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1 Introduction

The purpose of this report is to concisely describe some fundamentals of digital com-
munication in a simple and accessible way. An emphasis is placed on intuition with
an audience of non-specialists in mind. Electronic communication as a separate dis-
cipline has a nine-decade history, and even a concise summary of the current state of
knowledge would take thousands of pages. Nevertheless, underlying all this work are
important and lasting principles that form a solid foundation for communication system
design. Since these principles are very fundamental, most were actually appreciated by
the 1950’s.

As an example of the intended readership, in reviewing some of the physics literature,
we find limited awareness of some fundamental principles of communications. Such
awareness would be valuable in physics research that may have electronic or photonic
communication application, such as new modes of electromagnetic propagation and new
propagation media.

We do not cover optical communication, a vast field in its own right and one where
advances are more dominated by underlying physical principles than they are by com-
munication principles. There are many books on aspects of communications, but a couple
of recommended general texts are [1, 2]. Analog communications (such as AM and FM
radio) are rare in new communication system design and are also not covered.

The notation of probability and random processes is reviewed in Appendix A. Please
refer to this Appendix if notational questions arise.

2 Channels

Communication theory often utilizes a model for a communication channel as a trans-
formation from a real-valued input signal x(t) to a real-valued output signal y(t). Such
a model allows a separation of concerns. The characteristics of the physical medium,
antennas, modulators, etc., can be embedded within the channel model, and the com-
munication principles can take the simple input-output model as a starting point and
attempt to extract the greatest performance possible within the domain of the channel
model. These channel models are usually very accurate, and as a result most advances
in non-optical communication systems of the past five decades have proceeded on the
basis of theory and simulation rather than experiment.

2.1 Noisy channels

Due to the prevalence of noise as a factor that limits communication performance, the
channel model is usually statistical, in which case the input and output are random
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processes X(t) and Y (t). For example, a simple model that accurately fits a number of
situations is

Y (t) = X(t)⊗ g(t) +N(t) (1)

and where ⊗ denotes the convolution operator, defined as

r(t)⊗ s(t) =
∫
r(τ) · s(τ − t) dτ . (2)

This convolution is one mathematical description of a linear time-invariant filter that
has impulse response g(t).

Although virtually all physical channels are continuous-time as in (1), it is common to
embed sampling within the channel model1. This results in a discrete time model, as
in

Yk = Xk ⊗ gk +Nk , (3)

where discrete-time convolution operator is defined as

rk ⊗ sk =
∑
m

rm · sk−m (4)

Of course these simple models are often inadequate, for example when the channel
includes time-varying effects (e.g. due to relative motion of transmitter and receiver)
or the channel is multiple-input multiple-output (MIMO) (as when there are mulitiple
antennas in receiver or transmitter). The MIMO case is considered in Section 4.3.

2.2 Noise

Even when the channel is not frequency selective (g(t) = δ(t) or gk = δk), there are
at least two obstacles to reliable communication: noise and signal power. If there is
noise but the signal power is unbounded, reliable communication becomes easy. Or if
the signal power is fixed but the noise goes to zero, reliable communication also becomes
easy. In the continuous-time case, we can even communicate reliably at arbitrary high
speeds under either of these limiting conditions. In this sense, signal power and channel
noise thus limit on our ability to communicate. In exactly what sense they become a
limitation will be considered in detail later, but let us summarize the conclusion. Power
limits and noise do not impair our ability to communicate reliably, but they do place a

1The sampling theorem suggestions that there is often nothing lost in doing so, as long as the
continuous-time channel is bandlimited.
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limit on the rate at which we can communicate. For most of us, this conclusion would be
counter-intuitive. In the absence of any bandlimit though the channel, intuition would
tend to suggest that we could communicate at arbitrary high rates, but that noise would
prevent completely reliable communication.

Assume the signal power is limited by practical considerations like the power of the
transmit electronics or the energy bill. Then in most applications, it is imperative to
operate at the limits of what the noise allows, which we might call the ”noise floor”, at
least under the worst case conditions for a given design. Thus, there is great interest in
extending performance as far as possible, possibly subject to cost constraints. For exam-
ple, cable systems require expensive repeaters, motivating us to use as few as possible,
as well as limits on the power that can be supplied, motivating us to use relatively low
transmit power. Thus, the transmit power is fixed and the spacing between repeaters
is stretched until we are operating at the noise floor2. Similarly, communication with
spacecraft puts a premium on antenna size, weight, and power consumption, motivating
us to operate at the noise floor limits.

A common statistical model for noise is a Gaussian random process. This is an accurate
model wherever noise is actually a superposition of many micro phenomena, as in thermal
noise in a receiver, the background radiation of the universe, or the superposition of
multiple interferers. In this case the probability density function of a single sample of
the noise is Normal or Gaussian with mean value µN and variance σ2

N is

pN (n) =
1

σN
√

2π
e−(n−µN )2/2σ2

N . (5)

Fortuitously a Gaussian noise assumption is usually the most mathematically tractable.
In a fundamental sense, Gaussian statistics are also the worst case for a given noise
power.

Wireless communication is a different case, in that the most importance source of ”noise”
is actually interference from other users of the same spectrum and the fact that the signal
suffers fading (time variable amplitude and phase) due to multipath effects, resulting in
a signal (as well as noise and interfernece) that is random. For example, in terrestrial
cellular systems the same frequency bands are reused in different spatial cells, resulting
in interference from adjacent cells, and multiple copies of the signal arrive at the receive
antenna with slightly difference delays due to bounces off of the ground and buildings
and other obstacles. In this case, there is motivation to reduce the transmit power as
much as possible, again operating near the noise floor, so as to minimize interference
into other systems. In many cases interference can be adequately modeled as Gaussian
noise. Also, in the presence of relative transmitter/receiver motion the channel model is
fairly rapidly time varying.

2The signal level on any cable medium falls as e−αD where D is the distance. Radio propagation in
freespace has a much more favorable D−2 dependence, and in terrestrial cellular systems due to ground
scattering the dependence is ≈ D−4.
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2.3 Passband signals

Analog signals carried by a propagation medium are either baseband (their spectrum
includes frequency f = 0) or passband. Radio channels are always passband, but often
so are cable media, especially where many services are sharing the same medium using
frequency separation.

A passband channel can be modeled as an equivalent baseband channel, but one for
which the signals are complex-valued. In particular, any real-valued passband signal
u(t) can be represented in the form

u(t) = Re
{
v(t) · ei2πf0t

}
(6)

where f0 is a carrier frequency and v(t) is a complex-valued baseband signal (centered
at f = 0) known as the complex envelope.

If v(t) = a(t) + i · b(t) is expressed in terms of real-valued signals a(t) and b(t), known
respectively as the in-phase and quadrature signal components, then (6) can be written
as

u(t) = a(t) · cos(2πf0t)− b(t) · sin(2πf0t) . (7)

When b(t) ≡ 0 then this is known as amplitude modulation, and when |v(t)| is constant
this is known as phase modulation. In practice in today’s designs neither pure amplitude
nor pure phase modulation is very common, but rather the amplitude and phase are
manipulated simultaneously.

When v(t) is real-valued, but only then, the spectrum of u(t) is conjugate-symmetric
about the carrier frequency. In this case the spectrum is used inefficiently because the
lower sideband is the conjugate of the upper sideband, or equivalently only one real-
valued signal is conveyed whereas two is feasible.

At the receiver, the complex envelope can be recovered from the passband signal by
observing that

2u(t) · e−i2πf0t = v(t) + v∗(t) · e−i4πf0t . (8)

Thus v(t) can be recovered from u(t) by lowpass filtering 2u(t) · e−i2πf0t to remove the
2f0 frequency component.

The channel model can be expressed in terms of equivalent complex envelope signals at
input and output. This just means that the modulation and demodulation (including
lowpass filtering) are embedded within the channel model. In this worldview, the channel

6



input is a complex-valued baseband signal x(t) and the channel output is a complex-
valued baseband signal y(t). When noise and channel dispersion are taken into account,
the result is something like (3) where N(t) and g(t) are complex-valued as well.

3 Matched filters

Consider the simple case of a received baseband signal of the form

Y (t) = A · h(t) +N(t) (9)

where h(t) is a waveform with finite energy ε2h,

ε2h
.=
∫
|h(t)|2 dt <∞ . (10)

This is called “known signal waveform in additive noise”. The single amplitude A might
represent information, such as for example representingm bits of information by choosing
A to take on one of 2m complex values. (A more interesting case is where a whole stream
of information is represented by a stream of amplitude values, a generalization to be
considered later.)

In this simple case, the goal is to estimate the value A in the receiver. How to do this?
One common method is to cross-correlate this reception against the known pulse shape
h(t), creating a statistic Z,

Z =
∫
Y (t) · h∗(t) dt

= A · ε2h +
∫
N(t) · h∗(t) dt

(11)

Note that Z summarizes the entire reception {Y (t), −∞ < t <∞} in a single complex-
valued number.

There are several ways to justify using Z as the representation of the reception appro-
priate as the first step in estimating A. First, we can ask what Â gives the best match
to Y (t) in the sense that it minimizes the energy between a candidate signal Â ·h(t) and
Y (t),
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ε2 =
∫ ∣∣∣Y (t)− Â · h(t)

∣∣∣2 dt

=
∫
|Y (t)|2 dt− Â∗Z − Z∗Â+ ε2h · |Â|2

=
∫
|Y (t)|2 dt− |Z|

2

ε2h
+

∣∣∣ε2h · Â− Z∣∣∣2
ε2h

.

(12)

We would like to minimize ε2 by the choice of Â. Only the last term is a function of Â,
and that term is minimized by choosing Â = Z/ε2h. Thus, the estimate Â = Z/ε2h yields
the smallest error energy among all linear estimator structures.

A second justification arises for the simple case where N(t) is white Gaussian noise. The
single complex-valued random variable Z is a sufficient statistic for the estimation of
A, meaning roughly that no information relevant to A is lost in reducing {Y (t), −∞ <
t < ∞} to a single complex-valued statistic Z. The intuitive reason for this is that
the information about Y (t) that is discarded by the matched filter (a) contains no di-
rect information about A (is noise-related only) and (b) is uncorrelated with the noise
component of Z and thus statistically independent of that noise component3. It is thus
irrelevant, since it tells us nothing useful about either the signal or noise components of
Z.

An equivalent representation for (11) is

Z = Y (t)⊗ h∗(−t)|t=0 (13)

where ⊗ is again the convolution operator of (2). This representation in terms of a filter
with impulse response h∗(−t), known as a matched filter, followed by taking a sample
a t = 0. In the frequency domain, this is equivalent to multiplying by transfer function
H∗(f), where H(f) is the Fourier transform of h(t).

A third justification for the matched filter is intuitive, and best seen in the frequency
domain and viewing the effect of the matched filter H∗(f) on phase and magnitude
spectra separately:

• The resulting signal response H(f) ·H∗(f) = |H(f)|2 at the matched filter output
has zero phase. Thus, the matched filter is a perfect phase equalizer.

• The noise power spectrum at the output of the matched filter is N0 · |H∗(f)|2 =
N0 · |H(f)|2. Note that if we were to change the phase response of the matched
filter, this would have no effect on the noise power spectrum, and hence the noise
power. Perfect phase equalization comes at no expense in terms of noise power.

3Recall that Gaussian random variables that are uncorrelated are also independent.
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• In terms of the magnitude spectrum, with energy ε2h to devote to the filter response
|H(f)|, how should it be allocated by frequency f? It makes sense to more heavily
weight the frequencies where signal H(f) is larger (the local signal-to-noise ratio
is larger) than frequencies where H(f) is smaller. This the matched filter does.

