Output-Deterministic Replay for Multicore Debugging

Gautam Altekar
lon Stoica

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2009-108
http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-108.html

August 3, 2009

Copyright 2009, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

0DR: Output-Deterministic Replay for Multicore Debugging — v. 1842

Gautam Altekar
UC Berkeley

galtekar@cs.berkeley.edu

ABSTRACT

Reproducing bugs is hard. Deterministic replay systems
aim to address this problem, by providing a high-fidelity
replica of an original program execution that can be re-
peatedly executed to zero-in on bugs. Unfortunately, ex-
isting replay systems for multiprocessor programs fall short.
These systems either incur high overheads, rely on non-
standard multiprocessor hardware, or fail to reliably re-
produce executions. Their primary stumbling block is
data races — a source of non-determinism that must be
captured if executions are to be faithfully reproduced.

In this paper, we present 0DR-a software-only replay sys-
tem that reproduces bugs and provides low-overhead mul-
tiprocessor recording. The key observation behind 0DR is
that, for debugging purposes, a replay system does not
need to generate a high-fidelity replica of the original ex-
ecution. Instead, it suffices to produce any execution that
exhibits the same outputs as the original. Guided by this
observation, ODR relaxes its fidelity guarantees to avoid
the problem of reproducing data-races all-together. The
result is a system that replays real multiprocessor appli-
cations, such as Apache, MySQL, and the Java Virtual
Machine, and provides low record-mode overheads.

1. INTRODUCTION

Computer software often fails. These failures, due to
software errors, manifest in the form of crashes, corrupt
data, or service interruption. To understand and ulti-
mately prevent failures, developers employ cyclic debug-
ging — they re-execute the program several times in an
effort to zero-in on the root cause. Non-deterministic fail-
ures, however, are immune to this debugging technique.
That’s because they may not occur in a re-execution of
the program.

Non-deterministic failures can be reproduced using de-
terministic replay (or record-replay) technology. Deter-

Confidential draft. Please do not redistribute.

lon Stoica
UC Berkeley

istoica@cs.berkeley.edu

ministic replay works by first capturing data from non-
deterministic sources, such as the keyboard and network,
and then substituting the same data in subsequent re-
executions of the program. Many replay systems have
been built over the years, and the resulting experience
indicates that replay is valuable in finding and reasoning
about failures [6].

The ideal record-replay system has three key properties.
First, it produces a high-fidelity replica of the original
program execution, thereby enabling cyclic debugging of
non-deterministic failures. Second, it incurs low record-
ing overhead, which in turn enables in-production opera-
tion and ensures minimal execution perturbation. Third,
it supports multi-threaded (parallel) software running on
commodity multi-core processors. However, despite much
research, the ideal replay system still remains out of reach.

A chief obstacle to building the ideal system is data-races.
These sources of non-determinism are prevalent in mod-
ern software. Some are errors, but many are intentional.
In either case, the ideal-replay system must reproduce
them if it is to provide high-fidelity replay. Some replay
systems reproduce races by recording their outcomes, but
they incur high recording overheads [2,4]. Other systems
achieve low record overhead, but rely on non-standard
hardware [14]. Still others assume data-race freedom, but
fail to reliably reproduce failures [17].

In this paper, we present ODR—a software-only replay sys-
tem that reliably reproduces failures and provides low-
overhead multiprocessor recording. The key observation
behind ODR is that a high-fidelity replay execution, though
sufficient, is not necessary for replay-debugging. Instead,
it suffices to produce any execution that exhibits the same
output, even if that execution differs from the original.
This observation permits ODR to relax its fidelity guar-
antees and, in so doing, enables it to all-together avoid
the problem of reproducing and hence recording data-race
outcomes.

The key problem ODR must address is that of reproduc-
ing a failed execution without recording the outcomes of
data-races. This is challenging because the occurrence of
a failure depends in part on the outcomes of races. To
address this challenge, rather than record data-race out-
comes, ODR infers the data-race outcomes of an output-
deterministic run. Once inferred, 0DR substitutes these

values in subsequent program executions. The result is
output-deterministic replay.

To infer data-race outcomes, ODR uses a technique called 1
Deterministic-Run Inference, or DRI for short. DRI lever- 2
ages the original output to search the space of executions
for one that exhibits the same outputs as the original. An
exhaustive search of the execution space is intractable.
But carefully selected clues recorded during the origi-
nal execution and memory-consistency relaxations allow
O0DR to home-in on an output-deterministic execution in
polynomial time for several real-world programs.

To evaluate ODR, we used several sophisticated multi-threaded
applications, including Apache and the Splash 2 suite.
Like most replay systems, ODR is not without its limita-
tions (see Section 11). While during the recording phase
our Linux/x86 implementation slows down the native ex-
ecution by only 1.6x on average, inference times can be
impractically long for many programs. However, we show
that the decision of which information to record can be
used effectively to trade between the recording and the in-
ference times. For example, while recording all branches
slows down the original execution from 1.6x to 4.5x on av-
erage, in some cases, this can decrease the inference times
by orders of magnitude. Despite its limitations, we be-
lieve ODR represents a promising approach to address the
difficult problem of reproducing bugs and enable cyclic
debugging for in-production parallel applications running
on modern multi-core processors.

2. THE PROBLEM

ODR addresses the output-failure replay problem. In a nut-
shell, the problem is to ensure that all failures visible in
the output of some original program run are also visible
in the replay runs of the same program. Examples of
output-failures include assertion violations, crashes, core
dumps, and corrupted data. Solving the output-failure
replay problem is important because a vast majority of
software errors result in output-visible failures. Hence re-
production of these failures would enable cyclic debugging
of most software errors.

In contrast with the problem addressed by traditional re-
play systems, the output-failure replay problem is nar-
rower in scope. Specifically, it is narrower than the ez-
ecution replay problem, which concerns the reproduction
of all original-execution properties and not just those of
output-failures. It is even narrower than the failure replay
problem, which concerns the reproduction of all failures,
output-visible or not. The latter includes timing related
failures such as unexpected delays between two outputs.

Any system that addresses the output-failure replay prob-
lem should replay output-failures. In addition, to be prac-
tical, the system must meet the following requirements.

Support multiple processors or cores. Multiple cores
are a reality in modern commodity machines. A practical
replay system should allow applications to take full ad-
vantage of those cores.

int status = ALIVE, int *reaped = NULL

Master (Thread 1; CPU 1) Worker (Thread 2; CPU 2)

r0 = status 1 rl = input

if (10 == DEAD) 2 if (r1 == DIE or END)
sreaped+-+ 3 status = DEAD

Figure 1: Benign races can prevent even non-concurrency bugs
from being reproduced, as shown in this example adapted from
the Apache web-server. The master thread periodically polls
the worker’s status, without acquiring any locks, to determine
if it should be reaped. It crashes only if it finds that the worker
is DEAD.

Replay all programs. A practical tool should be able
to replay arbitrary program binaries, including those with
data races. Bugs may not be reproduced if the outcomes
of these races are not reproduced.

Support efficient and scalable recording. Produc-
tion operation is possible only if the system has low record
overhead. Moreover, this overhead must remain low as the
number of processor cores increases.

Require only commodity hardware. A software-only
replay method can work in a variety of computing envi-
ronments. Such wide-applicability is possible only if the
system does not introduce additional hardware complex-
ity or require unconventional hardware.

3. BACKGROUND: VALUE DETERMIN-
ISM

The classic approach to the output-failure replay prob-
lem is value-determinism. Value-determinism stipulates
that a replay run reads and writes the same values to
and from memory, at the same execution points, as the
original run. Figure 2(b) shows an example of a value-
deterministic run of the code in Figure 1. The execu-
tion is value-deterministic because it reads the value DEAD
from variable status at execution point 1.1 and writes
the value DEAD at 2.3, just like the original run.

Value-determinism is not perfect: it it does not guaran-
tee causal ordering of instructions. For instance, in Fig-
ure 2(b), the master thread’s read of status returns DEAD
even though it happens before the worker thread writes
DEAD to it. Despite this imperfection, value-determinism
has proven effective in debugging [2] for two reasons. First,
it ensures that program output, and hence most operator-
visible failures such as assertion failures, crashes, core
dumps, and file corruption, are reproduced. Second, within
each thread, it provides memory-access values consistent
with the failure, hence helping developers to trace the
chain of causality from the failure to its root cause.

The key challenge of building a value-deterministic replay
system is in reproducing data-races values. Data-races
are often benign and intentionally introduced to improve
performance. Sometimes they are inadvertent and result
in software failures. No matter whether data-races are

(a) Original

(b) Value-deterministic

(c) Output-deterministic

(d) Non-deterministic

2.1 r1 = DIE

2.2 if (DIE...)
2.3 status = DEAD
1.1 rO = DEAD

1.2 if (DEAD...)
1.3 *reaped++

2.1 r1 = DIE
2.2 if (DIE...)
1.1 rO = DEAD

2.3 status = DEAD
1.2 if (DEAD...)
1.3 *reaped++

2.1 r1 = END
2.2 if (END...)
1.1 rO = DEAD

2.3 status = DEAD
1.2 if (DEAD...)
1.3 *reaped++

2.1 r1 = DIE

2.2 if (DIE...)
1.1 rO = ALIVE
2.3 status = DEAD
1.2 if (ALIVE...)

