjoint according to Claim 4.14.

This implies that except for the equalities ui = u′
i+1, the nodes involved in the swaps

are all distinct. The node u′
1 gains an edge because of the swap (e1, e

′
1) and is not

involved in any other swap, which proves part (a). The nodes u′
i, i > 1, are the only

nodes involved in the swaps that lie in SL
≤(d+1). Each of these nodes gains and loses

one unit of degree, implying part (b). Since the remaining involved nodes are all

distinct from each other, part (c) follows.

Theorem 4.15. Suppose we are given as input an MST T , an integer d and a set Y

of nodes. Then, the algorithm MindmstQ when called with Y = SL
≤(BL+BH−d−1) either

outputs a tree with potential function value at most φ(T ) − (2n)d−BH−1, or finds a

witness W that certifies that for any fractional MST τ of G,

dL
min(τ) ≤ (d + 1) + 10

∣

∣

∣
SL
≤(d+1)

∣

∣

∣

∣

∣SL
≤d

∣

∣

+
|Y |
∣

∣SL
≤d

∣

∣

− 6.

Proof. Lemma 4.12 implies that if the algorithm removes a vertex of degree d from W ,

it can find a tree in which the degree of this node is increased by one. The calculation

showing that the potential decreases is identical to that in Theorem 4.11.

If not, we show how to convert the structure produced by the MindmstQ algorithm

into a low-degree witness of the type in Lemma 4.3. Suppose the algorithm begins

with an MST T , a set Y , a degree d, and a set L, but fails to improve the degree of

any vertex in L of degree at most d. It terminates after t ≥ 0 iterations with Wt as

the center set where SL
≤d ⊆ Wt ⊆ W0 = SL

≤(d+1), and C1, C2, . . . , Ck′ , as the clusters.

Let W = Wt and R = (W × Y ) \ T . Let I be the set of inter-cluster edges in T ;
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we set H to F ∪ I. We argue that

WL,Q = ({W,C1, . . . , Ck′} ,W, Y,R,H)

is a low-degree witness.

Assume the contrary, i.e. WL,Q is not a low-degree witness. Then there is an MST

T ′ of G that contains H, excludes R and contains two edges e′1, e
′
2 6∈ H from cluster

Ci to W .

The proof is similar to that of Theorem 4.4. Let (e1, e
′
1) be a swap that adds e′1

to T , such that e1 is not in H, and let T1 be the tree T \ {e1} ∪ {e′1}. Note that

Ci is internally connected in T . If e1 were not incident on W0, (e1, e
′
1) would be

(Y,W )-inflating, contradicting our assumption that the algorithm runs out of such

swaps. Thus e1 must be incident on W0, and therefore Ci is internally connected in

T1 as well.

Now let (e2, e
′
2) be a swap that adds e′2 to T1 such that e2 6∈ H and e2 6= e′1. Let

T2 = T1\{e2}∪{e′2}. Suppose that e2 is not incident on W0. Then the swap (e2, e
′
2) is

(Y,W )-inflating with respect to T1. Since the algorithm runs out of (Y,W )-inflating

swaps with respect to T , this swap does not exist in T . This implies that (e2, e
′
1) must

be a swap in T . However, this swap is also (Y,W )-inflating, which is a contradiction.

Thus e2 is incident on W0, and therefore Ci is internally connected in T2.

Let u′
1 and u′

2 be the endpoints of e′1 and e′2, respectively, in W . Because Ci is

internally connected in T2, there is a path from u′
1 to u′

2 in T2 containing the edges

e′1 and e′2. There is a Steiner tree path in T from u′
1 to u′

2. This path is also present

in T2 since e1 and e2 are incident on W0 and not frozen, while all Steiner tree edges

incident on W0 are frozen. Thus there are two distinct paths from u′
1 to u′

2 in T2,

which contradicts the acyclicity of T2. We conclude thatWL,Q is a low-degree witness.

To finish the proof of Theorem 4.15, we compute the bound implied by Lemma 4.3.
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First we count the number of clusters created by the algorithm. The number of

clusters is the number of components formed by deleting Wt from T , of which there

are at most (d + 1)|Wt|, plus the number of splits. There are a total of |W0 \Wt|

splits in the split step of the algorithm, each of which creates one additional cluster

by splitting along the intra-cluster edge involved in the swap. There are also some

clusters split (or rather, not merged) by tree edges adjacent to two (d + 1)-degree

nodes, but there can be at most |W0 \Wt| of these. Thus, the number of clusters at

the end of the algorithm is at most (d + 1)|Wt|+ 2|W0 \Wt|.

The set N has at most W0 + 2 |W0 \Wt| nodes in it, and thus there are at most

2 |W0|+4 |W0 \Wt| edges in F (see proof of Lemma 4.10). Since each split (and each

non-merge) contributes at most one inter-cluster edge, there are at most 2 |W0 \Wt|

edges in I. Therefore |H| ≤ 2 |W0|+ 6 |W0 \Wt|.

Recall that Lemma 4.3 proves that for a witness ({W,C1, . . . , Ck′} ,W, Y,R,H)

and any fractional tree τ ,

dL
min(τ) ≤ k′ + 2 |W |+ |U |+ |Y |+ |H| − 2

|W | .

Plugging in the values gives

dL
min(τ)

≤ (d + 1)|Wt|+ 2 |W0 \Wt|+ 2 |Wt|+ |Wt|+ |Y |+ 2 |W0|+ 6 |W0 \Wt| − 2

|Wt|
.

Finally, noting that W0 = SL
≤(d+1) and Wt ⊇ SL

≤d, we obtain

dL
min(τ) ≤ (d + 1) + 10

∣

∣

∣
SL
≤(d+1)

∣

∣

∣

∣

∣SL
≤d

∣

∣

+
|Y |
∣

∣SL
≤d

∣

∣

− 6.
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4.5.3 The MstdbQ algorithm

Our quasipolynomial MstdbQ algorithm is similar to the polynomial one, except that

we use the better subroutines described above, and consequently use different para-

meters. Each phase employs algorithms MaxdmstQ and MindmstQ to improve either

a high-degree vertex or a low-degree vertex in L; when both improvements fail, their

failure is justified by two combinatorial witnesses.

Each phase of MstdbQ begins by picking a δ such that

∣

∣SL
≤(BL−δ+1)

∣

∣ ≤ log n

log log n

∣

∣SL
≤(BL−δ)

∣

∣ and
∣

∣S≥(BH+δ−1)

∣

∣ ≤ log n

log log n

∣

∣S≥(BH+δ)

∣

∣ .

It is easy to show that one can always find such a δ in any range of length at least

2 log n
log log n

, and hence in particular, between

max{dmax(T )−BH , BL − dL
min(T )} − 2

log n

log log n

and

max{dmax(T )−BH , BL − dL
min(T )}.

Without loss of generality, δ > 0.

For the rest of the phase, vertices with degree at least BH + δ are considered

“high-degree” vertices and those in L with degree at most BL − δ are considered

“low-degree”. We employ MaxdmstQ and MindmstQ to reduce the degree of a high-

degree vertex and increase the degree of a low-degree vertex respectively. As alluded

to earlier, we need to ensure that the improvements they perform do not interfere with

each other. For this purpose, we disallow the MaxdmstQ algorithm from removing

edges incident on X = SL
≤(BL−δ+1), and disallow the MindmstQ algorithm from adding

edges to Y = S≥(BH+δ−1). Each subroutine either improves the potential significantly
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Algorithm MstdbQ(G,L,BL, BH)

Start with arbitrary minimum spanning tree T .
repeat

Compute δ so that
∣

∣

∣
SL
≤(BL−δ+1)

∣

∣

∣
≤ log n

log log n

∣

∣

∣
SL
≤(BL−δ)

∣

∣

∣

and
∣

∣S≥(BH+δ−1)

∣

∣ ≤ log n
log log n

∣

∣S≥(BH+δ)

∣

∣.

Call MaxdmstP with d = BH + δ and X = SL
≤(BL−δ+1).

Call MindmstP with d = BL − δ and Y = S≥(BH+δ−1).
until both calls fail.

Figure 4.12: Pseudo-code for MstdbQ.

or returns a combinatorial witness. The algorithm terminates if one of the following

happen: the algorithm finds an MST with the required degree guarantees, or both

subroutines output combinatorial witnesses on a particular tree T . See Figure 4.12

for a formal description of the algorithm.

Lemma 4.16 guarantees that this is enough to make the algorithm terminate. The-

orem 4.17 shows that when both MaxdmstQ and MindmstQ fail with two combinatorial

witnesses, at least one of the witnesses is good.

Lemma 4.16. Algorithm MstdbQ terminates in quasi-polynomial time.

Proof. Let T be the tree at the beginning of a particular phase and T ′ be the tree at

the end of the phase. At the end of this phase, at least one of the following is true:

(i) T ′ has a potential function value at most φQ(T )− (2n)δ−1.

(ii) MaxdmstQ and MindmstQ both output combinatorial witnesses and the algorithm

terminates.

The first step happens when one or both of MaxdmstQ and MindmstQ succeed; in

this case Theorems 4.11 and 4.15 imply the claimed decrease in potential. Moreover,
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note that

δ ≥ max{dmax(T )−BH , BL − dL
min(T )} − 2

log n

log log n

so that

φ(T ) ≤ n · (2n)1+2 log n

log log n (2n)δ−1.