3.1 Signal-to-noise ratio

Signal-to-noise ratio, defined as signal power divided by noise power, is often used as a
characterization of communication reliability. One justification for this is that in Gaus-
sian noise the first- and second-order (power-like) statistics are a full characterization of
the distribution4. Caution needs to be exercised, however, since the appropriate defini-
tion of SNR depends on the circumstance if SNR is to be meaningful as a performance
metric or predictor. We will illustrate this by comparing two circumstances, coherent
and incoherent detection.

Example (coherent case). If the signal waveform h(t) is known, then a correlator
against the known signal (or equivalently matched filter and sampler) can be used. In
this case, the SNR should be calculated after the correlator, because this is where post-
processing will be applied and the correlator affects the noise as well as signal.

While we are at it, let’s show that among all possible cross-correlators, cross-correlation
with the known signal waveform h(t) maximizes the SNR. This confirms by a different
route that the matched filter is the best processing to use in the receiver in the presence of
white Gaussian noise. Replace h(t) by a (possibly) different waveform g(t) in (11),

Z =
∫
Y (t) · g∗(t) dt

= A

∫
h(t) · g∗(t) dt+

∫
N(t) · g∗(t) dt .

(14)

The second term is a Gaussian random variable, and it is readily calculated that if N(t)
is white Gaussian noise with power spectral density N0, then the noise term has mean
zero and variance N0 · ε2g. The SNR is defined as the magnitude-squared of the first
(signal) term divided by the variance (power) of the second (noise) term,

4Of course, if the noise is non-Gaussian, or the signal is somehow stochastic or time-varying, we must
dig deeper. In these cases, SNR is inadequate as a characterization of reliability.
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SNRcoherent =

∣∣A ∫ h(t) · g∗(t) dt
∣∣2

N0 · ε2g

=
|A|2

N0 · ε2g
·
∣∣∣∣∫ h(t) · g∗(t) dt

∣∣∣∣2 .
(15)

The subscript ”coherent” refers to the fact that we are assuming full knowledge of the
waveform h(t) and taking full advantage of that knowledge.

By the Schwarz inequality,

∣∣∣∣∫ h(t) · g∗(t) dt
∣∣∣∣2 ≤ ε2h · ε2g (16)

with equality if and only if g(t) = B · h(t) for any complex constant B. This implies
that

SNRcoherent ≤ |A|2 ·
ε2h
N0

, (17)

with equality if and only if the filter is a matched filter (g(t) = h(t)). As promised, the
matched filter maximizes SNRcoherent, and any other filter results in a lower SNRcoherent.
SNRcoherent for a matched filter numerically equals the energy in the received waveform
(proportional to joules) divided by the noise spectral density (proportional to watts/Hz,
which is also joules).

Sometimes the signal power is more important than the signal energy. This might occur
where interference into other systems is important, or where the power available to the
transmitter is limited. Suppose h(t) has time duration T ; then the signal power is
Ph = ε2h/T and the SNR becomes

SNRcoherent ≤ |A|2 ·
Ph · T
N0

, (18)

With fixed signal power, SNRcoherent increases in proportion to T because there is greater
“integration time” to accumulate signal energy in the receiver.

Example (incoherent case). Suppose that we have no knowledge of the waveform
h(t), and the detection or estimation technique is to simply estimate the total power
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in Y (t) and compare it to the expected noise power. We call this incoherent detection,
since it relies only on power estimates5.

If h(t) has simultaneously6 time duration T and bandwidth W , then the received signal
power is |A|2 · ε2h/T and the noise power within bandwidth W is No ·W , leading to an
alternative definition of SNR as

SNRincoherent =
|A|2 · ε2h/T
N0 ·W

=
1

WT
· SNRcoherent . (19)

A comparison of SNRcoherent from (17) and SNRincoherent from(19) and the assumptions
behind them gives considerable insight:

1. SNRcoherent is larger than SNRincoherent by a factor WT . This increase in SNR
can be attributed to knowledge of waveform h(t) and an estimation or detection
technique (the matched filter) that takes full advantage of that knowledge.

2. The matched filter in coherent detection gathers up or integrates the entire signal
energy, whereas the incoherent detector is fundamentally a power estimator.

3. With incoherent detection, increased signal bandwidth is deleterious to detection
because total noise power increases with bandwidth. With coherent detection,
increasing signal bandwidth has no impact one way or another because the matched
filter successfully rejects the additional noise.

4. The significance of signal duration T depends entirely on whether transmit energy
or power is considered to be a scarce resource. If signal power is held constant,
increasing T assists coherent detection (because at constant power the energy in-
creases in proportion to T ) but increasing T but has no effect on incoherent de-
tection (because the SNR is proportional to power rather than energy). If signal
energy is held constant, increasing T has no effect on the coherent detection but
harms incoherent detection (because SNR is proportional to signal power, which
decreases).

5. All these conclusions apply to additive white Gaussian noise. These issues must
be revisited when the noise has other statistics.

5This definition is common in the physics literature. For example, in the search for extraterrestrial
intelligence (SETI) [3] it may be unreasonable to assume knowledge of the waveform h(t) due to lack of
coordination of transmitter and receiver.

6Technically this is impossible, since a bandlimited signal cannot be time limited and vice versa.
However, this can be approximately achieved with increasing accuracy as WT →∞.
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3.2 Pulse-amplitude modulation

As a generalization of (9), a common modulation technique for digital communication
is to assume a baseband signal of the form

Y (t) =
∑
k

Ak · h(t− kT ) +N(t) . (20)

This modulation scheme is called pulse-amplitude modulation (PAM). Here is some com-
mon terminology associated with PAM:

Symbol interval T in seconds.

Symbol rate 1/T in symbols per second.

Data symbols Ak, −∞ < k <∞ are complex values conveying information.

Symbol alphabet is the set from which Ak is drawn. Let the alphabet be {ak, 1 ≤
k ≤ K}. For example, if m bits of information are conveyed with each symbol,
then the cardinality of the alphabet would minimally be K = 2m.

Signal constellation is the arrangement of the symbol alphabet on the complex plane.
Figure 1 shows a possible signal constellation for an alphabet of cardinality K = 64,
conveying m = 6 bits of information. In this constellation, the alphabet is laid out
in a square array.

Bit rate is m/T bits per second, which is what the “customer” cares about7.

The goal in the choice of the h(t) is to make it orthogonal to its symbol-interval trans-
lates,

∫
h(t) · h∗(t− kT ) dt = ε2h · δk . (21)

When this orthogonality condition is satisfied, it allows us to build a receiver consisting
of a matched filter and symbol rate sampler, which yields a signal component

Y (t)⊗ h∗(−t)|t=mT = Am · ε2h +Nm . (22)

The resulting data symbol can be detected by applying thresholds appropriate for the
signal constellation to this noisy estimate of the data symbol. Often (21) is satisfied at
the transmitter, but violated after passing through a dispersive channel. The resulting

7It has become commonplace to call this “bandwidth” in networking, as in “my DSL line gives me
a bandwidth of 1.5 megabits per second”. This reflects the ignorance of communication on the part of
networking specialists, because bandwidth W is something entirely different.

12



æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

-4 -2 2 4

-4

-2

2

4

Figure 1: This 8× 8 signal constellation has an alphabet with cardinality 64, and hence
can be used to communicate six bits of information per symbol.

impairment is known as intersymbol interference (ISI), a topic that has been the subject
of extensive research8.

An important property of a signal constellation is the average energy,

ε2a
.= EA|Ak|2

=
K∑
k=1

|ak|2 · pA(ak)
(23)

assuming, of course, knowledge of the probability mass function pA(ak).

The reliability expected for PAM can again be estimated by SNR, since the noise samples
Nm in (22) are jointly Gaussian9. When (21) is satisfied, they are independent with
variance N0 · ε2h, and the SNR in (22) is

8While it seems straightforward, dealing with ISI is complicated by at least a couple of factors. One
is the amplification or enhancement of the noise component when simply putting the received signal
through an equalizer that compensates for the channel. Another is estimating the channel dispersion
characteristics accurately at the receiver, especially in the light of the ignorance of the data symbols at
the receiver.

9A more refined estimate of reliability relates the minimum distance of points in the signal constel-
lation to the noise sample variance. More on this later.
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SNR =
E|Ak|2 · ε4h
N0 · ε2h

=
ε2aε

2
h

N0

(24)

From a system standpoint, the power of the continuous-time PAM signal (20) (rather
than the energy of each pulse) is often important. When (21) is satisfied, the signal power
P is easily seen to be ε2h/T times the average magnitude-square of the data symbols ε2a.
Expressed in terms of P , the SNR of (24) becomes

SNR =
P · T
N0

. (25)

For constant SNR, increasing the bit rate by reducing T requires a commensurate in-
crease in power P . For example, doubling the bit rate requires doubling the transmit
power.

An interesting question is whether “double power is needed to double bit rate” is a
fundamental tradeoff, or simply a characteristic of PAM? The answer is that it is not
fundamental, and we can do considerably better than PAM. The fundamental limits, as
well as ways to approach them, will be addressed shortly.

3.3 Probability of error

The SNR is a rather crude measure of reliability, especially for a more complicated
scheme like PAM. For example, if we keep ε2a constant, even while increasing K, the
number of points in the constellation, the SNR stays fixed. However, increasing K pays
a penalty in reliability for ε2a fixed because the constellation points are shoved closer
together, resulting in a greater chance for confusion in the presence of noise.

A more refined measure of reliability than SNR is the probability of error. There is
more than one definition of probability of error, and the appropriate one depends on
circumstances. One alternative is the probability of symbol error, which is the probability
that a different symbol is detected from the one that is transmitted. Another is the
probability of bit error, which asks the relative frequency with which the bits that are
mapped into symbols are in error. The relationship between bit errors and symbol errors
is complicated because it depends on how bits are mapped into symbols. In the context
of channel coding discussed later, the appropriate measure of reliability is the probability
that one multi-dimensional code word is substituted for another.

Consider the probability of symbol error. It is usually much easier to calculate the
probability that a symbol is detected correctly. For a constellation like that of Figure 1,
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a symbol is detected correctly if the noise is smaller than half the distance to the nearest
incorrect constellation points. Because the probability distribution function of Gaussian
noise is very steep, especially at high SNR the probability of correct detection is therefore
dominated by the distance to the nearest incorrect constellation point. Thus, it is an
accurate approximation to assume that the probability of symbol error is dominated
by the minimum distance between signal constellation points10. The design of signal
constellations can therefore focus on achieving the largest minimum distance possible
consistent with a given ε2a and K.

The important concept of minimum distance generalizes to more complicated schemes,
such as the channel coding considered later. Generally speaking, in the presence of white
Gaussian noise, signal design focuses on achieving the largest minimum distance (in the
Euclidean sense), whether that be in two dimensions (complex-valued signal constella-
tions) or in higher dimensional spaces (for channel coding, as discussed later).

3.4 Spread spectrum

Another characteristic of interest for a digital communication technique is spectral ef-
ficiency ν, defined as the bit rate per unit of signal bandwidth (with units of bits per
second per Hz). Especially for radio communication, where a fixed and finite spectrum
must be divided among many uses, spectrum is quite valuable and there is a motivation
to conserve it. This implies maximum spectral efficiency.

The bandwidth of signal (20) is completely determined by the bandwidth of pulse h(t).
This in turn is constrained by orthogonality condition (21). It is basically a trivial
restatement of the sampling theorem to say that the minimum bandwidth required to
satisfy (21) is W ≥ 1/2T , and in practice W > 1/2T is required since ideal lowpass filters
cannot be constructed. Assuming that m bits are communicated with each symbol, the
spectral efficiency thus satisfies the constraint that

ν =
m/T

W
=

m

WT
≤ 2m. (26)

Thus, the larger the signal constellation the greater the spectral efficiency.

