
Internet Routing and Internet Service Provision

Henry Lin

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2009-105

http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-105.html

July 29, 2009

Copyright 2009, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Internet Routing and Internet Service Provision

by

Henry Chih-Heng Lin

B. S. (Cornell University) 2003

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

GRADUATE DIVISION

of the

UNIVERSITY of CALIFORNIA at BERKELEY

Committee in charge:

Professor Christos H. Papadimitriou, Chair
Professor Satish Rao
Professor Richard Karp
Professor David Aldous

Fall 2009

The dissertation of Henry Chih-Heng Lin is approved:

Chair Date

Date

Date

Date

University of California at Berkeley

Fall 2009

Internet Routing and Internet Service Provision

Copyright Fall 2009

by

Henry Chih-Heng Lin

1

Abstract

Internet Routing and Internet Service Provision

by

Henry Chih-Heng Lin

Doctor of Philosophy in Computer Science

University of California at Berkeley

Professor Christos H. Papadimitriou, Chair

The recent development and expansion of the Internet has created many technical challenges

in several diverse research areas. In this thesis, we study recent problems arising in the area

of Internet routing and Internet service provision. In the area of Internet routing, we analyze

properties of the selfish routing model, which is a mathematical model of users selfishly

routing traffic in a network without regard to their effect on other users. Additionally,

we study the properties of various random graph models which have been used to model

the Internet, and utilize the properties of graphs generated by those random models to

develop simple compact routing schemes, which can allow network routing without having

each node store very much information. In the area of Internet service provision, we study

an online bipartite matching problem, in which a set of servers seeks to provide service to

arriving clients with as little interruption as possible. The central theme of this thesis is

to analyze precise mathematical models of Internet routing and Internet service provision,

and in those models, we show certain properties hold or derive algorithms which work with

high probability.

The first model we study is the selfish routing model. In the selfish routing model,

we analyze the efficiency of users selfishly routing traffic and study a counterintuitive phe-

nomenon known as Braess’s Paradox, which states that adding a link to a network with

selfish routing may actually increase the latency for all users. We produce tight and nearly

tight bounds on the maximum increase in latency that can occur due to Braess’s Paradox

in single-commodity and multicommodity networks, respectively. We also produce the first

nearly tight bounds on the maximum latency that can occur when traffic is routed selfishly

2

in multicommodity networks, relative to the maximum latency that occurs when traffic is

routed optimally.

In the second part of the thesis, we study random graph models which have been

used to model the Internet, and look for properties of graphs generated by those models,

which can be used to derive simple compact routing schemes. The goal of compact routing

is to derive algorithms which minimize the information stored by nodes in the network,

while maintaining the ability of all nodes to route packets to each other along relatively

short paths. In this research area, we show that graphs generated by several random

graph models used to model the Internet (e.g. the preferential attachment model), can be

decomposed in a novel manner, which allows compact routing to be achieved easily. Along

the way, we also prove that a Polya urns random process has good load balancing properties,

which may be of independent interest.

In the last part of the thesis, we study an online bipartite matching problem,

which models a problem occurring in the area of Internet service provision. In our online

bipartite matching problem, we imagine that we have some servers capable of providing

some service, and clients arrive one at a time to request service from a subset of servers

capable of servicing their request. The goal of the problem is to assign the arriving clients

to servers capable of servicing their requests, all while minimizing the number of times that

a client needs to be switched from one server to another server. Although prior worst case

analysis for this problem has not yielded interesting results, we show tight bounds on the

number of times clients need to be switched under a few natural models.

As we analyze these problems arising in the Internet from a precise mathematical

perspective, we also seek to reflect on the process used to solve mathematical problems.

Although the thought process can sometimes be difficult to describe, in one case, we at-

tempt to provide a step-by-step account of how the final result was proved, and attempt to

describe a high level algorithm, which summarizes the methodology that used to prove it.

Professor Christos H. Papadimitriou
Dissertation Committee Chair

i

Contents

List of Figures iii

1 Introduction 1
1.1 Selfish Routing, Braess’s Paradox, and the Price of Anarchy 2
1.2 Linked Decompositions for Internet Routing and Management 4
1.3 An Online Bipartite Matching Problem . 5
1.4 The Methodology Used to Prove a Bound on Braess’s Paradox 7
1.5 Bibliographic Notes . 8

2 Braess’s Paradox and Efficiency of Selfish Routing 9
2.1 Background . 9

2.1.1 Braess’s Paradox in Single-Commodity Networks 10
2.1.2 Braess’s Paradox and Price of Anarchy in Multicommodity Networks 11

2.2 Preliminaries . 14
2.3 Bounding Braess’s Paradox in Single-Commodity Networks 17

2.3.1 Zero Latency Paths . 18
2.3.2 Light Paths . 20
2.3.3 Light-Heavy Alternating Paths . 22
2.3.4 General Alternating Paths with One Added Edge 25
2.3.5 Existence of General Alternating Paths 27
2.3.6 General Alternating Paths with Multiple Added Edges 28

2.4 Selfish Routing Results in Multicommodity Networks 29
2.4.1 Braess’s Paradox in Multicommodity Networks 29
2.4.2 Upper Bounding the Price of Anarchy in Multicommodity Networks 36
2.4.3 Exponential Inapproximability for Multicommodity Network Design 40

3 Linked Decompositions for Internet Routing 46
3.1 Background . 46
3.2 Linked Decompositions in PA(m) Graphs 50
3.3 Polya Urns with the Power of Choice . 52

3.3.1 An Alternate Random Process . 54
3.4 Proof of Theorem 14: Polya with the Power of Choice Balances Loads . . . 56

3.4.1 Proof of Claim 2 for Theorem 14 . 56

CONTENTS ii

3.4.2 Proof of Claim 1 for Theorem 14 . 64
3.4.3 Proof of Claim 5 for Theorem 14 . 64
3.4.4 Proof of Claim 3 for Theorem 14 . 66
3.4.5 Proof of Claim 4 for Theorem 14 . 67

3.5 Proof of Theorem 13: Component Sizes in Linked Decomposition Balance . 70
3.5.1 Proof of Claim 1 for Theorem 13 . 71
3.5.2 Proof of Claim 2 for Theorem 13 . 72
3.5.3 Proof of Claim 5 for Theorem 13 . 74
3.5.4 Proof of Claim 4 for Theorem 13 . 75
3.5.5 Proof of Claim 3 for Theorem 13 . 75

3.6 Linked Decompositions with Exceptions . 76
3.7 The Internet and Routing . 78
3.8 Experiments . 81
3.9 Open Problems . 83

4 An Online Bipartite Matching Problem 86
4.1 Background . 86

4.1.1 Online Matching Assumptions . 88
4.1.2 Our Results . 89
4.1.3 Related Work . 90

4.2 Random Arrival Order . 92
4.2.1 The Upper Bound . 93
4.2.2 The Lower Bound . 96

4.3 Random Connection Model . 97
4.3.1 The Upper Bound . 98
4.3.2 The Lower Bound . 104

4.4 Online Bipartite Matching on Forests . 105
4.5 Conclusion . 109

Bibliography 110

iii

List of Figures

2.1 Braess’s original example of Braess’s Paradox before edge is added. 17
2.2 Braess’s original example of Braess’s Paradox after edge is added. 17
2.3 A possible Braess’s Paradox instance before edge is added. 23
2.4 A possible Braess’s Paradox instance after edge is added. 23
2.5 Braess’s Paradox in a multicommodity network example. 32
2.6 Multicommodity Braess’s Paradox example before edge is added. 33
2.7 Multicommodity Braess’s Paradox example after edge is added. 33

3.1 An example of a linked decomposition. 80
3.2 Relationship between size and number of components in decomposition. . . 82
3.3 Variation of component sizes in linked decomposition. 82
3.4 Stretch of linked decomposition scheme on the BGP graph. 84
3.5 Stretch of linked decomposition scheme on Internet router graph. 84

4.1 An algorithm for matching clients to servers in a random graph. 99
4.2 Our procedure for finding augmenting paths in the random graph. 100

LIST OF FIGURES iv

Acknowledgements

There are many people I would like to acknowledge for their support in writing this thesis.

First, I would like to acknowledge my co-advisors Christos Papadimitriou and Satish Rao.

Their support, encouragement, and research guidance were invaluable over the years. In

addition to their wisdom and academic advice, there were also memorable concerts with

Christos’s music band Lady X and the Positive Eigenvalues and numerous political discus-

sions with Satish, which provided a nice break from research. They also had their own

unique sense of humor, which made meetings enjoyable and interesting.

Besides my main advisors, I would like to thank Richard Karp and David Aldous

for providing feedback on my thesis and serving on my dissertation committee. I would

also like to thank Richard Karp for providing sound guidance, support, and collaboration

over the years, and thanks go to David Aldous, Alistair Sinclair, Umesh Vazirani, Luca

Trevisan for teaching some insightful courses during my time at Berkeley. In addition to

teaching courses, it was also nice to collaborate with Luca Trevisan and Hoeteck Wee on

a complexity project. I would also like to thank my other co-authors and collaborators at

Berkeley: Jacob Abernathy, Kamalika Chaudhuri, Costis Daskalakis, Robert Kleinberg. It

was great to get to know you and collaborate with you at Berkeley. To my fellow Ph.D.

graduates this year Alexandra Kolla and Madhur Tulsiani, congratulations and good luck!

Going back, I would also like to thank members of the Cornell University commu-

nity. I thank Eva Tardos for advising me as an undergraduate at Cornell, and helping to

start my academic career. It was a great opportunity and learning experience to work with

Eva and Tim Roughgarden on selfish routing. Jon Kleinberg and Eva also taught an inspir-

ing introductory course on algorithms, which convinced me to study theoretical computer

science. I would also like to thank my friends, roommates, and fellow occupants in the

Class of 28 and Sperry Hall dormitories at Cornell University, who made sure I experienced

everything college has to offer, besides the rigorous academic curriculum. Your support and

friendship over the years were invaluable.

To my fellow graduate students at UC Berkeley, thank you for sharing this journey

with me with all the highs and lows. I would like to thank all those who have helped

me with friendship and advice, technical or otherwise, although I am sure to forget some

people. Apologies in advance to those whom I may forget to mention. Besides the graduate

students already mentioned above, I would like to especially acknowledge Kris Hildrum

LIST OF FIGURES v

and Alex Fabrikant for some useful early guidance, when I was only a first year graduate

student. Thanks also go to the theory graduate students roughly my year and above,

for useful guidance and support as well: Andrej Bogdanov, Kevin Chen, Omid Etesami,

Brighten Godfrey, Omar Khan, Bonnie Kirkpatrick, Mani Narayanan, Lorenzo Orecchia,

Daniel Preda, Sam Riesenfeld, Grant Schoenebeck, Alexandre Stauffer, Kunal Talwar, and

Boriska Toth. To the younger students, Gregory Valiant, Thomas Vidick, James Cook,

Yaron Singer, and the first year students, I wish you luck and it was great to get to know

you during the theory retreat(s). I’m sure you’ll be very successful in your graduate studies.

I give many thanks to the members of the CSGSA for hosting so many events that

kept us well-fed and entertained over the years. In particular, I would like to acknowledge

my friends, Ben Rubinstein and Juliet Rubinstein for hosting movie nights, and Erika

Chin, Arel Cordero, Adrian Mettler, Barret Rhoden, Isabelle Stanton, and David Zhu for

serving on the social committee and lounge committee. Thanks to my friends who were

my roommates: Mircea Dinca, Bowei Du, Krish Eswaran, Craig Hashi, Steve Martin, Radu

Miheascu, Matt Piotrowski, Jingyi Shao, and Shane Tackett. Thank you to my friends on

the EECS softball team, my fellow GSI’s, and other great friends I met over the years:

Alex Dimakis, Amin Gohari, Pulkit Grover, Steven Houston, Ann Hsieh, Francois Labelle,

Garmay Leung, Joe Makin, David Molnar, Bobak Nazer, Blaine Nelson, Raina Spalek,

Robert Spalek, Rahul Tandra, David Tung, Falk Unger, and Helen Yin. Also, thanks to

Neha Dave for providing excellent food at the theory lunches.

I also want to thank Cynthia Phillips, Robert Carr, William Hart, Erik Lauer, and

my other collaborators and coworkers at Sandia National Laboratories for two enriching and

enjoyable internship experiences. Going back even further, I would also like to thank my

friends and teachers from Newton, MA and Newton North High School in particular, for

providing a sound foundation for academics and life in general.

Last but not least, I would especially like to thank my parents for their support

and encouragement over the years. It goes without saying that I would not have been able

to do well in life without them.

1

Chapter 1

Introduction

The recent rise of the Internet has brought about many technological innovations

and advances for society, but with these new developments come many challenges and

open questions. As the technologies that run and operate services on the Internet vary

widely, the challenges and open questions that arise from the development of the Internet

are numerous and diverse. There are countless open questions regarding both the efficient

operation and transfer of data within the Internet, and regarding the efficient operation

of applications running on the Internet. In this thesis, we explore various aspects of both

problems, studying problems related to the efficient operation of the Internet and related

to the efficient operation of applications running on the Internet.

The research described in this thesis seeks to study the aforementioned challenges

facing the Internet from a precise mathematical perspective. We seek to study precise

mathematical models of Internet routing and Internet service provision, and seek to prove

precise guarantees regarding the behavior or performance achievable in those models. In

some cases, we seek to provide worst case guarantees, and in others, we follow the recent

trend of analyzing randomized models, which utilize randomness to generate a better model

of the behavior we expect to see in the real world. In the random models we analyze, we

seek to develop and analyze algorithms which have precise performance guarantees, which

hold with high probability. With those goals in mind, the work in this thesis covers three

main topics: the selfish routing model, compact routing in “Internet-like” random graphs,

and an online bipartite matching problem.

Although the focus of this thesis is to explore the challenges and problems facing

Internet design, we also reflect on the mathematical techniques we use to analyze and study

CHAPTER 1. INTRODUCTION 2

mathematical problems of interest. An auxiliary goal of this thesis is determine if there are

some high level algorithms, which can summarize the methodologies we use to prove new

mathematical results. Although it may be difficult to determine or define the exact high

level algorithm or methodology that we use to prove each result in this thesis, in one case,

we provide readers with a detailed step by step account of how a new mathematical result

was discovered, and describe a high level algorithm, which was used to generate that new

result.

In the next three sections, we provide a high level description of the three areas

in Internet routing and Internet service provision that we study in this thesis, and then

we provide more thoughts on the goal of studying the methodology we use to prove new

mathematical results. Then, in the three subsequent chapters, we explore the three areas

we mention below in more detail.

1.1 Selfish Routing, Braess’s Paradox, and the Price of An-

archy

The first area we study follows the recent trend of studying game theoretic aspects

of Internet routing. Internet routing can be viewed as a noncooperative game between selfish

agents who individually seek to minimize the latency incurred by the traffic they send over

the Internet, while ignoring the extraneous effects that their traffic has on the latencies

incurred by other users. One popular model of noncooperative users sending traffic in a

network is known as the selfish routing model and was studied extensively in [Rou05].

In the selfish routing model, we imagine that we have a large number of users

each sending a small amount of traffic in a network, which is represented collectively as a

network flow, and we imagine that users selfishly choose to send their traffic or flow along

minimum latency paths without regard to their effect on the latency of other user’s traffic.

In this model, a network flow in which all traffic is traveling along minimum latency paths

is said to be at Nash equilibrium, since no users have any reason to deviate their traffic

from the current state. Although flows at Nash equilibrium may be stable with users having

no incentive to switch their traffic to other paths, a flow at Nash equilibrium may not be

socially optimal in terms of minimizing the average latency incurred by all users, nor is it

optimal in terms of minimizing the maximum latency incurred by all users.

CHAPTER 1. INTRODUCTION 3

Moreover, there is a surprising illustration of the inefficiency that can arise in a

network with selfish routing known as Braess’s Paradox. Breass’s Paradox states that adding

a link to a network with selfish routing may actually increase latency for all users, instead

of improving the overall latency. This counterintuitive phenomenon more or less occurs

because adding a link to a network can cause selfish users to change routes and congest the

same links, and as a result, increase the latency for all users. Although Roughgarden’s work

in [Rou] precisely characterized the worst possible severity of Braess’s Paradox in single-

commodity networks (where all traffic flows from a single source to a single destination)

based on the number of nodes in the network, open questions still remained on the worst

possible severity of Braess’s Paradox.

For example, the work in [Rou] shows that Braess’s Paradox can be arbitrarily se-

vere, if the original network is large enough, and if we are allowed to add an arbitrary number

of edges to the network. However, it was still an open question whether or not adding a

single edge could cause arbitrarily severe instances of Braess’s Paradox in single-commodity

networks. The examples in [Rou] show that adding k edges to a single-commodity network

can increase the overall latency incurred by users by a factor of k + 1, but it was unclear

if those examples were the worst case that could occur. In the first result of this thesis,

we show a matching upper bound, which shows that adding k edges to a single-commodity

network can increase the overall latency by at most k + 1.

Additionally, the story of Braess’s Paradox in multicommodity networks (where

there is traffic between multiple sources and destinations) was also not complete. The work

in [Rou] did not provide any worst case upper bound on the severity of Braess’s Paradox

in multicommodity networks, and only showed that adding k edges to a multicommodity

network could increase the overall latency by as much as k + 1. In the second result of this

thesis, we show that Braess’s Paradox can be much worse in multicommodity networks. In

fact, it can be exponentially worse, as we show that adding a single edge to a network with

only two commodities (two sources and two destinations), can increase the latency by a

factor of as much as 2Ω(n), where n is the number of nodes in the network.

Furthermore, we provide an upper bound which almost matches the lower bound,

by showing that the overall latency incurred by all users can increase by at most

2O(min{kn,m log n}), when any number of edges are added to a network, where k is the number

of commodities in the network, and m is the number of edges. When the number of com-

modities is a constant, we have a tight bound of 2θ(n) on the severity of Braess’s Paradox.

CHAPTER 1. INTRODUCTION 4

Tangentially, our work on Braess’s Paradox in multicommodity networks also provides the

first close upper and lower bounds, in multicommodity networks, on what is known as the

price of anarchy with respect to the maximum latency objective. The price of anarchy

with respect to the maximum latency objective is simply the highest ratio that can occur

between the maximum latency that any user incurs in a flow at Nash equilibrium, and the

maximum latency that any user incurs in an optimal flow. Our work on Braess’s Paradox in

multicommodity networks, can also be used to show that the price of anarchy with respect

to the maximum latency objective is as bad as 2Ω(n), but is at most 2O(min{kn,m log n}).

Lastly, as a final consequence of our work on Braess’s Paradox, we show that a

natural network design problem, motivated by the goal of detecting and avoiding Braess’s

Paradox, is NP-hard to approximate better than 2o(n). The network design problem is

simply to take any given network and find the subnetwork with the smallest maximum la-

tency at Nash equilibrium. Using our family of two-commodity networks, which show that

Braess’s Paradox can be as bad as 2Ω(n), and ideas from the gap reductions of [Rou] for the

single-commodity version of this problem, we prove that there is no polynomial-time algo-

rithm for this network design problem with 2o(n) approximation ratio (assuming P 6= NP).

Since our upper bound on the price of anarchy trivially implies that an exponential perfor-

mance guarantee is achievable, our result provides a rare example of a natural optimization

problem with intrinsically exponential approximability.

1.2 Linked Decompositions for Internet Routing and Man-

agement

In the second chapter of this thesis, we focus our attention on the recent efforts

to redesign the Internet from a clean slate to improve the Internet in terms of various

measures, such as scalability, reliability, manageability, and performance. As the Internet

continues to grow larger and the challenges of scaling up and managing the current Internet

infrastructure continue to accumulate, there are several serious efforts underway to redesign

the Internet [FI05; GE05; NA; CCK+06]. It is in this spirit that we study the properties

of the various random graphs models used to model the Internet, such as the preferential

attachment model [BA99], in order to determine if the properties of these “Internet-like”

graphs, can be useful for developing new ideas to redesign the Internet. We discover that

CHAPTER 1. INTRODUCTION 5

these Internet-like graphs can with high probability be decomposed into roughly equal size

components, such that every pair of components intersect in at least one node, and our

experiments indicate that the real Internet can also be decomposed in such a manner. We

call such a decomposition, a linked decomposition.

Our motivation for finding a linked decomposition is that it provides a very simple

compact routing scheme. A compact routing scheme is a way to store a minimal amount

of information at each node, while maintaining the ability of each node to send and route

packets to every other node in the network. Our compact routing scheme based on the

idea of linked decompositions may be easier to maintain, since the various components of

the linked decomposition may manage themselves somewhat independently. Good compact

routing schemes also make sure that packets are sent along relatively short paths. In

addition to showing that the concept of linked decompositions provides a simple compact

routing scheme, we also have experiments and proofs which show that our routing scheme

based on linked decompositions sends packets along relatively short paths in the real Internet

and in graphs generated by random graph models for the Internet.

In showing that the graphs generated by the preferential attachment model can

be decomposed into a linked decomposition, with high probability, where the components

are roughly equal size, we need to analyze a new random process, which is a variation

on the classic Polya urns process, which may be of independent interest. In this new

process, which we call Polya urns with the power of choice, we start with n nonempty bins

containing O(n) balls total, and each arriving ball is placed in the least loaded of m bins,

drawn independently at random with probability proportional to load. Our analysis shows

that in our new process, with high probability the bin loads become roughly balanced some

time before O(n2+ε) further balls have arrived and stay roughly balanced, regardless of how

the initial O(n) balls were distributed, where ε > 0 can be arbitrarily small, provided m is

large enough.

1.3 An Online Bipartite Matching Problem

In the last chapter of this thesis, we study an online bipartite matching problem

related to efficiently providing service over the Internet. The online bipartite matching

problem we study can model problems in many settings, including problems in wireless

communication, content delivery, and job scheduling, but in the primary motivating sce-

CHAPTER 1. INTRODUCTION 6

nario, we imagine that we have some servers capable of providing some service, and clients

who arrive online one at a time and request service from one of the servers. As each client

arrives, she provides a list of servers capable of servicing her request, and the goal of the

algorithm is to maintain a matching between clients who have arrived and servers, which

respect the requirements provided by the clients. In order to maintain a maximum matching

between clients and servers, as clients arrive the algorithm may need to switch one client

from being serviced on one server to being serviced on another server. For many applica-

tions, switching a client from one server to another server incurs some cost, and so the goal

of our algorithm will be to maintain a maximum matching at all times while the clients

arrive, while minimizing the total number of times clients are switched from one server to

another server.

More formally, in our problem, we have a bipartite graph G between n clients and

n servers, which represents the servers to which each client can connect. We will assume

that G has a perfect matching, although our results also hold more generally when a perfect

matching does not exist. Although the edges of G are unknown at the start, we learn the

graph over time in an online manner, as each client arrives and requests to be matched to

a server. As each client arrives, she reveals the servers to which she can connect, and the

goal of the algorithm is to maintain a matching at all times between the clients who have

arrived so far and the servers, while minimizing the switching cost, the total number of

times clients need to switch servers.

Although it has been difficult to produce good bounds on the best possible switch-

ing cost achievable in the worst case, a worst case analysis may be too pessimistic for the

scenarios we typically expect to see in practice. In many settings, it may make sense to

make assumptions about the online bipartite matching problem we expect to encounter in

practice. For example, it may be reasonable to assume in many settings that the clients

arrive in a uniformly random order, or assume that the bipartite graph between clients and

servers is a random bipartite graph. Although there are no known algorithms which are

guaranteed to yield switching cost better than the trivial O(n2) in the worst case, we show

that the switching cost can be much lower in three natural settings.

In our first result, we show that for any arbitrary graph G with a perfect matching,

if the clients arrive in a random order, then the total switching cost is only O(n log n) with

high probability. This bound is tight, as we show an example where the switching cost

is Ω(n log n) in expectation under this model. In our second result, we show that if each

CHAPTER 1. INTRODUCTION 7

client has edges to Θ(log n) uniformly random servers, then the total switching cost is even

better; in this case, it is only O(n) with high probability, and we also have a lower bound of

Ω(n/ log n) for this model as well. In terms of the number of edges needed for each client,

our result is also tight, since Ω(log n) edges are needed to guarantee a perfect matching in

G with high probability. In our last result, we derive the first algorithm known to yield

total cost O(n log n), given that the underlying graph G is a forest. This is the first result

known to match an existing lower bound, which shows that any online algorithm must have

switching cost Ω(n log n), even when G is restricted to be a forest.

1.4 The Methodology Used to Prove a Bound on Braess’s

Paradox

In Chapter 2, in addition to studying selfish routing and Braess’s Paradox, we also

attempt to achieve our secondary goal of describing the thought process and methodology

we use to prove one new mathematical result. Ideally, we would like to describe our thought

process as a concrete algorithm which takes as input some known results and a target result,

and outputs a proof or disproof of the target result, or a related result. Although the

algorithm we describe could not possibly always succeed in proving or disproving a target

result, as the above problem is undecidable, we may be able to explicitly describe a high

level heuristic algorithm that mathematicians can use to generate new results. The main

challenge is to discover and explicitly describe the high level heuristic algorithms, which we

already use implicitly when proving new mathematical results.

Although it may seem easy to analyze one’s own thought process and describe the

methodology or high level algorithm one uses to produce a new result from some known

results, the exercise of analyzing one’s own thought process can be difficult, and it can be

hard to pin down and describe the knowledge and methodology we use to solve mathematical

problems explicitly. Nevertheless, we attempt to describe as best we can, the steps we use

to prove a new mathematical result in the next chapter.

Even though our attempt to describe the methodology that we use to solve one

mathematical problem may not be perfect, and may not be the most useful methodology,

we hope our attempt starts a broader discussion on the various techniques people use to

solve mathematical problems. There are perhaps many ways in which new mathematical

CHAPTER 1. INTRODUCTION 8

results can be derived, but very few papers in mathematics attempt to describe the thought

process or high level algorithm which allow the author(s) to start from known results and

end at a new theorem. It is in this light that we attempt to provide a concrete description

of the steps and methodology used to prove a bound on Braess’s Paradox in Chapter 2.

1.5 Bibliographic Notes

The results on selfish routing presented in Chapter 2 originally appeared in two

papers [LRT04; LRTW05], which were joint work with Tim Roughgarden, Eva Tardos, and

Asher Walkover. The thought process described to prove the first result in Chapter 2 is new,

although it is based on previous joint work with Tim Roughgarden and Eva Tardos. The

results on linked decompositions presented in Chapter 3 represent joint work with Christos

Amanatidis, Richard Karp, Christos Papadimitriou, and Martha Sideri, and first appeared

in [AKL+08]. The results on online bipartite matching first appeared in a paper [CDKL]

with Kamalika Chaudhuri, Costis Daskalakis, and Robert Kleinberg.

9

Chapter 2

Braess’s Paradox and Efficiency of

Selfish Routing

2.1 Background

A recent trend in theoretical computer science is to analyze the overall social

welfare experienced by agents at equilibria in a noncooperative game. In the first chapter

of this thesis, we study one of the most popular models for analyzing the social welfare in a

noncooperative game, the so-called selfish routing model. Selfish routing is a mathematical

model of how noncooperative agents route traffic in a network with congestion, and has

been well-studied in prior work (see [Rou05; Rou07] for a survey of recent work). Formally,

the game takes place in a directed single or multicommodity flow network, where each edge

possesses a continuous, nondecreasing latency function that models how the performance

of an edge degrades as it becomes increasingly congested. The traffic in the network is

assumed to comprise a large number of independent network users, so that each individual

has negligible impact on the experience of others. Under this assumption, equilibria—flows

at Nash equilibrium—are naturally defined as the network flows in which all traffic travels

only on minimum-latency paths. The selfish routing model assumes that traffic converges

to a flow at Nash equilibrium, and when we study selfish routing, we study the properties

of flows at Nash equilibrium. In this chapter, we will analyze a phenomenon known as

Braess’s Paradox and study the price of anarchy of selfish routing, which we describe in

greater detail below.

CHAPTER 2. BRAESS’S PARADOX AND EFFICIENCY OF SELFISH ROUTING 10

2.1.1 Braess’s Paradox in Single-Commodity Networks

In 1968, Braess [Bra68] demonstrated a remarkable and counterintuitive fact, now

known as “Braess’s Paradox”: in a network in which users selfishly and independently

choose minimum-latency paths and the latency of an edge increases with the amount of

edge congestion, adding edges to the network can increase the latency encountered by traffic.

Braess’s Paradox has since motivated a vast number of follow-up papers; see [Rou07] for a

survey. Almost all existing work on the paradox confines attention to close variations on or

analogues of Braess’s original example in a four-node network. Only recently have larger,

more severe versions of Braess’s Paradox been discovered. Specifically, Roughgarden [Rou]

defined an infinite family of networks, beginning with Braess’s original example, that shows

that adding bn/2c − 1 edges to a single-commodity network with n vertices can increase

the latency experienced by all of the traffic (and hence the maximum latency) by a factor

of bn/2c. Furthermore, Roughgarden also proved that Braess’s Paradox can increase the

latency by at most bn/2c in a graph with n nodes.

However, the “Braess graphs” of [Rou] differ from Braess’s example in that bn/2c−
1 edges need to be added in order to increase the latency by a factor of bn/2c. Although

Roughgarden’s prior work provides a complete characterization of the severity of Braess’s

Paradox, when an arbitrary number of edges can be added, it is natural to ask, for n ≥ 6,

can adding a single edge cause an bn/2c increase in latency? When adding a single edge, are

there more severe examples than in Braess’s original example, which increase the common

latency by more than a factor of 2?

