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Abstract
MapReduce is emerging as an important programming

model for large-scale data-parallel applications such as
web indexing, data mining, and scientific simulation.
Hadoop is an open-source implementation of MapRe-
duce enjoying wide adoption and is often used for short
jobs where low response time is critical. Hadoop’s per-
formance is closely tied to its task scheduler, which im-
plicitly assumes that cluster nodes are homogeneous and
tasks make progress linearly, and uses these assumptions
to decide when to speculatively re-execute tasks that ap-
pear to be stragglers. In practice, the homogeneity as-
sumptions do not always hold. An especially compelling
setting where this occurs is a virtualized data center, such
as Amazon’s Elastic Compute Cloud (EC2). We show
that Hadoop’s scheduler can cause severe performance
degradation in heterogeneous environments. We design
a new scheduling algorithm, Longest Approximate Time
to End (LATE), that is both simple and highly robust
to heterogeneity. LATE can improve Hadoop response
times by a factor of 2 in 200-node clusters on EC2.

1 Introduction

Today’s most popular computer applications are Internet
services with millions of users. The sheer volume of data
that these services process has led to interest in parallel
processing on commodity clusters. The leading exam-
ple is Google, which uses its MapReduce framework to
process 20 petabytes of data per day [1]. Other Inter-
net services, such as e-commerce sites, social networks,
communication services and content providers, also cope
with enormous volumes of data. These services generate
clickstream data from millions of users every day, which
is a potential gold mine for understanding access patterns
and increasing ad revenue. Furthermore, for each user
interaction, a web application generates one or two or-
ders of magnitude more data in system logs, which are

the main tool that developers and operators have for di-
agnosing problems with the system.

The MapReduce model popularized by Google pro-
vides a very attractive framework for ad-hoc parallel pro-
cessing on arbitrary data. MapReduce breaks a com-
putation into small tasks that run in parallel on differ-
ent machines, and scales easily to very large clusters of
inexpensive commodity computers. Its popular open-
source implementation, Hadoop [4], was developed pri-
marily by Yahoo, where it processes hundreds of ter-
abytes of data on at least 10,000 cores [11], and is now
used by other companies, including Facebook, Amazon,
and Last.fm, and the New York Times [10]. Research
groups at Cornell, Carnegie Mellon, University of Mary-
land and PARC are also starting to use Hadoop for both
web data and non-data-mining applications, like seismic
simulation and natural language processing [10, 12].

A key benefit of MapReduce is that it automatically
handles failures, hiding the complexity of fault-tolerance
from the programmer. If a node crashes, MapReduce re-
runs its tasks on a different machine. Equally impor-
tantly, if a node is available but is performing poorly,
a condition that we call a straggler, MapReduce runs a
speculative copy of its task (also called a “backup task”)
on another machine to finish the computation faster.
Without this mechanism of speculative execution1, a job
would be as slow as its slowest sub-task. Stragglers can
arise for many reasons, including faulty hardware and
misconfiguration. Google has noted that speculative ex-
ecution can improve job response times by 44% [1].

In this work, we address the problem of how to ro-
bustly perform speculative execution to maximize per-
formance. Hadoop’s scheduler starts speculative tasks
based on a simple heuristic comparing each task’s
progress to the average progress. Although this heuristic
works well in homogeneous environments where strag-
glers are obvious, we show that it can lead to severe

1Not to be confused with speculative execution at the OS or hard-
ware level such as in Speculator [20].



performance degradation when its underlying assump-
tions are broken. An especially compelling environment
where Hadoop’s scheduler is inadequate is a virtualized
data center. Virtualized “utility computing” environ-
ments, such as Amazon’s Elastic Compute Cloud (EC2)
[2], are becoming an important element in an organiza-
tion’s data processing toolbox because large numbers of
virtual machines can be rented by the hour at lower costs
than managing a data center year-round (EC2’s current
cost is $0.10 per CPU hour). For example, the New York
Times rented 100 virtual machines over a day to convert
11 million scanned articles to PDFs [13]. These environ-
ments offer an economic advantage – the ability to own
large amounts of compute power only when needed – but
they come with the caveat of having to run on virtualized
resources with potentially uncontrollable variance. Fur-
thermore, we expect heterogeneous environments to be-
come the common case even in private data centers as or-
ganizations often use multiple generations of hardware.
Also, private data centers are starting to use virtualization
to simplify administration, consolidate servers, and pro-
vide more efficient scheduling and resource utilization.
We have observed that Hadoop’s assumptions of homo-
geneity lead to incorrect and often excessive speculative
execution in heterogeneous environments, and can even
degrade performance below that obtained without specu-
lative execution. Sometimes as many as 80% of tasks are
speculatively executed, and throughput is 50% less than
that of a system with speculative execution disabled.

Naı̈vely, one might expect speculative execution to be
a simple matter of duplicating tasks that are sufficiently
slow. In reality, it is a complex issue for several reasons.
First, speculative tasks are not free – they compete for
certain resources, such as the network, with other run-
ning tasks. Second, choosing a node on which to launch a
speculative task is as important as choosing which task to
launch. Third, in a heterogeneous environment, it may be
difficult to differentiate between nodes that are slightly
slower than the mean and stragglers.

Starting from first principles, we design a simple al-
gorithm for speculative execution that is robust to het-
erogeneity and highly effective in practice. We call our
algorithm LATE for Longest Approximate Time to End.
LATE is based on three principles: prioritizing tasks to
speculate, selecting fast nodes to run on, and capping
speculative tasks to prevent thrashing. We show that our
scheduler can improve response time of MapReduce jobs
by a factor of 2 in large clusters on EC2.

The rest of the paper is organized as follows. Section
2 describes Hadoop’s current scheduler and the assump-
tions it makes. Section 3 shows how these assumptions
break in heterogeneous environments. Section 4 intro-
duces our new scheduler, LATE, and explains how it ad-
dresses these issues. Section 5 validates our claims about

Figure 1: A MapReduce computation. Image from [14].

heterogeneity in virtualized environments through mea-
surements of EC2 and evaluates the gain from LATE in a
variety of experiments. Section 7 presents related work.
Finally, we conclude in Section 8.

2 Background: Scheduling in Hadoop

In this section we describe the mechanism used in
Hadoop to distribute work across a cluster. We identify
assumptions made by the scheduler that hinder its perfor-
mance. These motivate our LATE scheduler, which can
outperform Hadoop’s by a factor of 2.

