
BOOM: Data-Centric Programming in the Datacenter

Peter Alvaro
Tyson Condie
Neil Conway
Khaled Elmeleegy
Joseph M. Hellerstein
Russell C Sears

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2009-113

http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-113.html

August 11, 2009

Copyright 2009, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Acknowledgement

This material is based upon work supported by the National Science
Foundation under Grant Nos. 0722077 and 0713661, the University of
California MICRO program, and gifts from Sun Microsystems, Inc. and
Microsoft Corporation.

BOOM: Data-Centric Programming in the Datacenter

Peter Alvaro
UC Berkeley

Tyson Condie
UC Berkeley

Neil Conway
UC Berkeley

Khaled Elmeleegy
Yahoo! Research

Joseph M. Hellerstein
UC Berkeley

Russell Sears
UC Berkeley

ABSTRACT
Cloud computing makes clusters a commodity, creating the poten-
tial for a wide range of programmers to develop new scalable ser-
vices. However, current cloud platforms do little to simplify truly
distributed systems development. In this paper, we explore the use
of a declarative, data-centric programming model to achieve this
simplicity. We describe our experience using Overlog and Java to
implement a “Big Data” analytics stack that is API-compatible with
Hadoop and HDFS, with equivalent performance. We extended the
system with complex features not yet available in Hadoop, includ-
ing availability, scalability, and unique monitoring and debugging
facilities. We present our experience to validate the enhanced pro-
grammer productivity afforded by declarative programming, and to
inform the design of new development environments for distributed
programming.

1. INTRODUCTION
Clusters of commodity hardware have become a standard archi-

tecture for datacenters over the last decade, and the major online
services have all invested heavily in cluster software infrastructure
(e.g., [4, 5, 9, 10, 12]). This infrastructure consists of distributed
software that manages difficult issues including parallelism, com-
munication, failure, and system resizing. Such systems support ba-
sic service operation, and facilitate software development by in-
house developers.

The advent of cloud computing promises to commoditize data-
centers by making it simple and economical for third-party devel-
opers to host their applications on managed clusters. Unfortunately,
writing distributed software remains as challenging as ever, which
impedes the full utilization of the power of this new platform. The
right programming model for the cloud remains an open question.

Current cloud platforms provide conservative, “virtualized legacy”
interfaces to developers, which typically take the form of traditional
single-node programming interfaces in an environment of hosted
virtual machines and shared storage. For example, Amazon EC2
exposes “raw” VMs and distributed storage as their development
environment, while Google App Engine and Microsoft Azure pro-
vide programmers with traditional single-node programming lan-
guages and APIs to distributed storage. These single-node models
were likely chosen for their maturity and familiarity, rather than
their ability to empower developers to write innovative distributed
programs.

A notable counter-example to this phenomenon is the MapRe-
duce framework popularized by Google [9] and Hadoop, which has
enabled a wide range of developers to easily coordinate large num-
bers of machines. MapReduce raises the programming abstraction
from a traditional von Neumann model to a functional dataflow
model that can be easily auto-parallelized over a shared-storage ar-

chitecture. MapReduce programmers think in a data-centric fash-
ion: they worry about handling sets of data records, rather than
managing fine-grained threads, processes, communication and co-
ordination. MapReduce achieves its simplicity in part by constrain-
ing its usage to batch-processing tasks. Although limited in this
sense, it points suggestively toward more attractive programming
models for datacenters.

1.1 Data-centric programming in BOOM
Over the last twelve months we have been working on the BOOM

project, an exploration in using data-centric programming to de-
velop production-quality datacenter software.1 Reviewing some of
the initial datacenter infrastructure efforts in the literature (e.g., [5,
12, 10, 9]), it seemed to us that most of the non-trivial logic in-
volves managing various forms of asynchronously-updated state
— sessions, protocols, storage — rather than intricate, uninter-
rupted sequences of computational steps. We speculated that the
Overlog language used for Declarative Networking [18] would be
well-suited to those tasks, and could significantly ease the devel-
opment of datacenter software without introducing major compu-
tational bottlenecks. The initial P2 implementation of Overlog [18]
is aging and targeted at network protocols, so we developed a new
Java-based Overlog runtime we call JOL (Section 2).

To evaluate the feasibility of BOOM, we chose to build BOOM
Analytics: an API-compliant reimplementation of the Hadoop MapRe-
duce engine and its HDFS distributed file system. In writing BOOM
Analytics, we preserved the Java API “skin” of Hadoop and HDFS,
but replaced their complex internals with Overlog. The Hadoop
stack appealed to us for two reasons. First, it exercises the dis-
tributed power of a cluster. Unlike a farm of independent web ser-
vice instances, the Hadoop and HDFS code entails coordination of
large numbers of nodes toward common tasks. Second, Hadoop
is a work in progress, still missing significant distributed features
like availability and scalability of master nodes. The difficulty of
adding these complex features could serve as a litmus test of the
programmability of our approach.

1.2 Contributions
The bulk of this paper describes our experience implementing

and evolving BOOM Analytics, and running it on Amazon EC2.
After twelve months of development, BOOM Analytics performed
as well as vanilla Hadoop, and enabled us to easily develop com-
plex new features including Paxos-supported replicated-master avail-
ability, and multi-master state-partitioned scalability. We describe
how a data-centric programming style facilitated debugging of tricky

1BOOM stands for the Berkeley Orders Of Magnitude project,
which aims to build orders of magnitude bigger systems in orders
of magnitude less code.

protocols, and how by metaprogramming Overlog we were able to
easily instrument our distributed system at runtime. Our experience
implementing BOOM Analytics in Overlog was gratifying both in
its relative ease, and in the lessons learned along the way: lessons
in how to quickly prototype and debug distributed software, and
in understanding limitations of Overlog that may contribute to an
even better programming environment for datacenter development.

This paper presents the evolution of BOOM Analytics from a
straightforward reimplementation of Hadoop/HDFS to a signifi-
cantly enhanced system. We describe how an initial prototype went
through a series of major revisions (“revs”) focused on availability
(Section 4), scalability (Section 5), and debugging and monitoring
(Section 6). In each case, the modifications involved were both
simple and well-isolated from the earlier revisions. In each sec-
tion we reflect on the ways that the use of a high-level, data-centric
language affected our design process.