Thus the decrease in potential is at least φQ(T )/(nO( log n

log log n
)) in each phase, and the

potential function decreases by half after (nO( log n

log log n
)) phases. Since the initial po-

tential is at most exponential in n, the algorithm terminates in quasi-polynomial

time.

4.6 MBDST: A quasi-polynomial-time algorithm

Theorem 4.17. Given a gragh G, and a degree bound B, there is a quasi-polynomial

time algorithm that computes a spanning tree T with cost at most coptB
(G) and degree

at most B + O( log n
log log n

).

Proof. For a fixed B′, suppose that we compute cλB′

and set L to be set of nodes with

a positive λu value. Thus we have a fractional spanning tree τ that has maximum

degree dmax(τ) at most B′ and dL
min(τ) at least B′. Executing MstdbQ(G,L,B′, B′)

on this cost function produces a spanning tree T and witnesses that certify that

B′ ≥ dmax(τ) ≥ B′ + δ −O

(

log n

log log n

)

−

∣

∣

∣
SL
≤(B′−δ+1)

∣

∣

∣

∣

∣S≥(B′+δ−1)

∣

∣

and

B′ ≤ dL
min(τ) ≤ B′ − δ + O

(

log n

log log n

)

+

∣

∣S≥(B′+δ−1)

∣

∣

∣

∣

∣
SL
≤(B′−δ)

∣

∣

∣

.
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By our choice of δ, at least one of the following inequalities holds:

2

∣

∣

∣
SL
≤(B′−δ+1)

∣

∣

∣

∣

∣S≥(B′+δ−1)

∣

∣

<
log n

log log n

∣

∣S≥(B′+δ−1)

∣

∣

∣

∣

∣
SL
≤(B′−δ)

∣

∣

∣

<
log n

log log n
.

This implies that δ ≤ O( log n
log log n

). However,

δ ≥ max{dmax(T )−B′, B′ − dL
min(T )} − 2

log n

log log n
,

so that dmax(T ) ≤ B′ + O( log n
log log n

) and dL
min(T ) ≥ B′ −O( log n

log log n
).

Choosing B′ = B + O( log n
log log n

), this means that we have computed a tree with

dL
min(T ) ≥ B and dmax(T ) ≤ B +O( log n

log log n
). Using Theorem 2.3, we get a tree of cost

at most optLD(B) and degree at most B + O( log n
log log n

).
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Part II

Sorting and selection in posets
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Chapter 5

Sorting in posets

In this chapter, we present our results for the problem of sorting a partially ordered

set.

We begin by reviewing basic terminology needed for this chapter and Chapter 6.

In Section 5.3, we briefly discuss an efficient representation of a poset. In Section 5.5

we give an algorithm of optimal query complexity. An efficient algorithm based on

Mergesort is described in Section 5.6. In Section 5.7, we give a randomized algorithm,

based on a generalization of Quicksort, for computing a linear extension of a poset.

We also give a randomized algorithm for computing the heights of all elements in a

poset. Finally, in Section 5.8, we show that the results on sorting posets generalize to

the case when an upper bound on the width is not known and to the case of transitive

relations.

5.1 Preliminary definitions

To precisely describe the problems considered in this chapter and our results, we

require some formal definitions. A partially ordered set, or poset, is a pair P = (P,≻),

where P is a set of elements and ≻ ⊂ P×P is an irreflexive, transitive binary relation.
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For elements a, b ∈ P , if (a, b) ∈ ≻, we write a ≻ b and we say that a dominates b,

or that b is smaller than a. If a 6≻ b and b 6≻ a, we say that a and b are incomparable

and write a 6∼ b.

A chain C ⊆ P is a subset of mutually comparable elements, that is, a subset

such that for any elements ci, cj ∈ C, i 6= j, either ci ≻ cj or cj ≻ ci. An ideal I ⊆ P

is a subset of elements such that if x ∈ I and x ≻ y, then y ∈ I. The height of an

element a is the maximum cardinality of a chain whose elements are all dominated

by a. We call the set {a : ∀ b, b ≻ a or b 6∼ a} of elements of height 0 the minimal

elements. An anti-chain A ⊆ P is a subset of mutually incomparable elements. The

width w(P) of poset P is defined to be the maximum cardinality of an anti-chain of

P .

A decomposition C of P into chains is a family C = {C1, C2, . . . , Cq} of disjoint

chains such that their union is P . The size of a decomposition is the number of chains

in it. The width w(P) is clearly a lower bound on the size of any decomposition

of P . We make frequent use of Dilworth’s Theorem, which states that there is a

decomposition of P of size w(P). A decomposition of size w(P) is called a minimum

chain decomposition.

5.2 The sorting problem

The central computational problem of this chapter is to produce a representation of

a poset P = (P,≻), given the set P of n elements, an upper bound of w on the width

of P , and access to an oracle for P .

In the absence of a bound on the width, the query complexity of the sorting

problem is exactly
(

n
2

)

, in view of the worst-case example in which all pairs of elements

are incomparable. In the classical sorting problems, w = 1. Our interest is mainly in

the case where w ≪ n, since this assumption is natural in many of the applications.
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Furthermore, if w is of the same order as n, then it is easy to see that the complexity

of sorting is of order n2, as in the case where no restrictions are imposed on the poset.

We discuss the case when an upper bound on the width is not known a priori in

Section 5.8.1.

5.2.1 Related work

Faigle and Turán [13] have described two algorithms for sorting posets, both of which

have query complexity O
(

wn log n
w

)

. (In fact the second algorithm is shown to have

query complexity O(n log NP), where NP is the number of ideals in input poset P . It

is easy to see that NP = O(nw) if P has width w, and that NP = (n/w)w if P consists

of w incomparable chains, each of size n/w.) The total complexity of sorting posets

has not been considered. However, the total complexity of the first algorithm given

by Faigle and Turán depends on the subroutine for computing a chain decomposition

(the complexity of which is not analyzed in [13]). It is not clear if there exists a

polynomial-time implementation of the second algorithm.

5.2.2 Our techniques

It is natural to approach the problem of sorting in posets by considering generaliza-

tions of the well-known algorithms for the case of total orders, whose running times

are closely matched by proven lower bounds. Somewhat surprisingly, natural gener-

alizations of the classic algorithms do not provide optimal poset algorithms in terms

of total and query complexity.

The generalization of Mergesort considered in Section 5.6 loses a factor of w in its

total complexity compared to the information-theoretic lower bound. Interestingly,

one can achieve the information-theoretic lower bound on query complexity (up to a

constant factor) by carefully exploiting the structure of the poset. In Section 5.5, we
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describe at length the techniques used obtain this result. We do not know whether it

is possible to achieve the information-theoretic bound on total complexity.

5.3 Representing a poset

Once the relation between every pair of elements in a poset has been determined,

some representation of this information is required, both for output and for use in our

algorithms. The simple ChainMerge data structure that we describe here supports

constant-time look-ups of the relation between any pair of elements. It is built from

a chain decomposition of the poset.

Let C = {C1, . . . Cq} be a chain decomposition of a poset P = (P,≻). The data

structure ChainMerge(P , C) stores, for each element x ∈ P , q indices as follows:

Let Ci be the chain of C containing x. The data structure stores the index of x in

Ci and, for all j, 1 ≤ j ≤ q, j 6= i, the index of the largest element of chain Cj that

is dominated by x. The performance of the data structure is characterized by the

following lemma.

Claim 5.1. Given a query oracle for a poset P = (P,≻) and a decomposition C of

P into q chains, building the ChainMerge data structure has query complexity at

most 2qn and total complexity O(qn), where n = |P |. Given ChainMerge(P , C),

the relation in P of any pair of elements can be found in constant time.

Proof. The indices corresponding to chain Cj that must be stored for the elements in

chain Ci can be found in O(|Ci|+|Cj|) time, using |Ci|+|Cj| queries, by simultaneously

scanning Ci and Cj. Since each chain is scanned 2q − 1 times, it follows that the

query complexity of ChainMerge(P , C) is at most 2qn, and the total complexity is

O(q ·∑q
i=1 |Ci|) = O(qn).

Let x, y ∈ P , with x ∈ Ci and y ∈ Cj. The look-up operation works as follows: If

i = j, we simply do a comparison on the indices of x and y in Ci, as in the case of a
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total order. If i 6= j, then we look up the index of the largest element of Cj that is

dominated by x; this index is greater than (or equal to) the index of y in Cj if and

only if x ≻ y. If x 6≻ y, then we look up the index of the largest element of Ci that is

dominated y; this index is greater than (or equal to) the index of x in Ci if and only

if y ≻ x. If neither x ≻ y nor y ≻ x, then x 6∼ y.

5.4 A lower bound

An information-theoretic lower bound on the query complexity of sorting is implied

by the following theorem of Brightwell and Goodall [2], which provides a lower bound

on the number Nw(n) of posets of width at most w on n elements.

Theorem 5.2. The number Nw(n) of partially ordered sets of n elements and width

at most w satisfies

n!

w!
4n(w−1) n−24w(w−1) ≤ Nw(n) ≤ n! 4n(w−1) n−(w−2)(w−1)/2ww(w−1)/2.