Hadoop’s implementation of MapReduce closely re-
sembles Google’s [1]. There is a single master control-
ling a number of slaves. The input file, which resides on
a distributed filesystem throughout the cluster, is broken
into even sized chunks. Hadoop divides each MapRe-
duce job into a series of tasks. Each chunk of input is
first processed by a map task, which outputs a series of
key-value pairs generated by a user-defined map func-
tion. Map outputs are split into buckets based on key.
When all maps have finished, reduce tasks apply a re-
duce function to the map outputs for each key. Figure 1
shows a diagram of a MapReduce computation.

Hadoop runs several maps and reduces concurrently
on each slave – two of each by default – to overlap com-
putation and I/O. Each slave tells the master when it has
an empty task slot. The scheduler then assigns it a task.

The goal of speculative execution is to minimize a
job’s response time. Response time is most important
for short jobs where a user wants an answer quickly,
such as queries on log data for debugging, monitoring
and business intelligence. Short jobs are a major use
of MapReduce. For example, the average MapReduce
job at Google in September 2007 was 395 seconds long
[1]. Systems designed for SQL-like queries on top of
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MapReduce, such as Sawzall [15] and Pig [16], under-
line the importance of MapReduce for query processing.
Response time is also clearly important in a pay-by-the-
hour environment such as EC2. Speculative execution is
less useful in long jobs, because only the last wave of
tasks is affected, and may be inappropriate for batched
jobs if throughput is the only metric of interest, because
speculative tasks imply wasted work. In our work, we
focus on short jobs.

2.1 Hadoop’s Scheduling Algorithm
When a node has an empty task slot, Hadoop chooses a
task for it from one of three categories. First, if any task
has failed, it is given highest priority. This is done to
detect when a task fails repeatedly due to a bug and stop
the job. Second, unscheduled tasks are considered. For
maps, tasks with data local to the node are chosen first.
Finally, Hadoop looks for a task to speculate on.

To select speculative tasks, Hadoop monitors task
progress using a progress score, which is a number from
0 to 1. For a map, the score is the fraction of input data
read. For a reduce task, the execution is divided into
three phases, each of which accounts for 1/3 of the score:

• The copy phase, when the task is copying outputs
of all maps. In this phase, the score is the percent of
maps that output has been copied from.

• The sort phase, when map outputs are sorted by key.
Here the score is the percent of data merged.

• The reduce phase, when a user-defined function is
applied to the map outputs. Here the score is the
percent of data passed through the reduce function.

For example, a task halfway through the copy phase has
a score of 1/2× 1/3 = 1/6. A task halfway through the
reduce phase scores 1/3 + 1/3 + (1/2× 1/3) = 5/6.

Hadoop looks at the average progress of each cate-
gory of tasks (maps and reduces) to define a threshold
for speculative execution: When a task’s progress is less
than the average for its category minus 0.2, and the task
has run for at least one minute, it is marked as a straggler.
All tasks beyond the threshold are considered “equally
slow,” and ties between them are broken by data locality.
The scheduler also ensures that at most one speculative
copy of each task is running at a time.

Although a metric like progress rate would make more
sense than absolute progress for identifying stragglers,
the threshold in Hadoop works reasonably well in ho-
mogenous environments because tasks tend to start and
finish in “waves” at roughly the same times and because
speculation only starts when the last wave is running.

Finally, when running multiple jobs, Hadoop uses a
FIFO system where the earliest submitted job is asked for

a task to execute, then the second, etc. There is also a pri-
ority system for putting jobs into higher-priority queues.

2.2 Assumptions in Hadoop’s Scheduler
Hadoop’s scheduler makes several implicit assumptions:

1. Nodes can perform work at roughly the same rate.

2. Tasks progress at a constant rate throughout time.

3. There is no cost to launching a speculative task on a
node that would otherwise have an idle slot.

4. A task’s progress score is roughly equal to the frac-
tion of its total work that it has done. Specifically,
in a reduce task, the copy, reduce and merge phases
each take 1/3 of the total time.

5. Tasks tend to finish in waves, so a task with a low
progress score is likely a slow task.

6. Different tasks of the same category (map or reduce)
require roughly the same amount of work.

As we shall see, assumptions 1 and 2 break down in
a virtual cluster due to heterogeneity. Assumptions 3, 4
and 5 can actually break down in a homogeneous cluster
as well, and may cause Hadoop’s scheduler to perform
poorly in in non-virtualized clusters too. In fact, Yahoo!
disables speculative execution on some jobs because it
degrades performance, and monitors machines through
other means. Facebook disables speculation for reduce
tasks [26].

Assumption 6 is inherent in the MapReduce paradigm,
so we do not address it in this paper. Tasks in MapReduce
should be small, otherwise a single large task will slow
down the entire job. In a well-behaved MapReduce job,
the separation of input into equal chunks and the division
of the key space among reducers ensures roughly equal
amounts of work. If this is not the case, launching a few
more speculative tasks is not harmful as long as obvious
stragglers are also detected.

3 How the Assumptions Break Down

3.1 Heterogeneity
The first two assumptions in Section 2.2 are about ho-
mogeneity: Hadoop assumes that any sufficiently slow
node is a straggler. However, nodes can be heteroge-
neous for other reasons. In a non-virtualized data cen-
ter, there may be multiple generations of hardware. As
organizations expand their data centers, this is a grow-
ing concern. In a virtualized data center where multi-
ple virtual machines run on each physical host, such as
Amazon EC2, co-location of virtual machines may cause
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heterogeneity. Although virtualization isolates CPU and
memory performance, VMs compete for disk and net-
work bandwidth. For example, in EC2, instances use
the maximum bandwidth when there is no contention
and share bandwidth fairly when there is contention [22].
Contention can come both from other users’ virtual ma-
chines, in which case it may be transient, and from one’s
own virtual machines if several share the same physical
host, especially if they do similar work, as in Hadoop.
In Section 5.1, we measured performance differences of
2.5x caused by contention. Note that EC2’s bandwidth
sharing policy is not inherently harmful – it means that
I/O bandwidth can be fully utilized when some VMs do
not use it – but it causes a problem in Hadoop.