Segmentation fault

Segmentation fault

Segmentation fault

no output

Figure 2: The totally-ordered execution trace and output of (a) the original run and (b-d) various replay runs of the code in
Figure 1. Each replay trace show-cases a different determinism guarantee

benign or not reproducing their values is critical. Data-
race non-determinism causes replay execution to diverge
from the original, hence preventing down-stream errors,
concurrency-related or otherwise, from being reproduced.
Figure 2(d) shows how a benign data-race can mask a null-
pointer dereference bug in the code in Figure 1. There,
the master thread does not dereference the null-pointer
reaped during replay because it reads status before the
worker writes it. Consequently, the execution does not
crash like the original.

Several value-deterministic systems address the data-race
divergence problem, but they fall short of our require-
ments. For instance, content-based systems record and
replay the values of shared-memory accesses and, in the
process, those of racing accesses [2]. They can be im-
plemented entirely in software and can replay arbitrary
programs, but incur high record-mode overheads (e.g., 5x
slowdown [2]). Order-based replay systems record and re-
play the ordering of shared-memory accesses. They pro-
vide low record-overhead at the software-level, but only
for programs with limited false-sharing [4] or no data-
races [17]. Finally, hardware-assisted systems can replay
data-races at very low record-mode costs, but require non-
commodity hardware [9,14].

4. OVERVIEW

In this section, we present an overview of our approach
to the output-failure replay problem. In Section 4.1, we
present output determinism, the concept underlying our
approach. Then we introduce key definitions in Section 4.2,
followed by the central building block of our approach,
Deterministic-Run Inference, in Section 4.3. In Section 4.4,
we discuss the design space and trade-offs of our approach
and finally, in Section 4.5, we identify the design points
with which we perform our evaluation.

4.1 Output Determinism

To address the output-failure replay problem we use output-
determinism. Output-determinism dictates that the re-
play run outputs the same values as the original run. We
define output as program values sent to devices such as
the screen, network, or disk. Figure 2(c) gives an exam-
ple of an output-deterministic run of the code in Figure 1.
The execution is output-deterministic because it outputs
the string Segmentation fault to the screen just like the
original run.

Output-determinism is weaker than value-determinism.
Specifically, output-determinism does not guarantee that

the replay run will read and write the same values as
the original. For example, the output-deterministic trace
in Figure 2(c) reads END for the input while the origi-
nal trace, shown in Figure 2(a), reads DIE. Also output-
determinism does not guarantee that the replay run takes
the same path as the original execution.

Despite its imperfections, we argue that output-determinism
is effective for debugging purposes, for two reasons. First,
output-determinism ensures that output-visible failures,
such as assertion failures, crashes, core dumps, and file
corruption, are reproduced. For example, the output-
deterministic run in Figure 2(c) produces a crash just like
the original run. Second, it provides memory-access val-
ues that, although may differ from the original values,
are nonetheless consistent with the failure. For example,
we can tell that the master segfaults because the read of
status returns DEAD, and that in turn was caused by the
worker writing DEAD to the same variable.

The chief benefit of output-determinism over value-determinism

is that it does not require the values of data races to
be the same as the original values. In fact, by shifting
the focus of determinism to outputs rather than values,
output-determinism enables us to circumvent the need to
record and replay data-races all-together. Without the
need to reproduce data-race values, we are freed from the
tradeoffs that encumber traditional replay systems. The
result, as we detail in the following sections, is ODR—an
Output-Deterministic Replay system that meets all the
requirements given in Section 2.

4.2 Definitions

In this section, we define key terms used in the remainder
of the paper.

A program is a set of instruction-sequences, one for each
processor. Each sequence consists of four key instruc-
tion types. A read/write instruction reads/writes a byte
from/to a memory location. The input instruction ac-
cepts a byte-value arriving from an input device (e.g., the
keyboard) into a register. The output instruction prints
a byte-value to an output device (e.g., screen) from a
register. A conditional branch jumps to a specified pro-
gram location iff its register parameter is non-zero. To
simplify our presentation, we purposely omit other in-
struction types (such as arithmetic operations and indi-
rect jumps). We also assume that traditionally hardware-
implemented features are implemented programatically
using these simple instruction types. For example, in-
terrupts may be modeled as an input and a conditional

branch to a handler, done at every instruction.

A run or execution of a program is a sequence of program
states, where each state is a mapping from memory and
register locations to values. The first state of a run maps
all locations to 0. Each subsequent state is derived by ex-
ecuting instructions, chosen in program order from each
processor’s instruction sequence, one at a time in some
total order. The content of these subsequent states are
a function of previous states, with two exceptions: the
values returned by memory read instructions are some
function of previous states and the underlying machine’s
memory consistency model, and the values returned by
input instructions are arbitrary (e.g., user-provided). Fi-
nally, the last state of a run is that immediately following
the last available instruction from the sequence of either
processor.

A run’s determinant is a triple that uniquely identifes
the run. This triple consists of a schedule-trace, input-
trace, and a read-trace. A program schedule-trace is a
sequence of thread identifiers that specifies the ordering
in which instructions from different processors are inter-
leaved (i.e., a total-ordering). An input-trace is a finite
sequence of bytes consumed by input instructions. A read-
trace is a finite sequence of bytes returned by read instruc-
tions. For example, Figure 2(b) shows a run of schedule-
trace (2,2,1,2,1,1) with input-trace (DIE) and read-trace
(DEAD,0), where r0 reads DEAD, and *reaped reads 0.
Figure 2(c) shows another run with the same schedule-
trace with the same read-trace, but consuming a different
input-trace, (END).

A run and its determinant are equivalent in the sense that
either can be derived from the other. Given a determi-
nant, one can generate a run (a sequence of states), by
(1) executing instructions in the interleaving specified by
the scheduling order, (2) substituting the value at the i-th
input-trace position for the ¢-th input instruction’s return
value, and (3) substituting the value at the j-th read-trace
position for the j-th read instruction’s return value. The
reverse transformation is straightforward.

We say that a run is M -consistent iff its read-trace (a
component of the run’s determinant) is in the set of all
possible read-traces for the run’s schedule-trace, input-
trace, and memory consistency model M. For example,
the run in Figure 2(a) is strict-consistency conformant [?]
because the values returned by its reads are that of the
most-recent write for the given schedule-trace and input-
trace. Weaker consistency models may have multiple valid
read-trace, and hence consistent runs, for a given schedule
and input-trace. To simplify our presentation, we assume
that the original run is strict-consistent. We omit a run’s
memory model qualifier when consistency is clear from
context.

4.3 Deterministic-Run Inference

The central challenge in building ODR is that of reproduc-
ing the original output without knowing the entire read-
trace, i.e., without knowing the outcomes of data races.
To address this challenge, ODR employs Deterministic- Run

determinant
ODR [ﬁ

1. Record 2. Deterministic-Run 3. Replay
mode Inference (DRI) mode

L %

query: outputs, additional properties

Figure 3: ODR uses Deterministic-Run Inference (DRI) to com-
pute the determinant of an output-deterministic run. The de-
terminant, which includes the values of data-races, is then used
to drive future program runs.

Inference (DRI) — a method that returns the determi-
nant of an output-deterministic run. Figure 3 shows how
ODR uses DRI. ODR records information about the original
run and then gives it to DRI in the form of a query. Min-
imally, the query contains the original output. DRI then
returns a determinant that ODR uses, in the future, to
quickly regenerate an output-deterministic run.

In its simplest form, DRI searches the space of all strict-
consistent runs and returns the determinant of the first
output-deterministic run it finds. Conceptually, it works
iteratively in two steps. In the first step, DRI selects a run
from the space of all runs. In the second step, DRI com-
pares the output of the chosen run to that of the original.
If they match, then the search terminates; DRI has found
an output-deterministic run. If they do not match, then
DRI repeats the first step and selects another run. At some
point DRI terminates, since the space of struct-consistent
runs contains at least one output-deterministic run — the
original run. Figure 4(a) gives possible first and last itera-
tions of DRI with respect to the original run in Figure 2(a).
Here, we assume that the order in which DRI explores the
run space is arbitrary. Note that the run space may con-
tain multiple output-deterministic runs, in which case DRI
will select the first one it finds. In the example, the se-
lected run is different from the original run, as r1 reads
value END, instead of DIE.

An exhaustive search of program runs is intractable for
all but the simplest of programs. To make the search
tractable, DRI employs two techniques. The first is to di-
rect the search along runs that share the same properties
as the original run. Figure 4(b) shows an example illus-
trating this idea. In this case, DRI considers only those
runs with the same schedule, input, and read trace as
the original run. The benefit of directed search is that
it enables DRI to prune vast portions of the search space.
In Figure 4(b), for example, knowledge of the original
run’s input and schedule trace allows DRI to converge on
an output-deterministic run after exploring just one run.
The effectiveness of directed search depends on the infor-
mation recorded during the original run; more informa-
tion enables greater pruning of the search space. This
illustrates the trade-off between the recording overhead
and the DRI overhead.