What if we increase W by choosing a pulse h(t) with larger bandwidth than 1/2T , in fact
much larger? First, this does not by itself affect the reliability with coherent detection,
since the SNR at the output of the matched filter depends on ε2h and not bandwidth. In
practical terms this does make it easier to satisfy (21), but this is a minor advantage.
Based on (26) this adversely impacts the spectral efficiency. Particularly in view of this,

10This can be formally shown using the union bound of probability. The probability of symbol error
is the union of a set of events, one corresponding to the probability that one other constellation point
is mistaken for the correct one. The union bound then states that the probability of a union of events
is less than the sum of the probabilities of the individual events. This sum is then dominated by the
nearest points.
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it is perhaps surprising that many radio communication systems today are designed
with a bandwidth much larger than the minimum. These systems are said to be spread
spectrum [4, 5]. Why? Here are some reasons:

• First, do no harm. Increasing bandwidth does not affect the reliability of commu-
nication in white Gaussian noise11.

• Most terrestrial radio communication systems have to deal with interference from
other systems simultaneously using the same bandwidth. For example, in cellular
telephone systems the same bandwidth is reused in different cells, so that the
only separation between uses is spatial rather than time or frequency. As another
example, WiFi shares a common spectrum with cordless phones, microwave ovens,
etc. Interference is often a much more severe impairment than thermal noise or the
background radiation of the universe (both well modeled as white Gaussian noise).
Dramatically increasing the bandwidth turns out to be very helpful in dealing with
interference. There are two complementary benefits. First, on the transmit side,
our transmissions may create less interference into other systems if the transmitted
power spectrum (transmitted power per unit of bandwidth) is smaller. For a fixed
total transmitted power (and hence energy per symbol), increasing the bandwidth
can reduce the transmit power spectrum (if the signals are designed with that in
mind). Second, on the receive side if an interferer has less bandwidth than our
own received signal, the matched filter will attenuate that interference signal more
than our received signal.

• Spread spectrum can achieve greater immunity to multipath distortion in radio
channels [6].

• Our spectral efficiency calculation took into account only a single point-to-point
usage of a given block of spectrum. In fact, spread spectrum is an interesting way to
achieve multiple-access communication, where multiple users are sharing a common
spectrum simultaneously. The basic idea is to keep different uses that are sharing
a common spectrum from interfering with one another by allowing each to choose
a different waveform h(t), those waveforms chosen to be mutually orthogonal, so
a filter matched to one does not respond to the others. This becomes easier as W
increases. This way of separating communications (as opposed to relegating them
to different time or frequency) has compelling advantages, particularly where data
sources are highly bursty (as in internet access, and to a lesser extent speech).

Having said this, designers of non-radio systems using cable are single-access and typi-
cally try to conserve bandwidth as much as possible.

11It does decrease the SNR at the receiver input, but a matched filter detector removes enough of this
noise that post-filtering the SNR is bandwidth-independent.
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4 Fundamental limits

Modern electronic communications systems are all-digital all the time. The genesis of
this technology was during World War II, where the motivation was secrecy. At the
end of the war, based in part on the wartime work, Bernie Oliver, John Pierce, and
Claude Shannon (all of Bell Laboratories) published an influential paper that laid out
the technical arguments for digital as opposed to analog communication [7] and described
the basic tradeoffs12.

At nearly the same time, Shannon published another paper [8] that revolutionized our
conception of communications, a work that was grounded in research on cryptography
during the war. In some ways Shannon’s impact on communications is analogous to
Einstein’s Special Theory of Relativity. Like Einstein’s observation that energy or infor-
mation cannot be conveyed at speeds higher than c, the speed of light, Shannon proved
that communication in the presence of noise cannot exceed C bits per second, where
C is the channel capacity. The major difference is that C depends in a complicated
way on the channel model that Shannon was able to quantify. Like special relativity,
where this starting point led to the famous equivalence of mass and energy expressed as
E = mc2, Shannon’s developed a number of other fundamental insights. These included
formal tradeoffs and limits in representing analog sources digitally. Shannon proved
that in a fundamental sense nothing is lost by digitally communicating analog sources.
Collectively, this work came to known as the information theory [9]. Much like special
relativity, information theory quickly became famous and spawned many proposals for
applicability to other fields, some of which turned out to be intellectual dead ends. The
impact on communications was profound, and surely Shannon can be called the father
of digital communications.

We will illustrate Shannon’s ideas with some intuitive reasoning and simple examples.
We start by considering a seemingly different problem, that of the coding of a source into
a digital bit stream. The reason for this seeming diversion is that some key concepts are
illustrated simply and clearly, and later easily carry over to understanding the problem
of communicating a bit stream through a channel.

4.1 Source coding

We begin with the challenge of representing information digitally. We start with the
simple situation of representing a sequence of independent coin tosses, and later extend
this to outcomes of a Gaussian random process.

12Oliver later became the chief technical officer of HP and an early and major proponent of SETI and
John Pierce later became the inventor and proponent of satellite-based communications.
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Binary representation of coin tosses

Consider a sequence of independent coin tosses, where the probability of a HEAD is p
(and hence the probability of a TAIL is 1 − p). When p = 0.5 the coin is said to be
fair. Our goal is to represent this sequence of coin tosses by a sequence of bits, a process
called source coding. A measure of the coding efficiency is the rate of the source code,
defined as the average number of bits per coin toss in the digital representation. The
reason we have to include the word ”average” is that the best coding techniques (best
in terms of minimizing the rate) will be stochastic, exploiting any statistical unfairness
of the coin.

Example. The simplest source code represents each toss by a single bit, ”0” for a TAIL
and ”1” for a HEAD, as shown in the following table.

Outcome Code word Probability
TAIL 0 1− p
HEAD 1 p

This straightforward code has a rate of one bit per toss. It has the advantage that the
number of bits in the representation is transparent to the actual sequence of coin tosses,
but it is also inefficient for the same reason.

Assume the coin is unfair and we know p 6= 1
2

. Then a lower rate can be achieved, as
illustrated by the following example.

Example. Assuming that p > 0.5 then we expect statistically successive HEAD’s in a
row more frequently than in the fair case. The run-length code of the following table
exploits this observation by using n-bit code words to represent the number of HEAD’s
in a row, rather than to represent individual HEADS or TAILS directly.

Outcome Code word Probability
T 000 1− p
H T 001 (1− p) · p
H H T 010 (1− p) · p2

H H H T 011 (1− p) · p3

H H H H T 100 (1− p) · p4

H H H H H T 101 (1− p) · p5

H H H H H H T 110 (1− p) · p6

H H H H H H H 111 p7

Note that the code words are fixed in length at three bits, but each generated code word
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Figure 2: The rate of a run-length code for codeworld size of 1 through 6 bits plotted
against the probability of a HEAD. The shaded region is prohibited for any source code.

consumes a variable number of tosses13.

More generally, letting n be the number of bits per codeword (n = 3 for the table) and
N = 2n, the average number of tosses consumed for each generated n-bit code word
is

Average tosses =
N−1∑
k=1

k · (1− p) · pk−1 + (N − 1) · pN−1 =
1− pN−1

1− p
(27)

and the rate of the code is n divided by this average. The rate is plotted in Figure
2. The reason this code has rate less than unity for p >> 0.5 is the small number of
bits generated for longer runs of HEADs. In particular, for the code in the table, four
through seven heads in a row are represented by only three bits.

Lower bound on rate

Recall that the rate of a code is the average number of bits generated per coin toss. Let
R denote this rate. Shown in Figure 2 is a shaded region that cannot be attained by
any source coder, no matter how complicated or sophisticated. The attainable region is
defined by

13This is called a fixed-length code. It is also straightforward to use a variable-length code that
generates a variable-length codeword corresponding to a fixed number of tosses.
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R ≥ H(p)
H(p) ≡ −p · log2 p− (1− p) · log2(1− p)

(28)

Physicists will recognize the H(p) as a familiar formula for entropy.

Short of a formal proof, we will construct a simple argument for (28), one that provides
considerable insight. Assume that we observe n independent coin tosses, and devote the
resulting vector by x = [x1, x2, ..., xn]. If this vector contains m heads and n−m tails,
then due to the independence of the coin tosses the probability of this sequence is

pX(x) = pm · (1− p)n−m . (29)

By the law of large numbers, as n→∞ we can divide all 2n possible coin toss sequences
into two camps, the relatively high-probability sequences in Ωh and the relatively low-
probability sequences in Ωc

h, the complement of Ωh. The high-probability sequences
(x ∈ Ωh) have a relative frequency of HEADs that is predicted by the probability p;
that is, have the property that m ≈ n · p. What is the probability of a typical x ∈ Ωh?
Substituting m = n · p in (29) we get

pX(x ∈ Ωh) ≈ pnp · (1− p)n(1−p) = 2−nH(p) . (30)

A careful application of the law of large numbers confirms that the probability of out-
comes in Ωh approach unity as n→∞. This implies that the probability of outcomes in
Ωc
h approach zero. Further, the probability in (30) is constant, independent of x ∈ Ωh.

Since these sequences in Ωh have the same probability asymptotically, and their prob-
abilities sum to unity, the number of sequences in Ωh must be the reciprocal of their
probability, or asymptotically 2nH(p).

Based on this insight, we can define a feasible coding scheme that works asymptotically
and requires only H(p) bits to represent each coin toss, or nH(p) bits to represent n
tosses. With nH(p) bits we can represent 2nH(p) sequences, so choose to represent only
those high-probability sequences in Ωh. This is efficient because all these sequences have
asymptotically the same probability. We have no remaining bits to represent the low-
probability sequences in Ωc

h, so if one of those sequences comes along we will be in deep
trouble. Fortunately we don’t have to obsess over this problem for large n since the
probability of Ωc

h approaches zero.

This code’s effectiveness depends on the asymptotic properties predicted by the law of
large numbers as n → ∞, and thus any feasible code for finite n would not be able to
do quite as well in terms of rate. Hence it credible that this represents a lower bound
on the feasible rate of any finite-n code.
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Figure 3: The uncertainty of a given outcome X = x of a random variable X vs. its
probability.

Both the run-length code and the lower bound argument depended on certain statistical
properties of sequences of coin tosses. The key conceptual tool was abandoning the
independent coding of each coin toss, and instead mapping sequences of coin tosses into
code words with multiple bits.

Uncertainty of a random variable

The results of the last section are easily generalized. Assume we are given a random
variable X with probability mass function pX(xi). For a specific outcome X = xi,
define the uncertainty of X as log2(1/pX(xi)), with the units of bits. This function
of probability is plotted in Figure 3. Intuitively this quantity is a measure of the prior
uncertainty ofX = xi before it is observed. When the probability of X = xi is unity, then
x is the certain outcome and as a result the uncertainty is zero. When outcome X = xi
has probability 1/2, its uncertainty is one bit, probability 1/4 makes its uncertainty two
bits, probability 1/8 makes its uncertainty three bits, etc. As the probability approaches
zero, the uncertainty approaches infinity.

In a sense, uncertainty is a measure of significance or surprise associated with a particular
outcome. If some outcome is a priori very improbable, then its occurrence is more
surprising and thus conveys more information. For example, a ”one” coming up on a six
sided die carries more information (log2 6 = 2.58 bits) than a ”head” turning up in a coin
toss (log2 2 = 1.0 bits), simply because it is less expected and more surprising.

Performing a weighted average of the uncertainty over all outcomes of X, weighted by
the probability of that outcome, the result is the average uncertainty given by
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H(X) = EX [− log2 pX(X)]

= −
K∑
k=1

pX(xk) log2 pX(xk)
(31)

Here the EX operator is expectation (ensemble average) over the ensemble of random
variable X (see Appendix A for notational conventions). The use of the expectation
operator in (31) is sometimes confusing to readers. The idea is, given a random variable
X, to define a new random variable Y = − log2 pX(X). Y has the interpretation as
the uncertainty of X for each possible outcome of X. The average uncertainty is then
the average of Y over all possible outcomes of X weighted by the probability of those
outcomes. The probability mass function thus appears in two different roles, first as a
predictor of the uncertainty of each outcome, and second as the factor weighting those
uncertainties by the probabilities of each outcomes.