Heterogeneity seriously impacts Hadoop’s scheduler.
Because the scheduler uses a fixed threshold for select-
ing tasks to speculate, too many speculative tasks may
be launched, taking away resources from useful tasks
(assumption 3 is also false). Also, because the sched-
uler ranks candidates by locality, the wrong tasks may be
chosen for speculation first. For example, if the average
progress was 70% and there was a 1.4x slower task at
50% progress and a 10x slower task at 7% progress, then
the 1.4x slower task might be speculated before the 10x
slower task if its data is closer to an idle node.

We note that EC2 also provides “large” and “extra
large” VM sizes that have lower variance in I/O perfor-
mance than the default “small” VMs, possibly because
they own a full disk. However, small VMs can achieve
higher I/O performance per dollar because they use all
available bandwidth when no other VMs on the host are
using it. Larger VMs also still compete for network
bandwidth. Therefore, we focus on optimizing Hadoop
on “small” VMs to get the best performance per dollar.

3.2 Other Assumptions

Assumptions 3, 4 and 5 in Section 2.2 are broken on both
homogeneous and heterogeneous clusters, and can lead
to a variety of failure modes for the scheduler.

Assumption 4, that a task’s progress score is roughly
equal to its percent completion, can cause incorrect spec-
ulation of reducers. In a typical MapReduce job, the
copy phase of reduce tasks is the slowest, because it in-
volves all-pairs communication over the network. Tasks
quickly complete the other two phases once they have
all the map outputs. However, the reduce phase counts
as 1/3 of the total progress score, while the other phases
count as 2/3. Thus, when the first few reducers in a job
finish the copy phase, their progress goes from 1/3 to 1,
greatly increasing the average progress. As soon as about
30% of reducers finish, the average progress is roughly
0.3 × 1 + 0.7 × 1/3 ≈ 53%, and now all reducers still
in the copy phase will be 0.2 behind the average, and an

arbitrary set will be speculated upon causing task slots to
fill up, and true stragglers to never be speculated. The
problem is worse in a heterogeneous environment. If a
large fraction of reducers to stay in the copy phase for
longer than average, then these reducers will all be spec-
ulated upon, potentially overloading the network. We
have observed this in 900-node runs on EC2, where 80%
of reduce tasks were speculated.

Assumption 4 also means that when a task reaches
80% progress, it can never be speculated upon, even if
it slows down, because the average progress is always
less than 100%.

Assumption 5, that tasks start at roughly the same time
and so progress score is a good proxy for progress rate,
can also be wrong. In a MapReduce job, there are typi-
cally one or two reducers per node so they can start copy-
ing data over the network right away, so the assumption
holds for reducers. However, there are potentially tens of
mappers per host, one for each data chunk. These tend to
finish in waves. Even in a homogenous environment, the
waves get more spread out as more mappers run due to
variance adding up, so in a long enough job, tasks from
different generations will be executing concurrently. In
this case, Hadoop will speculate on newer, faster tasks
ahead of older, slow tasks that have more total progress.

Lastly, assumption 3 – that speculating tasks on idle
nodes is free – breaks down when resources are shared.
For example, the network is a bottleneck shared resource
in large MapReduce jobs. Also, speculative tasks may
compete for disk I/O’s in disk I/O-bound jobs. Finally,
in a series of jobs, needless speculation reduces through-
put without improving response time by occupying nodes
that could be running the next job.

4 The LATE Scheduler

We have designed a new speculative task scheduler by
starting from first principles and adding features needed
to correctly schedule tasks in a real environment.

The primary insight behind our scheduler is the fol-
lowing: We always speculatively execute the task that we
think will finish farthest into the future, because this task
provides the greatest opportunity for a speculative task
to overtake the original and save a significant amount of
time. We explain how we calculate a task’s remaining
time based on current progress below. We call our strat-
egy LATE, for Longest Approximate Time to End. Intu-
itively, this greedy policy would be optimal if nodes ran
at consistent speeds and if there were no costs associated
with launching a speculative task on an otherwise idle
node.

Different methods of estimating time left can be
plugged into LATE. We currently use a simple heuris-
tic that we found works well in practice: We estimate the
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progress rate for each task as (progress score) / (execu-
tion time), and then estimate the time left as (1 - progress)
/ (progress rate). This assumes that tasks make progress
at a roughly uniform rate, but also works well when the
earlier phases of the task take longer than the last phases.
There are cases where this heuristic can fail, which we
describe later, but it is effective in typical Hadoop jobs.

To really get the best chance of beating the original
task with the speculative task, we should only launch
speculative tasks on fast nodes, so as to avoid stragglers.
We do this through a simple heuristic – don’t launch
speculative tasks on nodes that are below some thresh-
old, SlowNodeThreshold, of total work performed (sum
of progress scores for all succeeded and in-progress tasks
on the node). This heuristic leads to better scheduling
decisions than assigning a speculative task to any idle
node. Another option would be to support more than one
speculative copy of each task, but this wastes resources
needlessly.

Finally, to handle the fact that speculative tasks cost
resources, we augment the algorithm with two heuristics:

• A cap on the number of speculative tasks that can be
running at once, which we denote SpeculativeCap.

• A SlowTaskThreshold that a task’s progress rate is
compared against to determine whether it is “slow
enough” to be launched speculatively.

In summary, the LATE algorithm works as follows:

• If a task slot becomes available and there are less
than SpeculativeCap speculative tasks running:

– Ignore the request if the node’s total progress
is below SlowNodeThreshold.

– Rank currently running, non-speculatively ex-
ecuted tasks by estimated time left.

– Launch a copy of the highest-ranked task with
progress rate below SlowTaskThreshold.

Like Hadoop’s scheduler, we also wait until a task has
run for 1 minute before evaluating it for speculation.

In practice, we have found that a good choice for the
three parameters to LATE are to set the SpeculativeCap
to 10% of available task slots and set the SlowNode-
Threshold and SlowTaskThreshold to the 25th percentile
of node progress and task progress rates respectively. We
use these settings in our evaluation.

Finally, we note that unlike Hadoop’s scheduler, LATE
does not take into account data locality for launching
speculative map tasks, though this is a potential exten-
sion. We assume that because most maps are data-local,
network utilization during the map phase is low, so it is
fine to launch a speculative task on a fast node that does
not have a local copy of the data. Locality statistics avail-
able in Hadoop validate this assumption.