1.3 Related Work
Declarative and data-centric languages have traditionally been

considered useful in very few domains, but things have changed
substantially in recent years. MapReduce [9] has popularized func-
tional dataflow programming with new audiences in computing.
And a surprising breadth of research projects have proposed and
prototyped declarative languages in recent years, including overlay
networks [18], three-tier web services [30], natural language pro-
cessing [11], modular robotics [2], video games [29], file system
metadata analysis [13], and compiler analysis [15].

Most of the languages cited above are declarative in the same
sense as SQL: they are based in first-order logic. Some — no-
tably MapReduce, but also SGL [29] — are algebraic or dataflow
languages, used to describe the composition of operators that pro-
duce and consume sets or streams of data. Although arguably im-
perative, they are far closer to logic languages than to traditional
imperative languages like Java or C, and are often amenable to
set-oriented optimization techniques developed for declarative lan-
guages [29]. Declarative and dataflow languages can also share the
same runtime, as demonstrated by recent integrations of MapRe-
duce and SQL in Hive [27], DryadLINQ [31], HadoopDB [1], and
products from vendors such as Greenplum and Aster.

Concurrent with our work, the Erlang language was used to im-
plement a simple MapReduce framework called Disco [22], and a
transactional DHT called Scalaris with Paxos support [23]. Philo-
sophically, Erlang revolves around programming concurrent pro-
cesses, rather than data. In Section 7 we reflect on some benefits of
a data-centric language over Erlang’s approach. For the moment,
Disco is significantly less functional than BOOM Analytics, lack-
ing a distributed file system, multiple scheduling policies, and high
availability via consensus.

Distributed state machines are the traditional formal model for
distributed system implementations, and can be expressed in lan-
guages like Input/Output Automata (IOA) and the Temporal Logic
of Actions (TLA) [20]. By contrast, our approach is grounded in
Datalog and its extensions. The pros and cons of starting with a
database foundation are a recurring theme of this paper.

Our use of metaprogrammed Overlog was heavily influenced by
the Evita Raced Overlog metacompiler [8], and the security and
typechecking features of Logic Blox’ LBTrust [21]. Some of our
monitoring tools were inspired by Singh et al. [25], although our
metaprogrammed implementation is much simpler and more ele-
gant than that of P2.

2. BACKGROUND
The Overlog language is sketched in a variety of papers. Origi-

Local, atomic
computation

Network

Clock

Java

Network

Java

Events Events

Datalog

Phase 1 Phase 2 Phase 3

Machine
Boundary

Figure 1: An Overlog timestep at a participating node: incom-
ing events are applied to local state, the local Datalog program
is run to fixpoint, and any outgoing events are emitted.

nally presented as an event-driven language [18], it has evolved a
more pure declarative semantics based in Datalog, the standard de-
ductive query language from database theory [28]. Our Overlog is
based on the description by Condie et al. [8]. We review Datalog in
Appendix A, and the extensions offered by Overlog here.

Overlog extends Datalog in three main ways: it adds notation
to specify the location of data, provides some SQL-style exten-
sions such as primary keys and aggregation, and defines a model
for processing and generating changes to tables. Overlog supports
relational tables that may optionally be “horizontally” partitioned
row-wise across a set of machines based on a column called the
location specifier, which is denoted by the symbol @. (Appendix A
shows a standard network routing example from previous papers
on declarative networking.)

When Overlog tuples arrive at a node either through rule evalua-
tion or external events, they are handled in an atomic local Datalog
“timestep”. Within a timestep, each node sees only locally-stored
tuples. Communication between Datalog and the rest of the system
(Java code, networks, and clocks) is modeled using events corre-
sponding to insertions or deletions of tuples in Datalog tables.

Each timestep consists of three phases, as shown in Figure 2. In
the first phase, inbound events are converted into tuple insertions
and deletions on the local table partitions. In the second phase,
we run the Datalog rules to a “fixpoint” in a traditional bottom-up
fashion [28], recursively evaluating the rules until no new results
are generated. In the third phase, updates to local state are atomi-
cally made durable, and outbound events (network messages, Java
callback invocations) are emitted. Note that while Datalog is de-
fined over static databases, the first and third phases allow Overlog
programs to mutate state over time.

JOL is an Overlog runtime implemented in Java, based on a
dataflow of operators similar to P2 [18]. JOL implements metapro-
gramming akin to P2’s Evita Raced extension [8]: each Overlog
program is compiled into a representation that is captured in rows
of tables. As a result, program testing, optimization and rewriting
can be written concisely in Overlog to manipulate those tables. JOL
supports Java-based extensibility in the model of Postgres [26]. It
supports Java classes as abstract data types, allowing Java objects
to be stored in fields of tuples, and Java methods to be invoked on
those fields from Overlog. JOL also allows Java-based aggregation
functions to run on sets of column values, and supports Java table
functions: Java iterators producing tuples, which can be referenced
in Overlog rules as ordinary database tables.

3. INITIAL PROTOTYPE
Our coding effort began in May, 2008, with an initial implemen-

tation of JOL. By June of 2008 we had JOL working well enough
to begin running sample programs. Development of the Overlog-

based version of HDFS (BOOM-FS) started in September of 2008.
We began development of our Overlog-based version of MapRe-
duce (BOOM-MR) in January, 2009, and the results we report on
here are from May, 2009. In Section 7 we reflect briefly on lan-
guage and runtime lessons related to JOL.

We used two different design styles in developing the two halves
of BOOM Analytics. For BOOM-MR, we essentially ported much
of the “interesting” material in Hadoop’s MapReduce code piece-
by-piece to Overlog, leaving various API routines in their original
state in Java. By contrast, we began our BOOM-FS implementation
as a clean-slate rewrite in Overlog. When we had a prototype file
system working in an Overlog-only environment, we retrofitted the
appropriate Java APIs to make it API-compliant with Hadoop.

