Automating Rendezvous and Proxy Selection

David Chiyuan Chu
Joseph M. Hellerstein

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2008-84
http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-84.html

July 11, 2008

Copyright © 2008, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Automating Rendezvous

David Chu
EECS Department, UC Berkeley
davidchu@cs.berkeley.edu

Abstract—As increasingly diverse networks are interconnected,
the combinations of environments and applications that will
coexist will make custom engineering increasingly impractical.
We investigate an approach which focuses on replacing custom
engineering with automated optimization of protocol specifica-
tions. Interestingly, our optimizations, grounded in recursive
query optimization, map smoothly to prototypical networking
design points of rendezvous selection and proxy placement.
Under two distinct networking settings, our prototype system
can automatically choose program executions that are as much
as three, and usually one order of magnitude better than original
source programs.

I. INTRODUCTION

Networks are growing increasingly diverse — or equivalently,
diverse networks are increasingly inter-networked [5]. The
causes of this diversity stem from both novel workload de-
mands from above and new resource availability from below.
From above, we are experiencing many new applications
such as Video-On-Demand, telephony, and distributed sensing.
From below, we are composing infrastructure from satellites,
cellular networks, urban WiFi, and short-range radio like
802.15.4 and bluetooth.

Networking design methodology bears some resemblance
to the early pre-relational database systems. The leading
methodology for addressing physical and workload diversities
in the network has been to engineer custom network program
implementations one environment at a time. This approach
may be difficult to scale; the combinations of environments
and applications that will coexist in the networking space
is poised to outstrip the ability to address each combination
individually.

As an alternative approach, the lessons of data independence
have been translated to the networking context, enabling high-
level protocol specifications [26], [25]], [24], [11]. Early work
on this declarative networking approach focused largely on the
ease of programming and conciseness of using recursive query
languages to specify network protocols and architectures. In
this work we take the lessons of database technology one
step deeper, developing a database-inspired optimizer for net-
work program specifications. This kind of automatic optimizer
technology is timely in the networking environment, given
increasingly diverse and varying workloads and resources.

Specifically, we focus on novel network-oriented adapta-
tions of traditional Datalog optimizations that push selections
in the presence of recursion. In the networking context, we
show that these adaptations address prototypical networking
rendezvous and proxy placement questions:

and Proxy Selection

Joseph M. Hellerstein
EECS Department, UC Berkeley
hellerstein @cs.berkeley.edu

o Where should messages from communicating parties ren-
dezvous?

e Who should hold the conversation state of an ongoing
communication?

o Should applications send (application) data to routers, or
conversely should routers send (routing) data to applica-
tions?

In addition to the utility of our optimizations, a conceptual
contribution of our work is in exposing the congruency that
naturally emerges between recursive query optimization and
network provisioning.

Our algorithms are realized in netopt, our architecture for
network optimization, which executes in three stages:

e Analysis identifies optimization opportunities from input
programs. We show how to identify the three rendezvous
and proxy selection opportunities above.

e Rewriting primes programs for optimization by trans-
forming input programs to optimizable variants.

e Decision Making selects optimized configurations. The
optimizer installs its chosen configuration by simply
filling in tables initialized by Rewriting to list selected
rendezvous and proxies.

To illustrate the utility of our network optimizations, we
apply them to two distinct networking settings that have
recently emerged: Content Distribution Networks (CDN) and
Wireless Sensor Networks (WSN). In both scenarios, we
demonstrate optimized programs significantly outperforming
unoptimized original programs. In both emulated and simu-
lated CDNSs, performance improves by as much as three orders
of magnitude. In emulated WSNs, gains are by as much as
one order of magnitude. In both settings, netopt effectively
identifies and executes better strategies.

Section[[-Altakes a closer look at our two chosen application
scenarios. Section [lI| introduces our distributed and recursive
query language and offers initial attempts at network opti-
mization. Section [lII| discusses the main rendezvous optimiza-
tion in detail. Section extends this to proxy placement
optimization. Section [V] discusses their execution on our
implementation platforms. Section reports on prototype
implementation and deployment of our optimizations.

A. Two Networking Settings

This section takes a closer look at two networking settings:
content distribution and wireless sensing. In each, we pay
attention to aspects where manual rendezvous and proxy place-
ment decisions have significantly impacted system design.

1) Content Distribution Networks: Website operators that
wish to offer more responsive sites often turn to CDNs such as
Akamai and Limelight [4]], [23]]. CDNs host third party content
on their large server collections, ideally placing popular items
close to interested consumers. Content placement in the CDN
is an instance of rendezvous selection, which is also known as
the NP-complete facilities location problem [12]). In the naive
variant, the sink and source rendezvous at one endpoint. Yet,
conceptually, rendezvous at any location in the distribution
network is possible. Varying rendezvous impacts cost, and the
optimization problem is akin to that in Publish-Subscribe and
push-pull systems [[16]: for minimal aggregate latency, what
is the ideal rendezvous point for producers and consumers of
each content item, subject to server storage constraints. We
show how Analysis and Rewriting can automatically identify
naive cases from program source and rewrite them to expose
rendezvous flexibility. This permits Decision Making to assign
lower cost rendezvous.

Each client that connects to a server allocates its own session
state. As the number of clients increases, server responsiveness
may suffer due to session state exhausting available server
memory. To alleviate the problem, session state can be repack-
aged into messages for transportation between client and
server, allowing the server to be stateless [34], [8]]. Similarly,
as a hybrid alternative, session state packaged in messages can
be picked up from and dropped off at an intermediate proxy
on the path connecting client and server. This proxy placement
problem is complementary to rendezvous selection. We tackle
it with automated techniques for exposing and optimizing
proxy placement.

2) Wireless Sensor Networks: WSNs are embedded in and
monitor the physical world over wide-ranging extents of space.
As such, they present a fairly different context for automated
network optimization. One predominant application class for
WSNs is event detection. Often interchanging push for pull,
event distribution and content distribution systems are known
to be related problems. Therefore, optimizer-driven rendezvous
selection applies to both WSN and CDN settings.

Recently, many common Internet services such as interac-
tive login, remote debugging and point to point routing are
being ported to sensornets. A challenge that arises repeatedly
is that of configuring state allocation on storage-constrained
platforms. Such state varies in form and use, from interactive
login sessions to routing table entries. Should it reside at either
endpoint, at intermediate proxies, or in packets? On the one
hand, the general service designer is at a loss to properly
provision for specific deployments. On the other hand, the end
system deployer can not be expected to be intimately familiar
with every packaged service. Unfortunately, this implies that
neither is in the best position to optimize state allocation. We
tackle this problem with automated techniques for exposing
and optimizing proxy placement, much like those used for
server session state proxy placement.

1% Prepare for transmission

2 message (@Source, Source , Sink , Data) :—
3 produce (@Source, Data) ,

4 nexthop (@Source, Sink , Next) .

5

6% Route message to next hop parent

7 message (@Next, Source , Sink , Data) :—

8 message (@Current, Source, Sink , Data) ,
9 nexthop (@Current, Sink , Next) .

10

11% Receive if message is of interest
12 consume (@Sink, Data) :—

13 message (@Sink, Source, Sink , Data) ,
14 interest (@Sink,Data) .

15

16 % What is consumed?

17 consume (@Sink, Data) ?

Listing 1. Original BasicProg, message routing from source to sink with
filtering by interest.

II. EXAMPLE PROGRAM AND OPTIMIZATION

Throughout this work, the deductive database programming
model is used as a means to demonstrate the concept of
automated analysis, rewriting and optimization. The employed
language, net 1og, is convenient due to its immediate display
of recursion, which we heavy utilize. net 1og is a subset of
OverLog [25]] and is a dialect of Datalogﬂ

This section presents an example application, and an initial
attempt to expose more rendezvous choices for the applica-
tion. A main tool used throughout the optimizations, network
selection pushing, is also introduced.

A. An Initial Program

Listing [I] introduces BasicProg, a netlog program
that implements multi-hop message routing from sources to
sinks with message filtering at sinks. The deductive database
programming model employs relations and deduction as its
basic constructs. Each relation consists of a set of tuples
with the same number of attributes. Relations in BasicProg
are produce, consume, nexthop, message and interest.
Deduction is expressed as a set of rules, each denoted by the
symbol “:-” that indicates the existence of derived tuples based
on the existence of other tuples. Each rule consists of a body,
a set of conditions that appear to the right of the deduction
symbol, and a head. The newly deduced data that appears to
the left of the deduction symbol. Viewed operationally, this
model is extremely simple: relations are best thought of as
tables with columns in a database, tuples as table rows with
values assigned to columns, and rules simply generate new
table rows from existing table rows by equi-joining the tables
in the body on the matching attribute variables.

Every tuple is stored at the network node indicated by its
first attribute, the location specifier (denoted with the “@”
symbol). This permits each node to hold a partition of each
relation. For instance, a node’s partition of a relation like
nexthop reflects its local routing table. When a rule involves
location specifiers with differing variables, communication
between nodes may occur to access necessary partitions.

In BasicProg, the produce relation contains pairs of
Source and Data attributes. When these tuples are joined

Unlike net 1og, OverLog distinguishes between events and stored tables.

against nexthop tuples, initial message tuples bound for
Sink are generated (lines 2}4). Joining produces an output
tuple every time there exists tuples in the body that possess
equal attribute values when the attribute names are the same.
For example, a message tuple’s first attribute takes on the
value Source only when there exists a produce and nexthop
tuple whose first attribute values match.