4.1 Advantages of LATE

The LATE algorithm has several advantages. First, it is
agnostic to node heterogeneity, because it will relaunch
only a small number of the slowest tasks. LATE priori-
tizes among the slow tasks to ensure that only the slow-
est get speculatively executed. LATE also caps the num-
ber of speculative tasks to limit contention for shared re-
sources and avoid thrashing. In contrast, Hadoop’s na-
tive scheduler has a fixed threshold, beyond which all
tasks that are “slow enough” have an equal chance of be-
ing launched. This fixed threshold can cause excessively
many speculative tasks to be launched.

Second, LATE also takes into account node hetero-
geneity when deciding where to run a speculative task.
In contrast, the native scheduler in Hadoop assumes that
any node that finishes a task and has a free slot is likely to
be a fast node (i.e., that slow nodes will almost never fin-
ish tasks), so it schedules tasks on all idle nodes without
discriminating on any property except data locality.

Third, a task’s progress score is no longer assumed to
be linearly correlated with its percent completion. We do
use progress rate in estimating time late, but we always
choose the tasks with the lowest progress rate, rather than
all tasks with a progress rate below some threshold. This
also means that tasks are allowed to slow down occasion-
ally and make progress sporadically. LATE also allows
alternative methods of estimating task completion type
to be employed if they perform better.

Fourth, because LATE uses estimated time left rather
than heuristics based on fixed thresholds, means, and ab-
solute progress scores, it is immune to the failure modes
caused by assumptions 4 and 5 in Hadoop’s scheduler. In
general, LATE is more robust than algorithms based on
thresholds, because it uses a cap on speculative tasks as
well as percentile-based thresholds for identifying slow
nodes and slow tasks.

As a concrete example of how LATE improves over
Hadoop’s scheduler, consider the reduce example in Sec-
tion 3.2, where assumption 4 (that progress score repre-
sents percent complete) is violated and all reducers still
in the copy phase fall below the speculation threshold as
soon as a few reducers finish their work. Hadoop’s na-
tive scheduler would speculate arbitrary reduces, missing
true stragglers and potentially starting too many specula-
tive tasks if many reducers stay slow for a period of time.
In contrast, LATE would first start speculating the reduc-
ers with the slowest copy phase, which are probably the
true stragglers, and would stop speculating new reducers
once it has reached the SpeculativeCap, ensuring that the
network does not get overloaded.

5



Time (s) 

P
ro

gr
es

s 
S

co
re

 

20 40 60 0 

25
% 

50
% 

75
% 

100
% 

T1 

T2 

Current progress 
Estimated future 
progress 
True future 
progress 

Figure 2: A scenario where LATE estimates finish orders
incorrectly.

4.2 Estimating Finish Times

At the beginning of Section 4, we said that we estimate
the time left for a task based on the progress score pro-
vided by Hadoop, as (1 - progress) / (progress rate). Al-
though this heuristic works well in practice, we wish to
point out that there are situations in which it can backfire,
and this heuristic might estimate that a task that has made
more progress than another identical task which will fin-
ish later. Because this situation does not occur in typi-
cal MapReduce jobs (as motivated below), we have used
this progress rate heuristic for our evaluation of LATE in
this paper. We explain this misestimation here because
it is an interesting and subtle factor in scheduling based
on rate of progress. In future work, we plan to evaluate
more sophisticated methods of estimating finish times.

To see how the progress rate heuristic might backfire,
consider a task T that has two phases in which it runs at
different rates. Suppose the task makes progress at 5%
points per second in the first phase, up to a total progress
score of 50%, and then slows down to 1% per second in
the second phase. Thus the task spends 10 seconds in the
first phase and 50 seconds in the second phase, or 60s
in total. Now suppose that we launch two copies of task
T, say T1 and T2, one at time 0 and one at time 10, and
that we check their progress rates at time 20. Figure 2
illustrates this scenario. At time 20, T1 will have finished
its first phase and be one fifth through its second phase,
so its total progress score will be 60%, and its progress
rate will be 60%/20s = 3%/s. Meanwhile, T2 will have
just finished its first rate, and its progress rate will be
50%/10s = 5%/s. The estimated time left for T1 will be
(100%−60%)/(3%/s) = 13.3s. The estimated time left
for T2 will be (100%− 50%)/(5%/s) = 10s. Therefore
our heuristic will say that T1 will finish after T2, while
in reality T2 will finish last.

This situation arises because the task’s progress rate
slows down throughout its lifetime and is not linearly re-
lated to actual progress. In fact, if the task sped up in its
second phase instead of slowing down, there would be

no problem – we would correctly estimate that tasks in
their first phase have a longer amount of time left, so the
estimated order of finish times would be correct, but we
would be wrong about the exact amount of time left. The
problem in this example is that the task slows down in its
second phase, so “younger” tasks seem faster.

Fortunately, this situation does not arise in typical
MapReduce jobs in Hadoop. Map tasks’ progress is
based on the number of records they have processed, so it
is always linearly related to running time. Reduce tasks
are typically slowest in their first phase – the copy phase,
where they must read all map outputs over the network –
so they fall into the “speeding up” category above. How-
ever, if there is a MapReduce job where some of the later
phases of a reduce task are slower than the first, it would
be possible to design a more complex heuristic that looks
at a task’s progress rate in the current phase and com-
pares it with other tasks. We have not done this yet to
keep our algorithm simple. We plan to investigate finish
time estimation more carefully in future work.

5 Evaluation

We began our evaluation by measuring the effect of con-
tention on performance in EC2, to validate our claims
that contention causes heterogeneity. We then ran a suite
of experiments evaluating the LATE scheduler in two en-
vironments: large clusters on EC2, and a local virtualized
testbed.

Although we began our EC2 tests by measuring het-
erogeneity in the production environment on EC2, we
were assigned by Amazon to a separate test cluster when
we ran our scheduling tests. Amazon moved us to this
test cluster because our tests were exposing a scalability
problem in the network virtualization software on their
production cluster that was causing connections between
our instances to fail intermittently. The test cluster had
a patch for this problem. Although fewer clients were
contending on the test cluster, we simulated heterogene-
ity there by occupying almost all the virtual machines in
one location – 106 physical hosts, on which we placed 7
or 8 VMs each – and creating contention by using several
VMs from each physical host. We chose the distributions
of VMs per host to match those observed in the produc-
tion cluster. In summary, although our results are from
a test cluster, they simulate the contention levels seen in
production while letting us operate in a more controlled
environment. The EC2 results are also consistent with
those from our local testbed.

