
Communication-optimal parallel and sequential QR
and LU factorizations

James Demmel
Laura Grigori
Mark Frederick Hoemmen
Julien Langou

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2008-89

http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-89.html

August 4, 2008



Copyright © 2008, by the author(s).
All rights reserved.

 
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.



Communication-optimal parallel and sequential

QR and LU factorizations

James Demmel, Laura Grigori,
Mark Hoemmen, and Julien Langou

August 4, 2008

Abstract

We present parallel and sequential dense QR factorization algorithms
that are both optimal (up to polylogarithmic factors) in the amount of
communication they perform, and just as stable as Householder QR. Our
first algorithm, Tall Skinny QR (TSQR), factors m × n matrices in a
one-dimensional (1-D) block cyclic row layout, and is optimized for m�
n. Our second algorithm, CAQR (Communication-Avoiding QR), factors
general rectangular matrices distributed in a two-dimensional block cyclic
layout. It invokes TSQR for each block column factorization.

The new algorithms are superior in both theory and practice. We
have extended known lower bounds on communication for sequential and
parallel matrix multiplication to provide latency lower bounds, and show
these bounds apply to the LU and QR decompositions. We not only
show that our QR algorithms attain these lower bounds (up to polyloga-
rithmic factors), but that existing LAPACK and ScaLAPACK algorithms
perform asymptotically more communication. We also point out recent
LU algorithms in the literature that attain at least some of these lower
bounds.

Both TSQR and CAQR have asymptotically lower latency cost in the
parallel case, and asymptotically lower latency and bandwidth costs in
the sequential case. In practice, we have implemented parallel TSQR
on several machines, with speedups of up to 6.7× on 16 processors of a
Pentium III cluster, and up to 4× on 32 processors of a BlueGene/L. We
have also implemented sequential TSQR on a laptop for matrices that
do not fit in DRAM, so that slow memory is disk. Our out-of-DRAM
implementation was as little as 2× slower than the predicted runtime as
though DRAM were infinite.

We have also modeled the performance of our parallel CAQR algo-
rithm, yielding predicted speedups over ScaLAPACK’s PDGEQRF of up
to 9.7× on an IBM Power5, up to 22.9× on a model Petascale machine,
and up to 5.3× on a model of the Grid.

1



Contents

1 Introduction 5
1.1 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 List of terms and abbreviations 12

3 Motivation for TSQR 13
3.1 Block iterative methods . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 s-step Krylov methods . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3 Panel factorization in general QR . . . . . . . . . . . . . . . . . . 14

4 TSQR matrix algebra 15
4.1 Parallel TSQR on a binary tree . . . . . . . . . . . . . . . . . . . 15
4.2 Sequential TSQR on a flat tree . . . . . . . . . . . . . . . . . . . 17
4.3 TSQR on general trees . . . . . . . . . . . . . . . . . . . . . . . . 20

5 TSQR as a reduction 22
5.1 Reductions and all-reductions . . . . . . . . . . . . . . . . . . . . 22
5.2 (All-) reduction trees . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.3 TSQR-specific (all-) reduction requirements . . . . . . . . . . . . 23

6 Optimizations for local QR factorizations 24
6.1 Structured QR factorizations . . . . . . . . . . . . . . . . . . . . 24
6.2 BLAS 3 structured Householder QR . . . . . . . . . . . . . . . . 26
6.3 Recursive Householder QR . . . . . . . . . . . . . . . . . . . . . . 27
6.4 Trailing matrix update . . . . . . . . . . . . . . . . . . . . . . . . 28

6.4.1 Trailing matrix update with structured BLAS 3 QR . . . 29

7 Machine model 30
7.1 Parallel machine model . . . . . . . . . . . . . . . . . . . . . . . 30
7.2 Sequential machine model . . . . . . . . . . . . . . . . . . . . . . 31

8 TSQR implementation 32
8.1 Reductions and all-reductions . . . . . . . . . . . . . . . . . . . . 32
8.2 Factorization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

8.2.1 Performance model . . . . . . . . . . . . . . . . . . . . . . 34
8.3 Applying Q or QT to vector(s) . . . . . . . . . . . . . . . . . . . 35

9 Other “tall skinny” QR algorithms 35
9.1 Gram-Schmidt orthogonalization . . . . . . . . . . . . . . . . . . 36

9.1.1 Left- and right-looking . . . . . . . . . . . . . . . . . . . . 36
9.1.2 Reorthogonalization . . . . . . . . . . . . . . . . . . . . . 38
9.1.3 Parallel Gram-Schmidt . . . . . . . . . . . . . . . . . . . . 38
9.1.4 Sequential Gram-Schmidt . . . . . . . . . . . . . . . . . . 39

9.2 CholeskyQR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2



9.3 Householder QR . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
9.3.1 Parallel Householder QR . . . . . . . . . . . . . . . . . . . 42
9.3.2 Sequential Householder QR . . . . . . . . . . . . . . . . . 42

10 Numerical stability of TSQR and other QR factorizations 44

11 Platforms of interest for TSQR experiments and models 46
11.1 A large, but composable tuning space . . . . . . . . . . . . . . . 46
11.2 Platforms of interest . . . . . . . . . . . . . . . . . . . . . . . . . 46

11.2.1 Single-node parallel, and explicitly swapping . . . . . . . 47
11.2.2 Distributed-memory machines . . . . . . . . . . . . . . . . 48

11.3 Pruning the platform space . . . . . . . . . . . . . . . . . . . . . 48
11.4 Platforms for experiments . . . . . . . . . . . . . . . . . . . . . . 49
11.5 Platforms for performance models . . . . . . . . . . . . . . . . . 50

12 TSQR performance results 51
12.1 Scenarios used in experiments . . . . . . . . . . . . . . . . . . . . 51
12.2 Sequential out-of-DRAM tests . . . . . . . . . . . . . . . . . . . . 51

12.2.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
12.2.2 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . 52

12.3 Parallel cluster tests . . . . . . . . . . . . . . . . . . . . . . . . . 52
12.3.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
12.3.2 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . 57

13 Parallel 2-D QR factorization 57
13.1 Choosing b, Pr, and Pc to minimize runtime . . . . . . . . . . . . 63

13.1.1 Ansatz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
13.1.2 Flops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
13.1.3 Number of messages . . . . . . . . . . . . . . . . . . . . . 65
13.1.4 Communication volume . . . . . . . . . . . . . . . . . . . 65
13.1.5 Table of results . . . . . . . . . . . . . . . . . . . . . . . . 65

13.2 Look-ahead approach . . . . . . . . . . . . . . . . . . . . . . . . . 66

14 Sequential 2-D QR factorization 66
14.1 Other Bandwidth Minimizing Sequential QR Algorithms . . . . . 68

15 Comparison of ScaLAPACK’s parallel QR and CAQR 69
15.1 PDGEQRF performance model . . . . . . . . . . . . . . . . . . . 70
15.2 Choosing b, Pr, and Pc to minimize runtime . . . . . . . . . . . . 70

15.2.1 Ansatz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
15.2.2 Flops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
15.2.3 Number of messages . . . . . . . . . . . . . . . . . . . . . 72
15.2.4 Communication volume . . . . . . . . . . . . . . . . . . . 73
15.2.5 Table of results . . . . . . . . . . . . . . . . . . . . . . . . 73

3



16 Parallel CAQR performance estimation 74
16.1 Performance prediction on IBM POWER5 . . . . . . . . . . . . . 75
16.2 Performance prediction on Peta . . . . . . . . . . . . . . . . . . . 76
16.3 Performance prediction on Grid . . . . . . . . . . . . . . . . . . . 80

17 Lower bounds on communication for QR 88
17.1 Matrix Multiplication Lower Bounds . . . . . . . . . . . . . . . . 88
17.2 Lower bounds for TSQR . . . . . . . . . . . . . . . . . . . . . . . 90

17.2.1 Sequential TSQR . . . . . . . . . . . . . . . . . . . . . . . 90
17.2.2 Parallel TSQR . . . . . . . . . . . . . . . . . . . . . . . . 91

17.3 Lower Bounds for CAQR . . . . . . . . . . . . . . . . . . . . . . 91
17.3.1 Sequential CAQR . . . . . . . . . . . . . . . . . . . . . . 94
17.3.2 Parallel CAQR . . . . . . . . . . . . . . . . . . . . . . . . 95

17.4 Lower Bounds on Flop Counts for QR . . . . . . . . . . . . . . . 96

18 Lower bounds on parallelism 98
18.1 Minimum critical path length . . . . . . . . . . . . . . . . . . . . 98
18.2 Householder or Givens QR is P-complete . . . . . . . . . . . . . . 99

19 Extending algorithms and optimality proofs to general archi-
tectures 99

A Structured local Householder QR flop counts 101
A.1 General formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

A.1.1 Factorization . . . . . . . . . . . . . . . . . . . . . . . . . 101
A.1.2 Applying implicit Q or QT factor . . . . . . . . . . . . . . 102

A.2 Special cases of interest . . . . . . . . . . . . . . . . . . . . . . . 103
A.2.1 One block – sequential TSQR . . . . . . . . . . . . . . . . 103
A.2.2 Two blocks – sequential TSQR . . . . . . . . . . . . . . . 103
A.2.3 Two or more blocks – parallel TSQR . . . . . . . . . . . . 105

B Sequential TSQR performance model 106
B.1 Conventions and notation . . . . . . . . . . . . . . . . . . . . . . 106
B.2 Factorization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
B.3 Applying Q or QT . . . . . . . . . . . . . . . . . . . . . . . . . . 107

C Sequential CAQR performance model 108
C.1 Conventions and notation . . . . . . . . . . . . . . . . . . . . . . 108
C.2 Factorization outline . . . . . . . . . . . . . . . . . . . . . . . . . 109
C.3 Choosing P , Pr and Pc to optimize runtime . . . . . . . . . . . . 110

D Parallel TSQR performance model 111
D.1 Conventions and notation . . . . . . . . . . . . . . . . . . . . . . 111
D.2 Factorization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
D.3 Applying Q or QT . . . . . . . . . . . . . . . . . . . . . . . . . . 112

4



E Parallel CAQR performance model 112
E.1 Conventions and notation . . . . . . . . . . . . . . . . . . . . . . 112
E.2 Factorization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

F ScaLAPACK’s out-of-DRAM QR factorization PFDGEQRF 117
F.1 Conventions and notation . . . . . . . . . . . . . . . . . . . . . . 118
F.2 Factorization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

F.2.1 Communication pattern . . . . . . . . . . . . . . . . . . . 119
F.2.2 Fast memory usage . . . . . . . . . . . . . . . . . . . . . . 120
F.2.3 Number of words transferred . . . . . . . . . . . . . . . . 120
F.2.4 Number of slow memory accesses . . . . . . . . . . . . . . 121
F.2.5 Floating-point operations . . . . . . . . . . . . . . . . . . 121
F.2.6 Runtime . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

F.3 Applying QT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
F.3.1 Fast memory usage . . . . . . . . . . . . . . . . . . . . . . 122
F.3.2 Number of words transferred . . . . . . . . . . . . . . . . 123
F.3.3 Number of slow memory accesses . . . . . . . . . . . . . . 123
F.3.4 Floating-point operations . . . . . . . . . . . . . . . . . . 123

G Communication Lower Bounds from Calculus 124
G.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
G.2 Communication lower bounds for one-way communication be-

tween 2 processors . . . . . . . . . . . . . . . . . . . . . . . . . . 125
G.3 Reduction operations . . . . . . . . . . . . . . . . . . . . . . . . . 126
G.4 Extensions to two-way communication . . . . . . . . . . . . . . . 127

1 Introduction

The large and increasing costs of communication motivate redesigning algo-
rithms to avoid communication whenever possible. Communication matters for
both parallel and sequential algorithms. In the parallel case, it refers to messages
between processors, which may be sent over a network or via a shared memory.
In the sequential case, it refers to data movement between different levels of the
memory hierarchy. Many authors have pointed out the exponentially growing
gaps between floating-point arithmetic rate, bandwidth, and latency, for many
different storage devices and networks on modern high-performance computers
(see e.g., Graham et al. [28]).

We present parallel and sequential dense QR factorization algorithms that
are both optimal (sometimes only up to polylogarithmic factors) in the amount
of communication they perform, and just as stable as Householder QR. Some
of the algorithms are novel, and some extend earlier work. The first set of
algorithms, “Tall Skinny QR” (TSQR), are for matrices with many more rows
than columns, and the second set, “Communication-Avoiding QR” (CAQR), are
for general rectangular matrices. The algorithms have significantly lower latency
cost in the parallel case, and significantly lower latency and bandwidth costs

5



in the sequential case, than existing algorithms in LAPACK and ScaLAPACK.
Our algorithms are numerically stable in the same senses as in LAPACK and
ScaLAPACK.

The new algorithms are superior in both theory and practice. We have
extended known lower bounds on communication for sequential and parallel
matrix multiplication (see Hong and Kung [35] and Irony, Toledo, and Tiskin
[34]) to QR decomposition, and shown both that the new algorithms attain
these lower bounds (sometimes only up to polylogarithmic factors), whereas
existing LAPACK and ScaLAPACK algorithms perform asymptotically more
communication. (LAPACK costs more in both latency and bandwidth, and
ScaLAPACK in latency; it turns out that ScaLAPACK already uses optimal
bandwidth.) Operation counts are shown in Tables 1–6, and will be discussed
below in more detail.

In practice, we have implemented parallel TSQR on several machines, with
significant speedups:

• up to 6.7× on 16 processors of a Pentium III cluster, for a 100, 000× 200
matrix; and

• up to 4× on 32 processors of a BlueGene/L, for a 1, 000, 000× 50 matrix.

Some of this speedup is enabled by TSQR being able to use a much better local
QR decomposition than ScaLAPACK can use, such as the recursive variant by
Elmroth and Gustavson (see [22] and the performance results in Section 12). We
have also implemented sequential TSQR on a laptop for matrices that do not fit
in DRAM, so that slow memory is disk. This requires a special implementation
in order to run at all, since virtual memory does not accommodate matrices
of the sizes we tried. By extrapolating runtime from matrices that do fit in
DRAM, we can say that our out-of-DRAM implementation was as little as 2×
slower than the predicted runtime as though DRAM were infinite.

We have also modeled the performance of our parallel CAQR algorithm
(whose actual implementation and measurement is future work), yielding pre-
dicted speedups over ScaLAPACK’s PDGEQRF of up to 9.7× on an IBM Power5,
up to 22.9× on a model Petascale machine, and up to 5.3× on a model of the
Grid. The best speedups occur for the largest number of processors used, and
for matrices that do not fill all of memory, since in this case latency costs domi-
nate. In general, when the largest possible matrices are used, computation costs
dominate the communication costs and improved communication does not help.

Tables 1–6 summarize our performance models for TSQR, CAQR, and ScaLA-
PACK’s sequential and parallel QR factorizations. We omit lower order terms.
In these tables, we make the optimal choice of matrix layout for each algorithm.
In the parallel case, that means choosing the block size b as well as the processor
grid dimensions Pr × Pc in the 2-D block cyclic layout. (See Sections 13.1 and
15.2 for discussion of how to choose these parameters for parallel CAQR resp.
ScaLAPACK.) In case the matrix layout is fixed, Table 16 in Section 13 gives
a general performance model of parallel CAQR and PDGEQRF as a function of

6



the block size b (we assume square b× b blocks) and the processor grid dimen-
sions Pr and Pc. (Table 16 shows that for fixed b, Pr and Pc, the number of
flops and words transferred roughly match, but the number of messages is about
b times lower for CAQR.) In the sequential case, choosing the optimal matrix
layout means choosing the dimensions of the matrix block in fast memory so as
to minimize runtime with respect to the fast memory size W . (See Sections C.3
and F.2 for discussion of how to choose these parameters for sequential CAQR
resp. (Sca)LAPACK QR.) Equation (66) in Appendix C.2 gives the performance
model of sequential CAQR as a function of the dimensions of the matrix block
in fast memory (or rather, as a function of the Pr × Pc block layout, which
uniquely determines the matrix block dimensions).

TSQR PDGEQRF Lower bound

# flops 2mn2

P
+ 2

3
n3 log P 2mn2

P
− 2n3

3P
Θ

“
mn2

P

”
# words n2

2
log P n2

2
log P n2

2
log P

# messages log P 2n log P log P

Table 1: Performance models of parallel TSQR and ScaLAPACK’s parallel QR
factorization PDGEQRF on an m×n matrix with P processors, along with lower
bounds on the number of flops, words, and messages. We assume m/P ≥ n.
Everything (messages, words, and flops) is counted along the critical path. The
boldface part of the table highlights TSQR’s improvement over ScaLAPACK.

Par. CAQR PDGEQRF Lower bound

# flops 2mn2
P

+ 2n3
3

2mn2
P

+ 2n3
3 Θ

„
mn2

P

«
# words

r
mn3

P
log P − 1

4

r
n5
mP

log
“

nP
m

” r
mn3

P
log P − 1

4

r
n5
mP

log
“

nP
m

”
Θ

 r
mn3

P

!
# messages 1

4

q
nP
m

log2
“
mP
n

”
· log

„
P
q

mP
n

«
n
4

log
„

mP5

n

«
log

“
mP
n

”
Θ

„q
nP
m

«

Table 2: Performance models of parallel CAQR and ScaLAPACK’s parallel QR
factorization PDGEQRF on a m×n matrix with P processors, along with lower
bounds on the number of flops, words, and messages. The matrix is stored in
a 2-D Pr × Pc block cyclic layout with square b × b blocks. We choose b, Pr,
and Pc optimally and independently for each algorithm. We assume m ≥ n.
Everything (messages, words, and flops) is counted along the critical path. The
boldface part of the table highlights CAQR’s improvement over ScaLAPACK.

Here are highlights of the six tables in this section. Tables 1–3 concern
parallel algorithms. First, Table 1 compares parallel TSQR and ScaLAPACK’s
parallel QR factorization PDGEQRF. TSQR requires fewer messages: log P ,
which is both optimal, and a factor 2n fewer messages than ScaLAPACK. Table
2 compares parallel CAQR and PDGEQRF on a general rectangular matrix. Par-
allel CAQR needs fewer messages: Θ(

√
nP/m), which is both optimal (modulo

polylogarithmic factors), and a factor Θ(
√

mn/P ) fewer messages than ScaLA-
PACK. Note that

√
mn/P is the square root of each processor’s local memory

size, up to a small constant factor. Table 3 presents the same comparison for

7



Par. CAQR PDGEQRF Lower bound

# flops 4n3

3P
4n3

3P
Θ

“
n3

P

”
# words 3n2

4
√

P
log P 3n2

4
√

P
log P Θ

“
n2
√

P

”
# messages 3

8

√
P log3 P 5n

4
log2 P Θ

“√
P

”
Table 3: Performance models of parallel CAQR and ScaLAPACK’s parallel QR
factorization PDGEQRF on a square n×n matrix with P processors, along with
lower bounds on the number of flops, words, and messages. The matrix is stored
in a 2-D Pr × Pc block cyclic layout with square b× b blocks. We choose b, Pr,
and Pc optimally and independently for each algorithm. Everything (messages,
words, and flops) is counted along the critical path. The boldface part of the
table highlights CAQR’s improvement over ScaLAPACK.

Seq. TSQR Householder QR Lower bound

# flops 2mn2 2mn2 Θ(mn2)

# words 2mn m2n2

2W
2mn

# messages 2mnfW mn2

2W
2mn
W

Table 4: Performance models of sequential TSQR and blocked sequential House-
holder QR (either LAPACK’s in-DRAM DGEQRF or ScaLAPACK’s out-of-
DRAM PFDGEQRF) on an m×n matrix with fast memory size W , along with
lower bounds on the number of flops, words, and messages. We assume m � n
and W ≥ 3n2/2. The boldface part of the table highlights TSQR’s improvement
over (Sca)LAPACK. W̃ = W − n(n + 1)/2, which is at least about 2

3W .

the special case of a square n× n matrix. There again, parallel CAQR requires
fewer messages: Θ(

√
P ), which is both optimal and a factor Θ(n/

√
P ) fewer

messages than PDGEQRF. This factor is the square root of the local memory
size, up to a small constant factor.

Next, Tables 4–6 concern sequential QR factorization algorithms. Table 4
compares sequential TSQR with sequential blocked Householder QR. This is
LAPACK’s QR factorization routine DGEQRF when fast memory is cache and
slow memory is DRAM, and it is ScaLAPACK’s out-of-DRAM QR factorization
routine PFDGEQRF when fast memory is DRAM and slow memory is disk.
Sequential TSQR transfers fewer words between slow and fast memory: 2mn,
which is both optimal and a factor mn/(4W ) fewer words than transferred by
blocked Householder QR. Note that mn/W is how many times larger the matrix
is than the fast memory size W . Furthermore, TSQR requires fewer messages:
2mn/W̃ , which is close to optimal and O(n) times lower than Householder
QR. Table 5 compares sequential CAQR and sequential blocked Householder
QR on a general rectangular matrix. Sequential CAQR transfers fewer words
between slow and fast memory: Θ(mn2/

√
W ), which is both optimal and a

factor Θ(m/
√

W ) fewer words transferred than blocked Householder QR. Note
that m/

√
W is

√
m2/W which is the square root of how many times larger

8



Seq. CAQR Householder QR Lower bound

# flops 2mn2 − 2n3

3
2mn2 − 2n3

3
Θ(mn2)

# words 3mn2
√

W

m2n2

2W
− mn3

6W
+ 3mn

2
− 3n2

4
Θ(mn2

√
W

)

# messages 12 mn2

W3/2
mn2

2W
+ 2mn

W
Θ( mn2

W3/2 )

Table 5: Performance models of sequential CAQR and blocked sequential House-
holder QR (either LAPACK’s in-DRAM DGEQRF or ScaLAPACK’s out-of-
DRAM PFDGEQRF) on an m×n matrix with fast memory size W , along with
lower bounds on the number of flops, words, and messages. The boldface part
of the table highlights CAQR’s improvement over (Sca)LAPACK.

Seq. CAQR Householder QR Lower bound

# flops 4n3

3
4n3

3
Θ(n3)

# words 3 n3
√

W

n4

3W
+ 3n2

4
Θ( n3

√
W

)

# messages 12 n3

W3/2
n3

2W
Θ( n3

W3/2 )

Table 6: Performance models of sequential CAQR and blocked sequential House-
holder QR (either LAPACK’s in-DRAM DGEQRF or ScaLAPACK’s out-of-
DRAM PFDGEQRF) on a square n×n matrix with fast memory size W , along
with lower bounds on the number of flops, words, and messages. The boldface
part of the table highlights CAQR’s improvement over (Sca)LAPACK.

a square m × m matrix is than the fast memory size. Sequential CAQR also
requires fewer messages: 12mn2/W 3/2, which is optimal. We note that our
analysis of CAQR applies for any W , whereas our analysis of the algorithms in
LAPACK and ScaLAPACK assume that at least 2 columns fit in fast memory,
that is W ≥ 2m; otherwise they may communicate even more. Finally, Table 6
presents the same comparison for the special case of a square n × n matrix.
There again, sequential CAQR transfers fewer words between slow and fast
memory: Θ(n3/

√
W ), which is both optimal and a factor Θ(n/

√
W ) fewer words

transferred than blocked Householder QR. Sequential CAQR also requires fewer
messages: 12n3/W 3/2, which is optimal.

We expect parallel CAQR to outperform ScaLAPACK’s current parallel QR
factorization especially well in the strong scaling regime, i.e., when the ma-
trix dimensions are constant and the number of processors P varies. Table 3
shows that the number of floating-point operations for both algorithms scales as
1/P , and the number of words transferred scales as n2 log P/

√
P . However, for

ScaLAPACK, the number of messages is proportional to n log2 P , whereas for
parallel CAQR, the number of messages is proportional to

√
P log3 P , a factor

of n/
√

P fewer messages. In either case, the number of messages grows with
the number of processors and also with the data size, if we assume a limited
amount of memory per processor, so reducing communication costs is important
to achieving strong scalability.

We have concentrated on the cases of a homogeneous parallel computer and a
sequential computer with a two-level memory hierarchy. But real computers are

9



obviously more complicated, combining many levels of parallelism and memory
hierarchy, perhaps heterogeneously. So we have shown that our parallel and
sequential TSQR designs correspond to the two simplest cases of reduction trees
(binary and flat, respectively), and that different choices of reduction trees will
let us optimize TSQR for more general architectures.

Now we briefly describe related work and our contributions. The tree-based
QR idea itself is not novel (see for example, [8, 15, 27, 32, 39, 49, 51, 52]), but
we have a number of optimizations and generalizations:

• Our algorithm can perform almost all its floating-point operations using
any fast sequential QR factorization routine. In particular, we can achieve
significant speedups by invoking Elmroth and Gustavson’s recursive QR
(see [21, 22]).

• We apply TSQR to the parallel factorization of arbitrary rectangular ma-
trices in a two-dimensional block cyclic layout.

• We adapt TSQR to work on general reduction trees. This flexibility
lets schedulers overlap communication and computation, and minimize
communication for more complicated and realistic computers with multi-
ple levels of parallelism and memory hierarchy (e.g., a system with disk,
DRAM, and cache on multiple boards each containing one or more multi-
core chips of different clock speeds, along with compute accelerator hard-
ware like GPUs).

• We prove optimality for both our parallel and sequential algorithms, with a
1-D layout for TSQR and 2-D block layout for CAQR, i.e., that they mini-
mize bandwidth and latency costs. This assumes O(n3) (non-Strassen-like
algorithms), and is done in a Big-Oh sense, sometimes modulo polyloga-
rithmic terms.

• We describe special cases in which existing sequential algorithms by Elm-
roth and Gustavson [22] and also LAPACK’s DGEQRF attain minimum
bandwidth. In particular, with the correct choice of block size, Elmroth’s
and Gustavson’s RGEQRF algorithm attains minimum bandwidth and
flop count, though not minimum latency.

• We observe that there are alternative LU algorithms in the literature that
attain at least some of these communication lower bounds: [30] describes a
parallel LU algorithm attaining both bandwidth and latency lower bounds,
and [60] describes a sequential LU algorithm that at least attains the
bandwidth lower bound.

• We outline how to extend both algorithms and optimality results to certain
kinds of hierarchical architectures, either with multiple levels of memory
hierarchy, or multiple levels of parallelism (e.g., where each node in a
parallel machine consists of other parallel machines, such as multicore).

10



We note that the Q factor is represented as a tree of smaller Q factors, which
differs from the traditional layout. Many previous authors did not explain in
detail how to apply a stored TSQR Q factor, quite possibly because this is not
needed for solving least squares problems. Adjoining the right-hand side(s) to
the matrix A, and taking the QR factorization of the result, requires only the
R factor. Previous authors discuss this optimization. However, many of our
applications require storing and working with the implicit representation of the
Q factor. Our performance models show that applying this tree-structured Q
has about the same cost as the traditionally represented Q.

1.1 Outline

The rest of this report is organized as follows. Section 2 first gives a list of
terms and abbreviations. We then begin the discussion of Tall Skinny QR by
Section 3, which motivates the algorithm, giving a variety of applications where
it is used, beyond as a building block for general QR. Section 4 introduces the
TSQR algorithm and shows how the parallel and sequential versions correspond
to different reduction or all-reduction trees. After that, Section 5 illustrates how
TSQR is actually a reduction, introduces corresponding terminology, and dis-
cusses some design choices. Section 6 shows how the local QR decompositions
in TSQR can be further optimized, including ways that current ScaLAPACK
cannot exploit. We also explain how to apply the Q factor from TSQR effi-
ciently, which is needed both for general QR and other applications. Section 7
explains about our parallel and sequential machine models, and what parame-
ters we use to describe them. Next, Sections 9 and 10 describe other ”tall skinny
QR” algorithms, such as CholeskyQR and Gram-Schmidt, and compare their
cost (Section 9) and numerical stability (Section 10) to that of TSQR. These
sections show that TSQR is the only algorithm that simultaneously minimizes
communication and is numerically stable. Section 11 describes the platforms
used for testing TSQR, and Section 12 concludes the discussion of TSQR proper
by describing the TSQR performance results.

Our discussion of CAQR presents both the parallel and the sequential CAQR
algorithms for the QR factorization of general rectangular matrices. Section 13
describes the parallel CAQR algorithm and constructs a performance model.
Section 14 does the same for sequential CAQR. Subsection 14.1 analyzes other
sequential QR algorithms including those of Elmroth and Gustavson. Next,
Section 15 compares the performance of parallel CAQR and ScaLAPACK’s
PDGEQRF, showing CAQR to be superior, for the same choices of block sizes
and data layout parameters, as well as when these parameters are chosen op-
timally and independently for CAQR and PDGEQRF. After that, Section 16
presents performance predictions comparing CAQR to PDGEQRF. Future work
includes actual implementation and measurements.

The next two sections in the body of the text concern theoretical results
about CAQR and other parallel and sequential QR factorizations. Section 17
describes how to extend known lower bounds on communication for matrix mul-
tiplication to QR, and shows that these are attained (modulo polylogarithmic

11



factors) by TSQR and CAQR. Section 18 reviews known lower bounds on par-
allelism for QR, using a PRAM model of parallel computation.

The final section, Section 19 briefly outlines how to extend the algorithms
and optimality results to hierarchical architectures, either with several levels of
memory hierarchy, or several levels of parallelism.

The Appendices provide details of operation counts and other results sum-
marized in previous sections. Appendix A presents flop counts for optimizations
of local QR decompositions described in Section 6. Appendices B, C, D, and
E give details of performance models for sequential TSQR, sequential CAQR,
parallel TSQR and parallel CAQR, respectively. Appendix F models sequen-
tial QR based on ScaLAPACK’s out-of-DRAM routine PFDGEQRF. Finally,
Appendix G proves communication lower bounds needed in Section 17.

1.2 Future work

Implementations of sequential and parallel CAQR are currently underway. Op-
timization of the TSQR reduction tree for more general, practical architectures
(such as multicore, multisocket, or GPUs) is future work, as well as optimization
of the rest of CAQR to the most general architectures, with proofs of optimality.

It is natural to ask to how much of dense linear algebra one can extend
the results of this paper, that is finding algorithms that attain communication
lower bounds. In the case of parallel LU with pivoting, refer to the technical
report by Grigori, Demmel, and Xiang [30], and in the case of sequential LU,
refer to the paper by Toledo [60] (at least for minimizing bandwidth). More
broadly, we hope to extend the results of this paper to the rest of linear algebra,
including two-sided factorizations (such as reduction to symmetric tridiagonal,
bidiagonal, or (generalized) upper Hessenberg forms). Once a matrix is sym-
metric tridiagonal (or bidiagonal) and so takes little memory, fast algorithms
for the eigenproblem (or SVD) are available. Most challenging is likely to be
find eigenvalues of a matrix in upper Hessenberg form (or of a matrix pencil).

2 List of terms and abbreviations

alpha-beta model A simple model for communication time, involving a la-
tency parameter α and an inverse bandwidth parameter β: the time to
transfer a single message containing n words is α + βn.

CAQR Communication-Avoiding QR – a parallel and/or explicitly swapping
QR factorization algorithm, intended for input matrices of general shape.
Invokes TSQR for panel factorizations.

CholeskyQR A fast but numerically unstable QR factorization algorithm for
tall and skinny matrices, based on the Cholesky factorization of AT A.

DGEQRF LAPACK QR factorization routine for general dense matrices of double-
precision floating-point numbers. May or may not exploit shared-memory
parallelism via a multithreaded BLAS implementation.

12



GPU Graphics processing unit.

Explicitly swapping Refers to algorithms explicitly written to save space in
one level of the memory hierarchy (“fast memory”) by using the next
level (“slow memory”) as swap space. Explicitly swapping algorithms
can solve problems too large to fit in fast memory. Special cases include
out-of-DRAM (a.k.a. out-of-core), out-of-cache (which is a performance
optimization that manages cache space explicitly in the algorithm), and
algorithms written for processors with non-cache-coherent local scratch
memory and global DRAM (such as Cell).

Flash drive A persistent storage device that uses nonvolatile flash memory,
rather than the spinning magnetic disks used in hard drives. These are in-
creasingly being used as replacements for traditional hard disks for certain
applications. Flash drives are a specific kind of solid-state drive (SSD),
which uses solid-state (not liquid, gas, or plasma) electronics with no mov-
ing parts to store data.

Local store A user-managed storage area which functions like a cache (in that
it is smaller and faster than main memory), but has no hardware support
for cache coherency.

Out-of-cache Refers to algorithms explicitly written to save space in cache (or
local store), by using the next larger level of cache (or local store), or main
memory (DRAM), as swap space.

Out-of-DRAM Refers to algorithms explicitly written to save space in main
memory (DRAM), by using disk as swap space. (“Core” used to mean
“main memory,” as main memories were once constructed of many small
solenoid cores.) See explicitly swapping.

PDGEQRF ScaLAPACK parallel QR factorization routine for general dense ma-
trices of double-precision floating-point numbers.

PFDGEQRF ScaLAPACK parallel out-of-core QR factorization routine for general
dense matrices of double-precision floating-point numbers.

TSQR Tall Skinny QR – our reduction-based QR factorization algorithm, in-
tended for “tall and skinny” input matrices (i.e., those with many more
rows than columns).

3 Motivation for TSQR

3.1 Block iterative methods

Block iterative methods frequently compute the QR factorization of a tall and
skinny dense matrix. This includes algorithms for solving linear systems Ax = B
with multiple right-hand sides (such as variants of GMRES, QMR, or CG

13



[62, 24, 47]), as well as block iterative eigensolvers (for a summary of such
methods, see [4, 40]). Many of these methods have widely used implementa-
tions, on which a large community of scientists and engineers depends for their
computational tasks. Examples include TRLAN (Thick Restart Lanczos), BLZ-
PACK (Block Lanczos), Anasazi (various block methods), and PRIMME (block
Jacobi-Davidson methods) [64, 44, 37, 3, 5, 57]. Eigenvalue computation is par-
ticularly sensitive to the accuracy of the orthogonalization; two recent papers
suggest that large-scale eigenvalue applications require a stable QR factorization
[33, 38].

3.2 s-step Krylov methods

Recent research has reawakened an interest in alternate formulations of Krylov
subspace methods, called s-step Krylov methods, in which some number s steps
of the algorithm are performed all at once, in order to reduce communication.
Demmel et al. review the existing literature and discuss new advances in this
area [19]. Such a method begins with an n×n matrix A and a starting vector v,
and generates some basis for the Krylov subspace span{v, Av, A2v, . . . , Asv},
using a small number of communication steps that is independent of s. Then,
a QR factorization is used to orthogonalize the basis vectors.