It follows that, for w = o
(

n
log n

)

,

log Nw(n) = Θ(n log n + wn).

5.5 On optimal query complexity

In this section, we describe a sorting algorithm that has optimal query complexity,

i.e. it sorts a poset of width at most w on n elements using Θ(n log n + wn) oracle

queries. Our algorithm is not necessarily computationally efficient, so in Section 5.6,

we consider efficient solutions to the problem.
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5.5.1 Other approaches

Before presenting our algorithm, it is worth discussing an intuitive approach that is

different from the one we take. For any set of oracle queries and responses, there is a

corresponding set of posets, which we call candidates, that are the posets consistent

with the responses to these queries. A natural sorting algorithm is to find a sequence

of oracle queries such that, for each query (or for a positive fraction of the queries),

the possible responses to it partition the space of posets that are candidates after the

previous queries into three parts, at least two of which are relatively large. Such an

algorithm would achieve the information-theoretic lower bound (up to a constant).

For example, the effectiveness of Quicksort for sorting total orders relies on the

fact that most of the queries made by the algorithm partition the space of candidate

total orders into two parts, each of relative size of at least 1/4. Indeed, in the case

of total orders, much more is known: for any subset of queries, there is a query that

partitions the space of candidate total orders, i.e. linear extensions, into two parts,

each of relative size of at least 3/11 [29].

In the case of width-w posets, however, it could potentially be the case that most

queries partition the space into three parts, one of which is much larger than the other

two. For example, if the set consists of w incomparable chains, each of size n/w, then

a random query has a response of incomparability with probability about 1 − 1/w.

(On an intuitive level, this explains the extra factor of w in the query complexity of

our version of Mergesort, given in Section 5.6.) Hence, we resort to more elaborate

sorting strategies.

5.5.2 A building block

Our optimal algorithm builds upon Poset–BinInsertionSort, a basic algorithm

that is identical to “Algorithm A” of Faigle and Turán [13]. The algorithm is inspired
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by the binary insertion-sort algorithm for total orders. Pseudocode for Poset–

BinInsertionSort is presented in Figure 5.1. The natural idea behind Poset–

BinInsertionSort is to sequentially insert elements into a subset of the poset,

while maintaining a chain decomposition of the latter into a number of chains equal

to the width w of the poset to be constructed. A straightforward implementation of

this idea is to perform a binary search on every chain of the decomposition in order

to figure out the relationship of the element being inserted with every element of that

chain and, ultimately, with all the elements of the current poset. It turns out that

this simple algorithm is not optimal; it is off by a factor of w from the optimum. In

the rest of this section, we show how to adapt Poset–BinInsertionSort to achieve

the information-theoretic lower bound.

We begin by analyzing Poset–BinInsertionSort.

Lemma 5.3 (Faigle & Turán [13]). Poset–BinInsertionSort sorts any partial

order P of width at most w on n elements using at most O(wn log n) oracle queries.

Proof. The correctness of Poset–BinInsertionSort should be clear from its de-

scription. (The simple argument showing that Step 4e can be executed based on the

information obtained in Step 4d is similar to the proof for the ChainMerge data

structure in Section 5.3.) It is not hard to see that the number of oracle queries in-

curred by Poset–BinInsertionSort for inserting each element is O(w log n) and,

therefore, the total number of queries is O(wn log n).

It follows that, as n scales, the number of queries incurred by the algorithm is

more by a factor of w than the lower bound. The Achilles’ heel of the Poset-

BinInsertionSort algorithm is in the method of insertion of an element—specifically,

in the way the binary searches of Step 4d are performed. In these sequences of queries,

no structural properties of P ′ are used for deciding which queries to the oracle are

more useful than others; in some sense, the binary searches give the same “attention”
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Algorithm Poset–BinInsertionSort(P)
input: a set P , a query oracle for a poset P = (P,≻),

and upper bound w on the width of P
output: a ChainMerge data structure for P

1. P ′ := ({e}, {}), where e ∈ P is some arbitrary element;
/* P ′ is the current poset*/

2. P ′ := {e}; R′ := {};
3. U := P \ {e};

/* U is the set of elements that have not been inserted */
4. while U 6= ∅

a. pick an arbitrary element e ∈ U ;
/* e is the element that will be inserted in P ′*/

b. U := U \ {e};
c. find a chain decomposition C = {C1, C2, . . . , Cq} of P ′, for q ≤ w;
d. for i = 1, . . . , q

i. let Ci = {ei1, . . . , eiℓi
}, where eiℓi

≻ . . . ≻ ei2 ≻ ei1;
ii. do binary search on Ci to find

the smallest element (if any) that dominates e;
iii. do binary search on Ci to find

the largest element (if any) that is dominated by e;
e. based on results of binary searches,

infer all relations of e with elements of P ′;
f. add into R′ all the relations of e with the elements of P ′;

P ′ := P ′ ∪ {e};
g. P ′ = (P ′,R′);

5. find a decomposition C of P ′; build ChainMerge(P ′, C)
(no additional queries needed);

6. return ChainMerge(P ′, C);

Figure 5.1: Pseudo-code for Poset–BinInsertionSort.
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to queries whose answer would greatly decrease the number of remaining possibilities

and those whose answer is not very informative. However, as we discuss earlier in

this section, a sorting algorithm that always makes the most informative query is not

guaranteed to be optimal.

Our algorithm tries to resolve this dilemma. We suggest a scheme that has the

same structure as the Poset–BinInsertionSort algorithm but exploits the struc-

ture of the already constructed poset P ′ in order to amortize the cost of the queries

over the insertions. The amortized query cost matches the information-theoretic

bound.

5.5.3 The EntropySort algorithm

The new algorithm, named EntropySort, modifies the binary searches of Step

4d into weighted binary searches. The weights assigned to the elements satisfy the

following property: the number of queries it takes to insert an element into a chain

is proportional to the number of candidate posets that will be eliminated after the

insertion of the element. In other words, we spend fewer queries for insertions that

are not informative and more queries for insertions that are informative. In some

sense, this corresponds to an entropy-weighted binary search. To make this notion

precise, we use the following definition.

Definition. Suppose that P ′ = (P ′,R′) is a poset of width at most w, U a set of

elements such that U ∩P ′ = ∅, u ∈ U and ER,PR ⊆ ({u}×P ′)∪ (P ′×{u}). We say

that P = (P ′ ∪ U,R) is a width w extension of P ′ on U conditioned on (ER,PR), if

P is a poset of width w, R∩ (P ′ × P ′) = R′ and, moreover, ER ⊆ R, R∩ PR = ∅.

In other words, P is an extension of P ′ on the elements of U which is consistent with

P ′, it contains the relations of u to P ′ given by ER and does not contain the relations

of u to P ′ given by PR. The set ER is then called the set of enforced relations and
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the set PR the set of prohibited relations.

We give in Figure 5.2 the pseudocode of Step 4d′ of EntropySort, which replaces

Step 4d of Poset–BinInsertionSort.

The correctness of the EntropySort algorithm follows trivially from the cor-

rectness of Poset–BinInsertionSort. We prove next that its query complexity is

optimal. Recall that Nw(n) denotes the number of partial orders of width w on n

elements.

Theorem 5.4. EntropySort sorts any partial order P of width at most w on n

elements using at most

2 log Nw(n) + 4wn = Θ(n log n + wn)

oracle queries. In particular, the query complexity of the algorithm is at most

2n log n + 8wn + 2w log w.

Proof. We first characterize the number of oracle calls required by the weighted binary

searches.

Lemma 5.5 (Weighted Binary Search). For every j ∈ {1, 2, . . . , ℓi + 1}, if eij is the

smallest element of chain Ci which dominates element e (j = ℓi + 1 corresponds to

the case where no element of chain Ci dominates e), then j is found after at most

2 · (1 + log Di

Dij
) oracle queries in Step v. of the algorithm described above.

Proof. Let λ =
Dij

Di
be the length of the interval that corresponds to eij. We wish to

prove that the number of queries needed to find eij is at most 2(1 + ⌊ log 1
λ
⌋). From

the definition of the weighted binary search, we see that if the interval corresponding

to eij contains a point of the form 2−r ·m in its interior, where r,m are integers, then
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Step 4d′ for Algorithm EntropySort(P)

4d′. ER = ∅; PR = ∅;
for i = 1, . . . , q

i. let Ci = {ei1, . . . , eiℓi
}, where eiℓi

≻ . . . ≻ ei2 ≻ ei1;
ii. for j = 1, . . . , ℓi + 1
• set ERj = {(eik, e)|j ≤ k ≤ ℓi}; set PRj = {(eik, e)|1 ≤ k < j};
• compute Dij = # w-extensions of P ′ on U , conditioned

on (ER ∪ ERj,PR ∪ PRj);
/* Dij is # posets on P consistent with P ′, (ER, PR),

in which eij is smallest element dominating e in Ci;
j = ℓi + 1 is case that no element of Ci dominates e;*/

iii. set Di =
∑ℓi+1

j=1 Dij;

/* Di is # of w-extensions of P ′ on U conditioned on (ER,PR)*/

iv. partition unit interval [0, 1) into ℓi + 1 intervals ([bj, tj))
ℓi+1
j=1 ,

for b1 = 0, bj = tj−1, ∀j ≥ 2, and tj = (
∑

j′≤j Dij′)/Di, ∀j ≥ 1.