In the first result of this thesis, we introduce a simple but powerful combinatorial

theorem that resolves these questions in the negative: for any integer k ≥ 1, adding k edges

to a graph increases the latency experienced by traffic by at most k + 1. Since the Braess’s

graphs of [Rou] show that adding k edges can increase the latency by a factor of k + 1, our

first result provides a tight bound on the increase in latency that can occur due to Braess’s

Paradox when a fixed number of edges are added to a single-commodity network.

In describing the proof of our first result, we attempt summarize the methodology

we use to prove the result, and describe the step-by-step reasoning we used to come up

with the final proof. We hope readers find the discussion of the thought process we used to

derive the result interesting as well.

CHAPTER 2. BRAESS’S PARADOX AND EFFICIENCY OF SELFISH ROUTING 11

2.1.2 Braess’s Paradox and Price of Anarchy in Multicommodity Net-

works

Although our first result provides a complete characterization of the worst possible

severity of Braess’s Paradox in single-commodity networks, when a fixed number of edges

are added to a graph, our result does not have any implications for Braess’s Paradox in

multicommodity networks. Thus, the story of Braess’s Paradox in multicommodity networks

was incomplete. Are the networks of [Rou] the worst examples of Braess’s Paradox, or are

more severe versions of Braess’s Paradox lurking in the richer landscape of multicommodity

networks?

In this chapter, we also study the severity of Braess’s Paradox in multicommodity

networks and in addition, we study a related concept known as the price of anarchy of selfish

routing. The price of anarchy [Pap01] (also called the coordination ratio [KP99]) measured

relative to an objective function, is defined as the worst-case ratio between the objective

function value of a solution at Nash equilibrium and the optimal objective value achievable

by any solution. When our objective function measures the maximum latency that any flow

experiences, this price of anarchy with respect to the maximum latency objective is very

related to the worst case severity of Braess’s Paradox. In particular, lower bounds on the

severity of Braess’s Paradox imply lower bounds on the price of anarchy with respect to

the maximum latency objective, and upper bounds on the price of anarchy with respect to

the maximum latency objective imply upper bounds on the severity of Braess’s Paradox.

Given this relationship between the price of anarchy with respect to the maximum latency

objective and the severity of Braess’s Paradox, we now state the new upper and lower

bounds we have for both quantities below.

Our Formal Results

In this paper, we establish nearly matching upper and lower bounds on both the

price of anarchy with respect to the maximum latency and on the worst-possible severity of

Braess’s Paradox in multicommodity networks. Our results resolve both of the conjectures

in [Rou04]—one in the affirmative, one in the negative—and also give the first demonstration

that Braess’s Paradox is provably more severe in multicommodity networks than in single-

commodity ones. Specifically, our two main results are the following.

We give a parameterized construction, based on the Fibonacci numbers, that shows

CHAPTER 2. BRAESS’S PARADOX AND EFFICIENCY OF SELFISH ROUTING 12

that adding one edge to a two-commodity network with n vertices can increase the

latency of all traffic by a 2Ω(n) factor.

We prove that the price of anarchy with respect to the maximum latency in networks

with k commodities, n vertices, and m edges is 2O(min{kn,m log n}).

The construction used to prove the first result has wide implications. In particular, for

all existing approximation-type analyses of selfish routing that were only known to hold

for single-commodity networks [LRT04; Rou; Rou04], this construction rules out any rea-

sonable extension to multicommodity networks, even those with only two commodities.

For example, adding one edge to a single-commodity network can only increase the max-

imum (or average) latency of a Nash flow by a factor of 2 [LRT04], while our construc-

tion shows that adding a single edge can cause an exponential increase in the average

and the maximum latency (even with only two commodities). This dichotomy between

single- and two-commodity networks is somewhat unexpected, given the negligible role that

the number of commodities has played in previous work in this area [CSM04b; Rou02b;

RT02].

The first result easily implies a lower bound of 2Ω(n) on the price of anarchy for

the maximum latency in multicommodity networks, as an optimal flow has the option of

ignoring edges that are causing Braess’s Paradox. By the same reasoning, the second result

implies that adding any number of edges to a network with k commodities, n vertices, and

m edges can only increase the maximum latency by a 2O(min{kn,m log n}) factor. Our upper

and lower bounds on both the price of anarchy and on the worst-possible severity of Braess’s

Paradox are thus essentially tight for networks with a constant number of commodities.

Finally, we consider the following network design problem, motivated by the goal

of detecting and avoiding Braess’s Paradox: given a network, find the subnetwork with the

smallest maximum latency. Using our family of two-commodity networks and ideas from

the gap reductions of [Rou] that apply to the single-commodity version of the problem,

we prove that there is no polynomial-time algorithm for this network design problem with

subexponential approximation ratio (assuming P 6= NP). Since our upper bound on the

price of anarchy trivially implies that an exponential performance guarantee is achievable,

this network design problem is a rare example of a natural optimization problem with

intrinsically exponential approximability.

CHAPTER 2. BRAESS’S PARADOX AND EFFICIENCY OF SELFISH ROUTING 13

Related Work on the Price of Anarchy

The price of anarchy of selfish routing, measured relative to the average latency

incurred by all traffic, has been extensively studied. Beginning with Roughgarden and

Tardos [RT02] and continuing with studies of ever-increasing generality [CS03; CSM04b;

Per04; Rou02b; RT04], exact worst-case bounds on the price of anarchy with respect to the

average latency have been established under a wide variety of different assumptions.

Although the price of anarchy relative to the average latency objective has been

well-studied, permitting an objective function to average the cost of different users can

be problematic from a fairness perspective. Specifically, to attain or approximate a flow

that minimizes the average latency, some users may need to be sacrificed to very costly

paths, in order to reduce the congestion encountered by others (see e.g. [JMS00; Rou02a]).

This unfairness inherent in the average latency measure motivates modifying the objective

function to be more attuned to those users on the most costly paths. Arguably, the most

obvious way to accomplish this is to aspire toward minimizing the maximum latency incurred

by any user.

Compared to the average latency objective, considerably less is known about the

price of anarchy relative to the maximum latency. The first paper on the topic is by Weitz

[Wei01], whose results we will review below. Most relevant for us is a paper by Rough-

garden [Rou04], where only the special case of single-commodity networks, networks in

which all traffic shares the same source and destination, were considered. The main result

of [Rou04] states that, if latency functions are allowed to be arbitrary continuous, nonde-

creasing functions, then the (worst-case) price of anarchy with respect to the maximum

latency objective in single-commodity networks with at most n vertices is precisely n− 1.

Roughgarden [Rou04] also made two conjectures about this price of anarchy in

multicommodity networks. The weak conjecture of [Rou04] asserts that in multicommodity

networks, this price of anarchy can be bounded by a function of the number of vertices,

edges, and commodities in the network. As a point of contrast, simple examples show

that no such bound is possible for the price of anarchy relative to the average latency,

unless additional structure is imposed on the network latency functions [RT02]. The strong

conjecture of [Rou04] states that the price of anarchy with respect to the maximum latency

remains n− 1 in multicommodity networks. This conjecture was motivated in part by the

provable equivalence of single-commodity and multicommodity networks for the price of

CHAPTER 2. BRAESS’S PARADOX AND EFFICIENCY OF SELFISH ROUTING 14

anarchy relative to the average latency [CSM04b; Rou02b]. Our work confirms the weak

conjecture and disproves the strong conjecture.

As noted above, Weitz [Wei01] was the first to study the price of anarchy of

selfish routing under the maximum latency objective. Weitz [Wei01] noted that, for single-

commodity networks and classes of restricted latency functions, the price of anarchy for the

maximum latency is no more than that for the average latency objective. For example, a

theorem of Roughgarden and Tardos [RT02] bounding the price of anarchy with respect

to the average latency objective then implies that the price of anarchy for the maximum

latency in single-commodity networks with linear latency functions is at most 4/3, and a

matching lower bound is furnished by the original form of Braess’s Paradox [Bra68; Wei01].

However, upper bounds on the price of anarchy with respect to the maximum latency

objective do not imply upper bounds on the price of anarchy with respect to the average

latency objective: for example, the price of anarchy for the maximum latency objective

is at most n − 1 in single-commodity networks with arbitrary latency functions [Rou04],

while the price of anarchy for the average latency can be arbitrarily large even in two-node,

two-link networks [RT02].

Weitz [Wei01] also gave a family of networks that shows that this price of anarchy

is Ω(n) for multicommodity networks with n vertices and linear latency functions. Concur-

rently with Roughgarden [Rou04], Correa, Schulz, and Stier Moses [CSM04a] studied the

maximum latency objective from several different perspectives. The results of [CSM04a]

mostly concern the computational complexity of computing an optimal solution and the ex-

tent to which multiple objective functions can be simultaneously optimized, and are disjoint

from those in [Rou04] and in the present work.

There have also been numerous price of anarchy analyses in many other settings

in the past few years. Study of the original load-balancing model of Koutsoupias and

Papadimitriou [KP99] continues unabated; see [Czuar; FGL+03] for surveys. A survey of

the selfish routing model studied here, including results on the price of anarchy, can be

found in [Rou05]. Other noncooperative games have also been studied recently from a price

of anarchy perspective, including facility location games [DGK+04; Vet02], network design

games [ADTW03; FLM+03], and resource allocation games [JT04].

2.2 Preliminaries

CHAPTER 2. BRAESS’S PARADOX AND EFFICIENCY OF SELFISH ROUTING 15

The Model We now describe our model of selfish routing, following Roughgarden and

Tardos [RT02]. We will study a flow network, described by a directed graph G = (V,E)

and k source-destination vertex pairs (s1, t1), . . . , (sk, tk). If k = 1 we refer to the instance

as a single-commodity instance, and if k > 1 we refer to the instance as a multicommodity

instance. In single-commodity instances, we may drop the subscripts and simply refer to

the source node as s and the destination node as t. We denote by ri the amount of traffic

that wishes to travel from the source si to the destination ti—the traffic rate. The graph

G can contain parallel edges, but we can exclude self-loops. We will denote the si-ti paths

of G by Pi. We assume that Pi is non-empty for all i, and define P = ∪k
i=1Pi.

A flow is a nonnegative vector indexed by P. By fe we mean the amount
∑

P∈P : e∈P fP of flow that traverses edge e. With respect to a network G and a vector

r of traffic rates, a flow is feasible if
∑

P∈Pi
fP = ri for all commodities i.

We assume that the network G suffers from congestion effects, and to model this

we give edge e a nonnegative, continuous, nondecreasing latency function `e that describes

the time needed to traverse the edge as a function of the edge congestion fe. Given a

flow f , the latency `P of a path P is the sum of the latencies of the edges in the path:

`P (f) =
∑

e∈P `e(fe). We will call a triple of the form (G, r, `) an instance.

Flows at Nash Equilibrium We next define the flows that we expect to arise from

selfish routing. Assuming that all network users have negligible size and want to minimize

the latency experienced, we expect all users to travel on paths with minimum-possible

latency. We formalize this in the next definition.

Definition 1 A flow f feasible for (G, r, `) is at Nash equilibrium, or is a Nash flow, if for

every i ∈ {1, 2, . . . , k} and two paths P1, P2 ∈ Pi with fP1 > 0,

`P1(f) ≤ `P2(f).

Definition 1 implies that in a Nash flow, all of the traffic of a given commodity

experiences a common latency. Happily, Nash flows must always exist, and although Nash

flows are not necessarily unique, for any two Nash flows of an instance, the common latency

incurred by each commodity will be the same. More formally, if we define Li(f) to be the

common latency of the ith commodity’s traffic in a Nash flow for f for (G, r, `), then the

following proposition holds:

CHAPTER 2. BRAESS’S PARADOX AND EFFICIENCY OF SELFISH ROUTING 16

Proposition 2 Let (G, r, `) be an instance.

(a) There is at least one Nash flow for (G, r, `).

(b) If f, f̃ are Nash flows for (G, r, `), then Li(f) = Li(f̃) for all commodities i.

Proposition 2 is classical; for example, it follows from arguments of Beckmann,

McGuire, and Winsten [BMW56]. Since each Nash flow results in the same common latency

for each commodity, we will sometimes use Li(G, r, `) to denote be the common latency of

the ith commodity’s traffic in a Nash flow for (G, r, `).

The maximum latency objective, which we seek to minimize, is formally defined

as M(f) = maxP∈P : fP >0 `P (f) for a flow f . Note that Proposition 2(b) implies that all

Nash flows for an instance (G, r, `) have the same maximum latency objective value. With

respect to an instance (G, r, `), a flow that minimizes M(·) over all feasible flows will be

called optimal. Since the feasible flows of an instance form a compact subset of Euclidean

space and M(·) is a continuous function, every instance admits an optimal flow.

To provide a concrete example illustration of the selfish routing model, and concept

of flows at Nash equilibrium, consider the networks discovered by Braess in 1968 [Bra68],

shown in Figures 2.1 and 2.2. In the first figure without the added edge, we have one unit

of flow which seeks to travel from s to t, and at Nash equilibrium, the flow divides evenly

between the two paths, incurring 1.5 units of latency along each path. In the second figure

with the added edge, all flow must converge to the s-u-v-t path at Nash equilibrium, and all

flow experiences 2 units of latency. This illustrates the counterintuitive phenomenon that

adding an extra edge to a network can actually increase the latency incurred by all users.

Note that this example can also be used to show that adding a single edge can increase the

common latency by a factor that is arbitrarily close to 2, if we replace the edges with the

`(x) = x latency function by edges with the latency function `(x) = xd for some sufficiently

high exponent d.

We will also benefit from the following alternative definition of a Nash flow, which

was first noted by Smith [Smi79]. It is an easy consequence of Definition 1.

Proposition 3 A flow f feasible for (G, r, `) is at Nash equilibrium if and only if
∑

e∈E

`e(fe)fe ≤
∑

e∈E

`e(fe)f̃e (2.1)

for every flow f̃ that is feasible for (G, r, `).

CHAPTER 2. BRAESS’S PARADOX AND EFFICIENCY OF SELFISH ROUTING 17

Figure 2.1: Braess’s Paradox Example:

Traffic experiences 1.5 units of latency

at Nash equilibrium initially.

Figure 2.2: Braess’s Paradox Example:

Traffic experiences 2 units of latency at Nash

equilibrium after adding a zero latency edge.

The Price of Anarchy We now formalize what we mean by the price of anarchy. As

noted in the introduction, it is the ratio of the objective function values of a flow at Nash

equilibrium and an optimal flow. If (G, r, `) is an instance, then the price of anarchy of

(G, r, `), denoted ρ(G, r, `), is the ratio M(f)/M(f∗), where f is a Nash flow and f∗ is an

optimal flow. Proposition 2 ensures that the price of anarchy of an instance is well defined

provided M(f∗) > 0. If M(f∗) = 0, then f∗ is also a flow at Nash equilibrium and we

define the price of anarchy of the instance to be 1.

Finally, the price of anarchy ρ(I) of a collection I of instances is defined in the

obvious way:

ρ(I) = sup
(G,r,`)∈I

ρ(G, r, `).

2.3 Bounding Braess’s Paradox in Single-Commodity Net-

works

In this section, we attempt to summarize and explicitly describe the thought pro-

cess that we use to prove that adding k edges to a single-commodity network increases

the common latency by at most a factor of k + 1. The process can be summarized by the

following high level steps.

1. Read and understand the existing literature

2. Formulate a target theorem to prove or disprove

CHAPTER 2. BRAESS’S PARADOX AND EFFICIENCY OF SELFISH ROUTING 18

3. Simplify the target theorem to a statement S that is as specific as possible but is not

currently known to be true or false

4. Attempt to prove or disprove S by repeating the following steps:

(a) Generate specific examples to examine, starting with the simplest examples first

(or use examples existing in the previous literature)

(b) Analyze those examples and attempt to generate observations that summarize

the common behavior occurring in the examples generated

(c) See if any of the analysis used to study the specific examples can be used more

generally or inductively to generate an conclusion which covers a larger and/or

infinite class of instances

5. If you manage to prove S, repeat step 3 with a more general statement, or if not,

attempt restrict the problem in other ways and repeat the process with a different

statement S.

Beginning at step 2, let us assume that the target theorem we would like to prove

is that adding k edges to a graph increases the latency by at most k + 1. Following step 3,

let us simplify the target theorem to the more modest goal of proving that adding a single

edge with zero latency increases the common s to t latency by at most a factor of two.

We will later consider the case when multiple edges are added, and when they are not zero

latency edges. As we describe our thought process, we omit the various lines of thought

that did not yield any useful conclusions, and for the sake of presentation, we may present

some of our discoveries out of order.

2.3.1 Zero Latency Paths

To start step 4 and gain intuition for the problem, let us consider the simplest

graph in which Braess’s Paradox might occur: a two node network consisting only of two

nodes s and t and one edge between them. In this network, we can only add an edge from s

to t, and clearly Braess’s Paradox cannot occur here, as adding a zero latency edge from s

to t automatically reduces the Nash equilibrium latency to zero, the lowest possible latency.

Although this example is too trivial for Braess’s Paradox to occur, we have already proved

something new in showing Braess’s Paradox cannot occur in a two node network.

CHAPTER 2. BRAESS’S PARADOX AND EFFICIENCY OF SELFISH ROUTING 19

As we continue our analysis, let us consider the next simplest example: a network

with three nodes s, u, and t, and two edges (s, u) and (u, t), forming a path from s to

t. Here there are three possibilities for placing a new edge. Notice again that if we add

an edge from s to t, we will zero out the latency from s to t, and again Braess’s Paradox

cannot occur. Although this example is also very trivial, it is important to note that we

have a common explanation as to why Braess’s Paradox cannot occur in both of the first

two examples we examined: whenever we add a zero latency edge from s to t, the s to t

latency automatically becomes zero, and thus Braess’s Paradox cannot occur.

Moreover, it is not hard to see that the observation we made above holds not only

for the two examples we examined above, but it also holds for all graphs. Namely, given any

graph, Braess’s Paradox can never occur if a zero latency edge is added from s to t. Although

we have only looked at two examples, we have found a statement that holds for all graphs.

Even though our reasoning is trivial at this point, we mention it explicitly to describe the

entire thought process and because it illustrates a common theme that occurs frequently

in the thought process we use to prove a general bound on Braess’s Paradox. To discover

a general theorem, we always study finite examples, but we continuously seek to generate

observations that can be generalized to say something about an infinitely large number of

objects. So far, we have already generated an observation that covers an infinite number of

graphs, but it is not general enough to cover all possible instances of Braess’s Paradox that

may occur. As our thought process proceeds, we will look to find more and more general

observations until we have a general statement that covers all possible instances of Braess’s

Paradox.

Remark

Even though we have not done much at this point, upon reflection one may find

it remarkable that we were somehow able to examine a finite number examples, and obtain

an observation that holds for an infinite number of objects. It takes some thought to realize

that even when we came to the simple conclusion that our observation holds for all graphs,

we must have utilized some form of inductive reasoning, even if we may not have realized

it. Upon further reflection, one way we may been able to come to our new conclusion was

to notice that as a base case our statement on adding an zero latency edge from s to t holds

for the smallest example with two nodes, and then after seeing our second example with

CHAPTER 2. BRAESS’S PARADOX AND EFFICIENCY OF SELFISH ROUTING 20

three nodes, we implicitly realize by induction that the reasoning of our statement does not

change no matter how many more nodes or edges we have in our initial graph.

Although we may be overly pedantic in pointing out the subtle reasoning that

we use implicitly to obtain a statement that holds for an infinite number of objects after

examining only a finite number of examples, we feel it is important to recognize these

subtle steps in describing the complex thought process we utilize in proving mathematical

theorems. Recognizing the subtle and implicit steps we use in our reasoning can be the key

to understanding the way we prove new mathematical theorems, and can help make the

knowledge we use to prove new results explicit and teachable rather than being implicit and

tacit. Although we do our best to recognize the subtle steps we use in our thought process,

we may fall short of this goal, as the reasoning process is sometimes complex and very

nuanced. Nevertheless, let us do our best in describing the thought process and continue

analyzing some more examples in the hopes of proving a more general theorem.

2.3.2 Light Paths

If we continue on this path of exploring new examples, starting with the simplest

examples first, it would be natural to explore the same three node example with the two

edges (s, u) and (u, t) as before, and consider the two other cases of adding a new zero

latency edge from s to u or from u to t. It is not too difficult to argue that the overall

latency improves in these two cases as well and again Braess’s Paradox does not occur.

We omit a formal proof, but Braess’s Paradox cannot occur here essentially because the

latency between s and u and the latency between u and t must improve in both cases, and

thus the overall s to t latency must improve as well. For conciseness, when we say that the

latency must improve, we mean that the latency must stay the same or decrease. For future

reference, we will be precise in saying that the latency strictly improves, if we mean to say

that the latency strictly decreases. It may not immediately be clear whether or not we can

draw a more general conclusion from these two examples yet, but let us continue analyzing

some more complicated examples.

There is one more three node example with the two edges (s, u) and (s, t) which

we could consider here, but to move our exposition forward, let us skip ahead and consider

a more complicated example with four nodes s, u, v, and t, and three edges (s, v), (s, u),

and (u, t). Now let us suppose that a new zero latency edge is added from v to t. Can

CHAPTER 2. BRAESS’S PARADOX AND EFFICIENCY OF SELFISH ROUTING 21

Braess’s Paradox occur here as well? Note that there is only one s to t path from s to u to t

before our (v, t) edge is added, and after the edge is added, there is only one additional s to

t path from s to v to t. If there is no new additional flow along our new s− v− t path after

we add the v to t edge, then clearly Braess’s Paradox cannot occur as the Nash equilibrium

flow remains the same both before and after adding the new edge. Furthermore, if there is

additional flow on the s− v − t path after we add the v to t edge, then there must be less

flow on our original s − u − t path, and as a result, the latency along the s to u edge and

the u to t edge must improve since our latency functions are nondecreasing. Therefore, the

overall s to t latency must improve here as well, and Braess’s Paradox does not occur in

this example also.

Now that we have seen that Braess’s Paradox cannot occur in a few more examples,

we should see if there is some common explanation that serves to explain why Braess’s

Paradox does not occur in the previous examples we studied. If we think about our last

example, we notice that Braess’s Paradox does not occur because no matter what happens,

there is always a path from s to t which consists only of edges, which have some flow on

them before the new edge is added, and the flow along these edges stay the same or decrease

after the new edge is added. As a result, we can conclude that the latency along those edges

improve, and the overall latency from s to t must improve as well.

Now to see if this explanation generalizes, for notational purposes, let us call an

edge light if it has the same amount of flow or less after the new edge is added. For simplicity,

let us assume without loss of generality that our instances are preprocessed to remove all

edges with zero flow on them both before and after the new edge is added, so that we can

assume all light edges have some nonzero amount of flow on them before the new edge is

added. Let us also define a light path to be a path consisting only of light edges, and let

us see if we can state our previous argument more generally. To summarize our previous

argument in more formal and general terms, we first observe that there is always a light

path from s to t in our example, and then we note that there is flow along the light path

before the new edge is added, so that the latency along the light path before the new edge

is added is precisely the overall s to t latency experienced by the Nash flow before the new

edge is added. After adding the new edge, the latency along the light path must improve,

so that we have a path with lower s to t latency than the previous s to t latency experienced

at Nash equilibrium. This implies that the new s to t latency at Nash equilibrium must

be same or better than the previous s to t latency at Nash equilibrium, and thus Braess’s

CHAPTER 2. BRAESS’S PARADOX AND EFFICIENCY OF SELFISH ROUTING 22

Paradox cannot occur.

Notice that this explanation is a very general explanation, which can also be

applied to the previous examples we studied with two or three nodes to explain why Braess’s

Paradox does not occur in those examples as well. Also notice that by phrasing our argument

in terms of light paths, we have a very general observation which states that whenever there

is a light path, Braess’s Paradox cannot occur. It is not always the case that our graph will

have a light path, but as we continue to study examples, we hope to find a more general

observation that covers all instances and bounds the worst case severity of Braess’s Paradox

in any graph.

2.3.3 Light-Heavy Alternating Paths

As we have proven that the overall latency must decrease if we have a light path

from s to t, we now move towards studying more complicated examples, which do not have

a light s to t path, in order to generalize our results. Clearly, such examples must exist if

Braess’s Paradox is to occur, and indeed, if we look back at the Braess’s original example

of Braess’s Paradox, we see that every path from s to t contains an edge with strictly more

flow along it. Let us call these edges with strictly more flow on them heavy edges, except

for the new edge we added, which we will refer to exclusively as an added edge. Despite the

existence of heavy edges blocking our s to t paths, we might wonder if we can still bound

any potential increase in latency. Or better yet, can the existence of heavy edges be used

to our advantage in bounding any increase in latency?

Let us study a variant of Braess’s original example, which can illustrate the poten-

tial use of heavy edges in bounding any increase in latency. Imagine an example with four

nodes s, u, v, and t, and five edges (s, u), (s, v), (u, v), (u, t) and (v, t), and let us assume

that another edge is added from (v, t), as shown in Figures ?? and ??. It could be possible

that the flows change in this graph, from sending flow along the s-u-t and s-v-t paths to

sending flow only on the two s-u-v-t paths. In this case, the (s, u), (u, v), and (v, t) edges

all become heavy, and the (s, u) and (u, t) edges become light. As a result, there is no light

s to t path, but perhaps we can find some alternative way to bound any potential increase

in latency.

First note that in this example, after the new edge is added there is more flow

traveling from s to u to v, despite the fact that the latency from s to v improved, as (s, v) is

CHAPTER 2. BRAESS’S PARADOX AND EFFICIENCY OF SELFISH ROUTING 23

Figure 2.3: A possible Braess’s Paradox

instance before edge is added.

Figure 2.4: A possible Braess’s Paradox

instance after edge is added.

a light edge. Moreover, the resulting flow is using the s-u-v path despite the fact that (u, v)

is a heavy edge and the latency between u and v got worse. Given these two observations,

can we make any conclusions regarding the latency along the (s, u) edge? If the latency

along (s, v) has improved, while the latency along (u, v) has gotten worse, then the latency

from (s, u) must have improved (or stayed the same) or else we would never consider using

the s-u-v path instead of the s-v path. Even though (s, u) is a heavy edge, it is like a light

edge, in the sense that its latency must improve, or in this case, it must stay exactly the

same. As a result, we can think of the path from (s, u) and (u, t) as if it is a light path, and

conclude that the overall s to t latency must decrease.

Now, in this example we found that a path from s to t traversing light edges

forward and heavy edges backward could be very useful in proving the latency does not

increase. Let us see if we can generalize this result to cover any path that traverses light

edges forward and heavy edges backward. Let us define a light-heavy alternating path to

be one that traverses light edges forward and heavy edges backward. We may wonder if

an s to t light-heavy alternating path always implies that the s to t latency decreases. It

turns out that we can prove such a result, if we borrow some ideas from Roughgarden’s

previous bound on Braess’s Paradox [Rou]. In [Rou], Roughgarden labels each node with

its shortest path distance from s with respect to the latency of edges at Nash equilibrium

and uses those distances to prove a bound on Braess’s Paradox.

Let us see if we can use distance labels to help with our analysis as well. Let us

first define l(u, v) to be the latency along edge (u, v) at Nash equilibrium before the new

edge is added, and define l′(u, v) to be the latency of the edge at Nash equilibrium after

CHAPTER 2. BRAESS’S PARADOX AND EFFICIENCY OF SELFISH ROUTING 24

the new edge is added. (Our notation may be slightly ambiguous when there is more than

one edge between u and v, but it should be clear from context, to which edge the latencies

l(u, v) and l′(u, v) refer). For each node v, let us define d(v) to be the length of the shortest

path from s to v measured with respect to the latencies at Nash equilibrium before the new

edge is added, and define d′(v) to be length of the shortest path from s to v measured with

respect to the latencies at Nash equilibrium after the edge is added.

Using this idea, let us see if we can come up with a more general explanation

which can prove the s-t latency cannot increase even if we have an arbitrarily long light-

heavy alternating path. If we follow the analysis we used on our specific example with four

nodes, we essentially showed that the latency from s to each node v along the light-heavy

alternating path improved, or in other words, d′(v) ≤ d(v) for all nodes v in the light-heavy

alternating path, until we reached t, and concluded that d′(t) ≤ d(t). Now, if we follow our

prior analysis, we were able to prove that d′(v) ≤ d(v) for each node v along the light-heavy

alternating path in sequence, both when our path crossed a light edge forward and a heavy

edge backward. If we write things down formally, it is not hard to see that our previous

analysis already has essentially everything we need to prove inductively that d′(v) ≤ d(v)

along the light-heavy alternating path.

To prove our claim, we know that d′(s) = d(s) = 0 as a base case, and we need

to show that the invariant d′(v) ≤ d(v) is preserved along the light-heavy alternating path

as we traverse light edges forward and heavy edges backward. Now, let us assume that

we are at a node v about to cross a light edge (v, w), and we would like to prove d′(w) ≤
d(w). We can assume by induction that d′(v) ≤ d(v) and by playing around with some

inequalities we know must be true, we can prove the following chain of inequalities holds:

d′(w) ≤ d′(v) + l′(v, w) ≤ d(v) + l(v, w) = d(w). The first inequality holds because d′

measures shortest path distances after the new edge is added, and the second inequality

holds because (v, w) is a light edge. The last equality holds because there is flow along the

(v, w) edge before the new edge is added and at Nash equilibrium, this flow must travel

along shortest paths.

