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Abstract

This paper analyzes the effect of errors in antenna weighthe performance of adaptive array systems, both
in the case when an array is used to maximize the gain in aediedirection and in the case when an array is used
to null interfering signals. We begin by deriving an exglicharacterization of the loss in array gain due to phase
errors in the optimal antenna weights. Then, we examinaference rejection in the presence of amplitude and
phase errors in the antenna weights. We prove that the losderference rejection is independent of the number
of antennas. For both cases, we give numerical simulatizaisvialidate our analysis.

. INTRODUCTION

Many modern communication systems employ adaptive angeimarder to improve their capacity, coverage,
and reliability. Unlike conventional fixed antenna systeaaptive antenna arrays dynamically adjust their beam
patterns in response to their environment. Adaptive arars extend the range by focusing most of the radio
frequency (RF) power on a desired target. This is known asnf@aing or beam-steering. Adaptive arrays can
also reject unwanted interference signals by placing nollthe direction of the interferers, which is known as
beam-nulling or null-steering. Even if the directions of tinterferers are unknown, adaptive arrays can still reduce
signal propagation in undesired directions by using site Isuppression.

Adaptive arrays are composed of multiple antenna elembatcan be arranged in different geometries (antennas
are usually spaced at least half a wavelength apart) [1pdraarrays provide more gain and degrees of freedom.
The beam pattern (the locations of peaks and nulls, and tlghtseof the side lobes) is shaped by controlling
the amplitudes and phases of the RF signals transmittedemaived from each antenna element. For this reason,
adaptive arrays are often referred to as phased arrayss®mmtrol over both amplitudes and phases is required to
achieve good performance. However, various factors sudmite resolution, noise, mismatch in circuit elements,
and channel uncertainty limit the precision that can beeadd in practice. Many of these error sources are random,
and cannot be compensated for using pre-calibration ortigdagignal processing techniques. The limited precision
will degrade the performance of the array (gain and interfee rejection). In this paper, we examine the impact
of phase and amplitude errors on the array gain (beamfodniin§ection Il and on interference rejection (beam-
nulling) in Section Ill. We provide both mathematical preaind simulation results that characterize the array
performance as a function of phase and amplitude errors.

Il. BEAMFORMING

Consider the array oV elements shown in Figure 1. A signgh], sent by a remote transmitter, arrives at each
antennai in the array shifted in phase hy,'. Antenna: will then apply a phase-shift; to the incoming signal.
Therefore, the overall complex (baseband) channel resplinat the output of the receiver array is giverfby

N
H = Z e (Yi=o:)
i=1

YIn general, signals arrive at different antenna elements wifferent delays. However, for narrowband signals, tideays can be
approximated with phase shifts [2]. We define signals asomdrand when the fractional bandwidth (the ratio betweerstgeal bandwidth
and carrier frequency) is very small (e.g. less than 1%)his paper, we shall assume that all signals are narrowband.

2The channel response is identical in the scenario with pleltransmitters and a single receive antenna.
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Fig. 1. A communication system with an adaptive array at geeiver. The narrowband signgl:| arrives at each antenna shifted in phase
by ;. The receiver applies a phase shift@fat each antenna and sums the signals.

To maximize the magnitude dfl, ¢; is chosen equal tg;, in which casdH|2 reaches its maximum value of
|H,pt|> = N2. In practice, however, factors such as quantization, cfitge, and other sources of noise make it
virtually impossible to realize the desired phase-shifest of these errors are unpredictable and time varying,
and are best modeled with random variables:

Vi = ¢i + 0

We will assume thabt; ~ U[—d,az, Omaz], Where0 < d,,4, < 180° is an upper bound on the amplitude of
phase deviatioh Furthermore, we assume that the errorsiaré across different antennas. In this case the channel
response becomes:

N
Hop = Z e = Z cos(6;) + 4 > sin(6;)
i=1

We wish to characterize the effect of the phase errors on qoare magnitude of the channel response. To
simplify the analysis, we introduce two new random variablg = cos(d;) andY; = sin(d;) and compute the
following expectations:

1 (O
ux = E[X;] = Elcos(d;)] = / cos(x)dx
20maz —Omax
1 Omas sin(0pmaz)
1 Omaz 1 Omaz
pxe = E[X?] = / cos’(x)dx = / cos?(z)dx
20max —max Omaz Jo

3We assume a uniform distribution to simplify the calculatioNote that no assumptions were made regarding the ggoofetie array
or the direction of arrival, so the result holds for an adiyrarray.