The second technique is to relax the memory-consistency
of all runs in the run space. The benefit of relaxing the
memory-model is that it enables DRI to search fewer runs.
In general, a weaker consistency model permits more runs

(a) Exhaustive search (b) Query-directed search
1st iteration last iteration 1st & last iteration
2.1 r1 = REQ 2.1 r1 = END 2.1 r1 = DIE
2.2 if (REQ...) 2.2 if (END...) 2.2 if (DIE...)
1.1 r0 = ALIVE 2.3 status = DEAD 2.3 status = DEAD
1.2 if (ALIVE...) | 1.1 rO = DEAD 1.1 rO = DEAD
1.2 if (DEAD...) 1.2 if (DEAD...)
1.3 *reaped++ 1.3 *reaped++
No output Segmentation fault | Segmentation fault

Figure 4: Possible first and last iterations of DRI using exhaustive search (a) of all strict-consistent runs, and (b) of strict-consistent
runs with the original input and schedule trace, both for the program in Figure 2(a). DRI converges in an exponential number of
iterations in case (a), and, in this example, in just one iteration in case (b).

Inconsistency

(a) Strict consistency | (b) Null consistency Query-size 4

2.1 r1 = DIE 2.1 r1 = REQ Large

2.2 if (DIE...) 2.2 if (REQ...)

2.3 status = DEAD | 1.1 rO = DEAD T

1.1 r0O = DEAD 1.2 if (DEAD...) Medium

1.2 if (DEAD...) 1.3 *reaped++ | @ e

1.3 *reaped++

Segmentation fault | Segmentation fault small boly in Search-complexity
Figure 5: Possible last iterations of DRI on the space of runs ' i poly | Practice | Exp .
for the strongest and weakest consistency models we consider. Memory Conssti;'t‘;fncy I T T >
The null consistency model, the weakest, enables DRI to ignore : g | 3%

scheduling order of all accesses, and hence converge faster that
strict consistency.

matching the original’s output (than a stronger model),
which ultimately enables DRI to find such a run faster.

To illustrate the benefit, Figure 4.3 shows two output-
deterministic runs for the strict and the hypothetical null

consistency memory models. Strict consistency, the strongest

consistency model we consider, guarantees that reads will
return the value of the most-recent write in schedule or-
der. Null consistency, the weakest consistency model we
consider, makes no guarantees on the value a read may
return — it may be completely arbitrary. For example, in
Figure 4.3(c), thread 1 reads DEAD for status even though
thread 2 never wrote DEAD to it.

To find a strict-consistent output-deterministic run, DRI may

have to search all possible schedules in the worst case. But
under null-consistency, DRI needs to search only along one
arbitrary selected schedule. After all, there must exist a
null-consistent run that reads the same values as the orig-
inal for any given schedule.

While relaxing the consistency memory model reduces the
number of searches, this benefit does not come for free. A
relaxed memory model makes it harder for the developer
to track the cause of a bug, especially across multiple
threads.

4.4 Design Space

The challenge in designing DRI is to determine just how
much to direct the search and relax memory consistency.
In conjunction with our basic approach of search, these
questions open the door to an uncharted inference design
space. In this section, we describe this space and identify
our targets within it.

Lock-order
consistency

Search-Intensive
DRI

Null
Consistency,

Figure 6: The design space for DRI. Exhaustive search is in-
tractable, but providing more information in the query or re-
laxing consistency can lower it dramatically.

Figure 6 shows the three-dimensional design space for DRI.
The first dimension in this space is search-complexity.
It measures how long it takes DRI to find an output -
deterministic run. The second design dimension, query-
size, measures the amount of original run information
used to direct the search. The third dimension, memory-
inconsistency, captures the degree to which the memory
consistency of the inferred run has been relaxed.

The most desirable search-complexity is polynomial search
complexity. It can be achieved by making substantial sac-
rifices in other dimensions, e.g., recording more informa-
tion during the original run, or using a weaker consistency
model as described in Section 4.3. The least desirable
search-complexity is exponential search complexity. An
exhaustive search can accomplish this, but at the cost of
developer patience. The benefit is extremely low-overhead
recording and ease-of-debugging due to a small query-size
and low value-inconsistency, respectively.

A query containing just the outputs of the original run
has the smallest query-size. All DRI queries must con-
tain the original output. A query containing the origi-
nal input, schedule, and read trace in addition to output
has the greatest query-size. The latter results in polyno-
mial search-complexity (more specifically, constant time
search-complexity), but carries a penalty of large record-

mode slowdown. For instance, capturing a read-trace will
result in at least a 5x penalty on modern commodity ma-
chines [2].

As discussed above, lowering consistency requirements re-
sults in substantial search-space reductions, but makes it
harder to track causality across threads during debugging.

4.5 Design Targets

In this paper, we evaluate two point in DRI design space:

Search-Intensive DRI (sI-DRI) and Query-Intensive DRI (QI-

DRI).

SI-DRI strives for a practical compromise among the ex-
tremities of the DRI design space. In particular, SI-DRI tar-
gets polynomial search-complexity for several applications,
though not all — a goal we refer to as “poly in practice”.
Our results in Section 10 indicate that polynomial com-
plexity holds for several real-world applications.

SI-DRI also targets a query-size that, while greater than
just those of the outputs, is still low enough to be useful
for at least periodic production use. In particular, in ad-
dition to outputs, the query includes the inputs, the lock
order, and a sample of the original execution path. The
path sample includes every lock instruction, as well as the
instructions associated with every input and output in the
original execution.

Finally, SI-DRI relaxes the memory consistency model from
strict consistency to lock-order consistency — a consistency
model that produces strict-consistent runs for data-race
free programs.

The second design point we evaluate, Query-Intensive DRI,
is almost identical to Search-Intensive DRI. The key dif-
ference is that QI-DRI requires that the query contain a

path-sample for every branch in the original run—considerably

more information than required by SI-DRI. Requiring full
path information in the query inflates recording overhead,
but results in polynomial search-complexity.

5. Search-Intensive DRI

In this section, we present Search-Intensive DRI (SI-DRI),
one inference method with which we evaluate ODR. We be-
gin with an overview of what si-DRI does. Then we present
a bare-bones version of its algorithm (called core SI-DRI).
Finally, we apply directed search and consistency relax-
ation to this core algorithm to yield Si-DRI, the finished
product.

5.1 Overview

SI-DRI accepts a query and produces an output-deterministic

run, like any variant of DRI.

Specifically, in addition to the output-trace, a SI-DRI query
must contain three other pieces of information from the
original run:

e input-trace, a finite sequence of bytes consumed by
the input instructions of the original run (see Sec-
tion 4.2).

(a) LOR~consistent run 1 | (b) LOR-consistent run 2
2.1 r1 = DIE 2.1 r1 = DIE
2.2 if (DIE...) 2.2 if (DIE...)
1.1 rO = ALIVE 1.1 rO = DEAD
2.3 status = DEAD 2.3 status = DEAD
1.2 if (ALIVE...) 1.2 if (DEAD...)
.3 *reaped++
Segmentation fault

Figure 7: The set of all lock-order (LOR) consistent runs
for the schedule (2,2,1,2,1,1) and input DIE. Since the runs’
schedule is lock-order conformant with the original lock or-
der (see Figure 1(a)), at least one is guaranteed to be output-
deterministic.

e [ock-order, a total ordering of lock instructions in the
original run. Each item in the sequence is a (¢, ¢)-
pair where ¢ is the thread index and ¢ is the lock
instruction count. For example, (1,4) denotes a lock
that was executed as the 4th instruction of thread 1.
The lock-order sequence induces a partial ordering
on the program instructions. For instance, sequence
((1,4),(2,2),(1,10)) captures the fact that the 4th
instruction of thread 1 is executed before the 2nd
instruction of thread 2, which in turn is executed
before the 10th instruction on thread 1.

e path-sample, a sampling of instructions in the origi-
nal run. Each instruction in the path-sample is rep-
resented by a (¢,c¢,l)-tuple, where t is the thread
index, c is the instruction’s count, and [is the pro-
gram location of that instruction. The path-sample
includes one such tuple for each input, output, and
lock instruction in the original program path.

SI-DRI produces an output-deterministic run conforming
to the hypothetical lock-order consistency (LOR) memory
model. Intuitively, a read in this model may return ei-
ther the value of the most-recently-scheduled write to the
same memory location or the value of any racing write.
We say that two accesses race if they both access the same
location and neither access happens before the other ac-
cording to the lock-order of the run. Figure 5.1 shows
two LOR-consistent runs. Since the example has no locks,
the read and write of status are trivially unordered by
the lock-order and therefore race. Under lock-order con-
sistency, a read may return the value of a racing write
even if that write is scheduled after the read, as with the
read of status in Figure 5.1(b); r0 reads DEAD before
this value is written at instruction 2.3. Section 5.4 details
how SI-DRI leverages this relaxed memory model.

5.2 Core Algorithm

The core SI-DRI search algorithm, depicted in Figure 9,
performs an exhaustive depth-first search on the space of
strict-consistent program runs. Since the space may have
infinite depth (due to loops), SI-DRI bounds the search by
n, the length of the original execution, which we assume
is in the original output. Each iteration has four steps.