H(X) is the average uncertainty in X before observation, or equivalently the average
information obtained in the process of observing X. If for example we observe a sequence
of statistically independent and identically distributed random variables each with prob-
ability mass or density function pX(x) and average uncertainty H(X), and encode these
outcomes digitally using bits, then the average rate R (expressed as bits per observation)
must satisfy R ≥ H(X).

Example (unfair coin toss). Figure 4 plots the average uncertainty of an unfair coin
toss,

H(X) = −p log2 p− (1− p) log2(1− p) . (32)

Three observations are in order:

• Although the uncertainty of a specific outcome may be very high, by definition
that outcome is improbable and thus does not affect the average uncertainty to
the same degree that we might expect. In particular, when p ≈ 1 a TAIL has
a very high uncertainty and yet the average uncertainty is very low because the
low-uncertainty HEAD is much more probable.

• The average uncertainty is symmetrical in p; either p ≈ 0 or p ≈ 1 result in low
average uncertainty. Reversing the labeling of HEADs and TAILs will not affect
the average uncertainty.

• The actual value of the random variable X does not enter into the uncertainty.
The coin toss outcome might be represented by ”0” and ”1” rather than ”HEAD”
and ”TAIL” without affecting the uncertainty or average uncertainty.
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Figure 4: H(X) for an unfair coin toss with p the probability of a HEAD.

The formula for average uncertainty mirrors the entropy that arises in thermodynam-
ics, and for that reason H(X) is often called information entropy. Uncertainty in this
communication context lacks the physical significance attached to entropy in thermody-
namics, so information uncertainty is not equivalent to thermodynamic entropy in any
sense more profound that sharing a common formula14.

Maximum uncertainty

What is the largest possible value for average uncertainty H(X)? Random variables for
which outcomes are closer to equally likely have higher average uncertainty, as illustrated
by the coin toss example. It is shown in Appendix B that the average uncertainty as
defined by (31) is bounded by

0 ≤ H(X) ≤ log2K (33)

with equality in the upper bound if and only if the outcomes are equally likely, or
pX(xk) = 1/K for 1 ≤ k ≤ K.

14Physicists will recognize an argument parallel to our coin tossing example from thermodynamics.
In a system at thermal equilibrium, if there are particles with two energies, then these particles occur
with a predictable relative frequency. The state of the system is thus analogous to coin toss sequences,
and similar law of large number arguments lead to an entropy formulation as the number of particles
approaches infinity.
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Average uncertainty for continuous random variables

The formula for (31) can formally be extended to discrete random variables with a
countable infinity of outcomes (K →∞) and continuous random variables. In the latter
case, we can define

H(X) .= EX [− log2 pX(X)]

= −
∫
pX(x) log2 pX(x) .

(34)

While this definition is very useful, it does not have the interpretation as average un-
certainty. For this reason, it is given a different name, differential entropy15. Some
mathematical difficulties with this definition can be illustrated by applying it to a Gaus-
sian random variable.

Example. Let X be a Gaussian random variable with mean µ and variance σ2.
Then

− log2 pX(x) = − log2

[
1

σ
√

2π
· e−(x−µ)2/2σ2

]
= log2[

√
2π · σ] +

(x− µ)2

2σ2
log2 e

(35)

This is plotted in 5 for some different values of standard deviation σ.

H(X) is obtained by substituting X for x and taking the ensemble average EX ,

H(X) = EX

[
log2[

√
2π · σ] +

(X − µ)2

2σ2
log2 e

]
= log2[σ

√
2πe]

(36)

This is plotted in Figure 6. H(X) increases with increasing standard deviation, but does
not depend on µ.

One surprising property of H(X) in (36) is that H(X) < 0 for σ2 < 2πe. The problem
is that for a continuous random variable it is possible to have pX(x) > 1, which can in
turn cause H(X) < 0. Thus, since it makes no sense to say that the rate of a source

15The mathematical details are covered in Chapter 9 of [9].
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Figure 5: The value of − log2 pX(x) for a Gaussian random variable with mean µ = 1
and standard deviation σ = 1 through 10 in steps of 1. The more eccentric curves are
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Figure 6: H(X) for a Gaussian random variable vs the standard deviation in dB. The
uncertainty actually goes negative for very small deviations, illustrating a mathematical
difficulty with uncertainty for continuous random variables.
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coder can be negative, H(X) certainly does not have the same interpretation as in the
discrete case.

Another disturbing property of (36) is that H(X) depends on the units of σ. This is
another indication of problems in interpreting H(X) in terms of something physically
meaningful like source coding rate.

A third property of (36), but one that is not so surprising, is that H(X)→∞ as σ →∞.
Generally speaking, when working with H(X) it is necessary to place constraints, such
as maximum variance, lest H(X) becomes unbounded.

In spite of the difficulties in definition (34), it turns out to be very useful. H(X) is not
a meaningful quantity in itself, but it is very powerful as a means to an end. That end
is calculating the channel capacity.

It is shown in Appendix B that if the variance of a continuous zero-mean random variable
X is constrained to EX [X2] ≤ σ2

X , then

H(X) ≤ log2

[
σ
√

2πe
]

(37)

with equality in the upper bound if and only if X is Gaussian. In words, a Gaussian
random variable has the largestH(X) among all variance-constrained continuous random
variables. This fact will prove useful in calculating the capacity of a Gaussian noise
channel, as will be pursued next.

4.2 Channel capacity

Of great interest is the maximum bit rate that can be reliably communicated through a
given noisy channel. This can be illustrated for the discrete-time channel of (3) where
gk = δK and the Nk are statistically independent zero-mean Gaussian random variables.
This channel is then characterized by the model

Yk = Xk +Nk . (38)

For simplicity assume that these variables are all real-valued. We call Xk → Yk a single
channel use, and calculate the capacity in bits per channel use.

Recall that in (20) we displayed a specific signalling scheme called PAM where Xk = Ak
and Ak is chosen from a finite alphabet. The question now addressed is whether PAM
falls short of fundamental limits, the channel capacity, and if so by how much. The
answer is that it does fall short, and by pretty far. We then illustrate how channel
coding can push closer to those limits.
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Unless the input signal level is constrained, the channel capacity is infinite, so it is
appropriate to introduce a power constraint on the channel input signal,

EX [X2] ≤ σ2
X . (39)

For this power-constrained channel, the channel capacity is

C =
1
2

log2

[
1 +

σ2
X

σ2
N

]
. (40)

This will be derived shortly, but first let’s explore the implications of this result.

The interpretation of C comes from a channel coding theorem, which states roughly the
following. If we attempt to communicate a stream of bits with average rate R bits per
channel use, and if R > C, then the error rate is bounded away from zero no matter
how complex or sophisticated the techniques used. That is, the channel is intrinsically
unreliable at these rates. On the other hand, if R ≤ C then there exist transmitter-
receiver designs for which the error rate approaches zero asymptotically as the latency
approaches infinity16. By latency, we mean the delay from input bit stream to output
bit stream, the cause of which is the statistical averaging necessary to achieve reliability.
In other words, at rates below capacity it is possible to use the channel for reliable
communication.

Figure 7 plots the capacity of (40) against the SNR in decibels. The capacity increases
as the SNR increases, achieving an impressively large number of bits per channel use at
high SNR’s.

The channel coding theorem unfortunately is not constructive; that is, it states the
possibilities without actually telling us precisely how to achieve them. Actually trying
to achieve reliable communication at rates near capacity has turned out to a difficult
challenge due to an exponential growth in computational complexity as the latency and
reliability grows. Communications practice has seen a gradual improvement in the rates
achievable due to the march of Moore’s law coupled with conceptual breakthroughs.
Finally, after about five decades of research and technology advancement, it is possible
to achieve rates close to capacity in practice.

Before Shannon’s extraordinary contribution in 1948, two somewhat contradictory as-
sumptions persisted. Practitioners generally were optimistic that communication through-
put and reliability could always be improved with ever more sophisticated techniques,
while theorists usually assumed it would be unthinkable to communicate reliably over

16The proof is rather long and involved and is omitted. However, the basic idea behind proving the
R < C result is as simple as it is clever. A random ensemble of channel codes is defined (channel codes
will be addressed later), and the error probability averaged over that ensemble is shown to approach
zero at rates below capacity. At least one code in the ensemble must match or exceed the average. This
proof is not constructive and thus gives little hint as to how capacity can be achieved in practice.

27



-20 -10 0 10 20 30 40 50
10 log10HSNRL

2

4

6

8

10
Capacity in bits per channel use

Figure 7: The channel capacity per channel use in bits for an additive Gaussian noise
channel with independent noise samples with variance σ2

N and channel input variance
constrained to σ2

X . The SNR is defined as σ2
X/σ

2
N .

a noisy channel (noise is synonymous with unreliability). Shannon showed that both
groups were technically incorrect, in the sense that arbitrarily reliable communication is
possible (at the expense of unlimited latency) but only as long as the rate is below the
channel capacity, and at rates above the channel capacity unreliability is inevitable no
matter how complex or sophisticated the technology. Shannon also firmly established
theory (as opposed to experimentation and implementation) at the forefront of future
practical advances in communications.

We now illustrate in more detail where the capacity formula comes from. Intuitively,
at least, this is a straightforward extension of the source coding results presented ear-
lier.

Equivocation

In the simple memoryless single-input single-output case any channel model can be char-
acterized statistically by the conditional probability mass or density function pY |X(y|x).
This specifies, for each channel input, the distribution of the channel output. The prob-
ability mass or density of the input pX(x) is determined not by the channel model but by
our transmitter design and source statistics. Together pX(x) and pY |X(y|x) determine
the joint input-output probability mass or density function through

pX,Y (x, y) = pY |X(y|x) · pX(x) . (41)

From this joint mass or density we can determine other quantities of interest, such as
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pX|Y (x|y) and pY (y).

Suppose we observe the channel input X = x. Conditional on this observation, the
remaining uncertainty about output random variable Y is log2[1/pY |X(y|x)]. As in
the case of a single random variable, this uncertainty can be averaged over the (X,Y )
ensemble, as in

H(Y |X) .= EX,Y
[
− log2 pY |X(Y |X)

]
= −

K∑
k=1

M∑
m=1

pX,Y (xk, ym) · log2 pY |X(ym|xk) .
(42)

Note that the random variables X and Y have been substituted for the arguments x and
y of pY |X(y|x), and the result has been averaged over all outcomes of (X,Y ). The result
is the uncertainty that is resolved in observing Y = y even after being told the channel
input X = x, averaged over not only all Y but also over all channel inputs X. H(Y |X)
of (42) is called the channel equivocation.

Example. Our interest is in the Gaussian channel of (38). Formally, the definition
of (42) can be applied to a continuous channel input and output, although this is not
without its perils. This turns out to be a useful intermediate step to determining the
capacity, although the interpretation as an average uncertainty is not valid.

For our example, since Y = X + N we know that conditional on X = x, Y = x + N is
Gaussian with mean value x and variance σ2

N , so the uncertainty of Y = y is

log2[σN
√

2π] +
(y − x)2

2σ2
N

log2 e (43)

The next step is to average this quantity over X and Y . First noting that

EX,Y (Y −X)2 = ENN
2 = σ2

N (44)

we get

H(Y |X) = EN

[
log2[σN

√
2π] +

N2

2σ2
N

log2 e

]
= log2 σN

√
2πe .

(45)
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Actually, in this case the equivocation is H(Y |X) = H(N), the differential entropy
of the noise. This makes intuitive sense, since the additive Gaussian noise is assumed
independent of the channel input.