5.1 Measuring Heterogenity on EC2
Virtualization technology can isolate CPU and memory
performance effectively between VMs. However, as ex-
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plained in Section 3.1, heterogeneity can still arise be-
cause I/O devices (disk and network) are shared between
VMs. On EC2, virtual machines get the full available
bandwidth when there is no contention, but are reduced
to fair sharing when other VMs on the physical host are
doing I/O [22]. We measured the effect of contention
on raw disk I/O performance as well as application per-
formance in Hadoop. We saw a difference of 2.5-2.7x
between loaded and unloaded machines.

We note that our examples of the effect of load are in
some sense extreme, because in practice, EC2 seems to
try to place a user’s virtual machines on different physi-
cal hosts. For example, when we allocated 200 or fewer
virtual machines, they were all placed on different phys-
ical hosts. Our results are also inapplicable to CPU and
memory-bound workloads. However, the results are rel-
evant to users running Hadoop at large scales on EC2,
because these users will likely have co-located VMs (as
we did) and Hadoop is an I/O-intensive workload.

5.1.1 I/O Performance Heterogeneity

In the first test, we started a dd command that wrote 5000
MB of zeroes from /dev/zero to a file in parallel on
871 virtual machines in EC2’s production cluster. Be-
cause EC2 exhibits a “cold start” phenomenon when a
block is first written to – possibly due to expanding a
VM’s disk allocation and clearing existing data on the
disk – we first “cleared” 5000 MB of space on each ma-
chine by running dd and deleting its output. We captured
the timing of each dd command.

We used a traceroute from each virtual machine
to an external URL to figure out which physical machine
the VM was on – the first hop from a Xen virtual machine
is always the dom0 or supervisor process for that physi-
cal host. Our 871 VMs ranged from 202 that were alone
on their physical host up to a packing of 7 VMs per phys-
ical host. Table 1 shows our results. We see that average
write performance ranged from 62 MB/s for the isolated
VMs to 25 MB/s for the VMs that shared a physical host
with other VMs.

To validate that the performance was tied to contention
for disk resources due to multiple VMs writing on the
same host, also tried performing dd’s in a smaller EC2
allocation where 200 VMs were assigned to 200 separate
physical hosts. In this environment, dd performance was
between 51 and 72 MB/s for all but three VMs. These
achieved 44, 36 and 17 MB/s respectively. We do not
know the exact cause of these stragglers. The nodes with
44 and 36 MB/s could be explained by contention with
other users’ VMs given our previous measurements, but
the node with 17 MB/s might be a truly faulty straggler.
From these results, we conclude that background load is
an important factor in virtual machine I/O performance

Load Level VMs Write Perf (MB/s)
1 VMs/host 202 61.8
2 VMs/host 264 56.5
3 VMs/host 201 53.6
4 VMs/host 140 46.4
5 VMs/host 45 34.2
6 VMs/host 12 25.4
7 VMs/host 7 24.8

Table 1: EC2 Disk Performance versus VM co-
location: Average write performance versus number of
VMs per physical host on EC2. The second column
shows how many VMs fell into each load level in our
871-node test.

on EC2, and can reduce I/O performance by a factor of
2.5. We have also observed that stragglers can occur “in
the wild” on EC2.

We also measured dd throughput on “large” and
“extra-large” EC2 VMs. These VMs have two and four
virtual disks respectively, which appear to have inde-
pendent performance. They achieve 50-60 MB/s perfor-
mance on each disk. However, a large VM costs 4x more
than a small one, and an extra-large costs 8x more. Thus
the I/O performance per dollar is comparable to, and of-
ten less than, that of small VMs.

5.1.2 Impact of Contention at the Application Level

We also evaluated the hypothesis that background load
degrades performance in Hadoop itself. For this pur-
pose, we ran two tests with 100 virtual machines: one
where each virtual machine was on a separate physical
host that was doing no other work, and one where all
100 machines were packed onto 13 physical hosts, with
7 machines per host. To ensure that the physical ma-
chines in the first case were doing no other work, we
allocated 800 machines in the EC2 test cluster, which we
saw fell on 106 physical hosts, and we chose one VM
from each of 100 physical hosts. With both sets of ma-
chines, we sorted 100 GB of random data using Hadoop’s
sort benchmark with speculative execution disabled (this
setting achieved the best performance). With isolated vir-
tual machines, the job completed in 408s, whereas with
machines packed densely onto physical hosts, it took
1094s. Therefore there is a 2.7x difference in Hadoop
performance with a cluster of isolated virtual machines
versus a cluster of colocated virtual machines. Also note
that in this test, some of the contention may have been
for network I/O rather than disk I/O, explaining why the
difference is larger than for dd.
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5.2 EC2 Scheduling Experiments
For each measurement in this section we performed sev-
eral runs on EC2. Due to the environment’s variability
and contention, there are some runs with high variance
in the results. To address this issue, we used a local clus-
ter where we ran more experiments and had full control
over the environment.

We evaluated various scheduling strategies in Hadoop
in two environments: a large number of virtual machines
on Amazon EC2, and a small testbed of virtual machines
on 10 physical hosts in one of our department’s clusters.

The EC2 machines are all “small”-size instances each
of which has 1.7 GB of memory, 1 virtual core with “the
equivalent of a 1.0-1.2 GHz 2007 Opteron or Xeon pro-
cessor,” and 160 GB of space on a hard disk which is
potentially shared with at most one other VM co-located
on the same physical host [22]. Instead of running in
the production EC2 environment, they are in a separate
test cluster of 106 physical machines that we had nearly
full control over, as described at the beginning of sec-
tion 5. We allocated 800 virtual machines on this cluster
– nearly the full capacity, since each physical machine
seems to support at most 8 virtual machines – and used a
subset of them for each test.

In all tests, we configured the Hadoop Distributed File
System to maintain two replicas of each block, and we
configured each machine to run up to 2 mappers and 2
reducers simultaneously (the Hadoop default). We chose
the data input sizes for our jobs so that each job would
last approximately 5 minutes in order simulate shorter,
more interactive job-types as are common for MapRe-
duce style applications [1].

In our first set of experiments, we compared three
schedulers – Hadoop’s native scheduler, our LATE
scheduler, and no speculative execution – in two settings:
Heterogeneous but non-faulty virtual machines, chosen
by assigning a varying number of VMs to each physical
host, and an environment with stragglers.