In the first step, schedule-select, SI-DRI selects an n-length
schedule-trace from the space of all n-length schedule-

no

Sched-traces Input-traces

left? left?

input-
1. Schedule-

2. Input-trace

trace
>

select

trace select

deter-
minant

read trace-
set

3. Read
trace-set select

*

schedule-trace

original
output

Figure 8: The core Search-Intensive DRI algorithm exhaustively searches the space of bounded-length strict-consistent runs for
one that outputs the same values as the original run. It makes use of only the original outputs in the query and consequently has

exponential search-complexity.

traces. In the second step, input-select, SI-DRI selects an
n-length input-trace from the space of all n-length input-
traces. In the third step, read trace-set selection, SI-DRI
produces the set of all valid read-traces for the previously
selected schedule-trace, input-trace, and target memory
model. In the final step, output matching, SI-DRI con-
ceptually runs the program for every read-trace in the
read-trace set produced in the previous stage to see if any
produce the original output.

If the run produces the same output as the original run,
then the search terminates, and SI-DRI returns the de-
terminant of that run. If the run does not produce the
same output, then SI-DRI continues the search. For the
next search iteration, SI-DRI will choose a different input-
trace, if there are any unexplored in the input-trace space.
Otherwise, sI-DRI will choose a different schedule-trace, if
there are any unexplored in the schedule-trace space. The
search will terminate before all schedules are exhausted
because there exists some iteration in which SI-DRI selects
the original run’s schedule, input, and read trace.

5.3 Query-Directed Search

SI-DRI leverages query information to reduce the space of
schedule-traces, input-traces, and read-trace sets, using a
technique we term query-guidance. SI-DRI uses three dif-
ferent types of query-guidance methods, each correspond-
ing to a selection stage, as depicted in Figure 9.

The first guidance-method is lock-order guidance, used
in the schedule-selection stage. Lock-order guidance uses
the lock-order given in the query to generate a schedule
of length n that conforms to it. By considering only those
schedule-traces that conform to the lock-order, lock-order
guidance avoids searching all schedules.

The second guidance-method is input-trace guidance, used
in the input-selection stage. Input guidance simply repro-
duces the original input sequence found in the query. It
does not have much work to do because all of the input
is given in the query. Input guidances provides an expo-
nential reduction of the input-space.

The third guidance-method is read trace-set guidance, used
in the read trace-set selection stage. Read trace-set guid-

ance chooses runs that are more likely to be output de-
terministic. To do this, it leverages the schedule-trace
and input-trace chosen in previous stages, and the path-
sample provided in the query. This stage is the most
complicated and is discussed in detail in Section 7.2.

5.4 Relaxed Consistency Reduction

The key observation behind SI-DRI’s consistency relax-
ation is that, to find an output-deterministic run under
LOR-consistency, we need only consider LOR-consistent
runs along one schedule. The only restriction on the se-
lected schedule is that it must be lock-order conformant,
a restriction which is satisfied by si-DRI’s lock-order guid-
ance. Figure 5.1 shows all LOR-consistent runs for an ar-
bitrarily chosen lock-order conformant schedule. At least
one is output-deterministic.

It suffices to consider any lock-order conformant schedule
S’ because for any such schedule, there exists an input
and LOR-consistent read-trace that produces the original
output. This holds because given the original schedule
S, input, and read-trace, which is by definition a LOR-
consistent run, we can construct another LOR-consistent
read-trace that when used in conjunction with schedule
S’ and original input, produces the original output. We
omit a formal proof of this, but the intuition is that, one
can rearrange the read-values of concurrent-reads in the
read-trace of S to yield the read-trace of S’. For example,
the read-trace of Figure 2(a) and Figure 5.1(b) are both
(DEAD, 0)-a trivial rearrangement.

We describe how to automatically generate the set of
LOR-consistent read-traces in Section 7.2.2.

6. Query-Intensive DRI

In addition to SI-DRI, we evaluate another DRI variant
called Query-Intensive DRI (QI-DRI). The only difference
between SI-DRI and QI-DRI is that the latter requires a
query path-sample with many samples. Specifically, it
requires a sample point for the instruction following ev-
ery branch in the original run. While this additional in-
formation increases the recording overhead, it leads to
a significant reduction of the inference time. This is to
be expected since adding more points to the path-sample

. .
. -~
4 *‘
+* Sched-traces S .
- left? ,'< ------------------------------- .
Q‘Q " :
et schedule-trace 1 no
yes { possible :
A4 . * path-det. q
input- 3. Read read-traces eter-
1. Lock- 2. Input-trace trace > trace-set minant
order guidance guidance guidance
original T original T original e
- input-trace path-sample origina
lock-order p output

Figure 9: The Search-Intensive DRI algorithm with (dashed and solid) just query-guidance methods applied and (just solid) with
both query-guidance and consistency relaxation applied. Consistency relaxation eliminates the need to search multiple schedules.

schedule, possible
input path-det.

schedule, read-traces

i th-set

input I 1. path-select [P2 0L 2. vegen va

original
path-sample

Figure 10: Read trace-set guidance up close. The goal is

to consider only those read-traces that conform to the se-
lected schedule-trace, input-trace, and a small set of potentially
output-inducing paths.

enables path-select (Section 7.2.1) to identify a candidate
path in just one invocation.

7. STAGES IN DETAIL

In this section, we detail the operation of the read-trace
select and output-matching stages, used by both SI-DRI and
QI-DRI. But first, we provide some definitions of terms
used through the section.

7.1 Definitions

The path of a multi-threaded program is the sequence
of paths of all threads, in ascending thread index order.
The path of a thread is the sequence of instructions ex-
ecuted by the thread. The value [of the i-th number in
the sequence denotes that the i-th instruction executed
by the thread was the instruction at location [in the pro-
gram. For example, path ((1,2),(1,3)) denotes the fact
that there are two threads, where thread 1 first executes
instruction at location 1 and then the one at location 2,
while thread 1 executes first the instruction at location 1,
and then the one at location 3.

7.2 Read-Trace Set Guidance

The idea behind read trace-set guidance is to reduce the
search to path-deterministic read-traces only, i.e., read-
traces that, in addition to conforming to the selected
schedule and input, force the program to take the original
path. Searching this set is sufficient to yield an output-
deterministic run because the original run is trivially part
of this set.

The key challenge of the read trace-set guidance is that
the original path is not known in its entirety; the SI-
DRI query contains only a sample of the original path.
To address this challenge we conservatively broaden the
read trace-set search space. Specifically, we search the
set of possible path-deterministic trace-sets—a superset of
path-deterministic runs. While searching this superset is
not as efficient as searching the set of path-deterministic
runs, it is more efficient than searching the set of all paths.

Figure 10 shows the two stages of read trace-set guidance.
The first stage, path-select, computes a path-set in which
at least one member is the original path. It performs
this computation using the original input, lock-order, and
path-sample. We describe how path-select performs the
computation in Section 7.2.1. The second stage, VCGen,
computes a logical formula that represents the set of pos-
sible path-deterministic, memory model conformant read-
traces based on the previously selected path-set, schedule,
and input. In practice, the time complexity of VCGen is
linear in the number of paths.

7.2.1 Path select

Path-selection generates a set of paths that consists only
of paths that are path-template conformant. We say that
a path is path-template conformant if it can be generated
from some run of the program along the (1) input-trace,
(2) lock-order sequence, and (3) path-sample—collectively
called the path-template.

The set of path-template conformant paths is a valid path-
set, since the original path is a member. Indeed, the orig-
inal path can be obtained in some run of the program
along the original input and lock-ordering. The set of
path-template conformant paths is relatively small, so the
resulting path-set will be also small. Specifically, the size
of the set is exponential only in the number of data-races,
as opposed to the set of all paths. In the special case of
data-race free execution, for example, the set has only one
path — the original path. Without data-races, inputs and
lock-order completely determine the program path.

To obtain path-template conformant paths, the path-select
stage repeatedly invokes PATH-SELECT—-the path-selection
algorithm in Figure 1. PATH-SELECT explores a super-set
of all path-template conformant paths and returns the

Algorithm 1 PATH-SELECT(T,P). Returns a path-
template conformant path (i.e., a path that may be that
of the original run).

Require: Path template T = (I, L, S), where I is a se-
quence of input bytes, L is a partial ordering of instruc-
tions, and S is a path sample, all from the original run

Require: Path P — initially empty

Ensure: Path C is path-template conformant
P’, conformant = IS-CONFORMANT-RUN(I, L, S, P)
if conformant then

return P’
else
for all unvisited (¢,c) € RTB-oRACLE(I, L, S, P’) do
C = PATH-SELECT(T, FLIP-BRANCH(P’, (¢, ¢)))
if C' # NIL then
return C
return NIL

first path-template conformant path it finds that already
has not been returned in a previous invocation. If all
conformant paths have been returned then the algorithm
simply returns NIL. Our results in Section 10 show that,
in practice, PATH-SELECT often identifies the original path
after just one invocation.