The goal of combining s steps into one is to leverage existing basis generation
algorithms that reduce the number of messages and/or the volume of commu-
nication between different levels of the memory hierarchy and/or different pro-
cessors. These algorithms make the resulting number of messages independent
of s, rather than growing with s (as in standard Krylov methods). However,
this means that the QR factorization is now the communications bottleneck,
at least in the parallel case: the current PDGEQRF algorithm in ScaLAPACK
takes 2s log2 P messages (in which P is the number of processors), compared to
log2 P messages for TSQR. Numerical stability considerations limit s, so that it
is essentially a constant with respect to the matrix size m. Furthermore, a sta-
ble QR factorization is necessary in order to restrict the loss of stability caused
by generating s steps of the basis without intermediate orthogonalization. This
is an ideal application for TSQR, and in fact inspired its (re-)discovery.

3.3 Panel factorization in general QR

Householder QR decompositions of tall and skinny matrices also comprise the
panel factorization step for typical QR factorizations of matrices in a more gen-
eral, two-dimensional layout. This includes the current parallel QR factoriza-
tion routine PDGEQRF in ScaLAPACK, as well as ScaLAPACK’s out-of-DRAM
QR factorization PFDGEQRF. Both algorithms use a standard column-based
Householder QR for the panel factorizations, but in the parallel case this is a
latency bottleneck, and in the out-of-DRAM case it is a bandwidth bottleneck.
Replacing the existing panel factorization with TSQR would reduce this cost
by a factor equal to the number of columns in a panel, thus removing the bot-
tleneck. TSQR requires more floating-point operations, though some of this

14



Figure 1: Execution of the parallel TSQR factorization on a binary tree of four
processors. The gray boxes indicate where local QR factorizations take place.
The Q and R factors each have two subscripts: the first is the sequence number
within that stage, and the second is the stage number.

computation can be overlapped with communication. Section 13 will discuss
the advantages of this approach in detail.

4 TSQR matrix algebra

In this section, we illustrate the insight behind the TSQR algorithm. TSQR
uses a reduction-like operation to compute the QR factorization of an m × n
matrix A, stored in a 1-D block row layout.1 We begin with parallel TSQR on
a binary tree of four processors (P = 4), and later show sequential TSQR on a
linear tree with four blocks.

4.1 Parallel TSQR on a binary tree

The basic idea of using a reduction on a binary tree to compute a tall skinny QR
factorization has been rediscovered more than once (see e.g., [15, 49]). (TSQR
was also suggested by Golub et al. [27], but they did not reduce the number
of messages from n log P to log P .) We repeat it here in order to show its
generalization to a whole space of algorithms. First, we decompose the m × n
matrix A into four m/4× n block rows:

A =


A0

A1

A2

A3

 .

1The ScaLAPACK Users’ Guide has a good explanation of 1-D and 2-D block and block
cyclic layouts of dense matrices [7]. In particular, refer to the section entitled “Details of
Example Program #1.”

15



Then, we independently compute the QR factorization of each block row:
A0

A1

A2

A3

 =


Q00R00

Q10R10

Q20R20

Q30R30

 .

This is “stage 0” of the computation, hence the second subscript 0 of the Q
and R factors. The first subscript indicates the block index at that stage.
(Abstractly, we use the Fortran convention that the first index changes “more
frequently” than the second index.) Stage 0 operates on the P = 4 leaves of the
tree. We can write this decomposition instead as a block diagonal orthogonal
matrix times a column of blocks:

A =


Q00R00

Q10R10

Q20R20

Q30R30

 =


Q00

Q10

Q20

Q30

 ·


R00

R10

R20

R30

 ,

although we do not have to store it this way. After this stage 0, there are P = 4
of the R factors. We group them into successive pairs Ri,0 and Ri+1,0, and do
the QR factorizations of grouped pairs in parallel:

R00

R10

R20

R30

 =


(

R00

R10

)
(

R20

R30

)
 =

(
Q01R01

Q11R11

)
.

As before, we can rewrite the last term as a block diagonal orthogonal matrix
times a column of blocks:(

Q01R01

Q11R11

)
=
(

Q01

Q11

)
·
(

R01

R11

)
.

This is stage 1, as the second subscript of the Q and R factors indicates. We
iteratively perform stages until there is only one R factor left, which is the root
of the tree: (

R01

R11

)
= Q02R02.

Equation (1) shows the whole factorization:

A =


A0

A1

A2

A3

 =


Q00

Q10

Q20

Q30

 ·
(

Q01

Q11

)
·Q02 ·R02, (1)

in which the product of the first three matrices has orthogonal columns, since
each of these three matrices does. Note the binary tree structure in the nested
pairs of R factors.

16



Figure 2: Execution of the sequential TSQR factorization on a flat tree with
four submatrices. The gray boxes indicate where local QR factorizations take
place The Q and R factors each have two subscripts: the first is the sequence
number for that stage, and the second is the stage number.

Figure 1 illustrates the binary tree on which the above factorization executes.
Gray boxes highlight where local QR factorizations take place. By “local,” we
refer to a factorization performed by any one processor at one node of the tree;
it may involve one or more than one block row. If we were to compute all
the above Q factors explicitly as square matrices, each of the Qi0 would be
m/P × m/P , and Qij for j > 0 would be 2n × 2n. The final R factor would
be upper triangular and m × n, with m − n rows of zeros. In a “thin QR”
factorization, in which the final Q factor has the same dimensions as A, the
final R factor would be upper triangular and n × n. In practice, we prefer to
store all the local Q factors implicitly until the factorization is complete. In
that case, the implicit representation of Qi0 fits in an m/P ×n lower triangular
matrix, and the implicit representation of Qij (for j > 0) fits in an n× n lower
triangular matrix (due to optimizations that will be discussed in Section 6).

Note that the maximum per-processor memory requirement is max{mn/P, n2+
O(n)}, since any one processor need only factor two n×n upper triangular ma-
trices at once, or a single m/P × n matrix.

4.2 Sequential TSQR on a flat tree

Sequential TSQR uses a similar factorization process, but with a “flat tree” (a
linear chain). It may also handle the leaf nodes of the tree slightly differently,
as we will show below. Again, the basic idea is not new; see e.g., [8, 9, 32,
39, 51, 52]. (Some authors (e.g., [8, 39, 51]) refer to sequential TSQR as “tiled
QR.” We use the phrase “sequential TSQR” because both our parallel and
sequential algorithms could be said to use tiles.) In particular, Gunter and van
de Geijn develop a parallel out-of-DRAM QR factorization algorithm that uses
a flat tree for the panel factorizations [32]. Buttari et al. suggest using a QR
factorization of this type to improve performance of parallel QR on commodity

17



multicore processors [8]. Quintana-Orti et al. develop two variations on block
QR factorization algorithms, and use them with a dynamic task scheduling
system to parallelize the QR factorization on shared-memory machines [51].
Kurzak and Dongarra use similar algorithms, but with static task scheduling,
to parallelize the QR factorization on Cell processors [39]. The reason these
authors use what we call sequential TSQR in a parallel context ...

We will show that the basic idea of sequential TSQR fits into the same
general framework as the parallel QR decomposition illustrated above, and also
how this generalization expands the tuning space of QR factorization algorithms.
In addition, we will develop detailed performance models of sequential TSQR
and the current sequential QR factorization implemented in LAPACK.

We start with the same block row decomposition as with parallel TSQR
above:

A =


A0

A1

A2

A3


but begin with a QR factorization of A0, rather than of all the block rows:

A0

A1

A2

A3

 =


Q00R00

A1

A2

A3

 .

This is “stage 0” of the computation, hence the second subscript 0 of the Q and
R factor. We retain the first subscript for generality, though in this example
it is always zero. We can write this decomposition instead as a block diagonal
matrix times a column of blocks:

Q00R00

A1

A2

A3

 =


Q00

I
I

I

 ·


R00

A1

A2

A3

 .

We then combine R00 and A1 using a QR factorization:
R00

A1

A2

A3

 =


R00

A1

A2

A3

 =

Q01R01

A2

A3


This can be rewritten as a block diagonal matrix times a column of blocks:Q01R01

A2

A3

 =

 Q01

I
I

 ·

R01

A2

A3

 .

18



We continue this process until we run out of Ai factors. The resulting factor-
ization has the following structure:

A0

A1

A2

A3

 =


Q00

I
I

I

·
 Q01

I
I

·
 I

Q02

I

·
 I

I
Q03

R30.

(2)
Here, the Ai blocks are m/P ×n. If we were to compute all the above Q factors
explicitly as square matrices, then Q00 would be m/P ×m/P and Q0j for j > 0
would be 2m/P × 2m/P . The above I factors would be m/P ×m/P . The final
R factor, as in the parallel case, would be upper triangular and m × n, with
m − n rows of zeros. In a “thin QR” factorization, in which the final Q factor
has the same dimensions as A, the final R factor would be upper triangular and
n× n. In practice, we prefer to store all the local Q factors implicitly until the
factorization is complete. In that case, the implicit representation of Q00 fits in
an m/P ×n lower triangular matrix, and the implicit representation of Q0j (for
j > 0) fits in an m/P × n lower triangular matrix as well (due to optimizations
that will be discussed in Section 6).

Figure 2 illustrates the flat tree on which the above factorization executes.
Gray boxes highlight where “local” QR factorizations take place.

The sequential algorithm differs from the parallel one in that it does not
factor the individual blocks of the input matrix A, excepting A0. This is because
in the sequential case, the input matrix has not yet been loaded into working
memory. In the fully parallel case, each block of A resides in some processor’s
working memory. It then pays to factor all the blocks before combining them,
as this reduces the volume of communication (only the triangular R factors
need to be exchanged) and reduces the amount of arithmetic performed at the
next level of the tree. In contrast, the sequential algorithm never writes out the
intermediate R factors, so it does not need to convert the individual Ai into
upper triangular factors. Factoring each Ai separately would require writing
out an additional Q factor for each block of A. It would also add another level
to the tree, corresponding to the first block A0.

Note that the maximum per-processor memory requirement is mn/P +
n2/2 + O(n), since only an m/P × n block and an n × n upper triangular
block reside in fast memory at one time. We could save some fast memory by
factoring each Ai block separately before combining it with the next block’s R
factor, as long as each block’s Q and R factors are written back to slow memory
before the next block is loaded. One would then only need to fit no more than
two n×n upper triangular factors in fast memory at once. However, this would
result in more writes, as each R factor (except the last) would need to be written
to slow memory and read back into fact memory, rather than just left in fast
memory for the next step.

In both the parallel and sequential algorithms, a vector or matrix is multi-
plied by Q or QT by using the implicit representation of the Q factor, as shown
in Equation (1) for the parallel case, and Equation (2) for the sequential case.

19



This is analogous to using the Householder vectors computed by Householder
QR as an implicit representation of the Q factor.

4.3 TSQR on general trees

The above two algorithms are extreme points in a large set of possible QR
factorization methods, parametrized by the tree structure. Our version of TSQR
is novel because it works on any tree. In general, the optimal tree may depend
on both the architecture and the matrix dimensions. This is because TSQR
is a reduction (as we will discuss further in Section 5). Trees of types other
than binary often result in better reduction performance, depending on the
architecture (see e.g., [46]). Throughout this paper, we discuss two examples –
the binary tree and the flat tree – as easy extremes for illustration. We will show
that the binary tree minimizes the number of stages and messages in the parallel
case, and that the flat tree minimizes the number and volume of input matrix
reads and writes in the sequential case. Section 5 shows how to perform TSQR
on any tree. Methods for finding the best tree in the case of TSQR are future
work. Nevertheless, we can identify two regimes in which a “nonstandard” tree
could improve performance significantly: parallel memory-limited CPUs, and
large distributed-memory supercomputers.

The advent of desktop and even laptop multicore processors suggests a re-
vival of parallel out-of-DRAM algorithms, for solving cluster-sized problems
while saving power and avoiding the hassle of debugging on a cluster. TSQR
could execute efficiently on a parallel memory-limited device if a sequential flat
tree were used to bring blocks into memory, and a parallel tree (with a structure
that reflects the multicore memory hierarchy) were used to factor the blocks.
Figure 3 shows an example with 16 blocks executing on four processors, in which
the factorizations are pipelined for maximum utilization of the processors. The
algorithm itself needs no modification, since the tree structure itself encodes the
pipelining. This is, we believe, a novel extension of the parallel out-of-core QR
factorization of Gunter et al. [32].

TSQR’s choice of tree shape can also be optimized for modern supercomput-
ers. A tree with different branching factors at different levels could naturally
accommodate the heterogeneous communication network of a cluster of multi-
cores. The subtrees at the lowest level may have the same branching factor as
the number of cores per node (or per socket, for a multisocket shared-memory
architecture).

Note that the maximum per-processor memory requirement of all TSQR
variations is bounded above by

qn(n + 1)
2

+
mn

P
,

in which q is the maximum branching factor in the tree.

20



Figure 3: Execution of a hybrid parallel / out-of-core TSQR factorization. The
matrix has 16 blocks, and four processors can execute local QR factorizations
simultaneously. The gray boxes indicate where local QR factorizations take
place. We number the blocks of the input matrix A in hexadecimal to save
space (which means that the subscript letter A is the number 1010, but the
non-subscript letter A is a matrix block). The Q and R factors each have two
subscripts: the first is the sequence number for that stage, and the second is
the stage number.

21



5 TSQR as a reduction

Section 4 explained the algebra of the TSQR factorization. It outlined how to
reorganize the parallel QR factorization as a tree-structured computation, in
which groups of neighboring processors combine their R factors, perform (pos-
sibly redundant) QR factorizations, and continue the process by communicating
their R factors to the next set of neighbors. Sequential TSQR works in a similar
way, except that communication consists of moving matrix factors between slow
and fast memory. This tree structure uses the same pattern of communication
found in a reduction or all-reduction. Thus, effective optimization of TSQR
requires understanding these operations.

5.1 Reductions and all-reductions

Reductions and all-reductions are operations that take a collection as input, and
combine the collection using some (ideally) associative function into a single
item. The result is a function of all the items in the input. Usually, one speaks
of (all-) reductions in the parallel case, where ownership of the input collection
is distributed across some number P of processors. A reduction leaves the final
result on exactly one of the P processors; an all-reduction leaves a copy of the
final result on all the processors. See, for example, [31].

In the sequential case, there is an analogous operation. Imagine that there
are P “virtual processors.” To each one is assigned a certain amount of fast
memory. Virtual processors communicate by sending messages via slow memory,
just as the “real processors” in the parallel case communicate via the (relatively
slow) network. Each virtual processor owns a particular subset of the input
data, just as each real processor does in a parallel implementation. A virtual
processor can read any other virtual processor’s subset by reading from slow
memory (this is a “receive”). It can also write some data to slow memory (a
“send”), for another virtual processor to read. We can run programs for this
virtual parallel machine on an actual machine with only one processor and its
associated fast memory by scheduling the virtual processors’ tasks on the real
processor(s) in a way that respects task dependencies. Note that all-reductions
and reductions produce the same result when there is only one actual processor,
because if the final result ends up in fast memory on any of the virtual processors,
it is also in fast memory on the one actual processor.

The “virtual processors” argument may also have practical use when imple-
menting (all-) reductions on clusters of SMPs or vector processors, multicore
out-of-core, or some other combination consisting of tightly-coupled parallel
units with slow communication links between the units. A good mapping of
virtual processors to real processors, along with the right scheduling of the “vir-
tual” algorithm on the real machine, can exploit multiple levels of parallelism
and the memory hierarchy.

22



5.2 (All-) reduction trees

Reductions and all-reductions are performed on directed trees. In a reduction,
each node represents a processor, and each edge a message passed from one pro-
cessor to another. All-reductions have two different implementation strategies:

• “Reduce-broadcast”: Perform a standard reduction to one processor, fol-
lowed by a broadcast (a reduction run backwards) of the result to all
processors.

• “Butterfly” method, with a communication pattern like that of a fast
Fourier transform.

The butterfly method uses a tree with the following recursive structure:

• Each leaf node corresponds to a single processor.

• Each interior node is an ordered tuple whose members are the node’s
children.

• Each edge from a child to a parent represents a complete exchange of
information between all individual processors at the same positions in the
sibling tuples.

We call the processors that communicate at a particular stage neighbors. For
example, in a a binary tree with eight processors numbered 0 to 7, processors 0
and 1 are neighbors at the first stage, processors 0 and 2 are neighbors at the
second stage, and processors 0 and 4 are neighbors at the third (and final) stage.
At any stage, each neighbor sends its current reduction value to all the other
neighbors. The neighbors combine the values redundantly, and the all-reduction
continues. Figure 4 illustrates this process. The butterfly all-reduction can be
extended to any number of processors, not just powers of two.

The reduce-broadcast implementation requires about twice as many stages
as the butterfly pattern (in the case of a binary tree) and thus as much as
twice the latency. However, it reduces the total number of messages communi-
cated per level of the tree (not just the messages on the critical path). In the
case of a binary tree, reduce-broadcast requires at most P/2 messages at any
one level, and P log(P )/2 total messages. A butterfly always generates P mes-
sages at every level, and requires P log(P ) total messages. The choice between
reduce-broadcast and butterfly depends on the properties of the communication
network.

5.3 TSQR-specific (all-) reduction requirements

TSQR uses an (all-) reduction communication pattern, but has requirements
that differ from the standard (all-) reduction. For example, if the Q factor is
desired, then TSQR must store intermediate results (the local Q factor from
each level’s computation with neighbors) at interior nodes of the tree. This
requires reifying and preserving the (all-) reduction tree for later invocation

23



Time0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

Figure 4: Diagram of a parallel butterfly all-reduction on a binary tree of eight
processors. Each arrow represents a message from one processor to another.
Time moves upwards.

by users. Typical (all-) reduction interfaces, such as those provided by MPI
or OpenMP, do not allow this (see e.g., [31]). They may not even guarantee
that the same tree will be used upon successive invocations of the same (all-)
reduction operation, or that the inputs to a node of the (all-) reduction tree will
always be in the same order.

6 Optimizations for local QR factorizations

Although TSQR achieves its performance gains because it optimizes communi-
cation, the local QR factorizations lie along the critical path of the algorithm.
The parallel cluster benchmark results in Section 12 show that optimizing the lo-
cal QR factorizations can improve performance significantly. In this section, we
outline a few of these optimizations, and hint at how they affect the formulation
of the general CAQR algorithm in Section 13.

6.1 Structured QR factorizations

Many of the inputs to the local QR factorizations have a particular structure.
In the parallel case, they are vertical stacks of n× n upper triangular matrices,
and in the sequential case, at least one of the blocks is upper triangular. In this
section, we show how to modify a standard dense Householder QR factorization
in order to exploit this structure. This can save a factor of 5× flops and (at
least) 3× storage, in the parallel case, and a factor of 2× flops and (up to) 2×
storage in the sequential case. We also show how to perform the trailing matrix

24



update with these structured QR factorizations, as it will be useful for Section
13.

Suppose that we have two upper triangular matrices R0 and R1, each of size
5 × 5. (The notation here is generic and not meant to correspond to a specific
stage of TSQR. This is extended easily enough to the case of q upper triangular
matrices, for q = 2, 3, . . . .) Then, we can write their vertical concatenation as
follows, in which an x denotes a structural nonzero of the matrix, and empty
spaces denote zeros:

(
R0

R1

)
=



x x x x x
x x x x

x x x
x x

x
x x x x x

x x x x
x x x

x x
x


. (3)

Note that we do not need to store the ones on the diagonal explicitly. The Q
factor effectively overwrites R1 and the R factor overwrites R0.

The approach used for performing the QR factorization of the first block col-
umn affects the storage for the Householder vectors as well as the update of any
trailing matrices that may exist. In general, Householder transformations have
the form I − τjvjv

T
j , in which the Householder vector vi is normalized so that

vi(1) = 1. This means that vi(1) need not be stored explicitly. Furthermore, if
we use structured Householder transformations, we can avoid storing and com-
puting with the zeros in Equation (3). As the Householder vector always has
the same nonzero pattern as the vector from which it is calculated, the nonzero
structure of the Householder vector is trivial to determine.

For a 2n×n rectangular matrix composed of n×n upper triangular matrices,
the i-th Householder vector vi in the QR factorization of the matrix is a vector
of length 2n with nonzeros in entries n + 1 through n + i, a one in entry i, and
zeros elsewhere. If we stack all n Householder vectors into a 2n× n matrix, we
obtain the following representation of the Q factor (not including the τ array of
multipliers): 

1
1

1
1

1
x x x x x

x x x x
x x x

x x
x


. (4)

25



Algorithm 1 Sequential QR factorization of qn × n matrix A, with structure
as in Equation (3)
1: for j = 1 to n do
2: Let Ij be the index set {j, n + 1 : n + j, . . . , (q− 1)n + 1 : (q− 1)n + j}
3: w := A(Ij , j) . Gather pivot column of A into w
4: [τj , v] := House(w) . Compute Householder reflection, normalized so

that v(1) = 1
5: X := A(Ij , j + 1 : n) . Gather from A into X. One would normally

perform the update in place; we use a copy to improve clarity.
6: X := (I − τjvvT )X . Apply Householder reflection
7: A(Ij \ {j}, j) := v(2 : end) . Scatter v(2 : end) back into A
8: A(Ij , j + 1 : n) := X . Scatter X back into A
9: end for

Algorithm 1 shows a standard, column-by-column sequential QR factoriza-
tion of the qn × n matrix of upper triangular n × n blocks, using structured
Householder reflectors. To analyze the cost, consider the components:

1. House(w): the cost of this is dominated by finding the norm of the vector
w and scaling it.

2. Applying a length n Householder reflector, whose vector contains k nonze-
ros, to an n × b matrix A. This is an operation (I − τvvT )A = A −
v(τ(vT A)).

Appendix A counts the arithmetic operations in detail. There, we find that the
total cost is about

2
3
(q − 1)n3

flops, to factor a qn× n matrix (we showed the specific case q = 2 above). The
flop count increases by about a factor of 3× if we ignore the structure of the
inputs.

6.2 BLAS 3 structured Householder QR

Representing the local Q factor as a collection of Householder transforms means
that the local QR factorization is dominated by BLAS 2 operations (dense
matrix-vector products). A number of authors have shown how to reformulate
the standard Householder QR factorization so as to coalesce multiple House-
holder reflectors into a block, so that the factorization is dominated by BLAS 3
operations. For example, Schreiber and Van Loan describe a so-called YT repre-
sentation of a collection of Householder reflectors [55]. BLAS 3 transformations
like this are now standard in LAPACK and ScaLAPACK.

We can adapt these techniques in a straightforward way in order to exploit
the structured Householder vectors depicted in Equation (4). Schreiber and Van
Loan use a slightly different definition of Householder reflectors: ρj = I−2vjv

T
j ,

rather than LAPACK’s ρj = I − τjvjv
T
j . Schreiber and Van Loan’s Y matrix is

26



Algorithm 2 Computing Y and T in the (Y, T ) representation of a collection
of n Householder reflectors. Modification of an algorithm in [55] so that Pj =
I − τjvjv

T
j .

Require: n Householder reflectors ρj = I − τjvjv
T
j

1: for j = 1 to n do
2: if j = 1 then
3: Y := [v1]
4: T := [−τj ]
5: else
6: z := −τj(T (Y T vj))
7: Y :=

(
Y vj

)
8: T :=

(
T z
0 −τj

)
9: end if

10: end for
Assert: Y and T satisfy ρ1 · ρ2 · . . . ρn = I + Y TY T

the matrix of Householder vectors Y = [v1 v2 . . . vn]; its construction requires
no additional computation as compared with the usual approach. However, the
T matrix must be computed, which increases the flop count by a constant factor.
The cost of computing the T factor for the qn× n factorization above is about
qn3/3. Algorithm 2 shows the resulting computation. Note that the T factor
requires n(n − 1)/2 additional storage per processor on which the T factor is
required.

6.3 Recursive Householder QR

In Section 12, we show large performance gains obtained by using Elmroth and
Gustavson’s recursive algorithm for the local QR factorizations [22]. The au-
thors themselves observed that their approach works especially well with “tall
thin” matrices, and others have exploited this effect in their applications (see
e.g., [52]). The recursive approach outperforms LAPACK because it makes the
panel factorization a BLAS 3 operation. In LAPACK, the panel QR factoriza-
tion consists only of matrix-vector and vector-vector operations. This suggests
why recursion helps especially well with tall, thin matrices. Elmroth and Gus-
tavson’s basic recursive QR does not perform well when n is large, as the flop
count grows cubically in n, so they opt for a hybrid approach that divides the
matrix into panels of columns, and performs the panel QR factorizations using
the recursive method.

Elmroth and Gustavson use exactly the same representation of the Q factor
as Schreiber and Van Loan [55], so the arguments of the previous section still
apply.

27



6.4 Trailing matrix update

Section 13 will describe how to use TSQR to factor matrices in general 2-D
layouts. For these layouts, once the current panel (block column) has been
factored, the panels to the right of the current panel cannot be factored until
the transpose of the current panel’s Q factor has been applied to them. This
is called a trailing matrix update. The update lies along the critical path of
the algorithm, and consumes most of the floating-point operations in general.
This holds regardless of whether the factorization is left-looking, right-looking,
or some hybrid of the two.2 Thus, it’s important to make the updates efficient.

The trailing matrix update consists of a sequence of applications of local QT

factors to groups of “neighboring” trailing matrix blocks. (Section 5 explains
the meaning of the word “neighbor” here.) We now explain how to do one of
these local QT applications. (Do not confuse the local Q factor, which we label
generically as Q, with the entire input matrix’s Q factor.)

Let the number of rows in a block be M , and the number of columns in a
block be N . We assume M ≥ N . Suppose that we want to apply the local QT

factor from the above qN ×N matrix factorization, to two blocks C0 and C1 of
a trailing matrix panel. (This is the case q = 2, which we assume for simplicity.)
We divide each of the Ci into a top part and a bottom part:

Ci =
(

Ci(1 : N, :)
Ci(N + 1 : M, :)

)
=
(

C ′i
C ′′i

)
.

Our goal is to perform the operation(
R0 C ′0
R1 C ′1

)
=
(

QR C ′0
C ′1

)
= Q ·

(
R Ĉ ′0

Ĉ ′1

)
,

in which Q is the local Q factor and R is the local R factor of [R0;R1]. Im-
plicitly, the local Q factor has the dimensions 2M × 2M , as Section 4 explains.
However, it is not stored explicitly, and the implicit operator that is stored has
the dimensions 2N × 2N . We assume that processors P0 and P1 each store a
redundant copy of Q, that processor P2 has C0, and that processor P3 has C1.
We want to apply QT to the matrix

C =
(

C0

C1

)
.

First, note that Q has a specific structure. If stored explicitly, it would have
the form

Q =


U00

IM−N

U01

0M−N

U10

0M−N

U11

IM−N

 ,

2For descriptions and illustrations of the difference between left-looking and right-looking
factorizations, see e.g., [20].

28



in which the Uij blocks are each N ×N . This makes the only nontrivial com-
putation when applying QT the following:(

Ĉ ′0
Ĉ ′1

)
:=
(

UT
00 UT

10

UT
01 UT

11

)
·
(

C ′0
C ′1

)
. (5)

We see, in particular, that only the uppermost N rows of each block of the
trailing matrix need to be read or written. Note that it is not necessary to
construct the Uij factors explicitly; we need only operate on C ′0 and C ′1 with
QT .

If we are using a standard Householder QR factorization (without BLAS
3 optimizations), then computing Equation (5) is straightforward. When one
wishes to exploit structure (as in Section 6.1) and use a local QR factoriza-
tion that exploits BLAS 3 operations (as in Section 6.2), more interesting load
balance issues arise. We will discuss these in the following section.

6.4.1 Trailing matrix update with structured BLAS 3 QR

An interesting attribute of the YT representation is that the T factor can be
constructed using only the Y factor and the τ multipliers. This means that it is
unnecessary to send the T factor for updating the trailing matrix; the receiving
processors can each compute it themselves. However, one cannot compute Y
from T and τ in general.

When the YT representation is used, the update of the trailing matrices
takes the following form:(

Ĉ0
′

Ĉ1
′

)
:=
(

I −
(

I
Y1

)
· TT

·
(

I
Y1

)T)(C ′0
C ′1

)
.

Here, Y1 starts on processor P1, C ′0 on processor P2, and C ′1 on processor P3.
The matrix T must be computed from τ and Y1; we can assume that τ is on
processor P1. The updated matrices Ĉ0

′
and Ĉ1

′
are on processors P2 resp. P3.

There are many different ways to perform this parallel update. The data
dependencies impose a directed acyclic graph (DAG) on the flow of data between
processors. One can find the the best way to do the update by realizing an
optimal computation schedule on the DAG. Our performance models can be
used to estimate the cost of a particular schedule.

Here is a straightforward but possibly suboptimal schedule. First, assume
that Y1 and τ have already been sent to P3. Then,

P2’s tasks:

• Send C ′0 to P3

• Receive W from P3

• Compute Ĉ0
′
= C ′0 −W

P3’s tasks:

• Compute the T factor and W :=
TT (C ′0 + Y T

1 C ′1)

• Send W to P2

29



• Compute Ĉ1
′
:= C ′1 − Y1W

However, this leads to some load imbalance, since P3 performs more com-
putation than P2. It does not help to compute T on P0 or P1 before sending it
to P3, because the computation of T lies on the critical path in any case. We
will see in Section 13 that part of this computation can be overlapped with the
communication.

For q ≥ 2, we can write the update operation as
Ĉ0
′

Ĉ1
′

...
ˆCq−1

′

 :=

I −


IN×N

Y1

...
Yq−1

TT
(
IN×N Y T

1 . . . Y T
q−1

)



C ′0
C ′1
...

C ′q−1

 .

If we let
D := C ′0 + Y T

1 C ′1 + Y T
2 C ′2 + · · ·+ Y T

q−1C
′
q−1

be the “inner product” part of the update operation formulas, then we can
rewrite the update formulas as

Ĉ0
′
:= C ′0 − TT D,

Ĉ1
′
:= C ′1 − Y1T

T D,

...

ˆCq−1
′
:= C ′q−1 − Yq−1T

T D.

As the branching factor q gets larger, the load imbalance becomes less of an
issue. The inner product D should be computed as an all-reduce in which the
processor owning Ci receives Yi and T . Thus, all the processors but one will
have the same computational load.

7 Machine model

7.1 Parallel machine model

Throughout this work, we use the “alpha-beta” or latency-bandwidth model of
communication, in which a message of size n floating-point words takes time α+
βn seconds. The α term represents message latency (seconds per message), and
the β term inverse bandwidth (seconds per floating-point word communicated).
Our algorithms only need to communicate floating-point words, all of the same
size. We make no attempt to model overlap of communication and computation,
but we do mention the possibility of overlap when it exists. Exploiting overlap
could potentially speed up our algorithms (or any algorithm) by a factor of two.

We predict floating-point performance by counting floating-point operations
and multiplying them by γ, the inverse peak floating-point performance, also

30



known as the floating-point throughput. The quantity γ has units of seconds per
flop (so it can be said to measure the bandwidth of the floating-point hardware).
If we need to distinguish between adds and multiplies on one hand, and divides
on the other, we use γ for the throughput of adds and multiplies, and γd for the
throughput of divides.

When appropriate, we may scale the peak floating-point performance pre-
diction of a particular matrix operation by a factor, in order to account for the
measured best floating-point performance of local QR factorizations. This gen-
erally gives the advantage to competing algorithms rather than our own, as our
algorithms are designed to perform better when communication is much slower
than arithmetic.

7.2 Sequential machine model

We also apply the alpha-beta model to communication between levels of the
memory hierarchy in the sequential case. We restrict our model to describe
only two levels at one time: fast memory (which is smaller) and slow memory
(which is larger). The terms “fast” and “slow” are always relative. For example,
DRAM may be considered fast if the slow memory is disk, but DRAM may be
considered slow if the fast memory is cache. As in the parallel case, the time
to complete a transfer between two levels is modeled as α + βn. We assume
that user has explicit control over data movement (reads and writes) between
fast and slow memory. This offers an upper bound when control is implicit (as
with caches), and also allows our model as well as our algorithms to extend to
systems like the Cell processor (in which case fast memory is an individual local
store, and slow memory is DRAM).

We assume that the fast memory can hold W floating-point words. For any
QR factorization operating on an m× n matrix, the quantity

mn

W

bounds from below the number of loads from slow memory into fast memory
(as the method must read each entry of the matrix at least once). It is also
a lower bound on the number of stores from fast memory to slow memory (as
we assume that the algorithm must write the computed Q and R factors back
to slow memory). Sometimes we may refer to the block size P . In the case of
TSQR, we usually choose

P =
mn

3W
,

since at most three blocks of size P must be in fast memory at one time when
applying the Q or QT factor in sequential TSQR (see Section 4).

In the sequential case, just as in the parallel case, we assume all memory
transfers are nonoverlapped. Overlapping communication and computation may
provide up to a twofold performance improvement. However, some implemen-
tations may consume fast memory space in order to do buffering correctly. This
matters because the main goal of our sequential algorithms is to control fast

31



memory usage, often to solve problems that do not fit in fast memory. We usu-
ally want to use as much of fast memory as possible, in order to avoid expensive
transfers to and from slow memory.

8 TSQR implementation

In this section, we describe the TSQR factorization algorithm in detail. We
also build a performance model of the algorithm, based on the machine model
in Section 7 and the operation counts of the local QR factorizations in Sec-
tion 6. Parallel TSQR performs 2mn2/P + 2n3

3 log P flops, compared to the
2mn2/P−2n3/(3P ) flops performed by ScaLAPACK’s parallel QR factorization
PDGEQRF, but requires 2n times fewer messages. The sequential TSQR fac-
torization performs the same number of flops as sequential blocked Householder
QR, but requires Θ(n) times fewer transfers between slow and fast memory,
and a factor of Θ(m/

√
W ) times fewer words transferred, in which W is the fast

memory size.

8.1 Reductions and all-reductions

In Section 5, we gave a detailed description of (all-)reductions. We did so be-
cause the TSQR factorization is itself an (all-)reduction, in which additional
data (the components of the Q factor) is stored at each node of the (all-
)reduction tree. Applying the Q or QT factor is also a(n) (all-)reduction.