3.1 MapReduce Port
The goal of our MapReduce port was to make it easy to evolve

a non-trivial aspect of the system. MapReduce scheduling poli-
cies were one issue that had been treated in recent literature [32].
To enable credible work on MapReduce scheduling, we wanted to
remain true to the basic structure of the Hadoop MapReduce code-
base, so we proceeded by understanding that code, mapping its core
state into a relational representation, and then writing Overlog rules
to manage that state in the face of new messages delivered by the
existing Java APIs. We follow that structure in our discussion.

3.1.1 Background: Hadoop MapReduce
In Hadoop MapReduce, there is a single master node called the

JobTracker, which manages a number of worker nodes called Task-
Trackers. A job is divided into a set of map and reduce tasks.
The JobTracker assigns tasks to worker nodes. Each map task
reads a 64MB chunk from the distributed file system, runs a user-
defined map function, and partitions output key/value pairs into
hash-buckets on local disk. The JobTracker then forms reduce tasks
corresponding to each hash value, and assigns these tasks to Task-
Trackers. Each reduce task fetches the corresponding hash buckets
from all mappers, sorts locally by key, runs the reduce function and
writes the results to the distributed file system.

Each TaskTracker has a fixed number of slots for executing tasks
— two maps and two reduces by default. A heartbeat protocol
between each TaskTracker and the JobTracker is used to update
the JobTracker’s bookkeeping of the state of running tasks, and
drive the scheduling of new tasks: if the JobTracker identifies free
TaskTracker slots, it will schedule further tasks on the TaskTracker.
Hadoop will often schedule speculative tasks to reduce a job’s re-
sponse time by preempting “straggler” nodes [9].

3.1.2 MapReduce in Overlog
Our initial goal was to port the JobTracker code to Overlog. We

began by identifying the key state maintained by the JobTracker.
This state includes both data structures to track the ongoing status
of the system, and transient state in the form of messages sent and
received by the JobTracker. We captured this information fairly
naturally in four Overlog tables, shown in Table 1.

The underlined attributes in Table 1 together make up the pri-
mary key of each relation. The job relation contains a single row
for each job submitted to the JobTracker. In addition to some basic
metadata, each job tuple contains an attribute called jobConf that
holds a Java object constructed by legacy Hadoop code, which cap-
tures the configuration of the job. The task relation identifies each
task within a job. The attributes of this relation identify the task
type (map or reduce), the input “partition” (a chunk for map tasks,
a bucket for reduce tasks), and the current running status.

A task may be attempted more than once, due to speculation

Name Description Relevant attributes
job Job definitions jobid, priority, submit time,

status, jobConf
task Task definitions jobid, taskid, type, partition, status
taskAttempt Task attempts jobid, taskid, attemptid, progress,

state, phase, tracker, input loc,
start, finish

taskTracker TaskTracker name, hostname, state,
definitions map count, reduce count,

max map, max reduce

Table 1: BOOM-MR relations defining JobTracker state.

or if the initial execution attempt failed. The taskAttempt relation
maintains the state of each such attempt. In addition to a progress
percentage and a state (running/completed), reduce tasks can be in
any of three phases: copy, sort, or reduce. The tracker attribute
identifies the TaskTracker that is assigned to execute the task at-
tempt. Map tasks also need to record the location of their input
chunk, which is given by input loc. The taskTracker relation iden-
tifies each TaskTracker in the cluster with a unique name.

Overlog rules are used to update the JobTracker’s tables by con-
verting inbound messages into job, taskAttempt and taskTracker tu-
ples. These rules are mostly straightforward. Scheduling decisions
are encoded in the taskAttempt table, which assigns tasks to Task-
Trackers. A scheduling policy is a set of rules that join against the
taskTracker relation to find TaskTrackers with unassigned slots, and
schedules tasks by inserting tuples into taskAttempt.

System Lines in Patch Files Modified by Patch
Hadoop 2102 17
BOOM-MR 82 2

Table 2: Modifying MapReduce schedulers with LATE.
To exercise our extensible scheduling architecture, we imple-

mented the LATE scheduler [32], in addition to Hadoop’s default
scheduling policy. The LATE policy is specified in the paper via
just three lines of pseudocode. Table 2 quantifies the relative com-
plexity of the Java LATE scheduler patch against Hadoop ([17],
issue HADOOP-2141) with the size of our LATE implementation
in BOOM-MR. Appendix C validates the faithfulness of our im-
plementation in practice. In sum, we were pleased to see that the
BOOM approach enabled scheduler modifications that were over
an order of magnitude smaller than traditional approaches.

3.1.3 Discussion
We had an initial version of BOOM-MR running after a month

of development, and have continued to tune it until very recently.
BOOM-MR consists of 55 Overlog rules in 396 lines of code, and
1269 lines of Java. It was based on Hadoop version 18.1; we esti-
mate that we removed 6,573 lines from Hadoop (out of 88,864) in
writing BOOM-MR. The removed code contained the core schedul-
ing logic and the data structures that represent the components
listed in Table 1. The performance of BOOM-MR is very simi-
lar to that of Hadoop MapReduce, as seen in the experiments in
Appendix B.

Our experience gutting Hadoop and inserting BOOM Analytics
was not always pleasant. Given that we were committed to preserv-
ing the client API, we did not take a “purist” approach and try to
convert everything into tables and Overlog rules. For example, we
chose not to “tableize” the JobConf object, but instead to carry it
through Overlog tuples. In our Overlog rules, we pass the JobConf
object into a custom Java table function that manufactures task tu-
ples for the job, subject to the specifications in the JobConf.

In retrospect, it was handy to be able to draw the Java/Overlog
boundaries flexibly. This allowed us to focus on porting the more

interesting Hadoop logic into Overlog, while avoiding ports of rel-
atively mechanical details. We also found that the Java/Overlog
interfaces we implemented in JOL were both necessary and suf-
ficient for our needs. We employed them all: table functions for
producing tuples from Java, Java objects and methods within tu-
ples, Java aggregation functions, and Java event listeners that listen
for insertions and deletions of tuples into tables.