1 dmaz 1 sin(20maz)
= 2(5max A (1 + COS(QI'))dx = 5 + m
wy = E[Y;] = E[sin(;)] = 0 (by symmetry)
1 6mam 1 677111'1:
py> = E[Y?] = / sin?(x)dx = / sin?(z)da
20maz —man Omaz Jo

1 /57%2 1 sin(20maz)
= 1—cos(2z))der == — ————=
25max 0 ( ( )) 2 45ma:c
Now, we can rewrite the expression for the channel resposise a
N N

Hop =Y Xi+j>Y

i=1 i=1

_ | E[Xy]E[X|] = p3% whenk # [ (using independence)
E[XeX] = { E[X?] = px- whenk = [

| E[Vi]E[Y)] =13 whenk # [ (using independence)
By = { E[Y? = py=  whenk =1

= B[|Hop|*] = (N? = N)(uk + 13) + N(uxz + py=)

_ (N’ N) <Sin;§5max)> LN = (V) (sinzg&nax)) AN <1 B sinzgémax)>

max max max

If we normalize E[|H,,|?|] by dividing by the maximum valuéH,,;|> = N2, we obtain:

) ffo 2 Sin2 5mam 1 Sin2 5max
PN (dmaz) = H N§t| I 52 Ly N <1 - 755 )>
. sin? Omaz
= D(Bar) = Jim B (Finar) = %

max

Figure 2(a) shows a plot 0P (d,,4.) fOr 0 < e < 180°. Figure 2(b) shows the same function in dB scale.
Figure 2(b) also shows that the calculated array gain glos®ltches simulation results. Figure 2(c) shows that
the actual distribution of the phase errors has little inharcthe loss in array gain. Notice that using a single bit
of phase resolution correspondsd@., = 90° = 3, and®(3) = (%)2 ~ .4 ~ —3.9dB! We expect the bound to
become tighter asv increases, due to the law of large numbers. The graphs irrd-igshow the loss in array
gain as a result of quantizing the phase to one and two bisirés 3(g,h) show that quantization does not increase
the width of the main lobe. Also, notice that whép,, = 180°, which corresponds to completely randomizing
the phase of each antenna, the normalized array respbnée) = % which reduces the array gain to that of
an omni-directional antenna. So a simple way of creatingranidike beampattern without reducing the radiated

power is to choose the phases randdmly

“With omni-directional antennas, the absolute, non-noizedl power of the signals adds.
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Fig. 2. (a) The normalized array ga®(dma.) as a function of the maximum phase ert... (b) The normalized array gain in dB
scale,10log ®(dmaz). The plot shows both the calculated gain and the simulatéd fga a 10000 element array. (c) The simulated gain
(dB) for a 10000 element array with different phase errotritlistions. For a uniform distribution, the standard dégia is s = dmaz/v/3.

A second method of proving a lower bound on the array gain igdiyg the mean of the random variable, which
is often easier to compute, instead of the mean of the squairecandom variable. By Jensen’s inequality, the
square of the mean of a random variable is less than or equhktmean of its square:

E[X]? < E[X?]
for any random variableX. More generally:

f(E[X]) < E[f(X)] whenf(-) is a convex function.

Using this fact, and the expected value of the channel respome see that:

) N N sin(dmaz)
E[Hop] =E |> Xi+j» Y| = Nux = N——"%2
i=1 i=1

5max

1 2
= E[|Hop|*] > E[Hop)? = N* (W)

5mam

= (5mam)

E ﬁO 2 i 5ma:v 2
)= El ] (56

5mam



Fig. 3.

quantization loss (dB)

quantization loss (dB)

quantization loss (dB)

array gain (dB)

10x10 array with wavelength spacing

6t 4
8l 4
1-bit
2-bit ----e-e-
10 . . . . . h .
0 50 100 150 200 250 300 350
angle (degrees)
(@)
10x10 array with quarter wavelength spacing
0
2 4
4 WWNWMWWP
6t 4
8l 4
1-bit
2-bit ----e-e-
10 . . . . . h .
0 50 100 150 200 250 300 350
angle (degrees)
(€)
100x100 array with half wavelength spacing
0
-2
-6
-8
1-bit
2-bit ----e-e-
-10 h 1
0 50 100 150 200 250 300 350
angle (degrees)
(e)
0 I
1-bit ——
2-bi
-10 5-bit
-20
-30
-40 5 H
i i ]
-50 . I I
-60 ] i 4
70 i =l ‘
: e
80 - :
0 50 100 150 200 250 300 350

angle (degrees)