To identify a path-template conformant path, PATH-SELECT
runs the program on the original run’s input, lock-order,
and candidate path, and checks it for path-template con-
formance. The running and checking is done by the Is-
CONFORMANT-RUN subroutine, which returns template-
conformant path and true if the run happens to pass the
conformance check. If a run does not pass the confor-
mance check, for example because it did not match the
path-sample, then it immediately terminates the run and
returns false. As our results in Section 10 show, the latter
is likely to happen if the run did not follow the original
path.

If a run does not pass the conformance check, PATH-SELECT
backtracks to the most-recent race-tainted branch (RTB),
in depth-first search style, and forces the run down the
previously unexplored branch (done by FLIP-BRANCH).
The motivation for backtracking to an RTB is simple:
the idea is that a branch influenced by a race may eval-
uate either way, depending on the outcome of the race
influencing it. Race-tainted indirect branches (e.g., due
to pointers and array-accesses) are trickier to handle ef-
ficiently because at the extreme they may branch to an
arbitrary memory location. In this paper, we ignore in-
direct branches. However, they are rare in practice — we
have never encountered them in our experiments.

To identify RTBs, PATH-SELECT invokes an RTB-ORACLE.
The oracle returns the set of static branches that may
have been affected by race-outcomes in some run of the
program along the given program input, lock-order, and
path. In PATH-SELECT, this branch super-set is denoted by
a set of (t,c)-tuples, where ¢ and c¢ are the thread index
and instruction count, respectively, of an RTB. Briefly,
the RTB-ORACLE works in two stages to identify RTBs.
In the first stage, it invokes a race-oracle to identify a

set of racing accesses along the given input, lock-order,
and path. In the second stage, it performs a conservative
taint-flow analysis of all runs along the given input, lock-
order, and path. We provide a more detailed treatment
of the RTB-ORACLE in [1],

7.2.2 Verification Condition Generation

The goal of VCGen is to produce a verification condition
(VC) [?], a logical formula that, for our purposes, repre-
sents the set of all read-traces that (1) are memory model
M consistent with respect to the selected schedule and
input trace and (2) make the program take one of the
paths given in the path-set. Symbolic variables of this
logical formula represent read-values of instructions exe-
cuted along each path. Constraints within the formula
limit the values that each symbolic read-value may take
on. The set of all read-traces represented by this formula,
then, is the set of all constraint-satisfying assignments for
symbolic variables.

VCGen generates a VC by symbolically executing [3] the
program along each path in the path-set given to VCGen.
For each path, the symbolic execution produces a set of
constraints that collectively describe the set of candidate
read-traces for that path. The VC, then, is simply the dis-
junction of the constraints produced for each path in the
path-set. Further details of VC generation and symbolic
execution, both well-understood, may be found here [?,3].

The key challenge in VCGen is that of generating a VC
under the LOR-consistency model. Under LOR~consistency,
a racing read may return one of many values. Hence, VC-
Gen can generate complete constraints only if it knows
(1) which reads may race and (2) what values those rac-
ing reads may return. To address this challenge, VCGen
relies on a race oracle. We describe the oracle in Section 8,
but here it suffices to know that it will return the set of
all possible read-values for instructions that may race in
some execution along a given schedule, input, and path.
Upon encountering a racing read, VCGen constrains the
corresponding symbolic read-value to the read-values re-
ported by the oracle.

7.3 Output Matching

To determine if a selected schedule, input, and read-trace
set is output-deterministic, we could just run the program
on the schedule and input trace for each read-trace in the
set, and then check the outputs. But this would be slow.
Instead, the output matching stage leverages a constraint
solver to conceptually perform this running and checking
of outputs.

More specifically, output matching works in two steps. In
the first step, we augment the verification condition (VC),
a set of constraints, generated in the previous phase (see
Section 7.2.2) with constraints that further limit the set
of read-traces to those that produce the original output.

In the second step, we dispatch the augmented VC to
an SMT solver [3]-an intelligent constraint solver that in
many cases can find a satisfying assignment to a given
logical formula in polynomial time. If there is a satisfying

solution, then the SMT solver reports one possible as-
signment of read values (i.e., produces a read-trace). The
read-trace, in conjunction with the selected schedule and
input trace, form an output-deterministic run.

8. RACE ORACLE

SI-DRI and QI-DRI invoke a race-oracle in the process of
generating a verification condition (Section 7.2.2). The
goal of the race-oracle is to compute Races(E) — the set
of memory access instructions that race in some execu-
tion in F, where E is the set of executions that conform
to a given input, lock-order, and path-set. In the follow-
ing paragraphs, we describe how 0DR computes Races(F)
using a race-detector.

8.1 Requirements
Our race-detector must meet several requirements, listed
below in decreasing order of their importance.

1. Soundness. The detector must report all races in Races(E).

If it does not, then PATH-SELECT (Section 7.2.1) will

miss backtracking points, in turn rendering path-selection

unable to find a valid path-set. = Moreover, missed
races will break race-value relaxation; since it will not
know what data should be represented symbolically, it
may not be able to find an output-deterministic sched-
ule.

2. Precision. We say that a race-detector is precise if
it reports only those races Races(E). Imprecision has
two consequences. The first is performance — PATH-
SELECT may have to explore more paths before con-
verging. The second is a loss of value-consistency —
SI-DRI’s consistency relaxation will be applied even to
accesses that do not race.

3. Compatibility. The race-detector must work on all

Linux/x86 binaries, even those that come without source-

code. This is needed to meet ODR’s goal of replaying
arbitrary programs.

8.2 Key Challenge

The key challenge in race-detection is to determine whether
two static memory accesses may refer to the same loca-
tion. Fundamentally, this boils down to the problem of
figuring out what locations a memory access may refer to
— the well-known points-to problem. For direct accesses,
this task is straightforward. The address is hard-coded
into the access instructions, and so the referenced loca-
tion can be determined by instruction inspection. How-
ever, if the access is indirect, due to pointers or array
accesses, then the location dereferenced can depend on
up to four unknowns: program inputs, path, lock-order,
and data-race outcomes. There are an exponential num-
ber of possibilities for each of these unknowns. Hence an
exhaustive search of all possibilities is infeasible.

While a variety of race-detectors have addressed the points-
to problem, we were unable to find one that meets all
of our requirements. For instance, several static detec-
tors meet our soundness criteria. However, since these
detectors are geared toward finding races in all possible
executions-rather than for those just in E—they require

access to source code to produce precise points-to sets.
On the other hand, several dynamic detectors can work
at the binary-level and provide precise results, since indi-
rect references are easily computed from execution state.
Unfortunately, their results do not meet our soundness
criteria since they report races for only one execution in
E.

8.3 Approach

We have built a static race detector that produces sound
and reasonably-precise results at the binary-level. The
heart of the detector is a points-to analysis that relies on
the following insight: for realistic programs, the references
of most indirect accesses in the set F are a function solely
of the program input, lock-order, and path; they are rarely
influenced by data-races. Fortunately, SI-DRI provides us
with the requisite input, lock-order, and path, hence en-
abling us to compute precise points-to sets despite the
lack of source-code.

The key challenge of our approach is to compute com-
plete points-to sets for those indirect references that do

epend on data-race outcomes. The points-to set of an
access instruction is complete if it contains all references
made by the instruction in some execution in F. This
definition suggests one possible approach to computing
complete points-to sets — consider all possible race out-
comes for each execution in E. While this would provide
us with complete and precise points-to sets, it is compu-
tationally intractable to evaluate all executions in E let
along race outcomes in each each execution.

Our approach to this challenge is to be very conserva-
tive. That is, we assume that race-influenced indirect
accesses may reference any memory location. The benefit
of this approach is a complete points-to set for every in-
direct access, and hence sound race-detection. The draw-
back, in theory, is that the points-to sets would contain
many memory locations that would not be referenced in
an execution in E, hence resulting in many false races.
In practice, we've found that this drawback rarely ap-
plies, namely because data-races rarely (never in our ex-
perience) influence references. Our results in Section 10
support this observation.

9. IMPLEMENTATION

ODR consists of approximately 100,000 lines of C code and
2,000 lines of x86 assembly. The replay core accounts
for 45% of the code base. The other code comes from
Catchconv [13] and LibVEX [15], an open-source symbolic
execution tool and binary translator, respectively. We
encountered many challenges when developing ODR. Here
we describe a selection of those challenges most relevant
to our inference method.

9.1 Tracing inputs and outputs

To capture inputs and output, we employ a kernel mod-
ule — it generates a signal on every system call and non-
deterministic x86 instruction (e.g., RDTSC, IN, etc.) that
ODR then catches and handles. DMA is an important I/O
source, but we ignore it in the current implementation.

Achieving completeness is the main challenge in user-
level I/O interception. The user-kernel interface is large
— we had to implement about 200 system calls before
ODR logged and replayed sophisticated applications like
the Java Virtual Machine. Some of these system calls,
such as sys_gettimeofday (), are easy to handle — ODR just
records their return values. But many others such as
sys_kill(), sys_clone(), sys_futex(), and sys_open(),

sys_mmap () require more extensive emulation work—largely

to ensure deterministic signal delivery, task creation and
synchronization, task/file ids, file/socket access, and mem-
ory management, respectively.