Now let us consider the case when we are at a node v and cross a heavy (w, v)

edge backward. We can use a similar analysis to prove the following chain of inequalities

d′(w) + l′(w, v) = d′(v) ≤ d(v) ≤ d(w) + l(w, v). The first equality holds because there is

flow on (w, v) after the edge is added and flow only travels along shortest paths. The second

inequality holds by the inductive hypothesis, and the third inequality holds because d is

CHAPTER 2. BRAESS’S PARADOX AND EFFICIENCY OF SELFISH ROUTING 25

defined as the shortest path distance from s to nodes in the graph. Lastly, we can conclude

that d′(w) ≤ d(w), since (w, v) is a heavy edge. Thus, we have proved the inductive step,

and as a result, we know that if there is ever an s to t light-heavy alternating path, then

d′(w) ≤ d(w) and Braess’s Paradox does not occur.

2.3.4 General Alternating Paths with One Added Edge

Now that we have proven that Braess’s Paradox cannot occur if there is a light-

heavy alternating path from s to t, one might wonder when exactly can Braess’s Paradox

occur, and can we bound its increase when it does occur? Let us now consider Braess’s

original example with four nodes, four edges, and one added edge, as shown in Figures

2.1 and 2.2. In this case, even though we do not have a light-heavy alternating path as

we have defined it, we do have a path from s to t that traverses only light edges forward,

and heavy or added edges backward, along the s-v-u-t path. Let us call a path that only

traverses light edges forward, and heavy or added edges backward, a general alternating

path. Without assuming any other knowledge about our instance, we may wonder if we can

prove a bound on the increase in latency that occurs in this four node graph, only based

on the fact that there exists a general alternating path along the nodes s-v-u-t, traversing

a light edge forward, an added edge backward, and another light edge forward. Let us see

if we can use some of the same techniques as before to bound any increase in the s to t

latency.

Note that we can still conclude that the distance from s to v decreases as there

is a light edge from s to v, but we can no longer conclude that the distance from s to

u has decreased because the (u, v) edge is now an added edge rather than a heavy edge.

Previously, we could conclude that the distance from s to u decreased because the heavy

(u, v) edge is present in the original graph, and therefore d(v) ≤ d(u) + l(u, v). We can

no longer utilize this inequality when (u, v) is an added edge, but we can still utilize the

first steps of our chain of inequalities to conclude that d′(u) + l′(u, v) ≤ d′(v) ≤ d(v). Now

since v is adjacent to a light edge, we know there is flow going to v in the original graph, so

that we can conclude d(v) ≤ d(t) and then d′(v) ≤ d(t). Now continuing along the general

alternating path to node t, it is easy to see that the following chain of inequalities holds

d′(t) ≤ d′(u) + l′(u, t) ≤ d′(u) + l(u, t) ≤ d(t) + d(t) ≤ 2 · d(t), so that the latency increases

by at most a factor of two. The first inequality holds because d′ measures shortest path

CHAPTER 2. BRAESS’S PARADOX AND EFFICIENCY OF SELFISH ROUTING 26

distances, and the second inequality holds because (u, t) is a light edge. The third inequality

holds because of our previous reasoning, and because the (u, t) edge previously had flow

along it.

Thus, we have proven a fairly general statement that the latency can increase by

at most a factor of 2 whenever there is a s-v-u-t general alternating path consisting of a

light edge, an added edge, and a light edge. Let us try to generalize our reasoning further

to prove the latency cannot increase much even if we have a general alternating path of

arbitrary length containing an added edge. For reasons that will become clear later, let

us define a backwards segment of our general alternating path P to be a maximal subpath

of P consisting of heavy or added edges, and let us assume that our added edge lies on a

backwards segment that the general alternating path starts crossing at node some node v

and ends at some node u. (This backwards segment consists of heavy edges and an added

edge, which form a directed path from node u to node v). Note that our previous reasoning

can be used to show that d′(w) ≤ d(w) for all nodes w on the general alternating path

before v occurs.

Now, when we reach v, let us follow our previous reasoning to see if we can bound

the increase in latency that can occur for node u. Note we can obtain the same sequence of

inequalities d′(u) + l′(u, v) ≤ d′(v) ≤ d(v) ≤ d(t) as before, where the last step holds since

v previously had flow traveling to it. (We know v is adjacent to a light edge based on our

definition of backwards segment). Now inequalities above imply that d′(u) ≤ d(u) + d(t),

or putting things another way, we can conclude that the latency from s to u increases by

at most d(t). Furthermore, as we cross light edges forward and heavy edges backward, we

can more or less use the same analysis as before to prove by induction d′(w) ≤ d(w) + d(t)

for all nodes w that occur after the backwards segment with the added egde. Moreover,

when we reach t, we know that d′(t) ≤ d(t) + d(t) ≤ 2 · d(t). Therefore, we have just shown

that whenever we have a general alternating path consisting of at most one added edge, the

latency increases by at most a factor of two.

Now that we have proven a good bound on the increase in latency whenever we

have general alternating path, we may wonder if a general alternating path always exists

in our instances. If we can prove a general alternating path always exists, then we can

conclude Braess’s Paradox increases latency by at most a factor of 2 when adding a single

edge. Luckily it is not too hard to prove a general alternating path always exists, although

the methodology we use to prove it is a bit different from the main methodology described

CHAPTER 2. BRAESS’S PARADOX AND EFFICIENCY OF SELFISH ROUTING 27

above and tangential to our main proof. We describe the proof below nonetheless.

2.3.5 Existence of General Alternating Paths

It turns out that a general alternating path from s to t must always exist, since

adding a new edge (or multiple new edges) only causes the existing flow to shift around

without changing the total amount of flow traveling from s to t. To describe the methodology

we use to prove an alternating path always exists, we merely borrow some ideas from an

existing proof on the related topic of maximum flows, and see if they can be applied to our

new problem. The ideas we borrow are from the proof which shows that the Ford-Fulkerson

algorithm always terminates with a maximum flow, by finding a corresponding minimum

cut. Recall that the proof first notes that when the Ford-Fulkerson algorithm terminates,

there is no s to t path left in the residual graph. The argument then proceeds by looking at

the set S of nodes reachable from s in the residual graph, and proving the amount of flow

crossing the cut between S and V − S is the same as the value of the cut. Now let us see

if any of these ideas here can be used to prove that there must always be a s to t general

alternating path.

Similarly, for our problem, let us define S to be the set of nodes reachable from s

via paths which only traverse light edges forward and heavy or added edges backward. Is it

possible that the set S does not include t? Let us prove that this cannot happen by looking

at what happens in the cut between S and V − S. Note that all edges leaving S must be

heavy or added edges, and all edges entering S must be light edges, or otherwise S would

not represent the set of all nodes reachable by an alternating path from s. Moreover, there

must be at least one edge present in our original graph leaving S, since there must be at

least one s to t path in our original graph in order to have a valid s to t flow. This implies

that there must be at least one heavy edge leaving S, and as a result, there must be strictly

more flow crossing this s-t cut after adding the new edge. However, it clearly cannot be the

case that there is more flow crossing this s-t cut, as it would imply that there is more flow

traveling from s to t after the new edge is adding. Therefore, we have a contradiction, and

t must be reachable from s via a general alternating path.

CHAPTER 2. BRAESS’S PARADOX AND EFFICIENCY OF SELFISH ROUTING 28

2.3.6 General Alternating Paths with Multiple Added Edges

We have now reached our goal of proving that adding a single zero edge can increase

the s to t latency by at most a factor of two, but it is tempting to see if we can generalize

our results. Following step 5, let us generalize our target statement S, and see if we can

prove anything when more than one edge is added. Let us see if we can prove a bound on

Braess’s Paradox when k > 1 zero latency edges are added to our graph. We know that the

only way that Braess’s Paradox can increase latency by more than a factor of two is if the

general alternating path crosses more than one newly added edge, but let us see if we can

still bound the increase in latency, even if the general alternating path crosses more than

one added edge.

To get an idea about proving a bound when multiple edges are added, let us look

at Roughgarden’s example in [Rou] which shows that adding two extra edges can increase

the s-t latency by 3. We see that in Roughgarden’s example, the general s-t alternating

path does indeed cross two added edges. Along the alternating path, we observe that the s

to v distance does not increase for a node v that occurs before crossing the first added edge,

and it increases by d(t) for a node that occurs on the general alternating path after crossing

the first added edge. Subsequently, after the crossing the second added edge, the distance

for a node v along the general alternating path can increase by 2 · d(t). Additionally, when

we look at more severe examples of Braess’s Paradox in [Rou], we observe that in general,

if a node v occurs in a general alternating path after crossing c added edges, its distance

from s may increase by c · d(t). Given this information, we may hypothesize that this is the

worst case, and attempt to prove it by induction.

Let us try to prove by induction that if a node v occurs in a general alternating

path after crossing c added edges, then d′(v) ≤ d(v)+c ·d(t), although in this statement, let

us not include the nodes v which occur within a backwards segment with added edge(s), as

these nodes need to be handled differently. If we want to prove this hypothesis by induction

along the general alternating path, it is not hard to see that our previous analysis can be

used to prove the inductive step along the light edges we cross forward and heavy edges we

cross backward, as long the heavy edge is not on a backwards segment with one or more

added edges. The only challenge is to show that our inductive hypothesis still holds when

crossing a backwards segment with one or more added edges.

Let us focus on this case, and assume that we are crossing a backwards segment

CHAPTER 2. BRAESS’S PARADOX AND EFFICIENCY OF SELFISH ROUTING 29

with one or more added edges, which starts at node v and ends at node u. This backwards

segment consists of heavy and added edges forming a directed path from node u to node v.

We seek to prove that if the general alternating path crosses c added edges previously before

reaching v, then d′(u) ≤ d(u)+(c+1) ·d(t). Now, it is not hard to show the following chain

of inequalities holds: d′(u) ≤ d′(v) ≤ d(v) + c · d(t) ≤ d(t) + c · d(t). The first equality holds

because we can assume without loss of generality that all added edges have flow on them,

and thus, we can conclude there is flow traveling from u to v in our graph after the new

edges are added. The second inequality holds by the inductive hypothesis, and the third

inequality holds because v must be adjacent to a light edge, which implies that d(v) ≤ d(t).

As a result, we have that d′(u) ≤ d(u)+ (c+1) · d(t) and we have proved the inductive step

when crossing a backwards segment with an added edge. As our previous analysis can also

show that the inductive step holds on all other portions of our general alternating path, we

have proved our original hypothesis inductively.

Furthermore, our newly proved hypothesis implies that when k new edges are

added to our graph, we can conclude that d′(t) ≤ (k + 1) · d(t), or in other words, the s-t

latency increases by at most a factor of k+1. Therefore, we have reached the goal of proving

our target statement again in showing that the latency increases by at most k + 1 when

adding k zero latency edges. Lastly, let us see if we can prove our original target theorem,

which does not assume that the edges we add are zero latency. Note that none of the

previous analysis we used in bounding the distances on nodes along the general alternating

path relied on the fact that the edges we added have zero latency. Therefore, we have met

our original goal of proving that the latency increases by at most k + 1 when k edges with

arbitrary latency functions are added to our graph.

2.4 Selfish Routing Results in Multicommodity Networks

2.4.1 Braess’s Paradox in Multicommodity Networks

In this section, we prove that Braess’s Paradox can be much more severe in mul-

ticommodity networks than in single-commodity networks. In fact, there will be a “phase

transition” of sorts: the worst-case severity of Braess’s Paradox is polynomial in single-

commodity instances, but exponential in two-commodity instances. The family of instances

that we construct in this section will also serve as a starting point for our inapproximability

CHAPTER 2. BRAESS’S PARADOX AND EFFICIENCY OF SELFISH ROUTING 30

results in Section 2.4.3.

We will begin this section by formally stating the properties of our construction

in Theorem 4 below. Prior to detailing this construction and proving Theorem 4, we will

discuss its many consequences for multicommodity networks.

Our family of two-commodity instances is closely related to the Fibonacci numbers.

Recall that for a nonnegative integer p, the pth Fibonacci number Fp is defined as follows:

F0 = 0, F1 = 1, and Fp = Fp−2 +Fp−1 for p ≥ 2. It is well known that Fp ≈ c ·φp as p →∞,

where c ≈ 0.4472 and φ ≈ 1.618 is the golden ratio.

We can now state the main result of this section.

Theorem 4 There is an infinite family {(Gp, rp, `p)}∞p=1 of instances with the following

properties:

(Gp, rp, `p) has two commodities and O(p) vertices and edges as p →∞;

for p odd, L1(Gp, rp, `p) = Fp−1 + 1 and L2(Gp, rp, `p) = Fp;

for p even, L1(Gp, rp, `p) = Fp + 1 and L2(Gp, rp, `p) = Fp−1;

for all p, there is a subgraph Hp of Gp with one less edge than Gp that satisfies

L1(Hp, rp, `p) = 1 and L2(Hp, rp, `p) = 0.

Theorem 4 has a number of implications. We begin by noting two immediate

corollaries of the theorem.

Corollary 5 Adding a single edge to an n-vertex two-commodity instance can increase the

latency of all traffic by a 2Ω(n) factor as n →∞.

Corollary 6 If In is the set of instances with at most n vertices, then ρ(In) = 2Ω(n) as

n →∞.

Furthermore, it is trivial to extend Corollary 5 to show that for any k ≥ 2, adding

a single edge to an n-vertex k-commodity instance can increase the latency of all traffic by

2Ω(n) as n →∞.

Theorem 4 and Corollaries 5 and 6 show that a number of previously established

properties of single-commodity instances do not carry over to multicommodity networks.

In particular, the following statements are known to hold in single-commodity instances.

CHAPTER 2. BRAESS’S PARADOX AND EFFICIENCY OF SELFISH ROUTING 31

(1) Adding one edge to a single-commodity instance can only increase the maximum or

average latency of a Nash flow by a factor of 2 [LRT04].

(2) Adding any number of edges to an n-vertex single-commodity instance can only in-

crease the maximum or average latency of a Nash flow by a factor of bn/2c [Rou].

(3) The price of anarchy with respect to maximum latency in an n-vertex single-

commodity instance is at most n− 1 [Rou04].

Theorem 4 and Corollaries 5 and 6 demonstrate that all of these statements utterly fail

to extend to multicommodity networks, even to those with only two commodities. This

dichotomy stands in contrast to other work on selfish routing, such as bounds on the price

of anarchy with respect to the average latency objective function, where there is provably no

separation between single-commodity and multicommodity instances [Rou02b; CSM04b].

We now give the construction of the family of instances claimed in Theorem 4. We

begin by defining the graph Gp for p ≥ 1, see Figure 2.5. We will describe the construction

only for p odd; the construction for even p is similar. We begin with two paths, which

we will call P1 and P2. The (p + 3)-vertex path P2, drawn vertically in Figure 2.5, is

s2 → w0 → w1 → · · · → wp → t2. The (p + 4)-vertex path P1, drawn horizontally in

Figure 2.5, is s1 → a → w1 → v1 → · · · → vp → t1. We also add the following edges

between the two paths:

(a,wi) for all positive even i;

(vi, wi) for all positive even i;

(s2, vi) for all odd i at most p− 2;

(wi, vi) for all odd i.

Finally, we complete Gp by adding what we will call an extra edge, defined as the edge

(s1, w0).

For all p, the traffic rate vector rp will be rp
1 = rp

2 = 1. To complete the construc-

tion, we therefore need only describe the edge latency functions. All edges will either possess

a constant latency function, or a latency function that approximates a step function. We

next introduce notation for the latter function type. For a positive integer i and a positive

real number δ, f i
δ will denote a continuous, nondecreasing function satisfying f i

δ(x) = 0 for

CHAPTER 2. BRAESS’S PARADOX AND EFFICIENCY OF SELFISH ROUTING 32

a
 w
1
 v
1
 v
2
 v
3
 v
4
 v
5

w
2

w
3

w
4

w
5

w
6

w
0

S
2

S
1

t
2

t
1

v
6
 v
7

w
7

e
3
 e
5

e
2

e

4

e
6

e
1

e

0

Figure 2.5: Construction of the instance (Gp, rp, `p) when p = 7. Dotted edge (s1, w0) is

the “extra edge”. Edges with non-constant latency functions are labelled.

x ≤ 1 and f i
δ(x) = Fi for x ≥ 1+δ. (The function f i

δ can be defined arbitrarily on (1, 1+δ),

provided it is continuous and nondecreasing.)

For i ∈ {0, 1, . . . , p − 1}, we define the edge ei to be (wi, wi+1) if i is even and

(vi, vi+1) if i is odd. (See Figure 2.5.) We now define the latency functions `p for Gp as

follows, where δ is sufficiently small (to be chosen later): for each i > 0, edge ei receives

the latency function `p(x) = f i
δ(x), edge e0 receives the latency function `p(x) = f1

δ (x),

edge (s1, a) receives the latency function `p(x) = 1, and all other edges receive the latency

function `p(x) = 0.

With the construction in hand, we now turn toward proving Theorem 4 for odd p

(the arguments for even p are similar). Part (a) is obvious. Part (d) is easy to see: if Hp

is obtained from Gp by removing the extra edge (s1, w0) and f is the flow that routes one

unit of traffic on both P1 and P2, then f is at Nash equilibrium for (Gp, rp, `p), showing

that L1(Hp, rp, `p) = 1 and L2(Hp, rp, `p) = 0. (See Figure 2.6.)

To finish the proof of Theorem 4 (for p odd), we need only prove part (b). We

will accomplish this via a sequence of lemmas, the first of which requires some further

definitions. First, we will say that a flow f , feasible for (Gp, rp, `p), floods the instance if

fei ≥ 1 + δ for all i ∈ {0, 1, . . . , p− 1}. Thus if f floods (Gp, rp, `p), all edge latencies are at

CHAPTER 2. BRAESS’S PARADOX AND EFFICIENCY OF SELFISH ROUTING 33

1
 a

0

w
1
 v
1
 v
2
 0

v
3
 v
4
 v
5

0

w
2

w
3

w
4

w
5

w
6

w
0

S
2

0

S
1

0

t
2

t
1
0

v
6
 v
7

w
7

0

Figure 2.6: Nash flow in (Hp, rp, `p), with p = 7, where Hp is Gp with the extra edge (s1, w0)

removed. Solid edges carry flow, dotted edges do not. Edge latencies are with respect to

the Nash flow. Unlabelled edges have zero latency.

a
 w
1
 v
1
 v
2
 v
3
 v
4
 v
5

w
2

w
3

w
4

w
5

w
6

w
0

S
2

S
1

t
2

t
1

v
6
 v
7

w
7

2
 5

1

3

8

1

1

1

Figure 2.7: Nash flow in (Gp, rp, `p), with p = 7. Solid edges carry flow, dotted edges do

not. Edge latencies are with respect to the Nash flow. Unlabelled edges have zero latency.

CHAPTER 2. BRAESS’S PARADOX AND EFFICIENCY OF SELFISH ROUTING 34

their maximum, as in Figure 2.7. Second, we introduce notation for some of the paths of

Gp. For i even, Qi will denote the unique s1-t1 path which traverses edge ei before any odd

labelled edges, and includes no other edge of P2. For i odd, Qi will denote the unique s2-t2

path which traverses edge ei before any even labelled edges, and includes no other edge of

P1. We will call the paths Q0, . . . , Qp−1, together with the “axis-aligned” paths P1 and P2,

the short paths. The next lemma justifies this terminology, at least for flows that flood the

instance (Gp, rp, `p).

CHAPTER 2. BRAESS’S PARADOX AND EFFICIENCY OF SELFISH ROUTING 35

Lemma 1 If f floods (Gp, rp, `p) with p odd, then:

(a) `P (f) ≥ Fp−1 + 1 for every s1-t1 path P , and equality holds for short paths;

(b) `P (f) ≥ Fp for every s2-t2 path P , and equality holds for short paths.

We will only prove part (b) of Lemma 1, as the proof of part (a) is similar. In the

proof, we will use the following lemma about Fibonacci numbers, which is easy to verify.

Lemma 2 Let j and p be odd positive integers with j < p, and I the even numbers between

j and p. Then, Fj +
∑

i∈I Fi = Fp.

We now prove Lemma 1.

Proof of Lemma 1: Let P be an s2-t2 path. Let j be the largest odd number such that

ej ∈ P , or 0 if there is no such number. We only need to prove the case where j > 0, since

the j = 0 and j = 1 cases are the same. If j > 0, then P contains ej and also ei for all even

i between j and p. Since f floods (Gp, rp, `p), Lemma 2 implies that `P (f) ≥ Fp. Moreover,

this inequality holds with equality for short paths. ¥

Our final lemma states that routing flow on short paths suffices to flood the in-

stance (Gp, rp, `p). For the statement of the lemma, recall that the parameter δ controls

how rapidly the non-constant latency functions of (Gp, rp, `p) increase as the amount of flow

on the edge exceeds one.

Lemma 3 For all p odd and δ sufficiently small, there is flow f , with fP > 0 only for short

paths P , that floods (Gp, rp, `p).

Define the flow f as follows. First, for i = 0, 1, . . . , p − 1, route 2−(i+1) units of

flow (of the appropriate commodity) on the short path Qi. This routes strictly less than

one unit of flow of each commodity. The remaining flow is then routed on the short paths

P1 and P2.

To complete the proof, we need to show that f floods (Gp, rp, `p)—that fei ≥ 1+δ

for all p ∈ {0, 1, . . . , p − 1} provided δ is sufficiently small. We will prove this inequality

only for i odd; the argument for even i is similar.

The second commodity uses edge ei only in the short path Qi, on which it routes

2−(i+1) units of flow. The first commodity uses edge ei in all of its flow paths except for

CHAPTER 2. BRAESS’S PARADOX AND EFFICIENCY OF SELFISH ROUTING 36

the short paths Qj for j even and greater than i. The total amount of flow on ei is thus at

least

2−(i+1) + 1−
∑

j≥0

2−(i+2+2j) = 1 + 2−(i+1) − 4
3
· 2−(i+2) > 1 + 2−(i+3).

Thus, provided δ ≤ 2−(p+3), f floods (Gp, rp, `p), and the proof is complete. ¥
Theorem 4(b) now follows immediately from Definition 1, Lemma 1, and Lemma 3.

2.4.2 Upper Bounding the Price of Anarchy in Multicommodity Net-

works

We now turn toward proving upper bounds on the price of anarchy and, as a

consequence, on the worst-possible severity of Braess’s Paradox. We will aim for an upper

bound that matches the lower bound of Theorem 4, and will largely succeed in this goal.

We begin by proving a very weak bound on the price of anarchy, a bound that

depends on parameters other than the size of the network. While not interesting in its own

right, this bound will play a crucial role in later proofs in this section.

Lemma 4 Let f be a Nash flow and f∗ a feasible flow for an instance (G, r, `), where G

has m edges. For every edge e of G with fe > f∗e ,

`e(fe) ≤ m
∑

i ri

fe − f∗e
·max

e
`e(f∗e). (2.2)

Proof of Lemma 4: Let F ⊆ E denote the edges e of G for which fe > f∗e . Using inequal-

ity (2.1) in Proposition 3 and the fact that `e(f∗e) ≤ M(f∗) whenever f∗e > 0, we can derive

the following crude bound:
∑

e∈F

`e(fe)(fe − f∗e) ≤
∑

e∈E\F
`e(fe)(f∗e − fe)

≤
(
max

e
`e(f∗e)

) ∑

e∈E\F
(f∗e − fe)

≤ max
e

`e(f∗e) ·m ·
∑

i

ri.

The lemma now follows easily. ¥

We next use Lemma 4 as a bootstrap for deriving upper bounds on the price of

anarchy that depend only on the size of the network. We will accomplish this as follows.

CHAPTER 2. BRAESS’S PARADOX AND EFFICIENCY OF SELFISH ROUTING 37

For an arbitrary instance, we will set up a linear program, with edge latencies as variables,

that maximizes the price of anarchy among instances that are “basically equivalent” to the

given instance. We will define our notion of equivalence so that Lemma 4 ensures that the

linear program has a bounded maximum, and will then analyze the vertices of the feasible

region of the linear program to derive the following bound.

Theorem 7 If (G, r, `) is an instance with n vertices and m edges, then

ρ(G, r, `) = 2O(m log n).

Before implementing the proof approach outlined above, we state a proposition

that bounds the maximum size of the optimal value of a linear program with a constraint

matrix with entries in {−1, 0, 1}.

Proposition 8 Let A be an m× n matrix with entries in {0,±1} and at most α non-zero

entries in each row. Let b be a real-valued m-vector, and let the linear program maxxi

subject to Ax ≤ b have a finite maximum. Then, this maximum is at most nαn‖b‖∞, where

‖b‖∞ denotes maxj |bj |.

Proposition 8 can be proved with Cramer’s rule and a simple bound on the deter-

minant. We omit further details.

Proof of Theorem 7: Let (G, r, `) be an instance with n vertices and m edges. Let f and

f∗ be Nash and optimal flows for (G, r, `), respectively. We aim to show that ρ(G, r, `) =

2O(m log n).

We begin by performing some preprocessing on the instance (G, r, `). First, if

fe = f∗e = 0 for some edge e, then that edge can be removed from the instance without

affecting its ρ-value. We can therefore assume that f∗e > 0 or fe > 0 for every edge e.

Second, we can assume that `e(0) = 0 whenever f∗e = 0. To see why, note that replacing the

latency function `e(x) of such an edge by the function equal to (e.g.) min{x/fe, 1} · `e(x)

leaves the Nash flow unaffected while only decreasing the maximum latency of f∗ and hence

increasing the ρ-value of the instance. Combining these two assumptions, we can assume

without loss of generality `e(f∗e) ≤ M(f∗) for every edge e of G.

We now set up a linear program that attempts to further transform the latency

functions to make the ρ-value of the given instance as large as possible. In the linear

CHAPTER 2. BRAESS’S PARADOX AND EFFICIENCY OF SELFISH ROUTING 38

program, the flow amounts {fe} and {f∗e }, as well as the latencies {`e(f∗e)} with respect to

f∗, will be held fixed. There will be a nonnegative variable ˆ̀
e(fe) representing the latency

of edge e with respect to the flow f . So that the new latency functions are nondecreasing,

we impose the following linear constraints, which we call monotonicity constraints:

For all edges e with fe = f∗e , ˆ̀
e(fe) = `e(f∗e).

For all edges e with fe < f∗e , ˆ̀
e(fe) ≤ `e(f∗e).

For all edges e with fe > f∗e , ˆ̀
e(fe) ≥ `e(f∗e).

Additionally, we will insist that the (fixed) flow f be at Nash equilibrium with respect

to the (variable) latencies {ˆ̀e(fe)}. There are several ways that this requirement can be

encoded with linear constraints. For this proof, we will be content with the following naive

approach: for every commodity i, and every pair of paths P, P̃ ∈ Pi for which f
(i)
e > 0

for all e ∈ P , we insist that
∑

e∈P
ˆ̀
e(fe) ≤

∑
e∈P̃

ˆ̀
e(fe) in our linear program. Since this

linear program has a small number of variables, we will not be hampered by its potentially

massive number of constraints.

By construction, our constraints ensure the following: for every feasible solution

{ˆ̀(fe)}, there is an instance (G, r, ˆ̀) with continuous, nondecreasing latency functions ˆ̀, so

that these latency functions interpolate their two prescribed values and f is a Nash flow

for (G, r, ˆ̀). Consider the objective function max ˆ̀
e(fe) for an edge e. Our key claim is

that the resulting linear program is not unbounded. For edges e with fe ≤ f∗e , the claim is

obvious from the constraints. For edges e with fe > f∗e , the claim follows from Lemma 4

and the fact that all parameters on the right-hand side of the bound (2.2) are fixed in the

linear program.

Since the maximum of the above linear program is bounded, we can apply Propo-

sition 8. In our linear program, there are a total of m variables, of which each constraint

contains at most 2n. The right-hand side of each constraint is either a 0 or a term of

the form `e(f∗e). By our preprocessing step, `e(f∗e) ≤ M(f∗) for all edges e. Hence,

Proposition 8 implies that the maximum of the linear program is at most mnO(m) ·M(f∗).

Hence, returning to the original instance (G, r, `), we must have `e(fe) ≤ mnO(m) ·M(f∗)

for all edges e. Since a flow path of f can contain only n edges, we can conclude that

ρ(G, r, `) ≤ nmnO(m) = 2O(m log n). ¥

CHAPTER 2. BRAESS’S PARADOX AND EFFICIENCY OF SELFISH ROUTING 39

When the number of commodities is small (e.g., a constant), we can improve the

bound to 2O(kn) using a different way to encode the constraint that f must be at Nash

equilibrium with respect to {ˆ̀e(fe)}.

Theorem 9 If (G, r, `) is an instance with n vertices and k commodities, then

ρ(G, r, `) = 2O(kn).

To prove our bound, we start with the linear program described in Theorem 7.

We leave the objective and monotonicity constraints the same, but replace the constraints

that ensure f is a Nash equilibrium for {ˆ̀e(fe)}. To ensure the latencies {ˆ̀e(fe)} define a

Nash equilibrium for f , we introduce an auxiliary variable d̂i(v) for each commodity i and

for every vertex v ∈ V reachable from that commodity’s source si, which will represent the

length of the shortest path from si to v, with respect to the latencies {ˆ̀e(fe)}. Now, we

define the following constraints:

d̂i(si) = 0, for all commodities i.

d̂i(u) + ˆ̀
e(fe) = d̂i(v), for all edges e = (u, v) and commodities i with f

(i)
e > 0.

d̂i(u) + ˆ̀
e(fe) ≤ d̂i(v), for all edges e = (u, v) and commodities i.

To complete the proof, we need to show:

(a) A set of latencies {ˆ̀e(fe)} is feasible for our linear program if and only if it defines a

Nash equilibrium for f .

(b) The latency variables can be removed, yielding a linear program with kn variables,

that can be bounded by 2O(kn).