/* an interval ↔ an element of Ci, or a “dummy” element eiℓi+1 */
v. binary search on [0, 1) for smallest element dominating e in Ci :

/* weighted version of binary search in Step 4dii of Figure 5.1 */
set x = 1/2; t = 1/4; j∗ = 0;
repeat: find j such that x ∈ [bj, tj);

if (j = ℓi + 1 and ei,j−1 ⊁ e) OR (eij ≻ e and j = 0)
OR (eij ≻ e and ei,j−1 ⊁ e)

set j∗ = j; break; /* found it */
else if (j = ℓi + 1) OR (eij ≻ e)

set x = x− t; t = t ∗ 1/2; /* look below */
else

set x = x + t; t = t ∗ 1/2; /* look above */
vi. eij∗ is smallest element dominating e in Ci;

set ER := ER ∪ ERj∗ and PR := PR ∪ PRj∗ ;
vii. find largest element (if any) dominated by e in Ci:

for j = 0, 1, . . . , ℓi,
compute D′

ij = # posets on P consistent with P ′, (ER, PR),
in which eij is largest element dominated by e in Ci;

/* j = 0 corresponds to case no element of Ci dominated by e; */

let D′
i =

∑ℓi

j=0D′
ij;

do weighted binary search analogous to that of Step v;
viii. update accordingly the sets ER and PR;

Figure 5.2: To obtain Algorithm EntropySort, substitute Step 4d′ above
for Step 4d in Figure 5.1.
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the search reaches eij after at most r steps. Now, an interval of length λ must include

a point of the form 2−r ·m, where r = 1 + ⌊ log 1
λ
⌋, which concludes the proof.

It is important to note that the number of queries spent by the weighted binary

search is small for uninformative insertions, which correspond to large Dij’s, and

large for informative ones, which correspond to small Dij’s. Hence, our use of the

term entropy-weighted binary search. A parallel of Lemma 5.5 holds, of course, for

finding the largest element of chain Ci dominated by element e.

Suppose now that P = {e1, . . . , en}, where e1, e2, . . . , en is the order in which the

elements of P are inserted into poset P ′. Also, denote by Pk the restriction of poset P

onto the set of elements {e1, e2, ..., ek} and by Zk the number of width w extensions of

poset Pk on P \ {e1, . . . , ek} conditioned on (∅, ∅). Clearly, Z0 ≡ Nw(n) and Zn = 1.

The following lemma is sufficient to establish the optimality of EntropySort.

Lemma 5.6. EntropySort needs at most 4w + 2 log Zk

Zk+1
oracle queries to insert

element ek+1 into poset Pk in order to obtain Pk+1.

Proof. Let C = {C1, . . . , Cq} be the chain decomposition of the poset Pk constructed

at Step 4c of EntropySort in the iteration of the algorithm in which element

ek+1 needs to be inserted into poset Pk. Suppose also that, for all i ∈ {1, . . . , q},

πi ∈ {1, . . . , ℓi + 1} and κi ∈ {0, 1, . . . , ℓi} are the indices computed by the binary

searches of Steps v. and vii. of the algorithm. Also, let Di, Dij, j ∈ {1, . . . , ℓi + 1},

and D′
i, D′

ij, j ∈ {0, . . . , ℓi}, be the quantities computed at Steps ii., iii. and vii. It is

not hard to see that the following are satisfied

Zk = D1 D′
qκq

= Zk+1

Diπi
= D′

i,∀i = 1, . . . , q D′
iκi

= Di+1,∀i = 1, . . . , q − 1

Now, using Lemma 5.5, it follows that the total number of queries required to con-
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struct Pk+1 from Pk is at most

q
∑

i=1

(

2 + 2 log
Di

Diπi

+ 2 + 2 log
D′

i

D′
iκi

)

≤ 4w + 2 log
Zk

Zk+1

.

Using Lemma 5.6, the query complexity of EntropySort is

n−1
∑

k=0

(# queries needed to insert element ek+1)

=
n−1
∑

k=0

(

4w + 2 log
Zk

Zk+1

)

= 4wn + 2 log
Z0

Zn

= 4wn + 2 log Nw(n).

Taking the logarithm of the upper bound in Theorem 5.2, it follows that the number

of queries required by the algorithm is 2n log n + 8wn + 2w log w.

5.6 An efficient sorting algorithm

In this section, we turn to the problem of efficient sorting. Superficially, the Poset-

Mergesort algorithm that we present has a recursive structure that is similar to

the classical Mergesort algorithm. The merge step is quite different, however; it

makes crucial use of the technical Peeling algorithm in order to efficiently maintain

a small chain decomposition of the poset throughout the recursion. The Peeling

algorithm, described formally in Section 5.6.2, is a specialization of the classic flow-

based bipartite-matching algorithm [37] that is efficient in the comparison model.
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5.6.1 Algorithm Poset-Mergesort

Given a set P , a query oracle for a poset P = (P,≻), and an upper bound w on the

width of P , the Poset-Mergesort algorithm produces a decomposition of P into

w chains and concludes by building a ChainMerge data structure. To get the chain

decomposition, the algorithm partitions the elements of P arbitrarily into two subsets

of (as close as possible to) equal size; it then finds a chain decomposition of each subset

recursively. The recursive call returns a decomposition of each subset into at most w

chains, which constitutes a decomposition of the whole set P into at most 2w chains.

Then the Peeling algorithm of Section 5.6.2 is applied to reduce the decomposition

to a decomposition of w chains. Given a decomposition of P ′ ⊆ P , where m = |P ′|,

into at most 2w chains, the Peeling algorithm returns a decomposition of P ′ into

w chains using 2wm queries and O(w2m) time. Figure 5.3 shows pseudo-code for

Poset-Mergesort.

Theorem 5.7. Poset-Mergesort sorts any poset P of width at most w on n

elements using at most

2wn log(n/w))

queries, with total complexity

O(w2n log(n/w)).

Proof. The correctness of Poset-Mergesort is immediate. Let T (m) and Q(m)

be the worst-case total and query complexity, respectively, of the procedure Poset-

Mergesort-Recurse on a poset of width w containing m elements. When m ≤

w, T (m) = O(w) and Q(m) = 0. When m > w, T (m) = 2T (m/2) + O(w2m)

and Q(m) ≤ 2Q(m/2) + 2wm. Therefore, T (n) = O(w2n log(n/w)) and Q(n) ≤

2wn log(n/w). The cost incurred by the last step of the algorithm, i.e. that of
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Algorithm Poset-Mergesort(P)
input: a set P , a query oracle for a poset P = (P,≻),

and upper bound w on the width of P
output: a ChainMerge data structure for P

run Poset-Mergesort-Recurse(P ),
producing a decomposition C of P into w chains;

build and return ChainMerge(P , C);

Procedure Poset-Mergesort-Recurse(P ′)
input: a subset P ′ ⊆ P , a query oracle for P = (P,≻),

an upper bound w on the width of P
output: a decomposition into at most w chains

of the poset P ′ induced by ≻ on P ′

if |P ′| ≤ w
then return the trivial decomposition of P ′ into chains of length 1
else

1. partition P ′ into two parts of equal size, P ′
1 and P ′

2;
2. run Poset-Mergesort-Recurse(P ′

1)
and Poset-Mergesort-Recurse(P ′

2);
3. collect the outputs to get a decomposition C of P ′

into q ≤ 2w chains;
4. if q > w, run Peeling(P , C),

to get a decomposition C′ of P ′ into w chains;
return C′;

Figure 5.3: Pseudo-code for Poset-Mergesort.
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building the ChainMerge, is negligible.

5.6.2 The Peeling algorithm

In this section we present an algorithm that efficiently reduces the size of a given

decomposition of a poset. It can be seen as an adaptation of the classic flow-based

bipartite-matching algorithm [37] that is designed to be efficient in the oracle model.

The Peeling algorithm is given an oracle for poset P = (P,≻), where n = |P |, and

a decomposition of P into at most 2w chains. It first builds a ChainMerge data

structure using at most 2qn queries and time O(qn). Every query the algorithm makes

after that is actually a look-up in the data structure and therefore takes constant time

and no oracle call.

The Peeling algorithm proceeds in a number of peeling iterations. Each iteration

produces a decomposition of P with one less chain, until after at most w peeling iter-

ations, a decomposition of P into w chains is obtained. A detailed formal description

of the algorithm is given in Figure 5.4.

Theorem 5.8. Given an oracle for P = (P,≻), where n = |P |, and a decomposition

of P into at most 2w chains, the Peeling algorithm returns a decomposition of P

into w chains. It has query complexity at most 2wn and total complexity O(w2n).