9.2 Tracing lock-order

Several of our search-space reductions rely on the orig-
inal run’s lock-order. We intercept locks using binary-
patching techniques. Specifically, we dynamically replace
instructions that acquire and release the system bus lock
with calls into tracing code. The tracing code, once in-
voked, emulates the memory operation. It also logs the
value of a per-thread Lamport clock for the acquire opera-
tion preceding the memory operation and increments the
Lamport clock for the subsequent release operation. We
could’ve intercepted lock-order at the library level (e.g.,
by instrumenting pthread_mutex_lock()), but then we
would miss inlined and custom synchronization routines
that are common in 1ibc, which in turn would result in
a larger search space.

9.3 Tracing branches

Branch tracing is employed by QI-DRI, as discussed in Sec-
tion 6. We capture branches in software using the Pin
binary instrumentation tool [12]. Software binary trans-
lation incurs some overhead, but it’s a lot faster than the
alternatives (e.g., LibVEX or x86 hardware branch trac-
ing [10]). To obtain low logging overhead, we employ an
idealized, software-only 2-level/BTB branch predictor [8]
to compress the branch trace on the fly. Since this ideal-
ized predictor is deterministic given the same branch his-
tory, compression is achieved by logging only the branch
mispredictions. The number of mispredictions for this
class of well-studied predictors is known to be low [8].

9.4 Symbolic execution

There are many symbolic execution tools to choose from,
but we needed one that worked at user-level and supports
arbitrary Linux/x86 programs. We chose Catchconv [13]
— a user-mode, instruction-level symbolic execution tool.
Though designed for test-case generation, Catchconv’s
constraint generation core makes few assumptions about
the target program and largely suits our purposes.

Rather than generate constraints directly from x86, Catch-
conv employs LibVEX [15] to first translate x86 instruc-
tions into a RISC-like intermediate language, and then
generates constraints from this intermediate language. This
intermediate language abstracts-away the complexities of
the x86 instruction set and thus eases complete and cor-
rect constraint generation. Catchconv also implements
several optimizations to reduce formula size.

10. PERFORMANCE

11

In this section, we evaluate ODRunder two configurations—
one in which it uses SI-DRI and the other in which it uses
QI-DRI. We begin with our experimental setup and then
give results for each major ODR phase: record, inference,
and replay. In summary, we found that when using SI-
DRI, ODR incurs low recording overhead (less than 1.6x on
average), but impractically high inference times. For in-
stance, two applications in our suite took more than 24
hours during the inference phase. In contrast, ODR with
QI-DRI incurs significantly higher recording overhead (be-
tween 3.5x and 5.5x slowdown of the original run). But
the inference phase finished within 24 hours for all appli-
cations. Thus, SI-DRI and QI-DRI represent opposites in
the record-inference axis of the DRI tradeoff space.

10.1 Setup

We evaluate seven parallel applications: radiz, lu, and
water-spatial from the Splash 2 suite, the Apache web-
server (apache), the Mysql database server (mysgl), the
Hotspot Java Virtual Machine running the Tomcat web-
server (java), and a parallel build of the Linux kernel
(make-j2). We do not give results for the entire Splash
2 suite because some (e.g, FMM) generate floating point
constraints, which our current implementation does not
support (see Section 11). Henceforth, we refer to the
Splash 2 apps as SP2 apps and the others as systems

apps.

All inputs were selected such that the program ran for
just 2 seconds. This ensured that inference experiments
were timely. apache and java were run with a web-crawler
that downloads files at 100KBps using 8 concurrent client
connections. mysql was run with a client that queries
at 100KBps, also using 8 concurrent client connections.
The Linux build was performed with two concurrent jobs
(make-j2).

Our experimental procedure consisted of a warmup run
followed by 6 trials. We report the average numbers of
these 6 trials. The standard deviation of the trials was
within three percent. All experiments were conducted on
a 2-core Dell Dimension workstation with a Pentium D
processor running at 2.0GHz and 2GB of RAM. The OS
used was Debian 5 with a 2.6.29 Linux kernel with minor
patches to support ODR’s interpositioning hooks.

10.2 SI-DRI Record Mode

Figure 11 shows the record-mode slowdowns when using
SI-DRI. The slowdown is broken down into five parts:
(1) Ezecution, the cost of executing the application with-
out any tracing or interpositioning; (2) Path-sample trace,
the cost of intercepting and writing path-samples (see Sec-
tion 5) to the log file; (3) 1/O trace, the cost of inter-
cepting and writing both program input and output to a
log file; (4) Lock trace, the cost of intercepting bus-lock
instructions and writing logical clocks to the log file at
each such instruction; (5) Emulation, the cost of emulat-
ing some syscalls (see Section 9.1 for why).

As shown in Figure 11, the record mode causes a slowdown
of 1.6x on average. ODR outperforms software-only multi-
processor replay systems on key benchmarks, and is com-

Record runtime (2 cores)

[0 Emafation =~
Lock trace
1/0 trace

]
o Biowe
| |

6x

Path-sample trace
Execution

4x

3x

Slowdown

2x

1x

0x p——
» o
u water-spat

» o » o
make-j2 mysq| radix
Application

2Xe?

0o
apache j

java

Figure 11: ODR’s record-mode runtimes, normalized with native
execution time, for both SI-DRI and QI-DRI.

parable on several others. For instance, ODR outperforms
SMP-Revirt on make-j2 (by 0.3x) and radiz (by 0.1x) for
the 2-processor case. ODR does better because these appli-
cations exhibit many false-sharing. False-sharing induces
frequent CREW faults on SMP-ReVirt [4], but not on ODR,
since it ignores recording races. In addition, ODR does not
trace into the Linux kernel like SMP-ReVirt, thus avoid-
ing the sharing caused by the kernel. 0ODR approaches
RecPlay’s performance (within 0.4x) for the SP2 applica-
tions. This is because, with the exception of outputs and
sample points, ODR traces roughly the same data as Rec-
Play (though RecPlay captures lock order at the library
level). SP2 applications are not I/O intensive, so the fact
that ODR records the outputs does not have a significant
impact.

ODR does not always outperform existing multiprocessor
replay systems. For instance, SMP-ReVirt and RecPlay
achieve near-native (1x) performance on several SP2 ap-
plications (e.g., LU), while ODR incurs an average overhead
of 0.5x of SP2 apps. As Figure 11 shows, a bulk of this
overhead is due to lock-tracing, which SMP-ReVirt does
not do. And while RecPlay does trace lock order, it does
80 by instrumenting lock routines (in libpthreads) rather
than all locked instructions. Intercepting lock order at the
instruction level is particularly damaging for SP2 apps be-
cause they frequently invoke 1libpthreads routines, which
in turn issue many locked-instructions. One might expect
the cost of instruction-level lock tracing to be even higher,
but in practice it is small because libpthread routines do
not busy-wait under lock contention — they await notifi-
cation in the kernel via a sys_futex. Nevertheless, these
results suggest that library-level lock tracing (as done in
RecPlay) might provide better results.

Compared with hardware-based systems, ODR performs
slightly worse, especially on systems benchmarks. For
example, CapoOne achieves a 1.1x and 1.6x slowdown
for apache and make-j2, respectively, while ODR achieves
a 1.6x and 1.8x slowdown. Based on the breakdown in
Figure 11, we attribute this slowdown to two bottlenecks.
The first, not surprisingly, is output-tracing. The effect of
output tracing is particularly visible in the case of apache
and make-j2, which transfer large volumes of data. The
second bottleneck is the emulation. As discussed in Sec-

12

o nference runtime 39082

40,000 " VEcGen+vesave

[Input=select]
35,000 [Schedule-select
30,000xHE - Path=select - - - -~ oo

PR 00 R RRREEREEREEE
20,000 - =+ - =s st es et
15,000 - == s s s e s e s s e
10,000 <= === s s e
5,000X |~ - - “4@7e" " Fmam T wS5e T Fmanite
Ox

Slowdown

< < N =3 X =l <
5} -] g o - %

154 8, 2] > &]
Q 4 £ = L
@ © 5}
E 3
s

Application

Figure 12: Inference runtime, normalized with native execu-
tion time, for SI-DRI. Programs that did not finish in the first
24 hours are denoted by “timeout”.

tion 9.1, triggering a signal on each syscall, and emulating
task and memory management at user-level can be costly.

10.3 SI-DRI Inference Mode

Figure 12 gives inference slowdown for each application.
The slowdown is broken down into 4 major SI-DRI com-
ponents: schedule-select (Section 5.3), input-select (Sec-
tion 5.3), path-select (Section 7.2.1, part of read-trace
guidance), and VCGen+VCSolve (Section 7.2.2 and 7.3,

part of read-trace guidance). Path-select and VCGen+VCSolve

account for the vast majority of the inference time — since
we do not know the path or read-trace, we have to search
for them. In contrast, schedule-select and input-select are
instantaneous due to consistency relaxation (Section 5.4)
and query-directed search (Section 5.3), respectively.