(9)

quantization loss (dB)

quantization loss (dB)

quantization loss (dB)

array gain (dB)

10x10 array with half wavelength spacing

6| 1
8| 1
1-bit ——
2-bit oo
10 . . . . . h .
0 50 100 150 200 250 300 350
angle (degrees)
100x100 array with wavelength spacing
0
-2
-6
-8
1-bit ——
2-bit oo
-10 L L
0 50 100 150 200 250 300 350
angle (degrees)
100x100 array with quarter wavelength spacing
0 T T
+ ; |
-2
. | | |
-6
-8
1-bit ——
2-bit oo
-10 h 1
0 50 100 150 200 250 300 350
angle (degrees)
0 —
1-bit ——
2-bit
&
-20 :j 5-bit Bl
£
s A FAY . g
40 N \‘ﬂ AN
7\ |
by
P \
-60 E
!
-80
-100
50 52 54 56 58 60

angle (degrees)

(h)

(a)-(f) Array loss as a result of phase error for dédfg size arrays. (g)-(h) 2-dimensional horizontal beatepa of a 100x100

array with \/2 spacing (steered towards 55 degrees) for different phasdut®ns.



[1l. BEAM-NULLING

In addition to maximizing SNR by steering the direction oé theam towards desired locations, many commu-
nication systems are faced with unwanted interference. dstrof these systems, simply steering the direction of
the peak is not sufficient to suppress large interferers amhkjammers. Other techniques, such as null-steering
and side lobe suppression, are required to provide the sa&gesejection of interfering signals.

Adaptive systems that require precise control of the locatiof the nulls and side lobe levels need to adjust
both the phase and amplitude response of each antenna ¢léméhris case, we need to account for both phase
and amplitude errors. Analyzing the combined effect of phasd amplitude errors is easier when we consider
the problem in the spatial domain where the optimal compkaniforming weights and channel responses can be
represented as complex vectors in tNedimensional Euclidean space, whe¥eis the number of antennas in the
array. Let us assume that we halfet 1 vectors: a desired vectdr; corresponding to the direction of the desired

signaP, and K interferering vectordy; Vi<;<x corresponding to the directions &f interfering signals.
hd = [Ozldejﬁld, e ,OéNdejﬁNd]T
h; = [ane’™, . anie™ T Vicick

The incoming signal at the input of the arrgyn] is the sum of the desired signal and interference and noise:
K
y[n] = hgd[n] + Zhidi[n] + v[n]
i=1

whered|n] is the desired signali;[n] is interfering signak, andv(n| is the white noise vector at the receiver (the
variance of each component ofn] is o2). For simplicity, we shall assume that the desired and fietiig signals
have the same power. Using beamforming weightgwithout loss of generality, we can restripi/| = 1), the
signal at the output of the array will bey[n]. The output signal to noise plus interference ratio (SINRyiven

by:

[why?
SINR,,: =
ISR whh[? + o2
where(-)? denotes the complex conjugate transpose Hgt= [hy, ..., hx] be the matrix whose columns are the

interference vectors. Complete interference rejectiam lwa achieved by choosing a beamforming weight vector
w that is the projection of the desired veclof onto the subspace orthogonal to the column spadd ofor the
null-space ofH | , which is also known as the left nullspace Hf;), as described in [3]:

H —1¢7H
Wopt = Wprojection = hy — HI(HI HI) Hj hy

We can see that rejecting all the interfering signals is ggsible when the left nullspace is non-empty. This
is guaranteed wheilll < N. The projection-based beamformer does not take noise iotoumt. In general,
maximizing the output SINR does not necessarily requirepeta interference rejection; reducing the interference
to the noise level may be sufficient. Optimizing the outpuliBlleads to the Minimum Variance Distortionless
Response (MVDR) beamformer [4]. If we define the noise+fetence correlation matriR x . ; as:
K
Ryir =Y hi'h; +olly
i=1
wherely is the N x N identity matrix, then the output SINR can be maximized byasiog w,;:
-1
RN+Ihd
THR-1 n.
hé{RN-i-Ihd
The denominator is a normalizing factor. When the interfeeepower is much larger than the noise power, both
projection and MVDR yield virtually identical results. Irrgctice, however, phase and amplitude errors degrade
the performance of both beamformfersve will assume that an optimum beamformey,; is computed using

Wopt = WMVDR =

SWe will denote scalars in lower case, vectors in bold lowesecand matrices in bold upper case.