To prove the forward direction of (a), it is easy to see that with our constraints,

for every commodity i, each path P ∈ Pi, with f
(i)
e > 0 for all e ∈ P , must have length

precisely equal to d̂i(ti). Furthermore, no path in P ∈ Pi may have length strictly less than

CHAPTER 2. BRAESS’S PARADOX AND EFFICIENCY OF SELFISH ROUTING 40

d̂i(ti). Therefore, for every commodity i and every P, P̃ ∈ Pi, with f
(i)
e > 0 for all e ∈ P ,

∑
e∈P

ˆ̀
e(fe) ≤

∑
e∈P̃

ˆ̀
e(fe), and our latencies define a Nash equilibrium for f . To prove the

other direction of (a), note that for any set of latencies ˆ̀
e(fe) defining a Nash equilibrium

for f , we can define d̂i(v) to be the length of the shortest path from si to v, and we have a

feasible solution for our linear program.

With (a) proven, we know that the maximum value of our linear program is pre-

cisely the maximum edge length that occurs in any Nash equilibrium for flow f . As before,

note that Lemma 4 implies our linear program is bounded, and we can apply Proposition 8

to bound the maximum value of the linear program.

Before applying Proposition 8 however, we first eliminate the latency variables,

which allows us to prove a better bound. Note that for any edge e = (u, v) with f i
e > 0 for

some commodity i, d̂i(u) + ˆ̀
e(fe) = d̂i(v), so we can replace any occurrence of ˆ̀

e(fe) in our

linear program with d̂i(v)− d̂i(u). Furthermore, for any other edges, fe = 0, and it must be

the case that ˆ̀
e(fe) ≤ M(f∗). For these edges, an optimal solution must assign some value

xe ≤ M(f∗) to the latencies ˆ̀
e(fe), and thus for these edges, we can substitute the ˆ̀

e(fe)

variable with the constant xe value used in the optimal solution. With these substitutions,

we have not changed the optimal value of our linear program, and we are only left with

O(kn) variables. Moreover, there are still a constant number of variables per constraint,

and each entry of b is still bounded by M(f∗). Therefore, applying Proposition 8 bounds

the price of anarchy by 2O(kn). ¥

Corollary 6 shows that Theorem 9 is essentially tight for a constant number of

commodities.

2.4.3 Exponential Inapproximability for Multicommodity Network De-

sign

In this section, we will show that a network design problem that is naturally

motivated by Braess’s Paradox has intrinsically exponential approximability. The problem,

which we call Multicommodity Network Design (MCND), is as follows.

Given a (multicommodity) instance (G, r, `), find a subgraph H of G that minimizes

M(H, r, `).

CHAPTER 2. BRAESS’S PARADOX AND EFFICIENCY OF SELFISH ROUTING 41

By M(H, r, `), we mean the maximum latency of a Nash flow for (H, r, `) (well defined by

Proposition 2). MCND is tantamount to detecting and avoiding Braess’s Paradox. For

single-commodity instances, this problem was studied in [Rou].

The trivial algorithm is defined as the algorithm that always returns the entire

graph G—the algorithm that always punts on trying to detect Braess’s Paradox. The

following was proved in [Rou]: the trivial algorithm is an bn/2c-approximation algorithm

for the special case of single-commodity instances; and for every ε > 0, no (bn/2c − ε)-

approximation algorithm exists (assuming P 6= NP). Here, we will succeed in proving

analogues of these results for multicommodity networks, where the best-possible approxi-

mation ratio is inherently exponential.

First, we note that since Theorems 7 and 9 imply limits on the largest possible

increase in the maximum latency due to Braess’s Paradox, they also translate to an upper

bound on the trivial algorithm.

Proposition 10 The trivial algorithm is a 2O(min{kn,m log n})-approximation algorithm for

MCND.

Much more interesting is the next result, which states that there is no polynomial-

time algorithm with subexponential approximation ratio (assuming P 6= NP).

Theorem 11 Assuming P 6= NP , there is no 2o(n)-approximation algorithm for MCND.

The proof of Theorem 11 combines ideas from the gap reductions of [Rou] for the

single-commodity version of MCND with the family of two-commodity instances described

in Section 2.4.1. We first provide a high-level overview of the proof below, and then describe

the full proof in the next subsection.

Recall that in an instance of the NP-complete problem Partition, we are given

q positive integers {a1, a2, . . . , aq} and seek a subset S ⊆ {1, 2, . . . , q} such that
∑

j∈S aj =
1
2

∑q
j=1 aj [GJ79, SP12]. The idea of the reduction is to start with an instance (Gp, rp, `p) of

the form described in Section 2.4.1, and to replace the extra edge (s1, w0) with a collection

of parallel edges representing an instance I = {a1, . . . , ap} of Partition. We will give these

edges latency functions that simulate “capacities”, with an edge representing an integer aj

of I receiving capacity proportional to aj . The proof then break down into three parts.

CHAPTER 2. BRAESS’S PARADOX AND EFFICIENCY OF SELFISH ROUTING 42

First, if too many of these parallel edges are removed from the network, there will be

insufficient remaining capacity to send flow cheaply. To implement this, we must also

augment the latency functions of the edges e0, . . . , ep−1 of Section 2.4.1 to have effective

capacities. Second, if too few of the parallel edges are removed, the excess of capacity results

in a bad flow at Nash equilibrium similar to that of Figure 2.7. Finally, these two cases

can be avoided if and only if I is a “yes” instance of Partition, in which case removing

the appropriate collection of parallel edges results in a network that admits a good Nash

equilibrium similar to that of Figure 2.6.

The Formal Reduction

We now prove Theorem 11 formally by showing the complete reduction.

Proof of Theorem 11: Given an instance I = {a1, a2, . . . , aq} of Partition, we will construct

a network G with n nodes such that:

(i) If I is a “yes” instance of Partition, then G admits a subgraph H with M(H, r, `) =

1.

(ii) If I is a “no” instance, then M(H, r, `) ≥ Fp, where p = bn−6
2 c, for every subgraph H

of G.

For our statement we will assume n ≥ 12, and for simplicity, we will only prove

the statement where p is odd and greater than 3. The network we construct will have the

same edges as the network described in section 2.4.1, except for the (s1, w0) edge. In its

place, we will add one edge ej for each element aj of the partition instance I for a total of

q edges between s1 and w0.

We will continue to use the same notation ei, P1, P2, Qi to refer to the same edges

and paths as defined before. However, as we have created some new short paths through

e0, we re-define Q0 to be the set of all short paths passing through e0. If we count Q0 as

one path and set c = p+1
2 , then we have defined c + 1 paths from s1 to t1 and c paths from

s2 to t2. We will set our rate for (s1, t1) to be c + 1, and the rate for (s2, t2) to be c. (In

the optimal construction, the flow at Nash equilibrium will send one unit of flow along each

path we have defined). For clarity, it will also be useful to define the quantity γ(i) = b i+5
2 c,

which represents the number of paths P1, P2, or Qi that pass through edge ei.

CHAPTER 2. BRAESS’S PARADOX AND EFFICIENCY OF SELFISH ROUTING 43

Before we define the latency functions for our edges, we first define a few constants

that will be useful. For some edges, we will want to limit the amount of flow travelling

along the edge, so after a certain flow amount, we will set the latency equal to M0 = Fp.

Additionally, we will want some latency functions to have a steep transition from say 1 to

M0, so we will define a small value δ = 1/(cAq · 2p+3), and allow our latency function to

increase from 1 to M0 over δ units of flow. For our latency functions, we will not define the

latency function over all intervals, but any function that is continuous and non-decreasing

over the undefined interval will suffice for our reduction, as it will not affect the latencies

experienced by the Nash or optimal flows.

(A) For edge e = (s1, a):

`e(fe) =





1 if fe ≤ c

M0 if fe ≥ c + δ

(B) For each edge e of the form (a,wi) or (s2, vi):

`e(fe) =





0 if fe ≤ 1 + 1
2c

M0 if fe ≥ 1 + 1
c

(C) For edge e0:

`e0(fe0) =





0 if fei ≤ γ(0)

1 if γ(0) + δ ≤ fei ≤ γ(0) + 1
2c

M0 if γ(0) + 1
c ≤ fei

(D) For each edge ei for i 6= 0:

`ei(fei) =





0 if fei ≤ γ(i)

Fi if fei ≥ γ(i) + δ

(E) For each edge ej :

`ej (fej) =





0 if fei ≤ 2aj

A − δ

1 if fei = 2aj

A

M0 if fei ≥ 2aj

A + δ

CHAPTER 2. BRAESS’S PARADOX AND EFFICIENCY OF SELFISH ROUTING 44

(F) Every other unlabelled edge has constant latency 0

To prove claim (i) of the reduction, suppose there is some set S ⊂ {1, 2, ..., q} such

that
∑

j∈S aj = A
2 . We will show that deleting all edges ej for j /∈ S produces a network

with latency 1 at Nash equilibrium. Our flow at Nash equilibrium will send one unit of flow

along each path P1, P2, and Qi. For Q0, our unit of flow will be divided among the ej edges

so that there is 2aj

A flow along each edge for a total of
∑

j∈S
2aj

A = 1 flow along the paths in

Q0. This flow is feasible since we have c + 1 flow between s1 and t1, and c flow between s2

and t2. To show the flow is at Nash equilibrium, it can be verified that the ej edges and the

(s1, a) have latency 1 in this flow, and all other edges have latency 0. Therefore, all (s1, t1)

flow paths have 1 unit of latency, and all (s2, t2) paths have 0 units of latency. So we have

proved that a “yes” instance of partition implies a subgraph with maximum latency 1 at

Nash equilibrium.

To complete the proof of correctness for the reduction, we now need to show that

a “no” instance of partition implies all subgraphs of G have at least Fp maximum latency

at Nash equilibrium (ii). First note, that deleting any edge that is not between s1 and w0,

will cause at least one edge type of (A), (B), or (C), to have too much flow and latency will

increase to M . So now we just need to show that any subgraph that includes all edges in

G, except some subset of edges between s1 and w0, will also experience exponential latency,

provided that we have a “no” instance of partition. First note that if we only included some

set of edges {ej : j ∈ S} such that S ⊂ {1, 2, ..., q} and
∑

j∈S aj < A
2 , then the maximum

amount of flow that can travel between s1 and w0 without incurring M latency will be
2
A(

∑
j∈S aj) + qδ ≤ 2

A(A
2 − 1) + qδ ≤ 1− 2

A + 1
A ≤ 1− 1

A < 1− δ. However, we cannot send

more than c+δ flow along the (s1, a) edge without incurring M0 latency as well. Therefore,

if we only include some set of edges ej whose corresponding aj values sum to strictly less

than A
2 then the maximum latency will be at least M0.

Now we need to analyze the last case, where we include all edges not between s1

and w0, and some set of edges ej such that their corresponding aj values sum to a value

strictly greater than A
2 . The amount of flow that can pass with 0 latency in this case is

2
A(A

2 +1)−qδ ≥ 1+ 2
A− 1

A ≥ 1+ 1
A . We will show that a Nash flow experiences latency equal

to Fp as in the bad case of Braess’s Paradox. To show this recall in our original Braess’s

Paradox graph, some amount of flow was diverted from the P1 and P2 paths and 2−(i+1)

flow was sent along each Qi path. This was enough to cause the each edge ei to have flow

CHAPTER 2. BRAESS’S PARADOX AND EFFICIENCY OF SELFISH ROUTING 45

in excess of 1 + 2−(p+3) causing each edge to increase latency to Fi. A similar process will

cause a the maximum latency to become Fp in this case as well. Imagine we start with 1

unit of flow along each path P1, P2, and Qi. Now we shift flow from P1 and P2 such that

each Qi path has an additional 1/(cA · 2i+1) along it. Note that this will be enough flow to

cause each ei edge to have more than γ(i) + δ flow on it to cause latency equal to Fi. Now,

we just need to verify that edges of type (A), (B), (C), and (E) have the proper latencies.

It is not difficult to verify that edges of type (A), (B), (C) have flows that cause latency 1,

0, and 1 respectively. Lastly since there is only 1 + 1/(2cA) flow between s1 and w0, edges

of type (E) have 0 latency. Therefore, we have shown that if we have a “no” instance of

Partition, all subgraphs of G have latency at least Fp. ¥

46

Chapter 3

Linked Decompositions for

Internet Routing

3.1 Background

A linked decomposition of a graph with n nodes is a set of subgraphs covering the

n nodes such that all pairs of subgraphs intersect; we seek linked decompositions such that

all subgraphs have about
√

n vertices, logarithmic diameter, and each vertex of the graph

belongs to either one or two subgraphs. A linked decomposition enables many control and

management functions to be implemented locally, such as resource sharing, maintenance of

distributed directory structures, deadlock-free routing, failure recovery and load balancing,

without requiring any node to maintain information about the state of the network outside

the subgraphs to which it belongs. Linked decompositions also enable efficient routing

schemes with small routing tables, which we describe in Section 3.7. Our main contribution

is to show that “Internet-like graphs” (e.g. the preferential attachment model proposed

by Barabasi et al. [BA99] and other similar models) have linked decompositions with the

parameters described above with high probability; moreover, our experiments show that

the Internet topology itself can be so decomposed. Our proof proceeds by analyzing a

novel process, which we call Polya urns with the power of choice, which may be of great

independent interest. In this new process, we start with n nonempty bins containing O(n)

balls total, and each arriving ball is placed in the least loaded of m bins, drawn independently

at random with probability proportional to load. Our analysis shows that in our new process,

CHAPTER 3. LINKED DECOMPOSITIONS FOR INTERNET ROUTING 47

with high probability the bin loads become roughly balanced some time before O(n2+ε)

further balls have arrived and stay roughly balanced, regardless of how the initial O(n)

balls were distributed, where ε > 0 can be arbitrarily small, provided m is large enough.

Previously it was known that throwing balls into bins uniformly at random pro-

duces relatively well-balanced occupancies with high probability. In contrast, when each new

ball is added to a bin selected with probability proportional to its current occupancy, we get

the much-studied model of Polya urns, which is known to produce large imbalances: with n

urns, the largest urn is expected to have log n times more balls, and the smallest urn n times

fewer balls, than the average one. It is a celebrated result in our field that if, while throwing

balls into bins, we choose two random bins and add a ball only to the smallest one, then this

power of two choices makes the already small imbalances significantly smaller [ABKU94;

KLadH92; Mit01]. But what about utilizing the power of choice in the Polya urns model?

Does selecting m ≥ 2 bins according to the Polya urn distribution, and adding a ball to the

least loaded bin, result in balanced loads?

In this dissertation, we show that the power of choice in the Polya urn model does

balance bin loads. In particular, we show (Theorem 14) that if n nonempty bins start with

O(n) balls total, then throwing O(n2+ε) more balls according to our new Polya urns process

with the power of choice, balances all bins within a multiplicative factor of (1+ε) with high

probability, where ε > 0 can be made arbitrarily small, provided we make the number of

choices m large enough. (See Section 3.3 for the exact dependence on m). Moreover, once

the bins become roughly balanced, they stay roughly balanced as more balls are added. As

m increases, our result becomes essentially tight, since Ω(n2) balls are required to balance

an initial distribution that starts with Ω(n) balls in one bin, and 1 ball in every other bin.

We can also show the bin loads balance when m = 2 choices are used and poly(n) balls are

thrown, but it remains an interesting open question whether or not the loads also balance

when O(n2+ε) new balls are thrown with m = 2 choices.

The motivation for this investigation comes from a graph-theoretic problem related

to the Internet. Let G be a graph, and a, b, c, d be integer parameters. We say that a graph

G has an (a, b, c, d)-linked decomposition if there are c connected subgraphs of G, which we

call components, such that

1. each component has between a
4 and a nodes

2. each node belongs to at least one and at most b components

CHAPTER 3. LINKED DECOMPOSITIONS FOR INTERNET ROUTING 48

3. the diameter of each component is at most d

4. most importantly, any two components have a node in common.

Our notion of linked decomposition is related to the notion of sparse covers defined

in [AP90], which decomposes the graph into connected subgraphs satisfying properties (2)

and (3). Other related concepts of network decomposition are introduced in [AGLP89] and

[PS89].

For our purposes, we would like a, c ≈ √
n, b = 2, and d = O(log n), where

n is the number of nodes in G. It is not hard to see that a linked decomposition, if it

exists for graph G, would yield a routing algorithm with unstructured node names with

O(d) delay (worst-case number of hops) and O(d) traffic (total messages sent per packet),

and Õ(ab + n/a) storage per node (see Section 3.7 for details), which is about
√

n for

the parameters discussed. Moreover, using a more relaxed form of linked decomposition

and structured node names, we can achieve about O(n1/3) storage per node and Õ(log n)

delay/messages sent as well. In other words, a network with our linked decomposition

property can be decomposed into subnetworks of balanced size that can be administered

relatively independently, with very little harm to communication. For more details regarding

our routing schemes and their implications for network routing, see Section 3.7.

But why should we expect that we can decompose networks in this way? Rather

surprisingly, our experiments in Section 3.8) indicate that the existing Internet graph does

have linked decompositions with these approximate parameters (both at the router and au-

tonomous system level).

A linked decomposition with parameters a, c ≈ √
n, b = 2, and d = O(log n) is a

very demanding requirement, and hence an unlikely property of graphs; on the other hand

the Internet seems to have it. We suspect that this is not a coincidence, and that “any

Internet-like graph” is very likely to have a linked decomposition with these parameters.

Towards this goal, we turn to the simplest and perhaps most influential model of Internet-

like graphs, namely the preferential attachment model PA(m) proposed by [BA99] in 1999,

and since then studied extensively (see [BR02] for a survey). In this model, nodes arrive one

after the other, and when a node arrives, it is connected via m edges to previously arrived

nodes. In particular, for each new node t, we pick m previous nodes, i.i.d. at random and

with replacement, with probability proportional to the degree of the node at the current

time, and create an edge from node t to each of the m nodes picked (with parallel edges

CHAPTER 3. LINKED DECOMPOSITIONS FOR INTERNET ROUTING 49

possible).

Our main result is Theorem 12 which states that for any ε > 0, there is a m ≥ 2,

such that PA(m) produces a graph which has a linked decomposition with parameters a =

Θ(n1/2+ε), b = 2, c = Θ(n1/2−ε), and d = O(log n), with probability 1− n−ε.

The proof of our main result is based on the Polya urns insight from the beginning

of the Introduction. To find our decomposition, the idea is to follow the preferential at-

tachment process, and assign the first c = Θ(n1/2−ε) nodes to their own component. Then

as the next n
2 − c nodes arrive, we look at the nodes/components to which the m edges

of arriving node point, and assign the new node to the component whose total degree is

lowest. Now, provided the components are roughly balanced in terms of total degree after

these first n
2 nodes have arrived, it is not hard to assign the last n

2 nodes to two components

each in a simple way, such that a coupon collector argument can be used to show each

pair of components intersect at some node (i.e. property (4) of linked decomposition holds)

with high probability. As we show in Section 3.2, it is not hard to prove the other three

properties hold as well.

Our main technical challenge is to prove that the components obtain roughly

balanced total degree after n
2 nodes arrive (Theorem 13), which is needed to prove property

(4) of linked decomposition holds. To prove that the degrees of the components become

roughly balanced when running PA(m), note that if we think of the sum of the degrees of

each component as the occupancy of a Polya urn, then our random process is very much

like the Polya urns process with the power of choice, defined previously, with c bins and m

choices. Although Polya urns with the power of choice is not quite the same process as the

one we would like to analyze, the analysis used in the proof of Theorem 14, which shows

that Polya urns with the power of choice produces roughly balanced bin loads when O(c2+ε)

balls are thrown, can be modified to prove that the degrees of the components balance when

O(c2+ε) new nodes arrive, Theorem 13. Here again, in order to make ε arbitrarily small, we

need to make m sufficiently large. We expect that the dependence of ε on m to be similar for

Theorem 13, as the dependence given for Polya urns with the power of choice (see Section

3.3), but some details remain to be checked. By proving Theorem 13, we complete the last

step needed to prove that a linked decomposition with the required parameters exists with

high probability.

One negative aspect of the proof above is the fact that we need to increase m in

order to make ε arbitrarily small. However, if we relax the definition of linked decomposi-

CHAPTER 3. LINKED DECOMPOSITIONS FOR INTERNET ROUTING 50

tion so that each component may contain at most one special node violating property (2)

of the linked decomposition — that is, some nodes may be allowed to belong to more than

two components — then we can find a linked decomposition even when m = 2 (Theorem

15). Moreover, it is easy to see that routing is not harmed by this exception, and we ob-

tain a slightly lower value for a = Θ(
√

n log n). The proof proceeds by using a dynamic

programming algorithm to decompose the network formed by the first Θ(n/ log n) nodes

into c = Θ(
√

n/ log n) components of approximately equal size. Once we have c balanced

components, it is not very hard to use a coupon collector argument to show that the re-

maining c2 log c nodes are enough to link together these components as required by property

(4) of linked decomposition, and the other three properties of linked decomposition are not

difficult to prove as well.

3.2 Linked Decompositions in PA(m) Graphs

The preferential attachment model of random graphs PA(m) [BA99; BR02] creates

a sequence of random graphs G1, G2, . . . , Gt, . . . with multiple edges, where Gt has t nodes.

G1 is a single node with no edges, and G2 is a graph with m edges between two nodes. To

generate Gt+1 from Gt for t ≥ 2, a new node t + 1 is added, and then m nodes are selected

i.i.d. at random with replacement, from among nodes 1, . . . , t, where each node i ≤ t is

selected with probability dt(i)
2mt and dt(i) is the degree of node i in Gt. Then edges are added

in Gt+1 from node t + 1 to the m selected nodes. This is a very influential graph-theoretic

model in the context of the Internet (even though it is understood that it does not satisfy

all known properties of the Internet graph).

By the phrase “with high probability” (whp) in this chapter of the dissertation

we shall mean with probability greater than or equal to 1 − n−α, for some α > 0. In

most cases, α can be made arbitrarily large by deteriorating the other parameters (e.g. by

increasing m in Theorem 12). Following the definition of linked decomposition described in

the Introduction, we can prove one of our main theorems:

Theorem 12 For any ε > 0, there exists a m ≥ 2, such that a graph Gn generated by

the PA(m) has a linked decomposition (whp) with parameters a = Θ(n1/2+ε), b = 2, c =

Θ(n1/2−ε), and d = O(log n).

To find a linked decomposition in a PA(m) graph with n nodes, we follow the

CHAPTER 3. LINKED DECOMPOSITIONS FOR INTERNET ROUTING 51

preferential attachment process, and as nodes arrive, we use a very simple procedure to

assign each node t to one or two components.

(1) For node t ∈ {1, . . . , n1/2−ε}, we assign node t to its own component.

(2) For node t ∈ {n1/2−ε + 1, . . . , n
2 }, we look at the nodes/components to which the m

edges of node t point, and assign node t to the component whose total degree (i.e. the

sum of the degrees of its nodes) is lowest so far.

(3) For node t ∈ {n
2 + 1, . . . , n}, we look at where the first two edges of node t point,

say to nodes u and v, and assign node t to a component to which u belongs, and a

component to which v belongs. (If u or v belongs to two components, then we assign

t to a random component of u or v).

It is easy to see that we have decomposed the graph into connected components,

and that we have satisfied property 2 of linked decompositions with b = 2. Furthermore,

since each node t has a constant probability (dependent on m) of joining the component of

a node v ≤ t
2 , it is easy to prove that each component has diameter O(log n) (whp).

To prove the final two properties of our linked decomposition, the key step is to

show that at the end of step (2), the total degree of each component is roughly balanced

(whp). In the next section, we define a Polya urns process, which models the degrees of the

components, and analyze it to prove one of our main theorems, Theorem 13, which states

that at the end of step (2), the total degrees of any two components differ by at most a

multiplicative factor of (1 + ε) (whp).

Theorem 13 can be used to prove the final two properties hold (whp), because if

we can show that total degree is roughly the same for each component at the end of step (2),

then it is not hard to apply Azuma’s inequality (see the analysis in Section 3.4.3 or Section

3.5.3 for how to apply Azuma’s inequality) to show that the total degree of each component

remains roughly balanced within a constant (whp) throughout step (3). Furthermore, if

the components remain balanced within a multiplicative constant throughout step (3), then

at the end of step (3), each component must have total degree Θ(n1/2+ε). Therefore, each

component contains at most O(n1/2+ε) nodes, and we can conclude property 1 holds (whp)

with a = Θ(n1/2+ε), provided Theorem 13 holds.

CHAPTER 3. LINKED DECOMPOSITIONS FOR INTERNET ROUTING 52

Moreover, Theorem 13 can also be used to show that property 4 holds (whp).

Recall that property 4 states that each pair of components must intersect at some node. If

we view these Θ(n1−2ε) pairs of intersections as coupons we wish to collect, then step (3)

provides us with Θ(n) opportunities to collect Θ(n1−2ε) coupons. Even though we are not

collecting coupons uniformly at random, Theorem 13 (and Azuma’s inequality) implies that

the degrees of the components remain balanced throughout step (3) (whp). Furthermore,

this implies that each coupon is still collected with probability at least Ω(n−(1−2ε)), and it is

not hard to see that given (n
2) opportunities, our process collects all coupons (intersections)

within the required steps (whp). Therefore, as long as we can prove Theorem 13, all four

properties of our linked decomposition hold with high probability. ¥

3.3 Polya Urns with the Power of Choice

To prove that the total degrees of the components become balanced, we analyze

an equivalent random process P on n bins, where each bin represents a component and

each bin’s load represents the size of a component. (Here, n should be thought of as the

number of components, called c in the definition of linked decomposition, and should not be

confused with the number of nodes in our graph). Analogous to the preferential attachment

process, our random process starts with 2mn balls distributed arbitrarily among n bins,

such that each bin contains at least m balls each. Furthermore, it is known that with high

probability our process starts with at most O(n1/2+ε) balls in each bin [FFF05], where ε > 0

can be arbitrarily small, a fact which will be useful later on. At each step of our random

process P, 2m new balls are thrown into the n bins, according to the following rule:

Pick m bins independently at random, with probability proportional to the bin load

(I) Throw 1 ball into each of the m random bins picked

(II) Throw m more balls into the least loaded of the m random bins picked (break

ties arbitrarily).

CHAPTER 3. LINKED DECOMPOSITIONS FOR INTERNET ROUTING 53

We can prove the following theorem about our random process P, for any arbi-

trarily small ε > 0, provided m is a sufficiently large constant:

Theorem 13 Given the starting conditions described above, any time after Ω(n2+ε) itera-

tions of our process P, the loads of any two bins differ by a multiplicative factor of at most

(1 + ε) (whp).

Remark 1 Note that proving Theorem 13 is sufficient for proving that properties (1) and

(4) of linked decomposition hold (whp), as we described previously, and completes the proof

of Theorem 12.

Even though step (II) of our random process tends to balance bin loads, proving

Theorem 13 is a bit challenging since step (I) tends to preserve load imbalances. For these

reasons, we study a simpler random process P̄ on n bins, which we call Polya urns with the

power of choice. By proving P̄ balances bin loads (whp), we illustrate the main techniques

needed to prove P produces balanced bin loads (Theorem 13). Our new process, Polya urns

with the power of choice P̄, starts with n nonempty bins containing N0 = ĉn balls total. At

each step of our random process P̄, we throw one more ball into one of the n bins according

to the following rule:

(a) Pick m bins i.i.d. at random, with probability proportional to bin load

(b) Throw 1 ball into the least loaded of the m random bins picked

We can prove the following theorem about Polya urns with the power of choice,

for any ε > 0, provided m is a sufficiently large constant:

Theorem 14 Given the starting conditions described above, any time after Ω(n2+ε) balls

have been thrown, the loads of any two bins differ by a multiplicative factor of at most (1+ε)

(whp).

To be more precise, we show that if each bin starts with fractional load at least
1
ĉn for ĉ > 1, then all bins become balanced within (1 + ε̂) (whp) some time before

CHAPTER 3. LINKED DECOMPOSITIONS FOR INTERNET ROUTING 54

O(n1/(1−(1−1/ĉ)m−1)+1+ε̂) new balls arrive, and they stay balanced within (1 + ε̂) (whp)

at all later times, where ε̂ > 0 can be arbitrarily small, provided n is large enough. Note

that for sufficiently large m or sufficiently small ĉ, we can conclude the bin loads balance

in O(n2+ε) steps (whp) for any ε > 0.

In the next subsection, we provide a sketch of Theorem 14, and defer exact details

to Section 3.4. Additionally, we defer the full proof of Theorem 13 to Section 3.5. The proof

for Theorem 13 follows roughly the same steps as the proof for Theorem 14, although the

details are slightly different, since our random process is slightly different.

3.3.1 An Alternate Random Process

To prove Theorem 14, we start by defining a new random process P̄0 which is

somewhat easier to analyze than the Polya urn process with the power of choice P̄. Our

new random process P̄0 also throws balls into bins one at a time, and for each ball thrown,

m random bins are generated in the same manner as described for P̄. However, our new

process P̄0 sometimes ignores the power of m choices and throws a ball into a bin that is not

the least loaded of the m bins. Eventually, our goal will be to show that for any arbitrarily

small ε > 0, after NF = Θ(n2+ε) balls are thrown according to P̄0, the number of balls in

the bins are within a factor of (1 + ε) from one another, with high probability.

It is easy to see that, if ~a(t) represents the bin loads of the Polya urns process

with the power of choice P̄ at time t and ~b(t) represents the bin loads of the new process P̄0

(or any process that sometimes ignores the power of m choices) at time t, then there exists

a coupling of the two processes such that ~a(t) always majorizes ~b(t); we omit the formal

details of the coupling, which are not difficult. Hence, to prove the theorem, we only need

to analyze our new random process P̄0, which throws balls in two phases, defined below.