Transinformation

The transinformation (also called the mutual information) is defined as

I(X,Y ) .= EX,Y

[
log2

pX,Y (X,Y )
pX(X) · pY (Y )

]
=

K∑
k=1

M∑
m=1

pX,Y (xk, ym) · log2

pX,Y (xk, ym)
pX(xk) · pY (ym)

.

(46)

The quantity I(X,Y ) as defined in (46) is, it turns out, perfectly legitimate in the case of
continuous as well as discrete random variables. It can’t do weird things like go negative,
and it is not dependent on the units with which parameters are specified.

For purposes of interpretation, it is straightforward to rewrite I(X,Y ) in two different
forms,

I(X,Y ) = H(Y )−H(Y |X)
= H(X)−H(X|Y ) .

(47)

The interpretation is easier for the second form, since our goal is to infer as much in-
formation about the channel input as possible from observing the channel output. At
least in the discrete case, H(X) is the average uncertainty about X without observing
the channel output, and the equivocation H(X|Y ) is the average uncertainty of X con-
ditional on observing the channel output Y = y. The transinformation is a measure of
how much the average uncertainty of X is reduced by observing the channel output, or
in other words how much uncertainty about X is resolved by one channel use.

Example. When the channel input and output are statistically independent, pX,Y (x, y) =
pX(x) · pY (y) and I(X,Y ) = 0. This indicates that the channel output resolves none of
the uncertainty in the channel input, as expected.

The first form of (47) is usually the easiest for calculations, as illustrated by the following
example.
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Example. For the additive Gaussian noise channel of (38), from the previous exam-
ple

I(X,Y ) = H(Y )−H(N)

= H(Y )− log2 σN
√

2πe .
(48)

The quantities H(X) and H(N), even though they suffer mathematical difficulties in this
continuous case, are nevertheless useful as an intermediate step to calculating I(X,Y ).
For example, if the units of σN are changed, both terms in (48) will be affected in such
a way that the difference (and hence I(X,Y )) will be unaffected.

As this last example illustrates, since the distribution of Y depends on the distribution
of X, I(X,Y ) cannot be calculated in full until the distribution of X is known. But
pX(x) is not a feature of the channel, but rather of what we choose to feed to the input of
the channel. Choosing pX(x) is the final step in determining the channel capacity.

Channel capacity

We are finally prepared to define the channel capacity, which is the largest possible
mutual information,

C = sup I(X,Y ) . (49)

This maximizes the information conveyed about X obtained in observing Y , on average.
The free parameter in the supremum is the input distribution pX(x), which can be
controlled by our transmitter design.

Example. For the additive Gaussian noise channel of (38), the maximization should
also be constrained by the variance (power) of X, since otherwise the capacity will be
infinite,

EX [X2] ≤ σ2
X . (50)

From (48), the equivocation H(Y |X) = H(N) is independent of the choice of pX(x),
and thus only H(Y ) need be maximized. The variance of Y is known from (50) and
from the assumed independence of X and N ,
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σ2
Y = E[X2] + σ2

N

≤ σ2
X + σ2

N .
(51)

As shown in Appendix B and restated in (37), H(Y ) is bounded by

H(Y ) ≤ 1
2

log2

[
2πe · σ2

Y

]
≤ 1

2
log2

[
2πe · (σ2

X + σ2
N )
] (52)

with equality if and only if Y is Gaussian. Fortunately, we can force Y to be Gaussian if
X is chosen to be Gaussian, since the additive noise is Gaussian, so this choice maximizes
the transinformation and achieves channel capacity. This confirms the capacity formula
of (40), plotted in Figure 7. That the capacity is achieved for a Gaussian X suggests
that the transmitter design should seek to make the channel input obey a Gaussian
distribution.

Continuous-time channel

Consider the continous-time channel of (1) where17 g(t) = δ(t) and N(t) is a wide-sense
stationary random process that is Gaussian and white with power spectral density N0.
Let’s investigate the capacity of this channel when the input signal X(t) is constrained to
have bandwidth W and EX [X2] ≤ σ2

X . At the receiver we can pass the channel output
through an ideal lowpass filter with bandwidth W , and the sampling theorem allows that
the resulting signal can be sampled at twice the bandwidth, or 2W samples per second.
The resulting discrete-time representation is equivalent in the sense that the continuous-
time signal can be exactly reconstructed from it. The resulting channel including filter
and sampler conforms to the discrete-time model of (3) with noise variance equal to
N0W and, since the signal is not affected by the lowpass filter, EX [X2

k ] ≤ σ2
X . The total

capacity is then the capacity per use from (40) times the sampling rate 2W , or

C = W · log2

[
1 +

σ2
X

W ·N0

]
bits per second (53)

The bandwidth W enters this formula in two ways:
17Convolving with the Dirac delta function δ(t) does not change the input.
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Figure 8: The capacity C of a continuous-time white Gaussian noise channel as a function
of its bandwidth for fixed σ2

X/N0 = 10. As bandwidthW increases, the capacity increases
in spite of the deterioration in SNR.

• There is a proportional term that drives capacity up linearly with W . Intuitively,
this term reflects the ability to transmit more data symbols per unit time if W is
larger, thus increasing the symbol rate and the data rate.

• Increasing W also admits more noise, reducing the SNR term, and hence reducing
the maximum spectral efficiency C/W (in bits per second per Hz).

Fortunately, the spectral efficiency decreases more slowly than the bandwidth increases,
so the net effect is to increase the capacity as the W increases. It is useful to remind
ourselves that (53) is a fundamental bound on the bit rate that can be achieved reliably,
and does not tell us anything about how to achieve those bit rates reliably18.

The important point, reiterated in the plot of Figure 8, is that the capacity increases
monotonically with bandwidth. This confirms that for an additive white Gaussian noise
channel, increasing the bandwidth is always beneficial in the sense of allowing reliable
communication at higher bit rates. However, the effect saturates, with further increases
in bandwidth having less and less benefit.

It is easily confirmed that the capacity is bounded as W →∞. Define

γ =
W ·N0

σ2
X

(54)

in which case (53) can be written as
18Any association of terms in this bound with parameters of practical schemes like PAM should be

approached with caution.

33



C =
σ2
X

N0
· log2

[
1 +

1
γ

]γ
→ C∞

C∞ =
σ2
X

N0
· log2 e = 1.44 ·

σ2
X

N0
.

(55)

The larger the ratio of σ2
X to the noise spectral density N0, the larger C∞, the asymptotic

capacity at infinite bandwidth. In other words, if the signal power is allowed to be larger
or if the noise power is smaller, C∞ is increased.

Another insightful way to look at the capacity formula is to define the spectral efficiency
ν at capacity and the SNR as

ν =
C

W

SNR =
σ2
X

W ·N0

(56)

where this SNR is the incoherent SNR defined earlier, the ratio of total signal power to
total noise power at the receiver input. Then the relation between these two quantities
at capacity is

SNR = 2ν − 1 . (57)

The relation is plotted in Figure 9. As expected, the increasing spectral efficiency requires
increasing SNR, and at high ν this relationship becomes linear when SNR is expressed
in decibels. What may be unexpected is that it is possible to communicate reliably at a
large negative SNR (where the total noise power is much larger than the signal power),
but this requires that ν << 1. For example, if ν = 0.1 (spectral efficiency equal to
one-tenth of a bit per second per Hz) it is possible to communicate reliably at an input
SNR = 0.071 (minus 8.7 dB).

Example. Suppose the spectral efficiency at capacity is ν = C/W with bandwidth W .
What is C∞ when σ2

x and N0 are kept constant?19 It is

C∞ = W · (2ν − 1) · log2 e . (58)

The growth in capacity from bandwidth W to bandwidth infinity can be written as
19Note that it is nonsensical to talk about the spectral efficiency at infinite bandwidth.
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Figure 9: At capacity, the input SNR in dB required to achieve a given spectral efficiency
ν.

C∞
C

=
2ν − 1
ν
· log2 e . (59)

The larger the starting ν (that is, larger SNR), the greater the total growth in capacity
as bandwidth is increased without bound.

That capacity grows more and more slowly with bandwidth suggests that it might be
advantageous to fragment a wide bandwidth channel into a number of smaller bandwidth
channels, and use them independently. This is not true (and would violate the channel
coding theorem), but the reason is a little subtle.

Example. Suppose bandwidth W is divided into two pieces W1 and W2, where W1 +
W2 = W . What is the total capacity of the two sub-channels? A fair comparison requires
that the total transmit power σ2

X be divided between the two channels, or σ2
X = σ2

1 +σ2
2.

The total capacity is then

C1 + C2 = W1 · log2

[
1 +

σ2
1

W1 ·N0

]
+W2 · log2

[
1 +

σ2
2

W2 ·N0

]
(60)

A straightforward optimization, maximizing C over σ2
1 and σ2

2 subject to the constraints
shows that C1 + C2 ≤ C with equality when power is allocated in proportion to band-
width, or σ2

1 = W1σ
2
X/W .
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Comparison: PAM vs capacity

The question arises, what gap may or may not exist between the fundamental limit of
channel capacity and what can be accomplished with a straightforward technique like
PAM. The answer can serve to motivate how much effort should be devoted to more
sophisticated channel coding techniques. It turns out that the gap is substantial, and
thus efforts devoted to channel coding can pay off handsomely.

For this purpose, let’s return to the simple discrete-time channel. Recall that capacity
is given by (40) for this case. It is convenient to define a rate-normalized SNR, defined
as

SNRnorm =
SNR

22R − 1
(61)

Then R ≤ C is equivalent to SNRnorm ≥ 1.

Recall that in PAM we encode R bits of information (R is assumed to be an positive
integer) by transmitting a signal Xk = Ak that assumes one of 2R values. In practice
those values will be complex valued as in the constellation of Figure 1, but for simplicity
let’s chose a real-valued constellation with 2R equally spaced levels. To minimize the
transmit power, space those levels symmetrically about Xk = 0, as in Xk = Ak ∈[
k − 2R+1

2 , 1 ≤ k ≤ 2R
]

Assuming each of these possibilities is equally likely, the signal
variance is easily shown to be

σ2
X =

22R − 1
12

(62)

and hence the rate-normalized SNR is

SNRnorm =
1

12σ2
N

(63)

Perhaps surprisingly SNRnorm is independent of R.

The other issue is what level of reliability is actually achieved by PAM? We measure
this by the probability of error. Except for the two outlier levels at both ends, a correct
decision is made if the noise falls in the range N ∈ {−0.5, 0.5}, Assuming Gaussian noise
with variance σ2

N the probability of error can be approximated as

Pe = 1−
∫ 1/2

−1/2

1√
2πσN

e−x
2/2σ2

N dx . (64)

Rather than plot Pe against SNR, it is convenient to plot Pe vs. SNRnorm as shown in
Figure 10. The region below capacity, where theory tells us arbitrarily reliable operation
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Figure 10: The probability of error plotted against SNRnorm in dB. The SNR gap to
capacity for a given reliability (Pe) is the distance from the vertical axis (SNRnorm = 1)
and the curve at that Pe.

should be possible, is SNRnorm ≥ 1, which corresponds to the region to the right of the
axis. PAM does operate reliably in this region, but only as SNRnorm gets relatively large,
considerably larger than demanded by the capacity formula.

The shaded area is the region where the channel coding theorem predicts arbitrarily high
reliability is possible at lower SNR’s than PAM. Thus, there is considerable opportunity
to improve on PAM. In particular, depending on how low a Pe we demand, it should be
possible to operate at SNR’s on the order of 9 to 11 dB lower than PAM, independent
of the rate R that we are attempting to achieve20. Thus, the channel coding theorem
predicts the ability to operate reliably at noise levels roughly an order of magnitude or
so higher in power compared to PAM. This is a substantial improvement, and one that
is well worth the effort to capture through channel coding techniques.