The data is routed by recursively defining the message re-
lation along the nexthop relation. Intuitively, message tuples
are traversing the nexthop routing tables (lines [719). Upon
arrival at the sink, the message tuple, if it matches any tuples
in interest, generates consume tuples at the destination
(lines [T2{T4). The query (denoted with “?” symbol) indicates
that a particular queried relation is made user-visible. Here,
the query asks for the consume queried relation (line [17).

B. Pushing Selections One-Hop

As an example, consider a two node network x and y
represented by Extensional Database (EDB) D:

produce (@y, foo). nexthop(@y,x,x). interest (@x,foo).

The EDB is materialized and is made of relations that are never
in the head of any rule. Conversely, the Intensional Database
(IDB) is made of the relations that occur in rule heads. The
IDB corresponding to D is:

message (@y,y,x,foo). message(@x,y,x,foo). consume(@x,foo).

Here, produce and interest rendezvous at x via sending of
a message from y to x. Conceptually, this rendezvous could
also take place at y as long as the query returns the same
answer, consume(Qa, foo). To accomplish this, let interest
send its own “message” from x to y. We’ll call it messagex,
and use it in the following rules:

message x (@Current, Current , Data) :—
interest (@Current, Data) .

message x (@Current, Sink , Data) :—
message * (@Next, Sink , Data) ,
nexthop (@Current, Sink , Next) .

consume (@Sink, Data) :—
produce (@Current, Data) ,
message x (@Current, Sink , Data) .

The first rule prepares interest tuples for transmission. The
second rule passes message* backward along nexthop, and
is similar to how message was passed routed in Listing[I} The
third rule derives consume. For the one-hop network, these
rules produce the desired result of rendezvous at y, with the
queried consume at x.

C. Pushing Selections into the Network

As the network topology grows to multiple hops, we would
like to add a bit more flexibility to this rewrite attempt. At the
moment, we must choose between either endpoint. In a multi-
hop network, rendezvous at any intermediary hop should be
an option. We next provide some intuition on how network se-
lection pushing generalizes to the multi-hop case. A program’s
network execution can be visualized with a network derivation
graph. Figure [Ta] shows the network derivation graph for

BasicProg over a four hop linear network with nodes z-
y-z-w. Bach network derivation graph node p¢ represents a
horizontal partition of relation p at location ¢ (relation names
are abbreviated by their first letter). A directed edge leads
from derivation input to derivation output. For example, n,
represents the rows of nexthop that are stored at location z,
and the edge from p,, to m,, indicates that the program derives
message at w from produce at node w. A node with a fan-in
greater than one indicates a join among the node’s children,
as in the case of m_ and the join of m,, and n,,.

We can push selections to achieve a different network
execution. Figure shows the network derivation graph
resulting from an initial selection push. Here, the join of
message and interest is performed earlier, resulting in sub-
sequent message tuples already filtered by interest (denoted
m—1). Conceptually, the “pushing down” of interest changes
rendezvous of message and interest from x to z.

However, x and z are not neighbors in the underlying
network topology (as indicated by the exclamation mark).
Hence, they cannot communicate directly with each other and
the partitions interest, and message, cannot directly join.
In general, netlog programs require the following property
for proper distributed execution.

Definition 2.1: A rule is path-restricted if all head and
body relation partitions are located on the same host or
neighboring hosts in the underlying network topology. A
program is path-restricted if its rules are path-restricted.

We assume that input programs are path-restricted, and
we would like to maintain the property for any rewritten
programs. Figure |Ic| suggests an alternate join rearrangement
that is path-restricted for interest,. It is roughly the result of
combining Listing [T] with the rules in Section produce,,
is converted to message and travels from w to z, interest,
is converted to messagex and travels from z to y to z. This
leaves messagex, and message, ready to join at z.

However, the derivation of consume, involves z and z
that are not neighbors. This time we choose to “package up”
consume, as messagex* and send it along the network topol-
ogy via a path we already know about from z to x. Figure [Id|
shows the fully path-restricted network derivation graph with
rendezvous at z. Yet, this is just one possible rendezvous
choice. “Meet-in-the-Middle” MiM Rewrite transforms input
programs to expose many possible rendezvous choices.

III. MIM REWRITE

This section first sets forth the correctness criteria of any
netopt optimization, next describes the MiM Rewrite pro-
cedure precisely in terms of its analysis and rewrite phases,
and lastly proves MiM Rewrite transformations are correct.

Any netopt optimization must preserve the intent of the
original program. The intent is captured by the query.

Definition 3.1: Two programs P;, P, are query equivalent
if, given any EDB, the contents of their queried relations are
equivalent.

Definition 3.2: A rewriter R : P;— P, is query preserving
if for all programs P;, P» is query equivalent to P;.

7 N
my i
7N\
my ny
7N
m, n,
/N

rT1W r]W

1

Pw
(a) Original (b) Initial selection push
Fig. 1.

This section builds up to the establishment of the following.
Theorem 3.3: The MiM Rewrite is query preserving and
path-restricted.

A. Analysis

Analysis identifies certain rules and relations as rewrite
components. We first introduce some terminology from classic
work in the deductive database literature [39].

Definition 3.4: A rule-goal graph contains one relation-
node for each relation and one rule-node for each rule. A
directed edge leads from rule-node R to relation-node a if
the head of rule R is relation a. A directed edge leads from
relation-node a to rule-node R if relation a is in the body of
rule R.

Definition 3.5: A rule with head relation a is a linearly
recursive rule (LR rule) if a appears exactly once in the body.
It is an initializer rule if o does not appear in the body.

Definition 3.6: A program is a linearly recursive program
(LR program) if every rule with head a is (1) either an
initializer rule or LR rule, and (2) for every relation b in the
body, b # a, relation-node b in the rule-goal graph is not
reachable from relation-node a.

Definition 3.7: A relation a is a LR relation if a is the
head of a LR rule. The other relations in the body of the LR
rule are base relations.

We can consider scenarios in which the LR rule body con-
tains only one base relation. This does not sacrifice generality
since it is straightforward to construct a single base relation
by joining multiple base relations. Furthermore, our focus on
networking programs leads us to consider the following type
of LR rule.

R1 a(@b;,dy ,...,dNa—1) —

a(@a ,...,ana), b(@b1,... bNb).

Values of b; are “injected” into the location specifier of
a tuples upon every recursion, which means the partition of
the head a is potentially different from the partition of the
body a upon every recursion. Hence, we can interpret the base
relation as defining a network for the LR relation to hop along.
For BasicProg, message is the only LR relation. nexthop
is a base relation of message. Both LR and base relation
identification can be accomplished by traversing the rule-goal
graph.

m**
AN
m** n
Y Y
7 3\ Mz
m, m*,
VAN 7N\
m,, n, N, m*,
1 7N
Pw ny m*y

(c) Path-restricted interest (d) Fully path-restricted

Alternative executions of BasicProg. Exclamation marks indicate neighboring hosts are not connected in the network topology.

Note each d; can correspond to any a; or b; to capture
additional projections. Furthermore, b;’s can correspond to a;’s
to capture joins.

Lastly, we are only interested in recursive relations that can
(possibly indirectly) derive the queried relation because only
they can impact query equivalency.

Definition 3.8: Given queried relation ¢ and LR relation a,
a rule R is an answer rule if (1) a is in the body of R but
not the head, and (2) in a rule-goal graph traversal, rule-node
R can reach relation-node c.

Given a program and queried relation, Analysis identifies
LR and base relations, and LR, initializer and answer rules.

B. Rewriting

Using the rules and relations identified in Analysis, Rewrit-
ing invokes the MiM Algorithm. The MiM Algorithm trans-
forms LR program P to a query equivalent program Pj;s.
The advantage of Pps;pr over P is that its rendezvous can be
tuned by Decision Making by filling in tuples for a special
rendezvous relation.

A preliminary procedure of MiM Algorithm canonicalizes
the input program. First, recursive relation a is renamed a_ans
in every answer rule for a. Second, for each rule, each
variable is renamed to a unique variable name that does not
appear elsewhere in the program. Third, the queried relation
and EDBs generate a binding for each recursive relation a.
Intuitively, bindings are values for attributes of a that (1) we
already know since they are join keys with materialized EDB
relations and (2) are useful since the join happens in an answer
rule. Operationally, this is done by employing the classic
database Sideways Information Passing (SIP) algorithm [2].
The input to SIP is a queried relation ¢ and program P. The
output is a a sequence of “b”s (bound) and “f”s (free) for
each a, called binding list . For sake of space, we describe
the algorithm only as it applies to the following type of answer
rule where c is the head and e is in the EDB.

,CNC) =

Ro c(@c ...
e(so--,€Ne) s

a(@31 P ,aNa).

In this most basic yet common case, the binding list « is
assigned as follows: «; is “b” if a; joins with some e;.

INPUT: A LR input program P with a binding list « for each recursive relation a.
Recursive rules for a take the form:
R1 a(al) :— a(a2), b(b).
OUTPUT: An output program Py, s having all the rules of P, with additional

EDB relation r (rendezvous) and with each rule R replaced by rules R4 .1,
R2, Rs.1, Ra.2, Rs and R¢ as defined below.

PROCEDURE:

1. Invert recursion order. Generate P;,,,,, a version of P that processes
derivations via “pull” rather than “push”. The rules of P; ., are the rules of P
with each rule R, replaced by three rules:

Ra a*(alp,alp) :— % answer rule dependent, refer to text

Rs ax(a2y,a0,) — ax(aly,alp), b(b).
R4 a_ans(alp,a3y) :— ax(ady,aly), a(ald).
with a0, = ... % answer rule dependent, refer to text

and a3 = unique(Na).