5The errors can also result from uncertainties about thereHaesponses for both desired and interfering signals.dJhis point, we
have assumed perfect knowledge of the channels.



projection, andw,,,; takes into account both phase and amplitude errors:
Wopt = [alwejﬁlw, . ,ozNwejﬁNw]T
Wopt = [10 (1 + €1)e?Brot00) e (1 4 ey )ed Prutdn)]T

wheree; Vi<;<n arei.i.d zero mean real random variables with variatﬁ{e?] = a?, andé; Vi<i<n arei.i.d zero
mean real random variables with varianEg?] = o2. We also assume that the phase and amplitude errors are
independent of each other. Furthermore, we scale the vgesghthatw,,; has unit norm (i.ezf\i1 a2, =1).

The phase and amplitude errors resulig,; deviating fromw,,; by an angle. Note that? does not necessarily
correspond to a physical angle or direction. This deviatidglh result in a reduction in the signal strength in the
desired direction as well as an increase in the interfergrueeer, sincew,,; will no longer be orthogonal the
interference subspace. The desired power is proportianabs(f), and the increase in interference (leakage) is
proportional tosin(6) (see Figure 4). For small angléswe can use the standard approximatiosia(f) ~ ¢ and
cos(f) =~ 1. Thus, we can characterize the effect of phase and amplétdes on beam nulls by considering how
the mean square angig (o5, 0, N) = E[0?] behaves as a function of;, o, and N.

—— Interference/interference subspace
—— Desired signal

—  Optimum beamforming vector

— = Distorted beamforming vector

A
r - |
\]“09‘ -~ A_L
_ - Wopt
_ I
-~ 0
=2 - — — —plpw,

Fig. 4. The optimum beamforming vecteov,,; can be viewed as a projection of the desired signal onto thepsice orthogonal to the
interference subspace. The distorted beamforming ve&tgs can decomposed into two orthogonal componesits;: = v?/ipt + \?vﬂpt.

vir,‘)‘pt, which is parallel tow,,:, represents the potential loss in beamforming gain, andoggstional tocos(9). vAvoLpt, which is orthogonal
to wopt, represents the potential leakage into the interferenbspsce, and is proportional s (6).

"This explains why nulls are more sensitive than peaks toelaasl amplitude errors, sineén(#) changes more rapidly thatvs(9)
when @ is small.



If we assume that the phase and amplitude variations ard,sandl given thatw,,,; is unit norm, then we can
approximate the error anglewith the error vector:

AW = Wop — Wopr = [10?7 (1 — (1 4+ €1)e?), .. ange?™ e (1 — (1 4 en)el®)) T
We can further simplify the above expression using the apprationscos(d;) ~ 1, sin(d;) ~ ¢;, andd;e; =~ 0.
AW = [a1,6P (1 =1 — €1 — jo1), ..., anwe?™ (1 =1 —exy — joN)] "

= [—alwejﬁlw (61 +j(51), ey —OéNwﬁjﬁNw(EN +j(5N)]T
N
= |Aw[> = (Aw)"T (Aw) =Y af, (6 +67)
i=1

By taking the expectation of this expression:
N

> (€ +67)

1=1

N

— 3" a2, (B[] + E[5))
i=1

o2 ~ E[|Aw|*| = E

2

N
2 2 2 2 2 2 2 2
:Zaiw(ge+g5):(ge+g5) aiw:Je+U6
=1

@
Il
—_

As we can see, the mean square error anglés equal to the sum of the mean square phase erfoand
the mean square amplitude erigf. The key conclusion that we draw from this result is that thgle error is
independent ofV, the number of antenn@as

The simulation results shown in Figure 5 verify this res#igure 5(a) shows a linear relationship between
10log(c? + 02) (x-axis) and10log(c7) (y-axis), with slope equal to 1. Figure 5(b) shows that thatienship
between10log(c%) and 10log(c3), when the amplitude errors are set to0, is also linear with slope equal to
1, which demonstrates that the phase and amplitude errotsimge equally to the overall error angle In both
Figures 5(a) and 5(b), we simulated a 100 element array. \Meated the same experiment for a 1000 element
array and the results are identical, as shown in Figuresas(d)5(d). Figure 6 also shows identical results, where
we plot the interference rejection as a function of phaseamnglitude errors for different array sizes. This shows
that the number of antenna elements has no effect on the nyeaneserror angle7 or the interference rejection.
This means that the depth of beam nulls is limited by gain amake accuracy, and is independent of the size of
the arrayN and the number of interferei®, as long asV > K.