Overall, SI-DRI’s inference time is impractically long. Two
applications, java and mysql, do not converge within the
24 hour timeout period, and those that do converge achieve
an average slowdown of 12,232x. As the breakdown in
Figure 12 shows, there are two bottlenecks. The primary
bottleneck is path-selection, taking up an average 75%
percent of inference time. In the case of java and mysql,
path-selection takes so long that it prevents ODR from pro-
ceeding to the later stages (i.e., VCGen+VCSolve) within
the timeout period (24 hours). The secondary bottle-
neck is VCGen+VCSolve, taking up the remaining aver-
age 25% percent of inference time. We investigate each
bottleneck in the following sections.

10.3.1 Path-selection

We expected path-selection to be slow primarily because
we expected PATH-SELECT, SI-DRI’s path-selection algo-
rithm (Section 7.2.1), to backtrack (i.e., recursively invoke
itself) an exponential number of times. We also expected
that the cost of each backtrack played a strong secondary
role. To verify this hypothesis, we counted the number of
backtracks and measured the average cost of a backtrack-
ing operation. The results, shown in Figure 13, contra-
dict our hypothesis. That is, the number of backtracks
for most apps, with the exception of java and mysql, is
low, hence making the cost of each backtrack operation
the dominant factor.

Average runtime of a single backtrack
700x

[is—-conformant-run
[rtb-oracle

600x
500x
400x

Slowdown

300x
200x
100x

0x

Application

Figure 13: The average runtime, normalized with native run-
time, of one backtrack performed by SI-DRI during PATH-
SELECT, broken down into its two stages. The total number
of backtracks is given at the top of each bar. For apps that
timeout, this number is just a lower-bound.

There are two reasons for the small number of backtracks.
The first, specific to make-j2 and apache, is that there
are a small number of dynamic races and consequently a
small number of race-tainted branches (RTBs, see Sec-
tion 7.2.1). make-j2, for instance, does not have any
shared-memory races at user-level, and hence no RTBs
to backtrack to. Most sharing in make-j2 is done via file-
system syscalls, the results of which we log, rather than
through user-level shared memory. Apache, in contrast,
does have races and RTBs, but a very small number of
them. Our runs had between 1 and 2 dynamic races, each
of which tainted only 1 branch. Thus in the worst case, we
would have to backtrack 4 times. The actual number of
backtracks is smaller because PATH-SELECT guesses some
of these RTBs correctly on the first try.

The second reason for the small number of backtracks is
specific to the SP2 apps. These apps did well despite
having a large number of RTBs (an average of 30) be-
cause PATH-SELECT was able to resolve all their diver-
gences with just one backtrack, hence making forward-
progress without exponential search. Only one backtrack
was necessary because, in the code paths taken in our
runs, there is a sampling point after every RTB. So if
PATH-SELECT chooses an RTB outcome that deviates from
the original path, then the following sampling point will
be missed, hence triggering an immediate backtrack to
the original path.

Unlike the majority of apps in our suite, java and mysql
have a significantly larger number of backtracks. The
large number stems from code fragments with few sam-
pling points between RTBs. In those cases, we end up
with too many instructions between successive sampling
points, which in turn require a large number of backtracks
to resolve. Consider a loop that contains a race, and no
sampling points. Thus, the earliest time, we can detect
a divergence is at the first sampling point after the loop
finishes. Now assume that the loop executes 1,000 times,
but the divergence is caused at the 500-th iteration. In
this case, we need to backtrack 500 times to identify the
cause of the divergence.

13

VCGen+VCSolve runtime

900x I~ gy “VcSolve
800x |- -1 -VCGen- . - -
[l race-oracle
4010
<100
500x [~~~
400X [~ -7t
300X [
200X ["""
100x -~ -~

0x

Slowdown

g
>
£

water-spat

Application

Figure 14: Runtime of the VCGen and VCSolve phases, nor-
malized with native runtime, broken down into its three stages.

Overall, our results indicate that reducing backtracking
costs is key to attaining practical inference times — 1000
backtracks may be tolerable if each incurs say at most a
2x slowdown. To identify opportunities for improvement,
we broke down the average backtracking slowdown into
its two major parts, shown in Figure 13. The first part is
the cost of invoking the RTB-ORACLE (see Section 7.2.1),
needed to intelligently identify backtracking points. The
second is the cost of invoking IS-CONFORMANT-RUN (see
Section 7.2.1), needed to verify that a selected path is
path-template conformant. The results show that the cost
of a backtrack is dominated by the invocation of the RTB-
ORACLE as expected. We expect the RTB-ORACLE to be
expensive because it involves race detection and taint-
flow analyses (see Section 7.2.1) over the entire path up
till the point of non-conformance. In theory, the RTB-
ORACLE need not be run over the entire failed path on
every backtrack, but we leave that to future work.

10.3.2 VCGen+VCSolve

We expected VCGen+VCSolve to be slow, especially since
VCSolve is an NP-complete procedure for worst-case com-
putations (e.g., hash-functions). To verify this hypothe-
sis, we broke down the phase’s runtime into three parts,
as show in Figure 14. The first part is the cost of invoking
the race-oracle (Section 8), needed to identify which ac-
cesses may race (an important part of VCGen). The sec-
ond part is VCGen, needed to represent a set of candidate
read-traces. And the third part is VCSolve, needed to ob-
tain a particular read-trace from the candidate set, which
involves invoking a constraint solver. The breakdown con-
tradicted our hypothesis in that most of the inference is
spent in the race-oracle (a polynomial time procedure 8),
not VCGen or VCSolve.

VCGen and VCSolve are fast for two reasons. The first is
that our VC generator (see Section 7.2.2) generates VCs
only for those instructions influenced (i.e., tainted) by rac-
ing accesses. If the number of influenced instructions is
small, then the resulting formula will be small. Our re-
sults indicate that, for the programs in our suite, races
have limited influence on instructions executed — the av-
erage size of a formula is 1562 constraints. The second
reason is that, of those constraints that were generated,
all involved only linear twos-complement arithmetic. Such

Inference runtime

900x [~
800x [-

[Schedule select
700X |~ "l “Path=select "~
BOOX [7+ w e r e
500x [+~
QOOX [oo
300x
200x
100x -+~

0x

Slowdown

T
o
n
L
2
T
B

Application

Figure 15: Inference runtime overheads for QI-DRI. All apps
finish within the first 24 hours.

constraints are desirable because the constraint solver we
use can solve them in polynomial time [5]. We did not
encounter any races that influenced the inputs of hash
functions or other hard non-linear computations.

The penalty for efficient constraint generation and solv-
ing is expensive race-detection. Our race-oracle is slow
because it performs set-intersection of all accesses made
is the given path. Because a set may contain millions
of accesses, the process is inherently slow, even with our
O(n) set-intersection algorithm.

10.4 Qi-prI Record and Inference Modes
As we have shown so far, SI-DRI leads to a low recording
overhead, but it’s inference time is prohibitive. In this
section, we evaluate a variant of SI-DRI, QI-DRI, which
trades recording overhead for improved inference times.
In particular, QI-DRI relies on recording branches during
the original run, as explained in Section 9.3. Recoding
branches removes the need to invoke PATH-SELECT, the
key bottleneck behind the timeouts in SI-DRI. Hence the
improvements in the inference time.

Figure 11 shows QI-DRI's slowdown factors for recording,
normalized with native execution times. As expected,
recording branches significantly increases the overhead,
from 1.6x to 4.5x on average. While this overhead is still
4 times less than the average overhead of iDNA [2] !, it
is greater than other software-only approaches, for some
applications. Radix, for example, takes 3 times longer to

record on ODRwhen using QI-DRI than with SMP-ReVirt [4].

Figure 15 shows the inference time for QI-DRI normal-
ized with native execution times. As expected, QI-DRI
achieves much lower inference times than SI-DRI (see Fig-
ure 12). The improvements are due to the fact that QI-
DRI does not need to spend time in the path-select sub-
stage of read-trace guidance-the most expensive part of
SI-DRI-as the original path of each thread has been already
recorded. In the absence of path-selection overhead, the
VCGen+VCSolve stage dominates. As explained in Sec-

IThis is because our most expensive operation, obtaining
a branch trace, is not quite as expensive as intercepting
and logging memory accesses

14

Replay runtime (2 cores)
G

LAXp oo
12x -

1x

0.8x[-

Slowdown

0.6x["
0.4x[-

0.2x[-

0x

< < S =3 X S ©
= = a
3 8 B 2 2 o
5 @ E = 5
[l Read-trace replay £ 2
[l Schedule-trace replay 2
[Input-trace replay -
[Execution Application

Figure 16: Two-processor replay-mode runtime overheads nor-
malized with native execution time.

tion 10.3.2 and illustrated in Figure 14, the largest per-
centage of time in the VCGen+VCSolve stage is spent in
the race-oracle (see Section 8).

10.5 Replay Mode

Figure 16 shows replay runtime, normalized with native
runtime, broken down into three parts. The first is In-
put+event replay, which is the cost of intercepting and
reading from the log file for input syscalls and event de-
livery points. The second is Lock-order replay, which is
the cost of intercepting lock instructions and replaying the
lock order, including time spent waiting to meet logical-
clock dependencies. The third is Race-value replay, pri-
marily the cost of detecting execution points at which
race-values should be substituted. As with other replay
systems, native execution time in replay mode is smaller
for I/O intensive apps because ODR skips the time origi-
nally spent waiting for I/O [11].