In phase A, we throw NA = Θ(n2+ε0) balls into bins, where ε0 > 0 is an arbitrarily

small constant. At any time in phase A, we classify the bins into two types of bins: A bin

is considered to be low if it contains less than c1
n fraction of the balls, otherwise it is high.

Here, c1 is a constant greater than 1 to be defined later, dependent on ε0. Given these two

definitions, we throw each new ball into a bin as follows:

If at least one of the random bins generated for the new ball is a low bin, then we

CHAPTER 3. LINKED DECOMPOSITIONS FOR INTERNET ROUTING 55

throw the new ball into the first low bin generated.

If all the bins generated are high bins, then we throw the new ball into the first random

(high) bin generated.

In phase B, we throw balls into bins until the bins contain a total of NB = Θ(N1+ε0
A)

balls. Let M be the (n
c2

)th smallest bin at the end of phase A, where c2 > 1 is a constant

dependent on ε0. We use bin M to classify the bins into three types of bins: A bin is

considered to be a middle bin at the current time if it has obtained the same load as bin

M , at some point in time in phase B, prior to or equal to the current time. A bin is low

if it has never obtained the same load as bin M at any time during phase B, prior to the

current time, and it currently contains strictly less load then bin M . The remaining bins,

those that have so far always been strictly higher than bin M in phase B, are high bins. In

Phase B, we throw each new ball into a bin as follows:

We look at the random bins generated for the new ball, and we let T ∈
{low, middle, high} be the lowest bin type generated.

We throw a ball into the first bin generated of type T .

To complete the proof, we prove the following five claims about the two phases:

At the end of phase A:

Claim 1: Each bin contains at least ω(log n) balls with high probability.

Claim 2: Each bin contains at most 1.01(c1
n) fractional load with high proba-

bility.

If each bin contains at least ω(log n) balls and at most 1.01(c1
n) fractional load at the

end of phase A, then with high probability:

Claim 3: Every high bin becomes a middle bin sometime during phase B.

Claim 4: Every low bin becomes a middle bin sometime during phase B.

Claim 5: If a bin becomes a middle bin (i.e. obtains the same load as bin M)

sometime during phase B, then at the end of phase B, the load of that bin is at

CHAPTER 3. LINKED DECOMPOSITIONS FOR INTERNET ROUTING 56

most (1 + ε1) times the load of bin M , and at least (1− ε1) times the load of bin

M , where ε1 > 0 can be arbitrarily small, provided n is sufficiently large.

Note that the five claims imply Theorem 14, and by making ε1 and ε0 arbitrarily

small, we also make ε arbitrarily small. Proving the five claims requires applying a variety

of probability theory techniques, but we only sketch the proofs here; the full details are in

the next section.

To prove Claim 1, we first note that a coupling can be defined such that bin loads

arising from the P̄0 process majorize the bin loads arising from the standard Polya process,

which does not utilize the power of choice. We can then utilize known results regarding

the standard Polya urn process [CHJ03] to prove that each bin contains ω(log n) balls with

high probability.

To prove Claims 2 and 3, we show that (whp) any high bin H has probability

≤ γpt of obtaining a new ball, where γ < 1 and pt is the fractional load of bin H at time

t. Thus, the high bins suffer a shrinkage condition, which causes the fractional load of high

bins to decrease (whp). Provided we can show that the fractional load decreases quickly

enough, Claims 2 and 3 follow.

Similarly, (whp) any low bin L has probability ≥ γpt of obtaining a new ball,

where γ > 1 and pt is the fractional load of bin L at time t. Thus, the low bins suffer a

growth condition, which can be used to prove Claim 4. Finally, Claim 5 can be proved by

applying Azuma’s inequality.

3.4 Proof of Theorem 14: Polya with the Power of Choice

Balances Loads

3.4.1 Proof of Claim 2 for Theorem 14

The proof of claim 2 is long and divided into three subsections: the first and

last subsections prove two key lemmas, and the main body of the proof is contained in

Subsection 3.4.1.

CHAPTER 3. LINKED DECOMPOSITIONS FOR INTERNET ROUTING 57

Proof of First Lemma Needed for Claim 2

To prove Claim 2, we make use of the following lemma, stating that the fractional

load of a bin decreases rapidly, provided the probability of throwing a ball into the bin is

less than its fractional load:

Lemma 5 Consider a set of n bins with N̂0 balls total at time 0, and let i be any bin that

starts with at least ω(log n) balls. Let be pt be the fraction of balls in bin i at time t, and

consider any process that throws balls into bins such that the following shrinkage condition

holds for bin i for some constant c < (1
1.01), and at any time t when the system contains

less than or equal to β ≡ N̂0δ
(1
1.01c−1

) balls:

Pr[Throwing a ball into bin i at time t] ≤ cpt

where δ ∈ (0, 1). Then the fractional load of bin i becomes less than or equal to

δp0, at some time before the bins obtain strictly more than β balls, with probability at least

(1− 1
nα), where α > 0 can be any arbitrarily large constant, provided n is sufficiently large.

To prove the lemma, we start by showing the fractional load of bin i decreases with

high probability, when εN̂0 balls are thrown, for some small constant ε > 0. To show this

first claim, we define the event E to be the event that bin i never obtains more than (1+ε)p0

fraction of balls while the first εN̂0 balls are thrown, and contains at most p0(e
(1.01c−1)ε)

fraction of balls after εN̂0 balls are thrown. Note that if we can prove event E happens with

high probability, then this implies the fractional load decreases with high probability, since

c < (1
1.01). To prove event E happens with high probability, consider an alternative process

that throws εN̂0 balls, such that each ball has exactly c(1 + ε)p0 probability of landing

in bin i. A simple coupling argument can show that the probability event E happens for

this new process must be less than or equal to the probability that event E happens for

our original balls and bins process. The coupling exists more or less because if both the

shrinkage condition and E hold for the first εN̂0 balls thrown in our original process, then

the probability of throwing each ball into bin i is upper bounded by c(1 + ε)p0 . Thus, if we

can prove E happens with high probability for this alternative process, it must also happen

with high probability for our original process.

CHAPTER 3. LINKED DECOMPOSITIONS FOR INTERNET ROUTING 58

Now to analyze our alternative process, note that for the alternative process, the

expected number of balls added to bin i is (c(1 + ε)p0)εN̂0. Moreover, since bin i starts

with at least p0N̂0 = ω(log n) balls, there exists a sufficiently large n such that the expected

number of balls added is at least 4α′
ε2

log n, for any fixed ε > 0 and α′ > 0. Thus, we can

apply a standard Chernoff bound to show that less than or equal to (1 + ε)(c(1 + ε)p0)εN̂0

balls are added to bin i, with probability at least (1− 1
nα′), for any arbitrarily large α′ > 0,

provided n is sufficiently large. Therefore, after εN̂0 balls are thrown, bin i contains at most

p0N̂0 + (c(1 + ε)2p0)εN̂0 balls with probability at least (1 − 1
nα′), and the fractional load

of bin i does not exceed p0(1 + c(1 + ε)2ε) with high probability while the εN̂0 balls are

thrown. Thus, provided ε is sufficiently small, the fractional load of bin i does not exceed

p0(1 + ε) with probability at least (1 − 1
nα′), and the first condition of event E holds with

high probability. Furthermore, after εN̂0 balls have been thrown, the fractional load of bin

i is at most p0(1+ c(1+ ε)2ε)/(1+ ε) ≤ p0(e
(1.01c−1)ε) with probability at least (1− 1

nα′), for

sufficiently small ε > 0. Therefore, we have shown that event E happens with probability

at least (1− 1
nα′).

We can now conclude that for our original process after εN̂0 balls have been thrown

with the shrinkage condition holding, the fractional load of bin i decreases by a factor

e(1.01c−1)ε with high probability, while the total number of balls increases by a factor of

(1 + ε). Note that if the shrinkage condition holds while the system contains less than

or equal to N̂0(1 + ε)r balls, then we can we repeat this analysis r times to conclude the

fractional load decreases by a factor of e(1.01c−1)εr with probability at least (1− r
nα′), after the

system obtains N̂0(1 + ε)r balls. Now take r = (1
ε)(

log δ
1.01c−1), and we see that the fractional

load of bin i decreases by a factor of δ with high probability, provided the shrinkage condition

holds while the total number of balls is less than or equal to β = N̂0δ
(1
1.01c−1

). Finally, note

that since we can make α′ arbitrarily large, we can also make the previous statement hold

with probability at least (1− 1
nα), for any arbitrarily large α > 0, provided n is sufficiently

large. Therefore, we have proven our lemma. ¥

Remark 2 In the previous analysis, for simplicity, we ignored the subtle point that εN̂0

and the number of rounds r might not be integer. To complete the analysis more precisely,

one needs to run the analysis for r′ rounds, where r′ is an integer, and choose a potentially

different ε for each of the r′ rounds, such that the number of balls thrown (e.g. εN̂0) is

CHAPTER 3. LINKED DECOMPOSITIONS FOR INTERNET ROUTING 59

always integer. For notational purposes, suppose εi is the value we choose for ε to ensure

that the number of balls thrown in each round i is integer. For large n, it is easy to see that

we can make each εi small, and roughly the same value as a single fixed ε. Furthermore, if

we choose our r′ and εi, such that
∑r′

i=1 εi is close to (log δ
1.01c−1), then we can apply roughly

the same argument as before to obtain our result, where r′ ≈ (1
ε)(

log δ
1.01c−1) is an integer. For

simplicity, we also ignore the same rounding issue that occurs in Lemma 8, but it can be

avoided in a manner similar to the one just described.

Application of Lemma 5

To prove Claim 2, we would like to apply Lemma 5 to high bins in phase A to show

that even if bin i is high and starts with fractional load close to 1, the shrinkage condition

still holds for some constant c, and the fractional load eventually decreases to (c1
n). Once

a bin decreases to fractional load (c1
n), we need to show the load stays below 1.01(c1

n) with

high probability. We omit proving this second point, but it can be done with the same

techniques used to prove Lemma 5. To prove the first point, our goal is to apply Lemma

5 with δ = (c1
n). To apply the lemma, note that if there are at least ω(n log n) balls in

the bins, then in phase A the definition of high bin implies that each high bin contains at

least ω(log n) balls. Therefore, we can apply our lemma to any high bin, provided we set

N̂0 = ω(n log n).

Now, if we can make sure the shrinkage condition holds for an arbitrarily small

constant c, then our lemma shows that the fractional load of any high bin decreases to (c1
n)

with high probability sometime before NA = Θ(n(2+ε0)) total balls have been thrown, where

ε0 can be arbitrarily small, provided c can be made arbitrarily small. In order to show that

c can be made arbitrarily small, note that the probability of throwing a ball into a high bin

at time t is equal to (ht)m · (pt

ht
) = (ht)m−1 · pt, where ht is the total fractional load of the

high bins at time t and k is the number of choices allowed. Thus, if we can show that with

high probability ht is strictly less than 1, then we can show that c can be made arbitrarily

small with high probability, provided we allow a sufficient number of random choices m.

Note that in order to apply our lemma, we need to show the previous statement is true with

high probability for any time t in phase A after the bins contain at least N̂0 = ω(n log n)

balls.

CHAPTER 3. LINKED DECOMPOSITIONS FOR INTERNET ROUTING 60

To complete the proof, we now just need to prove that ht is strictly less than 1

with high probability in phase A after the bins contain at least N̂0 = ω(n log n) balls. To

prove this, first note that at any time in phase A at most (1
c1

) fraction of the bins are high

bins, and at least (1 − 1
c1

) fraction of bins are low bins. Furthermore, the low bins begin

with at least a constant fraction of the load when the process starts with N0 = O(n) balls,

since at least (1 − 1
c1

) fraction of bins are low bins, and since each bin contains at least 1

ball. To show that the low bins continue to have at least some constant fraction of the load,

requires another lemma, Lemma 6, which we prove in the next subsection.

Proof of Second Lemma Needed for Claim 2

Lemma 6 Let N0 balls be distributed among n bins, such that every subset of cn bins

contains at least c′N0 balls, where c, c′ ∈ (0, 1) are constants. Define f(c′) ≡ (c′ + (1 −
c′) ln(1 − c′)) and let ε be any small constant in (0, ε̂], where ε̂ > 0 is a small constant

defined in the proof. Then after t ≥ 6N0
ε2(1−ε)f(c′) = Θ(N0) balls have been thrown according

to the standard Polya urns process, every subset of cn bins contains at least (1 − ε)3f(c′)

balls with probability at least (1 − 1
nα), where α > 0 can be arbitrarily large, provided n is

sufficiently large.

Remark 3 Note that over the interval (0, 1), f(c′) is strictly positive, increasing, and has

range (0, 1). Furthermore, a simple coupling argument shows that the theorem also holds

for any Polya process that sometimes uses the power of multiple choices.

Although our original process starts with N0 balls distributed among n bins, it will

be easier to analyze a standard Polya process that starts with N0 balls distributed evenly

among n′ ≡ N0 bins such that there is one ball in each of the n′ bins. Note that our new

Polya process on n′ bins can be used to simulate the random loads that occur in our original

Polya process with n bins. For a bin i that starts with bi balls in our original process, we

represent bin i by using bi distinct bins from the new Polya process on n′ bins. Namely, we

CHAPTER 3. LINKED DECOMPOSITIONS FOR INTERNET ROUTING 61

define the current load of bin i to be the sum of the current loads of the bi bins that are

used to represent bin i. It is not difficult to show that the loads we have defined, based on

the new process on n′ bins, are equivalent in distribution to the random loads generated by

the original Polya process on n bins.

In order to lower bound the loads of any subset of cn bins in the original process

on n bins, first note that any subset of cn bins is represented by at least c′n′ bins in our

new process on n′ bins. Furthermore, if we can lower bound the total fractional load on any

subset of c′n′ bins for our new process with a sufficient exponentially high probability, then

we can also lower bound the total fractional load on any subset of cn bins in our original

process with high probability.

Following this idea, we now analyze the standard Polya process on n′ bins start-

ing with one ball each, and show that a fixed subset of c′n′ bins has exponentially high

probability of containing at least (1− ε)3f(c′) fractional load after t ≥ 6n
ε2(1−ε)f(c′) balls have

been thrown. From previous work on the Polya urn model [CHJ03], we know that when

n′ bins start with one ball each and t more balls are thrown, the random bin loads that

are generated are equivalent in distribution to the loads generated by the following random

process:

1. Pick (n′ − 1) points uniformly at random from the interval [0, 1], and define xi to be

the position of the ith lowest point generated for i ∈ {1, ..., (n′ − 1)}. For notational

purposes, define x0 = 0 and xn′ = 1.

2. Pick t points uniformly at random from the interval [0, 1], and define the load of bin

i to be number of points that fall in the interval (xi−1, xi) plus 1, for i ∈ {1, ..., n′}.

By analyzing this alternate process over [0, 1], we can lower bound the fractional

load of a fixed subset of z ≡ c′n′ bins with high probability. We start by defining Y to be

the sum of the lengths of the smallest c′n′ intervals defined by the (n′− 1) points generated

by our alternate process. If we can lower bound Y with high probability, then we are not

far from lower bounding the the fractional load of any fixed subset of c′n′ bins with high

probability. To start, one can show that Y is equivalent in distribution to:

∑z−1
i=0 ((z − i)Xn′−i)∑n′−1

i=0 ((n′ − i)Xn′−i)

CHAPTER 3. LINKED DECOMPOSITIONS FOR INTERNET ROUTING 62

where each Xj variable denotes an independent exponential random variable with

rate j.

To lower bound Y with high probability, first define X =
∑z−1

i=0 (z − i)Xn′−i to

represent the numerator, and X ′ =
∑n′−1

i=0 (n′− i)Xn′−i to represent the denominator. Now,

we can lower bound Y by lower bounding X and upper bounding X ′. To lower bound X,

we can use an argument similar to the one used to prove Cheroff bounds. First note that

µ ≡ E[X] =
∑z−1

i=0

(
z−i
n′−i

)
, and consider any arbitrarily small fixed δ > 0. We can show for

negative t sufficiently close to 0:

Pr[X ≤ (1− δ)µ] = Pr[etX ≥ et(1−δ)µ]

≤ E[etX]
et(1−δ)µ

≤ et(1− δ
2
)µ

et(1−δ)µ

≤ et(δ
2
)µ

where going from the second line to the third line follows by upper bounding

E[etX]:

E[etX] = E[et(
∑z−1

i=0 (z−i)Xn′−i)]

=
z−1∏

i=0

E[et(z−i)Xn′−i]

=
z−1∏

i=0

(
1− t

(
z − i

n′ − i

))−1

≤
z−1∏

i=0

e
t(1− δ

2
)(z−i

n′−i
)

≤ et(1− δ
2
)µ

To go from the third line to the fourth line in the calculation above, we assume

that t is negative and sufficiently close to 0.

Lastly, observe that
∑z−1

i=0

(
z−i
n′−i

)
+

∑z−1
i=0

(
n′−z
n′−i

)
= z, so that we can write µ in a

more convenient form:

CHAPTER 3. LINKED DECOMPOSITIONS FOR INTERNET ROUTING 63

µ =
z−1∑

i=0

(
z − i

n′ − i

)

≈ z − (n′ − z)(lnn′ − ln (n′ − z))

≈ c′n′ − n′(1− c′) ln
(

1
1− c′

)

≈ n′(c′ + (1− c′) ln(1− c′))

By observing that µ = Ω(n′), we have therefore shown that X > (1 − δ)µ with

exponentially high probability. It can be similarly shown that X ′ < (1+δ)n′ with exponen-

tially high probability, which means Y > (1 − ε)f(c′) with exponentially high probability,

where ε ≡ 1− (1−δ
1+δ) can be made arbitrarily small by making δ > 0 arbitrarily small. Now,

recall that since Y is the sum of the smallest c′n′ intervals, we have actually shown that

every subset of c′n′ bins is represented by intervals of total length at least (1− ε)f(c′) with

exponentially high probability. Furthermore, for any fixed set of c′n′ bins, if we throw balls

according to our alternate process on the real interval [0, 1], then the probability that any

ball thrown lands in one of the c′n′ bins is at least (1− ε)f(c′).

Finally, consider exactly t = 6n′
ε2(1−ε)f(c′) balls being thrown. By applying a standard

Chernoff bound, one can show that at least (1− ε)2f(c′) fraction of the t balls thrown fall

into the c′n′ bins with probability that at least 1 − e−3n′ . Thus after t = 6n′
ε2(1−ε)f(c′) balls

have been thrown, there are a total of n′(1 + 6
ε2(1−ε)f(c′)) balls, and our c′n′ bins contain at

least n′(6(1−ε)
ε2

) balls with probability at least 1−e−3n′ . Therefore, the fractional load of the

c′n′ bins is at least 6(1−ε)2f(c′)
ε2(1−ε)f(c′)+6

≥ (1 − ε)3f(c′) with exponentially high probability, after

t = 6n′
ε2(1−ε)f(c′) balls have been thrown. Note, the last inequality only follows provided ε is

sufficiently small, which is the reason we require ε ≤ ε̂ for some small ε̂ > 0. Additionally,

note that although we proved the previous statement for t = 6n′
ε2(1−ε)f(c′) , it is not hard

to argue that the lower bound also holds when t ≥ 6n′
ε2(1−ε)f(c′) , by showing that the lower

bound value only increases for higher values of t.

Lastly, note that there are only 2n′ subsets of n′ bins, so we can apply a naive union

bound to conclude that every subset of more than c′n′ bins contains at least (1 − ε)3f(c′)

fraction of balls with probability at least 1− en′ . Thus, it follows that after t ≥ 6N0
ε2(1−ε)f(c′)

balls have been thrown in our original process on n bins, every subset of cn bins contains

at least (1− ε)3f(c′) fractional load with probability at least (1− 1
nα), where α > 0 can be

arbitrarily large, provided n is sufficiently large. ¥

CHAPTER 3. LINKED DECOMPOSITIONS FOR INTERNET ROUTING 64

3.4.2 Proof of Claim 1 for Theorem 14

To prove Claim 1, we follow the same steps used to prove Lemma 6. For concise-

ness, we only sketch the main details. We start by lower bounding the number of balls in

the least loaded bin when balls are thrown according the standard Polya process starting

with n′ = N0 bins each with one ball each. By lower bounding the load of the least loaded

bin for the standard Polya process on n′ bins, a simple coupling argument shows that this

also lower bounds the load of the least loaded bin for our original Polya process with the

power choice on n bins. To lower bound the load of the least loaded bin for the standard

Polya process on n′ bins, we analyze the same alternative random process over the interval

[0, 1] as described in Lemma 6, used to generate the random bin loads. If we define the

random variable X to be size of the smallest interval generated with n′−1 points are thrown

uniformly over the interval [0, 1], then it can be shown that X is equivalent in distribution

to Xn′/
∑n′−1

i=0 ((n′ − i)Xn′−i), where each Xj is an exponential random variable with rate

j. Then we can show:

Pr
[
X ≤ 1.01

(n′)−(2+ε0/2)

]
≤ Pr

[
n′−1∑

i=0

((n′ − i)Xn′−i) ≥ 1.01n′
]

+ Pr
[
Xn′ ≤ 1

(n′)−(1+ε0/2)

]

≤ 0.01n(ε0/2) + n(ε0/2) ≤ 1.01n(ε0/2)

Thus all bins are represented by intervals of size at least Ω((n′)−(2+ε0/2)) with high

probability (although the probability exponent is low). Furthermore, since Θ((n′)2+ε0) balls

are thrown, it is easy to apply a standard Chernoff bound to show that each bin obtains at

least Θ((n′)ε0/2) balls with high probability. Then our previous coupling argument implies

that each of the n bins in our original process contains at least Ω(nε0/2) = ω(log n) balls

with high probability, proving Claim 1.

3.4.3 Proof of Claim 5 for Theorem 14

To prove Claim 5, we start by proving the following lemma:

CHAPTER 3. LINKED DECOMPOSITIONS FOR INTERNET ROUTING 65

Lemma 7 Let A and B be two bins each with a0 = b0 balls starting at time 0. For any time

t ≥ 0, let at and bt represent the number of balls at time t in bin A and bin B, respectively,

and consider a random process that throws a new ball at time t into bin A with probability

(at
at+bt

), and bin B with probability (bt
at+bt

). Then for any T ≥ 0, Pr[((1
2 − ε)/(1

2 + ε)) · bT ≤
aT ≤ ((1

2 + ε)/(1
2 − ε)) · bT] ≥ 1− 2e−ε2(a0+b0−1)/2.

To prove the lemma, we define a sequence of random variables Xt =
(

at
at+bt

)
,

which is a martingale since:

E[Xt+1| Xt] = E[Xt+1| at, bt]

=
(

at

at + bt

)(
at + 1

at + bt + 1

)
+

(
bt

at + bt

)(
at

at + bt + 1

)

=
(

at

at + bt

)
= Xt

Furthermore, note that at time t moving one ball from bin A to bin B or

vice versa, changes Xt by (1
at+bt

). Thus, it is easy to see that |Xt+1 − Xt| ≤
(1

at+bt
) = (1

a0+b0+t). Now we can apply Azuma’s inequality obtain Pr[XT ≥ 1
2 +

ε] ≤ e−ε2/(2
∑T−1

i=0 (a0+b0+i)−2) ≤ e−ε2(a0+b0−1)/2, where the last inequality follows because
∑T−1

i=0 (a0 + b0 + i)−2 ≤ ∫∞
x=(a0+b0)(x − 1)−2 = (a0 + b0 − 1)−1. Rearranging, we get

Pr[aT ≥ ((1
2 − ε)/(1

2 + ε)) · bT] ≤ e−ε2(a0+b0−1)/2. Similarly, we can also use Azuma’s

inequality to show Pr[aT ≤ ((1
2 + ε)/(1

2 − ε)) · bT] ≤ e−ε2(a0+b0−1)/2, and the lemma follows.

¥

Remark 4 It is not hard to show the lemma also holds for any process that throws a ball

at time t into bin A with probability γt(at
at+bt

), bin B with probability γt(bt
at+bt

), and neither

bin with probability (1 − γt), where γt ∈ [0, 1] can be a random variable dependent on past

events.

Now to complete the proof of Claim 5, we just need to apply Lemma 7 to bin M

and any bin i that obtains the same load as bin M , starting at the time they obtain the same

load. Note that we can apply Lemma 7 to our two bins due to the remark. Furthermore,

CHAPTER 3. LINKED DECOMPOSITIONS FOR INTERNET ROUTING 66

since bin M contains at least ω(log n) balls by Claim 1, with high probability the load of

that bin i is at most (1 + ε1) times the load of bin M , and at least (1− ε1) times the load

of bin M at the end of phase B, where ε1 can be made arbitrarily small, provided we set ε

small enough and n is large enough. Finally, note that for sufficiently large n the previous

statement happens with high enough probability, so that we can take a naive union bound

over all n− 1 possible bins i to conclude that the previous statement happens for all bins i

that obtain the same load as bin M . Therefore, Claim 5 holds with high probability.

3.4.4 Proof of Claim 3 for Theorem 14

To prove Claim 3, we start by following the steps used to prove Claim 2. For

conciseness, we only sketch the main details. By following the same steps as Claim 2,

one can show that the low and middle bins always contain a constant (dependent on c2)

fraction of the total load with high probability. Consequently, one can show that the

shrinkage condition of Lemma 5 holds for some fixed constant dependent on c2, for any

high bin. From here, one can apply Lemma 5 to the high bins in phase B, with δ equal to

a constant, to show that if any high bins remain after γNA balls have been thrown, then

they all contain at most (1
2)(1

n) fractional load with high probability, where δ is a constant

dependent on c1, and γ is a constant dependent on δ and c2.

The final step needed to prove Claim 3 is to show that with high probability it

cannot be the case that there remains some set of high bins all with fractional load (1
2)(1

n)

with high probability. Claim 3 then follows because this implies that all high bins must have

become middle bins at some point before Θ(NA) balls have been thrown. To prove that

with high probability it is not possible for some high bins to remain all with fractional load

at most (1
2)(1

n), we use a proof by contradiction. Note that if some high bins remain with

fractional load at most (1
2)(1

n), then bin M must have load at most (1
2)(1

n). Furthermore,

by applying the same analysis used in Claim 5, one can show that all the low and middle

bins have fractional load at most 1.01(1
2)(1

n) with high probability. However, this implies

the total fraction load of all bins is at most 1.01(1
2) < 1 with high probability, which is a

contradiction. Therefore, all high bins must have become middle bins sometime before γNA

balls have been thrown with high probability.

CHAPTER 3. LINKED DECOMPOSITIONS FOR INTERNET ROUTING 67

3.4.5 Proof of Claim 4 for Theorem 14

Before we can prove Claim 4, we need to prove the following lemma:

Lemma 8 Consider a set of n bins with N̂0 = O(poly(n)) balls total at time 0, and let i be

any bin that starts with at least ω(log n) balls. Let be pt be the fraction of balls in bin i at

time t, and consider any process that throws balls into bins such that the following growth

condition holds for bin i, for some constant c > 1
.99 , and at any time t with less than or

equal to Nf total balls:

Pr[Throwing a ball into bin i at time t] ≥ cpt

where Nf ≥ N̂0 is a random integer stopping time. Then Nf must be less than

β ≡ N̂0
1+(1

.99c−1
)
with probability at least (1− 1

nα), where α > 0 can be any arbitrarily large

constant, provided n is sufficiently large.

To prove the statement, we prove that if the growth condition does hold until β

balls are in the system, then the fractional load of bin i becomes strictly greater than 1,

with probability at least (1 − 1
nα). Furthermore, since it is impossible for a bin to have

fractional load more than 1, it must be the case Nf ≥ β happens with probability at most
1

nα . Therefore, we can conclude Nf must be less than β with probability at least (1− 1
nα).

To complete the proof, we now just need to show the fractional load of bin i becomes

strictly greater than 1, with probability greater than (1− 1
nα), if the growth condition holds

whenever there are less than or equal to β balls are in the system.

To prove this last statement, we start by showing that when εN̂0 balls are thrown,

the fractional load of bin i increases to at least p0(e
(.99c−1)ε) with high probability, where

ε > 0 is some small constant. Note that even if no new balls are added to bin i, pt is

still lower bounded by (p0
1+ε) over this time period. In order to analyze our process, we

first consider a simpler process that throws a ball into bin i with probability exactly c(p0
1+ε).

Note that this new process can be coupled with our original process, so that the new process

always adds fewer balls to bin i, while the εN̂0 balls are thrown. Thus, if we can say that

for this new process, the fractional load of bin i increases to at least p0(e
(.99c−1)ε) with

CHAPTER 3. LINKED DECOMPOSITIONS FOR INTERNET ROUTING 68

high probability, then the fractional load also increases to at least p0(e
(.99c−1)ε) with high

probability for our original process.

Now, if we look at this new process, the expected number of new balls added to

bin i is (cp0
1+ε)εN̂0, when εN̂0 balls are thrown. Furthermore, for any fixed ε > 0 and constant

α′ > 0, there exists a sufficiently large n such that the expected number of new balls added

is at least 2α′
ε2

log n, since bin i starts with p0N̂0 = ω(log n) balls. Moreover, by applying a

standard Chernoff bound, we can conclude the number of balls added to bin i is at least

(1−ε)(cp0
1+ε)εN̂0 with probability at least (1− 1

nα′). So the total number of balls in bin i is at

least p0N̂0 +(1−ε)(cp0
1+ε)εN̂0 with high probability, and the fractional load of bin i is at least

p0(1+ cε1−ε
1+ε)/(1+ ε) with high probability. For simplicity, we can lower bound the previous

expression by p0(e
(.99c−1)ε), for sufficiently small ε. Therefore, by the previous coupling

argument, we can conclude that for our original process, the fractional load increases by at

least p0e
(.99c−1)ε with probability at least (1− 1

nα′).