For our workload, we used primarily the Sort bench-
mark in the Hadoop distribution, but we also evaluated to
other workloads. Sorting is the main benchmark used for
evaluating Hadoop optimizations at Yahoo! [26]. Google
also uses sort as one of the only two performance bench-
marks in [1]. In addition, there are a number of features
of sorting which make it a desirable benchmark [25].

To validate our findings, we reproduced these exper-
iments in a scaled-down virtual data center on our own
cluster in Section 5.3. 5.3.4.

5.2.1 Scheduling in a Heterogeneous Cluster

For our first set of experiments, we purposefully created
a heterogeneous cluster by assigning different numbers
of virtual machines to physical hosts within a segregated

Load Level Hosts VMs
1 VMs/host 40 40
2 VMs/host 20 40
3 VMs/host 15 45
4 VMs/host 10 40
5 VMs/host 8 40
6 VMs/host 4 24
7 VMs/host 2 14

Total 99 243

Table 2: Load level mix in our heterogeneous cluster.
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Figure 3: Running times in heterogeneous cluster:
Worst, best and average-case performance of LATE
against Hadoop’s scheduler and no speculation.

Amazon EC2 test cluster. The cluster had 106 physical
machines, each of which hosted 7 or 8 of our virtual ma-
chines. We used 1 to 7 virtual machines on each host, for
a total of 243 virtual machines. Table 2 shows the num-
ber of virtual machines at each load level. We chose this
mix to resemble the allocation we saw for 900 nodes in
the production EC2 cluster in Section 5.1.

As our workload, we used a Sort job on a data set
of 128 MB per host, or 30 GB of total data. As in
all our experiments, the data was stored with 2 repli-
cas per each block in Hadoop’s Distributed File Sys-
tem. Each job had 486 map tasks and 437 reduce tasks
(Hadoop leaves some reduce capacity free for speculative
and failed tasks). We repeated the experiment 6 times.

Figure 3 compares the response time achieved by each
scheduler. Our graphs throughout the Evaluation section
show normalized performance against that of Hadoop’s
native scheduler. We show the worst-case and best-case
gain from LATE to give an idea of the range involved. On
average, in this heterogeneous cluster experiment, LATE
finished jobs about 27% shorter than Hadoop’s native
scheduler and 31% faster than no speculative execution.

We also evaluated throughput by starting three copies
of the Sort job simultaneously and measuring the time to
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Figure 4: Throughput in heterogeneous cluster:
Worst, best and average-case throughput (jobs/s) of
LATE against Hadoop’s scheduler and no speculation.

finish all three. The results are shown in Figure 4. We see
that LATE performed 5.1% better than Hadoop’s sched-
uler and 18% better than no speculation. As explained
in Section 2, as more jobs are submitted to a cluster, no
speculation is the best policy for increasing throughput,
because it wastes no time at all with speculative task.
However, the stragglers in this heterogeneous environ-
ment were slow enough that there was still a gain from
speculation for three Sort jobs.

5.2.2 Effect of Stragglers

To evaluate the scheduling algorithms in a more interest-
ing and realistic environment, we manually slowed down
eight virtual machines in a cluster of 100 VMs to simu-
late stragglers. The other machines were assigned be-
tween 1 and 8 VMs per host, with about 10 in each load
level. The stragglers were created by running four CPU-
intensive processes (tight loops modifying values in 800
KB arrays) and four disk-intensive processes (dd tasks
creating large files in a loop) on each of the 8 machines
chosen to simulate stragglers. The load was significant
enough that disabling speculative tasks caused the clus-
ter to perform 2 to 4 times slower than it did with the
LATE scheduler, but not so significant as to render the
straggler machines completely unusable. For each run,
we sorted 256 MB of data per host, for a total of 25 GB.

Figure 5 shows the results from 4 experiments. On
average, LATE finished jobs 58% faster than Hadoop’s
native scheduler and 220% faster than Hadoop with spec-
ulative execution disabled. The gain over native specula-
tive execution could be as high as 93%.

We observe that in some runs, the schedulers’ relative
performance was similar. There is an element of “luck”
involved in these tests that can explain this – if a block’s
two replicas both happen to be placed on stragglers, then
no scheduling algorithm can perform very well because

0.0 

0.5 

1.0 

1.5 

2.0 

2.5 

Worst  Best  Average 

N
or
m
al
iz
ed

 R
un

ni
ng
 T
im

e 

No Specula8on 

Hadoop Na8ve 

LATE Scheduler 

Figure 5: Running times with stragglers: Worst,
best and average-case performance of LATE against
Hadoop’s scheduler and no speculation.

these blocks will be slow to serve. Nonetheless, LATE
performs better than the alternatives in all tests.

5.2.3 Differences Across Workloads

To validate our use of the Sort benchmark, we also ran
two other workloads, Grep and WordCount, on a hetero-
geneous cluster with laggards. Grep and WordCount are
sample programs in the Hadoop distribution. We used a
204-node cluster with 1 to 8 VMs per physical host. We
created eight stragglers using the same combination of
CPU and disk-intensive tasks as above.

Grep searches for a regular expression in a text file
and creates a file with matches. It then launches a second
MapReduce job to sort the matches. We only measured
performance of the search job because the sort job was
too short for speculative execution to activate (it took
less than a minute) and would have resembled our sort
benchmarks had it been larger. We applied Grep to 43
GB of text data (repeated copies of Shakespeare’s plays),
or about 200 MB per host. We searched for the regular
expression “the”. We repeated the experiment 5 times.
The performance results are shown in Figure 6. On aver-
age, LATE finished jobs 36% faster than Hadoop’s native
scheduler and 57% faster than no speculation.

WordCount counts the number of occurrences of each
word in a file. We applied WordCount to a smaller data
set of 21 GB, or about 100 MB per host. The perfor-
mance results are shown in Figure 7. We repeated the ex-
periment 5 times. On average, LATE finished jobs 8.5%
faster than Hadoop’s native scheduler and 179% faster
than no speculation.

We observe that the gain from both LATE is smaller
in WordCount than in Grep and Sort. This is explained
by looking at the workload. Sort and Grep write a sig-
nificant amount of data over the network and to disk.
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Figure 6: Grep running times with stragglers: Worst,
best and average-case performance of LATE against
Hadoop’s scheduler and no speculation.
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Figure 7: WordCount running times with stragglers:
Worst, best and average-case performance of LATE
against Hadoop’s scheduler and no speculation.