If we implement TSQR with an all-reduction, then we get the final R factor
replicated over all the processors. This is especially useful for Krylov subspace
methods. If we implement TSQR with a reduction, then the final R factor is
stored only on one processor. This avoids redundant computation, and is useful
both for block column factorizations for 2-D block (cyclic) matrix layouts, and
for solving least squares problems when the Q factor is not needed.

8.2 Factorization

We now describe the parallel and sequential TSQR factorizations for the 1-D
block row layout. (We omit the obvious generalization to a 1-D block cyclic row
layout.)

Parallel TSQR computes an R factor which is duplicated over all the pro-
cessors, and a Q factor which is stored implicitly in a distributed way. The
algorithm overwrites the lower trapezoid of Ai with the set of Householder re-
flectors for that block, and the τ array of scaling factors for these reflectors is
stored separately. The matrix Ri,k is stored as an n×n upper triangular matrix
for all stages k. Algorithm 3 shows an implementation of parallel TSQR, based
on an all-reduction. (Note that running Algorithm 3 on a matrix stored in a
1-D block cyclic layout still works, though it performs an implicit block row
permutation on the Q factor.)

32



Algorithm 3 Parallel TSQR
Require: Π is the set of P processors
Require: All-reduction tree with height L. If P is a power of two and we want

a binary all-reduction tree, then L = log2 P .
Require: i ∈ Π: my processor’s index
Require: The m × n input matrix A is distributed in a 1-D block row layout

over the processors; Ai is the block of rows belonging to processor i.
1: Compute [Qi,0, Ri,0] := qr(Ai) using sequential Householder QR
2: for k from 1 to L do
3: if I have any neighbors in the all-reduction tree at this level then
4: Send (non-blocking) Ri,k−1 to each neighbor not myself
5: Receive (non-blocking) Rj,k−1 from each neighbor j not myself
6: Wait until the above sends and receives complete . Note: not a

global barrier.
7: Stack the upper triangular Rj,k−1 from all neighbors (including my

own Ri,k−1), by order of processor ids, into a qn× n array C, in
which q is the number of neighbors.

8: Compute [Qi,k, Ri,k] := qr(C) using Algorithm 1 in Section 6.1
9: else

10: Ri,k := Ri,k−1

11: Qi,k := In×n . Stored implicitly
12: end if
13: Processor i has an implicit representation of its block column of Qi,k.

The blocks in the block column are n×n each and there are as many
of them as there are neighbors at stage k (including i itself). We
don’t need to compute the blocks explicitly here.

14: end for
Assert: Ri,L is the R factor of A, for all processors i ∈ Π.
Assert: The Q factor is implicitly represented by {Qi,k}: i ∈ Π, k ∈

{0, 1, . . . , L}}.

Sequential TSQR begins with an m × n matrix A stored in slow memory.
The matrix A is divided into P blocks A0, A1, . . . , AP−1, each of size m/P ×n.
(Here, P has nothing to do with the number of processors.) Each block of A is
loaded into fast memory in turn, combined with the R factor from the previous
step using a QR factorization, and the resulting Q factor written back to slow
memory. Thus, only one m/P×n block of A resides in fast memory at one time,
along with an n× n upper triangular R factor. Sequential TSQR computes an
n × n R factor which ends up in fast memory, and a Q factor which is stored
implicitly in slow memory as a set of blocks of Householder reflectors. Algorithm
4 shows an implementation of sequential TSQR.

33



Algorithm 4 Sequential TSQR
Require: The m×n input matrix A, stored in slow memory, is divided into P

row blocks A0, A1, . . . , AP−1

1: Load A0 into fast memory
2: Compute [Q00, R00] := qr(A0) using standard sequential QR. Here, the Q

factor is represented implicitly by an m/P × n lower triangular array of
Householder reflectors Y00 and their n associated scaling factors τ00

3: Write Y00 and τ00 back to slow memory; keep R00 in fast memory
4: for k = 1 to P − 1 do
5: Load Ak

6: Compute [Q01, R01] = qr([R0,k−1;Ak]) using the structured method ana-
lyzed in Appendix A.2.2. Here, the Q factor is represented implicitly
by a full m/P × n array of Householder reflectors Y0k and their n
associated scaling factors τ0k.

7: Write Y0k and τ0k back to slow memory; keep R0k in fast memory
8: end for

Assert: R0,P−1 is the R factor in the QR factorization of A, and is in fast
memory

Assert: The Q factor is implicitly represented by Q00, Q01, . . . , Q0,P−1, and
is in slow memory

8.2.1 Performance model

In Appendix D, we develop a performance model for parallel TSQR on a binary
tree. Appendix B does the same for sequential TSQR on a flat tree.

A parallel TSQR factorization on a binary reduction tree performs the fol-
lowing computations along the critical path: One local QR factorization of a
fully dense m/P × n matrix, and log P factorizations, each of a 2n × n matrix
consisting of two n× n upper triangular matrices. The factorization requires

2mn2

P
+

2n3

3
log P

flops and log P messages, and transfers a total of (1/2)n2 log P words between
processors. In contrast, parallel Householder QR requires

2mn2

P
− 2n3

3

flops and 2n log P messages, but also transfers (1/2)n2 log P words between
processors. For details, see Table 10 in Section 9.

Sequential TSQR on a flat tree performs the same number of flops as se-
quential Householder QR, namely

2mn2 − 2n3

3

34



flops. However, sequential TSQR only transfers

2mn− n(n + 1)
2

+
mn2

W̃

words between slow and fast memory, in which W̃ = W − n(n + 1)/2, and only
performs

2mn

W̃

transfers between slow and fast memory. In contrast, blocked sequential House-
holder QR transfers

m2n2

2W
− mn3

6W
+

3mn

2
− 3n2

4
words between slow and fast memory, and only performs

2mn

W
+

mn2

2W

transfers between slow and fast memory. For details, see Table 11 in Section 9.

8.3 Applying Q or QT to vector(s)

Just like Householder QR, TSQR computes an implicit representation of the Q
factor. One need not generate an explicit representation of Q in order to apply
the Q or QT operators to one or more vectors. In fact, generating an explicit Q
matrix requires just as many messages as applying Q or QT . (The performance
model for applying Q or QT is an obvious extension of the factorization perfor-
mance model; the parallel performance model is developed in Appendix D.3 and
the sequential performance model in Appendix B.3.) Furthermore, the implicit
representation can be updated or downdated, by using standard techniques (see
e.g., [26]) on the local QR factorizations recursively. The s-step Krylov methods
mentioned in Section 3 employ updating and downdating extensively.

In the case of the “thin” Q factor (in which the vector input is of length n),
applying Q involves a kind of broadcast operation (which is the opposite of a
reduction). If the “full” Q factor is desired, then applying Q or QT is a kind
of all-to-all (like the fast Fourier transform). Computing Q ·x runs through the
nodes of the (all-)reduction tree from leaves to root, whereas computing QT · y
runs from root to leaves.

9 Other “tall skinny” QR algorithms

There are many other algorithms besides TSQR for computing the QR factoriza-
tion of a tall skinny matrix. They differ in terms of performance and accuracy,
and may store the Q factor in different ways that favor certain applications over
others. In this section, we model the performance of the following competitors
to TSQR:

35



• Four different Gram-Schmidt variants

• CholeskyQR (see [58])

• Householder QR, with a block row layout

Each includes parallel and sequential versions. For Householder QR, we base our
parallel model on the ScaLAPACK routine PDGEQRF, and the sequential model
on left-looking blocked Householder. Our left-looking blocked Householder im-
plementation is modeled on the out-of-core ScaLAPACK routine PFDGEQRF,
which is left-looking instead of right-looking in order to minimize the number of
writes to slow memory (the total amount of data moved between slow and fast
memory is the same for both left-looking and right-looking blocked Householder
QR). See Appendix F for details. In the subsequent Section 10, we summarize
the numerical accuracy of these QR factorization methods, and discuss their
suitability for different applications.

In the parallel case, CholeskyQR and TSQR have comparable numbers of
messages and communicate comparable numbers of words, but CholeskyQR
requires a constant factor fewer flops along the critical path. However, the Q
factor computed by TSQR is always numerically orthogonal, whereas the Q
factor computed by CholeskyQR loses orthogonality proportionally to κ2(A)2.
The variants of Gram-Schmidt require at best a factor n more messages than
these two algorithms, and lose orthogonality at best proportionally to κ2(A).

9.1 Gram-Schmidt orthogonalization

Gram-Schmidt has two commonly used variations: “classical” (CGS) and “mod-
ified” (MGS). Both versions have the same floating-point operation count, but
MGS performs them in a different order to improve stability. We will show that
a parallel implementation of MGS uses at best 2n log P messages, in which P
is the number of processors, and a blocked sequential implementation requires
at least

mn2

2W − n(n + 1)

transfers between slow and fast memory, in which W is the fast memory capacity.
In contrast, parallel TSQR requires only log P messages, and sequential TSQR
only requires

4mn

2W − n(n + 1)

transfers between slow and fast memory, a factor of about n/4 less. See Tables
7 and 8 for details.

9.1.1 Left- and right-looking

Just like many matrix factorizations, both MGS and CGS come in left-looking
and right-looking variants. To distinguish between the variants, we append “ L”
resp. “ R” to the algorithm name to denote left- resp. right-looking. We show

36



all four combinations as Algorithms 5–8. Both right-looking and left-looking
variants loop from left to right over the columns of the matrix A. At iteration
k of this loop, the left-looking version only accesses columns 1 to k inclusive,
whereas the right-looking version only accesses columns k to n inclusive. Thus,
right-looking algorithms require the entire matrix to be available, which forbids
their use when the matrix is to be generated and orthogonalized one column at
a time. (In this case, only left-looking algorithms may be used.) We assume
here that the entire matrix is available at the start of the algorithm.

Right-looking Gram-Schmidt is usually called “row-oriented Gram-Schmidt,”
and by analogy, left-looking Gram-Schmidt is usually called “column-oriented
Gram-Schmidt.” We use the terms “right-looking” resp. “left-looking” for con-
sistency with the other QR factorization algorithms in this paper.

Algorithm 5 Modified Gram-Schmidt, right-looking
Require: A: m× n matrix with m ≥ n
1: for k = 1 to n do
2: R(k, k) := ‖A(:, k)‖2

3: Q(:, k) := A(:, k)/R(k, k)
4: R(k, k + 1 : n) := Q(:, k)T ·A(:, k + 1 : n)
5: A(:, k + 1 : n) := A(:, k + 1 : n)−R(k, k + 1 : n) ·Q(:, k)
6: end for

Algorithm 6 Modified Gram-Schmidt, left-looking
Require: A: m× n matrix with m ≥ n
1: for k = 1 to n do
2: v := A(:, k)
3: for j = 1 to k − 1 do . Data dependencies hinder vectorization
4: R(j, k) := Q(:, j)T · v . Change v to A(:, k) to get CGS
5: v := v −R(j, k) ·Q(:, j)
6: end for
7: R(k, k) := ‖v‖2

8: Q(:, k) := v/R(k, k)
9: end for

Algorithm 7 Classical Gram-Schmidt, right-looking
Require: A: m× n matrix with m ≥ n
1: V := A . Not copying A would give us right-looking MGS.
2: for k = 1 to n do
3: R(k, k) := ‖V (:, k)‖2

4: Q(:, k) := V (:, k)/R(k, k)
5: R(k, k + 1 : n) := Q(:, k)T ·A(:, k + 1 : n)
6: V (:, k + 1 : n) := V (:, k + 1 : n)−R(k, k + 1 : n) ·Q(:, k)
7: end for

37



Algorithm 8 Classical Gram-Schmidt, left-looking
Require: A: m× n matrix with m ≥ n
1: for k = 1 to n do
2: R(1 : k − 1, k) := Q(:, 1 : k − 1)T ·A(:, k). This and the next statement

are not vectorized in left-looking MGS.
3: A(:, k) := A(:, k)−R(1 : k− 1, k) ·Q(:, 1 : k− 1). In the sequential case,

one can coalesce the read of each block of A(:, k) in this statement
with the read of each block of A(:, k) in the next statement.

4: R(k, k) := ‖A(:, k)‖2

5: Q(:, k) := A(:, k)/R(k, k)
6: end for

9.1.2 Reorthogonalization

One can improve the stability of CGS by reorthogonalizing the vectors. The
simplest way is to make two orthogonalization passes per column, that is, to
orthogonalize the current column against all the previous columns twice. We
call this “CGS2.” This method only makes sense for left-looking Gram-Schmidt,
when there is a clear definition of “previous columns.” Normally one would
orthogonalize the column against all previous columns once, and then use some
orthogonality criterion to decide whether to reorthogonalize the column. As
a result, the performance of CGS2 is data-dependent, so we do not model its
performance here. In the worst case, it can cost twice as much as CGS L. Section
10 discusses the numerical stability of CGS2 and why “twice is enough.”

9.1.3 Parallel Gram-Schmidt

MGS L (Algorithm 6) requires about n/4 times more messages than MGS R
(Algorithm 5), since the left-looking algorithm’s data dependencies prevent the
use of matrix-vector products. CGS R (Algorithm 7) requires copying the entire
input matrix; not doing so results in MGS R (Algorithm 5), which is more
numerically stable in any case. Thus, for the parallel case, we favor MGS R and
CGS L for a fair comparison with TSQR.

In the parallel case, all four variants of MGS and CGS listed here require

2mn2

P
+ O

(mn

P

)
arithmetic operations, and involve communicating

n2

2
log(P ) + O(n log(P ))

floating-point words in total. MGS L requires

n2

2
log(P ) + O(n log(P ))

messages, whereas the other versions only need 2n log(P ) messages. Table 7
shows all four performance models.

38



Parallel algorithm # flops # messages # words
Right-looking MGS 2mn2/P 2n log(P ) n2

2 log(P )
Left-looking MGS 2mn2/P n2

2 log(P ) n2

2 log(P )
Right-looking CGS 2mn2/P 2n log(P ) n2

2 log(P )
Left-looking CGS 2mn2/P 2n log(P ) n2

2 log(P )

Table 7: Arithmetic operation counts, number of messages, and total commu-
nication volume (in number of words transferred) for parallel left-looking and
right-looking variants of CGS and MGS. Reductions are performed using a bi-
nary tree on P processors. Lower-order terms omitted.

9.1.4 Sequential Gram-Schmidt

For one-sided factorizations in the out-of-slow-memory regime, left-looking al-
gorithms require fewer writes than their right-looking analogues (see e.g., [61]).
We will see this in the results below, which is why we spend more effort analyzing
the left-looking variants.

Both MGS and CGS can be reorganized into blocked variants that work
on panels. These variants perform the same floating-point operations as their
unblocked counterparts, but save some communication. In the parallel case, the
blocked algorithms encounter the same latency bottleneck as ScaLAPACK’s
parallel QR factorization PDGEQRF, so we do not analyze them here. The
sequential case offers more potential for communication savings.

The analysis of blocked sequential Gram-Schmidt’s communication costs re-
sembles that of blocked left-looking Householder QR (see Appendix F), except
that Gram-Schmidt computes and stores the Q factor explicitly. This means
that Gram-Schmidt stores the upper triangle of the matrix twice: once for the
R factor, and once for the orthogonalized vectors. Left-looking MGS and CGS
would use a left panel of width b and a current panel of width c, just like blocked
left-looking Householder QR. Right-looking Gram-Schmidt would use a current
panel of width c and a right panel of width b. Unlike Householder QR, however,
Gram-Schmidt requires storing the R factor separately, rather than overwriting
the original matrix’s upper triangle. We assume here that W � n(n + 1)/2, so
that the entire R factor can be stored in fast memory. This need not be the
case, but it is a reasonable assumption for the “tall skinny” regime. If m ≈ n,
then Gram-Schmidt’s additional bandwidth requirements, due to working with
the upper triangle twice (once for the Q factor and once for the R factor), make
Householder QR more competitive than Gram-Schmidt.

For sequential MGS L, the number of words transferred between slow and
fast memory is about∑

j=1

n

c

(
2cm +

∑
k = 1

c(j − 1)
b

bm

)
=

3mn

2
+

mn2

2c
, (6)

39



and the number of messages is about

n2

2bc
+

2n

c
− n

2b
. (7)

The fast memory usage is about (b + c)m + n(n + 1)/2, so if we optimize for
bandwidth and take b = 1 and

c ≈ W − n(n + 1)/2
m

,

the number of words transferred between slow and fast memory is about

3mn

2
+

m2n2

2W − n(n + 1)
, (8)

and the number of messages is about (using the highest-order term only)

mn2

2W − n(n + 1)
. (9)

For sequential MGS R, the number of words transferred between slow and
fast memory is about

n
c∑

j=1

2cm +

n
b∑

k=
c(j−1)

b

2bm

 = 3mn +
mn2

c
+

2bmn

c
. (10)

This is always greater than the number of words transferred by MGS L. The
number of messages is about

n2

bc
+

4n

c
+

n

b
, (11)

which is also always greater than the number of messages transferred by MGS L.
Further analysis is therefore unnecessary; we should always use the left-looking
version.

Table 8 shows performance models for blocked versions of left-looking and
right-looking sequential MGS and CGS. We omit CGS R as it requires extra
storage and provides no benefits over MGS R.

9.2 CholeskyQR

CholeskyQR (Algorithm 9) is a QR factorization that requires only one all-
reduction [58]. In the parallel case, it requires log2 P messages, where P is the
number of processors. In the sequential case, it reads the input matrix only once.
Thus, it is optimal in the same sense that TSQR is optimal. Furthermore, the
reduction operator is matrix-matrix addition rather than a QR factorization of
a matrix with comparable dimensions, so CholeskyQR should always be faster

40



Sequential algorithm # flops # messages # words
Right-looking MGS 2mn2 2mn2

2W−n(n+1) 3mn + 2mn2

2W−n(n+1)

Left-looking MGS 2mn2 mn2

2W−n(n+1)
3mn

2 + m2n2

2W−n(n+1)

Left-looking CGS 2mn2 mn2

2W−n(n+1)
3mn

2 + m2n2

2W−n(n+1)

Table 8: Arithmetic operation counts, number of reads and writes, and total
communication volume (in number of words read and written) for sequential
left-looking CGS and MGS. W is the fast memory capacity in number of floating-
point words. Lower-order terms omitted.

Algorithm 9 CholeskyQR factorization
Require: A: m× n matrix with m ≥ n
1: W := AT A . (All-)reduction
2: Compute the Cholesky factorization L · LT of W
3: Q := AL−T

Assert: [Q,LT ] is the QR factorization of A

than TSQR. Section 12 supports this claim with performance data on a cluster.
Note that in the sequential case, P is the number of blocks, and we assume
conservatively that fast memory must hold 2mn/P words at once (so that W =
2mn/P ).

CholeskyQR begins by computing half of the symmetric matrix AT A. In
the parallel case, each processor i computes half of its component AT

i Ai locally.
In the sequential case, this happens one block at a time. Since this result is
a symmetric n× n matrix, the operation takes only mn2/P + O(mn/P ) flops.
These local components are then summed using a(n) (all-)reduction, which can
also exploit symmetry. The final operation, the Cholesky factorization, requires
n3/3 + O(n2) flops. (Choosing a more stable or robust factorization does not
improve the accuracy bound, as the accuracy has already been lost by computing
AT A.) Finally, the Q := AL−T operation costs mn2/P + O(mn/P ) flops per
block of A. Table 9 summarizes both the parallel and sequential performance
models. In Section 10, we compare the accuracy of CholeskyQR to that of
TSQR and other “tall skinny” QR factorization algorithms.

Algorithm # flops # messages # words
Parallel CholeskyQR 2mn2

P + n3

3 log(P ) n2

2 log(P )
Sequential CholeskyQR 2mn2 + n3

3
6mn
W 3mn

Table 9: Performance model of the parallel and sequential CholeskyQR factor-
ization. We assume W = 2mn/P in the sequential case, where P is the number
of blocks and W is the number of floating-point words that fit in fast memory.
Lower-order terms omitted. All parallel terms are counted along the critical
path.

41



9.3 Householder QR

Householder QR uses orthogonal reflectors to reduce a matrix to upper tridi-
agonal form, one column at a time (see e.g., [26]). In the current version of
LAPACK and ScaLAPACK, the reflectors are coalesced into block columns (see
e.g., [55]). This makes trailing matrix updates more efficient, but the panel
factorization is still standard Householder QR, which works one column at a
time. These panel factorizations are an asymptotic latency bottleneck in the
parallel case, especially for tall and skinny matrices. Thus, we model parallel
Householder QR without considering block updates. In contrast, we will see
that operating on blocks of columns can offer asymptotic bandwidth savings in
sequential Householder QR, so it pays to model a block column version.

9.3.1 Parallel Householder QR

ScaLAPACK’s parallel QR factorization routine, PDGEQRF, uses a right-looking
Householder QR approach [10]. The cost of PDGEQRF depends on how the orig-
inal matrix A is distributed across the processors. For comparison with TSQR,
we assume the same block row layout on P processors.

PDGEQRF computes an explicit representation of the R factor, and an im-
plicit representation of the Q factor as a sequence of Householder reflectors.
The algorithm overwrites the upper triangle of the input matrix with the R fac-
tor. Thus, in our case, the R factor is stored only on processor zero, as long as
m/P ≥ n. We assume m/P ≥ n in order to simplify the performance analysis.

Section 6.2 describes BLAS 3 optimizations for Householder QR. PDGEQRF

exploits these techniques in general, as they accelerate the trailing matrix up-
dates. We do not count floating-point operations for these optimizations here,
since they do nothing to improve the latency bottleneck in the panel factoriza-
tions.

In PDGEQRF, some processors may need to perform fewer flops than other
processors, because the number of rows in the current working column and the
current trailing matrix of A decrease by one with each iteration. With the
assumption that m/P ≥ n, however, all but the first processor must do the
same amount of work at each iteration. In the tall skinny regime, “flops on
the critical path” (which is what we count) is a good approximation of “flops
on each processor.” We count floating-point operations, messages, and words
transferred by parallel Householder QR on general matrix layouts in Section 15;
in particular, Equation (21) in that section gives a performance model.

Table 10 compares the performance of all the parallel QR factorizations
discussed here. We see that 1-D TSQR and CholeskyQR save both messages
and bandwidth over MGS R and ScaLAPACK’s PDGEQRF, but at the expense
of a higher-order n3 flops term.

9.3.2 Sequential Householder QR

LAPACK Working Note #118 describes a left-looking out-of-DRAM QR fac-
torization PFDGEQRF, which is implemented as an extension of ScaLAPACK

42



Parallel algorithm # flops # messages # words
TSQR 2mn2

P + 2n3

3 log(P ) log(P ) n2

2 log(P )
PDGEQRF 2mn2

P − 2n3

3P 2n log(P ) n2

2 log(P )
MGS R 2mn2

P 2n log(P ) n2

2 log(P )
CGS L 2mn2

P 2n log(P ) n2

2 log(P )
CholeskyQR 2mn2

P + n3

3 log(P ) n2

2 log(P )

Table 10: Performance model of various parallel QR factorization algorithms.
“CGS2” means CGS with one reorthogonalization pass. Lower-order terms
omitted. All parallel terms are counted along the critical path. We show only
the best-performing versions of MGS and CGS. We omit CGS2 because it is
no slower than applying CGS twice, but the number of orthogonalization steps
may vary based on the numerical properties of the input, so it is hard to predict
performance a priori.

[16]. It uses ScaLAPACK’s parallel QR factorization PDGEQRF to perform the
current panel factorization in DRAM. Thus, it is able to exploit parallelism.
We assume here, though, that it is running sequentially, since we are only in-
terested in modeling the traffic between slow and fast memory. PFDGEQRF is
a left-looking method, as usual with out-of-DRAM algorithms. The code keeps
two panels in memory: a left panel of fixed width b, and the current panel being
factored, whose width c can expand to fill the available memory. Appendix F
describes the method in more detail with performance counts, and Algorithm
14 in the Appendix gives an outline of the code.

See Equation (83) in Appendix F for the following counts. The PFDGEQRF

algorithm performs

2mn2 − 2n3

3
floating-point arithmetic operations, just like any sequential Householder QR
factorization. (Here and elsewhere, we omit lower-order terms.) It transfers a
total of about

m2n2

2W
− mn3

6W
+

3mn

2
− 3n2

4
floating-point words between slow and fast memory, and accesses slow memory
(counting both reads and writes) about

mn2

2W
+

2mn

W
− n

2
times. In contrast, sequential TSQR only requires

2mn

W̃

slow memory accesses, where W̃ = W − n(n + 1)/2, and only transfers

2mn− n(n + 1)
2

+
mn2

W̃

43



Sequential algorithm # flops # messages # words

TSQR 2mn2 − 2n3

3
2mn

W̃
2mn− n(n+1)

2
+ mn2

W̃

PFDGEQRF 2mn2 − 2n3

3
2mn
W

+ mn2

2W
m2n2

2W
− mn3

6W
+ 3mn

2
− 3n2

4

MGS 2mn2 2mn2

W̃

3mn
2

+ m2n2

2W̃

CholeskyQR 2mn2 + n3

3
6mn
W

3mn

Table 11: Performance model of various sequential QR factorization algorithms.
PFDGEQRF is our model of ScaLAPACK’s out-of-DRAM QR factorization; W
is the fast memory size, and W̃ = W − n(n + 1)/2. Lower-order terms omitted.
We omit CGS2 because it is no slower than applying CGS twice, but the number
of orthogonalization steps may vary based on the numerical properties of the
input, so it is hard to predict performance a priori.

words between slow and fast memory (see Equation (63) in Appendix B). We
note that we expect W to be a reasonably large multiple of n2, so that W̃ ≈ W .

Table 11 compares the performance of the sequential QR factorizations dis-
cussed in this section, including our modeled version of PFDGEQRF.

10 Numerical stability of TSQR and other QR
factorizations

In the previous section, we modeled the performance of various QR factorization
algorithms for tall and skinny matrices on a block row layout. Our models show
that CholeskyQR should have better performance than all the other methods.
However, numerical accuracy is also an important consideration for many users.
For example, in CholeskyQR, the loss of orthogonality of the computed Q factor
depends quadratically on the condition number of the input matrix (see Table
12). This is because computing the Gram matrix AT A squares the condition
number of A. One can avoid this stability loss by computing and storing AT A
in doubled precision. However, this doubles the communication volume. It also
increases the cost of arithmetic operations by a hardware-dependent factor.

Algorithm ‖I −QT Q‖2 bound Assumption on κ(A) Reference(s)
Householder QR O(ε) None [26]
TSQR O(ε) None [26]
CGS2 O(ε) O(εκ(A)) < 1 [1, 36]
MGS O(εκ(A)) None [6]
CholeskyQR O(εκ(A)2) None [58]
CGS O(εκ(A)n−1) None [36, 56]

Table 12: Upper bounds on deviation from orthogonality of the Q factor from
various QR algorithms. Machine precision is ε. “Assumption on κ(A)” refers to
any constraints which κ(A) must satisfy in order for the bound in the previous
column to hold.

44



Unlike CholeskyQR, CGS, or MGS, Householder QR is unconditionally sta-
ble. That is, the computed Q factors are always orthogonal to machine precision,
regardless of the properties of the input matrix [26]. This also holds for TSQR,
because the algorithm is composed entirely of no more than P Householder QR
factorizations, in which P is the number of input blocks. Each of these fac-
torizations is itself unconditionally stable. In contrast, the orthogonality of the
Q factor computed by CGS, MGS, or CholeskyQR depends on the condition
number of the input matrix. Reorthogonalization in MGS and CGS can make
the computed Q factor orthogonal to machine precision, but only if the input
matrix A is numerically full rank, i.e., if O(εκ(A)) < 1. Reorthogonalization
also doubles the cost of the algorithm.

However, sometimes some loss of accuracy can be tolerated, either to im-
prove performance, or for the algorithm to have a desirable property. For ex-
ample, in some cases the input vectors are sufficiently well-conditioned to allow
using CholeskyQR, and the accuracy of the orthogonalization is not so impor-
tant. Another example is GMRES. Its backward stability was proven first for
Householder QR orthogonalization, and only later for modified Gram-Schmidt
orthogonalization [29]. Users traditionally prefer the latter formulation, mainly
because the Householder QR version requires about twice as many floating-point
operations (as the Q matrix must be computed explicitly). Another reason is
that most GMRES descriptions make the vectors available for orthogonalization
one at a time, rather than all at once, as Householder QR would require (see
e.g., [63]). (Demmel et al. review existing techniques and present new meth-
ods for rearranging GMRES and other Krylov subspace methods for use with
Householder QR and TSQR [19].)

We care about stability for two reasons. First, an important application
of TSQR is the orthogonalization of basis vectors in Krylov methods. When
using Krylov methods to compute eigenvalues of large, ill-conditioned matrices,
the whole solver can fail to converge or have a considerably slower convergence
when the orthogonality of the Ritz vectors is poor [33, 38]. Second, we will use
TSQR in Section 13 as the panel factorization in a QR decomposition algorithm
for matrices of general shape. Users who ask for a QR factorization generally
expect it to be numerically stable. This is because of their experience with
Householder QR, which does more work than LU or Cholesky, but produces
more accurate results. Users who are not willing to spend this additional work
already favor faster but less stable algorithms.

Table 12 summarizes known upper bounds on the deviation from orthog-
onality ‖I − QT Q‖2 of the computed Q factor, as a function of the machine
precision ε and the input matrix’s two-norm condition number κ(A), for vari-
ous QR factorization algorithms. Except for CGS, all these bounds are sharp.
Smoktunowicz et al. demonstrate a matrix satisfying O(εκ(A)2) < 1 for which
‖I − QT Q‖2 is not O(εκ(A)2), but as far as we know, no matrix has yet been
found for which the ‖I −QT Q‖2 is O(εκ(A)n−1) bound is sharp [56].

In the table, “CGS2” refers to classical Gram-Schmidt with one reorthogo-
nalization pass. A single reorthgonalization pass suffices to make the Q factor
orthogonal to machine precision, as long as the input matrix is numerically

45



full rank, i.e., if O(εκ(A)) < 1. This is the source of Kahan’s maxim, “Twice
is enough” [48]: the accuracy reaches its theoretical best after one reorthogo-
nalization pass (see also [1]), and further reorthogonalizations do not improve
orthogonality. However, TSQR needs only half as many messages to do just as
well as CGS2. In terms of communication, TSQR’s stability comes for free.

11 Platforms of interest for TSQR experiments
and models

11.1 A large, but composable tuning space

TSQR is not a single algorithm, but a space of possible algorithms. It encom-
passes all possible reduction tree shapes, including:

1. Binary (to minimize number of messages in the parallel case)

2. Flat (to minimize communication volume in the sequential case)

3. Hybrid (to account for network topology, and/or to balance bandwidth
demands with maximum parallelism)

as well as all possible ways to perform the local QR factorizations, including:

1. (Possibly multithreaded) standard LAPACK (DGEQRF)

2. An existing parallel QR factorization, such as ScaLAPACK’s PDGEQRF

3. A “divide-and-conquer” QR factorization (e.g., [21])

4. Recursive (invoke another form of TSQR)

Choosing the right combination of parameters can help minimize communication
between any or all of the levels of the memory hierarchy, from cache and shared-
memory bus, to DRAM and local disk, to parallel filesystem and distributed-
memory network interconnects, to wide-area networks.

The huge tuning space makes it a challenge to pick the right platforms for
experiments. Luckily, TSQR’s hierarchical structure makes tunings composable.
For example, once we have a good choice of parameters for TSQR on a single
multicore node, we don’t need to change them when we tune TSQR for a cluster
of these nodes. From the cluster perspective, it’s as if the performance of the
individual nodes improved. This means that we can benchmark TSQR on a
small, carefully chosen set of scenarios, with confidence that they represent
many platforms of interest.

11.2 Platforms of interest

Here we survey a wide variety of interesting platforms for TSQR, and explain
the key features of each that we will distill into a small collection of experiments.

46



11.2.1 Single-node parallel, and explicitly swapping

The “cluster of shared-memory parallel (SMP) nodes” continues to provide a
good price-performance point for many large-scale applications. This alone
would justify optimizing the single-node case. Perhaps more importantly, the
“multicore revolution” seeks to push traditionally HPC applications into wider
markets, which favor the single-node workstation or even the laptop over the ex-
pensive, power-hungry, space-consuming, difficult-to-maintain cluster. A large
and expanding class of users may never run their jobs on a cluster.

Multicore SMPs can help reduce communication costs, but cannot elimi-
nate them. TSQR can exploit locality by sizing individual subproblems to fit
within any level of the memory hierarchy. This gives programmers explicit con-
trol over management of communication between levels, much like a traditional
“out-of-core” algorithm.3 TSQR’s hierarchical structure makes explicit swap
management easy; it’s just another form of communication. It gives us an opti-
mized implementation for “free” on platforms like Cell or GPUs, which require
explicitly moving data into separate storage areas for processing. Also, it lets
us easily and efficiently solve problems too large to fit in DRAM. This seems
like an old-fashioned issue, since an individual node nowadays can accommo-
date as much as 16 GB of DRAM. Explicitly swapping variants of libraries like
ScaLAPACK tend to be ill-maintained, due to lack of interest. However, we pre-
dict a resurgence of interest in explicitly-swapping algorithms, for the following
reasons:

• Single-node workstations will become more popular than multinode clus-
ters, as the number of cores per node increases.

• The amount of DRAM per node cannot scale linearly with the number of
cores per node, because of DRAM’s power requirements. Trying to scale
DRAM will wipe out the power savings promised by multicore parallelism.

• The rise to prominence of mobile computing – e.g., more laptops than
desktops were sold in U.S. retail in 2006 – drives increasing concern for
total-system power use.

• Most operating systems do not treat “virtual memory” as another level
of the memory hierarchy. Default and recommended configurations for
Linux, Windows XP, Solaris, and AIX on modern machines assign only
1–3 times as much swap space as DRAM, so it’s not accurate to think of
DRAM as a cache for disk. Few operating systems expand swap space
on demand, and expanding it manually generally requires administrative

3We avoid this label because it’s an anachronism (“core” refers to main system memory,
constructed of solenoids rather than transistors or DRAM), and because people now easily
confuse “core” with “processing unit” (in the sense of “multicore”). We prefer the more
precise term explicitly swapping, or “out-of-X” for a memory hierarchy level X. For example,
“out-of-DRAM” means using a disk, flash drive, or other storage device as swap space for
problems too large to solve in DRAM.

47



access to the machine. It’s better for security and usability to ask applica-
tions to adapt to the machine settings, rather than force users to change
their machine for their applications.