Thus, after εN̂0 balls have been thrown, we have increased the fractional load of

bin i by a multiplicative factor of e(.99c−1)ε with high probability, and we have increased

the total number of balls in the system by a multiplicative factor of (1 + ε). Furthermore,

we can repeat the same analysis r times, increasing the total number of balls to N̂0(1 + ε)r,

and increasing the fractional load of bin i by a factor of e(.99c−1)εr with probability at

least (1 − r
nα′), provided the growth condition holds for the new balls thrown over this

time. Now, assuming that the growth condition holds until there are at least β balls in

the system, we know that the growth condition holds over r = (1
ε)(

log N̂0

.99c−1) rounds, since

N̂0(1 + ε)r ≤ N̂0 · N̂0
1/(.99c−1)

. Moreover, if the growth condition holds over r = (1
ε)(

log N̂0

.99c−1)

rounds, then the fractional load of bin i increases by at least a factor of N̂0 with probability

at least (1− r
nα′). Therefore, we can conclude the fractional load of bin i becomes strictly

greater than 1 with high probability, since p0 > 1
N̂0

. Lastly, note that since we can make

α′ arbitrarily large, we can also make the previous statement hold with probability at least

(1 − 1
nα), for any arbitrarily large α > 0, provided n is sufficiently large. Therefore, bin i

obtains fractional load strictly greater than 1 with probability at least (1− 1
nα), and by our

previous reasoning, the lemma follows. ¥
To complete the proof of Claim 4, we would like to apply Lemma 8 to the low

bins in phase B. Note that by starting in phase B, we know that each low bin contains at

least ω(log n) balls with high probability, by Claim 1. So by setting with N̂0 = NA, we

automatically meet the first condition of the lemma with high probability. To complete the

CHAPTER 3. LINKED DECOMPOSITIONS FOR INTERNET ROUTING 69

proof, we need to show that for any low bin with fractional load pt at time t in phase B, the

probability of throwing a ball into the low bin is greater than or equal to cpt, where c > 1
.99

can be made arbitrarily large, provided c2 can be arbitrarily large. By showing the growth

condition holds for all low bins, we can apply Lemma 8 to show that with high probability

the growth condition must fail to hold for the low bin before the bins obtain Θ(N (1+ε0)
A)

balls. Claim 4 then follows immediately because the only way for the growth condition to

stop holding is if the low bin obtains the same load as bin M and becomes a middle bin.

Therefore, we just need to show that the growth condition holds for low bins for ar-

bitrarily large c, and then Lemma 8 implies Claim 4. To prove this, note that the probability

of throwing a ball into the low bin at time t is equal to Pr[Throw a ball into a low bin](pt

lt
) =

(1−(1−lt)m

lt
) · pt, where lt is the fractional load of the low bins at time t. Thus, to complete

the proof, we just need to show that by increasing c2, lt can be made arbitrarily small with

high probability.

To complete the last step, we prove the total fractional load of the low bins is

at most 1.01
c2−1 with high probability by showing that there are at most (n

c2
) low bins, and

with high probability each low bin contains at most 1.01 c2
n(c2−1) fractional load. The first

part of the statement follows easily from the definition of low bin, and the second part of

the statement follows by showing bin M contains at most 1.01 c2
n(c2−1) fractional load with

high probability. We can bound the the load of bin M , by noting that there are at least

(1 − 1
c2

)n middle and high bins, whose total fractional load cannot exceed 1. This implies

the fractional load of the least loaded middle or high bin must be less than or equal to
c2

n(c2−1) . Furthermore, note that the analysis used to prove Claim 5, also shows that the

fractional load of bin M has at most 1.01 times the load of the lowest middle bin with high

probability, and bin M can never have more load than a high bin. Therefore, the fractional

load of bin M is at most 1.01 c2
n(c2−1) with high probability, which completes the proof of

the last step.

Therefore, we have shown that every low bin eventually obtains the same load as

bin M and joins the middle group with high probability sometime before the bins obtain

Θ(N (1+ε0)
A) balls, where ε0 can be arbitrarily small, by taking c2 large enough.

CHAPTER 3. LINKED DECOMPOSITIONS FOR INTERNET ROUTING 70

3.5 Proof of Theorem 13: Component Sizes in Linked De-

composition Balance

We prove that our algorithm yields balanced component sizes (in terms of degree)

with high probability when running on the preferential attachment model. To analyze the

size of the components generated by our preferential attachment process, we analyze a

random process on n bins, where each bin represents a component and the loads represent

the size of the components. By looking at the preferential attachment process, we know

that the random process starts with 2kn balls distributed arbitrarily among n bins, such

that each bin contains at least k balls each. Furthermore, we also know that with high

probability the process should start with at most O(n1/2+ε) balls each in bin [FFF05], a

fact which will be useful later on. At each step of the process, 2k new balls are thrown into

the n bins, according to the following rule:

Pick k bins i.i.d. at random, with probability proportional to bin load

(I) Throw 1 ball into each of the k random bins picked

(II) Throw k more balls into the least loaded of the k random bins picked.

Let’s call this random process P. As before, we’ll analyze another random process

P0 which does not always throw the k balls in step (II) into the least loaded bin, but

sometimes throws the k balls into a heavier bin. We can show that the random process

P0 achieves roughly balanced loads (whp), and we can show a coupling exists where P
always majorizes P0. Therefore, P also achieves roughly balanced loads (whp). We ignore

the coupling argument and finish by defining P0 below and showing it becomes roughly

balanced (whp).

Our random process P0, also throws balls in two phases, analogous to the two

phases defined in section [cite]. For each phase, we throw the same number of balls as

before, and we also choose where to throw the k balls in step (II) using the same rules

as before, based on whether or not the bins selected are low, high, or middle. The only

slight modification we employ is in phase B, where we say a low bin becomes a middle bin

whenever it obtains load equal to or greater than the load of bin M , and a high bin becomes

CHAPTER 3. LINKED DECOMPOSITIONS FOR INTERNET ROUTING 71

a middle bin whenever it has obtains load equal to or less than the load of bin M . To prove

the process P0 yields balanced loads, we prove the same five claims as before. The proof

of each claim is roughly the same as before, but the details are slightly different as the two

processes are slightly different.

3.5.1 Proof of Claim 1 for Theorem 13

To prove Claim 1, we analyze a new random process P1 on n bins, which starts

with the same initial load distribution as the random process P0, but adds balls to bins in

a slightly different manner. At each step of the process, 2k new balls are thrown into the n

bins, according to the following rule:

Pick k bins i.i.d. at random, with probability proportional to bin load

(I) Throw 1 ball into each of the random bins picked

(II) Throw k more balls into the last random bin picked

A simple coupling can be defined so that P0 always majorizes P1, so that we just

need to lower bound the load of the least loaded bin when running the random process P1,

in order to prove lower bounds on the load of the least loaded bin when running the random

process P0. We omit the coupling argument for conciseness, but finish by proving that all

bins contain at least Ω(log n) balls with high probability after throwing Θ(n2+ε) balls when

running the random process P1, where ε > 0 can be arbitrarily close to 0.

To prove the previous statement, we show that after throwing Θ(n2+ε) balls, any

fixed bin has Ω(log n) balls with probability at least 1−n−α, where α > 0 can be arbitrarily

large, provided we can set k arbitrarily large. Our claim then follows by applying a simple

union bound, which implies that after throwing Θ(n2+ε) balls, all bins have load at least

Ω(log n) with probability at least 1− n−α+1.

To analyze the load of a single bin B, note that after t iterations of our process

(i.e. after 2kt new balls have been thrown), bin B is picked as a random bin in the next

iteration with probability at least k
2kn+2kt = (1

2)(1
n+t). Now consider the random variable

Y ≡ ∑T
t=0

∑k
j=1 Xt,j , where Xt,j are bernoulli random variables with success probability

CHAPTER 3. LINKED DECOMPOSITIONS FOR INTERNET ROUTING 72

(1
2)(1

n+t), for t ∈ {0, . . . , T}, j ∈ {1, . . . , k}. It is easy to that Y is stochastically dominated

by the number of balls thrown by step (I) of our process, and furthermore can be used

to lower bound the number of balls added to bin B. Note that for T = n2+ε, E[Y] =
k−1
2

∑T
t=0(

1
n+t) ≈ k−1

2 (1 + ε) log n. Now, we can apply a standard Chernoff bound on Y to

conclude the at least Ω(log n) balls are added to bin B with probability at least 1 − n−α,

where α can be made arbitrarily large, provided k can be arbitrarily large. Therefore, we

have shown that after throwing Θ(n2+ε) balls, all bins have load at least Ω(log n) with

probability at least 1− n−α+1.

3.5.2 Proof of Claim 2 for Theorem 13

Lemma 3 for Theorem 13

Consider running the random process P1 defined above in Claim 1, for Tf =

O(poly(n)) number of steps. Assuming we have a constant c ∈ [12 , 1), which is sufficiently

close to 1, we can prove the following lemma about the process above:

Lemma 9 The lowest cn bins always contain at least 1
8 fraction of the load, during all Tf

iterations of the random process, with high probability.

Remark 5 A simple coupling argument implies that this statement also holds for our orig-

inal random process P0.

To prove the lemma, let’s consider a fixed subset of cn bins. Let Xt denote the

fraction of balls in cn bins after t iterations of our process (i.e. after 2kt new balls have

been thrown). For notation, let Nt ≡ 2kn + 2kt be the total number of balls in the n bins

after iteration t, and let Bt represent the number of new balls added to our subset of cn

bins in the tth iteration. Note that Xt is a martingale, since:

CHAPTER 3. LINKED DECOMPOSITIONS FOR INTERNET ROUTING 73

E[Xt+1| Xt] =
Xt ·Nt + E[Bt+1|Xt]

Nt + 2k

=
Xt ·Nt + 2k ·Xt

Nt + 2k

= Xt

Since Xt is a martingale, we make use of Azuma’s inequality. Note that ct ≡
|Xt+1 −Xt| ≤ (2k

Nt
) = (1

n+t) and
∑∞

t=0 ct
2 ≤ ∑∞

t=0(n + t)−2 ≤ ∫∞
x=n(x − 1)−2 = (n − 1)−1.

Furthermore, X0 ≥ cnk
2nk = c

2 ≥ 1
4 . Therefore, we can apply Azuma’s inequality to obtain

Pr[XT ≤ 1
8] ≤ e−(n−1)/128, for any fixed time T , which means that any fixed subset of cn

bins has probability at most e−(n−1)/128 of having less than 1
8 load at time T . Provided c is

sufficiently close to 1, we can then apply a union bound over all subsets of bins of size cn,

and over all times T ∈ {0, . . . , Tf} to conclude that the lowest cn bins always have fractional

load at least 1
8 with high probability.

Using Lemma 3

Note that Lemma 3 (9) also lower bounds the fractional load of the lowest cn bins

when running the P0 process, via a simple coupling/majorization argument. Lemma 3 is

useful for proving Claim 2 because a lower bound the fractional load of the low bins in

phase A of the P0 process can be used to upper bound the probability that balls get added

to the high bins in phase A.

To start our proof, note that at most 1
c1

fraction of the bins have fractional load

greater than or equal to c1
n , which implies that at least (1 − 1

c1
) fraction of bins are low

bins. Thus, if we make c1 sufficiently large and take c = (1− 1
c1

), then we can use Lemma

3 to conclude with high probability that the low bins in phase A always contain at least 1
8

of the load and the high bins in phase A contain at most 7
8 fractional load.

Now let pt represent the fractional load of some high bin H at time t and let ht

represent the total fractional load of all high bins at time t. It is not hard to see the expected

number of balls that get added to high bin H in phase A at time t equals kpt + k(ht)k(pt

ht
),

which is upper bounded by 2k · pt(1
2 + (7

8)k−1) with high probability. Thus, we have shown

with high probability that the fraction of 2k new balls that get added to bin H at time t

CHAPTER 3. LINKED DECOMPOSITIONS FOR INTERNET ROUTING 74

is less than or equal to γpt, in expectation, where γ = (1
2 + (7

8)k−1) ≈ 1
2 for large k. In

other words, in expectation bin H is only obtaining γpt ≈ (1
2)pt fraction of the 2k new balls

thrown at each time step, which should cause the fractional load of high bin H to decrease

rapidly.

So in essence, the high bin H satisfies a shrinkage condition analogous to the one

described in Lemma 2, with shrinkage constant γ ≈ 1
2 . Furthermore, note that for our

modified Polya urns process P0, we can assume that each bin starts with at most O(n
1
2
+ε)

balls (or in other words O(n−1/2+ε) fractional load) with high probability [FFF05], where

ε > 0 can be arbitrarily small. Thus, the fractional load of bin H must only decrease by

a factor of δ = Θ(n−1/2−ε) to ensure H has fractional load at most c1
n . From here, we can

essentially follow the same steps used in proving Lemma 2, to prove that bin H obtains

load c1
n with high probability, sometime before at most β = N̂0δ

(1
(1+ε)γ−1

) balls are thrown

by our process, where N̂0 is the total number of balls that start in our bins and ε > 0 can

be arbitrarily small. We omit the proof for conciseness, but it can also be proved using a

series of Chernoff bounds as before.

Note that since γ can be arbitrarily close to 1
2 for k sufficiently large and ε arbi-

trarily close to 0, then our new version of Lemma 2 implies that bin H obtains fractional

load c1
n sometime before β = O(N̂0

2+ε0) balls are thrown. After bin H obtains fractional

load c1
n , it is not hard to show that with high probability bin H always maintains fractional

load less than 1.01(c1
n) until the end of phase A, thus proving Claim 2.

3.5.3 Proof of Claim 5 for Theorem 13

To prove Claim 5, we follow the same steps as the original proof of Claim 5. Note

that if a bin B first becomes a middle bin at time T0 (i.e. after 2kT0 new balls have been

thrown), then |bT0 −mT0 | ≤ 2k, where we use the notation bt to represent the number of

balls in bin B at time t, and we use mt to represent the number of balls in the ”yardstick”

middle bin M at time t. Now if we define Xt = bt
mt+bt

, then we know XT0 ∈ [12 − ε, 1
2 + ε]

(whp), where ε > 0 can be arbitrarily small provided n is sufficiently large, since (whp)

mT0 = Ω(log n) and |bT0−mT0 | ≤ 2k. Furthermore, it is not hard to show Xt is a martingale

for t ≥ T0, and we can apply Azuma’s inequality as before to prove that at the end phase

B, Xt ∈ [12 − 2ε, 1
2 + 2ε], where ε > 0 can be arbitrarily small. Therefore, we have proved

CHAPTER 3. LINKED DECOMPOSITIONS FOR INTERNET ROUTING 75

Claim 5.

3.5.4 Proof of Claim 4 for Theorem 13

To prove Claim 4, we follow the same steps as the original proof of Claim 4. We

can show the total fractional load of the low bins is at most 1.01
c2−1 (whp), following the same

steps detailed in the next to last paragraph of the original proof of Claim 4. Now, let pt

represent the fractional load a low bin L at time t of our process P0 (i.e. after 2kt new

balls have been thrown in t iterations), and let lt represent the total fractional load of all

lows bins at time t. Then, the expected number of new balls added to bin L on the t + 1th

iteration of P0 is kpt + k(1 − (1 − lt)k)(pt

lt
), and (whp) this is greater than or equal to

k(1
2)(pt

lt
) ≥ kpt(c2−1

3), provided c2 ≥ 4.

Thus, we have shown with high probability that the expected fraction of the 2k

new balls that get added to bin L at time t is greater than or equal to γpt, where γ = c2−1
6 .

In other words, (whp) the low bin L is satisfying a growth condition analogous to the one

described in Lemma 5, where bin L obtains in expectation least γpt = (c2−1
6)pt fraction of

the 2k new balls thrown at each time step. The growth condition implies the fractional load

of bin L increases rapidly, and we can follow the same steps as in Lemma 5 to prove that

bin L becomes a middle bin within β ≡ N̂0
1+(1

.99γ−1
)
iterations with high probability, where

N̂0 = NA is the total number of balls in the bins at the start of phase B. Furthermore,

note that γ can be made arbitrarily large by taking c2 large enough, which implies that bin

L becomes a middle bin sometime before N1+ε
A balls are thrown, where ε can be arbitrarily

small provided by choosing c2 large enough. Finally, we note bin L becomes a middle bin

with sufficiently high probability, so that a union bound implies that all low bins must

become middle bins with high probability, thus proving Claim 4.

3.5.5 Proof of Claim 3 for Theorem 13

To prove Claim 3, we follow roughly the same steps as those used in the original

proof of Claim 3. We start by proving that after N1+ε
A new balls are thrown in phase B,

the fractional load of the low and middle bins must be at least 1.01
c2−1 (whp). To prove this,

we take all bins that start as low and middle bins in phase B, say bins B1, . . . , Bi, and

CHAPTER 3. LINKED DECOMPOSITIONS FOR INTERNET ROUTING 76

imagine a fictional super bin L, which contains bins B1, . . . , Bi and whose load is the sum

of the loads of bins B1, . . . , Bi. Note that if the low and middle bins contain less than 1.01
c2−1

fractional load, then super bin L satisfies the same growth condition as described previously,

with the same growth constant γ = c2−1
6 . Furthermore, one can again use Lemma 5 to show

that within N1+ε
A steps, L must have fractional load at least 1.01

c2−1 (whp). Therefore, the

low and middle bins must contain fractional load at least 1.01
c2−1 (whp) after N1+ε

A balls have

been thrown.

As a result, the high bins must contain fractional load at most (1− 1.01
c2−1) after N1+ε

A

new balls have been thrown (whp), and therefore, we can show any high bin H, satisfies a

shrinkage condition with shrinkage constant γ = (1
2 +(1− 1.01

c2−1)k−1), which can be arbitrarily

close to 1
2 . At this point in our process, it is not hard to show that each high bin still contains

at most 1.01 c1
n fractional load (whp), and must become a middle bin before ĉN1+ε

A more

balls are thrown (whp), for sufficiently large ĉ. The latter statement must be true because

if H does not become a middle bin, then H must satisfy the shrinkage condition for ĉN1+ε
A

steps. One can then use the same analysis from Lemma 2 to conclude the fractional load

of bin H must decrease to 1
2n (whp). However, following the same argument as in last

paragraph of the original proof of Claim 3, we can show that this cannot happen (whp),

and bin H must become a middle bin (whp). Finally, a simple union bound implies that all

high bins must become middle bins (whp) sometime before O(N1+ε
A) new balls are thrown

in phase B.

3.6 Linked Decompositions with Exceptions

The proof in the previous section that PA(m) graphs have linked decompositions

requires m to be a large constant, and the graphs produced have expected degree 2m. The

Internet, however, has average degree about four; as a result, the PA(m) model is not

considered a realistic model of the Internet unless m is very small. Our next result holds

when m ≥ 2, and achieves a slightly better a =
√

n log n, but it achieves a weaker form

of linked decomposition. In particular, define a linked decomposition with exceptions and

parameters a, b, c, d to be a decomposition satisfying the 4 requirements, except that each

subgraph is allowed to contain one “promiscuous” node, which may belong to more than

b subgraphs. It is not hard to see that the routing properties of the decomposition (see

CHAPTER 3. LINKED DECOMPOSITIONS FOR INTERNET ROUTING 77

Section 3.7) are preserved in the face of a single exception per component (the remaining

nodes essentially “route around it”). We can show:

Theorem 15 A graph Gn generated by the PA(2) model has, with high probability, a linked

decomposition with exceptions and a = Θ(
√

n log n), b = 2, c = Θ(
√

n/ log n), and d =

log n.

We start by running PA(2) for t = n/ log n steps, and then we decompose the

resulting Gt into
√

n/ log n small diameter subgraphs, each with a total degree (sum of the

degrees of its nodes) that is between s and 3s, where s =
√

n log n. These subgraphs will

be completely disjoint, except for at most one exceptional node in each.

Due to space limitations, we only provide a rough sketch regarding how to obtain

such this starting decomposition. we by computing a breadth-first search tree of Gt starting

from the first node, thus achieving log n/ log log n diameter with high probability [BR02].

From here, it is not hard to show that one can start from the bottom of the tree and

iteratively find connected subtrees of total degree between s and 2s, until one subtree

remains of total degree at most 3s. These subtrees cover all nodes, and each subtree only

intersects other subtrees at one of its nodes (the node one closest to the root).

Once we have this initial decomposition, with total degrees balanced within a

constant, we continue the PA(m) process for the remaining n − t steps. Notice that,

for each new node i and edge [i, j] generated out of it, the subgraph to which the other

endpoint j belongs is generated by a distribution that is, initially, approximately uniform

at random; that is, each has probability Θ(1/c). We show next that, with high probability,

this approximately uniform distribution will be maintained throughout the process. This

follows from the following lemma, which can be proved using the same techniques as the

ones used to prove Lemma 7 in the proof of Theorem ??:

Lemma 10 Let x1, . . . , xc be the fractional loads of c bins containing at least ω(log c) balls

each, and let x′1, . . . , x
′
c be the fractional loads of the bins at any later time, after running

the Polya urns process. Then with high probability |x′k−xk| ≤ ε for all k ∈ {1, . . . , c}, where

ε > 0 can be arbitrarily small, provided c is large enough.

CHAPTER 3. LINKED DECOMPOSITIONS FOR INTERNET ROUTING 78

How do we assign new nodes to (up to b = 2) of the c subgraphs? For each new

node i, suppose that its two edges are [i, j] and [i, j′]; we assign i to both subgraphs to which

j and j′ belong; this way we ensure that these two subgraphs have a node in common. In

other words, each new node i can be seen as a draw of one of the c2 possible pairs of

subgraphs, each with probability that is Ω(1/c2). By the coupon collector principle, after

Θ(c2 log c) < n − t nodes, all components will intersect with high probability, completing

the proof. ¥
Another important model of Internet-like graphs [ACL00; MPS03] is the one in

which we start with a degree sequence d1 ≥ d2 ≥ · · · ≥ dn, such that di = d1 · i−α for some

α between 1/2 and 1, and then an edge is added between nodes i and j with probability

proportional to di · dj . It is clear that, in such a graph, the degrees will be, in expectation,

proportional to the di’s. We call this the degree sequence model. By a similar argument and

construction, which we omit, we can show the following:

Theorem 16 Linked decompositions with exceptions and a = Θ(
√

n log n) can be obtained

in the degree sequence model, as well as for Gn,p, with p = Θ(1
n).

Finally, we note that by another simple argument, random graphs in the Gn,p

model have linked decompositions (without exceptions), provided that p is above log n/n.

3.7 The Internet and Routing

In recent years, we have seen a surge of research activity aiming at a theoreti-

cal and foundational understanding of the Internet. The motivation for such a research

agenda is twofold: first, the Internet is a novel, fascinating, and intellectually challeng-

ing computational artifact of central importance to computing technology and society in

general, and hence it is natural that it is an attractive subject for theoreticians. Sec-

ond, even though the Internet has emerged without much deliberate design, such de-

sign may become necessary in the future; foundational understanding and theoretical in-

sights would be handy at such a juncture. Indeed, as challenges of scale accumulate,

there are several serious efforts underway to “redesign” the Internet [FI05; GE05; NA;

CCK+06]. It is within this framework that we see the concept of linked decomposition, and

CHAPTER 3. LINKED DECOMPOSITIONS FOR INTERNET ROUTING 79

the theoretical and experimental evidence presented here that it is feasible in the context

of the Internet.

It is not hard to see that a linked decomposition with parameters a, b, c, d enables

a novel form of Internet routing with routing tables of size Õ(ab + n/a), delay O(d), and

O(d) packets sent per message routed. To show how this can be done, first note that each

node v only needs Õ(ab) space to store enough information to route to any node u which

belongs to one of v’s components. Furthermore, in order to route to any node u, which does

not belong to one of v’s components, v just needs an intermediate node w, which belongs

both to one of u’s components and one of v’s components. (Note that such a node w must

exist due to property (4) of our linked decomposition). Once we have found our node w, it

is easy to route our message from v to u through w.

Conceptually, storing an intermediate node w for each destination node u appears

to require a table of size O(n), but fortunately node v does not have to store the entire

table, as it is not hard to distribute this table among the nodes in v’s components, such that

each node only has to store Õ(n/a) information. In particular, we can use hash functions

to distribute the information in a manner which allows u to find the intermediate node w

for any destination node v. Thus, we have a routing protocol that uses Õ(ab+n/a) storage

and routes with delay O(d).

For a concrete example, see Figure 3.1 below. To route a packet from vertex 1 to

vertex 2 in the given example, vertex 1 knows how to reach any node in component S1 and

can route the packet entirely within component S1 by following the links in S1. To route

a packet from vertex 1 to vertex 3, which is not in any component of vertex 1, we a send

lookup messages within component S1 to determine the intermediate vertex to use, in this

case vertex 4. The packet is then routed to vertex 4, and vertex 4 uses its routing table to

complete the route to vertex 3.

Note that the above routing scheme can be implemented even if the addresses of the

vertices are totally amorphous strings (called “flat labels” in the Internet redesign literature

[CCK+06]), as opposed to today’s hierarchical and geographically specific IP addresses —

a key feature of today’s Internet, which is also the source of some of the most challenging

problems of scale and evolution.

By giving up “flat labels” and loosening our linked decomposition requirements,

we can decrease table size to about n1/3, as follows: Instead of requiring that all components

intersect, we only require that any two components either intersect with one another, or

CHAPTER 3. LINKED DECOMPOSITIONS FOR INTERNET ROUTING 80

1
 3

4
2

S
1

S
2

S
3

Figure 3.1: In this example, we show a decomposition with a = 6, b = 2, c = 3, and d = 4.

both intersect with the same component. That is, the intersection graph of the component

is no longer a clique, but has diameter two. It turns out that, if the address of each node

also contains a component indicating a subnetwork to which the node belongs, then routing

tables of size about a suffice. And, by applying now both coupons collector and the birthday

paradox (details omitted) it can be shown that PA(m) graphs have such a decomposition

with a = n1/3, whp.

The routing implications of our results explained in this section are related to two

recent ideas. The one that provided direct inspiration is the routing on flat labels (rofl)

proposal [CCK+06], a novel routing architecture borrowing methodologically from peer-

to-peer networks. We came up with the concept of linked decompositions while trying to

identify the limits of their approach. The rofl work is validated experimentally, and does

not provide nontrivial performance guarantees. Another related body of work is that on

compact routing [ACL+03; AGM+04; KFY04; Kkc] seeking routing algorithms with small

routing tables and small stretch (worst-case ratio between routing delay and distance in

the network). The strongest known such result achieves, for any graph, Õ(
√

n) tables and

stretch 3 [AGM+04], and it is in fact known empirically [KFY04] that this algorithm runs

better on the real Internet.

Although the existing compact routing work dominates our results, our approach

is conceptually simpler, and does not require the use of landmark nodes. Avoiding the use of

landmark nodes, may provide benefits in terms of congestion and robustness against failures,

since as many as Ω(n3/2) pairs of nodes may route packets through a single landmark node

CHAPTER 3. LINKED DECOMPOSITIONS FOR INTERNET ROUTING 81

in the existing Õ(
√

n) routing scheme. As we describe in the open problems section, we

hope to explore the potential benefits that linked decompositions may provide in terms

of balanced congestion and robustness. In our experiments, the stretch of our routing

algorithm is very rarely over 3. Furthermore, our work provides a rigorous explanation

for the surprising empirical finding that in our experiments, shown in the next section,

the actual Internet can be decomposed in such a demanding and unlikely way, which may

prove useful in maintaining various control and management functions locally within each

decomposition component.

3.8 Experiments

Preferential Attachment Graphs

In order to validate the linked decomposition idea, we apply the following simple

algorithm to graphs generated according to PA(4): Choose a number c to be the number

of components (colors), and assign the first c nodes of the PA(4) process to their own

component (color). For each new vertex of the PA(4) process after that, if it connects

two components that are not yet connected, add it to both of them, otherwise add it to

the smallest one. Continue generating nodes and assigning them to components until all

components are connected. Figure 3.2 below shows for each c, the number of nodes that

need generated in order to connect all c components; as expected, it is quadratic.

After all the components become connected, we measure the smallest, largest,

and average size of all components as a function of c, the number of components; we note

occasional large deviations from the expected linear growth of the largest component.

Internet Graphs

We also applied our ideas to two actual Internet graphs, one showing connections

between autonomous systems, known as the “AS graph” or “BGP graph”, and one showing

the connections between Internet routers, known as the “router graph”. Both were obtained

CHAPTER 3. LINKED DECOMPOSITIONS FOR INTERNET ROUTING 82

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 0 10 20 30 40 50 60 70 80 90 100

N
um

be
r

of
 n

od
es

 n

Number of colors c

Number of nodes needed for a c cover

n=2c2

n=c2/2
experiment

Figure 3.2: Number of nodes that need to be generated in order to connect c components

(colors)

 0

 100

 200

 300

 400

 500

 600

 0 10 20 30 40 50 60 70 80 90 100

N
um

be
r

of
 n

od
es

Number of colors

Min/Avg/Max number of nodes per color

minimum number
average number

maximum number

Figure 3.3: Final size of components after all c components become connected

CHAPTER 3. LINKED DECOMPOSITIONS FOR INTERNET ROUTING 83

from the CAIDA website [cai].

To run our algorithms on these graphs, we first preprocess them by repeatedly

removing degree-one nodes. We approximate the (unknown) presumed arrival order of

PA(m) by the order of decreasing degrees. One problem arises: Sometimes the next node

is not connected to previous nodes. For this reason we maintain a priority queue containing

such nodes, and remove them when a neighbor has been processed.