2. Hybridize recursion order. Generate Py, by combining P;,,, and P. In
addition, add rendezvous relation » and modify selected rules to:

a. Limit derivations of the queried relation to the rendezvous point. Replace
R4 with:
Ra.1 a_ans(alp,a3y) — ax(a3y,aly), a(ad), r(a3p).

b. Limit “push” execution to before the rendezvous and limit “pull” execution to
after the rendezvous. Replace R and R 3 with:

Ria a(al) :— a(a2), b(b), —r(a2s).
R3.1 ax*(a2p,alp) a0y

i— ax(aly,aly), b(b), —r(aly).

3. Localize for network processing. Generate Pas; s by modifying Py to
ensure network topology path restrictions. This enables correct distributed
execution. Replace rules R4 1 with:

i— ax(a3p,a0y) ,a(ad) ,r(ady).

Ra.2 a*x(ady,aly,ady)

Rs axx(aly,alp,a3y) — axx*(a2p,a0p,a35), b(b).
Re a_ans(aly,ady) :— axx(alp,al,ady).

Listing 2. MiM Algorithm

Otherwise «; is “f”E] Furthermore, we can safely assume that
a is a sequence of “b”s followed by a sequence of “f”’s. This
may require some trivial variable reordering.

With these preliminaries settled, core MiM Algorithm in
Listing |2| is invoked. The shorthand notation it uses allows
us to present MiM Algorithm compactly as a series of rule
manipulations and variable list rearrangements. A term with a
bar (“~”) represents a list of variables. The first letter of the
term indicates the size of the list. For example, al represents
a variable list of size Na. Each variable list comes from
either (1) the input program P or (2) the function unique.
Lastly, a term may have a subscript “b” or “f” to represent the
application of the function boundlist or freelist respectively.
For example, al, = boundlist(al). In such case, the length
of al, may be less than that of al.

unique takes as input a list size and returns as output a
list of distinct variables that do not appear anywhere else in
any rule. boundlist takes as input a variable list for a and
returns the prefix of the input for which « is “b”. Conversely,
freelist returns the suffix of the input for which « is “f”.

MiM Algorithm generates new rules and introduces new

2In more complex cases, e.g., where ¢ and a do not participate in the same
rule, SIP propagates bindings transitively across rules [2]]. For our purposes,
it is sufficient that SIP can always generate a single unique « for each a.

relations a_ans, ax and a*x. In networking settings, tuples of
a, ax and axx can be thought of as messages. Each message
consists of a message header (some prefix of attributes) and
message payload (remaining suffix of attributes). The header
may change on every recursion but the payload does not.

MiM Algorithm consists of three main steps traced by
Figure [2] Figure [2a] shows the input program as an abstracted
network derivation graph in which messages of a flow from
source to sink. After arriving at the sink, a generates a_ans,
which participates in answer rules (not shown). More precisely,
sources are locations where initializer rules generate a, and
sinks are locations where answer rules use a.

Step 1 inverts the recursive order of the original program. Its
objective is the same as to that of the well-known Magic Sets
algorithm [7]]: pushing selection past recursion. This is done
by constructing a* to recurse backward from sink to source
(Figure [2b). Pushing down selections can be thought of as a
“pull” execution vs. the original “push” execution.

In Step 1 of Listing[2] R, is underspecified and we complete
its specification here. Recall that given a queried relation ¢, «
tells us that some attributes of a are already bound to specific
values because these attributes are join keys with EDBs in
answer rules. Much like a semi-join, these join keys are simply
copied from the EDB relations to make a*, a superset of a.
In the case of example Ry, Ro takes the form:
with a0 = @a , ..

ax(a0p,a0;) :(— e(e). .,anae Of Ro

Note that two copies of the join keys are made. The first copy
is like a message header that may need to go through some
number of recursive modifications to find its join partners. The
latter “pristine copy” is like a message payload with a return
address inside, used to remember the original join keys for
use with the answer rules.

Step 2 hybridizes the recursion order by combining push
and pull execution to “meet-in-the-middle”. It further intro-
duces the EDB relation r whose tuples indicate the precise
rendezvous meeting point between push and pull. While a
traverses forward from source and ax* traverses backward from
sink, both stop at the rendezvous to derive a_ans (Figure [2d).
Whereas P;,, pushes selection past recursion, Pj,; pushes
selection into a tunable middle point in the recursion.

Step 3 localizes the program for network processing by en-
suring that network topology paths are respected. Essentially,
a_ans is additionally packaged as a payload in another mes-
sage, a**, and sent from rendezvous to sink. Upon reaching
the sink, a_ans is unpackaged and can be used in answer
rules, just as in the original program.

Steps 1 and 2 are applicable to any LR Datalog program.
Step 3 is necessary for net log programs that are expected
to run on networks of nodes. Additional restrictions covered
in Section apply to input programs for MiM Algorithm.
Before discussing these, we first present an example applica-
tion of MiM Algorithm.

C. Example Application of MiM Algorithm

Listing [3] shows the result of a full application of MiM
Algorithm on BasicProg. In the rewritten BasicProg

a_ans a_ans

a t e a

source sink source sink

(a) Input program P (b) After Step 1: Piny

Fig. 2.

1% Prepare for transmission

2 message (@Source, Source , Sink , Data) :—
3 produce (@Source, Data) ,

4 nexthop (@Source, Sink , Next) .

5

6% Route message to next hop parent until rendezvous
7 message (@Next, Source, Sink , Data) :—

8 message(@Current, Source, Sink , Data) ,
9 nexthop (@Current, Sink , Next) ,

10 —rendezvous (@Current, Sink , Data) .

11

12% Route interest back along next hop until rendezvous
13 message *(@Current, Current ,Data) :—

14 interest (@Current,Data) .

15 message *(@Current, Orig , Data) :—

16 nexthop (@Current, Sink , Next) ,

17 message x(@Next, Orig ,Data) ,

18 —rendezvous (@Next, Sink , Data) .

19

20% At rendezvous, join message and interest and send to Sink
21 message x*(@Current, Sink , Data) :—

22 message (@Current, Src, Sink , Data) ,

23 messagex(@Current, Sink , Data) ,

24 rendezvous (@Current, Sink , Data) .

25 message = (@Next, Sink , Data) :—

26 messagex*x(@Current, Sink , Data) ,

27 nexthop (@Current, Sink , Next) .

28 consume (@Sink, Data) :—

29 messagex*x(@Sink, Sink , Data) .

30

31% What is consumed?

32 consume (@Sink, Data) ?

Listing 3. Rewritten BasicProg, message and interest meet in the middle.

of Listing the precise rendezvous location is chosen
by simply filling in the rendezvous relation e.g., with
rendezvous(@b, a, foo). The original recursion of message
along nexthop is amended to include a negated term,
—rendezvous which modifies the interpretation of message
routing to be: “Route message along nexthop until en-
countering rendezvous” (line [I0). A similar negated term is
applied to the routing back of interest (line [I8). Additionally,
MiM Rewrite amends BasicProg to deliver consume tuples
in a multi-hop fashion to the Sink (lines 21H29) according to
network path restrictions mentioned earlier.

Note that we have not specified nor constrained the tuples
in the rendezvous relation. The decision of what to put there
will be the task of Decision Making, discussed in Section

D. MiM Rewrite Correctness

This section proves Theorem mentioned at the start of
this section, and its structure mirrors Listing

[1. Inverting Recursion Order] We need the following
constraint to show query equivalency of P;,, and P.

Constraint 1 (Free Variable Constraint): For each recur-
sive rule having head a, the free variables of a in the head
must be the same as the free variables of a in the body.

This constraint says that the free variables of a are car-
ried along unmodified from source to sink. Conversely, the

a_ans a a*
_ —_— —
*
a A'T: a | a** i_ans

rendezvous

rendezvous sink source sink

(d) After Step 3: Pyrins

source

(c) After Step 2: Ppyp

Steps of MiM Algorithm

bound variables of a may change upon every recursion. By
analogy to networking, free variables are message payloads
and bound variables are message routing headers. Provided
this constraint, we borrow results from [39] (specifically
Theorem 15.1) to claim that:

Lemma 3.9: P and P;,, are query equivalent.

Informally, we have already discussed how the construction
of Ry causes ax to be filled with an initial superset of join
key values for a starting at sink. Rg takes the current set and
asks what prior set is necessary to derive the current set, much
like a depth first search from sink to source. Recall also that
R, and R3 store a “pristine copy” of the initial set, a0p, in
the latter half of ax. Like a semi-join, (a subset of) a* may
eventually join with a at the source by R4ﬂ If this happens,
since the free variables a3 do not change with recursion (due
to the constraint), they can be copied over directly from a to
a_ans. Similarly, a* copies its pristine copy a0, to a_ans.
The result is a_ans, which can now be used by any answer
rule since free variables for a_ans have now been assigned
values. The proof of Lemma is by induction on the length
of the path from source to sink.

[2. Hybridizing Recursion Order] We can simultaneously
enact push and pull processing by combining P and FPj,,.
However, this naive hybrid program causes many unnecessary
derivations of identical a, a*x and a_ans tuples because neither
push nor pull can detect when it has started duplicating the
other’s work; a goes completely from source to sink, ax
goes completely from sink to source, and at each point along
the path, the same a_ans tuples are (re)derived. Limiting
redundant derivations is not necessary for correctness but
is preferable especially when redundant derivations lead to
network communications overhead.

First, to limit redundant a_ans derivations, we name a
particular rendezvous in a special rendezvous relation r. In
Step 2.a, Rewriting adds r to the body of R4, creating Ry 1.
Decision Making populates the tuples of the r relation. It may
choose any r as long as it obeys the following constraint.

Constraint 2 (Selection Constraint): Any source and sink
pair that share at least one path must have at least one
rendezvous on one of the shared paths.