• Unexpected use of virtual memory swap space generally slows down ap-
plications by orders of magnitude. HPC programmers running batch jobs
consider this a performance problem serious enough to warrant terminat-
ing the job early and sizing down the problem. Users of interactive systems
typically experience large (and often frustrating) delays in whole-system
responsiveness when extensive swapping occurs.

• In practice, a single application need not consume all memory in order to
trigger the virtual memory system to swap extensively.

• Explicitly swapping software does not stress the OS’s virtual memory sys-
tem, and can control the amount of memory and disk bandwidth resources
that it uses.

• Alternate storage media such as solid-state drives offer more bandwidth
than traditional magnetic hard disks. Typical hard disk read or write
bandwidth as of this work’s publication date is around 60 MB/s, whereas
Samsung announced in May 2008 the upcoming release of a 256 GB capac-
ity solid-state drive with 200 MB/s read bandwidth and 160 MB/s write
bandwidth [43]. Solid-state drives are finding increasing use in mobile de-
vices and laptops, due to their lower power requirements. This will make
out-of-DRAM applications more attractive by widening any bandwidth
bottlenecks.

11.2.2 Distributed-memory machines

Avoiding communication is a performance-enhancing strategy for distributed-
memory architectures as well. TSQR can improve performance on traditional
clusters as well as other networked systems, such as grid and perhaps even
volunteer computing. Avoiding communication also makes improving network
reliability less of a performance burden, as software-based reliability schemes
use some combination of redundant and/or longer messages. Many distributed-
memory supercomputers have high-performance parallel filesystems, which in-
crease the bandwidth available for out-of-DRAM TSQR. This enables reducing
per-node memory requirements without increasing the number of nodes needed
to solve the problem.

11.3 Pruning the platform space

For single-node platforms, we think it pays to investigate both problems that fit
in DRAM (perhaps with explicit cache management), and problems too large to
fit in DRAM, that call for explicit swapping to a local disk. High-performance
parallel filesystems offer potentially much more bandwidth, but we chose not to
use them for our experiments for the following reasons:

48



• Lack of availability of a single-node machine with exclusive access to a
parallel filesystem

• On clusters, parallel filesystems are usually shared among all cluster users,
which would make it difficult to collect repeatable timings.

For multinode benchmarks, we opted for traditional clusters rather than vol-
unteer computing, due to the difficulty of obtaining repeatable timings in the
latter case.

11.4 Platforms for experiments

We selected the following experiments as characteristic of the space of platforms:

• Single node, sequential, out-of-DRAM, and

• Distributed memory, in-DRAM on each node.

We ran sequential TSQR on a laptop with a single PowerPC CPU. It repre-
sents the embedded and mobile space, with its tighter power and heat require-
ments. Details of the platform are as follows:

• Single-core PowerPC G4 (1.5 GHz)

• 512 KB of L2 cache

• 512 MB of DRAM on a 167 MHz bus

• One Fujitsu MHT2080AH 80 HB hard drive (5400 RPM)

• MacOS X 10.4.11

• GNU C Compiler (gcc), version 4.0.1

• vecLib (Apple’s optimized dense linear algebra library), version 3.2.2

We ran parallel TSQR on the following distributed-memory machines:

1. Pentium III cluster (“Beowulf”)

• Operated by the University of Colorado at Denver and the Health
Sciences Center

• 35 dual-socket 900 MHz Pentium III nodes with Dolphin interconnect

• Floating-point rate: 900 Mflop/s per processor, peak

• Network latency: less than 2.7 µs, benchmarked4

• Network bandwidth: 350 MB/s, benchmarked upper bound

2. IBM BlueGene/L (“Frost”)

4See http://www.dolphinics.com/products/benchmarks.html.

49



• Operated by the National Center for Atmospheric Research

• One BlueGene/L rack with 1024 700 MHz compute CPUs

• Floating-point rate: 2.8 Gflop/s per processor, peak

• Network5 latency: 1.5 µs, hardware

• Network one-way bandwidth: 350 MB/s, hardware

11.5 Platforms for performance models

In Section 16, we estimate performance of CAQR, our QR factorization algo-
rithm on a 2-D matrix layout, on three different parallel machines: an existing
IBM POWER5 cluster with a total of 888 processors (“IBM POWER5”), a
future proposed petascale machine with 8192 processors (“Peta”), and a collec-
tion of 128 processors linked together by the Internet (“Grid”). Here are the
parameters we use in our models for the three parallel machines:

• IBM POWER5

– 888 processors

– Floating-point rate: 7.6 Gflop/s per processor, peak

– Network latency: 5 µs

– Network bandwidth: 3.2 GB/s

• Peta

– 8192 processors

– Floating-point rate: 500 Gflop/s per processor, peak

– Network latency: 10 µs

– Network bandwidth: 4 GB/s

• Grid

– 128 processors

– Floating-point rate: 10 Tflop/s, peak

– Network latency: 0.1 s

– Network bandwidth: 0.32 GB/s

Peta is our projection of a future high-performance computing cluster, and Grid
is our projection of a collection of geographically separated high-performance
clusters, linked over a TeraGrid-like backbone. Each “processor” of Peta may
itself be a parallel multicore node, but we consider it as a single fast sequential
processor for the sake of our model. Similarly, each “processor” of Grid is itself
a cluster, but we consider it as a single very fast sequential processor.

5The BlueGene/L has two separate networks – a torus for nearest-neighbor communication
and a tree for collectives. The latency and bandwidth figures here are for the collectives
network.

50



12 TSQR performance results

12.1 Scenarios used in experiments

Previous work covers some parts of the tuning space mentioned in Section 11.3.
Gunter et al. implemented an out-of-DRAM version of TSQR on a flat tree, and
used a parallel distributed QR factorization routine to factor in-DRAM blocks
[32]. Pothen and Raghavan [49] and Cunha et al. [15] both benchmarked parallel
TSQR using a binary tree on a distributed-memory cluster, and implemented
the local QR factorizations with a single-threaded version of DGEQRF. All
these researchers observed significant performance improvements over previous
QR factorization algorithms.

We chose to run two sets of experiments. The first set covers the out-of-
DRAM case on a single CPU. The second set is like the parallel experiments of
previous authors in that it uses a binary tree on a distributed-memory cluster,
but it improves on their approach by using a better local QR factorization (the
divide-and-conquer approach – see [22]).

12.2 Sequential out-of-DRAM tests

We developed an out-of-DRAM version of TSQR that uses a flat reduction tree.
It invokes the system vendor’s native BLAS and LAPACK libraries. Thus,
it can exploit a multithreaded BLAS on a machine with multiple CPUs, but
the parallelism is limited to operations on a single block of the matrix. We
used standard POSIX blocking file operations, and made no attempt to overlap
communication and computation. Exploiting overlap could at best double the
performance.

We ran sequential tests on a laptop with a single PowerPC CPU, as described
in Section 11.4. In our experiments, we first used both out-of-DRAM TSQR
and standard LAPACK QR to factor a collection of matrices that use only
slightly more than half of the total DRAM for the factorization. This was so
that we could collect comparison timings. Then, we ran only out-of-DRAM
TSQR on matrices too large to fit in DRAM or swap space, so that an out-of-
DRAM algorithm is necessary to solve the problem at all. For the latter timings,
we extrapolated the standard LAPACK QR timings up to the larger problem
sizes, in order to estimate the runtime if memory were unbounded. LAPACK’s
QR factorization swaps so much for out-of-DRAM problem sizes that its actual
runtimes are many times larger than these extrapolated unbounded-memory
runtime estimates. As mentioned in Section 11.2, once an in-DRAM algorithm
begins swapping, it becomes so much slower that most users prefer to abort
the computation and try solving a smaller problem. No attempt to optimize by
overlapping communication and computation was made.

We used the following power law for the extrapolation:

t = A1bm
A2nA3 ,

in which t is the time spent in computation, b is the number of input matrix

51



blocks, m is the number of rows per block, and n is the number of columns in
the matrix. After taking logarithms of both sides, we performed a least squares
fit of log(A1), A2, and A3. The value of A2 was 1, as expected. The value of
A3 was about 1.6. This is less than 2 as expected, given that increasing the
number of columns increases the computational intensity and thus the potential
for exploitation of locality (a BLAS 3 effect). We expect around two digits of
accuracy in the parameters, which in themselves are not as interesting as the
extrapolated runtimes; the parameter values mainly serve as a sanity check.

12.2.1 Results

Figure 5 shows the measured in-DRAM results on the laptop platform, and
Figure 6 shows the (measured TSQR, extrapolated LAPACK) out-of-DRAM
results on the same platform. In these figures, the number of blocks used, as
well as the number of elements in the input matrix (and thus the total volume
of communication), is the same for each group of five bars. We only varied the
number of blocks and the number of columns in the matrix. For each graph, the
total number of rows in the matrix is constant for all groups of bars. Note that
we have not tried to overlap I/O and computation in this implementation. The
trends in Figure 5 suggest that the extrapolation is reasonable: TSQR takes
about twice as much time for computation as does standard LAPACK QR, and
the fraction of time spent in I/O is reasonable and decreases with problem size.

TSQR assumes that the matrix starts and ends on disk, whereas LAPACK
starts and ends in DRAM. Thus, to compare the two, one could also estimate
LAPACK performance with infinite DRAM but where the data starts and ends
on disk. The height of the reddish-brown bars in Figures 5 and 6 is the I/O
time for TSQR, which can be used to estimate the LAPACK I/O time. Add
this to the blue bar (the LAPACK compute time) to estimate the runtime when
the LAPACK QR routine must load the matrix from disk and store the results
back to disk.

12.2.2 Conclusions

The main purpose of our out-of-DRAM code is not to outperform existing in-
DRAM algorithms, but to be able to solve classes of problems which the existing
algorithms cannot solve. The above graphs show that the penalty of an explicitly
swapping approach is about 2x, which is small enough to warrant its practical
use. This holds even for problems with a relatively low computational intensity,
such as when the input matrix has very few columns. Furthermore, picking the
number of columns sufficiently large may allow complete overlap of file I/O by
computation.

12.3 Parallel cluster tests

We also have results from a parallel MPI implementation of TSQR on a binary
tree. Rather than LAPACK’s DGEQRF, the code uses a custom local QR factor-

52



(8,2097152) (32,524288) (16,1048576)
0

10

20

30

40

50

60

70

Test run (# of blocks, # entries per block) with ncols = 4,8,16,32,64 and 4194304 rows in matrix

Ru
nt

im
e 

in
 s

ec
on

ds

Runtimes: out−of−DRAM TSQR, vs. in−DRAM (actual/projected), on PPC G4 (512 MB DRAM)

 

 

In−DRAM compute time (s)
Out−of−DRAM compute time (s)
Out−of−DRAM total time (s)

Figure 5: Runtimes (in seconds) of out-of-DRAM TSQR and standard QR (LA-
PACK’s DGEQRF) on a single-processor laptop. All data is measured. We limit
memory usage to 256 MB, which is half of the laptop’s total system memory, so that
we can collect performance data for DGEQRF. The graphs show different choices of
block dimensions and number of blocks. The top of the blue bar is the benchmarked
total runtime for DGEQRF, the top of the green bar is the benchmarked compute time
for TSQR, and the top of the brown bar is the benchmarked total time for TSQR.
Thus the height of the brown bar alone is the I/O time. Note that LAPACK starts
and ends in DRAM, and TSQR starts and ends on disk.

53



(512,524288) (256,1048576)
0

200

400

600

800

1000

1200

Test run (# of blocks, # entries per block) with ncols = 4,8,16,32,64 and 67108864 rows in matrix

Ru
nt

im
e 

in
 s

ec
on

ds

Runtimes: out−of−DRAM TSQR, vs. in−DRAM (actual/projected), on PPC G4 (512 MB DRAM)

 

 

Projected in−DRAM compute time (s)
Out−of−DRAM compute time (s)
Out−of−DRAM total time (s)

Figure 6: Measured runtime (in seconds) of out-of-DRAM TSQR, compared against
extrapolated runtime (in seconds) of standard QR (LAPACK’s DGEQRF) on a single-
processor laptop. We use the data in Figure 5 to construct a power-law performance
extrapolation. The graphs show different choices of block dimensions and number of
blocks. The top of the blue bar is the extrapolated total runtime for DGEQRF, the
top of the green bar is the benchmarked compute time for TSQR, and the top of the
brown bar is the benchmarked total time for TSQR. Thus the height of the brown bar
alone is the I/O time. Note that LAPACK starts and ends in DRAM (if it could fit
in DRAM), and TSQR starts and ends on disk.

54



# procs CholeskyQR TSQR CGS MGS TSQR ScaLAPACK
(DGEQR3) (DGEQRF)

1 1.02 4.14 3.73 7.17 9.68 12.63
2 0.99 4.00 6.41 12.56 15.71 19.88
4 0.92 3.35 6.62 12.78 16.07 19.59
8 0.92 2.86 6.87 12.89 11.41 17.85
16 1.00 2.56 7.48 13.02 9.75 17.29
32 1.32 2.82 8.37 13.84 8.15 16.95
64 1.88 5.96 15.46 13.84 9.46 17.74

Table 13: Runtime in seconds of various parallel QR factorizations on the
Beowulf machine. The total number of rows m = 100000 and the ratio
dn/

√
P e = 50 (with P being the number of processors) were kept constant

as P varied from 1 to 64. This illustrates weak scaling with respect to the
square of the number of columns n in the matrix, which is of interest because
the number of floating-point operations in sequential QR is Θ(mn2). If an algo-
rithm scales perfectly, then all the numbers in that algorithm’s column should
be constant. Both the Q and R factors were computed explicitly; in particular,
for those codes which form an implicit representation of Q, the conversion to
an explicit representation was included in the runtime measurement.

# procs CholeskyQR TSQR CGS MGS TSQR ScaLAPACK
(DGEQR3) (DGEQRF)

1 0.45 3.43 3.61 7.13 7.07 7.26
2 0.47 4.02 7.11 14.04 11.59 13.95
4 0.47 4.29 6.09 12.09 13.94 13.74
8 0.50 4.30 7.53 15.06 14.21 14.05
16 0.54 4.33 7.79 15.04 14.66 14.94
32 0.52 4.42 7.85 15.38 14.95 15.01
64 0.65 4.45 7.96 15.46 14.66 15.33

Table 14: Runtime in seconds of various parallel QR factorizations on the Be-
owulf machine, illustrating weak scaling with respect to the total number of
rows m in the matrix. The ratio dm/P e = 100000 and the total number of
columns n = 50 were kept constant as the number of processors P varied from 1
to 64. If an algorithm scales perfectly, then all the numbers in that algorithm’s
column should be constant. For those algorithms which compute an implicit
representation of the Q factor, that representation was left implicit.

55



# procs TSQR ScaLAPACK
(DGEQR3) (DGEQRF) (PDGEQRF) (PDGEQR2)

32 690 276 172 206
64 666 274 172 206
128 662 316 196 232
256 610 322 184 218

Table 15: Performance per processor (Mflop / s / (# processors)) on a 106× 50
matrix, on the Frost machine. This metric illustrates strong scaling (constant
problem size, but number of processors increases). If an algorithm scales per-
fectly, than all the numbers in that algorithm’s column should be constant.
DGEQR3 is a recursive local QR factorization, and DGEQRF LAPACK’s stan-
dard local QR factorization.

ization, DGEQR3, based on the recursive approach of Elmroth and Gustavson
[22]. Tests show that DGEQR3 consistently outperforms LAPACK’s DGEQRF

by a large margin for matrix dimensions of interest.
We ran our experiments on two platforms: a Pentium III cluster (“Beowulf”)

and on a BlueGene/L (“Frost”), both described in detail in Section 11.4. The
experiments compare many different implementations of a parallel QR factor-
ization. “CholeskyQR” first computes the product AT A using a reduction, then
performs a QR factorization of the product. It is less stable than TSQR, as it
squares the condition number of the original input matrix (see Table 12 in Sec-
tion 10 for a stability comparison of various QR factorization methods). TSQR
was tested both with the recursive local QR factorization DGEQR3, and the
standard LAPACK routine DGEQRF. Both CGS and MGS were timed.

12.3.1 Results

Tables 13 and 14 show the results of two different performance experiments
on the Pentium III cluster. In the first of these, the total number of rows
m = 100000 and the ratio dn/

√
P e = 50 (with P being the number of processors)

were kept constant as P varied from 1 to 64. This was meant to illustrate
weak scaling with respect to n2 (the square of the number of columns in the
matrix), which is of interest because the number of floating-point operations in
sequential QR is Θ(mn2). If an algorithm scales perfectly, then all the numbers
in that algorithm’s column should be constant. Both the Q and R factors
were computed explicitly; in particular, for those codes which form an implicit
representation of Q, the conversion to an explicit representation was included
in the runtime measurement. The results show that TSQR scales better than
CGS or MGS, and significantly outperforms ScaLAPACK’s QR. Also, using the
recursive local QR in TSQR, rather than LAPACK’s QR, more than doubles
performance. CholeskyQR gets the best performance of all the algorithms, but
at the expense of significant loss of orthogonality.

Table 14 shows the results of the second set of experiments on the Pentium
III cluster. In these experiments, the ratio dm/P e = 100000 and the total

56



number of columns n = 50 were kept constant as the number of processors P
varied from 1 to 64. This was meant to illustrate weak scaling with respect
to the total number of rows m in the matrix. If an algorithm scales perfectly,
then all the numbers in that algorithm’s column should be constant. Unlike in
the previous set of experiments, for those algorithms which compute an implicit
representation of the Q factor, that representation was left implicit. The results
show that TSQR scales well. In particular, when using TSQR with the recursive
local QR factorization, there is almost no performance penalty for moving from
one processor to two, unlike with CGS, MGS, and ScaLAPACK’s QR. Again,
the recursive local QR significantly improves TSQR performance; here it is the
main factor in making TSQR perform better than ScaLAPACK’s QR.

Table 15 shows the results of the third set of experiments, which was per-
formed on the BlueGene/L cluster “Frost.” These data show performance per
processor (Mflop / s / (number of processors)) on a matrix of constant di-
mensions 106 × 50, as the number of processors was increased. This illustrates
strong scaling. If an algorithm scales perfectly, than all the numbers in that al-
gorithm’s column should be constant. Two different versions of ScaLAPACK’s
QR factorization were used: PDGEQR2 is the textbook Householder QR panel
factorization, and PDGEQRF is the blocked version which tries to coalesce mul-
tiple trailing matrix updates into one. The results again show that TSQR scales
at least as well as ScaLAPACK’s QR factorization, which unlike TSQR is pre-
sumably highly tuned on this platform. Furthermore, using the recursive local
QR factorization with TSQR makes its performance competitive with that of
ScaLAPACK.

12.3.2 Conclusions

Both the Pentium III and BlueGene/L platforms have relatively slow proces-
sors with a relatively low-latency interconnect. TSQR was optimized for the
opposite case of fast processors and expensive communication. Nevertheless,
TSQR outperforms ScaLAPACK’s QR by 6.8× on 16 processors (and 3.5×
on 64 processors) on the Pentium III cluster, and successfully competes with
ScaLAPACK’s QR on the BlueGene/L machine.

13 Parallel 2-D QR factorization

The parallel CAQR (“Communication-Avoiding QR”) algorithm uses parallel
TSQR to perform a right-looking QR factorization of a dense matrix A on a two-
dimensional grid of processors P = Pr ×Pc. The m×n matrix (with m ≥ n) is
distributed using a 2-D block cyclic layout over the processor grid, with blocks of
dimension b×b. We assume that all the blocks have the same size; we can always
pad the input matrix with zero rows and columns to ensure this is possible. For a
detailed description of the 2-D block cyclic layout of a dense matrix, please refer
to [7], in particular to the section entitled “Details of Example Program #1.”
There is also an analogous sequential version of CAQR, which we summarize

57



in Section 14 and describe in detail in Appendix C. In summary, Table 16 says
that the number of arithmetic operations and words transferred is roughly the
same between parallel CAQR and ScaLAPACK’s parallel QR factorization, but
the number of messages is a factor b times lower for CAQR. For related work
on parallel CAQR, see the second paragraph of Section 14.

CAQR is based on TSQR in order to minimize communication. At each
step of the factorization, TSQR is used to factor a panel of columns, and the
resulting Householder vectors are applied to the rest of the matrix. As we will
show, the block column QR factorization as performed in PDGEQRF is the
latency bottleneck of the current ScaLAPACK QR algorithm. Replacing this
block column factorization with TSQR, and adapting the rest of the algorithm to
work with TSQR’s representation of the panel Q factors, removes the bottleneck.
We use the reduction-to-one-processor variant of TSQR, as the panel’s R factor
need only be stored on one processor (the pivot block’s processor).

CAQR is defined inductively. We assume that the first j−1 iterations of the
CAQR algorithm have been performed. That is, j − 1 panels of width b have
been factored and the trailing matrix has been updated. The active matrix
at step j (that is, the part of the matrix which needs to be worked on) is of
dimension

(m− (j − 1)b)× (n− (j − 1)b) = mj × nj .

Figure 7: Step j of the QR factorization algorithm. First, the current panel of
width b, consisting of the blocks B0, B1, . . . , Bp−1, is factorized using TSQR.
Here, p is the number of blocks in the current panel. Second, the trailing
matrix, consisting of the blocks C0, C1, . . . , Cp−1, is updated. The matrix
elements above the current panel and the trailing matrix belong to the R factor
and will not be modified further by the QR factorization.

Figure 7 shows the execution of the QR factorization. For the sake of sim-
plicity, we suppose that processors 0, . . . , Pr − 1 lie in the column of processes
that hold the current panel j. The mj×b matrix B represents the current panel
j. The mj × (nj − b) matrix C is the trailing matrix that needs to be updated

58



after the TSQR factorization of B. For each processor p, we refer to the first b
rows of its first block row of B and C as Bp and Cp respectively.

We first introduce some notation to help us refer to different parts of a binary
TSQR reduction tree.

• level(i, k) =
⌊

i
2k

⌋
denotes the node at level k of the reduction tree which

is assigned to a set of processors that includes processor i. The initial
stage of the reduction, with no communication, is k = 0.

• first proc(i, k) = 2klevel(i, k) is the index of the “first” processor asso-
ciated with the node level(i, k) at stage k of the reduction tree. In a
reduction (not an all-reduction), it receives the messages from its neigh-
bors and performs the local computation.

• target(i, k) = first proc(i, k) + (i + 2k−1) mod 2k is the index of the
processor with which processor i exchanges data at level k of the butterfly
all-reduction algorithm.

• target first proc(i, k) = target(first proc(i, k)) = first proc(i, k)+2k−1

is the index of the processor with which first proc(i, k) exchanges data
in an all-reduction at level k, or the index of the processor which sends its
data to first proc(i, k) in a reduction at level k.

Algorithm 10 outlines the right-looking parallel QR decomposition. At it-
eration j, first, the block column j is factored using TSQR. We assume for
ease of exposition that TSQR is performed using a binary tree. After the block
column factorization is complete, the matrices Cp are updated as follows. The
update corresponding to the QR factorization at the leaves of the TSQR tree is
performed locally on every processor. The updates corresponding to the upper
levels of the TSQR tree are performed between groups of neighboring trailing
matrix processors as described in Section 6.4. Note that only one of the trailing
matrix processors in each neighbor group continues to be involved in successive
trailing matrix updates. This allows overlap of computation and communica-
tion, as the uninvolved processors can finish their computations in parallel with
successive reduction stages.

We see that CAQR consists of n
b TSQR factorizations involving Pr processors

each, and n/b − 1 applications of the resulting Householder vectors. Table 16
expresses the performance model over a rectangular Pr × Pc grid of processors.
A detailed derivation of the model is given in Appendix E. According to the
table, the number of arithmetic operations and words transferred is roughly the
same between parallel CAQR and ScaLAPACK’s parallel QR factorization, but
the number of messages is a factor b times lower for CAQR.

The parallelization of the computation is represented by the number of mul-
tiplies and adds and by the number of divides, in Table 16. We discuss first
the parallelization of multiplies and adds. The first term for CAQR represents
mainly the parallelization of the local Householder update corresponding to the
leaves of the TSQR tree (the matrix-matrix multiplication in line 4 of Algorithm

59



Algorithm 10 Right-looking parallel CAQR factorization
1: for j = 1 to n/b do
2: The column of processors that holds panel j computes a TSQR factoriza-

tion of this panel. The Householder vectors are stored in a tree-like
structure as described in Section 8.

3: Each processor p that belongs to the column of processes holding panel
j broadcasts along its row of processors the mj/Pr × b rectangular
matrix that holds the two sets of Householder vectors. Processor p
also broadcasts two arrays of size b each, containing the Householder
multipliers τp.

4: Each processor in the same process row as processor p, 0 ≤ p < Pr,
forms Tp0 and updates its local trailing matrix C using Tp0 and Yp0.
(This computation involves all processors.)

5: for k = 1 to log Pr, the processors that lie in the same row as processor p,
where 0 ≤ p < Pr equals first proc(p, k) or target first proc(p, k),
respectively. do

6: Processors in the same process row as target first proc(p, k) form
Tlevel(p,k),k locally. They also compute local pieces of W =
Y T

level(p,k),kCtarget first proc(p,k), leaving the results distributed.
This computation is overlapped with the communication in Line
7.

7: Each processor in the same process row as first proc(p, k) sends
to the processor in the same column and belonging to the
row of processors of target first proc(p, k) the local pieces of
Cfirst proc(p,k).

8: Processors in the same process row as target first proc(p, k) com-
pute local pieces of

W = TT
level(p,k),k

(
Cfirst proc(p,k) + W

)
.

9: Each processor in the same process row as target first proc(p, k)
sends to the processor in the same column and belonging to the
process row of first proc(p, k) the local pieces of W .

10: Processors in the same process row as first proc(p, k) and
target first proc(p, k) each complete the rank-b updates
Cfirst proc(p,k) := Cfirst proc(p,k)−W and Ctarget first proc(p,k) :=
Ctarget first proc(p,k) − Ylevel(p,k),k ·W locally. The latter compu-
tation is overlapped with the communication in Line 9.

11: end for
12: end for

10), and matches the first term for PDGEQRF. The second term for CAQR cor-
responds to forming the Tp0 matrices for the local Householder update in line 4
of the algorithm, and also has a matching term for PDGEQRF. The third term

60



Parallel CAQR

# messages 3n
b

log Pr + 2n
b

log Pc

# words
“

n2

Pc
+ bn

2

”
log Pr +

“
mn−n2/2

Pr
+ 2n

”
log Pc

# flops 2n2(3m−n)
3P

+ bn2

2Pc
+ 3bn(2m−n)

2Pr
+

“
4b2n

3
+ n2(3b+5)

2Pc

”
log Pr − b2n

# divisions mn−n2/2
Pr

+ bn
2

(log Pr − 1)

ScaLAPACK’s PDGEQRF

# messages 3n log Pr + 2n
b

log Pc

# words
“

n2

Pc
+ bn

”
log Pr +

“
mn−n2/2

Pr
+ bn

2

”
log Pc

# flops 2n2(3m−n)
3P

+ bn2

2Pc
+ 3bn(2m−n)

2Pr
− b2n

3Pr

# divisions mn−n2/2
Pr

Table 16: Performance models of parallel CAQR and ScaLAPACK’s PDGEQRF

when factoring an m × n matrix, distributed in a 2-D block cyclic layout on a
Pr ×Pc grid of processors with square b× b blocks. All terms are counted along
the critical path. In this table exclusively, “flops” only includes floating-point
additions and multiplications, not floating-point divisions. Some lower-order
terms are omitted. We generally assume m ≥ n. Note that the number of flops,
divisions, and words transferred all roughly match between the two algorithms,
but the number of messages is about b times lower for CAQR.

for CAQR represents the QR factorization of a panel of width b that corresponds
to the leaves of the TSQR tree (part of line 2) and part of the local rank-b up-
date (triangular matrix-matrix multiplication) in line 4 of the algorithm, and
also has a matching term for PDGEQRF.

The fourth term in the number of multiplies and adds for CAQR represents
the redundant computation introduced by the TSQR formulation. In this term,
the number of flops performed for computing the QR factorization of two upper
triangular matrices at each node of the TSQR tree is (2/3)nb2 log(Pr). The
number of flops performed during the Householder updates issued by each QR
factorization of two upper triangular matrices is n2(3b + 5)/(2Pc) log(Pr).

The runtime estimation in Table 16 does not take into account the overlap
of computation and communication in lines 6 and 7 of Algorithm 10 or the
overlap in steps 9 and 10 of the algorithm. Suppose that at each step of the QR
factorization, the condition

α + β
b(nj − b)

Pc
> γb(b + 1)

nj − b

Pc

is fulfilled. This is the case for example when β/γ > b+1. Then the fourth non-
division flops term that accounts for the redundant computation is decreased
by n2(b + 1) log(Pr)/Pc, about a factor of 3.

The execution time for a square matrix (m = n), on a square grid of pro-
cessors (Pr = Pc =

√
P ) and with more lower order terms ignored, simplifies

61



Parallel CAQR w/ optimal b, Pr, Pc

# flops 2mn2

P − 2n3

3P

# messages 1
4C

√
nP
m log2

(
mP
n

)
· log

(
P
√

mP
n

)
# words

√
mn3

P log P − 1
4

√
n5

mP log
(

nP
m

)
Optimal b C

√
mn
P log−2

(
mP
n

)
Optimal Pr

√
mP
n

Optimal Pc

√
nP
m

PDGEQRF w/ optimal b, Pr, Pc

# flops 2mn2

P − 2n3

3P

# messages n
4C log

(
mP 5

n

)
log
(

mP
n

)
+ 3n

2 log
(

mP
n

)
# words

√
mn3

P log P − 1
4

√
n5

mP log
(

nP
m

)
Optimal b C

√
mn
P log−1

(
mP
n

)
Optimal Pr

√
mP
n

Optimal Pc

√
nP
m

Theoretical lower bound

# messages
√

nP
211m

# words
√

mn3

211P

Table 17: Highest-order terms in the performance models of parallel CAQR,
ScaLAPACK’s PDGEQRF, and theoretical lower bounds for each, when factor-
ing an m× n matrix, distributed in a 2-D block cyclic layout on a Pr × Pc grid
of processors with square b× b blocks. All terms are counted along the critical
path. The theoretical lower bounds assume that n ≥ 211m/P , i.e., that the
matrix is not too tall and skinny. The parameter C in both algorithms is a
Θ(1) tuning parameter. In summary, if we choose b, Pr, and Pc independently
and optimally for both algorithms, the two algorithms match in the number of
flops and words transferred, but CAQR sends a factor of Θ(

√
mn/P ) messages

fewer than ScaLAPACK QR. This factor is the local memory requirement on
each processor, up to a small constant.

to:

TPar. CAQR(n, n,
√

P ,
√

P ) = γ

(
4n3

3P
+

3n2b

4
√

P
log P

)
+β

3n2

4
√

P
log P + α

5n

2b
log P.

(12)

62



13.1 Choosing b, Pr, and Pc to minimize runtime

A simple 2-D block layout may not be optimal for all possible m, n, and P .
In order to minimize the runtime of parallel CAQR, we could use a general
nonlinear optimization algorithm to minimize the runtime model (see Table 16)
with respect to b, Pr, and Pc. However, some general heuristics can improve
insight into the roles of these parameters. For example, we would like to choose
them such that the flop count is 2mn2/P − (2/3)n3/P plus lower-order terms,
just as in ScaLAPACK’s parallel QR factorization. We follow this heuristic in
the following paragraphs. In summary, if we choose b, Pr, and Pc independently
and optimally for both parallel CAQR and ScaLAPACK’s parallel Householder
QR, the two algorithms match in the number of flops and words transferred,
but CAQR sends a factor of Θ(

√
mn/P ) messages fewer than ScaLAPACK QR

(see Table 17). This factor is the local memory requirement on each processor,
up to a small constant.

13.1.1 Ansatz

The parameters b, Pr and Pc are integers which must satisfy the following
conditions:

1 ≤ Pr, Pc ≤ P

Pr · Pc = P

1 ≤ b ≤ m

Pr

1 ≤ b ≤ n

Pc

(13)

We assume in the above that Pr evenly divides m and that Pc evenly divides
n. From now on in this section (Section 13.1.1), we implicitly allow b, Pr, and
Pc to range over the reals. The runtime models are sufficiently smooth that for
sufficiently large m and n, we can round these parameters back to integer values
without moving far from the minimum runtime. Example values of b, Pr, and
Pc which satisfy the constraints in Equation (13) are

Pr =

√
mP

n

Pc =

√
nP

m

b =
√

mn

P

These values are chosen simultaneously to minimize the approximate number
of words sent, n2/Pc + mn/Pr − n2/(2Pr), and the approximate number of
messages, 5n/b, where for simplicity we temporarily ignore logarithmic factors

63



and lower-order terms in Table 16. This suggests using the following ansatz:

Pr = K ·
√

mP

n
,

Pc =
1
K
·
√

nP

m
, and

b = B ·
√

mn

P
,

(14)

for general values of K and B ≤ min{K, 1/K}, since we can thereby explore all
possible values of b, Pr and Pc satisfying (13).

13.1.2 Flops

Using the substitutions in Equation (14), the flop count (neglecting lower-order
terms, including the division counts) becomes

mn2

P

(
2−B2 +

3B

K
+

BK

2

)
−

n3

P

(
2
3

+
3B

2K

)
+

mn2 log
(
K ·

√
mP
n

)
P

(
4B2

3
+

3BK

2

)
. (15)

We wish to choose B and K so as to minimize the flop count. We know at
least that we need to eliminate the dominant mn2 log(. . . ) term, so that parallel
CAQR has the same asymptotic flop count as ScaLAPACK’s PDGEQRF. This is
because we know that CAQR performs at least as many floating-point operations
(asymptotically) as PDGEQRF, so matching the highest-order terms will help
minimize CAQR’s flop count.

To make the high-order terms of (15) match the 2mn2/P − 2n3/(3P ) flop
count of ScaLAPACK’s parallel QR routine, while minimizing communication
as well, we can pick K = 1 and

B = o

(
log−1

(√
mP

n

))
;

we will use

B = C log−2

(√
mP

n

)
(16)

for some positive constant C, for simplicity.
The above choices of B and K make the flop count as follows, with some

lower-order terms omitted:

2mn2

P
− 2n3

3P
+

3Cmn2

P log
(

mP
n

) (17)

64



Thus, we can choose the block size b so as to match the higher-order terms of
the flop count of ScaLAPACK’s parallel QR factorization PDGEQRF.