On the other hand, WordCount only sends a small num-
ber of bytes to each reducer – a count for each word.
Once the maps in WordCount finish, the reducers fin-
ish quickly, so its performance is bound by the map-
pers. The slowest mappers will be those which read data
whose only replicas are on straggler nodes, and therefore
they will be equally slow with LATE and native specula-
tion. In contrast, in jobs where reducers do a significant
amount of work, maps are a smaller fraction of the to-
tal time, and LATE has more opportunity to outperform
Hadoop’s scheduler by speculating reducers more effec-
tively. Nonetheless, in all workloads, we demonstrate
that speculation is necessary to mitigate stragglers.

5.3 Local Scheduling Experiments

In order to validate our results from EC2 in a more tightly
controlled environment, we also ran a local cluster of 9
physical hosts running Xen virtualization software [21].

Load Level VMs Write Perf. (MB/s) Std.
1 VMs/host 5 52.1 13.7
2 VMs/host 6 20.9 2.7
4 VMs/host 4 10.1 1.1

Table 3: Local Cluster Disk Performance: Average
write performance and Standard Deviation vs. number
of VMs per physical host on our local cluster. The sec-
ond column shows how many VMs fell into each load
level in our local experiments.

Load Level Hosts VMs
1 VMs/host 5 5
2 VMs/host 3 6
4 VMs/host 1 4

Total 9 15

Table 4: Load level mix in heterogeneous local cluster.

Our machines were dual-processor, dual-core 2.2 GHz
Opteron processors with 4 GB of memory and a single
250GB SATA drive. On each physical machine, we ran
one to four virtual machines using Xen, giving each vir-
tual machine 768 MB of memory. While this environ-
ment is different from EC2, this appeared to be the most
natural way of splitting up the available computing re-
sources among up to four virtual machines per host.

5.3.1 Local Performance Heterogeneity

We first performed a local version of the experiment de-
scribed in 5.1.1. We started a dd command in parallel on
each virtual machine which wrote 1GB of zeroes from
/dev/zero to a file. We captured the timing of each
dd command and show the averaged results of 10 runs
in table 3. We see that average write performance ranged
from 52.1 MB/s for the isolated VMs to 10.1 MB/s for
the 4 VMs that shared a single physical host.

We witnessed worse disk I/O performance in our local
cluster than on EC2 for the co-located virtual machines
because our local nodes each have only a single hard
disk, thus the machine on which 4 VMs were co-located
experienced 4-way disk contention, whereas in the worst
case on EC2 8 VMs were contending for 4 hard disks.

5.3.2 Local Heterogeneous Cluster

We next configured the local cluster in a heterogeneous
fashion to mimic a VM-to-physical-host mapping one
might see in a virtualized environment such as EC2. We
chose the number of Virtual Machines per physical host
to be appropriate for the size of the hardware we were
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Figure 8: Running time with heterogeneity: results of
sort benchmark with no speculative execution, Hadoop’s
native scheduler, and LATE in local heterogeneous clus-
ter.

using, assigning three classes of machines. As Table 4
shows, 5 physical hosts were running a single VM each
(one of these machines served as the Hadoop master),
two physical hosts were running two VMs each, and
one physical host was running 4 VMs. Each virtual ma-
chine was configured to operate with 768MB of memory.
We then ran our MapReduce sort benchmark, generating
64MB per job, and running each job 5 times. Figure 8
shows the averaged results of 5 runs of the sort bench-
mark. On average, LATE finished jobs 162% faster than
Hadoop’s native scheduler and 104% faster than Hadoop
with speculative execution disabled. The gain over native
speculative execution could be as high as 261%.

5.3.3 Local Stragglers

In order to simulate stragglers in our local control envi-
ronment, we ran a disk-intensive process (as in section
5.2.2, dd tasks creating large files in a loop) on two co-
located virtual machines to simulate a poorly performing
node. Figure 9 shows the average running times and ad-
ditionally the worst case and best case performance for
LATE. On average, under these simulated straggler con-
ditions, LATE finished jobs 53% faster than Hadoop’s
native scheduler and 121% faster than Hadoop with spec-
ulative execution disabled. The gain over native specula-
tive execution could be as high as 100%.

5.3.4 Differences Across Workloads

Like in our EC2 experiments, we also ran WordCount
on our heterogeneous local cluster with synthetically in-
duced stragglers. The results for the normalized perfor-
mance of no speculative execution, Hadoop native spec-
ulative execution, and LATE for WordCount are shown
in Figure 10. We see that LATE consistently performs
better than the competition, although as in the tests on
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Figure 9: Running time with stragglers: results of
sort benchmark with: (1) No speculative execution, (2)
Hadoop’s native scheduler, and (3) LATE in a local het-
erogeneous cluster with a synthetic straggler.
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Figure 10: WordCount running times with no specu-
lative execution, Hadoop’s native scheduler, and LATE
scheduling with stragglers.

EC2, the gain in WordCount is less due to the nature of
the workload.

6 Discussion

Our work is motivated in part by the decreasing cost
of commodity computers and by the availability of
open source parallelization frameworks, such as Hadoop,
which simplify the task of running distributed applica-
tions on thousands of nodes, making it an option for even
small organizations.

Having a private cluster offers an organization com-
plete control, but it is also incurs a significant capital
and operational cost and provides finite computing re-
sources. In a private cluster, the goal is to engineer so-
lutions that maximize the utilization of the available fi-
nite cluster resources and minimize application response
times (wall clock running times). Since a private clus-
ter usually evolves over time, it will often contain two
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or more generations of hardware. The organization may
choose to treat the different generations as separate re-
sources, or they may combine them together. The orga-
nization may also choose to use virtualization. However,
to execute larger and larger tasks, the various physical
(and virtual) resources will likely be combined, introduc-
ing exactly the types of heterogenity challenges that our
results show are addressed by LATE.

If instead, an organization shifts to using a commer-
cial virtualized data center, then they will give up some
measure of control and will incur a higher degree of re-
source heterogeneity and the associated variance. How-
ever, computing resources (i.e., compute hours) are no
longer a sunk cost (they are now available at an hourly
rate) and scale is no longer limited by a local hard cap
(the limit is the rate at which organizations like EC2
can grow). Unlike a private cluster, the ultimate lim-
iting factor on scale becomes engineering limitations,
such as limited bisection bandwidth in shared nothing
parallel computing environments [24]. Instead of simply
maximizing finite capacity while minimizing completion
time, the organization can now focus on finding the right
scale to run a job at in order to satisfy both price and
time constraints. An added challenge is that while the
average performance in such environments is excellent,
there will likely be stragglers that introduce significant
performance anomalies. As our results show, by using
LATE we are able to effectively leverage speculative ex-
ecution to mitigate the effects of laggards and resource
heterogenity on response time.