Figure shows an example where this constraint is re-
spected. There are two paths from source to sink and at least
one path, the top one, includes a rendezvous. No derivations of
a_ans occurs on the bottom path due to failure to rendezvous
i.e., no entry of r lies on the bottom path.

Second, to limit redundant a¢ and a* derivations, we add r

3Recall that initializer rules can also generate a.

a_ans
a + a*

a_ans g* a a.ans a *
a a_ans gx a 2N g * a
rendezvous \‘f‘/ \)1‘4/ *,\a/ rendl e
source sink sourcel sink3 ~ sourcel —md2 Sink3 sourcel rendi sink3 sourcel — 2 Sink3

\3/
'\a*/

(a) Selection Constraint OK

rendezvous

source? sink4 source2

Fig. 3.

to the body of Ry and R3, creating R 1 and R3 ;. Here, r is
negated, which means a and ax traverse from source and sink
respectively until encountering a rendezvous, but no further. To
maintain correctness, Decision Making respects the following
constraint in addition to Constraint 2]

Constraint 3 (Branching Constraint): Any single path be-
tween source and sink can have at most one rendezvous.

Figures show three examples respecting this con-
straint and one example violating this constraint. The setting
is one in which sourcel and source2 both have paths to
stnk3 and sink4. Such path “branches” at an intersection are
analogous to network multicasts/one-to-many communication.
Figure is a violation because a from sourcel and ax
from sink3 do not rendezvous at the same place. Provided
Constraint [2] and [3| we have query equivalency after Step 2.

Lemma 3.10: P and Py, are query equivalent.

Proof: First consider Py,; without the negated r terms.
Since r’s a3; is a subset of a’s a3, R4.1 cannot derive a_ans
tuples that were not derived by R4 (soundness). For complete-
ness, proceed by induction on the choice of rendezvous. For
the base case, choose the sink as the rendezvous, in which
case Ppyp simplifies to P. For the induction, we can assume
that query equivalency holds were we to pick the rendezvous
one step closer to the sink at point ¢+ 1 rather than the current
rendezvous choice at point 7. By Lemma LR relation a
at ¢ + 1 implies a at i. Apply R3 to ax at ¢ + 1 to derive
a* at 7. Finally apply R4 to a, a*x and r (all at ¢) to derive
a_ans. Constraint 2] ensures there is at least some rendezvous
between source to sink for the inductive step.

Next consider Py, with the negated r terms. The addition
of a negated term cannot make more derivations than without
the negated term (soundness). Constraint [3| ensures that one
path’s rendezvous choice does not “block™ rendezvous along
another path, as seen in Figure [3¢| (completeness).

|

[3. Restricting Derivations to Network Paths] R4 is not a
path-restricted rule. From the perspective of Figure a_ans
is derived at the rendezvous but answer rules are expecting to
use it at the sink. This is not an issue in a centralized Datalog
execution. However, since the location specifier horizontally
partitions relations in netlog, P, needs path-restricting.

Path-Restricting Subprocedure modifies R4 1 to ensure that
head and body location specifiers are the same or are neigh-
bors. It accomplishes this by providing hop-by-hop delivery
of a_ans from body location to head location.

Specifically, Path-Restricting Subprocedure prepends “mes-

rend1 rend2

source2 sink4

sink4 source2 sink4

(b) Branching Constraint OK (c) Branching Constraint OK (d) Branching Constraint OK (e) Branching Constraint BAD

MiM Algorithm constrains the location of rendezvous.

sage header” attributes to a_ans as new relation a** (akin to
encapsulation used in network tunneling). The message header
is copied directly from a since it already had the appropriate
header to get to the sink. This converts R4.1 to R4.o. Next,
Path-Restricting Subprocedure constructs R to let a** mimic
a’s multi-hop delivery. Lastly, R¢ unpackages a+x into a_ans
upon detecting that the outer message header is the same as
the inner message header.
Finally, we claim Theorem @

Proof: From Lemma we already know P and P
are query equivalent. To see that P and Py, are also query
equivalent, observe that the message payload in a*x repre-
senting a_ans is always copied and never modified. To see
that Pys;ps is path-restricted (provided P is path-restricted),
proceed by induction on the choice of rendezvous, starting
from the sink. To verify the base case, use the assumption
that the input program is already path restricted. []

Path-Restricting Subprocedure is a generalization of link-
restricted rewrites first proposed in [24] from the one-hop/non-
recursive rules to multi-hop networks/recursive rules. We shall
reuse it in the forthcoming rewrites.

IV. ADDITIONAL REWRITES

This section discusses two rewrites that address proxy
placement, and both extend naturally from MiM Rewrite.
Interestingly, in networking, proxy placement and rendezvous
selection are typically not seen as related, but the connection is
clear through the lens of query optimization. This section also
discusses a third rewrite that increases rendezvous flexibility
by enabling off-path redirection.

A. Session Proxies

Many protocols and services maintain per-conversation ses-
sion state at endpoints. For example, web cookies allow a
web service to bind client requests to corresponding session
state, i.e.,, data about the client connection kept on the server
(stateful server). However, if a server gets many simultaneous
connections and exhausts its own storage for session state, it
may prefer to offload the state to proxies (proxied server) or
even to shuttle the session state back and forth with the client
in each packet (stateless server)E] This conversion of session
state is applicable in many settings [34], [35]. We next show
how Session Rewrite can automatically and fluidly reassign

4Protocols that eschew endpoint state for packet state are often termed
stateless even though state exists in the packets.

1% Sink: Send request message to Server.

2 message (@Client, Client , Server , Request) :—

3 interest (@Client, Server,Request) .

4

5% Server: Upon request, transition session state
6 session (@Server, Client ,NewData) :—

7 message (@Server, Client , Server, Request) ,

s session(@Server, Client ,Data),

9 transition (@Server,Data, Request,NewData) .
10

1% ... and respond to Client.

12 message (@Server, Server , Client ,NewData) :—

13 message (@Server, Client , Server ,Request) ,

14 session (@Server, Client ,NewData) .

15

16% Client: Consume response.

17 consume (@Client,Data) :—

18 message (@Client, Server, Client ,Data) ,

19 interest(@Client, Server,Data).

20

21% Query: What is consumed?

22 consume (@Client,Data)?

23

24 % Message forwarding used by both Server and Client.
25 message (@Next, Sender, Receiver , Payload) :—

26 message(@Current, Sender, Receiver , Payload) ,
27 nexthop (@Current, Sender, Next) .

Listing 4. Original SessionProg, client-server roundtrip with session
state. sesston initialization rules not shown.

session
consume

msg A

. consume
msg’ msg 2
L SN
msg msg* l, session
L NG PR 11 S

client server client client proxy server client

(a) Original stateful server (b) Session state at proxy

Fig. 4. SessionProg network derivation graphs. The “loop” in [a] is
stretched across the network to prozy in b

session state to endhosts, packets, or proxies by simply filling
in entries in a rendezvous relation.

Listing [] shows a client-request/server-response sequence
with server responses based on session state. The Client
packages interest as request message tuples and sends these
requests toward the Server (lines [2}{3). Upon receipt, Server
modifies Data in its local session according to the request
and EDB relation transition, a relation capturing the protocol
state machineE] It then returns a response message to the
Client (lines[6}{I4). It is possible for Client to make followup
requests by expressing more interest tuples, with responses
dependent upon the state of session. Figure shows the
abstract network derivation graph corresponding to Listing [
(transition at Server is not shown). Note that the queried
relation in this case is actually at the client; we are interested
in the client’s status after a roundtrip communication with the
server. Before discussing Session Rewrite, we first define an
extension to the class of LR programs.

Definition 4.1: Two IDB relations ¢ and b are linearly
mutually recursive (LMR) if in the rule-goal graph, there
is exactly one distinct path from a to itself that visits b one
time and a zero times.

Definition 4.2: A program is a linearly recursive program
with linear mutual recursion (LR-LMR program) if it is a
LR program except for some relations that are LMR.

LR-LMR programs exhibit “linearity” equivalent to linearly

SModification occurs via insertion of tuples with existing primary keys [13].

recursive programs. The rule-goal graph path from a (b) to b
(a) is linear (without branches), just as is the rule-goal graph
path from a to a for LR relation a in a LR program. Our
primary interest in LR-LMR programs for session state is
when LMR relations a and b both participate in their own
LR rules, and one (say b) has LR rules for which the location
specifier does not change. In such a scenario, a is analogous to
messages, and b is analogous to session state. It is this pattern
upon which Session Rewrite operates. For the example in
Listing [4] message and session map to a and b respectively.

Suppose that the queried relation is c. The main idea of
Session Rewrite is to use MiM Rewrite as a subprocedure,
and it is shown in Figure fb] We let message act as the
queried relation, and apply MiM Rewrite to session as if
it participated in answer rules for message. First, session
generates bindings at Server which get pushed down into
message’s recursion until some rendezvous r (the proxy).
message’s recursion also arrives at r, and MiM Rewrite
operates as before, returning message_ans to Server. When
this occurs, answer rules may derive new message tuples.
Because message and session are LMR, this in turn may
derive new session tuples. The new session tuples generate
new bindings, and are resent from Server back to r to seek
additional joins with message. The net effect is that r acts as
proxy for Server’s session.

Proxy selection is determined by filling in the rendezvous
relation. Moreover, deciding among stateless, stateful and
state proxy protocol variants is as straightforward as setting
rendezvous to Client, Server or intermediate locations.
The fully rewritten program after applying path-restrictions
is shown in Appendix [A] We generalize our example via the
following corollary to Theorem

Corollary 4.3: Session Rewrite is query preserving and
path-restricted for LR-LMR programs.