13.1.3 Number of messages

Using the substitutions in Equations (14) and (16) with K = 1, the number of
messages becomes

1
C

√
nP

m
· log2

(√
mP

n

)
· log

(
P

√
mP

n

)
. (18)

The best we can do with the latency is to make C as large as possible, which
makes the block size b as large as possible. The value C must be a constant,
however; specifically, the flop counts require

C = Ω

(
log−2

(
K

√
mP

n

))
and

C = O(1).

We leave C as a tuning parameter in the number of messages Equation (18).

13.1.4 Communication volume

Using the substitutions in Equation (14) and (16), the number of words trans-
ferred between processors on the critical path, neglecting lower-order terms,
becomes√

mn3

P
log P − 1

4

√
n5

mP
log
(

nP

m

)
+

C

4

√
mn

P
log3

(
mP

n

)
≈√

mn3

P
log P − 1

4

√
n5

mP
log
(

nP

m

)
. (19)

In the second step above, we eliminated the C term, as it is a lower-order term
(since m ≥ n). Thus, C only has a significant effect on the number of messages
and not the number of words transferred.

13.1.5 Table of results

Table 17 shows the number of messages and number of words used by par-
allel CAQR and ScaLAPACK when Pr, Pc, and b are independently chosen
so as to minimize the runtime models, as well as the optimal choices of these
parameters. In summary, if we choose b, Pr, and Pc independently and opti-
mally for both algorithms, the two algorithms match in the number of flops
and words transferred, but CAQR sends a factor of Θ(

√
mn/P ) messages fewer

than ScaLAPACK QR. This factor is the local memory requirement on each
processor, up to a small constant.

65



13.2 Look-ahead approach

Our models assume that the QR factorization does not use a look-ahead tech-
nique during the right-looking factorization. With the look-ahead right-looking
approach, the communications are pipelined from left to right. At each step of
factorization, we would model the latency cost of the broadcast within rows of
processors as 2 instead of log Pc.

In the next section, we will describe the sequential CAQR algorithm.

14 Sequential 2-D QR factorization

The sequential CAQR algorithm uses sequential TSQR to perform a QR factor-
ization of a dense matrix A. It mostly follows the out-of-DRAM QR factoriza-
tion of Gunter et al. [32]. The matrix is stored in a Pr × Pc 2-D block layout,
and the blocks are paged between slow and fast memory and operated on in fast
memory. Sequential CAQR is based on TSQR in order to minimize the number
of messages as well as the number of words transferred between slow and fast
memory. At each step of the factorization, sequential TSQR is used to factor
a panel of columns. Then, the resulting Householder vectors are applied to the
rest of the matrix. In summary, Table 18 shows that the number of arithmetic
operations is about the same between sequential CAQR and blocked sequential
left-looking Householder QR (see Appendix F, but CAQR transfers a factor of
Θ(m/

√
W ) fewer words and

√
W fewer messages between slow and fast mem-

ory than blocked left-looking Householder QR, in which W is the fast memory
capacity.

We note that the references [8, 9, 32, 39, 51] propose an algorithm called
“tiled QR,” which is the same as our sequential CAQR with square blocks.
However, they use it in parallel on shared-memory platforms, especially single-
socket multicore. They do this by exploiting the parallelism implicit in the
directed acyclic graph of tasks. Often they use dynamic task scheduling, which
we could use but do not discuss in this paper. Since the cost of communication in
the single-socket multicore regime is low, these authors are less concerned than
we are about minimizing latency. We also model and analyze communication
costs in more detail than previous authors did.

Let P = Pr ·Pc be the number of blocks. We assume without loss of generality
that Pr evenly divides m and Pc evenly divides n. The dimensions of a single
block of the matrix are m/Pr×n/Pc. We assume that m ≥ n and that m/Pr ≥
n/Pc. We also assume that fast memory has a capacity of W floating-point
words for direct use by the algorithms in this section, neglecting lower-order
amounts of additional work space.

Algorithm 11 is the sequential CAQR factorization which we analyze in this
work. It is a right-looking algorithm. Appendix C explains that the left-looking
and right-looking variants perform essentially the same number of floating-point
operations, and send essentially the same number of words in the same number
of messages, so we need only analyze the right-looking version.

66



Sequential CAQR
# messages 12 mn2

W 3/2

# words 3mn2
√

W

Opt. P 4mn/W

Opt. Pr 2m/
√

W

Opt. Pc 2n/
√

W

ScaLAPACK’s PFDGEQRF
# messages mn2

2W + 2mn
W

# words m2n2

2W − mn3

6W + 3mn
2 − 3n2

4
Opt. b 1
Opt. c ≈ W

m

Lower bound

# messages
mn2

4 −n2
8 (n

2 +1)√
8W 3

# words
mn2

4 −n2
8 (n

2 +1)√
8W

Table 18: Highest-order terms in the performance models of sequential CAQR,
ScaLAPACK’s out-of-DRAM QR factorization PFDGEQRF running on one pro-
cessor, and theoretical lower bounds for each, when factoring an m× n matrix
with a fast memory capacity of W words. In the case of sequential CAQR, the
matrix is arranged in a 2-D block layout on a Pr × Pc grid of P blocks. (See
Appendix C.3). The optimal choices of these parameters result in square blocks
(i.e., m/Pr = n/Pc). In the case of PFDGEQRF, the b parameter is the left panel
width and the c parameter is the current panel width. (See Appendix F.)

In Appendix C, we derive the following model (Equation (66) in the Ap-
pendix) of the runtime of sequential CAQR:

TSeq. CAQR(m,n, Pc, Pr) ≈ α

[
3
2
P (Pc − 1)

]
+

β

[
3
2
mn

(
Pc +

4
3

)
− 1

2
n2Pc + O

(
n2 + nP

)]
+

γ

[
2n2m− 2

3
n3

]
.

In Appendix C.3, we show that the choices of P , Pr, and Pc that minimize the
runtime are given by P = 4mn/W , Pr = 2m/

√
W , and Pc = 2n/

√
W . These

values yield a runtime of (Equation (67) in Appendix C)

TSeq. CAQR(m,n,W ) ≈ α

[
12

mn2

W 3/2

]
+ β

[
3
mn2

√
W

+ O

(
mn2

W

)]
+

γ

[
2mn2 − 2

3
n3

]
.

67



Algorithm 11 Right-looking sequential CAQR factorization
1: Assume: m ≥ n and m

Pr
≥ n

Pc

2: for J = 1 to Pc do
3: Factor panel J (in rows (J − 1) n

Pc
+ 1 to m and columns (J − 1) n

Pc
+ 1

to J n
Pc

)
4: Update trailing panels to right, (in rows (J−1) n

Pc
+1 to m and columns

J n
Pc

+ 1 to n) using the current panel
5: end for

We note that the bandwidth term is proportional to mn2
√

W
, and the latency term

is W times smaller, both of which match (to within constant factors), the lower
bounds on bandwidth and latency described in Corollary 1 in Section 17.3.1.
Furthermore, the flop count 2mn2 − 2n3/3 is identical to the flop count of
LAPACK’s sequential QR factorization routine DGEQRF.

14.1 Other Bandwidth Minimizing Sequential QR Algo-
rithms

In this section we describe special cases in which previous sequential QR algo-
rithms also minimize bandwidth, although they do not minimize latency. In
particular, we discuss two variants of Elmroth’s and Gustavson’s recursive QR
(RGEQR3 and RGEQRF [22]), as well as LAPACK’s DGEQRF.

The fully recursive routine RGEQR3 is analogous to Toledo’s fully recursive
LU routine [60]: Both routines factor the left half of the matrix (recursively),
use the resulting factorization of the left half to update the right half, and
then factor the right half (recursively again). The base case consists of a single
column. The output of RGEQR3 applied to an m-by-n matrix returns the Q
factor in the form I − Y TY T , where Y is the m-by-n lower triangular matrix
of Householder vectors, and T is an n-by-n upper triangular matrix. A simple
recurrence for the number of memory references of either RGEQR3 or Toledo’s
algorithm is

B(m,n) =

 B(m, n
2 ) + B(m− n

2 , n
2 ) + O(mn2

√
W

) if mn > W and n > 1
mn if mn ≤ W
m if m > W and n = 1

≤

 2B(m, n
2 ) + O(mn2

√
W

) if mn > W and n > 1
mn if mn ≤ W
m if m > W and n = 1

= O(
mn2

√
W

) + mn (20)

So RGEQR3 attains our bandwidth lower bound. (The mn term must be in-
cluded to account for the case when n <

√
W , since each of the mn matrix entries

68



must be accessed at least once.) However, RGEQR3 does a factor greater than
one times as many floating point operations as sequential Householder QR.

Now we consider RGEQRF and DGEQRF, which are both right-looking
algorithms and differ only in how they perform the panel factorization (by
RGEQR3 and DGEQR2, resp.). Let b be the width of the panel in either
algorithm. It is easy to see that a reasonable estimate of the number of mem-
ory references just for the updates by all the panels is the number of panels n

b
times the minimum number of memory references for the average size update
Θ(max(mn, mnb√

W
)), or Θ(max(mn2

b , mn2
√

W
)). Thus we need to pick b at least about

as large as
√

W to attain the desired lower bound O(mn2
√

W
).

Concentrating now on RGEQRF, we get from inequality (20) that the n
b

panel factorizations using RGEQR3 cost at most an additional
O(n

b · [
mb2√

W
+ mb]) = O(mnb√

W
+ mn) memory references, or O(mn) if we pick

b =
√

W . Thus the total number of memory references for RGEQRF with
b =

√
W is O(mn2

√
W

+ mn) which attains the desired lower bound.
Next we consider LAPACK’s DGEQRF. In the worst case, a panel factoriza-

tion by DGEQR2 will incur one slow memory access per arithmetic operation,
and so O(n

b ·mb2) = O(mnb) for all panel factorizations. For the overall algo-
rithm to be guaranteed to attain minimal bandwidth, we need mnb = O(mn2

√
W

),

or b = O( n√
W

). Since b must also be at least about
√

W , this means W = O(n),
or that fast memory size may be at most large enough to hold a few rows of the
matrix, or may be much smaller.

RGEQR3 does not alway minimize latency. For example, considering apply-
ing RGEQR3 to a single panel with n =

√
W columns and m > W rows, stored

in a block-column layout with
√

W -by-
√

W blocks stored columnwise, as above.
Then a recurrence for the number of messages RGEQR3 requires is

L(m,n) =

{
L(m, n

2 ) + L(m− n
2 , n

2 ) + O( m√
W

) if n > 1
O( m√

W
) if n = 1

= O(
mn√
W

) = O(m) when n =
√

W

which is larger than the minimum O(mn
W ) = O( m√

W
) attained by sequential

TSQR when n =
√

W .
In contrast to DGEQRF, RGEQRF, and RGEQR3, CAQR minimizes flops,

bandwidth and latency for all values of W .

15 Comparison of ScaLAPACK’s parallel QR and
CAQR

Here, we compare ScaLAPACK’s QR factorization routine PDGEQRF with par-
allel CAQR. Table 17 summarizes the results of this comparison: if we choose

69



the b, Pr, and Pc parameters independently and optimally for both algorithms,
the two algorithms match in the number of flops and words transferred, but
CAQR sends a factor of Θ(

√
mn/P ) messages fewer than ScaLAPACK QR.

This factor is the local memory requirement on each processor, up to a small
constant.

15.1 PDGEQRF performance model

We suppose that we decompose a m×n matrix with m ≥ n which is distributed
block cyclically over a Pr by Pc grid of processors, where Pr × Pc = P . The
two-dimensional block cyclic distribution uses square blocks of dimension b× b.
Equation (21) represents the runtime estimation of ScaLAPACK’s QR, in which
we assume that there is no attempt to pipeline communications from left to right
and some lower order terms are omitted.

TSC(m,n, Pr, Pc) =[
2n2

3P
(3m− n) +

3(b + 1)n
(
m− n

2

)
Pr

+
bn2

2Pc
− bn

(
b

3
+

3
2

)]
γ+[

mn− n2

2

Pr

]
γd+[

3n

(
1 +

1
b

)
log Pr +

2n

b
log Pc

]
α+[(

n2

Pc
+ n(b + 2)

)
log Pr +

(
1
Pr

(
mn− n2

2

)
+

nb

2

)
log Pc

]
β

(21)

Compare with a less detailed but similar performance estimation in [7], in
particular Tables 5.1 and 5.8 (routine PxGELS, whose main cost is invoking
PDGEQRF) and Equation (5.1).

When Pr = Pc =
√

P and m = n, and ignoring more lower-order terms,
Equation (21) simplifies to

TSC(n, n,
√

P ,
√

P ) = γ
4
3

n3

P
+ β

3
4

log P
n2

√
P

+ α

(
3
2

+
5
2b

)
n log P (22)

15.2 Choosing b, Pr, and Pc to minimize runtime

This paper, and this section in particular, aim to show that parallel CAQR
performs better than ScaLAPACK’s parallel QR factorization PDGEQRF. In
order to make a fair comparison between the two routines, we need to choose
the parameters b, Pr, and Pc so as to minimize the runtime of ScaLAPACK
QR. Even though PDGEQRF accepts input matrices in general 2-D block cyclic
layouts, users may prefer a 2-D block layout for simplicity. However, this may
not be optimal for all possible m, n, and P . In order to minimize the runtime

70



of ScaLAPACK’s parallel QR factorization, we could use a general nonlinear
optimization algorithm to minimize the runtime model (Equation (21) in Section
15) with respect to b, Pr, and Pc. However, some general heuristics can improve
insight into the roles of these parameters. For example, we would like to choose
them such that the flop count is (2mn2−2n3/3)/P plus lower-order terms, which
in terms of floating-point operations would offer the best possible speedup for
parallel Householder QR. We follow this heuristic in the following paragraphs.

15.2.1 Ansatz

Just as with parallel CAQR (see (13) in Section 13.1.1), the parameters b, Pr,
and Pc must satisfy the following conditions:

1 ≤ Pr, Pc ≤ P

Pr · Pc = P

1 ≤ b ≤ m

Pr

1 ≤ b ≤ n

Pc

(23)

As in Section 13.1.1, we assume in the above that Pr evenly divides m and that
Pc evenly divides n. From now on in this section (Section 15.2.1), we implicitly
allow b, Pr, and Pc to range over the reals. The runtime models are sufficiently
smooth that for sufficiently large m and n, we can round these parameters back
to integer values without moving far from the minimum runtime. Example
values of b, Pr, and Pc which satisfy the constraints in Equation (23) are

Pr =

√
mP

n

Pc =

√
nP

m

b =
√

mn

P

These values are chosen simultaneously to minimize the approximate number of
words sent, n2/Pc+mn/Pr, and the approximate number of messages, 3n+5n/b,
where for simplicity we temporarily ignore logarithmic factors and lower-order
terms in Table 16. This suggests using the following ansatz:

Pr = K ·
√

mP

n
,

Pc =
1
K
·
√

nP

m
, and

b = B ·
√

mn

P
,

(24)

71



for general values of K and B ≤ min{K, 1/K}, since we can thereby explore all
possible values of b, Pc and Pc satisfying (23). For simplicity, this is the same
ansatz as in Section 13.1.1.

15.2.2 Flops

Using the substitutions in Equation (24), the flop count (neglecting lower-order
terms, including the division counts) becomes

mn2

P

(
2− B2

3
+

3B

K
+

BK

2

)
− n3

P

(
2
3

+
3B

2K

)
. (25)

As in Section 13.1.2, we wish to choose B and K so as to minimize the flop count.
We can do this by making the flop count (2mn2−2n3/3)/P , because that is the
best possible parallel flop count for a parallelization of standard Householder
QR. To make the high-order terms of Equation (25) (2mn2 − 2n3/3)/P , while
minimizing communication as well, we can pick K = 1 and

B = C̃ log−c

(√
mP

n

)
= (C̃ · 2c) log−c

(
mP

n

)
= C log−c

(
mP

n

)
(26)

for some positive constant C (C = 2cC̃ for some positive constant C̃) and pos-
itive integer c ≥ 1. Unlike in Section 13.1.2, a log−1(. . . ) term suffices to make
the flop count (2mn2−2n3/3)/P plus lower-order terms. This is because the par-
allel CAQR flop count (Equation (15) in Section 13.1.2) involves an additional
(4B2/3 + 3BK/2)mn2 log (. . . ) term which must be made O(mn2 log−1(. . . )).
We will choose c below in order to minimize communication.

15.2.3 Number of messages

If we use the substitutions in Equations (24) and (26), the number of messages
becomes

MessagesPDGEQRF(m,n, P, c, C) =

3n

2
log
(

mP

n

)
+

n

C

(
2 log P +

1
2

log
(

mP

n

))(
log
(

mP
n

)
2

)c

(27)

In Section 15.2.2, we argued that the parameter c must satisfy c ≥ 1. As long
as

log
(

mP
n

)
2

> 1

72



is satisfied, it is clear from Equation (27) that choosing c = 1 minimizes the
number of messages. This results in a number of messages of

MessagesPDGEQRF(m,n, P,C) =

3n

2
log
(

mP

n

)
+

n

2C

(
2 log P +

1
2

log
(

mP

n

))(
log
(

mP

n

))
=

3n

2
log
(

mP

n

)
+

n

C
log P log

(
mP

n

)
+

n

4C

(
log
(

mP

n

))2

. (28)

The parameter C must be o(log(mP/n)) in order to minimize the number of
messages (see Equation (27)). This means that the third term in the last line
of the above equation is dominant, as we assume m ≥ n. Making C larger thus
reduces the number of messages. However, in practice, a sufficiently large C
may make the first term (1.5n log(mP/n)) significant. Thus, we leave C as a
tuning parameter.

15.2.4 Communication volume

Using the substitutions in Equation (24) and (26), the number of words trans-
ferred between processors on the critical path, neglecting lower-order terms,
becomes

WordsPDGEQRF(m,n, P, c, C) =√
mn3

P
log P − 1

4

√
n5

mP
log
(

nP

m

)
+

C log−c
(

mP
n

)
4

√
mn3

P
log
(

nP

m

)
. (29)

In Section 15.2.3, we argued for choosing c = 1 in order to minimize the number
of messages. In that case, the number of words transferred is

WordsPDGEQRF(m,n, P,C) =√
mn3

P
log P − 1

4

√
n5

mP
log
(

nP

m

)
− C

4

√
mn3

P
≈√

mn3

P
log P − 1

4

√
n5

mP
log
(

nP

m

)
. (30)

The third term in the second line is a lower-order term (it is subsumed by the
first term), since C = O(1).

15.2.5 Table of results

Table 17 shows the number of messages and number of words used by parallel
CAQR and ScaLAPACK when Pr, Pc, and b are chosen so as to minimize the
runtime model, as well as the optimal choices of these parameters. If we choose b,
Pr, and Pc independently and optimally for both algorithms, the two algorithms
match in the number of flops and words transferred, but CAQR sends a factor
of Θ(

√
mn/P ) messages fewer than ScaLAPACK QR. This factor is the local

memory requirement on each processor, up to a small constant.

73



16 Parallel CAQR performance estimation

We use the performance model developed in the previous section to estimate the
performance of parallel CAQR on three computational systems, IBM POWER5,
Peta, and Grid, and compare it to ScaLAPACK’s parallel QR factorization
routine PDGEQRF. Peta is a model of a petascale machine with 8100 processors,
and Grid is a model of 128 machines connected over the Internet. Each processor
in Peta and Grid can be itself a parallel machine, but our models consider the
parallelism only between these parallel machines.

We expect CAQR to outperform ScaLAPACK, in part because it uses a
faster algorithm for performing most of the computation of each panel factor-
ization (DGEQR3 vs. DGEQRF), and in part because it reduces the latency cost.
Our performance model uses the same time per floating-point operation for both
CAQR and PDGEQRF. Hence our model evaluates the improvement due only
to reducing the latency cost.

We evaluate the performance using matrices of size n × n, distributed over
a Pr ×Pc grid of P processors using a 2D block cyclic distribution, with square
blocks of size b×b. For each machine we estimate the best performance of CAQR
and PDGEQRF for a given problem size n and a given number of processors P ,
by finding the optimal values for the block size b and the shape of the grid
Pr × Pc in the allowed ranges. The matrix size n is varied in the range 103,
103.5, 104, . . . , 107.5. The block size b is varied in the range 1, 5, 10, . . . , 50, 60,
. . . , min(200,m/Pr, n/Pc). The number of processors is varied from 1 to the
largest power of 2 smaller than pmax, in which pmax is the maximum number
of processors available in the system. The values for Pr and Pc are also chosen
to be powers of two.

We describe now the parameters used for the three parallel machines. The
available memory on each processor is given in units of 8-byte (IEEE 754 double-
precision floating-point) words. When we evaluate the model, we set the γ value
in the model so that the modeled floating-point rate is 80% of the machine’s
peak rate, so as to capture realistic performance on the local QR factorizations.
This estimate favors ScaLAPACK rather than CAQR, as ScaLAPACK requires
more communication and CAQR more floating-point operations. The inverse
network bandwidth β has units of seconds per word. The bandwidth for Grid
is estimated to be the Teragrid backbone bandwidth of 40 GB/sec divided by
pmax.

• IBM POWER5: pmax = 888, peak flop rate is 7.6 Gflop/s, mem = 5·108

words, α = 5 · 10−6 s, β = 2.5 · 10−9 s/word (1/β = 400 Mword/s = 3.2
GB/s).

• Peta: pmax = 8192, peak flop rate is 500 Gflop/s, mem = 62.5·109 words,
α = 10−5 s, β = 2 · 10−9 s/word (1/β = 500 Mword/s = 4 GB/s).

• Grid: pmax = 128, peak flop rate is 10 Tflop/s, mem = 1014 words,
α = 10−1 s, β = 25 · 10−9 s/word (1/β = 40 Mword/s = .32 GB/s).

74



There are 13 plots shown for each parallel machine. The first three plots
display for specific n and P values our models of

• the best speedup obtained by CAQR, with respect to the runtime using
the fewest number of processors with enough memory to hold the matrix
(which may be more than one processor),

• the best speedup obtained by PDGEQRF, computed similarly, and

• the ratio of PDGEQRF runtime to CAQR runtime.

The next ten plots are divided in two groups of five. The first group presents per-
formance results for CAQR and the second group presents performance results
for PDGEQRF. The first two plots of each group of five display the correspond-
ing optimal values of b and Pr obtained for each combination of n and P . (Since
Pc = P/Pr, we need not specify Pc explicitly.) The last 3 plots of each group of
5 give the computation time to total time ratio, the latency time to total time
ratio, and the bandwidth time to total time ratio.

The white regions in the plots signify that the problem needed too much
memory with respect to the memory available on the machine. Note that in our
performance models, the block size b has no meaning on one processor, because
there is no communication, and the term 4n3/(3P ) dominates the computation.
Thus, for one processor, we set the optimal value of b to 1 as a default.

CAQR leads to significant improvements with respect to PDGEQRF when
the latency represents an important fraction of the total time, as for example
when a small matrix is computed on a large number of processors. On IBM
POWER5, the best improvement is predicted for the smallest matrix in our
test set (n = 103), when CAQR will outperform PDGEQRF by a factor of 9.7
on 512 processors. On Peta, the best improvement is a factor of 22.9, obtained
for n = 104 and P = 8192. On Grid, the best improvement is obtained for one
of the largest matrix in our test set m = n = 106.5, where CAQR outperforms
PDGEQRF by a factor of 5.3 on 128 processors.

16.1 Performance prediction on IBM POWER5

Figures 8, 9, and 10 depict modeled performance on the IBM POWER 5 system.
CAQR has the same estimated performance as PDGEQRF when the computa-
tion dominates the total time. But it outperforms PDGEQRF when the fraction
of time spent in communication due to latency becomes significant. The best
improvements are obtained for smaller n and larger P , as displayed in Figure
8(c), the bottom right corner. For the smallest matrix in our test set (n = 103),
we predict that CAQR will outperform PDGEQRF by a factor of 9.7 on 512
processors. As shown in Figure 10(d), for this matrix, the communication dom-
inates the runtime of PDGEQRF, with a fraction of 0.9 spent in latency. For
CAQR, the time spent in latency is reduced to a fraction of 0.5 of the total time
from 0.9 for PDGEQRF, and the time spent in computation is a fraction of 0.3
of the total time. This is illustrated in Figures 9(c) and 9(d).

75



log10 n Best log2 P for PDGEQRF CAQR speedup
3.0 6 2.1
3.5 8 3.0
4.0 9 2.1
4.5 9 1.2
5.0 9 1.0
5.5 9 1.0

Table 19: Estimated runtime of PDGEQRF divided by estimated runtime of
CAQR on a square n × n matrix, on the IBM POWER5 platform, for those
values of P (number of processors) for which PDGEQRF performs the best for
that problem size.

Another performance comparison consists in determining the improvement
obtained by taking the best performance independently for CAQR and PDGEQRF,
when varying the number of processors from 1 to 512. For n = 103, the best per-
formance for CAQR is obtained when using P = 512 and the best performance
for PDGEQRF is obtained for P = 64. This leads to a speedup of more than 3
for CAQR compared to PDGEQRF. For any fixed n, we can take the number
of processors P for which PDGEQRF would perform the best, and measure the
speedup of CAQR over PDGEQRF using that number of processors. We do this
in Table 19, which shows that CAQR always is at least as fast as PDGEQRF,
and often significantly faster (up to 3× faster in some cases).

Figure 8 shows that CAQR should scale well, with a speedup of 351 on 512
processors when m = n = 104. A speedup of 116 with respect to the parallel
time on 4 processors (the fewest number of processors with enough memory to
hold the matrix) is predicted for m = n = 104.5 on 512 processors. In these
cases, CAQR is estimated to outperform PDGEQRF by factors of 2.1 and 1.2,
respectively.

Figures 9(b) and 10(b) show that PDGEQRF has a smaller value for optimal
Pr than CAQR. This trend is more significant in the bottom left corner of Figure
10(b), where the optimal value of Pr for PDGEQRF is 1. This corresponds to
a 1D block column cyclic layout. In other words, PDGEQRF runs faster by
reducing the 3n log Pr term of the latency cost of Equation (21) by choosing a
small Pr. PDGEQRF also tends to have a better performance for a smaller block
size than CAQR, as displayed in Figures 9(a) and 10(a). The optimal block size
b varies from 1 to 15 for PDGEQRF, and from 1 to 30 for CAQR.

16.2 Performance prediction on Peta

Figures 11, 12, and 13 show our performance estimates of CAQR and PDGEQRF

on the Petascale machine. The estimated division of time between computation,
latency, and bandwidth for PDGEQRF is illustrated in Figures 13(c), 13(d), and
13(e). In the upper left corner of these figures, the computation dominates the
total time, while in the right bottom corner the latency dominates the total

76



(a) Speedup CAQR (b) Speedup PDGEQRF

(c) Comparison

Figure 8: Performance prediction comparing CAQR and PDGEQRF on IBM
POWER5.

77



(a) Optimal b (b) Optimal Pr

(c) Fraction of time in computation (d) Fraction of time in latency

(e) Fraction of time in bandwidth

Figure 9: Performance prediction for CAQR on IBM POWER5.

78



(a) Optimal b (b) Optimal Pr

(c) Fraction of time in computation (d) Fraction of time in latency

(e) Fraction of time in bandwidth

Figure 10: Performance prediction for PDGEQRF on IBM POWER5.

79



time. In the narrow band between these two regions, which goes from the left
bottom corner to the right upper corner, the bandwidth dominates the time.
CAQR decreases the latency cost, as can be seen in Figures 12(c), 12(d), and
12(e). There are fewer test cases for which the latency dominates the time
(the right bottom corner of Figure 12(d)). This shows that CAQR is expected
to be effective in decreasing the latency cost. The left upper region where
the computation dominates the time is about the same for both algorithms.
Hence for CAQR there are more test cases for which the bandwidth term is an
important fraction of the total time.

Note also in Figures 13(b) and 12(b) that optimal Pr has smaller values
for PDGEQRF than for CAQR. There is an interesting regularity in the value
of optimal Pr for CAQR. CAQR is expected to have its best performance for
(almost) square grids.

As can be seen in Figure 11(a), CAQR is expected to show good scalability
for large matrices. For example, for n = 105.5, a speedup of 1431, measured
with respect to the time on 2 processors, is obtained on 8192 processors. For
n = 106.4 a speedup of 166, measured with respect to the time on 32 processors,
is obtained on 8192 processors.

CAQR leads to more significant improvements when the latency represents
an important fraction of the total time. This corresponds to the right bottom
corner of Figure 11(c). The best improvement is a factor of 22.9, obtained for
n = 104 and P = 8192. The speedup of the best CAQR compared to the best
PDGEQRF for n = 104 when using at most P = 8192 processors is larger than
8, which is still an important improvement. The best performance of CAQR
is obtained for P = 4096 processors and the best performance of PDGEQRF is
obtained for P = 16 processors.

Useful improvements are also obtained for larger matrices. For n = 106,
CAQR outperforms PDGEQRF by a factor of 1.4. When the computation dom-
inates the parallel time, there is no benefit from using CAQR. However, CAQR
is never slower. For any fixed n, we can take the number of processors P for
which PDGEQRF would perform the best, and measure the speedup of CAQR
over PDGEQRF using that number of processors. We do this in Table 20, which
shows that CAQR always is at least as fast as PDGEQRF, and often significantly
faster (up to 7.4× faster in some cases).

16.3 Performance prediction on Grid

The performance estimation obtained by CAQR and PDGEQRF on the Grid is
displayed in Figures 14, 15, and 16. For small values of n both algorithms do
not obtain any speedup, even on small number of processors. Hence we discuss
performance results for values of n bigger than 105.

As displayed in Figures 15(a) and 16(a), the optimal block size for both
algorithms is very often 200, the largest value in the allowed range. The opti-
mal value of Pr for PDGEQRF is equal to 1 for most of the test cases (Figure
16(b)), while CAQR tends to prefer a square grid (Figure 15(b)). This suggests

80



(a) Speedup CAQR (b) Speedup PDGEQRF

(c) Comparison

Figure 11: Performance prediction comparing CAQR and PDGEQRF on Peta.

log10 n Best log2 P for PDGEQRF CAQR speedup
3.0 1 1
3.5 2–3 1.1–1.5
4.0 4–5 1.7–2.5
4.5 7–10 2.7–6.6
5.0 11–13 4.1–7.4
5.5 13 3.0
6.0 13 1.4

Table 20: Estimated runtime of PDGEQRF divided by estimated runtime of
CAQR on a square n × n matrix, on the Peta platform, for those values of P
(number of processors) for which PDGEQRF performs the best for that problem
size.

81



(a) Optimal b (b) Optimal Pr

(c) Fraction of time in computation (d) Fraction of time in latency

(e) Fraction of time in bandwidth

Figure 12: Performance prediction for CAQR on Peta.

82



(a) Optimal b (b) Optimal Pr

(c) Fraction of time in computation (d) Fraction of time in latency

(e) Fraction of time in bandwidth

Figure 13: Performance prediction for PDGEQRF on Peta.

83



log10 n Best log2 P for PDGEQRF CAQR speedup
6.0 3 1.4
6.5 5 2.4
7.0 7 3.8
7.5 7 1.6

Table 21: Estimated runtime of PDGEQRF divided by estimated runtime of
CAQR on a square n × n matrix, on the Grid platform, for those values of P
(number of processors) for which PDGEQRF performs the best for that problem
size.

that CAQR can successfully exploit parallelism within block columns, unlike
PDGEQRF.

As can be seen in Figures 16(c), 16(d), and 16(e), for small matrices, commu-
nication latency dominates the total runtime of PDGEQRF. For large matrices
and smaller numbers of processors, computation dominates the runtime. For the
test cases situated in the band going from the bottom left corner to the upper
right corner, bandwidth costs dominate the runtime. The model of PDGEQRF

suggests that the best way to decrease the latency cost with this algorithm is to
use, in most test cases, a block column cyclic distribution (the layout obtained
when Pr = 1). In this case the bandwidth cost becomes significant.

The division of time between computation, latency, and bandwidth has a
similar pattern for CAQR, as shown in Figures 15(c), 15(d), and 15(e). However,
unlike PDGEQRF, CAQR has as optimal grid shape a square or almost square
grid of processors, which suggests that CAQR is more scalable.

The best improvement is obtained for one of the largest matrix in our test
set m = n = 106.5, where CAQR outperforms PDGEQRF by a factor of 5.3 on
128 processors. The speedup obtained by the best CAQR compared to the best
PDGEQRF is larger than 4, and the best performance is obtained by CAQR
on 128 processors, while the best performance of PDGEQRF is obtained on 32
processors.

CAQR is predicted to obtain reasonable speedups for large problems on the
Grid, as displayed in Figure 14(a). For example, for n = 107 we note a speedup
of 33.4 on 128 processors measured with respect to 2 processors. This represents
an improvement of 1.6 over PDGEQRF. For the largest matrix in the test set,
n = 107.5, we note a speedup of 6.6 on 128 processors, measured with respect
to 16 processors. This is an improvement of 3.8 with respect to PDGEQRF.

As with the last model, for any fixed n, we can take the number of processors
P for which PDGEQRF would perform the best, and measure the speedup of
CAQR over PDGEQRF using that number of processors. We do this in Table
21, which shows that CAQR always is at least as fast as PDGEQRF, and often
significantly faster (up to 3.8× faster in some cases).

84



(a) Speedup CAQR (b) Speedup PDGEQRF

(c) Comparison

Figure 14: Performance prediction comparing CAQR and PDGEQRF on Grid.

85



(a) Optimal b (b) Optimal Pr

(c) Fraction of time in computation (d) Fraction of time in latency

(e) Fraction of time in bandwidth

Figure 15: Performance prediction for CAQR on Grid.

86



(a) Optimal b (b) Optimal Pr

(c) Fraction of time in computation (d) Fraction of time in latency

(e) Fraction of time in bandwidth

Figure 16: Performance prediction for PDGEQRF on Grid.

87



17 Lower bounds on communication for QR

In this section, we review known lower bounds on communication bandwidth
for parallel and sequential matrix-matrix multiplication of matrices stored in
1-D and 2-D block cyclic layouts, extend some of them to the rectangular case,
and then extend them to QR, showing that our sequential and parallel TSQR
and CAQR algorithms have optimal communication complexity with respect
to both bandwidth (in a Big-Oh sense, and sometimes modulo polylogarithmic
factors).