Proof. To prove the correctness of one peeling iteration, we first observe that it is

always possible to find a pair (x, y) of top elements such that y ≻ x, as specified in

Step 1a, since the size of any anti-chain is at most the width of P , which is less than

the number of chains in the decomposition. We now argue that it is possible to find a

subsequence of dislodgements as specified by Step 2a. Let yt be the element defined

in step 3 of the algorithm. Since yt was dislodged by xt, xt was the top element of

some list when that happened. In order for xt to be a top element, it was either top

117



Algorithm Peeling(P , C)
input: a query oracle for poset P = (P,≻),

an upper bound w on the width of P ,
and a decomposition C = {C1, . . . , Cq} of P , where q ≤ 2w

output: a decomposition of P into w chains

build ChainMerge(P , C); /* All further queries are look-ups. */
for i = 1, . . . , q

construct a linked list for each chain Ci = eiℓi
→ · · · → ei2 → ei1,

where eiℓi
≻ · · · ≻ ei2 ≻ ei1;

while q > w, perform a peeling iteration:
1. for i = 1, . . . , q, set C ′

i = Ci;
2. while every C ′

i is nonempty
/* the largest element of each C ′

i is a top element */
a. find a pair (x, y), x ∈ C ′

i, y ∈ C ′
j, of top elements

such that y ≻ x;
b. delete y from C ′

j; /* x dislodges y */
3. in the sequence of dislodgements,

find a subsequence (x1, y1), . . . , (xt, yt) such that:
• deletion of yt (in step 2b) created an empty chain;
• for i = 2, . . . , t, yi−1 is the parent of xi in its original chain;
• x1 is the top element of one of the original chains;

4. modify the original chains C1, . . . , Cq:
a. for i = 2, . . . , t

i. delete the pointer going from yi−1 to xi;
ii. replace it with a pointer going from yi to xi;

b. add a pointer going from y1 to x1;
5. set q = q − 1; re-index the modified original chains from 1 to q − 1;

return the current chain decomposition, containing w chains

Figure 5.4: Pseudo-code for the Peeling Algorithm.
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from the beginning, or its parent yt−1 must have been dislodged by some element

xt−1, and so on.

We claim that, given a decomposition into q chains, one peeling iteration produces

a decomposition of P into q − 1 chains. Recall that y1 ≻ x1 and, moreover, for every

i, 2 ≤ i ≤ t, yi ≻ xi, and yi−1 ≻ xi. Observe that after Step 4 of the peeling iteration,

the total number of pointers has increased by 1. Therefore, if the link structure

remains a union of disconnected chains, the number of chains must have decreased by

1, since 1 extra pointer implies 1 less chain. It can be seen that the switches performed

by Step 4 of the algorithm maintain the invariant that the in-degree and out-degree of

every vertex is bounded by 1. Moreover, no cycles are introduced since every pointer

that is added corresponds to a valid relation. Therefore, the link structure is indeed

a union of disconnected chains.

The query complexity of the Peeling algorithm is exactly the query complexity

of ChainMerge, which is 2wn. We show next that one peeling iteration can be

implemented in time O(qn), which implies the claim.

In order to implement one peeling iteration in time O(qn), a little book-keeping is

needed, in particular, for Step 2a. We maintain during the peeling iteration a list L of

potentially-comparable pairs of elements. At any time, if a pair (x, y) is in L, then x

and y are top elements. At the beginning of the iteration, L consists of all pairs (x, y)

where x and y are top elements. Any time an element x that was not a top element

becomes a top element, we add to L the set of all pairs (x, y) such that y is currently

a top element. Whenever a top element x is dislodged, we remove from L all pairs

that contain x. When Step 2a requires us to find a pair of comparable top elements,

we take an arbitrary pair (x, y) out of L and check if x and y are comparable. If

they are not comparable, we remove (x, y) from L, and try the next pair. Thus, we

never compare a pair of top elements more than once. Since each element of P is

responsible for inserting at most q pairs to L (when it becomes a top element), it
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follows that a peeling iteration can be implemented in time O(qn).

5.7 Computing linear extensions and heights

In this section we consider two problems that are closely related to the problem of

determining a partial order: given a poset, compute a linear extension, and compute

the heights of all elements.

More formally, a total order (P,>) is a linear extension of a partial order (P,≻) if,

for any two elements x, y ∈ P , x ≻ y implies x > y. We give a randomized algorithm

that, given a set P of n elements, access to an oracle for a poset P = (P,≻), and an

upper bound w on the width of P , computes a linear extension of P with expected

total complexity O(n log n + wn). We give another randomized algorithm that, on

the same input, determines the height of every element of P with expected total

complexity O(wn log n).

The algorithms are analogous to Quicksort, and are based on a ternary search

tree, an extension of the well-known binary search tree for maintaining elements of a

linear order. A ternary search tree for a poset P = (P,≻), consists of a root, a left

subtree, a middle subtree and a right subtree. The root contains an element x ∈ P

and the left, middle, and right subtrees are ternary search trees for the restrictions

of P to the sets {y |x ≻ y}, {y |x 6∼ y} and {y | y ≻ x}, respectively. The ternary

search tree for the empty poset consists of a single empty node.

We give a simple randomized algorithm to construct a ternary search tree for P

as follows: The algorithm assigns a random element of P to the root, compares each

of the n−1 other elements to the element at the root to determine the sets associated

with the three children of the root, and then, recursively, constructs a ternary search

tree for each of these three sets.
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Define the weight of an internal node x of a ternary search tree as the total number

of internal nodes in its three subtrees, and the weight of a ternary search tree as the

sum of the weights of all internal nodes. Then the number of queries required to

construct a ternary search tree is exactly the weight of the tree.

Theorem 5.9. The expected weight of a ternary search tree for any poset of size n

and width w is O(n log n + wn).

Proof. Consider the path from the root to a given element x. The number of edges

in this path from a parent to a middle subtree is at most w. The expected number of

edges from a parent to a left or right subtree is O(log n) since, at every step along the

path, the probability is at least 1/2 that the sizes of the left and right subtrees differ

by at most a factor of 3. It follows that the expected contribution of any element to

the weight of the ternary search tree is w + O(log n).

Once a ternary search tree for a poset has been constructed, a linear extension

can be constructed by a single depth-first traversal of the tree. If x is the element at

the root, then the linear extension is the concatenation of the linear extensions of the

following four subsets, corresponding to the node and its three subtrees: {y |x ≻ y},

{x}, {y |x 6∼ y} and {y | y ≻ x}. The corollary below follows.

Corollary 5.10. There is a randomized algorithm that, given a poset of size n and

width at most w, computes a linear extension of the poset and has expected total

complexity

O(n log n + wn).

The problem of computing a linear extension has many applications. In particular,

we show the following:

Lemma 5.11. There is a deterministic algorithm that, given a linear extension of

a poset of size n and width at most w, computes the heights of all elements and has

121



total complexity O(wn log n).

Proof. Let h(x) = h be the height of element x in (P,≻). Given a linear extension

xn > · · · > x2 > x1, it is easy to compute h(x) for each element x by binary search,

using the following observation: Let

S(i, h) = {xj | j ≤ i, h(xj) = h}

be the set of elements of index at most i in the linear extension and of height h in

(P,≻). Then |S(i, h)| ≤ w (as the elements of S(i, h) are pairwise incomparable),

and h(xi+1) > h if and only if there exists x ∈ S(i, h) such that xi+1 ≻ x. Thus, given

the sets S(i, h), for all h, we can determine h(xi+1) and the sets S(i + 1, h), for all h,

in time O(w log i) using binary search. Summing over i yields the claim.

Combining the algorithms of Corollary 5.10 and Lemma 5.11 gives our final result:

Corollary 5.12. There is a randomized algorithm that, given a poset of size n and

width at most w, determines the heights of all elements and has expected total com-

plexity O(wn log n).

5.8 Variants of the poset model

In this section, we discuss sorting in two variants of the poset model that occur

when different restrictions are relaxed. First, we consider posets for which a bound

on the width is not known in advance. Second, we allow the irreflexivity condition

to be relaxed, which leads to transitive relations. We show that with relatively little

overhead in complexity, sorting in either case reduces to the problem of sorting posets.
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5.8.1 Unknown width

Recall from Section 5.4 that Nw(n) is the number of posets of width at most w on n

elements.

Claim 5.13. Given a set P of n elements and access to an oracle for poset P = (P,≻)

of unknown width w, there is an algorithm that sorts P using at most

2 log w (log N2w(n) + 4wn) = Θ(n log w (log n + w))

queries. There is an efficient algorithm, of total complexity O(nw2 log w log(n/w)),

that sorts P using at most 8nw log w log(n/(2w)) queries.

Proof. We use an alternate version of EntropySort that returns fail if it cannot

insert an element (while maintaining a decomposition of the given width) and an

alternate version of Poset-Mergesort that returns fail if the Peeling algorithm

cannot reduce the size of the decomposition to the given width. The first algorithm of

the claim is, for i = 1, 2, . . ., to run the alternate version of algorithm EntropySort

on input set P , the oracle, and width upper bound 2i, until the algorithm returns

without failing. The second algorithm is analogous but uses the alternate version

of Poset-Mergesort. The claim follows from Theorems 5.4 and 5.7, and from

the fact that we reach an upper bound of at most 2w on the width of P in log w

rounds.

5.8.2 Transitive relations and directed graphs

A partial order is a particular kind of transitive relation. In fact, our results generalize

to the case of arbitrary transitive relations (which are not necessarily irreflexive) and

are therefore relevant to a broader set of applications. Formally, a transitive relation

is a pair (P,�), where P is a set of elements and � ⊆ P × P is transitive.