Channel coding

How can we actually close the SNR gap to capacity? How can we improve on PAM?

Recall the source coding situation. It was advantageous to code sequences of coin tosses
rather than treating them independently. Even in the case where the tosses are statisti-
cally independent, for an unfair coin patterns start to emerge in the coin toss sequences
in the sense that certain sequences are much more likely than others. For example, if a
coin favors HEADs, then a sequence of M HEADs is more likely than a sequence of M
TAILs. These properties can be exploited to reduce the average number of bits required

20Of course, higher rates require higher SNR’s in absolute terms. What we are discussing here is the
relative gap in SNR between PAM and capacity. That gap is the same at any rate R.

37



to represent a coin toss. If tosses are statistically dependent, this becomes even more
true.

A similar situation applies to communicating a sequence of bits through a channel. Con-
sider again the example of a discrete-time channel of (38) in which a sequence of input
samples is corrupted by independent Gaussian noise samples. Let us investigate how we
might increase the reliability of communication on such a channel, beating PAM and
reaching closer to channel capacity. The key is to recognize that the unreliability repre-
sented in Pe is dominated by ”outlier” noise samples that occur occasionally. Instead of
treating each channel use independently, as in PAM, we can group sequences of channel
uses together and observe (due to the law of large numbers) more consistent sequences of
noise samples (in a statistical sense). This is an example of channel coding, in which the
transmit sequences are tailored to the statistics of noise on the channel. This particular
style of channel coding is called a block code21.

Grouping M successive inputs together into a vector-valued random variable x, the
resulting channel can be treated as a multiple-input multiple-output (MIMO) channel22

of the form

Y = x + N . (65)

The M components of vector N are jointly independent Gaussian random variables,
each identically distributed with mean 0 and variance σ2

N . The MIMO distribution of
Y conditional on X = x is

pY|X(y|x) =
M∏
k=1

1
σN
√

2π
e−(yk−xk)2/2σ2

N =
1

σMN (2π)M/2
e−‖y−x‖2/2σ2

N . (66)

This probability density is thus expressed in terms of a distance between x and y in
M -dimensional Euclidean space. The idea in the design of a block channel code is to
construct a set of codewords, each of which is a point in M -dimensional Euclidean space.
While keeping the rate fixed, instead of mapping R bits into a single channel use, M ·R
bits can be mapped into M channel uses. Thus, we need to choose 2M ·R codewords in
M dimensions, as in

xi = [x1,i, x2,i, . . . , xM,i], 1 ≤ i ≤ 2M ·R (67)

in order to keep the rate constant.
21Most practical channel codes are not block codes. But that a another story, and a very interesting

one at that!
22Later in Section 4.3 a channel with multiple transmit and receive antennas is treated as a MIMO

channel. Here, a MIMO channel is created by gathering together sequences of input and output uses.
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At the receiver, a simple criterion for detection chooses the codeword xi that minimizes
‖y − xi‖2; that is, closest in Euclidean distance to the reception. The resulting index
m of the minimizing xm can be mapped back into the M · R bits. The noise immunity
of a block code is accurately characterized by the minimum distance between pairs
of codewords. Thus, the design of the codewords in (67) focuses on maximizing the
minimum distance between pairs of codewords and also on simultaneously minimizing
the transmit power.

The channel coding theorem states that if and only if R ≤ C, there is at least one choice
of codewords for each M such that, Pe → 0 as M →∞. Observe that there is a latency
of M channel uses since we must wait for a complete MIMO reception y before making
a decision on the entire MR bits. This latency also grows to ∞ as M →∞.

Example (two-dimensional codewords). An alert reader might observe at this point
that the signal constellation of Figure 1 is actually a degenerate channel code in M = 2
dimensions. That is true! It happens that in Figure 1 the two dimensions are the real
and imaginary parts of a single complex channel use, but that is not mathematically
significant because Euclidean geometry still applies. We can think of N complex-valued
channel uses as equivalent to 2N real-valued channel uses. With this in mind, it is
helpful to think of a block channel code as a kind of signal constellation in M dimen-
sions. It is hard to conceptualize a higher-dimensionality space, and even harder to
plot a higher-dimensionality signal constellation, so let’s seek additional insight in two
dimensions.

A signal constellation (degenerate channel code) in M = 2 dimensions is illustrated in
Figure 11. In this and the subsequent figures, constellation points are represented by the
”dots”, in this case 196 of them implying that 7.61 bits of information are conveyed in two
dimensions. The rate is thus R = 7.61/2 = 3.8 bits per channel use. Each constellation
point is surrounded by a sphere (which reduces to a circle in two dimensions). Because
the spheres touch one another, the minimum distance between code words (a measure
of reliability) is twice the radius of the spheres.

In Figure 11 the code words have been laid out in a regular square grid, which is equiv-
alent to concatenating two one-dimensional signal constellations, each with 14 points
(note that 196 = 142 and that log2 14 = 3.8). Without changing the peak transmitted
power (represented by the large sphere surrounding the constellation), more points can
be added to the constellation as in Figure 12. This allows us to increase the number
of points in the constellation to 316, which can represent 8.3 bits. This is called shap-
ing of the signal constellation. Observe that shaping can only be performed in two
and higher dimensions, as the constellation is no longer the Cartesian product of two
one-dimensional constellations as it was in Figure 11.

There is another trick that we can perform as illustrated in Figure 13. By simply
rearranging the relative position of the spheres, again not affecting the peak power, the
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Figure 11: A two-dimensional square signal constellation with minimum distance unity
and peak power constraint of 102 = 100. The big circle represents the peak power
constraint. The number of points in this constellation is 196.

Figure 12: The two-dimensional constellation of Figure 11 with the addition of shaping.
The number of points in this constellation is 316.
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Figure 13: A two-dimensional constellation Figure 12 with the addition of coding, in
which the spheres are rearranged to fit more within the power constraint sphere without
changing the minimum distance. The number of points in this constellation is 362,
communicating log2 362 = 8.49 bits per two dimensions.

number of codewords is increased further to 362, representing 8.49 bits. This simple
trick captures the essence of channel coding. The fact is that the spheres can be packed
more tightly in two dimensions than in one dimension.

The question at hand is, if M = 2 dimensions in a signal constellation (or equivalently
block channel code) are better than M = 1, then are M > 2 dimensions better than M =
2. Let’s not be timid in answering this question, and jump straight to M =∞!

Example (sphere packing in higher dimensions). We can fairly easily arrive at an
estimate of the number of signal constellation points that can be fit within a sphere with
high dimensionality. The key observation is that the volume of a sphere in M dimensions
is of the form AM · rM , where r is the radius of the sphere. Knowing the radius (and
hence volume) of a sphere that bounds the peak power, and also knowing the volume
of a sphere surrounding each point in the signal constellation, we can obtain a bound
on the number of points (spheres). Because the answer gives us the capacity formula of
(40), this is both a plausibility argument for the channel coding theorem and a readily
visualized interpretation.

The first step is to figure out the required radius for a sphere surrounding each point in
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the constellation. According to (65), there is a noise vector N added to each codeword
x in the channel. Assuming that the components of N are independent, zero mean, and
Gaussian with variance σ2

N ,

‖N‖2 =
M∑
i=1

N2
i

EN
[
‖N‖2

]
= M · σ2

N .

(68)

According to our old friend the law of large numbers, as M →∞ high-probability noise
vectors have a norm-squared that satisfies

‖N‖2 ≈M · σ2
N . (69)

Hence if we choose the radius of the sphere surrounding each signal constellation point
to be slightly larger than

√
M · σ2

N as M → ∞, the probability of the noise N taking
the reception out of the sphere approaches zero, and the error probability goes to zero.
Conversely, if we choose the radius to be slightly smaller than

√
M · σ2

N , N takes us out
of the sphere with increasing probability, and the error probability approaches unity. A
lower bound on a radius that insures asymptotic reliability

√
M · σ2

N .

This argument explains why there is a sharp threshold (the channel capacity) between
reliable and unreliable operation at the M → ∞ asymptote. Now let’s go further to
explain the impact of a power constraint. If the peak transmit power is σ2

X ,

‖x‖2 ≤M · σ2
X (70)

then the peak received power (taking into account the noise) is asymptotically M ·(
σ2
X + σ2

N

)
. Thus a sphere that bounds all the small spheres surrounding signal constel-

lation points must have radius
√
M ·

(
σ2
X + σ2

N

)
.

The name of the game is now to pack the maximum number of small spheres into the
large sphere without them overlapping. This is known as the sphere packing problem.
The best we could possibly do is fill the entire space, in which case the number of small
spheres (constellation points) is the volume of the big sphere divided by the volume of
the small sphere,
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2M ·R ≤
AM ·

(
M
(
σ2
X + σ2

N

))M/2

AM ·
(
M · σ2

N

)M/2

=
(

1 +
σ2
X

σ2
N

)M/2
(71)

Thus, we arrive at the bound

R ≤ 1
2

log2

(
1 +

σ2
X

σ2
N

)
, (72)

which is our familiar capacity formula. The preceding argument, while lacking rigor,
suggests that the error probability goes to zero as M → ∞ when (72) is satisfied, and
goes to unity when it is not. A key point to dwell on is that the entire argument applies
asymptotically as M →∞, and is certainly not strictly valid for any finite M .

These shaping and coding gains are relatively modest for M = 2 but increase as M
increases. Approaching capacity has proven to be challenging in practice because of the
exponential growth in receiver complexity as M increases. The only hope is to use a
block code that is highly structured, where the coding and decoding are algorithmic in
nature. A series of conceptual advances over the years have gradually chewed up the
SNR gap between PAM and channel capacity on the Gaussian noise channel, culminating
in turbo codes [10], which can often achieve near optimal performance in a practical way
using current technology.

4.3 MIMO channel models

The additive Gaussian noise channel of the previous examples is accurate in a few situa-
tions, like deep-space communication with spacecraft, but generally too simplistic to be
of value in most circumstances. This is particularly true of terrestrial wireless signals,
which are subject to multipath distortion and interference effects. Since these radio
systems are so important, it is useful to give a sense of how the previous results can be
extended.

For terrestrial wireless, it is increasingly common to use more than one transmit and/or
one receive antenna because this can significantly improve the reliability of communica-
tion in the presence of multipath fading. A generalization to (21) models the complex
baseband channel as multiple-input multiple-output,

Y(t) =
∑

G(t− kT ) ·Ak + N(t) (73)
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In this model, all quantities are complex-valued (demodulation to baseband is embedded
in the channel model), Ak is an nx-dimensional input drawn from a constellation that
is vector-valued (where [Ak]i is a scalar complex-valued data symbol), Y(t) is an ny-
dimensional output vector signal (where nx 6= ny in general), and G(t) is a ny × nx
matrix-valued pulse. The physical significance is that the sequence [Ak]i is the sequence
of data symbols transmitted on the i-th channel (typically the i-th antenna), and G(t)
captures not only the transmit pulse on each transmit channel, but also the response
of the radio propagation channel (including multipath) from the i-th transmiter to the
j-th receiver (typically j-th receive antenna).

After sampling in the receiver, and assuming that the channel is memoryless and fixed
with time, (73) simplifies to

Yk = G ·Ak + Nk . (74)

Usually we can assume that the vector Nk is Gaussian with identically distributed and
uncorrelated components, or E[NkN

†
k] = σ2

n · Iny where “†” is the conjugate transpose
operator and In is the n × n identify matrix. Further it may be reasonable to assume
that the noise is white, or E[NkN

†
m] = 0 for m 6= k.