We will also use the simple fact that if B is a lower bound on the number of
words that must be communicated to implement an algorithm, and if W is the
size of the local memory (in the parallel case) or fast memory (in the sequential
case), so that W is the largest possible size of a message, then B/W is a lower
bound on the latency, i.e. the number of messages needed to move B words into
or out of the memory. We use this to derive lower bounds on latency, which
are also attained by our algorithms (again in a Big-Oh sense, and sometimes
modulo polylogarithmic factors).

We begin in section 17.1 by reviewing known communication complexity
bounds for matrix multiplication, due first to Hong and Kung [35] in the se-
quential case, and later proved more simply and extended to the parallel case
by Irony, Toledo and Tiskin [34]. It is easy to extend lower bounds for matrix
multiplication to lower bounds for LU decomposition via the following reduction
of matrix multiplication to LU decomposition:I 0 −B

A I 0
0 0 I

 =

I
A I
0 0 I

I 0 −B
I A ·B

I

 . (31)

See [30] for an implementation of parallel LU that attains these bounds. It
is reasonable to expect that lower bounds for matrix multiplication will also
apply (at least in a Big-Oh sense) to other one-sided factorizations, such as QR.
Though as we will see, QR is not quite so simple.

All this work assumes commutative and associative reorderings of the con-
ventional O(n3) matrix multiplication algorithm, and so excludes faster algo-
rithms using distributivity or special constants, such as those of Strassen [59]
or Coppersmith and Winograd [11], and their use in asymptotically fast ver-
sions of LU and QR [18]. Extending communication lower bounds to these
asymptotically faster algorithms is an open problem.

17.1 Matrix Multiplication Lower Bounds

Hong and Kung [35], and later Irony, Toledo and Tiskin [34] considered the mul-
tiplication of two n-by-n matrices C = A ·B using commutative and associative
(but not distributive) reorderings of the usual O(n3) algorithm.

In the sequential case, they assume that A and B initially reside in slow
memory, that there is a fast memory of size W < n2, and that the product
C = A · B must be computed and eventually reside in slow memory. They

88



bound from below the number of words that need to be moved between slow
memory and fast memory to perform this task:

# words moved ≥ n3

2
√

2W 1/2
−W ≈ n3

2
√

2W 1/2
. (32)

Since only W words can be moved in one message, this also provides a lower
bound on the number of messages:

# messages ≥ n3

2
√

2W 3/2
− 1 ≈ n3

2
√

2W 3/2
. (33)

In the rectangular case, where A is n-by-r, B is r-by-m, and C is n-by-m, so
that the number of arithmetic operations in the standard algorithm is 2mnr,
the above two results still apply, but with n3 replaced by mnr.

Irony, Toledo and Tiskin also consider the parallel case. There is actually a
spectrum of algorithms, from the so-called 2D case, that use little extra memory
beyond that needed to store equal fractions of the matrices A, B and C (and so
about 3n2/P words for each of P processors, in the square case), to the 3D case,
where each input matrix is replicated up to P 1/3 times, so with each processor
needing memory of size n2/P 2/3 in the square case. We only consider the 2D
case, which is the conventional, memory scalable approach. In the 2D case,
with square matrices, Irony et al show that if each processor has µn2/P words
of local memory, and P ≥ 32µ3, then at least one of the processors must send
or receive at least the following number of words:

# words sent or received ≥ n2

4
√

2(µP )1/2
(34)

and so using at least the following number of messages (assuming a maximum
message size of n2/P ):

# messages ≥ P 1/2

4
√

2(µ)3/2
. (35)

We wish to extend this to the case of rectangular matrices. We do this in
preparation for analyzing CAQR in the rectangular case. The proof is a simple
extension of Thm. 4.1 in [34].

Theorem 1 Consider the conventional matrix multiplication algorithm applied
to C = A · B where A is n-by-r, B is r-by-m, and C is n-by-m. implemented
on a P processor distributed memory parallel computer. Let n̄, m̄ and r̄ be the
sorted values of n, m, and r, i.e. n̄ ≥ m̄ ≥ r̄. Suppose each processor has
3n̄m̄/P words of local memory, so that it can fit 3 times as much as 1/P -th of
the largest of the three matrices. Then as long as

r̄ ≥
√

864n̄m̄

P
(36)

89



(i.e. none of the matrices is “too rectangular”) then the number of words at
least one processor must send or receive is

# words moved ≥
√

n̄m̄ · r̄√
96P

(37)

and the number of messages is

# messages ≥
√

P · r̄√
864n̄m̄

(38)

Proof: We use (32) with m̄n̄r̄/P substituted for n3, since at least one processor
does this much arithmetic, and W = 3n̄m̄/P words of local memory. The
constants in inequality (36) are chosen so that the first term in (32) is at least
2W , and half the first term is a lower bound. �

17.2 Lower bounds for TSQR

TSQR with data stored in a 1D layout is simpler than the general CAQR case,
and does not depend on the above bounds for matrix multiplication.

17.2.1 Sequential TSQR

In the sequential case, the m × n matrix A must be read from slow memory
into fast memory at least once, if we assume that fast memory is empty at the
start of the computation, and the answer written out to slow memory. Thus,
the number of words transferred (the bandwidth lower bound) is at least 2mn.
As described in Table 11 in Section 9, and in more detail in Appendix B, our
sequential TSQR moves

mn2

W − n(n + 1)/2
+ 2mn− n(n + 1)

2

words. Since we assume W ≥ 3
2n2, this is little more than the lower bound

2mn. In contrast, blocked left-looking Householder QR moves

+
m2n2

2W
− mn3

6W
+

3mn

2
− 3n2

4

words, where the first and second terms combined can be O(mn
W ) times larger

than the lower bound (see Table 11); note that mn
W is how many times larger

the matrix is than the fast memory.
The number of slow memory reads and writes (the latency lower bound) is

at least 2mn/W . As described in the same sections as before, our sequential
TSQR sends

2mn

W − n(n + 1)/2

90



words, which is close to the lower bound. In contrast, blocked left-looking
Householder QR sends

2mn

W
+

mn2

2W

messages, which can be O(n) times larger than the lower bound (see Table 11).

17.2.2 Parallel TSQR

In the parallel case, we prefer for 1-D layouts to distinguish between the mini-
mum number of messages per processor, and the number of messages along the
critical path. For example, one can perform a reduction linearly, so that each
processor only sends one message to the next processor. This requires P − 1
messages along the critical path, but only one message per processor. A lower
bound on the minimum number of sends or receives performed by any processor
is also a lower bound on the number of messages along the critical path. The
latter is more difficult to analyze for 2-D layouts, so we only look at the critical
path for 1-D layouts. By the usual argument that any nontrivial function of data
distributed across P processors requires at least log2 P messages to compute,
the critical path length C1-D(m,n, P ) satisfies

C1-D(m,n, P ) ≥ log2 P. (39)

This is also the number of messages required per processor along the critical
path. This lower bound is obviously attained by parallel TSQR based on a
binary tree.

Appendix G shows formally that for any reduction tree computing the QR
decomposition of m

p × n matrices at its leaves, each path from the leaves to the
root must send at least n(n + 1)/2 words of information along each edge. This
means the bandwidth cost is at least n(n+1)/2 times the length of critical path,
or at least log(P )n(n + 1)/2. This is clearly attained by TSQR (see Table 10).

17.3 Lower Bounds for CAQR

Now we need to extend our analysis of matrix multiplication. We assume all
variables are real; extensions to the complex case are straightforward. Suppose
A = QR is m-by-n, n even, so that

Q̄T · Ā ≡
(
Q(1 : m, 1 :

n

2
)
)T

·A(1 : m,
n

2
+ 1 : n) = R(1 :

n

2
,
n

2
+ 1 : n) ≡ R̄ .

It is easy to see that Q̄ depends only on the first n
2 columns of A, and so is

independent of Ā. The obstacle to directly applying existing lower bounds for
matrix multiplication of course is that Q̄ is not represented as an explicit ma-
trix, and Q̄T · Ā is not implemented by straightforward matrix multiplication.
Nevertheless, we argue that the same data dependencies as in matrix multipli-
cation can be found inside many implementations of Q̄T · Ā, and that therefore
the geometric ideas underlying the analysis in [34] still apply. Namely, there are

91



two data structures Q̃ and Ã indexed with pairs of subscripts (j, i) and (j, k)
respectively with the following properties.

• Ã stores Ā as well as all intermediate results which may overwrite Ā.

• Q̃ represents Q̄, i.e., an m-by-n
2 orthogonal matrix. Such a matrix is a

member of the Stiefel manifold of orthogonal matrices, and is known to
require mn

2 − n
4 (n

2 +1) independent parameters to represent, with column i
requiring m−i parameters, although a particular algorithm may represent
Q̄ using more data.

• The algorithm operates mathematically independently on each column of
Ā, i.e., methods like that of Strassen are excluded. This means that the
algorithm performs at least mn

2 − n
4 (n

2 + 1) multiplications on each m-
dimensional column vector of Ā (see subsection 17.4 for a proof), and
does the same operations on each column of Ā.

• For each (i, k) indexing R̄i,k, which is the component of the k-th column
Ā:,k of Ā in the direction of the i-th column Q̄:,i of Q̄, it is possible to
identify at least m − i common components of Ã:,k and of Q̃:,i such that
a parameter associated with Q̃j,i is multiplied by a value stored in Ãj,k.

The last point, which says that Q̄T · Ā has at least the same dependencies as
matrix multiplication, requires illustration.

• Suppose Q̄ is represented as a product of n
2 Householder reflections with

a projection Q̂ onto the first n
2 coordinates, Q̄ = (I − τ1u1u

T
1 ) · · · (I −

τn/2un/2u
T
n/2)Q̂, normalized in the conventional way where the topmost

nonzero entry of each uj is one, and Q̂ consists of the first n/2 columns
of the n-by-n identity matrix. Then Q̃j,i = ui(j) is multiplied by some
intermediate value of Āj,k, i.e. Ãj,k.

• Suppose Q̄ is represented as a product of block Householder transforma-
tions (I −Z1U

T
1 ) · · · (I −ZfUT

f )Q̂ where Ug and Zg are m-by-bg matrices,
Ug consisting of bg Householder vectors side-by-side. Again associate Q̃j,i

with the j-th entry of the i-th Householder vector ui(j).

• Recursive versions of QR [21] apply blocked Householder transformations
organized so as to better use BLAS3, but still let us use the approach of
the last bullet.

• Suppose Q̄ is represented as a product of mn
2 − n

4 (n
2 +1) Givens rotations,

each one creating a unique subdiagonal zero entry in A which is never
filled in. There are many orders in which these zeros can be created, and
possibly many choices of row that each Givens rotation may rotate with
to zero out its desired entry. If the desired zero entry in Aj,i is created by
the rotation in rows j′ and j, j′ < j, then associate Q̃j,i with the value of
the cosine in the Givens rotation, since this will be multiplied by Āj,k.

92



• Suppose, finally, that we use CAQR to perform the QR decomposition,
so that Q̄ = Q1 · · ·Qf Q̂, where each Qg is the result of TSQR on bg

columns. Consider without loss of generality Q1, which operates on the
first b1 columns of A. We argue that TSQR still produces m − i param-
eters associated with column i as the above methods. Suppose there are
P row blocks, each of dimension m

P -by-b1. Parallel TSQR initially does
QR independently on each block, using any of the above methods; we
associate multipliers as above with the subdiagonal entries in each block.
Now consider the reduction tree that combines q different b1-by-b1 trian-
gular blocks at any particular node. As described in subsection 6.1, this
generates (q − 1)b1(b1 + 1)/2 parameters that multiply the equal number
of entries of the q − 1 triangles being zeroed out, and so can be associ-
ated with appropriate entries of Q̃. Following the reduction tree, we see
that parallel TSQR produces exactly as many parameters as Householder
reduction, and that these may be associated one-for-one with all subdi-
agonal entries of Q̃(:, 1 : b1) and Ã(:, 1 : b1) as above. Sequential TSQR
reduction is analogous.

We see that we have only tried to capture the dependencies of a fraction of the
arithmetic operations performed by various QR implementations; this is all we
need for a lower bound.

Now we resort to the geometric approach of [34]: Consider a three dimen-
sional block of lattice points, indexed by (i, j, k). Each point on the (i, 0, k)
face is associated with R̄i,k, for 1 ≤ i, k ≤ n

2 . Each point on the (0, j, k) face is
associated with Ãj,k, for 1 ≤ k ≤ n

2 and 1 ≤ j ≤ m. Each point on the (i, j, 0)
face is associated with Q̃j,i, for 1 ≤ i ≤ n

2 and 1 ≤ j ≤ m. Finally, each interior
point (i, j, k) for 1 ≤ i, k ≤ n

2 and 1 ≤ j ≤ m represents the multiplication
Q̃j,i · Ãj,k. The point is that the multiplication at (i, j, k) cannot occur unless
Q̃j,i and Ãj,k are together in memory.

Finally, we need the Loomis-Whitney inequality [42]: Suppose V is a set
of lattice points in 3D, Vi is projection of V along i onto the (j, k) plane, and
similarly for Vj and Vk. Let |V | denote the cardinality of V , i.e. counting lattice
points. Then |V |2 ≤ |Vi| · |Vj | · |Vk|.

Finally, we can state

Lemma 1 Suppose a processor with local (fast) memory of size W is participat-
ing in the QR decomposition of an m-by-n matrix, m ≥ n, using an algorithm
of the sort discussed above. There may or may not be other processors par-
ticipating (i.e. this lemma covers the sequential and parallel cases). Suppose
the processor performs F multiplications. Then the processor must move the
following number of works into or out of its memory:

# of words moved ≥ F

(8W )1/2
−W (40)

93



using at least the following number of messages:

# of messages ≥ F

(8W 3)1/2
− 1 (41)

Proof: The proof closely follows that of Lemma 3.1 in [34]. We decompose the
computation into phases. Phase l begins when the total number of words moved
into and out of memory is exactly lW . Thus in each phase, except perhaps the
last, the memory loads and stores exactly W words.

The number of words nA from different Ãjk that the processor can access
in its memory during a phase is 2W , since each word was either present at
the beginning of the phase or read during the phase. Similarly the number of
coefficients nQ from different Q̃ji also satisfies nQ ≤ 2W . Similarly, the number
nR of locations into which intermediate results like Q̃ji ·Ãjk can be accumulated
or stored is at most 2W . Note that these intermediate results could conceivably
be stored or accumulated in Ã because of overwriting; this does not affect the
upper bound on nR.

By the Loomis-Whitney inequality, the maximum number of useful multi-
plications that can be done during a phase (i.e. assuming intermediate results
are not just thrown away) is bounded by √

nA · nQ · nR ≤
√

8W 3. Since the
processor does F multiplications, the number of full phases required is at least⌊

F√
8W 3

⌋
≥ F√

8W 3
− 1

so the total number of words moved is W times larger, i.e. at least

# number of words moved ≥ F√
8W

−W .

The number of messages follows by dividing by W , the maximum message size.
�

17.3.1 Sequential CAQR

Corollary 1 Consider a single processor computing the QR decomposition of
an m-by-n matrix with m ≥ n, using an algorithm of the sort discussed above.
Then the number of words moved between fast and slow memory is at least

# of words moved ≥
mn2

4 − n2

8 (n
2 + 1)

(8W )1/2
−W (42)

using at least the following number of messages:

# of messages ≥
mn2

4 − n2

8 (n
2 + 1)

(8W 3)1/2
− 1 (43)

94



Proof: The proof follows easily from Lemma 1 by using the lower bound
F ≥ mn2

4 − n2

8 (n
2 + 1) on the number of multiplications by any algorithm in the

class discussed above (see Lemma 2 in subsection 17.4 for a proof). �
The lower bound could be increased by a constant factor by the using spe-

cific number of multiplications (say mn2 − 1
3n3 using Householder reductions),

instead of arguing more generally based on the number of parameters needed
to represent orthogonal matrices.

Comparing to Equation (67) in Appendix C or the presentation in Section
14, we see that CAQR attains these bounds to within a constant factor.

17.3.2 Parallel CAQR

Corollary 2 Consider a parallel computer with P processors and W words of
memory per processor computing the QR decomposition of an m-by-n matrix
with m ≥ n, using an algorithm of the sort discussed above. Then the number
of words sent and received by at least one processor is at least

# of words moved ≥
mn2

4 − n2

8 (n
2 + 1)

P (8W )1/2
−W (44)

using at least the following number of messages:

# of messages ≥
mn2

4 − n2

8 (n
2 + 1)

P (8W 3)1/2
− 1 (45)

In particular, when each processor has W = mn/P words of memory and the
matrix is not too rectangular, n ≥ 211m

P , then the number of words sent and
received by at least one processor is at least

# of words moved ≥
√

mn3

211P
(46)

using at least the following number of messages:

# of messages ≥
√

nP

211m
. (47)

In particular, in the square case m = n, we get that as long as P ≥ 211, then
the number of words sent and received by at least one processor is at least

# of words moved ≥ n2

211/2P 1/2
(48)

using at least the following number of messages:

# of messages ≥
√

P

211
. (49)

Proof: The result follows from the previous Corollary, since at least one
processor has to do 1/P -th of the work. �

Comparing to Equations (18) and (19) in Section 13.1, we see that CAQR
attains these bounds to within a polylog factor.

95



17.4 Lower Bounds on Flop Counts for QR

This section proves lower bounds on arithmetic for any “columnwise” implemen-
tation of QR, by which we mean one whose operations can be reordered so as to
be left looking, i.e. the operations that compute columns i of Q and R depend
on data only in columns 1 through i of A. The mathematical dependencies are
such that columns i of Q and R do only depend on columns 1 through i of A,
but saying that operations only depend on these columns eliminates algorithms
like Strassen. (It is known that QR can be done asymptotically as fast as any
fast matrix multiplication algorithm like Strassen, and stable as well [18].)

This section says where the lower bound on F comes from that is used in
the proof of Corollary 1 above.

The intuition is as follows. Suppose A = QR is m-by-(j + 1), so that

Q̄T · Ā ≡ (Q(1 : m, 1 : j))T ·A(1 : m, j + 1) = R(1 : j, j + 1) ≡ R̄ .

where Q̄ only depends on the first j columns of A, and is independent of Ā.
As an arbitrary m-by-j orthogonal matrix, a member of the Stiefel manifold of
dimension mj− j(j + 1)/2, Q̄ requires mj− j(j + 1)/2 independent parameters
to represent. We will argue that no matter how Q̄ is represented, i.e. without
appealing to the special structure of Givens rotations or Householder transfor-
mations, that unless mj − j(j + 1)/2 multiplications are performed to compute
R̄ it cannot be computed correctly, because it cannot depend on enough param-
eters.

Assuming for a moment that this is true, we get a lower bound on the
number of multiplications needed for QR on an m-by-n matrix by summing∑n−1

j=1 [mj − j(j + 1)/2] = mn2

2 − n3

6 + O(mn). The two leading terms are
half the multiplication count for Householder QR (and one fourth of the total
operation count, including additions). So the lower bound is rather tight.

Again assuming this is true, we get a lower bound on the value F in Corol-
lary 1 by multiplying n

2 · (m
n
2 −

n
2 (n

2 + 1)/2) = mn2

4 − n2

8 (n
2 + 1) ≤ F .

Now we prove the main assertion, that mj − j(j + 1)/2 multiplications are
needed to compute the single column R̄ = Q̄T · Ā, no matter how Q̄ is rep-
resented. We model the computation as a DAG (directed acyclic graph) of
operations with the following properties, which we justify as we state them.

1. There are m input nodes labeled by the m entries of Ā, a1,j+1 through
am,j+1. We call these Ā-input nodes for short.

2. There are at least mj − j(j + 1)/2 input nodes labeled by parameters
representing Q̄, since this many parameters are needed to represent a
member of the Stiefel manifold. We call these Q̄-input nodes for short.

3. There are two types of computation nodes, addition and multiplication.
In other words, we assume that we do not do divisions, square roots, etc.
Since we are only doing matrix multiplication, this is reasonable. We note
that any divisions or square roots in the overall algorithm may be done

96



in order to compute the parameters represented Q̄. Omitting these from
consideration only lowers our lower bound (though not by much).

4. There are no branches in the algorithm. In other words, the way an
entry of R̄ is computed does not depend on the numerical values. This
assumption reflects current algorithms, but could in fact be eliminated as
explained later.

5. Since the computation nodes only do multiplication and addition, we may
view the output of each node as a polynomial in entries of Ā and param-
eters representing Q̄.

6. We further restrict the operations performed so that the output of any
node must be a homogeneous linear polynomial in the entries of Ā. In
other words, we never multiply two quantities depending on entries of
Ā to get a quadratic or higher order polynomial, or add a constant or
parameter depending on Q̄ to an entry of Ā. This is natural, since the
ultimate output is linear and homogeneous in Ā, and any higher degree
polynomial terms or constant terms would have to be canceled away. No
current or foreseeable algorithm (even Strassen based) would do this, and
numerical stability would likely be lost.

7. There are j output nodes labeled by the entries of R̄, r1,j+1 through rj,j+1.

The final requirement means that multiplication nodes are only allowed to
multiply Q̄-input nodes and homogeneous linear functions of Ā, including Ā-
input nodes. Addition nodes may add homogeneous linear functions of Ā (again
including Ā-input nodes), but not add Q̄-input nodes to homogeneous linear
functions of Ā. We exclude the possibility of adding or multiplying Q̄-input
nodes, since the results of these could just be represented as additional Q̄-input
nodes.

Thus we see that the algorithm represented by the DAG just described out-
puts j polynomials that are homogeneous and linear in Ā. Let M be the total
number of multiplication nodes in the DAG. We now want to argue that unless
M ≥ mj − j(j + 1)/2, these output polynomials cannot possibly compute the
right answer. We will do this by arguing that the dimension of a certain alge-
braic variety they define is both bounded above by M , and the dimension must
be at least mj − j(j + 1)/2 to get the right answer.

Number the output nodes from 1 to j. The output polynomial representing
node i can be written as

∑m
k=1 pk,i(Q̄)ak,j+1, where pk,i(Q̄) is a polynomial

in the values of the Q̄-input nodes. According to our rules for DAGs above,
only multiplication nodes can introduce a dependence on a previously unused
Q̄-input node, so all the pk,i(Q̄) can only depend on M independent parameters.

Finally, viewing each output node as a vector of m coefficient polynomials
(p1,i(Q̄), ..., pm,i(Q̄)), we can view the entire output as a vector of mj coeffi-
cient polynomials V (Q̄) = (p1,1(Q̄), ..., pm,j(Q̄)), depending on M independent
parameters. This vector of length mj needs to represent the set of all m-by-j
orthogonal matrices. But the Stiefel manifold of such orthogonal matrices has

97



dimension mj− j(j +1)/2, so the surface defined by V has to have at least this
dimension, i.e. M ≥ mj − j(j + 1)/2.

As an extension, we could add branches to our algorithm by noting that
the output of our algorithm would be piecewise polynomials, on regions whose
boundaries are themselves defined by varieties in the same homogeneous lin-
ear polynomials. We can apply the above argument on all the regions with
nonempty interiors to argue that the same number of multiplications is needed.

In summary, we have proven

Lemma 2 Suppose we are doing the QR factorization of an m-by-n matrix
using any “columnwise” algorithm in the sense described above. Then at least
mn− j(j + 1)/2 multiplications are required to compute column j + 1 of R, and
at least mn2

4 − n2

8 (n
2 +1) multiplications to compute columns n

2 +1 through n of
R.

18 Lower bounds on parallelism

We base this paper on the premise that communication costs matter more than
computation costs. Many authors developed parallel algorithms and bounds
based on a PRAM model, which assumes that communication is essentially
free. Their bounds are nevertheless of interest because they provide fundamental
limits to the amount of parallelism that can be extracted, regardless of the cost
of communication.

A number of authors have developed parallel QR factorization methods
based on Givens rotations (see e.g., [54, 45, 13]). Givens rotations are a good
model for a large class of QR factorizations, including those based on House-
holder reflections. This is because all such algorithms have a similar dataflow
graph (see e.g., [41]), and are all based on orthogonal linear transformations (so
they are numerically stable). Furthermore, these bounds also apply to methods
that perform block Givens rotations, if we consider each block as an “element”
of a block matrix.

18.1 Minimum critical path length

Cosnard, Muller, and Robert proved lower bounds on the critical path length
Opt(m,n) of any parallel QR algorithm of an m × n matrix based on Givens
rotations [12]. They assume any number of processors, any communication
network, and any initial data distribution; in the extreme case, there many be
mn processors, each with one element of the matrix. In their class of algorithms,
a single step consists of computing one Givens rotation and zeroing out one
matrix entry. Their first result concerns matrices for which limm,n→∞m/n2 = 0.
This includes the case when m = n. Then the minimum critical path length is

CPar. QR, squarish ≥ 2n + o(n). (50)

98



A second complexity result is obtained for the case when m →∞ and n is fixed
– that is, “tall skinny” matrices. Then, the minimum critical path length is

CPar. QR, tall skinny ≥ log2 m + (n− 1) log2 (log2 m) + o (log2 (log2 m)) . (51)

The above bounds apply to 1-D and 2-D block (cyclic) layouts if we consider
each “row” as a block row, and each “column” as a block column. One step
in the computation involves computing one block Givens rotation and applying
it (i.e., either updating or eliminating the current block). Then, Equation (50)
shows in the case of a square matrix that the critical path length is twice the
number of block columns. (This makes sense, because the current panel must
be factored, and the trailing matrix must be updated using the current panel
factorization; these are two dependent steps.) In the case of a tall skinny matrix
in a 1-D block row layout, Equation (51) shows that the critical path length is
log2(m/P ), in which P is the number of processors. (The (n− 1) log2 (log2 m)
term does not contribute, because there is only one block column, so we can say
that n = 1.)

18.2 Householder or Givens QR is P-complete

Leoncini et al. show that any QR factorization based on Householder reductions
or Givens rotations is P-complete [41]. This means that if there exists an algo-
rithm that can solve this problem using a number of processors polynomial in
the number of matrix entries, in a number of steps polynomial in the logarithm
of the number of matrix entries (“polylogarithmic”), then all tractable problems
for a sequential computer (the set P) can be solved in parallel in polylogarithmic
time, given a polynomial number of processors (the set NC). This “P equals NC”
conclusion is considered unlikely, much as “P equals NP” is considered unlikely.

Note that one could compute the QR factorization of a matrix A by multiply-
ing AT ·A, computing the Cholesky factorization R ·RT of the result, and then
performing Q := AR−1. We describe this method (“CholeskyQR”) in detail in
Section 9. Csanky shows arithmetic NC algorithms for inverting matrices and
solving linear systems, and matrix-matrix multiplication also has an arithmetic
NC algorithm [14]. Thus, we could construct a version of CholeskyQR that is
in arithmetic NC. However, this method is highly inaccurate in floating-point
arithmetic. Not only is CholeskyQR itself inaccurate (see Section 10), Demmel
observes that Csanky’s arithmetic NC linear solver is so unstable that it loses
all significant digits when inverting 3In×n in IEEE 754 double-precision arith-
metic, for n ≥ 60 [17]. As far as we know, there exists no stable, practical QR
factorization that is in arithmetic NC.

19 Extending algorithms and optimality proofs
to general architectures

Our TSQR and CAQR algorithms have been described and analyzed in most
detail for simple machine models: either sequential with two levels of memory

99



hierarchy (fast and slow), or a homogeneous parallel machine, where each pro-
cessor is itself sequential. Real computers are more complicated, with many
levels of memory hierarchy and many levels of parallelism (multicore, multi-
socket, multinode, multirack, . . . ) all with different bandwidths and latencies.
So it is natural to ask whether our algorithms and optimality proofs can be ex-
tended to these more general situations. We have briefly described how TSQR
could be extended to general reduction trees in Section 4.3, which could in turn
be chosen depending on the architecture. But we have not discussed CAQR,
which we do here.

We again look at the simpler case of matrix multiplication for inspiration.
Consider the sequential case, with k levels of memory hierarchy instead of 2,
where level 1 is fastest and smallest with W1 words of memory, level 2 is slower
and larger with W2 words of memory, and so on, with level k being slowest and
large enough to hold all the data. By dividing this hierarchy into two pieces,
levels k through i+1 (”slow”) and i through 1 (”fast”), we can apply the theory
in Section 17.1 to get lower bounds on bandwidth and latency for moving data
between levels i and i + 1 of memory. So our goal expands to finding a matrix
multiplication algorithm that attains not just 1 set of lower bounds, but k − 1
sets of lower bounds, one for each level of the hierarchy.

Fortunately, as is well known, the standard approach to tiling matrix multi-
plication achieves all these lower bounds simultaneously, by simply applying it
recursively: level i+1 holds submatrices of dimension O(

√
Wi+1), and multiplies

them by tiling them into submatrices of dimension O(
√

Wi), and so on.
The analogous observation is true of parallel matrix multiplication on a

hierarchical parallel processor where each node in the parallel processor is itself
a parallel processor (multicore, multisocket, multirack, . . . ).

We believe that this same recursive hierarchical approach applies to CAQR
(and indeed much of linear algebra) but there is a catch: Simple recursion does
not work, because the subtasks are not all simply smaller QR decompositions.
Rather they are a mixture of tasks, including small QR decompositions and
operations like matrix multiplication. Therefore we still expect that the same
hierarchical approach will work: if a subtask is matrix multiplication then it
will be broken into smaller matrix multiplications as described above, and if
it is QR decomposition, it will be broken into smaller QR decompositions and
matrix multiplications.

There are various obstacles to this simple approach. First, the small QR
decompositions generally have structure, e.g., a pair of triangles. To exploit
this structure fully would complicate the recursive decomposition. (Or we could
choose to ignore this structure, perhaps only on the smaller subproblems, where
the overhead would dominate.)

Second, it suggests that the data structure with which the matrix is stored
should be hierarchical as well, with matrices stored as subblocks of subblocks
[23]. This is certainly possible, but it differs significantly from the usual data
structures to which users are accustomed. It also suggests that recent ap-
proaches based on decomposing dense linear algebra operations into DAGs of
subtasks [8, 2, 39, 51, 50] may need to be hierarchical, rather than have a single

100



layer of tasks. A single layer is a good match for the single socket multicore
architectures that motivate these systems, but may not scale well to, e.g., petas-
cale architectures.

Third, it is not clear whether this approach best accommodates machines
that mix hierarchies of parallelism and memory. For example, a multicore /
multisocket / multirack computer will have also have disk, DRAM and various
caches, and it remains to be seen whether straightforward recursion will mini-
mize bandwidth and latency everywhere that communication takes place within
such an architecture.

Fourth and finally, all our analysis has assumed homogeneous machines, with
the same flop rate, bandwidth and latency in all components. This assumption
can be violated in many ways, from having different bandwidth and latency
between racks, sockets, and cores on a single chip, to having some specialized
floating point units like GPUs.

It is most likely that an adaptive, “autotuning” approach will be needed to
deal with some of these issues, just as it has been used for the simpler case of a
matrix multiplication. Addressing all these issues is future work.

Appendix

A Structured local Householder QR flop counts

Here, we summarize floating-point operation counts for local structured House-
holder QR factorizations of various matrices of interest. We count operations for
both the factorization, and for applying the resulting implicitly represented Q
or QT factor to a dense matrix. Unless otherwise mentioned, we omit counts for
BLAS 3 variants of structured Householder QR factorizations, as these variants
require more floating-point operations. Presumably, the use of a BLAS 3 vari-
ant indicates that small constant factors and lower-order terms in the arithmetic
operation count matter less to performance than the BLAS 3 optimization.

A.1 General formula

A.1.1 Factorization

Algorithm 1 in Section 6.1 shows a column-by-column Householder QR factor-
ization of the qn× n matrix of upper triangular n× n blocks, using structured
Householder reflectors. We can generalize this to an m × n matrix A with a
different nonzero pattern, as long as the trailing matrix updates do not create
nonzeros below the diagonal in the trailing matrix. This is true for all the matrix
structures encountered in the local QR factorizations in this report. A number
of authors discuss how to predict fill in general sparse QR factorizations; see,
for example, [25]. We do not need this level of generality, since the structures
we exploit do not cause fill.

101



The factorization proceeds column-by-column, starting from the left. For
each column, two operations are performed: computing the Householder reflec-
tor for that column, and updating the trailing matrix. The cost of computing
the Householder vector of a column A(j : m, j) is dominated by finding the norm
of A(j : m, j) and scaling it. If this part of the column contains kj nonzeros,
this comprises about 4kj flops, not counting comparisons. We assume here that
the factorization never creates nonzeros in the trailing matrix; a necessary (but
not sufficient) condition on kj is that it is nondecreasing in j.

The trailing matrix update involves applying a length m−j +1 Householder
reflector, whose vector contains kj nonzeros, to the m−j+1×cj trailing matrix
Cj . The operation has the following form:

(I − τvjv
T
j )Cj = Cj − vj(τj(vT Cj)),

in which vj is the vector associated with the Householder reflector. The first step
vT

j Cj costs 2cjkj flops, as we do not need to compute with the zero elements of
vj . The result is a 1×cj row vector and in general dense, so scaling it by τj costs
cj flops. The outer product with vj then costs cjkj flops, and finally updating
the matrix Cj costs cjkj flops (one for each nonzero in the outer product). The
total is 4cjkj + cj .

When factoring an m×n matrix, cj = n−j. The total number of arithmetic
operations for the factorization is therefore

FlopsLocal, Factor(m,n) =
n∑

j=1

4(n− j)kj + 4kj + (n− j) flops. (52)

We assume in this formula that m ≥ n; otherwise, one would have to sum from
j = 1 to min{m,n} in Equation (52).

A.1.2 Applying implicit Q or QT factor

Applying an m×m Q or QT arising from QR on an m× n matrix to an m× c
matrix C is like performing n trailing matrix updates, except that the trailing
matrix size c stays constant. This gives us an arithmetic operation count of

FlopsLocal, Apply(m,n, c) =
n∑

j=1

(4ckj + 4kj + c) flops. (53)

The highest-order term in the above is

4c

n∑
j=1

kj .

Note that the summation
∑n

j=1 kj is simply the number of nonzeros in the
collection of n Householder vectors. We assume in this formula that m ≥ n;
otherwise, one would have to sum from j = 1 to min{m,n} in Equation (53).