With respect to Overlog, we found it much simpler to extend and
modify than the original Hadoop Java code, as demonstrated by
our experience with LATE. We have been experimenting with new
scheduling policies recently, and it has been very easy to modify
existing policies and try new ones. Informally, our Overlog code
seems about as simple as the task should require: the coordination
of MapReduce task scheduling is not a terribly rich design space,
and we feel that the simplicity of BOOM-MR is appropriate to the
simplicity of the system’s job.

3.2 HDFS Rewrite
The BOOM-MR logic described in the previous section is based

on entirely centralized state: the only distributed aspect of the code
is the implementation of message handlers. Although its metadata
is still centralized, the actual data in HDFS is distributed and repli-
cated. HDFS is loosely based on GFS [12], and is targeted at stor-
ing large files for full-scan workloads.

In HDFS, file system metadata is stored at a centralized NameN-
ode, but file data is partitioned into 64MB chunks and distributed
across a set of DataNodes. Each chunk is typically stored at three
DataNodes to provide fault tolerance. DataNodes periodically send
heartbeat messages to the NameNode containing the set of chunks
stored at the DataNode. The NameNode caches this information. If
the NameNode has not seen a heartbeat from a DataNode for a cer-
tain period of time, it assumes that the DataNode has crashed and
deletes it from the cache; it will also create additional copies of the
chunks stored at the crashed DataNode to ensure fault tolerance.

Clients only contact the NameNode to perform metadata opera-
tions, such as obtaining the list of chunks in a file; all data oper-
ations involve only clients and DataNodes. HDFS only supports
file read and append operations — chunks cannot be modified once
they have been written.

3.2.1 BOOM-FS In Overlog
In contrast to our “porting” strategy for implementing BOOM-

MR, we chose to build BOOM-FS from scratch. This required us
to exercise Overlog more broadly, limiting our Hadoop/Java com-
patibility task to implementing the HDFS client API in Java. We
did this by creating a simple translation layer between Hadoop
API operations and BOOM-FS protocol commands. The result-
ing BOOM-FS implementation works with either vanilla Hadoop
MapReduce or BOOM-MR.

Like GFS, HDFS maintains a clean separation of control and
data protocols: metadata operations, chunk placement and DataN-
ode liveness are cleanly decoupled from the code that performs
bulk data transfers. This made our rewriting job substantially more
attractive. JOL is a relatively young runtime and is not tuned for
high-bandwidth data manipulation, so we chose to implement the
simple high-bandwidth data path “by hand” in Java, and used Over-
log for the trickier but lower-bandwidth control path. While we ini-
tially made this decision for expediency, as we reflect in Section 7,
it yielded a hybrid system that is clean and efficient.

3.2.2 File System State
The first step of our rewrite was to represent file system metadata

as a collection of relations. We then implemented file system policy

Name Description Relevant attributes
file Files fileid, parentfileid, name, isDir
fqpath Fully-qualified pathnames path, fileid
fchunk Chunks per file chunkid, fileid
datanode DataNode heartbeats nodeAddr, lastHeartbeatTime
hb chunk Chunk heartbeats nodeAddr, chunkid, length

Table 3: BOOM-FS relations defining file system metadata.

by writing queries over this schema. A simplified version of the
relational file system metadata in BOOM-FS is shown in Table 3.

The file relation contains a row for each file or directory stored
in BOOM-FS. The set of chunks in a file is identified by the corre-
sponding rows in the fchunk relation.2 The datanode and hb chunk
relations contain the set of live DataNodes and the chunks stored by
each DataNode, respectively. The NameNode updates these rela-
tions as new heartbeats arrive; if the NameNode does not receive a
heartbeat from a DataNode within a configurable amount of time, it
assumes that the DataNode has failed and removes the correspond-
ing rows from these tables.

The NameNode must ensure that the file system metadata is
durable, and restored to a consistent state after a failure. This was
easy to implement using Overlog, because of the natural atomic-
ity boundaries provided by fixpoints. We used the Stasis storage
library [24] to flush durable state changes to disk as an atomic
transaction at the end of each fixpoint. Since JOL allows durability
to be specified on a per-table basis, the relations in Table 3 were
marked durable, whereas “scratch tables” that are used to compute
responses to file system requests were transient.

Since a file system is naturally hierarchical, a recursive query
language like Overlog was a natural fit for expressing file sys-
tem policy. For example, an attribute of the file table describes
the parent-child relationship of files; by computing the transitive
closure of this relation, we can infer the fully-qualified pathname
of each file (fqpath). (The two Overlog rules that derive fqpath
from file are listed in Figure 4 in Appendix A.) Because this in-
formation is accessed frequently, we configured the fqpath relation
to be cached after it is computed. Overlog will automatically up-
date fqpath when file is updated, using standard view maintenance
logic. BOOM-FS defines several other views to compute derived
file system metadata, such as the total size of each file and the con-
tents of each directory. The materialization of each view can easily
be turned on or off via simple Overlog table definition statements.
During the development process, we regularly adjusted view mate-
rialization to trade off read performance against write performance
and storage requirements.

At each DataNode, chunks are stored as regular files on the file
system. In addition, each DataNode maintains a relation describing
the chunks stored at that node. This relation is populated by peri-
odically invoking a table function defined in Java that walks the
appropriate directory of the DataNode’s local file system.

3.2.3 Communication Protocols
BOOM-FS uses three different protocols: the metadata protocol

which clients and NameNodes use to exchange file metadata, the
heartbeat protocol which DataNodes use to notify the NameNode
about chunk locations and DataNode liveness, and the data pro-
tocol which clients and DataNodes use to exchange chunks. We
implemented the metadata and heartbeat protocols with a set of
distributed Overlog rules in a similar style. The data protocol was

2The order of a file’s chunks must also be specified, because re-
lations are unordered. Currently, we assign chunk IDs in a mono-
tonically increasing fashion and only support append operations, so
clients can determine a file’s chunk order by sorting chunk IDs.