IV. CONCLUSION

Adaptive antenna arrays are a key component in many modenmaaication systems. They are used to both
increase the gain in the direction of a desired signal as aglio reject interfering signals. However, when these
adaptive arrays are implemented, a variety of practicasiclemations will cause the actual antenna weights to differ
from the optimal weights, which in turn degrades the peréomoe of the array.

In this paper, we analyzed the performance loss due to phasaraplitude errors in the weights. We began by
considering a beamforming system, which maximizes the gaindesired direction. We derived an expression for
the loss in gain due to uniform phase errors, and providedlations that validate this result. Then, we considered
a beam-nulling system, which rejects interfering sign®e. analyzed the effect of uniform amplitude and phase
errors, and again provide numerical simulations. We shotlkad the interference rejection is a function of the
errors in the weights, and is independent of the number arenats, assuming that there are more antennas than
interferers.

8The power leakage into the interference subspace is indepewf the number of antennas. However, increasing the aumfantennas
can still increase the output SINR (peak to null ratio) byréasing the power gain of the desired signal. Increasingntimber of antennas
also increases the degrees freedom necessary to null meréerars.



-10 — -10
P
-
~
// -15 e
15 /
e g d
. e
o e @ 20 ;
T 20 ° /
o e 2 e
=l yd =3
2 - 2 25 =
© e © e
[ o o
g 2 e g 7
= e Z -30 i
@ S @ S
c - <
§ 30 o g 7
E pd E 35 =
” d
,/// ,'/
-35 /_ 40 P
e pd
e i
40 £ -45
-40 -35 -30 -25 -20 -15 -10 -45 -40 -35 -30 -25 -20 -15 -10
mean square error (phase + amplitude) (dB) mean square error (phase) (dB)
(@) (b)
-10 ~ -10
/ -
15
-15
e /‘/
o ,/ o -20
T -20 T
z o =2 )
2 S = -
2 - 2 .25 -
@ / @ 7
[ (] /
g 25 o e //
2 yd Z -30 <
@ s @ p
g ~ 5 -
g -30 - g e
€ yd E .35
/,/ e
3 p ’ -40 <
e S
/ i
40 -45
-40 -35 -30 -25 -20 -15 -10 -45 -40 -35 -30 -25 -20 -15 -10
mean square error (phase + amplitude) (dB) mean square error (phase) (dB)

(c) (d)

Fig. 5. Simulated relationship between phase and amplitndes and the mean square error angle: (a)(dpg(c? 4 o2) on the x-axis,
10log(o3) on the y-axis. (b),(d)L0log(c?) on the x-axis,10log(c2) on the y-axis. In (a) and (b), the simulated array had 100 efisn
In (c) and (d), the simulated array had 1000 elements.

REFERENCES

[1] C. Balanis,Antenna Theory. John Wiley & Sons, 2005.

[2] H. V. Trees,Optimum Array Processing. Wiley-Interscience, 2002.

[3] G. Strang,Linear Algebra and Its Applications. Thomson Learning, 1988.

[4] D. Manolakis, V. Ingle, and S. KogorStatistical and Adaptive Sgnal Processing: Spectral Estimation, Signal Modeling, Adaptive
Filtering and Array Processing. McGraw-Hill, 2000.



-10

-15
o
S 20
c N
S
s P
[ r
g 25 o
(5]
c ;
g
3 P
5 -30
35
N=20 ——
) N=100
N=400 e
-40 h
-40 -35 -30 25 20 -15 -10

mean square error (phase + amplitude) (dB)

Fig. 6. Simulated power leakage (interference rejectiend dunction of phase and amplitude errar8log(c? + o) on the x-axis versus
the interference rejection in dB on y-axis. Interferendgeaton (IR) is defined as the ratio of the interferer powedebeam-nulling to the
interferer power before beam-nulling. Before beam-nglliwe choose the beamforming vectwt.s,-. along the direction of the desired
signalhy (i.e. Weefore = %). In this case, the input power at the receiver from intexfér; will be |w§£fmehi|2. After beam-nulling,
we choose the beamforming vecwst, s+ as the projection of the desired vector onto the subspabegwhal to the interference subspace.
In this case, the input power at the receiver from interféreafter beam-nulling (and phase and amplitude distortior) bvei Iv?/ffterhiIQ.
~ H h,
Thus, on the y-axis, the interference rejection #R20 log M The relationship is plotted for several array sizes. Bhthand
before v .
h; are complex random vectors whose components (both realraagdinary parts) are sampled independently from a standargssgn
distribution.