102



A.2 Special cases of interest

A.2.1 One block – sequential TSQR

Factorization The first step of sequential TSQR involves factoring a single
m/P ×n input block. This is the special case of a full matrix, and thus the flop
count is

FlopsSeq, 1 block, factor(m,n, P ) =
2mn2

P
− 2n3

3
+ O

(mn

P

)
, (54)

where we use kj = m/P − j + 1 in Equation (52). We assume in this formula
that m/P ≥ n. This operation requires keeping the following in fast memory:

• One m/P × n block of the input matrix A

• Scratch space (at most about n2 words)

The two-block factorization below consumes more fast memory, so it governs
the fast memory requirements in the sequential TSQR factorization (see Section
A.2.2 for the fast memory requirements).

Applying Q or QT The cost in flops of applying an m/P × m/P Q factor
that comes from the QR factorization of an m/P × n matrix to an m/P × c
matrix C is

FlopsSeq, 1 block, apply(m,n, P ) =
4cmn

P
− 2cn2 + O

(cm

P

)
, (55)

where we use kj = m/P − j + 1 in Equation (53). We assume in this formula
that m/P ≥ n.

A.2.2 Two blocks – sequential TSQR

Factorization For a 2m/P × n local factorization with the top m/P × n
block upper triangular and the lower m/P ×n block full, we have kj = 1+m/P
nonzeros in the jth Householder reflector. Thus, the flop count of the local QR
factorization is

FlopsSeq, 2 blocks, factor(m,n, P ) =
2mn2

P
+

2mn

P
+ O(n2), (56)

using Equation (52). We assume in this formula that m/P ≥ n. For the case
m/P = n (two square n× n blocks), this specializes to kj = 1 + n and thus the
flop count is

2n3 + O(n2).

Without exploiting structure, the flop count would have been

10
3

n3 + O(n2).

Thus, the structured approach requires only about 3/5 times as many flops as
standard Householder QR on the same 2n× n matrix.

This operation requires keeping the following in fast memory:

103



• The previous block’s R factor (n(n + 1)/2 words)

• One m/P × n block of the input matrix A

• Scratch space (at most about n2 words)

Neglecting scratch space, the total fast memory requirement is

mn

P
+

n(n + 1)
2

words.

Assume that fast memory can hold W floating-point words. We assume that
m/P ≥ n, so clearly we must have

W ≥ n(n + 1)
2

+ n2 =
3
2
n2 +

n

2

in order to solve the problem at all, no matter what value of P we use. If this
condition is satisfied, we can then pick P so as to maximize the block size (and
therefore minimize the number of transfers between slow and fast memory) in
our algorithm. Neglecting the lower-order term of scratch space, the block size
is maximized when P is minimized, namely when

P =
mn

W − n(n+1)
2

.

Applying Q or QT Given the 2m/P × 2m/P Q factor arising from the QR
factorization in the previous paragraph, the cost in flops of applying it to a
2m/P × c matrix is given by Equation (53) as

FlopsSeq, 2 blocks, apply(m,n, P ) =
4cmn

P
+ O

(mn

P

)
. (57)

We assume in this formula that m/P ≥ n.
This operation requires keeping the following in fast memory:

• Two input blocks (cm/P words each)

• The local Q factor (n + mn/P words)

• Scratch space of size c× n for QT C

The total fast memory requirements are therefore

(2c + n)m
P

+ (c + 1)n words,

plus a lower-order term for scratch and stack space. Assume that fast memory
can hold W floating-point words. We assume that m/P ≥ n, so clearly we must
have

W ≥ (2c + n)n + (c + 1)n

104



in order to solve the problem at all, no matter what value of P we use. If this
condition is satisfied, we can then pick P so as to maximize the block size (and
therefore minimize the number of transfers between slow and fast memory) in
our algorithm. Neglecting the lower-order term of scratch space, the block size
is maximized when P is minimized, namely when

P =
(2c + n)m

W − (c + 1)n
.

This formula makes sense because we assume that W ≥ 2(c + n)n + (c + 1)n,
so the denominator is always positive.

A.2.3 Two or more blocks – parallel TSQR

Factorization For two m/P × n upper triangular blocks grouped to form a
2m/P×n matrix, we have kj = 1+j and therefore the flop count from Equation
(52) is

FlopsPar, 2 blocks, factor(n, P ) =
2
3
n3 + O(n2). (58)

We assume in this formula that m/P ≥ n. Without exploiting structure, the
flop count would have been

4mn2

P
− 2

3
n3 + O(n2).

Therefore, exploiting structure makes the flop count independent of m. We can
generalize this case to some number q ≥ 2 of the m/P × n upper triangular
blocks, which is useful for performing TSQR with tree structures other than
binary. Here, q is the branching factor of a node in the tree. In that case, we
have kj = 1 + (q − 1)j nonzeros in the jth Householder reflector, and therefore
the flop count from Equation (52) is

FlopsPar, q blocks, factor(n, q, P ) =
2
3
(q − 1)n3 + O(qn2). (59)

Again, we assume in this formula that m/P ≥ n. In the case m/P = n,
the optimization saves up to 2/3 of the arithmetic operations required by the
standard approach.

Applying Q or QT Given the 2m/P × 2m/P Q factor from the QR factor-
ization in the previous paragraph, the cost in flops of applying it to a 2m/P × c
matrix C is, from Equation (53),

FlopsPar, 2 blocks, apply(n, c) = 2(c + 1)n2. (60)

We assume in this formula that m/P ≥ n. For the more general case mentioned
above of a qm/P × n Q factor (with q ≥ 2), the cost in flops of applying it to a
qm/P × c matrix is

FlopsPar, q blocks, apply(n, q, c) = 2(q − 1)cn2 + O(qn2). (61)

Again, we assume in this formula that m/P ≥ n.

105



B Sequential TSQR performance model

B.1 Conventions and notation

The sequential TSQR factorization operates on an m×n matrix, divided into P
row blocks. We assume that m/P ≥ n, and we assume without loss of generality
that P evenly divides m (if not, the block(s) may be padded with zeros). We
do not model a general 1-D block cyclic layout, as it is only meaningful in the
parallel case. We assume that fast memory has a capacity of W floating-point
words for direct use by the algorithms in this section. We neglect the lower-
order amount of additional work space needed. We additionally assume read
and write bandwidth are the same, and equal to 1/β. For simplicity of analysis,
we assume no overlapping of computation and communication; overlap could
potentially provide another twofold speedup.

The individual block operations (QR factorizations and updates) may be
performed using any stable QR algorithm. In particular, the optimizations in
Section 6 apply. When counting floating-point operations and determining fast
memory requirements, we use the structured QR factorizations and updates
described in Section 6.1 and analyzed in Section A. In practice, one would
generally also use the BLAS 3 optimizations in Section 6.2; we omit them here
because if their blocking factor is large enough, they increase the flop counts by
a small constant factor. They also increase the fast memory requirements by
a small constant factor. The interaction between the BLAS 3 blocking factor
and the block dimensions in TSQR is complex, and perhaps best resolved by
benchmarking and search rather than by a performance model.

B.2 Factorization

We now derive the performance model for sequential TSQR. The floating-point
operation counts and fast memory requirements in this section were derived in
Appendix A. Sequential TSQR first performs one local QR factorization of the
topmost m/P × n block alone, at the cost of

• 2mn2

P − 2n3

3 + O(mn/P ) flops (see Appendix A, Equation (54)),

• one read from secondary memory of size mn/P , and

• one write to secondary memory, containing both the implicitly represented
Q factor (of size mn/P − n(n + 1)/2), and the τ array (of size n).

Then it does P − 1 local QR factorizations of two m/P ×n blocks grouped into
a 2m/P ×n block. In each of these local QR factorizations, the upper m/P ×n
block is upper triangular, and the lower block is a full matrix. Each of these
operations requires

• 2mn2

P + O(mn/P ) flops (see Appendix A, Equation (56)),

• one read from slow memory of size mn/P , and

106



• one write to slow memory of size mn/P + n (the Householder reflectors
and the τ array).

The resulting modeled runtime is

TSeq. TSQR(m,n, P ) =

α (2P ) + β

(
2mn + nP − n(n− 1)

2

)
+ γ

(
2mn2 − 2n3

3

)
. (62)

The above performance model leaves P as a parameter. Here, we pick P
so as to maximize fast memory usage. This minimizes the number of mem-
ory transfers between slow and fast memory, and thus minimizes the latency
term in the model. Suppose that fast memory can only hold W words of data
for sequential TSQR. According to Section A.2.2, the best choice of P is the
minimum, namely

Popt =
mn

W − n(n+1)
2

,

which minimizes the number of transfers between slow and fast memory. This
gives us a modeled runtime of

TSeq. TSQR(m,n,W ) = α

(
2mn

W − n(n+1)
2

)
+

β

(
2mn− n(n + 1)

2
+

mn2

W − n(n+1)
2

)
+

γ

(
2mn2 − 2n3

3

)
. (63)

B.3 Applying Q or QT

The Q and QT cases are distinguished only by the order of operations. Suppose
we are applying Q or QT to the dense m × c matrix C. The top block row
of C receives both a one-block update (see Equation (55) in Section A) and a
two-block update (see Equation (57) in Section A), whereas the remaining block
rows of C each receive only a two-block update.

The total number of arithmetic operations is

4cmn− 2cn2 + O
(cm

P

)
+ O(mn) flops.

Each block of the matrix C is read from slow memory once and written back
to slow memory once. Furthermore, each block of the Q factor is read from
slow memory once. Thus, the total number of transfers between slow and fast
memory is 3P , and the total number of words transferred between slow and fast
memory is

2cm + P
(mn

P
+ n

)
− n(n + 1)

2
= (2c + n)m + n · P − n(n + 1)

2
.

107



Altogether, we get the model

TSeq. TSQR apply(m,n, c, P ) = α (3P ) +

β

(
(2c + n)m + n · P − n(n + 1)

2

)
+ γ

(
4cmn− 2cn2

)
. (64)

The above performance model leaves P as a parameter. Here, we minimize
P so as to maximize fast memory usage. This minimizes the number of mem-
ory transfers between slow and fast memory, and thus minimizes the latency
term in the model. Suppose that fast memory can only hold W words of data
for sequential TSQR. The two-block update steps dominate the fast memory
requirements. Section A.2.2 describes the fast memory requirements of the two-
block update in detail. In summary, choosing

Popt =
(2c + n)m

W − (c + 1)n
.

minimizes the number of transfers between slow and fast memory. This gives
us a modeled runtime of

TSeq. TSQR apply(m,n, c,W ) = α

(
3(2c + n)m

W − (c + 1)n

)
+

β

(
(2c + n)m +

2cmn + mn2

W − (c + 1)n
− n(n + 1)

2

)
+

γ
(
4cmn− 2cn2

)
. (65)

C Sequential CAQR performance model

C.1 Conventions and notation

Sequential CAQR operates on an m× n matrix, stored in a Pr × Pc 2-D block
layout. We do not model a fully general block cyclic layout, as it is only helpful
in the parallel case for load balancing. Let P = Pr ·Pc be the number of blocks
(not the number of processors, as in the parallel case – here we only use one
processor). We assume without loss of generality that Pr evenly divides m and
Pc evenly divides n. The dimensions of a single block of the matrix are M×N , in
which M = m/Pr and N = n/Pc. Analogously to our assumption in Appendix
B, we assume that m ≥ n and that M ≥ N . Our convention is to use capital
letters for quantities related to blocks and the block layout, and lowercase letters
for quantities related to the whole matrix independent of a particular layout.

We assume that fast memory has a capacity of W floating-point words for
direct use by the algorithms in this section, neglecting lower-order amounts of
additional work space.

The individual block operations (QR factorizations and updates) may be
performed using any stable QR algorithm. In particular, the optimizations in

108



Section 6 apply. When counting floating-point operations and determining fast
memory requirements, we use the structured QR factorizations and updates
described in Section 6.1 and analyzed in Appendices A and B. In practice, one
would generally also use the BLAS 3 optimizations in Section 6.2; we omit them
here because if their blocking factor is large enough, they increase the flop counts
by a small constant factor. They also increase the fast memory requirements by
a small constant factor. The interaction between the BLAS 3 blocking factor
and the block dimensions in CAQR is complex, and perhaps best resolved by
benchmarking and search rather than by a performance model.

C.2 Factorization outline

Algorithms 12 and 13 outline left-looking resp. right-looking variants of the
sequential CAQR factorization. Since it turns out that the left-looking and
right-looking algorithms perform essentially the same number of floating-point
operations, and send essentially the same number of words in the same number
of messages, we will only analyze the right-looking algorithm.

Algorithm 12 Outline of left-looking sequential CAQR factorization
1: Assume: m ≥ n and m

Pr
≥ n

Pc

2: for J = 1 to Pc do
3: for K = 1 to J − 1 do
4: Update panel J (in rows 1 to m and columns (J − 1) n

Pc
+ 1 to J n

Pc
)

using panel K
5: end for
6: Factor panel J (in rows (J − 1) n

Pc
+ 1 to m and columns (J − 1) n

Pc
+ 1

to J n
Pc

)
7: end for

Algorithm 13 Outline of right-looking sequential CAQR factorization
1: Assume: m ≥ n and m

Pr
≥ n

Pc

2: for J = 1 to Pc do
3: Factor panel J (in rows (J − 1) n

Pc
+ 1 to m and columns (J − 1) n

Pc
+ 1

to J n
Pc

)
4: Update trailing panels to right, (in rows (J−1) n

Pc
+1 to m and columns

J n
Pc

+ 1 to n) using the current panel
5: end for

Indeed, we need only to replace the loop in Algorithm 13 by a summation,
and the calls to “factor panel” and “update panel” with uses of the formulas for
TSeq. TSQR() from equation (62) and for TSeq. TSQR apply() from equation (64):

109



TSeq. CAQR(m,n, Pc, Pr) ≤
Pc∑

J=1

TSeq. TSQR(m− (J − 1)
n

Pc
,

n

Pc
, Pr)

+(Pc − J)TSeq. TSQR apply(m− (J − 1)
n

Pc
,

n

Pc
,

n

Pc
, Pr)

= α

[
3
2
P (Pc − 1)

]
+

β

[
3
2
mn

(
Pc +

4
3

)
− 1

2
n2Pc + O

(
n2 + nP

)]
+ (66)

γ

[
2n2m− 2

3
n3

]
where we have ignored lower order terms, and used Pr as an upper bound on
the number of blocks in each column (in the last argument of each function),
since this only increases the run time slightly, and is simpler to evaluate than
for the true number of blocks Pr − b(J − 1) nPr

mPc
c.

C.3 Choosing P , Pr and Pc to optimize runtime

From the above formula for TSeq. CAQR(m,n, Pc, Pr), we see that the runtime
is an increasing function of Pr and Pc, so that we would like to choose them
as small as possible, within the limits imposed by the fast memory size W , to
minimize the runtime.

The CAQR step requiring the most fast memory is the two-block update of
a panel. Each trailing matrix block has m/Pr rows and n/Pc columns, so given
the formula in Section A.2.2, the fast memory requirement is

3mn

P
+

n2

P 2
c

+
n

Pc
≤ 4mn

P
+
√

mn

P
words,

plus a lower-order term for scratch and stack space. For simplicity, we approx-
imate this by 4mn

P . To minimize runtime, we want to minimize P subject to
4mn

P ≤ W , i.e. we choose P = 4mn
W . But we still need to choose Pr and Pc

subject to PrPc = P .
Examining TSeq. CAQR(m,n, Pc, Pr), again, we see that if P is fixed, the run-

time is also an increasing function of Pc, which we therefore want to minimize.
But we are assuming m

Pr
≥ n

Pc
, or Pc ≥ nPr

m . The optimal choice is therefore

Pc = nPr

m or Pc =
√

nP
m , which also means m

Pr
= n

Pc
, i.e., the blocks in the algo-

rithm are square. This choice of Pr = 2m√
W

and Pc = 2n√
W

therefore minimizes
the runtime, yielding

TSeq. CAQR(m,n,W ) ≤ α

[
12

mn2

W 3/2

]
+ β

[
3
mn2

√
W

+ O

(
mn2

W

)]
+

γ

[
2mn2 − 2

3
n3

]
. (67)

110



We note that the bandwidth term is proportional to mn2
√

W
, and the latency

term is W times smaller, both of which match (to within constant factors),
the lower bounds on bandwidth and latency described in Corollary 1 in Sec-
tion 17.3.1.

D Parallel TSQR performance model

D.1 Conventions and notation

The parallel TSQR factorization operates on an m × n matrix in a 1-D block
layout on P processors. We assume that m/P ≥ n, and we assume without loss
of generality that P evenly divides m (if not, the block(s) may be padded with
zeros). Furthermore, we assume that the number of processors P is a power of
two: P = 2L−1 with L = log2 P . For simplicity, we do not model a general
1-D block cyclic layout here, and we assume no overlapping of computation and
communication (overlap could potentially provide another twofold speedup).

The individual block operations (QR factorizations and updates) may be
performed using any stable QR algorithm. In particular, the optimizations in
Section 6 apply. When counting floating-point operations and determining fast
memory requirements, we use the structured QR factorizations and updates
described in Section 6.1. In practice, one would generally also use the BLAS
3 optimizations in Section 6.2; we omit them here because if their blocking
factor is large enough, they increase the flop counts by a small constant factor.
They also increase the fast memory requirements by a small constant factor.
The interaction between the BLAS 3 blocking factor and the block dimensions
in TSQR is complex, and perhaps best resolved by benchmarking and search
rather than by a performance model.

D.2 Factorization

We now derive the performance model for parallel TSQR on a binary tree of
P processors. We restrict our performance analysis to the block row, reduction
based Algorithm 3. The all-reduction-based version has the same number of
flops on the critical path (the root process of the reduction tree), but it requires
2q parallel messages per level of the tree on a q-ary tree, instead of just q − 1
parallel messages to the parent node at that level in the case of a reduction.
When counting the number of floating-point operations for each step of the
factorization, we use the counts derived in Appendix A.

A parallel TSQR factorization on a binary reduction tree performs the fol-
lowing computations along the critical path:

• One local QR factorization of a fully dense m/P × n matrix (2mn2/P −
n3

3 + O(mn/P ) flops)

• log2 P factorizations, each of a 2n×n matrix consisting of two n×n upper
triangular matrices ( 2

3n3 + O(n2) flops)

111



Thus, the total flop count is

FlopsPar. TSQR(m,n, P ) =
2mn2

P
− n3

3
+

2
3
n3 log2 P + O

(mn

P

)
.

The factorization requires log2 P messages, each of size n(n+1)/2 (the R factors
at each step of the tree).

D.3 Applying Q or QT

Suppose we are applying Q or QT to the dense m × c matrix C. (The Q and
QT cases are distinguished only by the order of operations.) We assume the
matrix C is distributed in the same 1-D block layout on P processors as was
the original matrix A. The total number of arithmetic operations is

FlopsPar. TSQR apply(m,n, P ) =
4cmn

P
+ 2cn2(log2(P )− 1) + O

(
(c + n)m

P

)
.

Suppose that a reduction (rather than an all-reduction) is used to apply the Q
factor. Then, at each inner node of the reduction tree, one processor receives an
n× c block of the matrix C from its neighbor, updates it, and sends the result
back to its neighbor. So there are two messages per inner node, each of size
cn. This gives a total of 2 log2 P messages, and a total communication volume
of 2cn log2 P words. If an all-reduction is used, there is only one message per
inner node along the critical path, and that message is of size cn. This gives a
total of log2 P messages, and a total communication volume of cn log2 words.

E Parallel CAQR performance model

E.1 Conventions and notation

In this section, we model the performance of the parallel CAQR algorithm
described in Section 13. Parallel CAQR operates on an m×n matrix A, stored
in a 2-D block cyclic layout on a Pr × Pc grid of P processors. We assume
without loss of generality that Pr evenly divides m and that Pc evenly divides
n (if not, the block(s) may be padded with zeros). We assume no overlapping
of computation and communication (overlap could potentially provide another
twofold speedup).

The individual block operations (QR factorizations and updates) may be
performed using any stable QR algorithm. In particular, the optimizations in
Section 6 apply. When counting floating-point operations and determining fast
memory requirements, we use the structured QR factorizations and updates
described in Section 6.1. In practice, one would generally also use the BLAS
3 optimizations in Section 6.2; we omit them here because if their blocking
factor is large enough, they increase the flop counts by a small constant factor.
They also increase the fast memory requirements by a small constant factor.
The interaction between the BLAS 3 blocking factor and the block dimensions

112



in CAQR is complex, and perhaps best resolved by benchmarking and search
rather than by a performance model.

E.2 Factorization

First, we count the number of floating point arithmetic operations that CAQR
performs along the critical path. We compute first the cost of computing the
QR factorization using Householder transformations of a m×n matrix A (using
DGEQR2). The cost of computing the jth Householder vector is given by the
cost of computing its Euclidian norm and then by scaling the vector. This
involves 3(m − j + 1) flops and (m − j + 1) divides. The cost of updating the
trailing A(j : m, j +1 : n) matrix by I − τvjv

T
j is 4(n− j)(m− j +1). The total

number of flops is:

3
n∑

j=1

(m− j + 1) + 4
n−1∑
j=1

(n− j)(m− j + 1) =

2mn2 − 2n3

3
+ mn +

n2

2
+

n

3
=

2mn2 − 2n3

3
+ O(mn).

The total number of divides is around mn− n2/2.
The Householder update of a matrix (I − Y TT Y T )C, where Y is a m × n

unit lower trapezoidal matrix of Householder vectors and C is a m× q matrix,
can be expressed as:

C =
(

C0

C1

)
=

(
I −

(
Y0

Y1

)
· TT

·
(

Y0

Y1

)T
)(

C0

C1

)
in which Y0 is a n × n unit lower triangular matrix and Y1 is a rectangular
matrix. The total number of flops is around qn(4m − n − 1) ≈ qn(4m − n).
We described in Section 6.4 how to perform the trailing matrix update. The
breakdown of the number of flops in each step is:

• W = Y T
0 C0 → n(n− 1)q flops.

• W = W + Y T
1 C1 → 2n(m− n)q flops.

• W = TT W → n2q flops.

• C0 = C0 − Y0W → n2q flops.

• C1 = C1 − Y1W → 2n(m− n)q flops.

We consider now the computation of the upper triangular matrix T used in
the (I − Y TY T ) representation of the Householder vectors (DLARFT routine).
This consists of n transformations of the form (I− τviv

T
i ). Consider Y , a m×n

113



unit lower trapezoidal matrix of Householder vectors. The matrix T is an upper
triangular matrix of dimension n×n that is obtained in n steps. At step j, the
first j − 1 columns of T are formed. The j-th column is obtained as follows:

T (1 : j, 1 : j) =(
T (1 : j − 1, 1 : j − 1) −τT (1 : j − 1, 1 : j − 1)Y T (:, 1 : j − 1)vj)

τ

)
in which vj is the jth Householder vector of length m−j+1. This is obtained by
computing first w = −τY T (:, 1 : j−1)vj (matrix vector multiply of 2(j−1)(m−
j +1) flops ) followed by the computation T (1 : j−1, j) = T (1 : j−1, 1 : j−1)w
(triangular matrix vector multiplication of (j − 1)2 flops). The total cost of
forming T is:

mn2 − n3

3
−mn +

n2

2
− n

6
≈ mn2 − n3

3

The new QR factorization algorithm also performs Householder updates of
the form

C =
(

C0

C1

)
=

(
I −

(
I
Y1

)
· TT

·
(

I
Y1

)T
)(

C0

C1

)
in which Y1 is a n × n upper triangular matrix and C is a 2n × q matrix.
The total number of flops is 3n2q + 6nq. The following outlines the number
of floating-point operations corresponding to each operation performed during
this update:

• W = Y T
1 C1 → n(n + 1)q flops.

• W = W + C0 → nq flops.

• W = TT W → n(n + 1)q flops.

• C0 = C0 −W → nq flops.

• C1 = C1 − Y1W → n(n + 2)q flops.

Forming the upper triangular matrix T used in the above Householder up-
date corresponds now to computing −τT (1 : j − 1, 1 : j − 1)Y T

1 (1 : j − 1, 1 :
j−1)vj(n+1 : n+j). vj is the jth Householder vector composed of 1 in position
j and nonzeros in positions n + 1, . . . n + j + 1. First w = −τY T

1 (1 : j − 1, 1 :
j − 1)vj(n + 1 : 2n) is computed (triangular matrix vector multiply of j(j − 1)
flops), followed by T (1 : j − 1, j) = T (1 : j − 1, 1 : j − 1)w (triangular matrix
vector multiplication of (j − 1)2 flops). The total number of flops is

n∑
j=1

j(j − 1) +
n∑

j=1

(j − 1)2 ≈ 2
n3

3
(68)

We are now ready to estimate the time of CAQR.

114



1. The column of processes that holds panel j computes a TSQR factorization
of this panel. The Householder vectors are stored in a tree as described
in Section 8.

γ

[
2b2mj

Pr
+

2b3

3
(log Pr − 1)

]
+

γd

[
mjb

Pr
+

b2

2
(log Pr − 1)

]
+

α log Pr + β
b2

2
log Pr (69)

2. Each processor p that belongs to the column of processes holding panel j
broadcasts along its row of processors the mj/Pr × b rectangular matrix
that holds the two sets of Householder vectors. Processor p also broadcasts
two arrays of size b each, containing the Householder factors τp.

α (2 log Pc) + β

(
mjb

Pr
+ 2b

)
log Pc (70)

3. Each processor in the same row template as processor p, 0 ≤ i < Pr, forms
Tp0 (first two terms in the number of flops) and updates its local trailing
matrix C using Tp0 and Yp0 (last term in the number of flops). (This
computation involves all processors and there is no communication.)[

b2 mj

Pr
− b3

3
+ b

nj − b

Pc

(
4
mj

Pr
− b

)]
γ (71)

4. for k = 1 to log Pr do

Processors that lie in the same row as processor p, where 0 ≤ p < Pr

equals first proc(p, k) or target first proc(p, k) perform:

(a) Processors in the same template row as target first proc(p, k) form
locally Tlevel(p,k),k. They also compute local pieces of W =
Y T

level(p,k),kCtarget first proc(p,k), leaving the results distributed. This
computation is overlapped with the communication in (4b).[

2b3

3
+ b(b + 1)

nj − b

Pc

]
γ (72)

(b) Each processor in the same row of the grid as first proc(p, k) sends
to the processor in the same column and belonging to the row of
target first proc(p, k) the local pieces of Cfirst proc(p,k).

α +
b(nj − b)

Pc
β (73)

115



(c) Processors in the same template row as target first proc(p, k) com-
pute local pieces of
W = TT

level(p,k),k

(
Cfirst proc(p,k) + W

)
.(

b(b + 2)
nj − b

Pc

)
γ (74)

(d) Each processor in the same template row as target first proc(p, k)
sends to the processor in the same column and belonging to the row
template of first proc(p, k) the local pieces of W .

α + β

(
b(nj − b)

Pc

)
(75)

(e) Processors in the same template row as first proc(p, k) complete
locally the rank-b update Cfirst proc(p,k) = Cfirst proc(p,k)−W (num-
ber of flops in Equation 76). Processors in the same template row as
target first proc(p, k) locally complete the rank-b update
Ctarget first proc(p,k) = Ctarget first proc(p,k) − Ylevel(p,k),kW (number
of flops in Equation 77). The latter computation is overlapped with
the communication in (4d).

γ

(
b
nj − b

Pc

)
(76)

γ

(
b(b + 2)

nj − b

Pc

)
(77)

end for

We can express the total computation time over a rectangular grid of pro-
cessors TPar. CAQR(m,n, Pr, Pc) as a sum over the number of iterations of the
previously presented steps. The number of messages is n/b(3 log Pr + 2 log Pc).
The volume of communication is:

n/b∑
j=1

(
b2

2
log Pr +

mjb

Pr
log Pc + 2b log Pc +

2b(nj − b)
Pc

log Pr

)
=

(
nb

2
+

n2

Pc

)
log Pr +

(
2n +

mn− n2/2
Pr

)
log Pc

The total number of flops corresponding to each step is given by the follow-
ing, in which “(Eq. S)” (for some number S) is a reference to Equation (S) in

116



this section.

(Eq. 69)
n/b∑
j=1

≈2nmb− n2b + nb2

Pr
+

2b2n

3
(log Pr − 1)

(Eq. 71)
n/b∑
j=1

≈ 1
P

(
2mn2 − 2

3
n3

)
+

1
Pr

(
mnb +

nb2

2
− n2b

2

)
+

n2b

2Pc
− b2n

3

(Eq. 72)
n/b∑
j=1

≈
(

2b2n

3
+

n2(b + 1)
2Pc

)
log Pr

(Eq. 74)
n/b∑
j=1

≈n2(b + 2)
2Pc

log Pr

(Eq. 76)
n/b∑
j=1

≈ n2

2Pc
log Pr

(Eq. 77)
n/b∑
j=1

≈n2(b + 2)
2Pc

log Pr

The total computation time of parallel CAQR can be estimated as:

TPar. CAQR(m,n, Pr, Pc) =

γ

[
2n2(3m− n)

3P
+

bn2

2Pc
+

3bn(2m− n)
2Pr

+(
4b2n

3
+

n2(3b + 5)
2Pc

)
log Pr − b2n

]
+

γd

[
mn− n2/2

Pr
+

bn

2
(log(Pr)− 1)

]
+

α

[
3n

b
log Pr +

2n

b
log Pc

]
+

β

[(
+

n2

Pc

bn

2

)
log Pr +

(
mn− n2

2

Pr
+ 2n

)
log Pc

]
. (78)

F ScaLAPACK’s out-of-DRAM QR factoriza-
tion PFDGEQRF

LAPACK Working Note #118 describes an out-of-DRAM QR factorization rou-
tine PFDGEQRF, which is implemented as an extension of ScaLAPACK [16]. It
uses ScaLAPACK’s existing parallel in-DRAM panel factorization (PDGEQRF)
and update (PDORMQR) routines. Thus, it is able to exploit parallelism within
each of these steps, assuming that the connection to the filesystem is shared

117



among the processors. It can also take advantage of the features of parallel
filesystems for block reads and writes.

We use the algorithm and communication pattern underlying PFDGEQRF

as a model for a reasonable sequential out-of-DRAM implementation of House-
holder QR. This means we assume that all operations in fast memory run se-
quentially, and also that the connection to slow memory is sequential. These
assumptions are fair, because we can always model a parallel machine as a faster
sequential machine, and model multiple connections to slow memory as a single
higher-bandwidth connection. From now on, when we say PFDGEQRF without
further qualifications, we mean our sequential out-of-DRAM model. We also de-
scribe the algorithm for applying the Q factor computed and implicitly stored
by PFDGEQRF, either as Q or as QT , to an m× r matrix B which need not fit
entirely in fast memory.

We will show that the estimated runtime of PFDGEQRF, as a function of
the fast memory size W , is

TPFDGEQRF(m,n,W ) = α

[
2mn

W
+

mn2

2W
− n

2

]
+

β

[
3mn

2
− 3n2

4
+

mn

W

(
mn

2
− n2

6
.

)]
+

γ

[
2mn2 − 2n3

3
+ O(mn)

]
.

F.1 Conventions and notation

Algorithm 14 computes the Householder QR factorization of an m× n matrix.
We assume that m ≥ n and that the matrix is sufficiently large to warrant
not storing it all in fast memory. Algorithm 15 applies the implicitly stored Q
factor from this factorization, either as Q or as QT , to an m× r matrix B. We
assume in both cases that fast memory has a capacity of W floating-point words.
When computing how much fast memory an algorithm uses, we neglect lower-
order terms, which may include scratch space. We additionally assume read
and write bandwidth are the same, and equal to 1/β. For simplicity of analysis,
we assume no overlapping of computation and communication; overlap could
potentially provide another twofold speedup.

The individual panel operations (QR factorizations and updates) may be
performed using any stable QR algorithm. In particular, the optimizations in
Section 6 apply. When counting floating-point operations and determining fast
memory requirements, we use the flop counts for standard (unstructured) QR
factorizations and updates analyzed in Appendix A. In practice, one would
generally also use the BLAS 3 optimizations described in Section 6.2; we omit
them here because if their blocking factor is large enough, they increase the
flop counts by a small constant factor. They also increase the fast memory
requirements by a small constant factor. The interaction between the BLAS
3 blocking factor and the panel widths b and c is complex, and perhaps best

118



resolved by benchmarking and search rather than by a performance model.

F.2 Factorization

Algorithm 14 Outline of ScaLAPACK’s out-of-DRAM QR factorization
(PFDGEQRF)
1: for j = 1 to n− c step c do
2: Read current panel (columns j : j + c− 1) from slow memory
3: for k = 1 to j − 1 step b do
4: Read left panel (columns k : k + b− 1) from slow memory
5: Apply left panel to current panel (in fast memory)
6: end for
7: Factor current panel (in fast memory)
8: Write current panel to slow memory
9: end for

PFDGEQRF is a left-looking QR factorization method. The code keeps two
panels in fast memory: a left panel of fixed width b, and the current panel being
factored, whose width c can expand to fill the available memory. Algorithm
14 gives an outline of the code, without cleanup for cases in which c does not
evenly divide n or b does not evenly divide the current column index minus
one. Algorithm 16 near the end of this section illustrates this “border cleanup”
in detail, though we do not need this level of detail in order to model the
performance of PFDGEQRF.

F.2.1 Communication pattern

Algorithm 14 shares a common communication pattern with many variants of
the QR factorization. All these factorization variants keep two panels in fast
memory: a left panel and a current panel. For each current panel, the methods
sweep from left to right over the collection of left panels, updating the current
panel with each left panel in turn. They then factor the current panel and
continue. Applying the Q or QT factor from the factorization (as in Algorithm
15) has a similar communication pattern, except that the trailing matrix is re-
placed with the B matrix. If we model this communication pattern once, we can
then get models for all such methods, just by filling in floating-point operation
counts for each. Any QR factorization which works “column-by-column,” such
as (classical or modified) Gram-Schmidt, may be used in place of Householder
QR without changing the communication model. This is because both the left
panel and the current panel are in fast memory, so neither the current panel up-
date nor the current panel factorization contribute to communication. (Hence,
this unified model only applies in the sequential case, unless each processor
contains an entire panel.)

119



F.2.2 Fast memory usage

The factorization uses (b + c)m words of fast memory at once, not counting
lower-order terms or any BLAS 3 optimizations that the panel factorizations
and updates may use. In order to maximize the amount of fast memory used,
we choose b and c so that (b + c)m = W . If 2m > W then we cannot use this
factorization algorithm without modification, as in its current form, at least two
columns of the matrix must be able to fit in fast memory. The parameter b is
typically a small constant chosen to increase the BLAS 3 efficiency, whereas one
generally chooses c to fill the available fast memory, for reasons which will be
shown below. Thus, in many cases we will simplify the analysis by taking b = 1
and c ≈ W/m.