The BGP graph has, after the removal of leaves, 12358 nodes. With b = 4 it can

be decomposed into 56 linked components, and with b = 2 to 35. Similarly, the router graph

has, after the removal of leaves, 141,509 nodes. With b = 4 it can be decomposed into 215

components, but with b = 2 to only 93.

Interestingly, if we apply the same algorithm (sort by degree and then process,

using a priority queue) to PA(m) data, after the end of the generation process, we get

slightly worse results for small graphs, but slightly better results for larger graphs.

Routing

We simulated routing on the decompositions of real graphs that we obtained, by

selecting 10,000 random source-destination pairs and measuring the stretch and congestion

(number of times each node was used). The stretch results for both autonomous systems

(BGP) graph and router graphs below show that the stretch very rarely exceeds 3.

But these experiments also showed that our scheme has a problem with congestion:

In both cases, as roughly 10% of the traffic was directed through one particular node!

Remedies are discussed briefly in this chapter’s last section.

3.9 Open Problems

Our proofs are in some sense existential and non-constructive: Even though we

give a decomposition algorithm, this algorithm needs to “see” the actual running of the

PA(m) process in order to work with high probability; what if we are given ex post a graph

that has been generated by PA(m), but with its nodes permuted? Or if we are actually

given the graph of the Internet? In our experiments with permuted PA(m) graphs and

Internet graphs we run our decomposition algorithms on the graph with nodes ordered in

CHAPTER 3. LINKED DECOMPOSITIONS FOR INTERNET ROUTING 84

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 2 3 4 5 6

P
(s

tr
et

ch
 ≤

 x
)

Stretch x

Stretch cumulative distribution function

BGP stretch distribution function

Figure 3.4: Stretch of linked decomposition scheme on the BGP graph.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 2 3 4 5 6 7

P
(s

tr
et

ch
 ≤

 x
)

Stretch x

Stretch cumulative distribution function

Routers stretch distribution function

Figure 3.5: Stretch of linked decomposition scheme on Internet router graph.

CHAPTER 3. LINKED DECOMPOSITIONS FOR INTERNET ROUTING 85

decreasing degree. The intuition is that this is our best guess for the creation order. This

works well in practice as shown in our experiments, and we would love to prove that it

works with high probability on PA(m) graphs. In addition, some other open questions we

would like to answer are:

Does the Polya urn process with the power of two choices also balance after O(n2+ε)

steps? In the case of interest, when each bin starts with fractional load at least 1
2n ,

we can prove the power of two choices balances loads after n3+ε steps (whp), but is

an exponent arbitrarily close to two possible?

Does our routing algorithm yield better worst-case congestion than the existing Õ(
√

n)

routing scheme? We have removed the use of landmark nodes, but is it enough to

balance congestion?

Are there efficient ways to update the routing tables with the addition of new nodes

and edges, or more importantly, node and edge deletions?

Can autonomous systems in a network be appropriately incentivized to organize them-

selves in linked decompositions?

86

Chapter 4

An Online Bipartite Matching

Problem

4.1 Background

In this chapter, we study an online bipartite matching problem, which models a

scenario in which clients arrive over time and request permanent service from a set of given

servers. As each client arrives, she announces a set of feasible servers capable of servicing

her request, and our goal is to provide service to each client persistently by maintaining

a matching at all times between clients who have arrived and servers capable of servicing

their requests. We would like to assign clients to servers permanently without ever having

to reassign clients to different servers, but when a new client arrives we may be forced to

reassign existing clients to alternative servers to ensure that all clients can receive service.

As it is often more important to provide service to all clients, the goal of our algorithm

will be to maintain a matching always between arrived clients and allowed servers, while

minimizing the switching cost, the total number of times that clients are reassigned to

different servers.

Our online bipartite matching problem has a wide variety of applications spanning

diverse areas, including streaming content delivery, web hosting, remote data storage, job

scheduling, and hashing. We describe a few applications below, which can be modeled as

an instance of the online bipartite matching problem we described above. In the follow-

ing examples, we always refer to the entities requesting service as clients and the entities

CHAPTER 4. AN ONLINE BIPARTITE MATCHING PROBLEM 87

providing service as servers for consistency. In examples where it is not clear, we mark in

parenthesis which entities are clients and which entities are servers.

Streaming Content Delivery, Web Hosting, and Remote Data Storage We

have a set of servers capable of streaming content online, hosting web pages, or storing

data remotely. A sequence of clients arrives requesting to have their content streamed

online, their web pages hosted online, or their data stored online. Due to locality,

security, cost, routing policy, or other reasons, the streaming content, web page, or

data from each client can only be hosted at a subset of server locations.

Job Scheduling We have a set of servers with differing capabilities available to

process job requests from persistent sources - jobs that need to be processed over a long

or indefinite period of time (e.g. protein folding, genomic research, SETI@HOME).

A sequence of persistent job requests (clients) arrive and reveal a subset of servers

capable of servicing their request.

Hashing We have locations in a hash table (servers) available to store data objects

(clients), and a set of hash functions. Data objects arrive over time and can be

assigned to a location in the hash table, if one of the hash functions maps the data

object to that location.

Note that in all the examples above, it is reasonable to assume that clients can be

reassigned to different servers, but at a cost. For instance, in the streaming content example,

clients may not be able to access their content while their content is being transferred from

one server to another. Thus, it is desirable to minimize the number of the reassignments

our algorithm incurs, which causes these interruptions.

Before stating our results, we define our problem more formally. Each instance of

the online bipartite matching problem is defined by:

A bipartite graph G between clients and servers, which represents the servers to which

each client can connect

A permutation σ, which represents the sequence in which the clients arrive

The graph G is unknown at the beginning, but as clients arrive according to σ,

each client reveals the servers to which she has edges. The goal of the algorithm to is

CHAPTER 4. AN ONLINE BIPARTITE MATCHING PROBLEM 88

to maintain a matching between arrived clients and servers at all times, while minimizing

the total number of times that clients are reassigned to different servers. Alternatively, as

each client arrives, our algorithm can be viewed as finding an augmenting path (a path

that alternates between matched and unmatched edges), in the graph revealed so far, from

the arriving client to an unmatched server. It should be clear that upper bounding the

total length of the augmenting paths used by the algorithm, also upper bounds the total

switching cost. As the total length of the augmenting paths is close to the switching cost,

it can also be used to lower bound the switching cost in some cases as well.

For simplicity, note that we assume each server may service (or be matched to) at

most one client at a time, although our results can be fully generalized to the case where

servers can service multiple requests. We also assume that G consists of n clients and n

servers, and G contains a perfect matching, although our results still hold essentially without

these assumptions. See the next section on our model assumptions for further discussion.

Although this problem was introduced over a decade ago [GKKV95], we still know

surprisingly little about the optimal algorithm. For example, there is a very natural greedy

algorithm, which provides service to each new client by using an augmenting path of min-

imal length, but is this greedy algorithm optimal? What is its worst-case switching cost?

There are no known upper bounds to show that the greedy algorithm or any other algorithm

performs better than O(n2) in the worst case, but an upper bound of O(n2) is trivial since

any reasonable algorithm only switches at most O(n) clients per arriving client. Further-

more, an existing lower bound in [GKKV95] only shows that the total switching cost has

to be Ω(n log n), so a large gap exists between the known upper and lower bounds.

4.1.1 Online Matching Assumptions

Although we assume the total number of arriving clients is the same as the total

number of servers, it is not difficult to see our upper bounds on the switching cost still hold

if n clients arrive and there are m > n servers. We omit formal details, but the bounds on

the switching cost are the same for this case when measuring the switching costs relative

to n, the number of clients.

We also assume that each server may service (i.e. be matched to) at most one

client, but one should note that our results also hold when servers can service multiple

clients. In this more general setting, when n clients are to be matched to m servers who

CHAPTER 4. AN ONLINE BIPARTITE MATCHING PROBLEM 89

can service s1, s2, . . . , sm clients each, our bounds also hold and are exactly the same as

the unit capacity case, when measuring the cost relative to n the number of clients. The

bounds from the unit capacity case also apply here, since we can reduce this more general

problem to the unit capacity case by creating si server nodes for each server i ∈ {1, . . . , m}.
By treating each server i as si unit capacity servers, and creating edges appropriately, it is

not hard to see that any bounds for the unit capacity case also yield equivalent bounds for

the general capacity case in terms of n the number of clients that arrive.

Lastly, we assume that there is a matching at each step of the algorithm. We make

this assumption because if a new client i arrives and no matching exists between the arrived

clients and the servers, then we might as well ignore client i. We feel no remorse ignoring

client i, since no algorithm could have matched i and the other arrived clients. By ignoring

the clients who we cannot possibly serve (without disconnecting other clients), we are then

left with an instance where at each step a matching exists between the arrived clients and

the existing servers.

4.1.2 Our Results

Although worst case analysis for this problem has not yielded fruitful results, the

worst case may not often occur in practice, and it may be reasonable to make certain

assumptions about the graph G or the arrival order σ. For example, in the case of remote

data storage, one might imagine that the graph G which determines the servers which can

store a client’s data is fixed, but perhaps the arrival order σ is random. Does the greedy

algorithm perform provably better than O(n2) in this case? Moreover in some cases, it

might be reasonable to assume that the graph G is generated randomly. For example, in

the case of hashing, if Θ(log n) random hash functions are chosen, then the set of edges

between clients (data elements) and servers (hash locations) is a graph where each client

has Θ(log n) random edges to servers. Can better bounds be proved in this case as well?

In this chapter of the dissertation, we show that indeed the switching cost can

be much better under these conditions, despite the lack of worst case upper bounds better

than O(n2). In the first case, we show that when G is any arbitrary bipartite graph with a

perfect matching, and σ is chosen uniformly at random, then the greedy algorithm performs

well and achieves O(n log n) switching cost with high probability. This bound is tight as we

show that there is a distribution over graphs for which any deterministic algorithm must

CHAPTER 4. AN ONLINE BIPARTITE MATCHING PROBLEM 90

incur cost Ω(n log n) in expectation, even if σ is chosen uniformly at random.

In the second case, where each client has Θ(log n) random edges to servers, we

show that the switching cost can be even better. In this case, we prove that the switching

cost is O(n) with high probability, and it nearly matches our lower bound of Ω(n/ log n).

In terms of the number of edges used to generate the graph G, our result is tight, since

Ω(log n) random edges are needed per node, in order to guarantee a perfect matching with

high probability.

Lastly, we also make the first progress in over a decade in the original worst

case model where σ is chosen adversarially, but G is known to be acyclic (i.e. a forest).

In this setting, we derive a new algorithm which achieves cost O(n log n), which matches

the existing lower bound of Ω(n log n) for forests. Although the networks that occur in

practice are not often acyclic, we view our last result as making progress towards finding

an O(n log n) solution in the general worst case setting.

4.1.3 Related Work

The problem studied here was first introduced by Grove et al. [GKKV95] in a

paper, which focused on a special case of the problem where each client has degree at most

two. For this special class of instances, they prove that the greedy algorithm incurs a worst-

case switching cost of O(n log n), and they give a matching lower bound by showing there

are cases where any algorithm must have cost Ω(n log n). The paper goes on to consider

the case in which clients can connect and disconnect over time; for this problem, assuming

that each client has degree at most two, they present a randomized algorithm which has

a competitive ratio of O(
√

n), where the competitive ratio of an online algorithm is the

ratio between the cost incurred by the online algorithm, which does not know the input

sequence in advance, and the cost incurred by an optimal algorithm which does know the

input sequence in advance. Previous to our work, the special case in which each client has

degree at most two, was the only class of instances for which an optimal online algorithm

was known.

Our problem is related to previous work on online load balancing with task pre-

emption, which has been studied by many authors, see [AGZ96; PW93; Wes95] for example.

The main difference between our work and the previous work on load balancing is that our

model assumes a hard capacity constraint on the servers and allows clients to be reassigned,

CHAPTER 4. AN ONLINE BIPARTITE MATCHING PROBLEM 91

while the previous load balancing work generally does not assume a hard capacity constraint

on the servers, or does not allow reassignments. Without hard capacity constraints or reas-

signments, the goal in online load balancing is often to minimize the maximum load, or if

reassignments are allowed, the goal is to minimize the number of reassignments while always

maintaining a maximum load which is close to the optimal maximum load achievable.

For example, a series of works by Azar et al. [ABK93; AKP+93; ANR92] studied

online load balancing without the possibility of task preemption (i.e. without reassigning

clients, in our terminology). They established that when tasks arrive but never depart,

the greedy algorithm, which assigns each task to the least-loaded admissible server, has

O(log n) competitive ratio with respect to the maximum load. When tasks both arrive

and depart, they show that the optimal competitive ratio is O(
√

n). When jobs arrive and

depart and task preemption is allowed, the situation improves dramatically: Phillips and

Westbrook [PW93] give an algorithm which always maintains a maximum load within a

factor of O(log n) of optimal, while only incurring a reassignment cost of O(m), where m is

the number of arrivals and departures. Westbrook [Wes95] also gives an algorithm which

is O(1)-competitive with respect to the maximum load and with a reassignment cost of

O(m log n). Andrews et al. [AGZ96] study online load balancing with reassignment costs in

a model in which any client may be assigned to any server, but clients have arbitrary sizes

and reassignment costs. (The same model was considered, in lesser generality, in [Wes95].)

They give an online algorithm which is 3.5981-competitive with respect to load and 6.8285-

competitive with respect to reassignment cost.

Another line of related work involves a variant of our online bipartite matching

problem, where reassignments are not allowed and capacity constraints must be maintained

exactly. Given these restrictions, the goal of the online algorithm is to match as many clients

as possible. This problem was first studied by Karp et al. [KVV90], and later generalized

by Goel and Mehta [GM08], and Mehta et al. [MSVV07] for the purposes of studying an

online adword placement problem.

Our work is also loosely related to the recent work of Godfrey, who ana-

lyzes the load balancing properties of certain random processes which assign clients to

servers [God08]. Godfrey proves that only very weak conditions are needed on the random

process, in order to ensure that the servers stay roughly balanced with high probability.

Our load-balancing scenario in Section 4.3 also has connections to hashing. A

large body of theoretical and experimental research has focused on hashing schemes and

CHAPTER 4. AN ONLINE BIPARTITE MATCHING PROBLEM 92

dictionary data structures; a dictionary data-structure is a table containing items, and

the goal is to design a data-structure which supports fast insertions and accesses, with a

fairly high space-utilization. Typically, dictionaries are used in combination with a hashing

scheme, which is a mapping from the items to their locations in the table. A common

assumption in theoretical work is that such mappings are random. Under this assumption,

the connection between hashing and our setting is as follows: if an item has d randomly

chosen locations where it can be inserted into the table, then the problem of inserting a

series of items into the table reduces to the problem of finding a matching in a random

bipartite graph in an online manner.

Under this setting, our algorithm is very similar to the Cuckoo Hashing scheme

of Pagh and Rodler [PR01]. Cuckoo hashing, essentially, uses the following algorithm for

inserting items to tables, or equivalently, matching new clients to servers. If there is an

empty server adjacent to the client to be matched, then the client is matched to this server;

otherwise, it is matched arbitrarily to one of its adjacent servers, and a new matching is

recursively found for the client which was previously attached to this server. In [PR01;

FPSS03], it was shown that if the degree of each node is d = O(ln 1
ε), and if there are n

clients and n(1 + ε) servers, then the expected amortized switching cost per client is Oε(1),

where the Oε(1) is a constant dependent on ε and the expectation is with respect to the

randomness in the graph between clients and servers. In contrast, our results imply that

if d = O(log n), and if there are n clients and n servers, the amortized switching cost per

client is still O(1) with high probability. By making ε small, say ε = O(1
n), the result in

[FPSS03] can also be used to prove bounds on the switching cost when n clients are matched

to n servers, but the bounds produced are very weak, since the bound on the switching cost

per client depends on ε and is super-polynomial in (1
ε). Thus, our results produce a novel

extension to results of [PR01; FPSS03] to the case where there is no surplus of servers over

clients.

4.2 Random Arrival Order

In this section, we assume that the bipartite graph G between clients and servers

is arbitrary, but that the clients arrive in a uniformly random order (i.e. σ is uniformly

distributed over all n! possible arrival orders). Under this assumption, we prove that the

natural greedy algorithm for the problem, which connects each client by using the shortest

CHAPTER 4. AN ONLINE BIPARTITE MATCHING PROBLEM 93

augmenting path available, suffers a switching cost of O(n log n) with high probability. We

also prove a matching lower bound of Ω(n log n) on the total switching cost for any online

algorithm, which shows that O(n log n) is the best switching cost that can be achieved in

the random-ordering model.

4.2.1 The Upper Bound

To obtain some intuition, we start by showing that the total switching cost is at

most O(n log n) in expectation. Our analysis here is just for intuition, as a more sophisti-

cated argument is needed to show that the total cost is O(n log n) with high probability.

To prove that the total switching cost is O(n log n) in expectation, we start by proving the

following lemma, which upper bounds the expected cost of each arriving client.

Lemma 11 Given that i clients remain to arrive, the expected number of servers that the

greedy algorithm needs to switch in order to connect the next client is at most n
i .

Given the lemma, it is easy to sum over all clients and bound the total expected

switching cost by
∑n

i=1
n
i = O(n log n). We now prove the lemma.

To prove the lemma, let us assume for notational purposes that clients {1, . . . , i}
have yet to arrive, and let us define dk to be the number of servers that need to be switched

in a shortest augmenting path from client k to a free server, if client k arrives next, for

k ∈ {1, . . . , i}. Note that when clients {1, . . . , i} have yet to arrive, the expected cost of

the next arriving client is
∑i

k=1(dk · 1
i) = 1

i

∑i
k=1 dk, since each client k has probability 1

i

of arriving next and experiences switching cost dk, if it arrives next. Now, if we can show

that
∑i

k=1 dk ≤ n, then the lemma follows easily, since the expected switching cost of the

next arriving client can then be upper bounded by 1
i

∑i
k=1 dk ≤ 1

i · n = n
i .

To show that
∑i

k=1 dk ≤ n, note that if all i remaining clients were to arrive next

all at once, then it would be easy to connect the remaining i clients with switching cost n:

simply compute a perfect matching, and then switch all clients to match the same servers

as designated in the perfect matching. This connects all remaining clients, and causes each

client to switch servers at most once, and thus has total switching cost n. Furthermore,

this implies the existence of i augmenting paths, which can be used to connect remaining

clients {1, . . . , i}, with total switching cost n. Moreover, if we look at
∑i

k=1 dk, it must be

the case that
∑i

k=1 dk ≤ n, since we have established that there exists a set of i augmenting

CHAPTER 4. AN ONLINE BIPARTITE MATCHING PROBLEM 94

paths with total switching cost n, and dk is the fewest number of servers that need to be

switched if a client k ∈ {1, . . . , i} arrives next. Therefore, the expected switching cost of

the next arriving client is at most 1
i

∑i
k=1 dk ≤ n

i , and the lemma follows. ¥
We now prove the main theorem of this section, which states the total switching

cost is bounded by O(n log n) with high probability.

Theorem 17 For any bipartite graph G between clients and servers, if the clients in G

arrive in uniformly random order, then the switching cost incurred by the greedy algorithm

is at most O(n log n) with probability at least 1− n−2.

To prove the cost is O(n log n) with high probability, we couple our online matching

process with a sequence of n2 binary random variables, Xi,j for i, j ∈ {1, . . . , n}, such that
∑

i,j∈{1,...,n}Xi,j stochastically dominates the total augmentation cost. We then prove a

large deviation bound on
∑

i,j∈{1,...,n}Xi,j . Ideally, it would be nice if we could simply define

Xi,j to be a random variable which is 1 if server j is switched by the greedy algorithm, when

i clients have yet to arrive and a new client arrives, and is 0 otherwise. Although it is easy

to see that the
∑

i,j∈{1,...,n}Xi,j is the total switching cost, it is difficult to prove a large

deviation bound on
∑

i,j∈{1,...,n}Xi,j , since the Xi,j variables are not independent.

Thus, in order to prove a large deviation bound, we will define our Xi,j variables in

another way, such that
∑

i,j∈{1,...,n}Xi,j stochastically dominates the total switching cost,

and each Xi,j variable is independent of Xi′,j , for all i′ 6= i, and for each fixed j. We

can then take advantage of this independence, and use a Chernoff bound to prove that for

each fixed j, the
∑n

i=1 Xi,j is O(log n) with high probability. From there, it follows almost

immediately that
∑

i,j∈{1,...,n}Xi,j is O(n log n) with high probability.

Now to define our Xi,j variables, each Xi,j variable will be 0 or 1, depending on

the servers that get switched when there are i clients yet to arrive and a new client arrives,

and our coupling will be defined so that for each i ∈ {1, . . . , n}, ∑n
j=1 Xi,j stochastically

dominates the number servers that need to be switched in order to connect a new arriving

client, when i clients remain to arrive. Each Xi,j variable will be 1 with probability (1
i),

and will be independent of any other variable Xi′,j , for i′ 6= i and fixed j.

CHAPTER 4. AN ONLINE BIPARTITE MATCHING PROBLEM 95

To define Xi,j and our coupling formally, let us assume that i clients {1, . . . , i} have

yet to arrive, and let us define dk to represent the minimum number of servers that need to

be switched in order to connect client k, if it were to arrive next, for k ∈ {1, . . . , i}. Recall

that
∑i

k=1 dk ≤ n from the argument in Lemma 11, and thus, we can assign to each client

k ∈ {1, . . . , i}, dk distinct binary random variables from {Xi,j | j ∈ {1, . . . , n}} without

overlap. These variables can be easily coupled to our random process to stochastically

dominate the switching cost, if the kth client arrives next; if the kth client arrives next,

then we set the dk binary variables assigned to it to have value 1, and 0 otherwise. Note

that this causes each binary variable assigned to a client in {Xi,j | j ∈ {1, . . . , n}} to be true

with probability (1
i), since each client arrives with probability exactly (1

i). For consistency,

we also set variables in {Xi,j | j ∈ {1, . . . , n}}, which are not assigned to any client, to have

value 1 independently at random with probability (1
i) and 0 otherwise. As we have defined

our coupling, note that
∑n

j=1 Xi,j always dominates the number servers that need to be

switched in order to connect a new client, when i clients remain to arrive. Furthermore,

Pr[Xi,j = 1] = (1
i) for any i, j ∈ {1, . . . , n}.

Note that even though we assign the variables to cover each client’s switching cost

in a way that is dependent on events in the past, each Xi,j variable is 0 or 1 with probability

(1
i), independent of all the previous Xi′,j random variables with i′ < i, because regardless

of which assignment is made, each Xi,j variable is 0 or 1, based only on which client is

selected to arrive at the current time, an event which is independent of the previous Xi′,j

random variables. Thus, our random process defines the random variables Xi,j in a way

such that each Xi,j variable is independent of random variables Xi′,j , where i′ 6= i and j

is fixed. Furthermore, it is not hard to see that E[
∑n

i=1 Xi,j] =
∑n

i=1
1
i = O(log n), for

any j ∈ {1, . . . , n}, and it is easy to apply a standard Chernoff bound to conclude that
∑n

i=1 Xi,j = O(log n) with probability at least (1 − n−3). A simple union bound then

implies that
∑

i,j∈{1,...,n}Xi,j = Θ(n log n) with probability at least (1 − n−2). Therefore,

the total switching cost must be at most O(n log n) with probability at least (1−n−2), and

the theorem holds. ¥

CHAPTER 4. AN ONLINE BIPARTITE MATCHING PROBLEM 96

4.2.2 The Lower Bound

We now prove a lower bound on the switching cost in our random arrival order

model, which shows our upper bound is optimal.

Theorem 18 For any online algorithm, there exists a graph G such that the algorithm

incurs an expected switching cost of Ω(n log n) when the clients of G arrive in random

order.

Using Yao’s lemma, it suffices to specify a distribution on input instances such

that for any deterministic online algorithm, the expected switching cost incurred by the

algorithm is Ω(n log n), where the expectation is taken over the random choice of instances

and the random ordering of clients. We define our instance distribution as follows: form a

random bipartite graph between n clients and n servers by choosing a random permutation

π of {1, 2, . . . , n} and matching client i to servers π(i) and π(i + 1), where π(n + 1) is

interpreted to mean π(1). In other words, the bipartite graph is a random 2n-cycle on the

set of clients and servers.

This input distribution is invariant under permutations of the clients, so we may

assume without loss of generality that the clients’ arrival order is 1, 2, . . . , n. At the arrival

time of client k, the servers belong to n− k + 1 different connected components (including

isolated servers) and each of these connected components is a path. Client k is adjacent

to endpoints of two of these paths, namely, the arcs of the cycle which extend from client

k to the first higher-numbered client encountered when going around the cycle in either

direction. The theorem now follows from a sequence of observations outlined below.

1. Conditioning on the cyclic ordering of all clients besides k, client k is equally likely

to be spliced anywhere into the cycle. In particular, it has probability 1/3 of being

spliced into the middle third of an arc between higher-numbered clients.

2. Consider the cyclic ordering of all clients besides k. The clients with label greater

than k partition the ordering into n − k arcs. It is easy to see the average length of

CHAPTER 4. AN ONLINE BIPARTITE MATCHING PROBLEM 97

these arcs is (n − 1)/(n − k), and hence, the expected distance from client k to the

nearest higher-numbered client is at least n−1
3(n−k) .

3. The input distribution is invariant under the operation of cutting out an arc of the

cycle, with its servers at both endpoints, and reattaching it backwards. Therefore,

conditional on the states of the two paths to which client k < n is connected at

the time of its arrival (i.e., the sets of clients and servers in those paths and the

current matching between them), each of the ways for k to connect to these two paths

is equally likely. As client k connects to these two paths by choosing an endpoint

of each, the number of ways for k to connect to the two paths is the product of the

number of endpoints of the paths. As each path either is a single node with 1 endpoint

or has 2 endpoints, the number of ways of connecting client k to these two paths is

at most 4. Thus, conditional on the states of the two paths at the time of client k’s

arrival, with probability at least 1/4, client k connects to each of these paths at the

endpoint which is furthest from the free server on that path.

4. Combining (2) and (3), we find that the expected cost incurred at the arrival time of

client k is at least n−1
12(n−k) . Summing over k, we get the stated lower bound.

¥

4.3 Random Connection Model

In this section we study the following scenario: there is an equal number n of

servers and clients, the clients arrive sequentially, and each of them selects, at arrival, a

random subset of O(log n) servers. We provide an online matching protocol for this setting

which incurs total switching cost of O(n) with high probability, so that the average switching

cost is O(1) per client. Moreover, we give a lower bound, showing that any online matching

protocol requires switching cost Ω(n/ log n) with high probability, which establishes that

our upper bound is tight to within a factor of O(log n). Before proceeding to the details

of our results, we note that, since the number of servers and clients are equal, we need

to assume that every client selects Ω(log n) servers in order to guarantee that a matching

exists, after all clients arrive.

CHAPTER 4. AN ONLINE BIPARTITE MATCHING PROBLEM 98

4.3.1 The Upper Bound

The idea of our protocol is this: When a new client arrives, the current server-

client graph is examined, and a binary tree originating at the new client is grown carefully,

in order for an augmenting path to be found along the edges of that tree. Our analysis

establishes that the binary tree that is explored contains a free server at a constant depth

on average, and as a result, the augmenting path, and hence the resulting switching cost,

is constant on average as well.

Theorem 19 Consider the following online matching problem: There are n servers, and n

clients arrive sequentially, each client selecting O(log n) servers at random. There exists a

client-server assignment protocol for this online arrival model which, with high probability,

succeeds in matching each client with a server with overall switching cost of O(n).

Let S = {s1, . . . , sn} be the set of servers and C = {c1, . . . , cn} the set of clients,

and let us suppose that the clients arrive in the order c1, c2, . . . , cn, where t, t = 1, . . . , n,

is the arrival time of client ct. Without loss of generality, we assume that n = 2`, for some

integer `; we also assume that every client selects a random set of α · log2 n servers from the

set S with repetition, for some sufficiently large constant α > 0; with minor modifications

in the proof, the result extends to the case where n is not a power of 2 and the clients

select servers without repetition. For this model, we show that the Online Matching

Protocol described in Figure 4.1 satisfies the following properties with high probability.

(Here and throughout this section, we interpret “with high probability” to mean “with

probability at least 1−O(1/n).”)

at every time step t > 0, the clients c1, . . . , ct are matched with a subset of t servers;

the total switching cost incurred by the protocol is O(n).

In the description of the protocol in Figure 4.1 we use the following notation. We denote

by ft : {c1, . . . , ct} → S the matching of clients to servers that the protocol maintains at

time t, and by gt : S → {¬} ∪ {c1, . . . , ct} the “inverse matching”, defined so that gt(s) = c

iff c ∈ {c1, . . . , ct} and ft(c) = s. Finally, by Gt we denote the bipartite graph with node

CHAPTER 4. AN ONLINE BIPARTITE MATCHING PROBLEM 99

set {c1, . . . , ct} t S and an edge between client ci, i ≤ t, and server s iff s ∈ Sci , where Sci

is the set of servers that client ci selects.

Online Matching Protocol

At time step t > 0:

1. client ct chooses a random set Sct of α · log2 n servers from the set S with

repetition;

2. ct orders Sct arbitrarily into a list Lct and sets jct = 1 (to be used as an index

in her list of servers);

3. P:=Binary BFS(ct, ft−1, gt−1);

/*upon success Binary BFS returns an augmenting path on the graph Gt orig-

inating at the node ct*/

if P 6= ∅ then augment matching ft−1 along path P; define ft, gt appropri-

ately;

else declare Fail;

Figure 4.1: High-level description of the protocol; when client ct joins the network an

augmenting path from ct to a free server is sought; if such a path is found, the current

matching is augmented along this path to include client ct.