Proof Sketch: LMR relations are essentially LR relations
with aliasing. Therefore, using MiM Rewrite as a subprocedure
is query preserving for “queried relation” a by Theorem
This means that if either a or b participates in answer rules
for actual queried relation c¢, c is unaffected. If they do not
participate, then query preservation is trivially true.

There are two additional features of typical session state
that we also consider. First, session state changes are often
based on a combination of input messages and protocol state
machines. The example above encodes the state machine as
the transition relation. If the new session state is highly
dependent upon the data in the input message (e.g., Request
is a very selective join key in lines [6}{6), then generating all
possible bindings may result in a superset of message that is
very large. To mitigate this issue, we can choose to let some
join key variables remain “free”, even though their values are
known. Choosing to exclude some join key bindings does not
effect Corollary as long as Constraint |1|is still observed.

Second, under some circumstances, we have the opportunity
to reduce messages by piggybacking. For example, consider a
scenario in which proxy also was on the path from server to
client, in addition to being on the path from client to server,

as in Figure 5] Then, rather than sending message* backward
from server to proxy, we could piggyback messagex onto
message traveling from server to client, and drop off the
messagex portion at proxy. This is possible provided the
following constraint.

Constraint 4 (Proxy Revisited): The proxy must be visited
on both the inbound path to and outbound path from the
server.

This implies that any subsequent message that goes from
client to server will see the latest sesston at proxy, thereby

preserving Corollary

B. Routing Proxies

Just as servers can become overloaded with too much
session state, routers can likewise exceed their capacity for
holding routing state. One solution is to let packets and proxies
carry the routing state instead [21]]. Our final rewrite, Routing
Rewrite, exposes these options: it can reassign routing state to
packets, proxies or some mixture of the two. Once again, this
is done by filling in the rendezvous relation.

Specifically, we apply Routing Rewrite to distance vector
routing (DVR) and source routing (SR) which differ mainly
in whether routing state resides in routers or packets. The
prototypical message routing rule we have encountered thus
far is line[7] of BasicProg (Listing[I). This resembles DVR,
in that nodes send message tuples to seek joins with nexthop.
Conversely, SR sends nexthop tuples to seek joins with
message. Routing Rewrite transforms a DVR-style program
to SR, or some hybrid of DVR and SR.

Like Session Rewrite, Routing Rewrite also uses MiM
Rewrite as a subprocedure, acting as if LR relation a were
the queried relation. Unlike Session Rewrite, it acts as if a’s
LR rules (such as Rq) were answer rules. This means the
base relations generate initial bindings, and the rest proceeds
as described for MiM Rewrite. For Listing [I| where message
is the LR relation, this means nexthop generates bindings and
sends these backward according to the nexthop relation.

With the base relations generating bindings, we can think
of the base relation (which defines the network) as traversing
itself. This effectively mirrors what happens in networking
when data about the network (such as local connectivity
information) is sent on the network. The following result
follows the same proof by induction pattern as Theorem 3.3

Corollary 4.4: Routing Rewrite is query preserving and
path-restricted for LR programs.

As with the previous rewrites, Decision Making can select
among alternatives simply by filling in the rendezvous table
after Routing Rewrite has been applied to the source program.
To keep DVR, we set rendezvous to the original sink. To
convert to SR, we set rendezvous to the source. To have
some mixture of DVR and SR, we set rendezvous to an
intermediate location. The final result of Routing Rewrite on
BasicProg, including path restrictions, is shown in Ap-

pendix [A]

ses:lon t’:irlSItIOn :essnon consume
msg ¥ msg msg* t msg A

R a**
a Len a?ans
a / ‘proxy’ a*

redirector sink

client proxy server proxy client source

Fig. 5. Session Rewrite with piggy- Fig. 6.
backing of session on message. proxy.

Redirector points to off-path

C. Generalized Redirection

Thus far, our rewrites have relied solely upon on-path
rendezvous and proxies. We have also extended MiM Rewrite
and Session Rewrite to support redirection, a frequently used
networking tool [36]. Redirection opens up possibilities for
alternate paths.

With the generalized redirection modification, MiM Rewrite
and Session Rewrite are able to expose every network location
as a potential rendezvous and proxy candidate. The modifica-
tion introduces an additional three rules for each recursive
relation, and a new redirect(redirector, rendezvous) rela-
tion in the EDB. Its two attribute lists represent the (on-path)
redirector, and the (off-path) rendezvous. The idea is that when
any message headers of LR relation a or inverted relation ax
encounter a matching message header redirector, the message
body is combined with a new message header rendezvous.
This leads to a and ax both being redirected to the off-path
proxy, as in Figure [6] The relations redirect and rendezvous
are now both available for the optimizer to populate. Off-path
proxies require additional path-restrictions for correctness.

Constraint 5 (Off-path Proxy): A path must exist from the
redirector to proxy and from proxy to sink.

As with many of the other constraints, checks on Con-
straint [5] require data and rule-dependent analysis. Decision
Making choose redirectors and proxies that observe this con-
straint.

V. DECISION MAKING

The preceding section covered the application of three
rewrites to netlog programs to expand their possible ren-
dezvous and proxy choices. We now turn to Decision Making:
the process of searching for the optimal strategy.

Inputs of Decision Making are network link costs and traffic
profiles. Both the networking and database communities have
extensively studied the problem of gathering such network
workload and resource information [3[], [[15], [42]]. In the
context of net 1og, input data are all represented as (synopses
over) relations. This information can be monitored regularly,
and if sufficiently different, can trigger re-optimization.

Outputs of Decision Making are tuples for the relations
rendezvous and redirect initialized by Rewriting. We im-
plemented exhaustive search algorithms for each rewrite.
For MiM Rewrite, we also adapted a greedy heuristic from
the CDN literature [32]. In principle, our rewrite-specific
optimizations are replaceable by a general purpose dy-
namic programming optimizer, akin to those used widely by
databases [33]].

12000
10000
8000
6000
4000
2000

12000
10000 | 7
8000
6000

2000

1 2 3 4 5 1 2 3 4 5

Workload skew (Zipf parameter)

Aggregate request delay
(seconds)
Aggregate request delay
(seconds)

»

o
o
3

Workload skew (Zipf parameter)

——Optimized -+ Random Original ——Optimized ------ Random Original

(a) Concentrated storage (b) Dispersed storage

Fig. 7. CDN rendezvous selection strategy performance under varying storage
distributions and workloads.

A benefit of the netopt architecture is that the analysis
and rewrite to identify the optimization opportunity is distinct
from the mechanics of optimization. We have not focused on
designing a better search algorithm for any specific scenario.
Rather, we adopt an extensible framework which allows for
the automated application of specific algorithms as appro-
priate [[13]], [28], [18]]. This permits users to drop-in custom
optimizers that best suite the task at hand.

VI. PROTOTYPE EVALUATION

We built a prototype netopt system that performs Analy-
sis, Rewriting and Decision Making. The implementation uses
Evita Raced, an extensible database optimizer [13|], and the
resulting programs run on declarative networking platforms P2
and DSN [25]], [11]. Our prototype still requires some user-
assistance to link together the three steps.

We evaluate the netopt prototype in four scenarios in-
volving the two settings of CDNs and WSNs discussed in Sec-
tion E} We test against Emulab and Motelab testbeds [14],
[30] for the CDN and WSN settings respectively, as well as in
simulation. The objective of our experiments is to measure the
change in application performance over original, unoptimized
programs that do not adapt to workload and resource changes.
The metric to quantify performance depends upon the setting.
For CDNSs, we consider content access delay while for WSNs,
we consider energy usage.

In both scenarios, we see optimized programs outperforming
unoptimized original programs. In the CDN setting, delay
is decreased by as much as three orders of magnitude. In
the WSN setting, radio operations which dominate energy
consumption, are decreased by as much as one order of
magnitude. In both settings, net opt effectively identifies and
executes better strategies.

As with any optimizer study, the main point of our experi-
ments is not to “invent” novel query plans (or in our case,
protocol variants) that outperform well-known implementa-
tions from the literature. Rather, we wish to demonstrate that
an optimizer can automatically choose variants that are well-
suited to current input parameters, providing significant wins
over well-known protocol variants that are not well-suited to
the parameters.

A. CDN rendezvous selection

The goal of the CDN is to decrease access time of client re-
quests while working within storage and topology constraints.
Two popular CDNs, Akamai and Limelight, differ significantly
in their storage layout [4], [23]. Akamai distributes content
to tens of thousands of servers around the Internet, whereas
Limelight maintains a few concentrated datacenters. We sought
to model both during testing.

We tested by simulation and on Emulab. For simulation, we
randomly generated a 200 node Internet Autonomous System
(AS) topology with BRITE [27]. Some nodes are selected as
content producers and others as content consumers. Producers
and consumers are placed at nodes of low edge degree.

Content consisted of 150 unique items. Each consumer
expressed a weighted demand for each content item. This
query workload was modeled as a Zipfian distribution [17].
To experiment against varying workloads, we varied the skew
of the Zipfian distribution.

Each node was also assigned an amount of available storage.
To experiment against varying resources, we used two schemes
for storage assignment, mimicking Akamai and Limelight con-
figurations. In the first Akamai-like scheme, available storage
was spread evenly among nodes. In the second Limelight-like
scheme, available storage was highly concentrated at a few
nodes in the network. Well-connected nodes were favored to
receive available storage. The amount of aggregate storage was
the same in both configurations.

We experimented with four CDN assignment schemes. The
first, the Original scheme, consists of BasicProgin ListingE]
in which all consumer requests go directly to the content
producers; available CDN storage is not utilized.

The remaining three schemes all use the rewritten
BasicProg produced by MiM Rewrite in Listing 3} They
differed in the Decision Making scheme employed, and the
extent to which the schemes use workload and resource
information in planning the CDN. From the standpoint of
the rewritten BasicProg, each scheme fed in its own
rendezvous and redirection relation.