// The set of nodes holding each chunk
compute_chunk_locs(ChunkId, set<NodeAddr>) :-

hb_chunk(NodeAddr, ChunkId, _);

// Chunk exists => return success and set of nodes
response(@Src, RequestId, true, NodeSet) :-

request(@Master, RequestId, Src,
"ChunkLocations", ChunkId),

compute_chunk_locs(ChunkId, NodeSet);

// Chunk does not exist => return failure
response(@Src, RequestId, false, null) :-

request(@Master, RequestId, Src,
"ChunkLocations", ChunkId),

notin hb_chunk(_, ChunkId, _);

Figure 2: NameNode rules to return the set of DataNodes that
hold a given chunk in BOOM-FS.

System Lines of Java Lines of Overlog
HDFS ~21,700 0
BOOM-FS 1,431 469

Table 4: Code size of two file system implementations.

implemented in Java because it is simple and performance critical.
We proceed to describe the three protocols in order.

For each command in the metadata protocol, there is a single rule
at the client (stating that a new request tuple should be “stored” at
the NameNode). There are typically two corresponding rules at the
NameNode: one to specify the result tuple that should be stored
at the client, and another to handle errors by returning a failure
message. An example of the NameNode rules for Chunk Location
requests is shown in Figure 2.

Requests that modify metadata follow the same basic structure,
except that in addition to deducing a new result tuple at the client,
the NameNode rules also deduce changes to the file system meta-
data relations. Concurrent requests are serialized by JOL at the
NameNode. While this simple approach has been sufficient for our
experiments, we plan to explore more sophisticated concurrency
control techniques in the future.

DataNode heartbeats have a similar request/response pattern, but
are not driven by the arrival of network events. Instead, they are
“clocked” by joining with the built-in periodic relation [18], which
produces new tuples at every tick of a wall-clock timer. In addition,
control protocol messages from the NameNode to DataNodes are
deduced when certain system invariants are unmet; for example,
when the number of replicas for a chunk drops below the config-
ured replication factor.

Finally, the data protocol is a straightforward mechanism for
transferring the content of a chunk between clients and DataNodes.
This protocol is orchestrated by Overlog rules but implemented in
Java. When an Overlog rule deduces that a chunk must be trans-
ferred from host X to Y, an output event is triggered at X. A Java
event handler at X listens for these output events, and uses a simple
but efficient data transfer protocol to send the chunk to host Y. To
implement this protocol, we wrote a simple multi-threaded server
in Java that runs on the DataNodes.

3.2.4 Discussion
After two months of work, we had a working implementation of

metadata handling strictly in Overlog, and it was straightforward to
add Java code to store chunks in UNIX files. Adding the necessary
Hadoop client APIs in Java took an additional week. Adding meta-
data durability took about a day. Table 4 compares statistics about
the code bases of BOOM-FS and HDFS. The DataNode implemen-
tation accounts for 414 lines of the Java in BOOM-FS; the remain-

der is mostly devoted to system configuration, bootstrapping, and a
client library. Adding support for accessing BOOM-FS to Hadoop
required an additional 400 lines of Java.

BOOM-FS has performance, scaling and failure-handling prop-
erties similar to those of HDFS; again, we provide a simple perfor-
mance validation in Appendix B. By following the HDFS archi-
tecture, BOOM-FS can tolerate DataNode failures but has a single
point of failure and scalability bottleneck at the NameNode.

Like MapReduce, HDFS is actually a fairly simple system, and
we feel that BOOM-FS reflects that simplicity well. HDFS sidesteps
many of the performance challenges of traditional file systems and
databases by focusing nearly exclusively on scanning large files.
It avoids most distributed systems challenges regarding replica-
tion and fault-tolerance by implementing coordination with a single
centralized NameNode. As a result, most of our implementation
consists of simple message handling and management of the hier-
archical file system namespace. Datalog materialized view logic
was not hard to implement in JOL, and took care of most of the
performance issues we faced over the course of our development.

4. THE AVAILABILITY REV
Having achieved a fairly faithful implementation of MapReduce

and HDFS, we were ready to explore one of our main motivating
hypotheses: that data-centric programming would make it easy to
add complex distributed functionality to an existing system. We
chose an ambitious goal: retrofitting BOOM-FS with high avail-
ability failover via “hot standby” NameNodes. A proposal for warm
standby was posted to the Hadoop issue tracker in October of 2008
([17] issue HADOOP-4539). We felt that a hot standby scheme
would be more useful, and we deliberately wanted to pick a more
challenging design to see how hard it would be to build in Overlog.

4.1 Paxos Implementation
Correctly implementing efficient hot standby replication is tricky,

since replica state must remain consistent in the face of node fail-
ures and lost messages. One solution to this problem is to imple-
ment a globally-consistent distributed log, which guarantees a total
ordering over events affecting replicated state. The Paxos algorithm
is the canonical mechanism for this feature [16].

We began by creating an Overlog implementation of basic Paxos,
focusing on correctness and adhering as closely as possible to the
initial specification. Our first effort resulted in an impressively
short program: 22 Overlog rules in 53 lines of code. We found
that Overlog was a good fit for this task: our Overlog rules corre-
sponded nearly line-for-line with the statements of invariants from
Lamport’s original paper [16]. Our entire implementation fit on a
single screen, so its faithfulness to the original specification could
be visually confirmed. To this point, working with a data-centric
language was extremely gratifying.

We then needed to convert basic Paxos into a working primitive
for a distributed log. This required adding the ability to pass a series
of log entries (“Multi-Paxos”), a liveness module, and a catchup al-
gorithm, as well as optimizations to reduce message complexity.
This caused our implementation to swell to 50 rules in roughly 400
lines of code. As noted in the Google implementation [6], these en-
hancements made the code considerably more difficult to check for
correctness. Our code also lost some of its pristine declarative char-
acter. This was due in part to the evolution of the Paxos research
papers: while the original Paxos was described as a set of invariants
over state, most of the optimizations were described as transition
rules in state machines. Hence we found ourselves translating state-
machine pseudocode back into logical invariants, and it took some
time to gain confidence in our code. The resulting implementation

is still very concise relative to a traditional programming language,
but it highlighted the difficulty of using a data-centric programming
model for complex tasks that were not originally specified that way.
We return to this point in Section 7.