The key result here is that replay slowdown is low across
the board independent of inference time. This is expected.
Once race-values are inferred, they are merely plugged-in
to future re-executions. Surprisingly, race-value substi-
tution is not a bottleneck, since there are very few race-
values to substitute. make-j2, for instance, has no races
and hence need not perform any substitutions. Replay
speed is not near-native largely due to the cost of inter-
cepting and replaying lock-instructions. Programs with a
high locking rate (e.g., java, SP2 apps), suffer the most.
We hope to improve these costs in a future implementa-
tion, perhaps by moving to a library-level lock intercep-
tion scheme.

11. LIMITATIONS

ODR has several limitations that warrant further research.
We provide a sampling of these limitations here.

Unsupported constraints. For inference to work, the
constraint solver must be able to find a satisfiable solution
for every generated formula. In reality, constraint solvers
have hard and soft limits on the kinds of constraints they
can solve. For example, no solver can invert hash func-
tions in a feasible amount of time, and STP cannot handle
floating-point arithmetic.

=] = >
B 2 E z
Sl | _Fe]| 3 =
g 9 + O < A =
g || g% z £
2|5 |E8o5]| & g
< = | B O)
R EEEAE: a
Jockey [18] Yes | No Yes Yes | Value
RecPlay [17] No | Yes Yes Yes | Value
SMP-ReVirt [4] | Yes | Yes No Yes | Value
iDNA [2] Yes | Yes No Yes | Value
DeLorean [14] Yes | Yes Yes No | Value
ODR Yes | Yes Yes Yes | Output

Table 1: Summary of key related work.

Fortunately, all of the constraints we've seen have been
limited to feasible integer operations. Nevertheless, we
are exploring ways to deal with the eventuality of un-
supported constraints. One approach is to not generate
any constraints for unsupported operations, and instead
make the targets of those operations symbolic. This in ef-
fect treats unsupported instructions as blackbox functions
that we can simply skip during replay.

Symbolic memory references. Our constraint gener-
ator assumes that races do not influence pointers or array
indices. This assumption holds for the executions we’ve
looked at, but may not for others. Catchconv and STP do
support symbolic references, but the current implementa-
tion is inefficient — it models memory as a very large array
and generates an array update constraint for each mem-
ory access, thereby producing massive formulas that take
eons to solve. One possible optimization is to generate up-
dates only when we detect that a reference is influenced
by a race (e.g., using taint-flow).

Inference time. The inference phase is admittedly not
for the impatient programmer, to put it mildly. The
main bottleneck, happens-before race-detection, can be
improved in many ways. An algorithmic optimization
would be to ignore accesses to non-shared pages. This can
be detected using the MMU, but to start, we can ignore
accesses to the stack, which account for a large number
of accesses in most applications. An implementation op-
timization would be to enable LibVEX’s optimizer; it is
currently disabled to workaround a bug we inadvertently
introduced into the library.

12. RELATED WORK

Table 1 compares 0DR with other replay systems along key
dimensions.

Many replay systems record race outcomes either by record-
ing memory access content or ordering, but they either
do not support multiprocessors [18] or incur huge slow-
downs [2]. Systems such as RecPlay [17] and more re-
cently R2 [7] can record efficiently on multiprocessors, but
assume data-race freedom. ODR provides efficient record-
ing and can reliably replay races, but it does not record
race outcomes — it computes them.

Much recent work has focused on harnessing hardware

15

assistance for efficient recording of races. Such systems
can record very efficiently . But the hardware they rely
on can be unconventional and in any case exists only in
simulation. ODR can be used today and its core techniques
(I/O tracing, and inference) can be ported to a variety of
commodity architectures.

The idea of relaxing determinism is as old as determinis-
tic replay technology. Indeed, all existing systems strive
for value-determinism—a relaxed form of determinism, as

pointed out in Section 3. By striving for output-determinism,

ODR relaxes even further. Relaxed determinism was re-
cently re-discovered in the Replicant system [16], but in
the context of redundant execution systems. Their tech-
niques are, however, inapplicable to the output-failure re-
play problem because they assume access to execution
replicas in order to tolerate divergences.

13. CONCLUSION

We have designed and built ODR, a software-only, replay
system for multiprocessor applications. ODR achieves low-
overhead recording of multiprocessor runs by relaxing its
determinism requirements—it generates an execution that
exhibits the same outputs as the original rather than an
identical replica. This relaxation, combined with efficient
search, enables ODR to circumvent the problem of repro-
ducing data races. The result is record-efficient output-
deterministic replay of real applications.

We have many plans to improve 0DR. Among them is a
more comprehensive study of output-determinism and the
limits of its power. We also hope to get more applications
running on 0DR, so that we may better understand the lim-
its of our inference technique. And of course, we aim to
remove the limitations listed in Section 11. Looking for-
ward, output-deterministic replay of data-centers seems
promising.

14. REFERENCES

[1] G. Altekar and I. Stoica. Sound race-detection and taint flow
for output-deterministic replay. Technical Report To Be
Submitted, EECS Department, University of California,
Berkeley, 2007.
S. Bhansali, W.-K. Chen, S. de Jong, A. Edwards,
R. Murray, M. Drini¢, D. Mihocka, and J. Chau. Framework
for instruction-level tracing and analysis of program
executions. In VEE ’06: Proceedings of the 2nd
international conference on Virtual execution
environments, pages 154—-163, New York, NY, USA, 2006.
ACM.
C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill, and D. R.
Engler. Exe: automatically generating inputs of death. In
CCS ’06: Proceedings of the 13th ACM conference on
Computer and communications security, pages 322-335,
New York, NY, USA, 2006. ACM Press.

G. W. Dunlap, D. G. Lucchetti, M. A. Fetterman, and P. M.
Chen. Execution replay of multiprocessor virtual machines.
In VEE ’08: Proceedings of the fourth ACM
SIGPLAN/SIGOPS international conference on Virtual
execution environments, pages 121-130, New York, NY,
USA, 2008. ACM.
V. Ganesh and D. L. Dill. A decision procedure for
bit-vectors and arrays. In W. Damm and H. Hermanns,
editors, CAV, volume 4590 of Lecture Notes in Computer
Science, pages 519-531. Springer, 2007.

D. Geels, G. Altekar, S. Shenker, and I. Stoica. Replay
debugging for distributed applications. pages 289-300.

Z. Guo, X. Wang, J. Tang, X. Liu, Z. Xu, M. Wu, M. F.
Kaashoek, and Z. Zhang. R2: An application-level kernel for

(2]

(3]

(4]

(5]

(6]
(7]

(8]

[9]

[10

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

record and replay. In R. Draves and R. van Renesse, editors,
OSDI, pages 193-208. USENIX Association, 2008.

J. L. Hennessy and D. A. Patterson. Computer
Architecture, Fourth Edition: A Quantitative Approach.
Morgan Kaufmann, September 2006.

D. R. Hower and M. D. Hill. Rerun: Exploiting episodes for
lightweight memory race recording. In ISCA ’08:
Proceedings of the 35th International Symposium on
Computer Architecture, pages 265276, Washington, DC,
USA, 2008. IEEE Computer Society.

Intel. Intel 64 and IA-32 Architectures Reference Manual,
November 2008.

S. T. King, G. W. Dunlap, and P. M. Chen. Debugging
operating systems with time-traveling virtual machines. In
USENIX Annual Technical Conference, General Track,
pages 1-15. USENIX, 2005.

C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser,

G. Lowney, S. Wallace, V. J. Reddi, and K. Hazelwood. Pin:
building customized program analysis tools with dynamic
instrumentation. In PLDI ’05: Proceedings of the 2005
ACM SIGPLAN conference on Programming language
design and implementation, volume 40, pages 190-200, New
York, NY, USA, June 2005. ACM Press.

D. A. Molnar and D. Wagner. Catchconv: Symbolic
execution and run-time type inference for integer conversion
errors. Technical Report UCB/EECS-2007-23, EECS
Department, University of California, Berkeley, 2007.

P. Montesinos, L. Ceze, and J. Torrellas. Delorean:
Recording and deterministically replaying shared-memory
multiprocessor execution efficiently. In ISCA ’08:
Proceedings of the 85th International Symposium on
Computer Architecture, pages 289-300, Washington, DC,
USA, 2008. IEEE Computer Society.

N. Nethercote and J. Seward. Valgrind: a framework for
heavyweight dynamic binary instrumentation. SIGPLAN
Not., 42(6):89-100, June 2007.

J. Pool, I. S. K. Wong, and D. Lie. Relaxed determinism:
making redundant execution on multiprocessors practical. In
HOTOS’07: Proceedings of the 11th USENIX workshop on
Hot topics in operating systems, pages 1-6, Berkeley, CA,
USA, 2007. USENIX Association.

M. Ronsse and K. De Bosschere. Recplay: a fully integrated
practical record/replay system. ACM Trans. Comput. Syst.,
17(2):133-152, 1999.

Y. Saito. Jockey: A user-space library for record-replay
debugging. In In AADEBUG’05: Proceedings of the sizth
international symposium on Automated analysis-driven
debugging, pages 69—76. ACM Press, 2005.

16