123



For a directed graph G = (V,A), A ⊆ {(u, v) ∈ V }, and vertices x, y ∈ V , x is said

to be reachable from y if there is a directed path (y, u1), . . . , (ui, ui+1), . . . , (uk, x) from

y to x in G. The reachability relation defined by G is the set of pairs (x, y) ∈ V × V

such that x is reachable from y in G.

Every transitive relation can be thought of as the reachability relation in a graph,

and likewise, the reachability relation of any graph is a transitive relation. Hence,

the problem of sorting a transitive relation from queries to an oracle is equivalent

to the problem of reconstructing a directed graph from queries to an oracle for its

reachability relation.

We show here that the problem of sorting a transitive relation reduces with little

overhead in complexity to the problem of sorting a poset.

The width of a transitive relation is defined to be the maximum size of a set of

mutually incomparable elements. We say that a poset (P,≻) is induced by a transitive

relation (P,�) if ≻⊆ �. A poset (P,≻) is minimally induced by (P,�) if for any

relation (x, y) ∈ �\ ≻, the pair (P,≻ ∪ (x, y)) is not a valid partial order, i.e. its

corresponding graph contains a directed cycle.

We require the following lemma, bounding the width of a minimally induced poset.

Lemma 5.14. Let (P,≻) be a poset minimally induced by the transitive relation

(P,�). Then the width of (P,≻) is equal to the width of (P,�).

Proof. Suppose otherwise, that is, suppose that there is a pair of distinct elements

x, y ∈ P such that x 6∼ y with respect to the partial order (P,≻), but x and y have

some relation in (P,�). Without loss of generality, suppose that x � y; it may be

simultaneously true that y � x. First, we note that (P,≻ ∪ (x, y)) is a valid partial

order; if it were not, i.e. if the addition of (x, y) introduced a cycle, then it would

be the case that y ≻ x, which is a contradiction to their incomparability. However,

the poset (P,≻ ∪ (x, y)) is also induced by (P,�), which contradicts the assumption
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that (P,≻) is minimally induced.

We denote by O≻ an oracle for a poset (P,≻) and by O� an oracle for a transitive

relation (P,�). In the following claim, we assume that the poset sorting algorithm

outputs a chain decomposition (such as a ChainMerge); if it does not, the total

complexity of the algorithm for sorting a transitive relation increases a bit, but not

its query complexity.

Claim 5.15. Suppose there is an algorithm A that, given a set P of n elements,

access to an oracle O≻ for a poset P = (P,≻), and an upper bound of w on the width

of P, sorts P using f(n,w) queries and g(n,w) total complexity. Then there is an

algorithm B that, given P , w, and access to an oracle O� for a transitive relation

(P,�) of width at most w, sorts P using f(n,w) + 2nw queries and g(n,w) + O(nw)

total complexity.

Proof. Given an oracle O� for the transitive relation (P,�), we define a special poset

oracle O that runs as follows: Given a query q(x, y), the oracle O first checks if the

relation between x and y can be inferred by transitivity and irreflexivity from previous

responses. If so, it outputs the appropriate inferred response; otherwise, it forwards

the query to the oracle O�. The oracle O outputs the response of O� except if both

x � y and y � x; in this case, O outputs whichever relation is consistent with the

partial order determined by previous responses (if both relations are consistent, then

it arbitrarily outputs one of the two). By definition, the responses of O are consistent

with a partial order induced by (P,�).

The first step of algorithm B is to run algorithm A on input P and w, giving A

access to the special oracle O, which B simulates using its access to O�. Since A

completely sorts its input, it reconstructs a poset induced by (P,�) via O that has

a maximal set of relations. That is, there is a poset P = (P,≻) minimally induced

by (P,�) such that the responses of O to the sequence of queries made by A are
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indistinguishable from the responses of O≻ to the same sequence of queries. Since

P has the same width as (P,�), it is valid to give A the upper bound of w. Hence,

A sorts P and outputs some chain decomposition C = {C1, . . . Cq} of P such that

q ≤ w.

The second step of algorithm B is to make a sequence of queries to the oracle

O� to recover the relations in �\ ≻. It is similar to building a ChainMerge data

structure: for all i, j, 1 ≤ i, j ≤ q, for every element x ∈ Ci, we store the index of x

in chain Ci and the index of the largest element y ∈ Cj such that x � y. An analysis

similar to the one for ChainMerge (see Section 5.3) shows that it takes at most

2nq queries to the oracle O� and O(nq) total complexity to find all the indices. The

relation in (P,�) between any pair of elements can then be looked up in constant

time.

126



Chapter 6

Selection in posets

In this chapter, we consider the natural problem, closely related to sorting, of deter-

mining the minimal elements of a poset. We also study its generalization, the problem

of determining the set of elements in the k bottom levels of the partial order.

We begin with formal definitions and brief discussion of results. In Section 6.2, we

give deterministic and randomized algorithms for both problems. Section 6.3 covers

lower bounds in adversarial and randomized models of computation.

6.1 The k-selection problem

Recall from Chapter 5, Section 5.1, that the height of an element a is the maximum

cardinality of a chain whose elements are all dominated by a. The k-selection problem

is the problem of finding the elements in the bottom k layers, i.e., the elements of

height at most k − 1, of a poset P = (P,≻), given the set P of n elements, an upper

bound w on the width of P , and a query oracle for P .

To our knowledge, k-selection in posets has not been previously considered. The

upper bounds that we prove in Section 6.2 arise from natural generalizations of anal-

ogous algorithms for total orders. The lower bounds, however, are achieved quite
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differently; a detailed description of the arguments is given in Section 6.3. We conjec-

ture that our deterministic lower bound for the case of k = 1 is actually tight, though

the upper bound is off by a factor of 2.

6.2 Upper bounds

In this section, we analyze some deterministic and randomized algorithms for the

k-selection problem.

6.2.1 Finding the minimal elements

We begin with the 1-selection problem, i.e., the problem of finding the minimal ele-

ments.

Theorem 6.1. The minimal elements can be found deterministically with at most

wn queries and O(wn) total complexity.

Proof. The algorithm updates a set of size w of elements that are candidates for being

smallest elements. Initialize T0 = ∅. Assume that the elements are x1, . . . , xn. At

step t:

• Compare xt to all elements in Tt−1.

• If there exists some a ∈ Tt−1 such that xt ≻ a, do nothing.

• Otherwise, remove from Tt−1 all elements a such that a ≻ xt and put xt into Tt.

At the termination of the algorithm, the set Tn contains all elements of height 0. By

construction of Tt, for all t, the elements in Tt are mutually incomparable. Therefore,

for all t, it holds that |Tt| ≤ w, and hence the query complexity of the algorithm is

at most wn.
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Theorem 6.2. There exists a randomized algorithm that finds the minimal elements

in an expected number of queries that is at most

w + 1

2
n +

w2 − w

2
(log n− log w).

Proof. The algorithm is similar to the algorithm for the proof of Theorem 6.1, with

modifications to avoid (in expectation) worst-case behavior. Let σ be a permutation

of [n] chosen uniformly at random. Let T1 =
{

xσ(1)

}

. For 1 ≤ t < n, at step t:

• Let i be an index of the candidates in Tt−1, i.e. Tt−1 = {xi(1), . . . , xi(r)}, where

r ≤ w.

• Let Tt = Tt−1. Let τ be a permutation of [r] chosen uniformly at random.

• For j = 1, . . . , r:

– If xσ(t) ≻ xi(τ(j)), exit the loop and move to step t + 1.

– If xi(τ(j)) ≻ xσ(t), remove xi(τ(j)) from Tt.

• Add xσ(t) to Tt.

As in the previous algorithm, it is easy to see that at each step t, the set Tt contains all

the minimal elements of At = {xσ(1), . . . , xσ(t)} and that |Tt| ≤ w. Note furthermore

that at step t,

P[xσ(t) is minimal for At] ≤
w

t
.

If xσ(t) is not minimal for At, then the expected number of comparisons needed until

xσ(t) is compared to an element a ∈ At that dominates xσ(t) is clearly at most (w+1)/2.
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We thus conclude that the expected running time of the algorithm is bounded by:

w
∑

t=2

(t− 1) +
n
∑

t=w+1

(

w

t
w +

(t− w)

t

(w + 1)

2

)

=

(

w

2

)

+
n
∑

t=w+1

1

2t

(

w2 − w + tw + t
)

≤ w + 1

2
n +

w2 − w

2
(log n− log w).

6.2.2 General k-selection

We now turn to the k-selection problem for k > 1. We first provide deterministic

upper bounds on query and total complexity.

Theorem 6.3. The query complexity of the k-selection problem is at most

16wn + 4n log (2k) + 6n log w.

Moreover, there exists an efficient k-selection algorithm with query complexity at most

8wn log (2k)

and total complexity

O(w2n log(2k)).

Proof. The basic idea is to use the sorting algorithm presented in previous sections in

order to update a set of candidates for the k-selection problem. Denote the elements

by x1, . . . , xn. Let C0 = ∅. The algorithm proceeds as follows, beginning with t=1:

• While (t− 1)wk + 1 ≤ n, let Dt = Ct−1 ∪ {x(t−1)wk+1, . . . , xmin(twk,n)}.
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• Sort Dt. Let Ct be the solution to the k-selection problem for Dt.