We believe that to capitalize on the many benefits
that virtualization have to offer–such as simplifying clus-
ter partitioning, sharing, and management–the implica-
tions of heterogeneity on distributed applications must
be thoroughly understood. Through our experiences with
Hadoop in both EC2 and Xen on our local cluster, we
have gained a substantial insight into the challenges in
this space.

While working on scheduling and speculative execu-
tion in heterogeneous environments, we observed three
recurring themes that led to improved performance:

• Tasks are not equal. If there are multiple slow
tasks, then whenever possible a best guess should
be made to estimate which task will finish farthest
in the future, and that task should be speculatively
re-assigned to another node.

• Compute nodes are not equal. Whenever possible,
speculative tasks should be assigned to fast nodes.

• Resources are precious. Thresholds should be
used to prevent overloading the system by execut-
ing too many speculative tasks.

6.1 Future Work

We have identified several other areas for improving
Hadoop’s performance in heterogeneous environments.
For example, block placement in HDFS currently tries to
balance blocks accross nodes, and could be made more
intelligent by taking into account each node’s disk and
network I/O performance. Also, we have begun work
on measuring the benefits of prioritizing the allocation
of disk and network resources between map and reduce
tasks on each MapReduce/HDFS slave, based on prelim-
inary observations that reducers can sometimes compete
with mappers and create an effect similar to priority in-
version where a few maps finish late and slow down the
entire job because most reducers are waiting on them.

In an initial exploration, we performed dynamic anal-
ysis of the performance of slaves in the cluster using sev-
eral machine learning classification algorithms. Given
knowledge about the individual capabilities of each slave
in the cluster, the scheduler could be more intelligent
when deciding how many tasks to simultaneously assign
to each slave, and also which nodes to use for assigning
speculative tasks. We believe that there would be benefits
even with a simple scheduler algorithm that attempts to
adapt to the differing capabilities of each slave by using
an adaptive task assignment algorithm similar to TCP’s
slow-start, congestion control and backoff policies.

In Section 4, we define the SlowNodeThreshold, Slow-
TaskThreshold and SpeculativeCap. One weakness of
any hard threshold is that for a mostly homogenous
workload, we are likely to misidentify nodes whose per-
formance is only slightly worse than the mean as strag-
glers and speculative re-execute them. We plan to im-
prove upon this simple heuristic by using a variance
threshold instead of a percentile threshold (i.e., a task
will be re-executed if its performance is statistically iden-
tified as an outlier). We also wish to measure sensitivity
of LATE’s performance to these thresholds.

In Section 4, we briefly mention that for speculative
execution, Hadoop’s current scheduler accounts for a
node’s proximity to data when choosing which node to
assign a map task to. However, LATE does not currently
account for data proximity. Because the maximum size
of such a copy will be one block of the input data (the
default is 64MB in both Hadoop and Google’s MapRe-
duce), we do not believe that this will have a significant
impact on performance. However, all other factors being
equal, accounting for such locality in a future revision of
LATE may yield a small reduction in running time.

7 Related Work

Much work has been done on the problem of schedul-
ing policies for task assignment to hosts in distributed
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systems [17] [18]. While our work shares much in com-
mon with this work, previous work is focused on inde-
pendent tasks, while MapReduce tasks are dependent on
co-completion. As a result of assuming task indepen-
dence this class of work does not have to deal with strag-
glers (i.e. some tasks being slowed down by others who
are taking an unusually longer to complete slowing) and
thus also does not have to address scheduling specula-
tive re-execution, which is a core element of our con-
tribution. Also, while this work focuses on distributed
computing to support backend services in a server client
oriented setting (such as a distributed Web server), the
required level of distribution and scale is much smaller
than that of many Hadoop installations. Because of our
use of EC2 and our focus on Hadoop, the scale at which
we are testing the effects of heterogeneity–at sizes up to
900 virtual machines on over 400 physical hosts–is larger
than any other distributed scheduling work we are aware
of. Finally, while this related work discusses in detail the
problem of highly variable (i.e. “heavy tailed”) workload
sizes, we focus instead on highly variable node perfor-
mance within the cluster.

Our work has some things in common with multi-
processor task scheduling, both with processor hetero-
geneity [19] and with task duplication when using de-
pendency graphs [29]. Our work differs significantly
from such work because we focus on independent tasks,
non-shared memory, and a heterogeneous network, while
multiprocessor task scheduling work focuses on process-
ing with high intertask communication and a homoge-
neous network.

Our work also shares some ideas in common with
work on “speculative execution” in distributed file sys-
tems [20], information gathering [27], and configuration
management [28]. However, while this work is focused
on guessing along decision branches, speculative execu-
tion in Hadoop is focused on guessing the expected exe-
cution time for task assignments in a distributed system.

The Google File System and MapReduce were de-
scribed architecturally and evaluated for end-to-end per-
formance in [3] and [1]. However, [1] only briefly dis-
cusses speculative execution and does not explore the al-
gorithms involved in speculative execution nor the im-
plications of highly variable node performance. Our
work provides a detailed look at the speculative execu-
tion scheduling mechanism.

DataSynapse, Inc. currently holds a patent [23] which
details speculative execution for scheduling in a dis-
tributed computing platform. The patent references sim-
ple statistics similar to those we have discussed for use
in the scheduling of speculative tasks. The statistics they
use include mean, normalized mean, standard deviation,
and a fraction or percentage of waiting vs. pending tasks
associated with each active job.

8 Conclusion

We have analyzed the current speculative execution
scheduler in the Hadoop MapReduce framework and
identified five primary assumptions upon which it is built
that assume homogeneity. We have observed and mea-
sured he implications of virtualization in distributed sys-
tems both at very large scales in Amazon EC2 and in a
more controlled local virtual environment. Through such
measurements, we have s hown how virtualized environ-
ments introduce heterogeneity that violates the assump-
tions of Hadoop’s current speculative execution sched-
uler. Based on our findings, we proposed a simple, ro-
bust scheduling algorithm, LATE, which performs well
in a variety of settings.
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