4.2 BOOM-FS Integration
Once we had Paxos in place, it was straightforward to support

the replication of the distributed file system metadata. All state-
altering actions are represented in the revised BOOM-FS as Paxos
decrees, which are passed into the Paxos logic via a single Overlog
rule that intercepts tentative actions and places them into a table
that is joined with Paxos rules. Each action is considered complete
at a given site when it is “read back” from the Paxos log, i.e. when
it becomes visible in a join with a table representing the local copy
of that log. A sequence number field in the Paxos log table captures
the globally-accepted order of actions on all replicas.

We also had to ensure that Paxos state was durable in the face
of crashes. The support for persistent tables in Overlog made this
straightforward: Lamport’s description of Paxos explicitly distin-
guishes between transient and durable state. Our implementation
already divided this state into separate relations, so we simply marked
the appropriate relations as durable.

We validated the performance of our implementation experimen-
tally: in the absence of failure replication has negligible perfor-
mance impact, but when the primary NameNode fails, a backup Na-
meNode takes over reasonably quickly. This is discussed in more
detail in Appendix D.

4.3 Discussion
The Availability revision was our first foray into serious dis-

tributed systems programming, and we continued to benefit from
the high-level abstractions provided by Overlog. Most of our atten-
tion was focused at the appropriate level of complexity: faithfully
capturing the reasoning involved in distributed protocols.

Lamport’s original paper describes Paxos as a set of logical in-
variants, which he uses in his proof of correctness. Translating
these into Overlog rules was a straightforward exercise in declara-
tive programming. Each rule covers a potentially large portion of
the state space, drastically simplifying the case-by-case transitions
that would have to be specified in a state machine-based imple-
mentation. However, choosing an invariant-based approach made
it harder to adopt optimizations from the literature, because these
were often specified as state machines. For example, a common op-
timization of basic Paxos avoids the high messaging cost of reach-
ing quorum by skipping the protocol’s first phase once a master has
established quorum: subsequent decrees then use the established
quorum, and merely hold rounds of voting while steady state is
maintained. This is naturally expressed in a state machine model
as a pair of transition rules for the same input (a request) given dif-
ferent starting states. In our implementation, we frequently found
it easier in such cases to model the state as a relation with a single
row, allow certain rules to fire only in certain states, and explicitly
describe the transitions, rather than to reformulate the optimizations
in terms of original logic. Though mimicking a state machine is
straightforward, the resulting rules have a hybrid feel, which some-
what compromises our high-level protocol specification.

5. THE SCALABILITY REV
HDFS NameNodes manage large amounts of file system meta-

data, which is kept in memory to ensure good performance. The
original GFS paper acknowledged that this could cause significant
memory pressure [12], and NameNode scaling is often an issue
in practice at Yahoo!. Given the data-centric nature of BOOM-

FS, we hoped to very simply scale out the NameNode across mul-
tiple NameNode-partitions. From a database design perspective
this seemed trivial — it involved adding a “partition” column to
some Overlog tables. The resulting code composes cleanly with
our availability implementation: each NameNode-partition can be
a single node, or a Paxos group.

There are many options for partitioning the files in a directory
tree. We opted for a simple strategy based on the hash of the fully
qualified pathname of each file. We also modified the client library
to broadcast requests for directory listings and directory creation
to each NameNode-partition. Although the resulting directory cre-
ation implementation is not atomic, it is idempotent; recreating a
partially-created directory will restore the system to a consistent
state, and will preserve any files in the partially-created directory.

For all other BOOM-FS operations, clients have enough infor-
mation to determine the correct NameNode-partition. We do not
support atomic “move” or “rename” across partitions. This feature
is not exercised by Hadoop, and complicates distributed file sys-
tem implementations considerably. In our case, it would involve
the atomic transfer of state between otherwise-independent Paxos
instances. We believe this would be relatively clean to implement
— we have a two-phase commit protocol implemented in Overlog
— but decided not to pursue this feature at present.

5.1 Discussion
By isolating the file system state into relations, it became a text-

book exercise to partition that state across nodes. It took 8 hours of
developer time to implement NameNode partitioning; two of these
hours were spent adding partitioning and broadcast support to the
Overlog code. This was a clear win for the data-centric approach.

The simplicity of file system scale-out made it easy to think
through its integration with Paxos, a combination that might other-
wise seem very complex. Our confidence in being able to compose
techniques from the literature is a function of the compactness and
resulting clarity of our code.

6. THE MONITORING REV
As our BOOM Analytics prototype matured and we began to

refine it, we started to suffer from a lack of performance monitor-
ing and debugging tools. Singh et al. pointed out that Overlog is
well-suited to writing distributed monitoring queries, and offers a
naturally introspective approach: simple Overlog queries can mon-
itor complex protocols [25]. Following that idea, we decided to
develop a suite of debugging and monitoring tools for our own use.

6.1 Invariants
One advantage of a logic-oriented language like Overlog is that it

encourages the specification of system invariants, including “watch-
dogs” that provide runtime checks of behavior induced by the pro-
gram. For example, one can confirm that the number of messages
sent by a protocol like Paxos matches the specification. Distributed
Overlog rules induce asynchrony across nodes; such rules are only
attempts to achieve invariants. An Overlog program needs to be en-
hanced with global coordination mechanisms like two-phase com-
mit or distributed snapshots to convert distributed Overlog rules
into global invariants [7]. Singh et al. have shown how to imple-
ment Chandy-Lamport distributed snapshots in Overlog [25]; we
did not go that far in our own implementation.

To simplify debugging, we wanted a mechanism to integrate
Overlog invariant checks into Java exception handling. To this end,
we added a relation called die to JOL; when tuples are inserted into
the die relation, a Java event listener is triggered that throws an
exception. This feature makes it easy to link invariant assertions

in Overlog to Java exceptions: one writes an Overlog rule with an
invariant check in the body, and the die relation in the head.