Clearly, at the end of the execution, Ct contains the solution to the k-selection prob-

lem. As we have shown, the query complexity of sorting Dt is

4wk log (2wk) + 16w2k + 2w log w

and, therefore, the query complexity of the algorithm is

n

wk
(4wk log (2wk) + 16w2k + 2w log w)

= 4n log (2wk) + 16wn +
2n

k
log w.

This proves the first result. Using the computationally efficient sorting algorithm, we

get sorting query complexity 8w2k log (2k), which results in total query complexity

8nw log (2k) and total complexity O(nw2 log(2k)).

Next we outline a randomized algorithm with a better coefficient of the main term wn.

Theorem 6.4. The k-selection problem has a randomized query complexity of at most

wn + 16kw2 log n log(2k)

and total complexity

O(wn + poly(k, w) log n).

Proof. We use the following algorithm:

• Choose an ordering x1, . . . , xn of the elements uniformly at random.

• Let Cwk = {x1, . . . , xwk} and Dwk = ∅.

• Sort Cwk. Remove any elements from Cwk that are of height greater than k− 1.
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• Let t = wk + 1. While t ≤ n do:

– Let Ct = Ct−1 and Dt = Dt−1.

– Compare xt to the maximal elements in Ct in a random order.

∗ For each maximal element a ∈ Ct: if height(a) = k − 1 and a ≻ xt, or

if height(a) < k− 1 and xt ≻ a, then add xt to Dt, and exit this loop.

∗ If for all elements a ∈ Ct, xt 6∼ a, then add xt to Dt and exit this loop;

– If |Dt| = wk or t = n:

∗ Sort Ct ∪Dt.

∗ Set Ct to be the elements of height at most k − 1 in Ct ∪Dt.

∗ Set Dt = ∅.

• Output the elements of Cn.

It is clear that Cn contains the solution to the k-selection problem. To analyze the

query complexity of the algorithm, recall from Theorem 5.7 that

s(w, k) = 8w2k log(2k)

is an upper bound on the number of queries used by the efficient sorting algorithm

to sort 2wk elements in a width-w poset.

There are two types of contributions to the number of queries made by the algo-

rithm: (1) comparing elements to the maximal elements of Ct, and (2) sorting the

sets C0 and Ct ∪Dt.

To bound the expected number of queries of the first type, we note that for

t ≥ kw + 1, since the elements are in a random order, the probability that xt ends

up in Dt is at most min
(

1, 2kw
t

)

. If xt is not going to be in Dt, then the number
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of queries needed to verify this is bounded by w. Overall, the expected number of

queries needed for comparisons to maximal elements is bounded by wn.

To calculate the expected number of queries of the second type, we bound the

expected number of elements that need to be sorted as follows:

n
∑

t=kw+1

min

(

1,
2kw

t

)

≤ 2kw(log n− 1).

We thus obtain an upper bound on the total query complexity of

wn + 2s(w, k) log n.

6.3 Lower bounds

We obtain lower bounds for the k-selection problem both for adaptive and non-

adaptive adversaries. Some of our proofs use the following lower bound on finding

the k-th smallest element of a linear order on n elements:

Theorem 6.5 (Fussenegger-Gabow [17]). The number of queries required to find the

kth smallest element of an n-element total order is at least n− k + log
(

n
k−1

)

.

The proof of Theorem 6.5 shows that every comparison tree that identifies the kth

smallest element must have at least 2n−k
(

n
k−1

)

leaves, which implies that the theorem

also holds for randomized algorithms.

6.3.1 Adversarial lower bounds

We consider adversarial lower bounds for the k-selection problem. In this model, an

adversary simulates the oracle and is allowed to choose her response to a query after
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she receives it. Any response is legal as long as there is some partial order of width

w with which all of her responses are consistent. We begin with the case of k = 1,

i.e. finding the set of minimal elements.

Theorem 6.6. In the adversarial model, at least w+1
2

n − w queries are needed in

order to find the minimal elements.

Proof. Consider the following adversarial algorithm. The algorithm outputs query

responses that correspond to a poset P of w disjoint chains. Given a query q(a, b),

the algorithm outputs a response to the query, and in some cases, it may also announce

for one or both of a and b to which chain the element belongs. Note that receiving

this extra information can only make things easier for the query algorithm. During

the course of the algorithm, the adversary maintains a graph G = (P,E). Whenever

the adversary responds that a 6∼ b, it adds an edge (a, b) to E.

Let qt(a) be the number of queries that involve element a, out of the first t queries

overall. Let c(a) be the chain assignment that the adversary has announced for

element a. (We set c(a) to be undefined for all a, initially.) Let {xi}ni=1 be an

indexing, chosen by the adversary, of the elements of P . Let q(a, b) be the t’th query.

The adversary follows the following protocol:

• If qt(a) ≤ w − 1 or qt(b) ≤ w − 1, return a 6∼ b. In addition:

– If qt(a) = w − 1, choose a chain c(a) for a that is different from all the

chains to which a’s neighbors in G belong, and output it.

– If qt(b) = w−1 choose a chain c(b) for b that is different from all the chains

to which b’s neighbors in G belong, and output it.

• If qt(a) > w − 1, qt(b) > w − 1, and c(a) 6= c(b), then output a 6∼ b.

• Otherwise, let i and j be the indices of a and b, respectively (i.e. a = xi and

b = xj). If i > j, then output a ≻ b; otherwise, output b ≻ a.
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It is easy to see that the output of the algorithm is consistent with a width-w poset

consisting of w chains that are pairwise incomparable. We will also require that each

of the chains is chosen at least once (this is easily achieved).

We now prove a lower bound on the number of queries to this algorithm required

to find a proof that the minimal elements are indeed the minimal elements.

In any proof that a is not a smallest element, it must be shown to dominate at

least one other element, but to get such a response from the adversary, a must be

queried against at least w − 1 other elements with which it is incomparable. To

prove that a minimal element of one chain is indeed minimal, it must be queried at

least against the minimal elements of the other chains to rule out the possibility it

dominates one of them. Therefore, each element must be compared to at least w− 1

elements that are incomparable to it. So the total number of queries of type q(a, b),

where a 6∼ b, is at least w−1
2

n.

In addition, for each chain ci of length ni, the output must provide a proof of

minimality for the minimal element of that chain. By Theorem 6.5, this contributes

ni − 1 queries for each chain ci.

Summing over all the bounds proves the claim.

Theorem 6.7. Let r = n
2w−1

. If k ≤ r then the number of queries required to solve

the k-selection problem is at least

(w + 1)n

2
− w(k + log k)− w3

8
+ min

(

(w − 1) log

(

r

k − 1

)

+ log

(

rw

k − 1

)

,

n(r − k)(w − 1)

2r
+ log

(

n− (w − 1)k

k − 1

))

.

Proof. The adversarial algorithm outputs query responses exactly as in the proof of

Theorem 6.6, except in the case where the tth query is (a, b) and qt(a) = w − 1 or

qt(b) = w − 1. In that case it uses a more specific rule for the assignment of one or

both of these elements to chains.
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In addition to assigning the elements to chains, the process must also select the

k smallest elements in each chain, and Theorem 6.5 gives a lower bound, in terms of

the lengths of the chains, on the number of queries required to do so.

We think of the assignment of elements to chains as a coloring of the elements

with w colors. The specific color assignment rule is designed to ensure that, if the

number of elements of color c is small, then there must have been many queries in

which the element being colored could not receive color c because it had already been

declared incomparable to an element with color c. It will then follow that there have

been a large number of queries in which an element was declared incomparable to an

element with color c. Thus, if many of the chains are very short, then the number

of pairs declared incomparable must be very large. On the other hand, if few of the

chains are very short, then we can employ Theorem 6.5 to show that the number of

queries required to select the k smallest elements in each chain must be large. We

obtain the overall lower bound by playing off these two observations against each

other.

The color assignment rule is based on a function dt(c), referred to as the deviation

of color c after query t, and satisfying the initial condition d0(c) = 0 for all c. The

rule is: “assign the eligible color with smallest deviation.”

More specifically, let the tth query be (at, bt). The adversary processes at and

then bt. Recall that qt(a) is the number of queries involving element a out of the

first t queries overall. Element e ∈ {at, bt} is processed exactly as in the proof of

Theorem 6.6 except when qt(e) = w − 1. In that case, let St(e) be the set of colors

that are not currently assigned to neighbors of e; i.e., the set of colors eligible to be

assigned to element e. Let c∗ = argminc∈St(e) dt−1(c). The adversary assigns color c∗

to e. Then the deviations of all colors are updated as follows:

1. if c 6∈ St(e) then dt(c) = dt−1(c);
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2. dt(c
∗)← dt−1(c

∗) + 1− 1
|St(e)|

;

3. For c ∈ St(e) \ {c∗}, dt(c)← dt−1(c)− 1
|St(e)|

.

The function dt(c) has the following interpretation: over the history of the color

assignment process, certain steps occur where the adversary has the choice of whether

to assign color c to some element; dt(c) represents the number of times that color c

was chosen up to step t, minus the expected number of times it would have been

chosen if the same choices had been available at all steps and the color had been

chosen uniformly at random from the set of eligible colors.