The second, Random scheme, consisted of randomly assign-
ing content items to available storage. Here, resources are fully
utilized, but the workload is not considered during assignment.
The third, Optimized scheme, consisted of assigning content
items to available storage such that consumer requests are
serviced with lowest cost. The scheme used a greedy heuristic
(by order of demand weight) for this assignment adapted from
the literature since the optimal assignment is known to be
in NP-Complete [32]. The fourth, the Exhaustive scheme,
implemented the exponential version of the assignment algo-
rithm. While the running time of Exhaustive was prohibitive
on our test networks, we found that in the small settings,
Exhaustive made assignments that were 8-12% better than
those of Optimized.

Figure [/| shows the results of Original, Random and Op-
timized schemes under varying workloads and resources.
Under the Concentrated storage configuration in Figure
Random and Optimized performed 1.3-1.4x and 1.5-1.6x

10

120
100
80
60
40
20

1000
800
600
400
200

Data transferred (MBs)

Memory consumed (MBs)
°

250

500

1000

Schemes under varying no. of requests Schemes under varying no. of requests

(a) Memory allocation (b) Data transfer

HMProxy @0 HEProxy @1 HProxy@2 OProxy@3 DOProxy @4 [OStateless

Fig. 8. Server session state allocation strategy performance.

better than Original respectively as the workload varies from
slightly skewed to highly skewed. Under the Dispersed storage
configuration in Figure Random and Optimized perform
0.95-1.2x and 2.3-24.4x better than Original respectively.
Optimized is able to outperform Original considerably under
Dispersed because it is able to assign content items to edge
storage sites where there is also heavy consumer demand.
Random can even underperform Original with Dispersed since
poor selections can be worse than doing nothing. On Concen-
trated, Optimized and Random start to converge since there are
relatively fewer places to choose from. In all cases, increased
skew leads to lower aggregate delay because there are fewer
requests that access poorly placed content in highly skewed
distributions.

We also ran the same experiments on modest ten node
Emulab networks generated by BRITE. Random and Opti-
mized outperformed Original by 1.5-1.9x and 2.8-3.3x with
Concentrated, and by 1.2-2.3x 6.4-480x with Dispersed. The
trends remained the same so the graphs are omitted.

These results indicate that MiM Rewrite can automatically
find lower cost rendezvous points given original source pro-
gram, consumer workload and network resources.

B. Server session state proxy selection

We next test the Session Rewrite. We use a five node linear
Emulab network with node four making requests to node zero
via nodes three, two and one. The workload is varied from 100
to 1000 requests, with each request requiring 1Kb of session
state. Two storage configurations are used, Even and Skew. In
Even, each node is allotted session storage of 15Mb, which is
meant to represent prime main memory. In Skew, Node One
is allotted 100MB for session state, whereas the other nodes
are allotted 15MB. The Skew configuration models a scenario
in which a resource rich proxy is located close to the server.

The optimization objective is to minimize the total data
transfer while serving all requests. Three schemes are com-
pared. In the first, Stateful, all session state is allocated at
Node 0, regardless of whether the node storage constraint is
surpassed. This corresponds to our original SessionProg
of Listing |4 In the second scheme, Stateless, all session state
is packaged in request and response messages. A minimal
amount of storage is allocated at Node O to service these
stateless requests. In the third scheme, Optimized, session state

11

is assigned to proxies so as to minimize the total data transfer.
This scheme tends to use as much storage available at proxies
closer to the server, Node 0, before using storage further
from the server. The Optimized scheme runs the rewritten
SessionProg shown in Listing @]

Figure [§] shows the memory allocation and data transfer of
each scheme under varying numbers of requests and storage
configurations. As expected, Stateless maintains an almost
negligible amount of storage usage across all nodes regardless
of the number of requests, while its amount of data transfer
grows very rapidly since it must package all of its request
state in packets. Conversely, as seen in Figure [8a storage
usage under Stateful at Node O scales with the number of
requests, well surpassing the 15MB constraint under 250 or
more requests. On the other hand, the amount of data transfer
with Stateful remains low even when there are many requests.
Neither Stateful nor Stateless take advantage of the potential
to use other nodes as proxies in the network, and therefore do
not act differently when storage configurations change.

The Optimized scheme is able to take into account varying
storage configurations. In Figure the “opt-even” and “opt-
skew” labels show the resulting memory allocation on each
node when the Session Rewrite optimizes against Even and
Skew configurations respectively. At 100 requests when the
storage limit is not yet reached, Optimized behaves just like
Stateful. At higher request counts, the constraint is respected
by the Optimized scheme, and storage is allocated from
neighboring proxies rather than at node zero. Each segment
of the stacked bars in Figure [8b] indicates the amount of data
transfer as a result of session state held at the corresponding
proxy. For a given request workload, the optimized version
transfers less data than Stateless, but more data than Stateful
(while respecting storage constraints). This hybrid of stateless
and stateful is a compromise when storage constraints are
present. Furthermore, the optimizer is able take advantage of
the resource-rich proxy in the Skew configuration, and transfer
lower amounts of data by using Node One more when storage
limits become an issue at higher request counts.

The use of proxies does come at a cost: there is a small
penalty of two bytes per session that is incurred for both
storage and in each packet transfer. These two bytes are needed
for the join parameters which relink a request with its session
state at the proxy.

The “Stateless” and “Proxy @ 4” legend labels in Figure [8b|
both indicate session state stored at Node Four. The “Proxy
@4” label indicates session state that is stored as part of
the 15MB allotted storage visible to the optimizer, whereas
the “Stateless” label applies to session state stored in storage
separate from the 15MB allotment invisible to the optimizer
e.g., in a separate user processes. We include this comparison
because it is not uncommon for “stateless services” to delegate
state management to other processes [34], 1] Optimized Even
engages this option when there are 1000 requests in order to
avoid exceeding storage constraints.

The results indicate that the rewritten SessionProg can
have its server session state automatically assigned to proxies

Packets Sent
o ®
S 3
s s

IS
<)
S

N

01 2 3 45 6 7 8 9 1011

Packets sent

HHHD

stateless| opt |stateless

=

N
s}
5]

opt |stateless| opt

o

w2 ‘ w3 ‘

Workload

o
Routing table size (no. entries)

Dinteractive shell Osnmp B debugger Mreprogrammer — — Distvec Srert Caching ——Optimized

Fig. 9. Packets sent by sensornet
session state strategies.

Fig. 10. Sensornet routing state
placement strategy performance.

and packets effectively by an optimizer, lowering overall
data transfer versus stateless variants. At the same time, the
optimizer can automatically respect storage constraints, unlike
the original stateful SessionProg.

C. Sensornet session state proxy selection

Next, we measure the effectiveness of Session Rewrite on
WSN programs. The optimizer attempts to minimize packets
sent and received, since radio operations are often the most
power-intensive activity on sensornets.

Four traditionally stateful services that have been imple-
mented on sensornets were chosen from the literature: a
network Reprogrammer, a network Debugger, an SNMP-like
service, and an Interactive Shell service [20], [43]], [38]], [9].
For each service, we estimated the state required as the ser-
vice’s RAM footprint as reported in the literature. These were
0.15Kb, 1Kb, 1.2Kb and 2.2Kb for Reprogrammer, Debugger,
SNMP, and Interactive Shell respectively. For testing purposes,
we ran placeholder programs that demanded the same amount
of session state as the original services.

These services are generally auxiliary to the main sensornet
application. Therefore, the typical usage model is that it is
highly desirable, though not critical, to deploy these services
alongside the main application. We worked with two scenarios:
the first in which the main application consumed 8Kb, and the
second in which the shell consumed 5Kb, both of which we
estimated from prior experience with sensornet applications.
Given the mote platform we were using, this left 2Kb and 5Kb
of main memory for our desired services [31]].

We deployed Stateful, Stateless and Optimized programs
on the Motelab testbed. The Stateful program consisted of the
session state of all four services plus the main application.
The Stateless program consisted of the main application, but
no session state. Rather, state is transported in packets, whose
data payload is a typical 20Kb in size [1]. The Optimized
program consisted of the main application plus a portion of
each service’s session state as allocated by the optimizer, with
the rest pushed into packets. In each case, requests are made
from a base station node across five hops to a node in the
testbed that runs either Stateful, Stateless or Optimized.

The workload consisted of varying the distribution of calls
made to each of the four services. We considered three syn-
thetic workloads: W1, an evenly distributed workload; W2, a
network monitoring workload in which SNMP and Interactive
Shell were called two and three times more; and W3, a

12

debugging workload in which Debugger and Reprogrammer
were called two and ten times more.

The packets sent for the 2Kb storage limit scenario are
shown in Figures [9] The number of packets sent for Optimal
are 1.7-12.6x lower than that for Stateless, with the difference
increasing as the workload becomes more skewed in W2 and
W3 (Figure [9). Optimized allocates the most frequently called
services’ session state to keep on the node, thus lowering the
amount of packet state necessary. Stateless, on the other hand,
uses very little of the available memory, and hence is required
to send more packets. It is not possible to test the packets sent
for Stateful since the session state exceeds availability.

At the 5Kb storage limit, each of the four services has
enough memory for its entire session state. Therefore, Stateful
and Optimized perform similarly in packets sent and storage
allocated. Stateless, which does not change operationally with
an increased storage limit, sends the same high number of
packets as before. The graph is omitted for lack of space.