We made extensive use of these local-node invariants in our code
and unit tests. Although these invariant rules increase the size of a
program, they improve readability in addition to reliability. This
is important in a language like Overlog: it is a terse language, and
program complexity grows rapidly with code size. Assertions that
we specified early in the implementation of Paxos aided our confi-
dence in its correctness as we added features and optimizations.

6.2 Monitoring via Metaprogramming
Our initial prototypes of both BOOM-MR and BOOM-FS had

significant performance problems. Unfortunately, Java-level per-
formance tools were of little help. A poorly-tuned Overlog pro-
gram spends most of its time in the same routines as a well-tuned
Overlog program: in dataflow operators like Join and Aggregation.
Java-level profiling lacks the semantics to determine which rules
are causing the lion’s share of the dataflow code invocations.

Fortunately, it is easy to do this kind of bookkeeping directly in
Overlog. In the simplest approach, one can replicate the body of
each rule in an Overlog program and send its output to a log table
(which can be either local or remote). For example, the Paxos rule
that tests whether a particular round of voting has reached quorum:

quorum(@Master, Round) :-
priestCnt(@Master, Pcnt),
lastPromiseCnt(@Master, Round, Vcnt),
Vcnt > (Pcnt / 2);

might have an associated tracing rule:

trace_r1(@Master, Round, RuleHead, Tstamp) :-
priestCnt(@Master, Pcnt),
lastPromiseCnt(@Master, Round, Vcnt),
Vcnt > (Pcnt / 2),
RuleHead = "quorum",
Tstamp = System.currentTimeMillis();

This approach captures per-rule dataflow in a trace relation that can
be queried later. Finer levels of detail can be achieved by “tap-
ping” each of the predicates in the rule body separately in a similar
fashion. The resulting program passes no more than twice as much
data through the system, with one copy of the data being “teed off”
for tracing along the way. When profiling, this overhead is often
acceptable. However, writing the trace rules by hand is tedious.

Using the metaprogramming approach of Evita Raced [8], we
were able to automate this task via a trace rewriting program writ-
ten in Overlog, involving the meta-tables of rules and terms. The
trace rewriting expresses logically that for selected rules of some
program, new rules should be added to the program containing the
body terms of the original rule, and auto-generated head terms.
Network traces fall out of this approach naturally: any dataflow
transition that results in network communication is flagged in the
generated head predicate during trace rewriting.

Using this idea, it took less than a day to create a general-purpose
Overlog code coverage tool that traced the execution of our unit
tests and reported statistics on the “firings” of rules in the JOL run-
time, and the counts of tuples deduced into tables. Our metapro-
gram for code coverage and network tracing consists of 5 Overlog
rules that are evaluated by every participating node, and 12 sum-
mary rules that are run at a centralized location. Several hundred
lines of Java implement a rudimentary front end to the tool. We ran
our regression tests through this tool, and immediately found both
“dead code” rules in our programs, and code that we knew needed
to be exercised by the tests but was as-yet uncovered.

6.3 Logging
Hadoop comes with fairly extensive logging facilities that can

track not only logic internal to the application, but performance
counters that capture the current state of the worker nodes.

TaskTrackers write their application logs to a local disk and rely
on an external mechanism to collect, ship and process these logs;
Chukwa is one such tool used in the Hadoop community [3]. In
Chukwa, a local agent written in Java implements a number of
adaptors that gather files (e.g., the Hadoop log) and the output of
system utilities (e.g. top, iostat), and forward the data to inter-
mediaries called collectors, which in turn buffer messages before
forwarding them to data sinks. At the data sinks, the unstructured
log data is eventually parsed by a MapReduce job, effectively re-
distributing it over the cluster in HDFS.

We wanted to prototype similar logging facilities in Overlog, not
only because it seemed an easy extension of the existing infrastruc-
ture, but because it would close a feedback loop that — in future
— could allow us to make more intelligent scheduling and place-
ment decisions. Further, we observed that the mechanisms for for-
warding, buffering, aggregation and analysis of streams are already
available via Overlog.

We began by implementing Java modules that read from the
/proc file system and produce the results as JOL tuples. We also
wrote Java modules to convert Hadoop application logs into tuples.
Windowing, aggregation and buffering are carried out in Overlog,
as are the summary queries run at the data sinks.

In-network buffering and aggregation were simple to implement
in Overlog, and this avoided the need to add explicit intermediary
processes to play the role of collectors. The result was a very sim-
ple implementation of the general Chukwa idea. We implemented
the “agent” and “collector” logic via a small set of rules that run
inside the same JOL runtime as the NameNode process. This made
our logger easy to write, well-integrated into the rest of the system,
and easily extensible. On the other hand, it puts the logging mech-
anism on the runtime’s critical path, and is unlikely to scale as well
as Chukwa as log sizes increase. For our purposes, we were primar-
ily interested in gathering and acting quickly upon telemetry data,
and the current collection rates are reasonable for the existing JOL
implementation. We are investigating alternative data forwarding
pathways like those we used for BOOM-FS for the bulk forward-
ing of application logs, which are significantly larger and are not
amenable to in-network aggregation.

7. EXPERIENCE AND LESSONS
Our overall experience with BOOM Analytics has been very pos-

itive. Building the system required only nine months of part-time
work by four developers. We have been frankly surprised at our
own productivity, and even with a healthy self-regard we cannot
attribute it to our programming skills per se. Along the way, there
have been some interesting lessons learned, and a bit of time for
initial reflections on the process.

7.1 Everything Is Data
The most positive aspects of our experience with Overlog and

BOOM Analytics came directly from data-centric programming.
In the system we built, everything is data, represented as tuples
in tables. This includes traditional persistent information like file
system metadata, runtime state like TaskTracker status, summary
statistics like those used by the JobTracker’s scheduling policy, in-
flight messages, system events, execution state of the system, and
even parsed code.