Rayleigh fading

The additive vector-noise model of (74) is a reasonable model for a wireless channel
with an array of nx transmit antennas and ny receive antennas if G is a random matrix,
typically one that is varying with time but slowly enough relative to sample k that it
can be considered to be fixed-but-random over an appropriate periods of time. In a rich
multipath environment where the line-of-sight (LOS) signal is insignificant but there are
many signals arriving after reflections off various obstacles (ground, building, etc.), the
Rayleigh fading model is accurate. In this model, the elements of the G matrix are
independent and not identically distributed, each of the form

gi,j = α+ i · β (75)

where α and β are independent and Gaussian distributed with variance σ2
i,j . In this case,

the magnitude fi,j = |gi,j |, which is the amplitude response of the channel from the i-th
input to the j-th output, has a Rayleigh distribution (derived in Appendix C),

pFi,j (fi,j) =
1
σ2
i,j

exp

[
−
f2
i,j

2σ2
i,j

]
, f ≥ 0 . (76)

For this reason, this channel model is called Rayleigh fading.
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Fixed and known channel receiver design

Receiver design depends on what assumptions about the channel are reasonable. The
memoryless assumption of (74) presumes that each channel output vector depends on
only one channel input data symbol vector. The time-invariant assumption presumes
that the channel matrix does not change with time, at least over a period of time of
interest. Usually it is assumed that the channel matrix G is known at the receiver,
because it can be accurately estimated there23. It may also be reasonable to assume
that G is known at the transmitter as well if the receiver observes the channel outputs,
estimates G accurately, and then transmits that information back to the transmitter,
all quickly enough that G has not had time to change by much.

To illustrate a receiver design for PAM, assume that our approach is to estimate Â of
data symbol A of the form

Â = C ·Y (77)

In some sense, the goal of C is to invert the channel matrix G, but of course that direct
objective may be impossible if G is not invertible24. The question is, what C should we
use? An simple criterion is to minimize the error

∆ = Â−A

= C ·Y −A
(78)

in some sense. It is tempting to minimize ‖∆‖2, but this only gives us ny equations
in nxny variables (the elements of nx × ny matrix C). Therefore, let’s attack the more
ambitious goal of minimizing the nx × nx autocorrelation matrix of the error,

Re = E[∆∆†] (79)

The minimization of (79) is considered in Appendix D. It is shown that the optimum
matrix Copt is given by (129),

Copt = (G†G + σ2
n · Inx)−1G† (80)

and the resulting minimum error autocorrelation matrix is given by (130),
23This depends on adaptive estimation techniques not discussed here. It also depends on the assump-

tion that G varies slowly enough that it can be accurately estimated before it has a chance to change
significantly.

24For example, G may not be symmetric (the number of transmit and receive antennas is different),
or even if it is symmetric it may be singular.
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Re,min = σ2
n · (G†G + σ2

n · Inx)−1 . (81)

We can gain an additional understanding of this solution by the following examples.

Example (low SNR). As the SNR gets low because σ2
n →∞,

Copt →
1
σ2
n

·G† (82)

Re,min → Inx . (83)

The estimator is proportional to G†, which is a matrix matched filter and the resulting
error autocorrelation approaches diagonal, implying that the different components of
error become uncorrelated (because they are dominated by the noise, which is assumed
to have a similar property).

Example (high SNR). As the SNR becomes high because σ2
n → 0, assuming that

G†G is invertible25,

Copt → (G†G)−1G† (84)

Re,min → σ2
n · (G†G)−1 . (85)

Â = CoptGY → Y . (86)

The estimator still begins with a matrix matched filter, but then applies a transformation
that eliminates the interference between the different channels (different antennas), so
that the estimate approaches Â as expected. Note also that the error becomes small,
but small G (large propagation attenuation) tends to increase the error for a given noise
level.

Example (optimal two-antenna diversity combining). It is helpful to consider a
couple of low-dimensionality examples. Consider the case of a single transmit antenna
(nx = 1) and two receive antennas (ny = 2). Then G is of the form

25This requires two things: first ny ≥ nx (the number of receive antennas is greater than the number
of transmit antennas), and secondly G is a full rank matrix. When G†G is not invertible, the solution
becomes a pseudo-inverse.
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G =
[
g1,1
g2,1

]
GG† =

[
|g1,1|2 g1,1g

∗
2,1

g∗1,1g2,1 |g2,1|2
]

G†G =
[
|g1,1|2 + |g2,1|2

]
(87)

Copt =
G†

G†G + σ2
n

=

[
g∗1,1 g∗2,1

]
|g1,1|2 + |g2,1|2 + σ2

n

Re,min =
σ2
n

G†G + σ2
n

=
σ2
n

|g1,1|2 + |g2,1|2 + σ2
n

.

(88)

The receiver processing forms an estimate of single data symbol Â by calculating

Â =
g∗1,1y1 + g∗2,1y2

|g1,1|2 + |g2,1|2 + σ2
n

. (89)

Processing (89) is called optimal diversity combining. The idea is to combine the two
antenna signals in such a way that the reliability is improved due to the independent
fading from the single transmitter antenna to the two receiving antennas. The merit of
the technique can be seen in Re,min, which depends on the channel G only through the
value of |g1,1|2 + |g2,1|2. The estimation error gets large only when the magnitudes of
both signals from the two receive antennas is small. The receiver processing takes full
advantage of the signal power received by both antennas.

Example (two transmit antennas). Consider the case of two transmit antennas
(nx = 2) and a single receive antenna (ny = 1). Then G is of the form

G =
[
g1,1 g1,2

]
GG† =

[
|g1,1|2 + |g1,2|2

]
G†G =

[
|g1,1|2 g∗1,1g1,2
g1,1g

∗
1,2 |g1,2|2

] (90)

Copt =
1

σ2
n + |g1,1|2 + |g1,2|2

·
[
g∗1,1
g∗1,2

]
Re,min =

1
σ2
n + |g1,1|2 + |g1,2|2

·
[
σ2
n + |g1,2|2 −g∗1,1g1,2
−g1,1g∗1,2 σ2

n + |g1,1|2
]
.

(91)
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The interesting aspect of this example is that the receiver processing turns the single
antenna signal into a two-component signal to correspond to the two data symbols A1

and A2 using a matrix matched filter. Not surprisingly, the spatial diversity of the
last example is missing. Examining the diagonal elements of Re,min, the error in A1

being small depends on |g1,1|2 >> |g1,2|2, and the error in A2 being small depends on
|g1,2|2 >> |g1,1|2. Obviously both of these conditions cannot be satisfied simultaneously.
Thus, the receiver may do a good job of estimating A1 or A2 individually, but not both
at the same time.

This suggests that using two transmit antennas with a single receive antenna is not
advantageous. Is there a way to achieve the results of diversity combining with two
transmit antennas rather than two receive antennas? Yes! Later, we will illustrate a way
to replicate the (nx = 1, ny = 2) optimal diversity combining using the (nx = 2, ny = 1)
physical channel combined with Alamouti space-time coding in the transmitter. We
can do this in a way that the crosstalk between the two channels is totally eliminated,
without the transmitter even having to know G.

Channel capacity

The vector PAM channel model of (74) presumes a particular modulation scheme. What
is the fundamental channel capacity limit? This can be explored by generalizing (74)
to

Yk = G ·Xk + Nk . (92)

For this purpose, assume that G is known at the transmitter and receiver if the re-
ceiver observes the channel outputs, estimates G accurately, and then transmits that
information back to the transmitter, all quickly enough that G has not had time to
change by much. In that case, capacity as well as channel coding design can assume
that G is fixed and known, but drawn from a random ensemble. The technique is then
to calculate capacity conditional on a fixed-and-known G and then average that capacity
over the random ensemble of G. If G is not known accurately, or not at all, then more
complicated procedures have to be followed.

Let’s illustrate this by displaying the capacity of the MIMO channel for fixed-and-known
G [11]. Assume that both Xk and Nk are independent and identically distributed over
k and have autocorrelation matricies

E[XkX
†
k] = Rx and E[NkN

†
k] = Rn . (93)
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If we wish to impose a power limit on the input, the most reasonable approach is to
allow the power of the components of Xk to be different, but to be limited in variance
overall,

tr{Rx} ≤ PT (94)

where “tr” denotes the matrix trace (sum of diagonal elements). This allows the trans-
mitter to allocate more power to any sub-channels for which propagation conditions are
more favorable.

The method for calculating channel capacity for a MIMO channel is essentially the
same as earlier. The joint probability pX,Y(x,y) is a scalar-valued function, so the
definitions of average uncertainty, equivocation, transinformation, etc. are unchanged.
The underlying ensemble random variables just happen to be vector-valued.

It is straightforward to show that the mutual information per channel use is

I(X,Y) = H(Y)−H(N) (95)

Since H(N) does not depend on the distribution of X, the channel capacity can be
determined by maximizing H(Y) over all distributions of X that satisfy the power
constraint. Calculating the correlation matrix of Y,

E[YY†] = E[(GX + N)(GX + N)†] = GRxG† + Rn . (96)

A variance-constrained complex-valued Gaussian random vector Y has average uncer-
tainty (Appendix E)

H(Y) = log2(πe)n|Ry| , (97)

where |K| is the determinant of matrix K. As in the scalar case, this is also the max-
imum average uncertainty for any variance-constrained complex-valued random vector.
Therefore, we can bound the transinformation,

I(X,Y) ≤ log2

∣∣∣GRxG† + Rn

∣∣∣− log2 |Rn|

= log2

∣∣∣GRxG†R−1
n + Iny

∣∣∣ . (98)

For example, if (as is often the case) it is reasonable to assume that the noise is uncor-
related across receive components, or Rn = σ2

nIny , then |Rn| = σ
2ny
n and
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I(X,Y) ≤ log2

∣∣∣∣ 1
σ2
n

GRxG† + Iny

∣∣∣∣ . (99)

Since the upper bound (99) can in principle be maximized over Rx subject to the power
constraint, the resulting upper bound is realized when the input X is Gaussian, so this
determines the capacity.

The right side of (99) is easily evaluated for the special case where the input signal

power is equally distributed across transmit components, or Rx =
PT
nx
· Inx . Since this

is a specific input distribution,, not necessarily the optimum, this yields a lower bound
on capacity,

C ≥ log2

∣∣∣∣ PTnxσ2
n

GG† + Iny

∣∣∣∣ . (100)

Of course, for any given G the maximum of (99) can be determined, yielding the exact
capacity C. This tells us not only that the optimum input vector is Gaussian, but
also the capacity-achieving covariance matrix, which will typically not allocate power
equally across input components (the components which less attenuation through the
channel will be weighted more heavily) and will also have correlated components to take
advantage of the coupling intrinsic in channel matrix G.

Capacity with Rayleigh fading

Thus far the capacity calculation has assumed a fixed and known channel matrix G.
What is the effect of Rayleigh fading? It is easy to estimate the lower bound on capacity
of (100) when averaged over a random ensemble of G. As a consequence of the law of
large numbers,

1
nx
·GG† → Iny (101)

as nx gets large.

Substituting (101) in (100),

C ≥ log2

∣∣∣∣(PTσ2
n

+ 1
)

Iny

∣∣∣∣
= log2

(
PT
σ2
n

+ 1
)ny

= ny · log2

(
1 +

PT
σ2
n

) (102)
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This is the familiar log2(1+SNR) form, but it tells us that for a fixed number of channel
outputs ny the capacity is at least proportional to ny as nx →∞. For a Rayleigh fading
channel, as the number of transmit antennas is increased the capacity is asymptotically
at least proportional to the number of receive antennas.

As another example, when the number of transmit and receive antennas is equal (nx =
ny = n), the capacity increases at least as fast as n [12]. This implies that it is possible
to achieve dramatic increases in bit rates and spectral efficiency with the use of antenna
arrays. It also tells us that fundamentally multipath distortion is actually a desirable
phenomenon because it improves the overall reliability of propagation.