D. Sensornet routing state placement

Lastly, we look at routing state placement in the sensornet,
and measure the ability of Routing Rewrite and optimization to
choose routing state proxies. We chose a Motelab network of
four hops starting from the base station. Storage is constrained
such that nodes only have space for a limited number of
routing entries, varying from three to eleven. Typical sensornet
routing services contain four entries [[1]]. The base station node
initiated sends to nine destinations located four hops away in
the network according to a Zipfian distribution.

Figures |10 demonstrate the results of Source Routing (SR),
Distance Vector Routing (DVR), Caching, and Optimized. SR
is essentially stateless, and is able to route with very few
available routing entries, albeit at more packets sent. On the
other hand, DVR only routes when it has enough space for all
nine destinations (such that semantics were equal). Caching
uses the hybrid approach of SR as the default case and residual
space for DVR routing entries as requests arrive. It tends to
have very high variance in packets sent due to variability of
which request arrives first for caching. This variability would
decrease were Caching to allow for cache eviction. Optimized
considers the workload such that the hotter destinations receive
higher priority as DVR entries. As a result, it tends to achieve
the lowest number of packets sent at all routing table sizes.

We have modeled each source route segment to correspond
to one packet when in SR mode. This is a conservative
assumption, and partially based on the inability of Session
Rewrite and the DSN runtime to bundle multiple tuples into
a single packet. Were segments to be bundled, the difference
between packets sent for SR and DVR would decrease pro-
portionally to the number of segments fitting in one packet.

VII. DISCUSSION

We chose to focus on rendezvous and proxy placement for a
number of reasons: (a) they are fundamental to multiple “lay-
ers” of both networks and distributed systems, (b) decisions
on these two fronts form key differentiators between many

implementation alternatives in networks, and (c) declarative
networking bring these issues into sharper focus than they
had been in other programming models. In this section we
mention several other scenarios to which our results are readily
applicable, and ways in which netopt can interoperate with
legacy network implementations.

A. Other Application Scenarios

Packet filtering is used to eliminate unwanted traffic based
on rules about addressing, content, and volume. If a recipient
node x wishes to ensure that packets are filtered on its behalf,
it can either (a) receive all packets addressed to it, and filter
them before processing them further (filter at receiver), (b)
force all senders to evaluate packet filters (filter at sender),
or (c) appoint a proxy or proxies in the network to intercept
traffic between and senders and the recipient (filter at proxy).
The choices amount to selecting a node or nodes where
filtering rules and the messages destined for x will rendezvous;
these nodes must maintain a copy of the packet filer rules
for x (and must be trusted by x by some means, typically
cryptographically).

Work on providing scalable Internet quality of service has
also investigated using stateless protocols and proxies in place
of stateful ones [35]]. In these scenarios, a primary goal is to
permit the large majority of core Internet routers to remain
stateless while pushing quality of service state into packets
and proxies at edge routers. These demonstrated that a variety
of objectives such as per flow bandwidth fairness, admission
control, and route pinning could all be achieved while shifting
router state to packet state.

B. Interoperability

Our focus is on cooperative scenarios where individual
nodes are non-adversarial. Often, this corresponds to situa-
tions in which the nodes of the network fall under a single
administrative domain, as is typically the case for CDN and
WSN deployments. In cooperative scenarios, individual nodes
are not expected to deviate from global plans installed by
a network optimizer. Therefore, interoperability may be an
initial concern for netopt. We categorize interoperability
in terms of packet, execution and state, and argue that the
deductive database programming model is not a hindrance to
interoperability in these areas. In fact, the model may even
ease interoperability by natively supporting proxies, a common
interop mechanism.

In terms of packet interoperability, database schema defini-
tions can serve the role of packet format definitions. Schemas
specify field layouts and data types for relations, and since
packets are tuples in the netlog programming model, the
application is straightforward.

In terms of execution interoperability, it is true that a
netlog program and traditional program that do not under-
stand each other’s protocols will not be able to interoperate.
However, this is no different than the current incompatibility
between TCP and UDP, or between any other two sets of
protocols not designed with the same properties in mind.

13

A legitimate concern is state interoperability. That is, the
optimization process changes which nodes carry what state
such that an outside party wishing to interoperate may receive
incomplete or unexpected protocol state. This is an issue that
manually optimized variants such as Trickles TCP face when
interfacing with originals such as regular TCP. On this point,
the natural solution is to bridge the two incompatible protocols
via proxy. Here, netopt can start to offer some guidance.

The netopt programming model is capable of exposing
programming constraints to the optimizer. With additional
programmer hints, the optimizer can force certain relations to
remain stateful. This general idea of not only optimally placing
proxies, but also of forcing stateful proxies at certain points in
the network is already native to netopt. This starts to offer
a path for incremental deployment, very much following the
spirit of manually engineered solutions to interoperability: use
of proxies [40].

VIII. RELATED WORK
Related work stems from both networking and databases.

A. Network Protocol Optimization

Prior work in network protocol optimization generally fo-
cuses on packet processing performance on the single node,
usually by adapting techniques from general compiler opti-
mization [10], [6], [19], [29], [22]]. On the other hand, our
focus is automated multi-node protocol optimization.

Protocol compilers take high-level protocol specifications
and generate protocol implementations. Often, there is a need
to optimize protocol implementations built in this manner
to achieve comparable performance to manually engineered
solutions. Two optimizers in this vein are HIPPCO for the
Esterel language [10] and the Promel++ optimizer for the
Promela++ language [6]. Both employ the use of techniques to
increase single-node packet processing performance: inlining,
outlining, code cloning, rearranging branches to increase cache
hit rates, and IPC to function call conversion. These same
traditional compiler techniques are also readily applicable
to protocols programmed in systems languages like C and
C++ [29], [22].

While the prior work on protocol optimization tackles a
different optimization problem than the ones addressed in this
work, they also suggest the need for workload knowledge to
accurately optimize for the common case [29]], [10], [6]. In
this earlier work, protocol writers annotated their code with
workload-specific knowledge (such as branch predictions),
whereas in this work, workload knowledge is based upon
database-driven statistics gathering.

Several efforts have attempted to enable greater network
flexibility. Active networks research moved aggressively to
introduce greater programmability into networks [41]. Our
work introduces a limited amount of network reprogramming,
driven by optimizer decisions rather than node-level code
injections. Like our work, i3 identifies rendezvous and proxy
selection as fundamental to network design, and provides great
flexibility for their selection [36]. Unlike our work, i3 does not
aim to optimize their selection from program source.

B. Database Query Optimization

Several of the specific network optimization mechanisms
introduced in this work can be viewed as generalizations of
query processing and optimization mechanisms familiar to
the database community. Changing rendezvous is conceptually
very similar to reordering database join operations. Therefore,
as we explore rendezvous, join reordering underlies many of
the mechanisms employed in this work. System R popularized
the ideas of optimizing join ordering with respect to disk 10O,
CPU, and table statistics [33]]. The current work fundamentally
adopts the same optimization framework, extended to the
networked setting. This is not the first attempt to do so [37].
We significantly broaden the scope of what can be reordered,
and thus what reordering is capable of. Specifically, this is
enabled by treating the traditionally distinct “application data”
and “networking data” all in the same relational context.

In the past, deductive database query optimization focused
on combining “push” with “pull” query processing [39]. The
main result here is the Magic Sets algorithm that transforms
programs to take advantage of the benefits of pull processing
while executing in a push context [7]. The work of [26], [24]]
extended this to the networked setting, specifically applying an
entirely pull processing approach to the example of routing as
in Section In contrast, this work suggests that hybrids
between top-down and bottom-up processing offer the best
cost for many practical networking scenarios.

We suspect it is possible to generalize MiM Rewrite to all
recursion, just as algorithms for LR have been subsumed by
the Magic Sets algorithm [39]. However, our experience indi-
cates that LR is the most common, especially in networking.
This also echoes the remarks of [39] for traditional Datalog.

Our work builds upon the results of the P2 project [26],
[25], [24] from which we adopt the declarative networking
approach in whole. Our contribution lies in the resource and
workload-aware network optimizations.

IX. CONCLUSION

As network workloads and resources continue to diversify,
one-size-fits-all network protocols are increasingly infeasible,
while custom solutions require careful crafting for each envi-
ronment. We investigated automatic program analysis, rewrit-
ing and optimization of network protocols along dimensions
of rendezvous and proxy selection. Our study indicates that
under a variety of settings, an informed optimizer can choose
program executions that are much better than that of the
original source program.

REFERENCES

[1]
[2]

Tinyos. http://www.tinyos.net.

S. Abiteboul, R. Hull, and V. Vianu.
Computer Science Press, 1995.

C. Aggarwal and P. Yu. A survey of synopsis construction in data
streams. Data Streams: Models and Algorithms, pages 169-208, 2006.
Akamai. http://www.akamai.com.

T. Anderson, D. Blumenthal, D. Casey, D. Clark, D. Estrin, L. Peterson,
D. Raychaudhuri, J. Rexford, S. Shenker, and J. Wroclawski. Geni:
Conceptual design project execution plan. In GENI Design Document
GDD-06-07, January 2006. http.://www.geni.net/GDD/GDD-06-07.pdf.

Foundations of Databases.
[3]

[4]
[5]

14

[6]
[7]
[8]
[9]

[10]

(11]

[12]

[13]
[14]
[15]

[16]
[17]

(18]

[19]

[20]
[21]
[22]

(23]
[24]

[25]

[26]

(271
[28]
[29]
[30]
[31]
(32]

[33]

A. Basu, J. G. Morrisett, and T. von Eicken. Promela++: A language
for constructing correct and efficient protocols. In INFOCOM, 1998.
C. Beeri and R. Ramakrishnan. On the power of magic. In PODS, 1987.
D. Bernstein. Syn cookies. http://cr.yp.to/syncookies.html.