CHAPTER 4. AN ONLINE BIPARTITE MATCHING PROBLEM 100

Binary BFS

input: client ct, current matching ft−1, inverse matching gt−1;

output: augmenting path P on the graph Gt starting at node ct, or ∅;

1. let σ := Lct(jct);

2. if gt−1(σ) = ¬ then P := 〈(ct, σ)〉; return P;

else initialize a queue data structure Q containing the element gt−1(σ);

3. while Q 6= ∅

(a) c := deQueue(Q);

(b) for r = 1, 2

if jc < α log2 n then

i. jc := jc + 1; σ := Lc(jc);

ii. if gt−1(σ) = ¬ then
let P be the path from

node ct to node σ on the

tree created by the pro-

cess;
return P;

else push gt−1(σ) into Q;

else declare Fail;

Figure 4.2: When a client ct joins the network, the Binary BFS process explores the graph

Gt in a Breadth-First-Search fashion in order to find an augmenting path from ct to a free

server. However, each time a client node is encountered by the BFS process, only two of its

adjacent edges are explored. Note that our Binary BFS process may actually explore an

edge e, which goes from some client to a server u, which has already been explored and thus

creates a cycle. In this case, we do not add edge e to our tree as it creates a cycle, although

we do continue our Binary BFS by exploring two more edges from the client with which

server u is matched.

CHAPTER 4. AN ONLINE BIPARTITE MATCHING PROBLEM 101

We will make use of the following fact about the Coupon Collector Model, which

is not hard to prove.

Lemma 12 (Coupon Collector Model) Suppose that there are n types of coupons. If

every coupon has one of the n types uniformly at random, then, with probability at least

1−(2/e)n, after k ·n coupons are requested at most n/k−1 types of coupons are uncollected.

Let S be any set of n − n
k =

(
1− 1

k

)
n coupon types. Then, if k · n coupons are

requested,

Pr[all k · n coupons are from the set of types S]

≤
(

1− 1
k

)kn

≤ e−n.

It follows that, if k · n coupons are requested, then

Pr
[
at least

n

k
coupons are uncollected

]

≤
∑

S,|S|=(1− 1
k)n

Pr
[all k·n coupons are from

the set of types S

]

≤
(

2
e

)n

,

where the summation ranges over all sets S of coupon types of size |S| = (
1− 1

k

)
n. ¥

To analyze the performance of the Online Matching Protocol we are going

to temporarily forget the fact that every client has a list of α · log2 n servers; we will pretend

instead that every client has an infinite list of servers selected uniformly at random. Under

this assumption, with probability 1, the protocol does not declare Fail and every client

gets matched with a server. We establish the following lemma which concludes the proof of

the theorem.

Lemma 13 Under the assumption of infinite server-lists, the following are satisfied with

high probability, i.e. with probability at least 1−O(1/n):

1. the total augmentation cost incurred by the protocol is O(n);

CHAPTER 4. AN ONLINE BIPARTITE MATCHING PROBLEM 102

2. no client explores more than α · log2 n servers from her infinite list of servers.

To show Part 1 of the lemma, let us divide the arrival times of the clients into log2 n+1 ≡ `+1

progressively smaller intervals Ij = {bj , . . . , ej}, j = 1, . . . , log2 n + 1, where each interval

j has d n
2j e time steps. In particular, we define:

bj = n− n/2j−1 + 1, for all j = 1, . . . , log2 n + 1;

ej = n− bn/2jc, for all j = 1, . . . , log2 n + 1;

Let Ti be the tree constructed by the Binary BFS process when client ci arrives and

denote by |Vi| the number of client nodes in Ti. We show the following lemma.

Lemma 14 Under the infinite server-lists assumption, with high probability over the ran-

dom choices of servers by the clients,

for all j ∈ {1, . . . , log2 n + 1} :
∑

i∈Ij

|Vi| ≤ 2jn.

Let us fix any j ∈ {1, . . . , log2 n + 1}. Let Kj be the number of times Steps 1 and 3(b)i of

Binary BFS are invoked between the arrival of client cbj and until client cej is matched with

a server. Observe that, every time the Steps 1 and 3(b)i of Binary BFS are invoked, the

identity of server σ is independent of the identities of the servers revealed in the preceding

invocations of Steps 1 and 3(b)i of Binary BFS. Also, observe that, if the number of

distinct servers that the invocations of Steps 1 and 3(b)i of Binary BFS have returned

over the course of the protocol is at least dn − n
2j e, then the clients of the set {ci}i∈∪t≤jIt

have all been matched with servers. From Lemma 12 it follows that, with probability at

least 1−(2/e)n, after 2jn invocations of Steps 1 and 3(b)i of Binary BFS, dn− n
2j e distinct

servers will be discovered. Hence, with probability at least 1− (2/e)n,

Kj ≤ 2jn. (4.1)

It is easy to see that the number of clients encountered in the trees in phase j is upper

bounded by the number of new edges explored in phase j, so that the following holds:
∑

i∈Ij

|Vi| ≤ Kj ≤ 2jn.

CHAPTER 4. AN ONLINE BIPARTITE MATCHING PROBLEM 103

The lemma then follows by a union bound. ¥ From Lemma 14 it follows that, for all

j = 1, . . . , log2 n + 1,

1
|Ij |

∑

i∈Ij

|Vi| ≤ 1
|Ij |2

jn ≤ 22j

⇒ log2





1
|Ij |

∑

i∈Ij

|Vi|


 ≤ 2j. (4.2)

By Jensen’s inequality and the concavity of log2 it follows that

log2





1
|Ij |

∑

i∈Ij

|Vi|


 ≥ 1

|Ij |
∑

i∈Ij

log2 |Vi|.

By combining the above with (4.2), it follows that

∑

i∈Ij

log2 |Vi| ≤ 2j
⌈ n

2j

⌉
,

and summing over j it follows that

n∑

i=1

log2 |Vi| ≤ n

log2 n∑

j=1

2j

2j
+ 2(log2 n + 1) = O(n).

Finally, observe that, when a client ci joins the network, the augmenting path chosen by

the protocol has length O(1 + log2 |Vi|). It follows that the total augmentation cost paid

by the protocol is O(n).

To prove part 2 of the lemma, we make use of the following well known facts.

Lemma 15 (Coupon Collector Model) In a coupon collector model with n coupon

types, the probability that all coupons are not collected after 2n loge n steps is at most 1
n .

Lemma 16 (Balls in Bins) In the balls and bins model, if m balls are thrown into n bins,

then, with probability at least 1− 1
n , the maximum load of a bin is O(m

n + log n).

From Lemma 15, it follows that, with probability at least 1 − 1
n , the total number of

invocations of Steps 1 and 3(b)i of Binary BFS throughout the course of the protocol is

at most 2n loge n. Since every client participates exactly once in an invocation of Step 1,

CHAPTER 4. AN ONLINE BIPARTITE MATCHING PROBLEM 104

to conclude the proof of Part 2, it is enough to show that, with high probability, no client

c participates more than O(log n) times in an invocation of Step 3(b)i. We argue this by

coupling the process of selecting clients for invoking Step 3(b)i with the process of throwing

m = n log n balls into n bins. For our purposes the bins are the clients and a ball, thrown

at the time of an invocation of a Step 1 or a Step 3(b)i of Binary BFS, is received by a

client (bin) c if the server selected by the invocation is matched with client c; as a result of

this receipt, c will be the next client to participate in an invocation of Step 3(b)i, at which

time another ball will be thrown, etc. Note that a ball might not be received by any client;

in particular, for any ball that gets thrown the probability that a client c receives it is at

most 1
n . Hence, the maximum load that a client receives in our model is dominated by the

maximum load of a bin in a balls in bins process whereby 2n loge n balls are thrown into n

bins; the latter is O(log n) with probability at least 1 − 1
n by Lemma 16. This concludes

the proof of part 2 of the lemma. ¥ ¥

4.3.2 The Lower Bound

We now establish a lower bound of Ω(n/ log n) on the switching cost of any online

protocol. Hence, the protocol described in the proof of Theorem 19 is optimal up to a factor

of O(log n).

Theorem 20 In the setting of Theorem 19, any online matching protocol has switching

cost of Ω(n/ log n), with high probability.

Let S = {s1, . . . , sn} be the set of servers and C = {c1, . . . , cn} the set of clients,

and let us suppose that the clients arrive in the order c1, c2, . . . , cn, where t, t = 1, . . . , n,

is the arrival time of client ct. Suppose also that every client selects a random set of D :=

α · log2 n servers with repetition; as in the proof of Theorem 19, with minor modifications

the argument extends to the case where the selection happens without repetition. Denoting

by Sct the set of servers that client ct chooses, let us define the following collection of events

for t = 1, . . . , n:

At :=
“When client ct arrives all servers in

Sct are occupied by other clients.”

CHAPTER 4. AN ONLINE BIPARTITE MATCHING PROBLEM 105

Recall that an online matching protocol needs to maintain a matching of the clients with

servers at all times. Hence, if the event At happens, the protocol must incur an extra cost

of at least 1 in period t in order to service client ct. Moreover, observe that

Pr[At] =
(

t− 1
n

)D

.

Therefore, the expected switching cost incurred by the protocol is

E[switching cost] ≥
n∑

t=1

(
t− 1

n

)D

=
1

nD

n−1∑

t=1

tD

≥ 1
nD

∫ n−2

t=0
tDdt =

1
nD

(n− 2)D+1

D + 1

=
(n− 2)D

nD

n− 2
D + 1

= Ω
(

n

log n

)
.

So, in expectation, every online matching protocol has cost Ω(n/ log n). To show that this

is also true with high probability, note that the events {At}n
t=1 are independent. The result

follows from an easy Chernoff bound. ¥

4.4 Online Bipartite Matching on Forests

In this section, we provide an algorithm that achieves a switching cost of O(n log n),

when the connection graph on n clients and n servers is a forest, and contains a perfect

matching between clients and servers. The main result of this section is as follows.

Theorem 21 Let G be the underlying graph of connections between clients and servers.

If G is a forest, then, for any arrival order of clients, there is an algorithm which has a

switching cost of O(n log n).

Before we describe the algorithm, we first make some preliminary observations,

which provide a foundation for stating our algorithm. Note that at the start of our online

process, we have n server nodes and no edges, and thus our connection graph contains n

connected components consisting of a single server node each. As new clients arrive with

their edges, these connected components become merged. In particular, one should note

that when a new client i arrives with di ≥ 2 edges, the client’s di edges must connect

to di distinct components in the graph, since our final graph must be a forest. Thus a

CHAPTER 4. AN ONLINE BIPARTITE MATCHING PROBLEM 106

client arriving with di ≥ 2 edges causes di components to merge into a single connected

component.

As our process proceeds, our online algorithm monitors these connected compo-

nents, and designates a node from each connected component to be the root of the compo-

nent. The root and size of each component are key elements in deciding the augmenting

path to be used to connect a new client. At the beginning of the process, each server node

starts as the root node of its own connected component; this will change as clients arrive

and components merge. Now to define how our algorithm maintains the root nodes and

selects augmenting paths to connect each new arriving client i, we have three different cases:

Case I: If client i has a single edge, then this edge connects to a single connected

component C and thus all potential augmenting paths from i must pass through

component C. Among the set of potential augmenting paths, choose the augmenting

path that stays furthest away from the root of C.

If a client i has more than one edge, then we have two cases to consider, depending on

the set of connected components to which client i can find an augmenting path. Let

Si denote the set of connected components to which client i can find an augmenting

path, and let Ti denote the set of connected components to which client i has an edge.

– Case II: If the set Si contains only one connected component, and that con-

nected component is the unique largest component of Ti, then follow the rule in

case I.

– Case III: Otherwise, choose any augmenting path into the smallest component

in Si.

At the end of both case II and case III, all components in Ti have merged into a single

component T . Assign T to have the same root node as the largest component in Ti,

breaking ties arbitrarily if needed.

We now prove Theorem 21, by bounding the total switching cost of our algorithm.

CHAPTER 4. AN ONLINE BIPARTITE MATCHING PROBLEM 107

Proof of Theorem 21: We first bound the total cost of augmentations arising from case III

by O(n log n). Note that each time a server switches clients via case III, its component size

at least doubles, and thus each server can switch clients at most O(log n) times via case III

augmentations. Therefore, the total cost arising from case III augmentations is O(n log n).

Lemma 17 shows that the switching cost arising from case I and case II augmen-

tations is at most O(n log n). The theorem thus follows by combining Lemma 17 with our

bound on the total cost of augmentations arising from case III. ¥

We now completes the proof of Theorem 21 by bounding the switching cost arising

from case I and case II augmentations with the following lemma.

Lemma 17 Let G be the underlying graph of connections between clients and servers. If

G is a forest, then, for any arrival order of clients, the total switching cost of case I and

case II augmentations is at most O(n log n).

Note that for this lemma, we do not need to distinguish between case I and II

augmentations; we just need to note that these augmentations seek to maximize the distance

from the root node, and for servers involved in case I or case II augmentations, their root

node does not change as a result of these augmentations.

Although we do not need to distinguish between these two types of augmentations

anymore, we do need to further classify the client/server switches that arise as a result of

these types of augmentations. For a server v which switches clients as a result of a case I

or II augmentation, we classify v’s switch as either an upward switch, a downward switch,

or a peak switch, depending on the direction of the augmentation/switch relative to the

root node. To classify these switches, suppose that a case I or case II augmenting path

passes through a client u, a server v, and a client w in sequence and thus results in edge

(u, v) being added to the matching and edge (w, v) being deleted from it. We say node v

experiences an upward switch if client u is strictly closer to the component root than client

w, and v experiences a downward switch if client u is strictly further from the component

root than client w. If both client u and w are the same distance from the root, then server

v experiences a peak switch. To complete the proof of the cost upper bound, we prove the

following three statements:

CHAPTER 4. AN ONLINE BIPARTITE MATCHING PROBLEM 108

Each node experiences at most one downward switch.

Each node experiences at most O(log n) upward switches.

There are at most O(n) peak switches in total.

Before we prove the three statements, we first define some terminology. For a set

U of clients and servers, we say that U is finished if every client in U has already arrived, U

contains an equal number of clients and servers, and no client in U is adjacent to a server

in the complement of U . We say that a client or server is finished if there exists a finished

set U that contains the client or server. Note that once a set U becomes finished it remains

finished in the future. Also, all the clients in a finished set U must be matched to servers

in U and there can be no augmenting paths passing through a node of U .

Now to prove the first statement, suppose that a server node v engages in a down-

ward switch which results in its becoming connected to a client u. After this switch takes

place, let U be the set consisting of v, u, and all the clients and servers reachable from u by

an augmenting path that does not pass through v. It must be the case that every server in

U is matched to a client in U , because otherwise u would have an augmenting path that

stays strictly further from the root than any path passing through v, and therefore u would

not have switched to v in the most recent step of the algorithm. Moreover, every client in

U is matched to a server in U and no client in U is adjacent to a server v′ 6∈ U , because this

would imply the existence of an augmenting path from u to v′ that does not pass through

v, contradicting the assumption that v′ 6∈ U . Thus, the set U is finished; in particular, this

means v is finished, thus confirming that v can engage in at most one downward switch

throughout the execution of the algorithm.

To prove the second statement, note that once a server v engages in an upward

switch, if it engages in another switch before its component root changes then this switch

must be a downward switch, which would finish v. Thus, the number of upward switches

involving v is bounded above by the number of times the root of the component containing

v changes. However, a server’s root node can change at most O(log n) times, since the

component size at least doubles each time the root changes. As a result, we have that each

server may undergo at most O(log n) upward switches.

CHAPTER 4. AN ONLINE BIPARTITE MATCHING PROBLEM 109

To prove that there are at most O(n) peak switches, note that each augmentation

of case I or case II, consists of a sequence of zero or more upward switches, a peak switch,

and a sequence of zero or more downward switches. Thus, the second statement follows

since each augmentation contains at most one peak switch and since there are at most n

augmentations.

Thus, we have proven all three statements, and we have that the total cost of case

I and II augmentations is O(n log n). ¥

4.5 Conclusion

In this chapter, we have studied three variants of the online bipartite matching

problem. First, we showed that when the underlying bipartite graph is arbitrary, and the

clients arrive in a random order, the greedy algorithm, which always uses the shortest

available switching path, achieves a switching-cost of O(n log n) with high probability. We

also studied the problem when the arrival order is adversarial and the underlying graph is a

forest, and provided a O(n log n) algorithm for this case. Finally, we studied the problem in

random bipartite graphs of degree O(log n) and derived an algorithm which achieves O(n)

switching-cost.

The main open question is to find an algorithm which achieves a switching cost

of O(n log n) for any arbitrary bipartite graph between clients and servers, and for an

adversarial arrival order of clients. In particular, it would be interesting to find a proof that

the greedy algorithm achieves a switching-cost of O(n log n) in any bipartite graph, for any

arrival order of the clients, or to find a counterexample that suggests otherwise.

110

Bibliography

[ABK93] Yossi Azar, Andrei Broder, and Anna Karlin. On-line load balancing. In Proc.

33rd IEEE Symposium on Foundations of Computer Science (FOCS), pages

218–225, 1993.

[ABKU94] Yossi Azar, Andrei Z. Broder, Anna R. Karlin, and Eli Upfal. Balanced al-

locations (extended abstract). In STOC ’94: Proceedings of the twenty-sixth

annual ACM symposium on Theory of computing, pages 593–602, New York,

NY, USA, 1994. ACM Press.

[ACL00] W. Aiello, F. Chung, and L. Lu. A random graph model for massive graphs.

In STOC, 2000.

[ACL+03] Marta Arias, Lenore J. Cowen, Kofi A. Laing, Rajmohan Rajaraman, and

Orjeta Taka. Compact routing with name independence. In Proceedings of

the fifteenth annual ACM symposium on Parallel algorithms and architectures

(SPAA 03), pages 184–192, New York, NY, USA, 2003. ACM Press.

[ADTW03] E. Anshelevich, A. Dasgupta, É. Tardos, and T. Wexler. Near-optimal network

design with selfish agents. In Proceedings of the 35th Annual ACM Symposium

on the Theory of Computing (STOC), pages 511–520, 2003.

[AGLP89] Baruch Awerbuch, Andrew Goldberg, Michael Luby, and Serge Plotkin. Net-

work decompositions and locality in distributed computation. 1989.

[AGM+04] I. Abraham, C. Gavoille, D. Malkhi, N. Nisan, and M. Thorup. Compact name-

independent routing with minimum stretch. The Sixteenth ACM Symposium

on Parallelism in Algorithms and Architectures (SPAA 04), 2004.

BIBLIOGRAPHY 111

[AGZ96] Matthew Andrews, Michel X. Goemans, and Lisa Zhang. Improved bounds

for on-line load balancing. In Computing and Combinatorics, Second Annual

International Conference (COCOON), pages 1–10, 1996.

[AKL+08] Christos Amanatidis, Richard M. Karp, Henry Lin, Christos H. Papadimitriou,

and Martha Sideri. Linked decompositions, internet routing, and the power of

choice in polya urns. In Symposium on Discrete Algorithms (SODA), 2008.

[AKP+93] Yossi Azar, Bala Kalyanasundaram, Serge Plotkin, Kirk Pruhs, and Orli

Waarts. Online load balancing of temporary tasks. In Proc. 2nd International

Workshop on Algorithms and Data Structures (WADS), pages 119–130, 1993.

[ANR92] Yossi Azar, Joseph Naor, and Raphael Rom. The competitiveness of on-line

assignments. In Proc. 3rd ACM-SIAM Symposium on Discrete Algorithms

(SODA), pages 203–210, 1992.

[AP90] Baruch Awerbuch and David Peleg. Sparse partitions. 1990.

[BA99] A. Barabasi and R. Albert. Emergence of scaling in random networks. Science,

286:509–512, 1999.

[BMW56] M. Beckmann, C. B. McGuire, and C. B. Winsten. Studies in the Economics

of Transportation. Yale University Press, 1956.

[BR02] B. Bollobás and O. Riordan. Mathematical results on scale-free random graphs.

In Handbook of Graphs and Networks. Wiley-VCH, Berlin, 2002.

[Bra68] D. Braess. Uber ein paradoxon der verkehrsplanung. Unternehmensforschung,

12:258–268, 1968. Available from http://homepage.ruhr-uni-bochum.de/

Dietrich.Braess/.

[cai] Cooperative Association for Internet Data Analysis.

http://www.caida.org/home/.

[CCK+06] M. Caesar, T. Condie, J. Kumar Kannan, K. Lakshminarayanan, I. Stoica, and

S. Shenker. ROFL: Routing on Flat Labels. SIGCOMM, 2006.

[CDKL] Kamalika Chaudhuri, Costis Daskalakis, Robert Kleinberg, and Henry Lin.

Online bipartite matching with augmentations. In INFOCOM 2009.

BIBLIOGRAPHY 112

[CHJ03] F. Chung, S. Handjani, and D. Jungreis. Generalizations of polya’s urn problem.

Annals of Combinatorics, 7:141–153, 2003.

[CS03] C. K. Chau and K. M. Sim. The price of anarchy for non-atomic congestion

games with symmetric cost maps and elastic demands. Operations Research

Letters, 31(5):327–335, 2003.

[CSM04a] J. R. Correa, A. S. Schulz, and N. E. Stier Moses. Computational complexity,

fairness, and the price of anarchy of the maximum latency problem. In Tenth

Conference on Integer Programming and Combinatorial Optimization (IPCO),

2004. To appear.

[CSM04b] J. R. Correa, A. S. Schulz, and N. E. Stier Moses. Selfish routing in capacitated

networks. Mathematics of Operations Research, 2004. To appear.

[Czuar] A. Czumaj. Selfish routing on the Internet. In J. Leung, editor, Handbook of

Scheduling. CRC Press, Boca Raton, FL, 2004, to appear.

[DGK+04] N. Devanur, N. Garg, R. Khandekar, V. Pandit, and A. Saberi. Price of anarchy,

locality gap, and a network service provider game. Unpublished manuscript,

2004.

[FFF05] A. Frieze, A. Flaxman, and T. Fenner. High degree vertices and eigenvalues in

the preferential attachment graph. Internet Mathematics, 2:1–20, 2005.

[FGL+03] R. Feldmann, M. Gairing, T. Lücking, B. Monien, and M. Rode. Selfish rout-

ing in non-cooperative networks: A survey. In Proceedings of the Conference

on Mathematical Foundations of Computer Science (MFCS), volume 2747 of

Lecture Notes in Computer Science, pages 21–45, 2003.

[FI05] FIND: Future Internet Network Design. http://find.isi.edu/, 2005.

[FLM+03] A. Fabrikant, A. Luthra, E. Maneva, C. H. Papadimitriou, and S. J. Shenker.

On a network creation game. In Proceedings of 22nd PODC, pages 347–351,

2003.

[FPSS03] Dimitris Fotakis, Rasmus Pagh, Peter Sanders, and Paul G. Spirakis. Space

efficient hash tables with worst case constant access times. In Proc. 20th Annual

BIBLIOGRAPHY 113

Symposium on Theoretical Aspects of Computer Science (STACS), pages 271–

282, 2003.

[GE05] GENI: Global Environment for Network Innovations. http://www.geni.net/,

2005.

[GJ79] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the

Theory of NP-Completeness. Freeman, 1979.

[GKKV95] Edward F. Grove, Ming-Yang Kao, P. Krishnan, and Jeffrey Scott Vitter. On-

line perfect matching and mobile computing. In Proc. 4th International Work-

shop on Algorithms and Data Structures (WADS), pages 194–205, 1995.

[GM08] Gagan Goel and Aranyak Mehta. Online budgeted matching in random input

models with applications to adwords. In SODA ’08: Proceedings of the nine-

teenth annual ACM-SIAM symposium on Discrete algorithms, pages 982–991,

Philadelphia, PA, USA, 2008. Society for Industrial and Applied Mathematics.

[God08] Brighten Godfrey. Balls and bins with structure: Balanced allocations on hyper-

graphs. In Proc. 19th ACM-SIAM Symposium on Discrete Algorithms (SODA),

2008.

[JMS00] O. Jahn, R. Möhring, and A. S. Schulz. Optimal routing of traffic flows with

length restrictions in networks with congestion. In Operations Research Pro-

ceedings 1999, pages 437–442, 2000.

[JT04] R. Johari and J. N. Tsitsiklis. Network resource allocation and a congestion

game. Mathematics of Operations Research, 2004. To appear.

[KFY04] D. Krioukov, K. Fall, and X. Yang. Compact routing on internet-like graphs.

INFOCOM, 2004.

[Kkc] D. Krioukov and kc claffy. Toward compact interdomain routing.

arXiv:cs.NI/0508021.

[KLadH92] Richard M. Karp, Michael Luby, and Friedhelm Meyer auf der Heide. Efficient

pram simulation on a distributed memory machine. In STOC ’92: Proceedings

of the twenty-fourth annual ACM symposium on Theory of computing, pages

318–326, New York, NY, USA, 1992. ACM Press.

BIBLIOGRAPHY 114

[KP99] E. Koutsoupias and C. H. Papadimitriou. Worst-case equilibria. In Proceedings

of the 16th Annual Symposium on Theoretical Aspects of Computer Science,

pages 404–413, 1999.

[KVV90] R. M. Karp, U. V. Vazirani, and V. V. Vazirani. An optimal algorithm for

on-line bipartite matching. In STOC ’90: Proceedings of the twenty-second

annual ACM symposium on Theory of computing, pages 352–358, New York,

NY, USA, 1990. ACM.

[LRT04] H. Lin, T. Roughgarden, and É. Tardos. A stronger bound on braess’s paradox.

In Proceedings of the 15th Annual Symposium on Discrete Algorithms (SODA),

pages 333–334, 2004.

[LRTW05] Henry Lin, Tim Roughgarden, Eva Tardos, and Asher Walkover. Braess’s para-

dox, fibonacci numbers, and exponential inapproximability. In International

Colloquium on Automata, Languages, and Programming (ICALP), 2005.

[Mit01] Michael Mitzenmacher. The power of two choices in randomized load balanc-

ing. IEEE Transactions on Parallel and Distributed Systems, 12(10):1094–1104,

2001.

[MPS03] Milena Mihail, Christos Papadimitriou, and Amin Saberi. On certain connec-

tivity properties of the internet topology. In FOCS ’03: Proceedings of the

44th Annual IEEE Symposium on Foundations of Computer Science, page 28,

Washington, DC, USA, 2003. IEEE Computer Society.

[MSVV07] Aranyak Mehta, Amin Saberi, Umesh Vazirani, and Vijay Vazirani. Adwords

and generalized online matching. J. ACM, 54(5):22, 2007.

[NA] NewArch Project: Future-Generation Internet Architecture.

http://www.isi.edu/newarch/.

[Pap01] C. H. Papadimitriou. Algorithms, games, and the Internet. In Proceedings of

the 33rd Annual ACM Symposium on the Theory of Computing, pages 749–753,

2001.

BIBLIOGRAPHY 115

[Per04] G. Perakis. The price of anarchy when costs are separable and asymmetric.

In Tenth Conference on Integer Programming and Combinatorial Optimization

(IPCO), 2004. To appear.

[PR01] Rasmus Pagh and Flemming Friche Rodler. Cuckoo hashing. In Proc. 9th

Annual European Symposium on Algorithms (ESA), pages 121–133, 2001.

[PS89] David Peleg and Alejandro A. Schaffer. Graph spanners. 1989.

[PW93] Steven Phillips and Jeffrey Westbrook. Online load balancing and network

flow. In Proc. 25th ACM Symposium on Theory of Computing (STOC), pages

402–411, 1993.

[Rou] T. Roughgarden. Designing networks for selfish users is hard. In FOCS ’01,

pages 472–481.

[Rou02a] T. Roughgarden. How unfair is optimal routing? In Proceedings of the 13th

Annual Symposium on Discrete Algorithms, pages 203–204, 2002.

[Rou02b] T. Roughgarden. The price of anarchy is independent of the network topol-

ogy. In Proceedings of the 34th Annual ACM Symposium on the Theory of

Computing, 2002. To appear.

[Rou04] T. Roughgarden. The maximum latency of selfish routing. In Proceedings of

the 15th Annual Symposium on Discrete Algorithms (SODA), pages 973–974,

2004.

[Rou05] T. Roughgarden. Selfish Routing and the Price of Anarchy. MIT Press, 2005.

[Rou07] T. Roughgarden. Selfish routing and the price of anarchy (survey). OPTIMA

No. 74, 2007.

[RT02] T. Roughgarden and É. Tardos. How bad is selfish routing? Journal of the

ACM, 49(2):236–259, 2002. Preliminary version in FOCS ’00.

[RT04] T. Roughgarden and É. Tardos. Bounding the inefficiency of equilibria in

nonatomic congestion games. Games and Economic Behavior, 47(2):389–403,

2004.

BIBLIOGRAPHY 116

[Smi79] M. J. Smith. The existence, uniqueness and stability of traffic equilibria. Trans-

portation Research, 13B:295–304, 1979.

[Vet02] A. Vetta. Nash equilibria in competitive societies, with applications to facility

location, traffic routing and auctions. Manuscript, 2002.

[Wei01] D. Weitz. The price of anarchy. UCB CS294-1 final project, 2001.

[Wes95] Jeffrey Westbrook. Load balancing for response time. In Proc. 3rd Annual

European Symposium on Algorithms (ESA), pages 355–368, 1995.