Coding for the MIMO channel

Historically, for many years multipath distortion was treated as an impairment to be
overcome. The large MIMO capacity of such a channel, however, is substantially larger
than a channel without multipath, as long as there are multiple input and output anten-
nas and as long as the antenna array geometry results in uncorrelated channel complex-
valued gains. Multipath does not have to be an impairment, but it can actually enhance
spectral efficiency. The intuition behind this is that multiple input and output antennas
(if they are spaced at least a half-wavelength apart) give us uncorrelated looks at the
channel, thus giving us an opportunity to communicate more data in parallel using these
parallel paths. In practice, this is exploited by using channel coding that generalizes the
scalar channel, in the sense that it defines code words that are a vector of input sam-
ples in time, but also in space. This is called space-time coding [13], and in the past
decade it has resulted in dramatic increases in spectral efficiency for multipath channels
[12].

Example (Alamouti code). Space-time-coding can be illustrated in a simple way by
the Alamouti code [14], which is incorporated into the IEEE 802.11a WiFi standard. This
coding assumes nx = 2 (two transmit antennas) and ny = 1 (one receive antenna).

[
yk
]

=
[
g1 g2

] [x1,k

x2,k

]
(103)

The Alomouti code groups two successive channel uses, say k = 1 and k = 2, to com-
municate two data symbols A1 and A2,

[
y1

]
=
[
g1 g2

] [A1

A2

]
[
y2

]
=
[
g1 g2

] [−A∗2
A∗1

] (104)
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This is a simple form of space-time code because each of the two data symbols is re-
peated redundantly in both space (the two antennas) and in time (two successive symbol
intervals). Writing the two output samples in a single vector, and conjugating the second
for the convenience of later processing,

[
y1

y∗2

]
=
[
g1 g2
g∗2 −g∗1

] [
A1

A2

]
(105)

This is the model of an effective (nx = 2, ny = 2) channel which has one channel use for
each pair of channel uses of the original channel. The key simplification is that the G
matrix of this effective channel is unitary,

G†G = GG† = (|g1|2 + |g2|2) · I2 . (106)

Thus, a matrix matched filter in the receiver diagonalizes the channel, or eliminates any
crosstalk from one transmit signal into the other as seen by the receiver. The optimal
receiver matrix and resulting error correlation are given by

Copt =
1

σ2
n + |g1|2 + |g2|2

·
[
g∗1 g2
g∗2 g1

]
Re,min =

σ2
n

σ2
n + |g1|2 + |g2|2

· I2 .

(107)

Comparing the error correlation matrix Re,min of (107) with the receive diversity of (88),
we see that they are identical. Thus, the estimation error performance of the Alamouti
code is identical to two-receive-antenna optimal diversity combining. The difference is
that two receive antennas are replaced by two transmit antennas, and a portion of the
processing is performed by a space-time code in the transmitter.

Alamouti coding does pay a penalty in transmit power relative to optimal diversity
combining. The total transmit power in the two antennas is double, which increases the
interference into any other wireless communication systems sharing the same frequency,
time, and space coordinates.

5 Conclusions

With the exception of some results in Section 4.3, all of the principles we have outlined
arose from work performed in the 1940s. They established a theoretical basis for digital
communication, which first made their appearance in commercial systems in the 1960’s
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and have since has become practically universal in new communication system designs.
Throughout the 1950’s, 1960’s, 1970’s most of the research focused on improving dig-
ital communication, including dealing with dispersive and time-varying channels and
achieving rates closer to channel capacity. Advances in microelectronics were crucial for
realizing many of the computationally intensive algorithms that resulted.

In parallel, in the 1970’s fiber optic communication arose. Over most of fiber’s history
most progress has been based on improvements to physical devices and media rather than
communication theories such as have been espoused here. Fiber has come to dominate
long-distance communication, including under-sea as well as terrestrial. Meantime cable-
based electronic communication has remained important on existing media for the so-
called ”last kilometer”, for wireless local access to the fiber backbone, and for mobility.
Thus, the importance of radio communications has increased even as fiber optics has
gained dominance in the core of the network. Most research since the 1990’s has focused
on wireless multiple access, multipath and fading, interference, and mobility.
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Appendix A: Notation review

A random variable X can be either discrete, taking on values from {xk, 1 ≤ k ≤ K},
or continuous, taking on values drawn from (−∞,∞). In some cases complex-valued
random variables such as Z = U + i · V will be encountered, where U and V are real-
valued random variables. The complex conjugate is Z∗ = U − i · V .

In the discrete case, X has a probability mass function pX(x) with the definition

pX(xk) ≡ Pr{X = xk} (108)

and in the continuous case X has a probability density function pX(x) with the property
that

Pr{a ≤ X < b} =
∫ b

a
pX(x) dx . (109)

A function f(·) defines a new random variable Y = f(X). The expected value of Y is
the average over the X ensemble,

EX(Y ) =
K∑
k=1

f(xk) · pX(xk)

EX(Y ) =
∫
f(x) · pX(x) dx .

(110)

In particular the mean and variance are defined as

µX = EX(X)

σ2
X = EX |X − µX |2 .

(111)

Two random variables X and Y have a joint probability mass or density function
pX,Y (x, y) and a conditional mass or density function

pY |X(y|x) =
pX,Y (x, y)
pX(x)

(112)

where (112) has the interpretation as the mass or density function of Y with prior
knowledge of X = x.
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A random process is a sequence of random variables Xk in the discrete-time case and and
set of random variables indexed by a real number t, denoted by X(t), in the continuous-
time case. The autocorrelation of a complex-valued wide-sense stationary random pro-
cess is

RX(m) = EX [Xk+m ·X∗k ]
RX(τ) = EX [X(t+ τ) ·X∗(t)]

(113)

assumed to not be a function of k or t.

The power spectrum of a wide-sense stationary random process is the Fourier transform
of the autocorrelation,

SX(f) =
∑
m

RX(m) · e−i2πfm

SX(f) =
∫
RX(τ) · e−i2πfτ dτ .

(114)

Continuous-time white noise is particularly important and easy to deal with, where

RX(τ) = N0 · δ(τ)
SX(f) = N0 .

(115)

Appendix B: Maximum average uncertainty

The inequality

log2 y ≤ 1− y for y > 0 (116)

with equality if and only if y = 1 is useful in deriving some bounds on average uncer-
tainty.

What discrete random variable X has the largest average uncertainty H(x)? Let pX(x)
be a probability mass function for a discrete random variable X with K distinct val-
ues, and let g(x) be any other probability mass function with the same values of x.
Then
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∑
x

pX(x) · log2

g(x)
pX(x)

≤
∑
x

pX(x) ·
(

1− g(x)
pX(x)

)
= 1− 1 = 0

(117)

with equality if and only if pX(s) ≡ g(x). Then

∑
x

pX(x) · log2

1
pX(x)

≤
∑
x

pX(x) · log2

1
g(x)

(118)

and substituting g(x) = 1/K where K is the number of distinct values of X, the in-
equality becomes

H(X) ≤ log2K (119)

Equality occurs in (119) when the K values of X are equally likely.

What continuous zero-mean random variable X with variance σ2
x has the largest H(X)?

Let X be a zero mean random variable with probability density function pX(x) and
variance σ2

x, and let g(x) be any other zero mean probability density function. For
simplicity assume that pX(x) 6= 0 and g(x) 6= 0 for −∞ < x <∞. Then

∫
pX(x) log2

g(x)
pX(x)

dx ≤
∫
pX(x) ·

(
1− g(x)

pX(x)

)
dx

= 1− 1 = 0
(120)

with equality if and only if pX(x) ≡ g(x). Hence

H(X) ≤
∫
pX(x) log2

1
g(x)

dx . (121)

Substituting a zero-mean Gaussian distribution with variance σ2
x for g(x), this be-

comes

H(X) ≤
∫
pX(x) ·

(
log2 σX

√
2π +

x2

2σ2
x

· log2 e

)
dx

= log2 σx
√

2πe .
(122)

Equality holds in (122) if and only if pX(x) is Gaussian.

56



Appendix C: Rayleigh distribution

Let U and V be independent identically distributed zero-mean Gaussian random vari-
ables with variance σ2, and let the random variable R =

√
U2 + V 2 be the magnitude of

complex-valued random varaible U + i · V . What is the probability density of R?

The distribution function of R is

Pr{R ≤ r} = Pr{
√
U2 + V 2 ≤ r}

=
∫ r

−r
du
∫ √r2−u2

−
√
r2−u2

dv
1

2πσ2
· e−(u2+v2)/2σ2

=
∫ r

−r
dv

1
σ
√

2π
· e−u2/2σ2 · Erf

(√
r2 − u2

σ
√

2

)
.

(123)

The density of R is obtained by differentiating this distribution function,

pR(r) =
d
dr

Pr{R ≤ r} =
r · e−r2/2σ2

σ2
. (124)

Appendix D: Matrix optimization

Our goal is to choose C so as to minimize the autocorrelation matrix of (79). Expanding
Re,

Re = E[EE†]

= CRyC† + Inx −G†C† −CG

= (C−G†R−1
y ) Ry (C−G†R−1

y )† + Inx −G†R−1
y G .

(125)

In (125) we have made several definitions and assumptions. We assume G is known, the
noise vector has independent identically distributed components,

E[NN†] = σ2
n · Iny (126)

and the input vector has independent identically distributed components with unit vari-
ance,

E[AA†] = Inx . (127)
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Further, the autocorrelation matrix of the channel output is defined as

Ry = E[YY†]

= GG† + σ2
n Iny .

(128)

The first term in (125) is eliminated, which minimizes every element of Re, by choos-
ing

Copt = G†R−1
y

= G†(GG† + σ2
n Iny)

−1

= (G†G + σ2
nInx)−1G†

(129)

The last two terms in (129) are equivalent, as is easily shown by multiplying through
both sides by the inverses. Finally, the minimum error correlation matrix is

Re,min = Inx −G†R−1
y G

= Inx −CoptG

= σ2
n (G†G + σ2

nInx)−1 .

(130)

The last form in (130) follows directly from substituting for Copt from the last form in
(129).

Appendix E: Joint Gaussian average uncertainty

The average uncertainty of a multivariate Gaussian random variable X with dimension n,
mean µ, and covariance matrix Σ is now determined. First assume that X is real-valued,
in which case its uncertainty is

− log2 pX(x) =
1
2

log2(2π)n|Σ|+ 1
2
· (log2 e)(X− µ)TΣ−1(X− µ) . (131)

It is readily shown that26

EX (X− µ)TΣ−1(X− µ) = n (132)
26For example, replace Σ with its spectral representation in terms of its positive-real-valued eigenvalues

and an orthonormal set of eigenvectors.
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so that

H(X) =
1
2

log2(2πe)n|Σ| . (133)

Now assume that X is complex-valued and zero-mean, and form a 2n-dimensional real-
valued vector X̃ out of the real and imaginary parts,

X = Xr + i ·Xi

X̃ =
[
Xr

Xi

]
.

(134)

In (134), for simplicity the real- and imaginary-parts can be assumed to be independent
and identically distributed27, each with covariance matrix Λ,

EX [XrXT
r ] = EX [XiXT

i ] = Λ

EX [XrXT
i ] = 0

Rx = EX [XX†] = 2Λ

Σ =
[
Λ 0
0 Λ

]
|Σ| = |Λ|2 .

(135)

Invoking (133) with n replaced by 2n, the average uncertainty is then

H(X) = log2(2πe)n|Λ|
= log2(πe)n|Rx| .

(136)

27This choice can also be shown to maximize the average uncertainty. Unlike a real-valued Gaussian
vector, a complex-valued Gaussian vector’s statistics are not completely characterized by its covariance,
and these additional assumptions, which are termed circular symmetry, are needed.
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