An important quantity to consider is mn/W . This is the theoretical lower
bound on the number of reads from slow memory (it is a latency term). It also
bounds from below the number of slow memory writes, assuming that we use
the usual representation of the Q factor as a collection of dense Householder re-
flectors, and the usual representation of the R factor as a dense upper triangular
matrix.

F.2.3 Number of words transferred

Algorithm 14 transfers about

n
c∑

j=1

2c (m− cj + 1) +

c(j−1)
b∑

k=1

b (m− bk + 1)

 =

(
3mn

2
− 3n2

4
+

3n

2

)
+

bn

4
− 13cn

12
+

1
c

(
mn2

2
− n3

6
+

n2

2
− bn2

4

)
(79)

floating-point words between slow and fast memory. Our goal is to minimize
this expression as a function of b and c. Though it is a complicated expression,
one can intuitively guess that it is minimized when b = 1 and c is as large as
possible, because if the current panel width is larger, then one needs to iterate
over all left panels fewer times (n/c times, specifically), whereas the number of
words read and written for all current panels is Θ(mn) regardless of the values
of b and c. If we take b = 1 and c ≈ W/m, the most significant terms of the
above sum are

3mn

2
− 3n2

4
+

mn

W

(
mn

2
− n2

6
.

)
In the case of sequential TSQR, the lower bound on the number of words trans-
ferred between slow and fast memory is 2mn (see Section 17.2); the third and
fourth terms above, taken together, can be arbitrarily larger when mn � W .
In the case of sequential CAQR (see Section 17.3.1), the lower bound is

mn2

4 − n2

8

(
n
2 + 1

)
(8W )1/2

−W.

120



If we assume m ≥ n, then PFDGEQRF transfers Ω(m/
√

W ) times more words
between fast and slow memory than the lower bound.

F.2.4 Number of slow memory accesses

The total number of slow memory reads and writes performed by Algorithm 14
is about

MessagesPFDGEQRF(m,n, b, c) =

n
c∑

j=1

2 +

c(j−1)
b∑

k=1

1

 =
n

2bc
+ 2

n

c
− n

2b
. (80)

This quantity is always minimized by taking c as large as possible, and therefore
b as small as possible. If we let b = 1 and approximate c by W/m, the number
of slow memory reads and writes comes out to

MessagesPFDGEQRF(m,n,W ) =
2mn

W
+

mn2

2W
− n

2
(81)

accesses.
In the case of sequential TSQR (see Section 17.2), the lower bound on the

number of messages between slow and fast memory is mn/W (or 2mn/W if
we need to write the result to slow memory). Thus, the above communication
pattern is a factor of n/4 away from optimality with respect to the latency term.
In the case of sequential CAQR (see Section 17.3.1, the lower bound is

mn2

4 − n2

8 (n
2 + 1)

(8W 3)1/2
− 1

messages. Thus, PFDGEQRF uses Θ(
√

W ) more messages than the lower bound.

F.2.5 Floating-point operations

PFDGEQRF, when run sequentially, performs exactly the same floating-point
operations as standard Householder QR, but in a different order. Thus, the flop
count is the same, namely

2mn2 − 2n3

3
+ O(mn).

This is independent of the parameters b and c. If BLAS 3 optimizations are used
in the panel factorizations and updates, as is likely in a practical implementation,
then the flop count may go up by a small constant factor.

121



F.2.6 Runtime

The estimated runtime of PFDGEQRF as a function of the parameters b and c
is

TPFDGEQRF(m,n, b, c) = α
[ n

2bc
+ 2

n

c
− n

2b

]
+

β

[(
3mn

2
− 3n2

4
+

3n

2

)
+

bn

4
− 13cn

12
+

1
c

(
mn2

2
− n3

6
+

n2

2
− bn2

4

)]
+

γ

[
2mn2 − 2n3

3
+ O(mn)

]
. (82)

When we choose b and c optimally according to the discussion above, the esti-
mated runtime is

TPFDGEQRF(m,n,W ) = α

[
2mn

W
+

mn2

2W
− n

2

]
+

β

[
3mn

2
− 3n2

4
+

mn

W

(
mn

2
− n2

6
.

)]
+

γ

[
2mn2 − 2n3

3
+ O(mn)

]
. (83)

F.3 Applying QT

Algorithm 15 Applying QT from Algorithm 14 to an n× r matrix B

1: for j = 1 to r − c step c do
2: Read current panel of B (columns j : j + c− 1)
3: for k = 1 to j − 1 step b do
4: Read left panel of Q (columns k : k + b− 1)
5: Apply left panel to current panel
6: end for
7: Write current panel of B
8: end for

[1]

Algorithm 15 outlines the communication pattern for applying the full but
implicitly represented QT factor from Algorithm 14 to an n×r dense matrix B.
We assume that the matrix B might be large enough not to fit entirely in fast
memory. Applying Q instead of QT merely changes the order of iteration over
the Householder reflectors, and does not change the performance model, so we
can restrict ourselves without loss of generality to computing QT B.

F.3.1 Fast memory usage

Algorithm 15 uses at most bm + cn words of fast memory at once, not counting
lower-order terms or any BLAS 3 optimizations that the panel applications

122



may use. In order to maximize the amount of fast memory used, we take
bm + cn = W . Note that this is different from the factorization, in case m 6= n.
If m + n > W then we cannot use this algorithm at all, even if b = 1 and c = 1.

F.3.2 Number of words transferred

Clearly, each panel of B is read and written exactly once, so the matrix B
contributes 2mr words to the total. If we count the number of times that each
word of the Q factor is read, we obtain about

r
c∑

j=1

n
b∑

k=1

(
bm− b(b− 1)

2

)
=

nr

2c
− bnr

2c
+

mnr

c

The formula is clearly minimized when c is maximized, namely when b = 1 and
c ≈ W/m. In that case, we obtain a total number of words transferred of about

mr +
m2nr

W
words.

F.3.3 Number of slow memory accesses

The total number of data transfers between slow and fast memory is about

r/c∑
j=1

2 +
n/b∑
k=1

1

 =
2r

c
+

nr

bc
=

r

c

(
2 +

n

b

)
.

If we choose b = 1 and c ≈ W/m, we get

2mr

W
+

2mnr

W
,

whereas if we choose c = 1 and b ≈ W/m, then we get

2r +
mnr

W
.

It’s clear that maximizing b minimizes the latency term.

F.3.4 Floating-point operations

Applying the Q factor costs

4mnr − 2n2r + O(mr) flops.

This is independent of the parameters b and c. If BLAS 3 optimizations are
used in the panel operations, as is likely in a practical implementation, then the
flop count may go up by a small constant factor.

123



Algorithm 16 More detailed outline of ScaLAPACK out-of-DRAM House-
holder QR factorization (PFDGEQRF), with border cleanup

1: for j = 1 to
(
bn

c c − 1
)
c + 1 step c do

2: Read current panel (columns j : j + c− 1, rows 1 : m)
3: for k = 1 to

(
b j−1

b c − 1
)
b + 1, step b do

4: Read left panel (columns k : k + b − 1, lower trapezoid, starting at
row k)

5: Apply left panel to rows k : m of current panel
6: end for
7: k := b j−1

b cb + 1
8: Read left panel (columns k : j − 1, lower trapezoid, starting at row k)
9: Apply left panel to rows k : m of current panel

10: Factor current panel (rows 1 : m)
11: Write current panel (rows 1 : m)
12: end for
13: j := bn

c cc + 1
14: Read current panel (columns j : n, rows 1 : m)
15: for k = 1 to

(
b j−1

b c − 1
)
b + 1, step b do

16: Read left panel (columns k : k + b − 1, lower trapezoid, starting at row
k)

17: Apply left panel to rows k : m of current panel
18: end for
19: k := b j−1

b cb + 1
20: Read left panel (columns k : j − 1, lower trapezoid, starting at row k)
21: Apply left panel to current panel
22: Factor current panel (rows 1 : m)
23: Write current panel (rows 1 : m)

G Communication Lower Bounds from Calculus

G.1 Summary

In this section we address communication lower bounds for TSQR needed in
subsection 17.2.2, asking how much data two (or more) processors have to com-
municate in order to compute the QR decomposition of a matrix whose rows
are distributed across them. We analyze this in a way that applies to more
general situations: Suppose processor 1 and processor 2 each own some of the
arguments of a function f that processor 1 wants to compute. What is the least
volume of communication required to compute the function? We are interested
in smooth functions of real or complex arguments, and so will use techniques
from calculus rather than modeling the arguments as bit strings.

In this way, we will derive necessary conditions on the function f for it to be
evaluable by communicating fewer than all of its arguments to one processor. We
will apply these conditions to various linear algebra operations to capture our
intuition that it is in fact necessary to move all the arguments to one processor

124



for correct evaluation of f .

G.2 Communication lower bounds for one-way communi-
cation between 2 processors

Suppose x(m) ∈ Rm is owned by processor 1 (P1) and y(n) ∈ Rn is owned by
P2; we use superscripts to remind the reader of the dimension of each vector-
valued variable or function. Suppose P1 wants to compute f (r)(x(m), y(n)) :
Rm × Rn → Rr. We first ask how much information P2 has to send to P1,
assuming it is allowed to send one message, consisting of n ≤ n real numbers,
which themselves could be functions of y(n). In other words, we ask if functions
h(n)(y(n)) : Rn → Rn and F (r)(x(m), z(n)) : Rm × Rn → Rr, exist such that
f (r)(x(m), y(n)) = F (r)(x(m), h(n)(y(n))). When n = n, the obvious choice is to
send the original data y(n), so that h(n)(y(n)) = y(n) is the identity function and
f (r) = F (r). The interesting question is whether we can send less information,
i.e. n < n.

Unless we make further restrictions on the function h we are allowed to
use, it is easy to see that we can always choose n = 1, i.e. send the least
possible amount of information: We do this by using a space-filling curve [53] to
represent each y(n) ∈ R(n) by one of several preimages ỹ ∈ R. In other words,
h(1)(y(n)) maps y(n) to a scalar ỹ that P1 can map back to y(n) by a space filling
curve. This is obviously unreasonable, since it implies we could try to losslessly
compress n 64-bit floating point numbers into one 64-bit floating point number.
However, by placing some reasonable smoothness restrictions on the functions
we use, since we can only hope to evaluate (piecewise) smooth functions in a
practical way anyway, we will see that we can draw useful conclusions about
practical computations. To state our results, we use the notation Jxf(x, y) to
denote the r ×m Jacobian matrix of f (r) with respect to the arguments x(m).
Using the above notation, we state

Lemma 3 Suppose it is possible to compute f (r)(x(m), y(n)) on P1 by communi-
cating n < n words h(n)(y(n)) from P2 to P1, and evaluating f (r)(x(m), y(n)) =
F (r)(x(m), h(n)(y(n))). Suppose h(n) and F (r) are continuously differentiable on
open sets. Then necessary conditions for this to be possible are as follows.

1. Given any fixed y(n) in the open set, then for all x(m) in the open set, the
rows of Jyf(x, y) must lie in a fixed subspace of Rn of dimension at most
n < n.

2. Given any fixed ỹ(n) ∈ Rn satisfying ỹ(n) = h(n)(y(n)) for some y(n) in
the interior of the open set, there is a set C ⊂ Rn containing y(n), of
dimension at least n − n, such that for each x, f(x, y) is constant for
y ∈ C.

3. If r = n, and for each fixed x, f (r)(x, y(n)) is a bijection, then it is neces-
sary and sufficient to send n words from P2 to P1 to evaluate f .

125



Proof: Part 1 is proved simply by differentiating, using the chain rule, and
noting the dimensions of the Jacobians being multiplied:

J (r×n)
y f (r)(x, y) = J

(r×n)
h F (r)(x, h) · J (n×n)

y h(n)(y)

implying that for all x, each row of J
(r×m)
y f (r)(x, y) lies in the space spanned

by the n rows of J
(n×n)
y h(n)(y).

Part 2 is a consequence of the implicit function theorem. Part 3 follows from
part 2, since if the function is a bijection, then there is no set C along which f
is constant. �

Either part of the lemma can be used to derive lower bounds on the volume of
communication needed to compute f(x, y), for example by choosing an n equal
to the lower bound minus 1, and confirming that either necessary condition in
the Lemma is violated, at least in some open set.

We illustrate this for a simple matrix factorization problem.

Corollary 3 Suppose P1 owns the r1 × c matrix A1, and P2 owns the r2 × c
matrix A2, with r2 ≥ c. Suppose P1 wants to compute the c × c Cholesky
factor R of RT ·R = AT

1 ·A1 + AT
2 ·A2, or equivalently the R factor in the QR

decomposition of
[

A1

A2

]
. Then P2 has to communicate at least c(c+1)/2 words

to P1, and it is possible to communicate this few, namely either the entries on
and above the diagonal of the symmetric c× c matrix AT

2 ·A2, or the entries of
its Cholesky factor R, so that RT · R = AT

2 · A2 (equivalently, the R factor of
the QR factorization of A2).
Proof: That it is sufficient to communicate the c(c+1)/2 entries described above
is evident. We use Corollary 1 to prove that these many words are necessary.
We use the fact that mapping between the entries on and above the diagonal
of the symmetric positive definite matrix and its Cholesky factor is a bijection
(assuming positive diagonal entries of the Cholesky factor). To see that for any
fixed A1, f(A1, R) = the Cholesky factor of AT

1 · A1 + RT · R is a bijection,
note that it is a composition of three bijections: the mapping from R to the
entries on and above the diagonal of Y = AT

2 ·A2, the entries on and above the
diagonal of Y and those on and above the diagonal of X = AT

1 ·A1 +Y , and the
mapping between the entries on and above the diagonal of X and its Cholesky
factor f(A1, R). �

G.3 Reduction operations

We can extend this result slightly to make it apply to the case of more general
reduction operations, where one processor P1 is trying to compute a function of
data initially stored on multiple other processors P2 through Ps. We suppose
that there is a tree of messages leading from these processors eventually reaching
P1. Suppose each Pi only sends data up the tree, so that the communication
pattern forms a DAG (directed acylic graph) with all paths ending at P1. Let
Pi’s data be denoted y(n). Let all the variables on P1 be denoted x(m), and

126



treat all the other variables on the other processors as constants. Then exactly
the same analysis as above applies, and we can conclude that every message
along the unique path from Pi to P1 has the same lower bound on its size, as
determined by Lemma 1. This means Corollary 1 extends to include reduction
operations where each operation is a bijection between one input (the other
being fixed) and the output. In particular, it applies to TSQR.

We emphasize again that using a real number model to draw conclusions
about finite precision computations must be done with care. For example, a
bijective function depending on many variables could hypothetically round to
the same floating point output for all floating point inputs, eliminating the need
for any communication or computation for its evaluation. But this is not the
case for the functions we are interested in.

Finally, we note that the counting must be done slightly differently for the
QR decomposition of complex data, because the diagonal entries Ri,i are gener-
ally taken to be real. Alternatively, there is a degree of freedom in choosing each
row of R, which can be multiplied by an arbitrary complex number of absolute
value 1.

G.4 Extensions to two-way communication

While the result of the previous subsection is adequate for the results of this
paper, we note that it may be extended as follows. For motivation, suppose that
P1 owns the scalar x, and wants to evaluate the polynomial

∑n
i=1 yix

i−1, where
P2 owns the vector y(n). The above results can be used to show that P2 needs
to send n words to P1 (all the coefficients of the polynomial, for example). But
there is an obvious way to communicate just 2 words: (1) P1 sends x to P2, (2)
P2 evaluates the polynomial, and (3) P2 sends the value of the polynomial back
to P1.

More generally, one can imagine k phases, during each of which P1 sends
one message to P2 and then P2 sends one message to P1. The contents of each
message can be any smooth functions of all the data available to the sending
processor, either originally or from prior messages. At the end of the k-th phase,
P1 then computes f(x, y).

More specifically, the computation and communication proceeds as follows:

• In Phase 1, P1 sends g
(m1)
1 (x(m)) to P2

• In Phase 1, P2 sends h
(n1)
1 (y(n), g

(m1)
1 (x(m))) to P1

• In Phase 2, P1 sends g
(m2)
2 (x(m), h

(n1)
1 (y(n), g

(m1)
1 (x(m)))) to P2

• In Phase 2, P2 sends h
(n2)
2 (y(n), g

(m1)
1 (x(m)), g(m2)

2 (x(m), h
(n1)
1 (y(n), g

(m1)
1 (x(m)))))

to P1

• . . .

• In Phase k, P1 sends g
(mk)
k (x(m), h

(n1)
1 (. . . ), h(n2)

2 (. . . ), . . . , h(nk−1)
k−1 (. . . ))

to P2

127



• In Phase k, P2 sends h
(nk)
k (y(n), g

(m1)
1 (. . . ), g(m2)

2 (. . . ), . . . , g(mk)
k (. . . )) to

P1

• P1 computes

f (r)(x(m), y(n)) = F (r)(x(m), h
(n1)
1 (y(n), g

(m1)
1 (x(m))),

h
(n2)
2 (y(n), g

(m1)
1 (x(m)), g(m2)

2 (x(m), h
(n1)
1 (y(n), g

(m1)
1 (x(m))))),

. . .

h
(nk)
k (y(n), g

(m1)
1 (. . . ), g(m2)

2 (. . . ), . . . , g(mk)
k (. . . )))

Lemma 4 Suppose it is possible to compute f (r)(x(m), y(n)) on P1 by the scheme
described above. Suppose all the functions involved are continuously differen-
tiable on open sets. Let n =

∑k
i=1 ni and m =

∑k
i=1 mi. Then necessary

conditions for this to be possible are as follows.

1. Suppose n < n and m ≤ m, ie. P2 cannot communicate all its information
to P1, but P1 can potentially send its information to P2. Then there is a
set Cx ⊂ Rm of dimension at least m−m and a set Cy ⊂ Rn of dimension
at least n − n such that for (x, y) ∈ C = Cx × Cy, the value of f(x, y) is
independent of y.

2. If r = n = m, and for each fixed x or fixed y, f (r)(x(m), y(n)) is a bijec-
tion, then it is necessary and sufficient to send n words from P2 to P1 to
evaluate f .

Proof: We define the sets Cx and Cy by the following constraint equations,
one for each communication step in the algorithm:

• g̃
(m1)
1 = g

(m1)
1 (x(m)) is a fixed constant, placing m1 smooth constraints on

x(m).

• In addition to the previous constraint, h̃
(n1)
1 = h

(n1)
1 (y(n), g

(m1)
1 (x(m))) is

a fixed constant, placing n1 smooth constraints on y(n).

• In addition to the previous constraints,
g̃
(m2)
2 = g

(m2)
2 (x(m), h

(n1)
1 (y(n), g

(m1)
1 (x(m)))) is a fixed constant, placing

m2 more smooth constraints on x(m).

• In addition to the previous constraints,
h̃

(n2)
2 = h

(n2)
2 (y(n), g

(m1)
1 (x(m)), g(m2)

2 (x(m), h
(n1)
1 (y(n), g

(m1)
1 (x(m))))) is a

fixed constant, placing n2 more smooth constraints on y(n).

• . . .

• In addition to the previous constraints,
g̃
(mk)
k = g

(mk)
k (x(m), h

(n1)
1 (. . . ), h(n2)

2 (. . . ), . . . , h(nk−1)
k−1 (. . . )) is a fixed con-

stant, placing mk more smooth constraints on x(m).

128



• In addition to the previous constraints,
h̃

(nk)
k = h

(nk)
k (y(n), g

(m1)
1 (. . . ), g(m2)

2 (. . . ), . . . , g(mk)
k (. . . )) is a fixed con-

stant, placing nk more smooth constraints on y(n).

Altogether, we have placed n =
∑k

i=1 ni < n smooth constraints on y(n) and
m =

∑k
i=1 mi ≤ m smooth constraints on x(m), which by the implicit function

theorem define surfaces Cy(h̃(n1)
1 , . . . , h̃

(nk)
k ) and Cx(g̃(m1)

1 , . . . , g̃
(mk)
k ), of dimen-

sions at least n − n > 0 and m − m ≥ 0, respectively, and parameterized by
{h̃(n1)

1 , . . . , h̃
(nk)
k } and {g̃(m1)

1 , . . . , g̃
(mk)
k }, respectively. For x ∈ Cx and y ∈ Cy,

the values communicated by P1 and P2 are therefore constant. Therefore, for
x ∈ Cx and y ∈ Cy, f(x, y) = F (x, h1, . . . , hk) depends only on x, not on y.
This completes the first part of the proof.

For the second part, we know that if f(x, y) is a bijection in y for each fixed
x, then by the first part we cannot have n < n, because otherwise f(x, y) does
not depend on y for certain values of x, violating bijectivity. But if we can send
n = n words from P2 to P1, then it is clearly possible to compute f(x, y) by
simply sending every component of y(n) from P2 to P1 explicitly. �

Corollary 4 Suppose P1 owns the c-by-c upper triangular matrix R1, and P2
owns the c-by-c upper triangular matrix R2, and P1 wants to compute the R

factor in the QR decomposition of
[

R1

R2

]
. Then it is neccessary and sufficient

to communicate c(c + 1)/2 words from P2 to P1 (in particular, the entries of
R2 and sufficient).

We leave extensions to general communication patterns among multiple pro-
cessors to the reader.

References

[1] N. N. Abdelmalek, Round off error analysis for Gram–Schmidt method
and solution of linear least squares problems, BIT, 11 (1971), pp. 345–368.

[2] M. Baboulin, J. J. Dongarra, and S. Tomov, Some issues in dense
linear algebra for multicore and special purpose architectures, LAWN UT-
CS-08-615, University of Tennessee, May 2008. LAWN #200.

[3] J. Baglama, D. Calvetti, and L. Reichel, Algorithm 827: irbleigs:
A MATLAB program for computing a few eigenpairs of a large sparse
Hermitian matrix, ACM Trans. Math. Softw., 29 (2003), pp. 337–348.

[4] Z. Bai and D. Day, Block Arnoldi method, in Templates for the Solution
of Algebraic Eigenvalue Problems: A Practical Guide, Z. Bai, J. Demmel,
J. Dongarra, A. Ruhe, and H. van der Vorst, eds., Society for Industrial
and Applied Mathematics, Philadelphia, PA, USA, 2000, pp. 196–204.

[5] C. G. Baker, U. L. Hetmaniuk, R. B. Lehoucq, and H. K. Thorn-
quist, Anasazi webpage. http: // trilinos. sandia. gov/ packages/

anasazi/ .

129



[6] Å. Björck, Solving linear least squares problems by Gram-Schmidt or-
thogonalization, BIT, 7 (1967), pp. 1–21.

[7] L. S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Demmel,
I. Dhillon, J. Dongarra, S. Hammarling, G. Henry, A. Petitet,
K. Stanley, D. Walker, and R. C. Whaley, ScaLAPACK Users’
Guide, SIAM, Philadelphia, PA, USA, May 1997.

[8] A. Buttari, J. Langou, J. Kurzak, and J. Dongarra, A class of
parallel tiled linear algebra algorithms for multicore architectures, LAWN
UT-CS-07-600, University of Tennessee, Sept. 2007. LAWN #191.

[9] , Parallel tiled QR factorization for multicore architectures, LAWN
UT-CS-07-598, University of Tennessee, July 2007. LAWN #190.

[10] J. Choi, J. J. Dongarra, S. Ostrouchov, A. P. Petitet, D. W.
Walker, and R. C. Whaley, The design and implementation of the
ScaLAPACK LU, QR, and Cholesky factorization routines, LAWN UT-
CS-94-246, Oak Ridge National Laboratory, Sept. 1994. LAWN #80.

[11] D. Coppersmith and S. Winograd, On the asymptotic complexity of
matrix multiplication, SIAM Journal on Computing, 11 (1982).

[12] M. Cosnard, J.-M. Muller, and Y. Robert, Parallel QR Decompo-
sition of a Rectangular Matrix, Numer. Math., 48 (1986), pp. 239–249.

[13] M. Cosnard and Y. Robert, Complexite de la factorisation QR en
parallele, C.R. Acad. Sci., 297 (1983), pp. 549–552.

[14] L. Csanky, Fast parallel matrix inversion algorithms, SIAM J. Comput.,
5 (1976), pp. 618–623.

[15] R. D. da Cunha, D. Becker, and J. C. Patterson, New parallel
(rank-revealing) QR factorization algorithms, in Euro-Par 2002. Parallel
Processing: Eighth International Euro-Par Conference, Paderborn, Ger-
many, August 27–30, 2002, 2002.

[16] E. F. D’Azevedo and J. J. Dongarra, The design and implementation
of the parallel out-of-core ScaLAPACK LU, QR, and Cholesky factorization
routines, LAWN 118 CS-97-247, University of Tennessee, Knoxville, Jan.
1997.

[17] J. Demmel, Trading off parallelism and numerical stability, LAWN UT-
CS-92-179, University of Tennessee, June 1992. LAWN #53.

[18] J. Demmel, I. Dumitriu, and O. Holtz, Fast linear algebra is stable,
Numerische Mathematik, 108 (2007), pp. 59–91.

[19] J. Demmel and M. Hoemmen, Communication-avoiding Krylov sub-
space methods, tech. rep., University of California Berkeley, Department
of Electrical Engineering and Computer Science, in preparation.

130



[20] J. J. Dongarra, S. Hammarling, and D. W. Walker, Key concepts
for parallel out-of-core LU factorization, Scientific Programming, 5 (1996),
pp. 173–184.

[21] E. Elmroth and F. Gustavson, New serial and parallel recursive QR
factorization algorithms for SMP systems, in Applied Parallel Computing.
Large Scale Scientific and Industrial Problems., B. K. et al., ed., vol. 1541
of Lecture Notes in Computer Science, Springer, 1998, pp. 120–128.

[22] , Applying recursion to serial and parallel QR factorization leads to
better performance, IBM Journal of Research and Development, 44 (2000),
pp. 605–624.

[23] E. Elmroth, F. Gustavson, I. Jonsson, and B. Kågström, Recur-
sive blocked algorithms and hybrid data structures for dense matrix library
software, SIAM Review, 46 (2004), pp. 3–45.

[24] R. W. Freund and M. Malhotra, A block QMR algorithm for non-
Hermitian linear systems with multiple right-hand sides, Linear Alge-
bra and its Applications, 254 (1997), pp. 119–157. Proceedings of the
Fifth Conference of the International Linear Algebra Society (Atlanta, GA,
1995).

[25] J. R. Gilbert and E. G. Ng, Predicting structure in nonsymmetric
sparse matrix factorization, Tech. Rep. ORNL/TM-12205, Oak Ridge Na-
tional Laboratory, 1992.

[26] G. H. Golub and C. F. V. Loan, Matrix Computations, The Johns
Hopkins University Press, Baltimore, MD, USA, third ed., 1996.

[27] G. H. Golub, R. J. Plemmons, and A. Sameh, Parallel block schemes
for large-scale least-squares computations, in High-Speed Computing: Sci-
entific Applications and Algorithm Design, R. B. Wilhelmson, ed., Univer-
sity of Illinois Press, Urbana and Chicago, IL, USA, 1988, pp. 171–179.

[28] S. L. Graham, M. Snir, and C. A. Patterson, eds., Getting Up
To Speed: The Future Of Supercomputing, National Academies Press,
Washington, D.C., USA, 2005.

[29] A. Greenbaum, M. Rozložńık, and Z. Strakoš, Numerical behavior
of the modified Gram-Schmidt GMRES implementation, BIT Numerical
Mathematics, 37 (1997), pp. 706–719.

[30] L. Grigori, J. Demmel, and H. Xiang, Communication avoiding Gaus-
sian elimination, Tech. Rep. inria-00277901, INRIA, 2008. version 2.

[31] W. Gropp, E. Lusk, and A. Skjellum, Using MPI: Portable Parallel
Programming with the Message-Passing Interface, MIT Press, 1999.

131



[32] B. Gunter and R. van de Geijn, Parallel out-of-core computation and
updating of the QR factorization, ACM Transactions on Mathematical
Software, 31 (2005), pp. 60–78.

[33] U. Hetmaniuk and R. Lehoucq, Basis selection in LOBPCG, Journal
of Computational Physics, 218 (2006), pp. 324–332.

[34] D. Irony, S. Toledo, and A. Tiskin, Communication lower bounds for
distributed-memory matrix multiplication, J. Parallel Distrib. Comput.,
64 (2004), pp. 1017–1026.

[35] H. Jia-Wei and H. T. Kung, I/O complexity: The Red-Blue Pebble
Game, in STOC ’81: Proceedings of the Thirteenth Annual ACM Sympo-
sium on Theory of Computing, New York, NY, USA, 1981, ACM, pp. 326–
333.

[36] A. Kie lbasiński, Analiza numeryczna algorytmu ortogonalizacji Grama–
Schmidta, Seria III: Matematyka Stosowana II, (1974), pp. 15–35.

[37] A. Knyazev, BLOPEX webpage. http: // www-math. cudenver. edu/

~aknyazev/ software/ BLOPEX/ .

[38] A. V. Knyazev, M. Argentati, I. Lashuk, and E. E. Ovtchin-
nikov, Block locally optimal preconditioned eigenvalue xolvers (BLOPEX)
in HYPRE and PETSc, Tech. Rep. UCDHSC-CCM-251P, University of
California Davis, 2007.

[39] J. Kurzak and J. Dongarra, QR factorization for the CELL processor,
LAWN UT-CS-08-616, University of Tennessee, May 2008. LAWN #201.

[40] R. Lehoucq and K. Maschhoff, Block Arnoldi method, in Templates
for the Solution of Algebraic Eigenvalue Problems: A Practical Guide,
Z. Bai, J. Demmel, J. Dongarra, A. Ruhe, and H. van der Vorst, eds.,
Society for Industrial and Applied Mathematics, Philadelphia, PA, USA,
2000, pp. 185–187.

[41] M. Leoncini, G. Manzini, and L. Margara, Parallel complexity of
numerically accurate linear system solvers, SIAM J. Comput., 28 (1999),
pp. 2030–2058.

[42] L. H. Loomis and H. Whitney, An inequality related to the isoperimet-
ric inequality, Bull. Amer. Math. Soc., 55 (1949), pp. 961–962.

[43] L. Lugmayr, Samsung 256GB SSD is world’s fastest. http: // www. i4u.
com/ article17560. html , 25 May 2008. Accessed 30 May 2008.

[44] O. Marques, BLZPACK webpage. http: // crd. lbl. gov/ ~osni/ .

[45] J. J. Modi and M. R. B. Clarke, An alternative Givens ordering,
Numer. Math., (1984), pp. 83–90.

132



[46] R. Nishtala, G. Almási, and C. Caşcaval, Performance without pain
= productivity: Data layout and collective communication in UPC, in
Proceedings of the ACM SIGPLAN 2008 Symposium on Principles and
Practice of Parallel Programming, 2008.

[47] D. P. O’Leary, The block conjugate gradient algorithm and related meth-
ods, Linear Algebra and its Applications, 29 (1980), pp. 293–322.

[48] B. N. Parlett, The Symmetric Eigenvalue Problem, SIAM, Philadelphia,
1998.

[49] A. Pothen and P. Raghavan, Distributed orthogonal factorization:
Givens and Householder algorithms, SIAM J. Sci. Stat. Comput., 10
(1989), pp. 1113–1134.

[50] G. Quintana-Orti, E. S. Quintana-Orti, E. Chan, R. van de
Geijn, and F. G. V. Zee, Design of scalable dense linear algebra li-
braries for multithreaded architectures: the LU factorization, in Proceed-
ings of the Workshop on Multithreaded Architectures and Applications, Mi-
ami, Florida, Apr. 2008. FLAME Working Note #26.

[51] G. Quintana-Orti, E. S. Quintana-Orti, E. Chan, F. G. V. Zee,
and R. A. van de Geijn, Scheduling of QR factorization algorithms on
SMP and multi-core architectures, in Proceedings of the 16th Euromicro
International Conference on Parallel, Distributed and Network-Based Pro-
cessing, Toulouse, France, Feb. 2008. FLAME Working Note #24.

[52] E. Rabani and S. Toledo, Out-of-core SVD and QR decompositions,
in Proceedings of the 10th SIAM Conference on Parallel Processing for
Scientific Computing, Norfolk, Virginia, SIAM, Mar. 2001.

[53] H. Sagan, Space-Filling Curves, Springer-Verlag, 1994.

[54] A. H. Sameh and D. J. Kuck, On Stable Parallel Linear System Solvers,
Journal of the Association for Computing Machinery, 25 (1978), pp. 81–
91.

[55] R. Schreiber and C. V. Loan, A storage efficient WY representation
for products of Householder transformations, SIAM J. Sci. Stat. Comput.,
10 (1989), pp. 53–57.

[56] A. Smoktunowicz, J. Barlow, and J. Langou, A note on the error
analysis of Classical Gram-Schmidt, Numerische Mathematik, 105 (2006),
pp. 299–313.

[57] A. Stathopoulos, PRIMME webpage. http: // www. cs. wm. edu/

~andreas/ software/ .

[58] A. Stathopoulos and K. Wu, A block orthogonalization procedure with
constant synchronization requirements, SIAM Journal on Scientific Com-
puting, 23 (2002), pp. 2165–2182.

133



[59] V. Strassen, Gaussian elimination is not optimal, Numerische Mathe-
matik, 13 (1969).

[60] S. Toledo, Locality of reference in LU decomposition with partial pivot-
ing, SIAM J. Matrix Anal. Appl., 18 (1997), pp. 1065–1081.

[61] , A survey of out-of-core algorithms in numerical linear algebra, in
External Memory Algorithms and Visualization, J. Abello and J. S. Vitter,
eds., American Mathematical Society Press, Providence, RI, 1999, pp. 161–
180.

[62] B. Vital, Étude de quelques méthodes de résolution de problèmes linéaires
de grande taille sur multiprocesseur, Ph.D. dissertation, Université de
Rennes I, Rennes, Nov. 1990.

[63] H. F. Walker, Implementation of the GMRES and Arnoldi methods us-
ing Householder transformations, Tech. Rep. UCRL-93589, Lawrence Liv-
ermore National Laboratory, Oct. 1985.

[64] K. Wu and H. D. Simon, TRLAN webpage. http: // crd. lbl. gov/

~kewu/ ps/ trlan_ .html .

134