Because the smallest of the deviations of eligible colors is augmented at each step,

it is not possible for any deviation to drift far from zero. Specifically, it can be

shown by induction on t that at every step t the sum of the deviations is zero and for

m = 1, 2, . . . , w, the sum of the m smallest deviations is greater than or equal to

m(m− w)

2
.

Let degG(a) be the degree of a in G at the end of the process. At the end of the

process every element of degree greater than or equal to w−1 in G has been assigned

to a chain. Each element of degree less than w − 1 has not been assigned to a chain,

and is therefore called unassigned. An unassigned element is called eligible for chain

c if it has not been compared (and found incomparable) with any element of chain

c. Let s(c) be the length of chain c and define def(c), the deficiency of chain c, as

max(0, k − s(c)). Define the total deficiency def as the sum of the deficiencies of all

chains.

Let u be the number of unassigned elements. Upon the termination of the process

it must be possible to infer from the results of the queries that every unassigned

element is of height at most k − 1. This implies that, if unassigned element x is
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eligible for chain c, then the number of unassigned elements eligible for chain c must

be at most def(c). Thus the number of pairs (a, c) such that unassigned element

a is eligible for chain c is def. Define the deficiency of unassigned element a as

w − 1 − degG(a). Then the sum of the deficiencies of the unassigned elements is

bounded above by def, and therefore the sum of the degrees in G of the unassigned

elements is at least (w − 1)u− def.

By Theorem 6.5, if s(c) > k, then at least

(

s(c)− k + log

(

s(c)

k − 1

))

queries are needed to determine the k smallest elements of chain c.

The total number of queries is the number of edges that have been placed in G in

the course of the algorithm (i.e., the number of pairs that have been declared incom-

parable by the adversary), plus the number of queries required to perform k-selection

in each chain. The total number of pairs that have been declared incomparable is

1
2

∑

a degG(a).

Let d(c) be the deviation of color c at the end of the process. Let r(c) be the

number of steps in the course of the process at which the element being colored

was eligible to receive color c. If, at each such step, the color had been chosen

uniformly from the set of eligible colors, then the chance of choosing color c would

have been at least 1
w
. Thus, by the interpretation of the function dt(c) given above,

s(c) ≥ r(c)
w

+ d(c); equivalently, r(c) ≤ w(s(c)− d(c)). Also,

∑

a|c(a)=c

degG(a) ≥ n− r(c) ≥ n− w(s(c)− d(c)).

This sum is also at least (w − 1)s(c), since every element assigned to c has been

declared incomparable with at least (w − 1) other elements.
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We can now combine these observations to obtain our lower bound. For each chain

c define

cost(c) =
1

2

∑

a|c(a)=c

degG(a) + max

(

0, s(c)− k + log

(

s(c)

k − 1

))

.

Then
∑

c cost(c)+ 1
2
((w − 1)u− def) is a lower bound on the total number of queries,

and

∑

c

cost(c) ≥ 1

2

∑

c

max ((w − 1)s(c), n− w(s(c)− d(c)))

+
∑

c|s(c)>k

(

s(c)− k + log

(

s(c)

k − 1

))

.

To obtain our lower bound we minimize this function over all choices of nonnega-

tive integers s(c), u and def such that

∑

c

s(c) + u = n and def =
∑

c

max(0, k − s(c)).

Noting that
∑

c

min(d(c), 0) ≥ min
m

m(m− w)

2
= −w2

8
,

we obtain the following lower bound on the total number of queries:

(w − 1)n

2
− def

2
− w3

8
+

1

2

∑

c

max (0, n− (2w − 1)s(c))

+
∑

c|s(c)>k

(

s(c)− k + log

(

s(c)

k − 1

)) (6.1)

We now restrict attention to the case k ≤ n
2w−1

. Let r = n
2w−1

. We show that,

at any global minimum of (6.1), def = 0. To see this, consider any choice of {s(c)}

such that def > 0. Let c be a chain such that def(c) > 0. If s(c) is increased by 1,
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then def decreases by 1, and the net change in the value of quantity (6.1) is 1− w,

which is negative.

Thus, in minimizing (6.1) we may assume that def = 0, and hence that
∑

c s(c) =

n. So (6.1) may be rewritten as

(w − 1)n

2
− w3

8
+
∑

c

F (s(c))

where

F (s) =















1
2
max(0, n− (2w − 1)s) if s ≤ k

1
2
max(0, n− (2w − 1)s) +

(

s− k + log
(

s
k−1

))

if s > k.

Thus, we have the following minimization problem:

Minimize
∑

c

F (s(c)), subject to s(c) ≥ 0 and
∑

c

s(c) = n.

First, we note that
∑

c|k<s(c)

(s(c)− k) = n− wk.

To determine the minimum we consider three ranges of values: the low range s = k,

medium range k < s(c) ≤ r, and high range r < s(c) ≤ n. Observing that F (s)

is strictly concave in the medium range, and concave and strictly increasing in the

high range, it follows that, at the global minimum of (6.1), s(c) is equal to either k

or r except for one value in the high range and possibly one value strictly within the

medium range. The value in the high range is at least rw, since the sum of the values

in the low and medium ranges does not exceed r(w − 1). If

∑

c|k≤s(c)≤r

s(c) = (w − 1)r −D,
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then the unique value of s(c) in the high range is rw + D. Moreover, exploiting the

concavity of F (s) in the medium range, we claim that

∑

c|k≤s(c)≤r

log

(

s(c)

k − 1

)

≥
(

w − 1− D

r − k

)

log

(

r

k − 1

)

.

This bound is at most w log k greater than the sum

∑

c|k<s(c)≤r

log

(

s(c)

k − 1

)

.

Finally, a simple calculation shows that

1

2

∑

c

max(0, n− (2w − 1)s(c)) =
nD

2r
.

Thus we get the following lower bound on
∑

c F (s(c)):

n− w(k + log k)

+ min
0≤D≤(w−1)(r−k)

((

w − 1− D

r − k

)

log

(

r

k − 1

)

+
nD

2r
+ log

(

rw + D

k − 1

))

.

As a concave function, this is minimized either at D = 0 or D = (w− 1)(r− k).This

yields the following lower bound on the worst-case number of queries required to solve

the k-selection problem when k ≤ r:

(w + 1)n

2
− w(k + log k)− w3

8
+ min

(

(w − 1) log

(

r

k − 1

)

+ log

(

rw

k − 1

)

,

n(r − k)(w − 1)

2r
+ log

(

n− (w − 1)k

k − 1

)

)

.
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6.3.2 Lower bounds in the randomized query model

We now prove lower bounds on the number of queries used by randomized k-selection

algorithms. We conjecture that the randomized algorithm for finding the minimal

elements which we give in the proof of Theorem 6.2 essentially achieves the lower

bound. However, the lower bound we prove here is a factor 2 different from this

upper bound.

We consider a distribution D(n,w) on partial orders of width w over a set P =

{x1, . . . , xn}. The distribution D(n,w) is defined as follows:

• The support of D(n,w) is the set of partial orders consisting of w chains, where

any two elements from different chains are incomparable.

• Each element belongs independently to one of the w chains with equal proba-

bility.

• The linear order on each chain is chosen uniformly.

Theorem 6.8. The expected query complexity of any algorithm solving the k-selection

problem is at least

w + 3

4
n− wk + w

(

1− exp
(

− n

8w

))

(

log

(

n/(2w)

k − 1

))

.

Proof. In order to provide a lower bound on the number of queries, we provide a lower

bound on the number of queries of incomparable elements and then use the classical

bound to bound the number of queries of comparable elements.

First we note that for each element a, the algorithm must make either at least one

query where a is comparable to some other element b, or at least w− 1 queries where

a is incomparable to all elements queried. (The latter may suffice in cases where a is

the unique element of a chain and it is compared to all minimal elements of all other

chains.)
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We let Yt(i) denote the number of queries involving xi before the first query for

which the response is that xi is comparable to an element. Also for each of the chains

C1, . . . , Cw we denote by Zα the number of queries involving two elements from the

same chain.

Letting T denote the total number of queries before the algorithm terminates, we

obtain:

E[T ] ≥
n
∑

i=1

1

2
E(YT (i)) +

w
∑

α=1

E[Zα].

We claim that for all 1 ≤ i ≤ n we have E[YT (i)] ≥ w−1
2

. This follows by condi-

tioning on the chains that all other elements but xi belong to. With probability 1/w,

the first query will give a comparison; with probability 1/w, the second query, etc.

On the other hand, by the classical lower bounds we have for each 1 ≤ α ≤ w

that

Zα ≥ |Cα| − k + log

( |Cα|
k − 1

)

Taking expected value we obtain

E[Zα] ≥ n

w
− k + E

[

log

( |Cα|
k − 1

)]

.

A rough bound on the previous expression may be obtained by using the fact that

by standard Chernoff bounds, except with probability exp(− n
8w

), it holds that Cα is

of size at least n
2w

. Therefore

E

[

log

( |Cα|
k − 1

)]

≥
(

1− exp
(

− n

8w

))

log

(

n
2w

k − 1

)

.

Summing all of the expressions above, we obtain

(w − 1)n

4
+ w

(n

w
− k
)

+
(

1− exp
(

− n

8w

))

w log

(

n
2w

k − 1

)
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and simplifying gives the desired result.
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