Q. Cao, T. Abdelzaher, J. Stankovic, and T. He. An interactive unix
shell for low-end sensor nodes with liteos (demo). In SENSYS, 2007.
C. Castelluccia, W. Dabbous, and S. O’Malley. Generating efficient
protocol code from an abstract specification. /IEEE/ACM Trans. Netw.,
5(4):514-524, 1997.

D. C. Chu, L. Popa, A. Tavakoli, J. M. Hellerstein, P. Levis, S. Shenker,
and I. Stoica. The design and implementation of a declarative sensor
network system. In SENSYS, Nov 2007.

F. A. Chudak and D. P. Williamson. Improved approximation algorithms
for capacitated facility location problems. Lec. Notes in Comp. Sci.,
1610, 1999.

T. Condie, D. Chu, J. Hellerstein, and P. Maniatis.
metacompilation for declarative networks. In VLDB, 2008.
E. Eide, L. Stoller, and J. Lepreau. An experimentation workbench for
replayable networking research. In NSDI, 2007.

C. Estan, S. Savage, and G. Varghese. Automatically inferring patterns
of resource consumption in network traffic. In SIGCOMM, 2003.

M. Franklin and S. Zdonik. Data in your face. In SIGMOD, 1998.

M. J. Freedman, E. Freudenthal, and D. Mazieres. Democratizing
content publication with coral. In NSDI, 2004.

G. Graefe and W. J. McKenna. The volcano optimizer generator:
Extensibility and efficient search. In ICDE, 1993.

D. Hernek and D. P. Anderson. Efficient automated protocol im-
plementation using rtag. Technical Report UCB/CSD-89-526, EECS
Department, University of California, Berkeley, Aug 1989.

J. W. Hui and D. Culler. The dynamic behavior of a data dissemination
protocol for network programming at scale. In SENSYS, 2004.

D. B. Johnson and D. A. Maltz. Dynamic source routing in ad hoc
wireless networks. In Mobile Computing, volume 353. 1996.

E. Kohler, R. Morris, and B. Chen. Programming language optimizations
for modular router configurations. In ASPLOS-X, 2002.

Limelight. http://www.limelightnetworks.com.

B. T. Loo, T. Condie, M. Garofalakis, D. E. Gay, J. M. Hellerstein,
P. Maniatis, R. Ramakrishnan, T. Roscoe, and 1. Stoica. Declarative
networking with distributed recursive query processing. In SIGMOD,
2006.

B. T. Loo, T. Condie, J. M. Hellerstein, P. Maniatis, T. Roscoe, and
I. Stoica. Implementing declarative overlays. In SOSP, 2005.

B. T. Loo, J. M. Hellerstein, I. Stoica, and R. Ramakrishnan. Declarative
routing: Extensible routing with declarative queries. In SIGCOMM,
2005.

A. Medina, A. Lakhina, I. Matta, and J. Byers. Brite: An approach to
universal topology generation. In MASCOTS, 2001.

G. Mitchell, U. Dayal, and S. B. Zdonik. Control of an extensible query
optimizer: A planning-based approach. In VLDB, 1993.

D. Mosberger, L. L. Peterson, P. G. Bridges, and S. O’Malley. Analysis
of techniques to improve protocol processing latency. In SIGCOMM,
1996.

Motelab. http://motelab.eecs.harvard.edu.

J. Polastre, R. Szewczyk, and D. Culler. Telos: enabling ultra-low power
wireless research. In IPSN, 2005.

L. Qiu, V. N. Padmanabhan, and G. M. Voelker. On the placement of
web server replicas. In INFOCOM, 2001.

P. G. Selinger, M. M. Astrahan, D. D. Chamberlin, R. A. Lorie, and
T. G. Price. Access path selection in a relational database management
system. In SIGMOD, 1979.

A. Shieh, A. Myers, and E. G. Sirer. Trickles: A stateless network stack
for improved scalability, resilience and flexibility. In NSDI, 2005.

1. Stoica. Stateless Core: A Scalable Approach for Quality of Service in
the Internet. PhD thesis, Carnegie Mellon University, 2000.

I. Stoica, D. Adkins, S. Zhuang, S. Shenker, and S. Surana. Internet
indirection infrastructure. IEEE/ACM Trans. Netw., 2004.

M. Stonebraker, P. M. Aoki, W. Litwin, A. Pfeffer, A. Sah, J. Sidell,
C. Staelin, and A. Yu. Mariposa. VLDB J., 1996.

G. Tolle and D. Culler. Design of an application-cooperative manage-
ment system for wireless sensor networks. 2005.

J. D. Ullman. Principles of Database and Knowledge-Base Systems.
Volume 2, The New Technologies. Computer Science Press, 1989.

Evita raced

[40] M. Walfish, J. Stribling, M. Krohn, H. Balakrishnan, R. Morris, and
S. Shenker. Middleboxes No Longer Considered Harmful. In OSDI,
2004.

[41] D. Wetherall. Active network vision and reality. In SOSP, 1999.

[42] K. Xu, Z.-L. Zhang, and S. Bhattacharyya. Profiling internet backbone
traffic. SIGCOMM CCR, 35(4):169-180, 2005.

[43] J. Yang, M. L. Soffa, L. Selavo, and K. Whitehouse. Clairvoyant: a
comprehensive source-level wsn debugger. In SENSYS, 2007.

APPENDIX

1% Sink: Send request to Proxy.

2 request (@Sink, Sink ,Src) :— interest (@Sink, Src).

3 request (@Next, Sink ,Src) :— request(@Curr, Sink, Src) ,
nexthop (@Curr, Src,Next) , —rendezvous (@Curr, Sink, Src) .

5% Source: Send session to Proxy
6 request*(@Src, Src, Sink ,Data) :— session(@Src, Sink,Data) ,
7 requestx(@Prev, Src, Sink ,Data) :—
session (@Curr, Src, Sink ,Data), nexthop (@Prev, Sink, Curr) ,
—rendezvous (@Curr, Sink, Src) .

9% Proxy: Combine request and session and send to Source

10 requestx*(@Curr, Sink , Src,Data) :— request(@Curr, Sink, Src),
request x(@Curr, Src, Sink , Data) ,
rendezvous (@Curr, Sink, Src) .

11 request x*x(@Next, Sink , Src,Data) :—
requestxx(@Curr, Sink ,Src,Data), nexthop (@Curr, Src, Next) .

13% Source: Upon request, transition session state

14 session (@Src, Sink ,NewData) :—
requestxx(@Src, Sink , Src, Data) ,
transition (@Src, Data,NewData) .

15

16% ... and respond to Sink.

17 message (@Src, Src, Sink ,Data) :—
requestxx(@Src, Sink , Src, Data) .

18 message (@Next, Src, Sink , Data) :—
message (@Curr, Src, Sink , Data), nexthop (@Curr, Sink, Next) .

19

20% Sink: Consume response.

21 consume (@Sink, Data) :— message (@Sink, Src, Sink, Data) ,
interest (@Sink, Src) .

22

23% Query: What is consumed?

24 consume (@Sink, Data) ?

Listing 5. Rewritten SessionProg, a client-server roundtrip with session
state proxy.

1% regular message routing until rendezvous

2 message (@Next, Src, Sink , Data) :—
message (@Curr, Src, Sink , Data) , nexthop (@Curr, Sink, Next) ,
Curr != Sink, —rendezvous(Next) .

3

4% building source route: self—traversal backward

s nexthop «(@Curr, Curr, Sink , Next) :— rendezvousln(@Curr) ,
—rendezvousln (@Next) , nexthop (@Curr, Sink, Next) .

6 nexthop «(@Curr, Curr, Sink ,Next) :— rendezvousln(@Curr) ,
rendezvousin (@Next) , nexthop (@Curr, Sink , Next) ,
nexthop *(Curr,Next, Sink,_) .

7 nexthop «(@Prev, Link1 , Sink, Link2) :—
nexthop (@Prev, Sink, Curr) ,
nexthop *(@Curr, Link1 , Sink, Link2) .

8

9% using source route: self—traversal forward

10 nexthop = (@Next, Link1 , Sink , Link2) :—
nexthop *«(@Curr, Link1 , Sink, Link2), Curr != Sink,
message (@Curr, Src, Sink , Data) , nexthop (@Curr, Sink , Next) .

11 nexthop x*(Next, Link1 , Sink, Link2) :—
nexthop xx*(Curr, Curr,Dest, Next) ,
message (Curr, Src, Dest, Data) ,
nexthop xx*(Curr, Link1, Sink, Link2), Link1 != Curr.

12 message (Next, Src, Sink ,Data) :—
nexthop xx*(Curr, Curr,Dest, Next) ,
message (Curr, Src, Dest, Data) ,
nexthop xx*(Curr, Link1, Sink, Link2), Link1 != Curr,
—nexthop (Curr, Link1, Sink, Link2).

Listing 6. Rewritten Routing Rewrite, a DVR-SR hybrid.

15

	Introduction
	Two Networking Settings
	Content Distribution Networks
	Wireless Sensor Networks

	Example Program and Optimization
	An Initial Program
	Pushing Selections One-Hop
	Pushing Selections into the Network

	MiM Rewrite
	Analysis
	Rewriting
	Example Application of MiM Algorithm
	MiM Rewrite Correctness

	Additional Rewrites
	Session Proxies
	Routing Proxies
	Generalized Redirection

	Decision Making
	Prototype Evaluation
	CDN rendezvous selection
	Server session state proxy selection
	Sensornet session state proxy selection
	Sensornet routing state placement

	Discussion
	Other Application Scenarios
	Interoperability

	Related Work
	Network Protocol Optimization
	Database Query Optimization

	Conclusion
	References
	Appendix