The benefits of this approach are perhaps best illustrated by the
extreme simplicity with which we scaled out the NameNode via

partitioning (Section 5): by having the relevant state stored as data,
we were able to use standard data partitioning to achieve what
would ordinarily be a significant rearchitecting of the system. Sim-
ilarly, the ease with which we implemented system monitoring —
via both system introspection tables and rule rewriting — arose be-
cause we could easily write rules that manipulated concepts as di-
verse as transient system state and program semantics (Section 6).

The uniformity of data-centric interfaces also enables interposi-
tion [14] of components in a natural manner: the dataflow “pipe”
between two system modules can be easily rerouted to go through
a third module. This enabled the simplicity of incorporating our
Overlog LATE scheduler into BOOM-MR (Section 3.1.2). Because
dataflows can be routed across the network (via the location speci-
fier in a rule’s head), interposition can also involve distributed logic
— this is how we easily added Paxos support into the BOOM-FS
NameNode (Section 4). Our experience suggests that a form of
encapsulation could be achieved by constraining the points in the
dataflow at which interposition is allowed to occur.

The last data-centric programming benefit we observed related to
the timestepped dataflow execution model, which we found to be
simpler than traditional notions of concurrent programming. Tra-
ditional models for concurrency include event loops and multi-
threaded programming. Our concern regarding event loops — and
the state machine programming models that often accompany them
— is that one needs to reason about combinations of states and
events. That would seem to put a quadratic reasoning task on the
programmer. In principle our logic programming deals with the
same issue, but we found that each composition of two tables (or
tuple-streams) could be thought through in isolation, much as one
thinks about composing relational operators or piping Map and Re-
duce tasks. Given our prior experience writing multi-threaded code
with locking, we were happy that the simple timestep model of
Overlog obviated the need for this entirely — there is no explicit
synchronization logic in any of the BOOM Analytics code, and we
view this as a clear victory for the programming model.

In all, none of this discussion seems specific to logic program-
ming per se. We suspect that a more algebraic style of program-
ming — for instance a combination of MapReduce and joins —
would afford many of the same benefits as Overlog, if it were
pushed to a similar degree of generality.

7.2 Developing in Overlog
We have had various frustrations with the Overlog language:

many minor, and a few major. The minor complaints are not techni-
cally significant, but one at least seems notable. Some team mem-
bers grew to dislike Datalog’s specification of equijoins (unifica-
tion) via repetition of variables; it is hard to write, and especially
hard to read. A text editor with syntax highlighting helps to some
extent, but we suspect that no programming language will grow
popular with this syntactic convention. That said, the issue is emi-
nently fixable: SQL’s named-field approach is one option, and we
can imagine others. In the end, any irritability with Datalog syntax
was far outweighed by our positive experience with the productiv-
ity offered by Overlog.

Another programming challenge we wrestled with was the trans-
lation of state machine programming into logic (Section 4). In fair-
ness, the porting task was not actually very hard: in most cases it
amounted to writing message-handling rules in Overlog that had a
familiar structure. But upon deeper reflection, our port was shallow
and syntactic; the resulting Overlog does not “feel” like logic, in the
invariant style of Lamport’s original Paxos specification. Having
gotten the code working, we hope to revisit it with an eye toward re-
thinking the global intent of the state-machine optimizations. This

would not only fit the spirit of Overlog better, but perhaps con-
tribute to a deeper understanding of the ideas involved.

With respect to consistency of storage, we were comfortable with
our model of associating a local storage transaction with each fix-
point. However, we expect that this may change as we evolve the
use of JOL. For example, we have not to date seriously dealt with
the idea of a single JOL runtime hosting multiple programs. We
expect this to be a natural desire in our future work.

7.3 Performance
JOL performance was good enough for BOOM Analytics to match

Hadoop performance, but we are conscious that it has room to im-
prove. We observed that system load averages were much lower
with Hadoop than with BOOM Analytics. We are now exploring a
reimplementation of the dataflow kernel of JOL in C, with the goal
of having it run as fast as the OS network handling that feeds it.
This is not important for BOOM Analytics, but will be important
as we consider more interactive cloud infrastructure.

In the interim, we actually think the modest performance of the
current JOL interpreter guided us to reasonably good design choices.
By using Java for the data path in BOOM-FS, for example, we
ended up spending very little of our development time on efficient
data transfer. In retrospect, we were grateful to have used that time
for more challenging efforts like implementing Paxos.

8. CONCLUSION
We built BOOM Analytics to evaluate three key questions about

data-centric programming of clusters: (1) can it radically simplify
the prototyping of distributed systems, (2) can it be used to write
scalable, performant code, and (3) can it enable a new generation of
programmers to innovate on novel cloud computing platforms. Our
experience suggests that the answer to the first of these questions
is certainly true, and the second is within reach. The third question
is unresolved. Overlog in its current form is not going to attract
programmers to distributed computing, but we think that its benefits
point the way to more pleasant languages that could realistically
commoditize distributed programming in the Cloud.

Acknowledgments
This material is based upon work supported by the National Science
Foundation under Grant Nos. 0722077 and 0713661, the University
of California MICRO program, and gifts from Sun Microsystems,
Inc. and Microsoft Corporation.

9. REFERENCES
[1] A. Abouzeid et al. HadoopDB: An architectural hybrid of

MapReduce and DBMS technologies for analytical
workloads. In VLDB, 2009.

[2] M. P. Ashley-Rollman et al. Declarative Programming for
Modular Robots. In Workshop on Self-Reconfigurable
Robots/Systems and Applications, 2007.

[3] J. Boulon et al. Chukwa, a large-scale monitoring system. In
Cloud Computing and its Applications, pages 1–5, October
2008.

[4] E. A. Brewer. Lessons from giant-scale services. IEEE
Internet Computing, 5(4), 2001.

[5] M. Burrows. The chubby lock service for loosely-coupled
distributed systems. In OSDI, 2006.

[6] T. D. Chandra, R. Griesemer, and J. Redstone. Paxos made
live: an engineering perspective. In PODC, 2007.

[7] K. M. Chandy and L. Lamport. Distributed snapshots:
determining global states of distributed systems. ACM Trans.
Comput. Syst., 3(1):63–75, 1985.

[8] T. Condie et al. Evita Raced: metacompilation for declarative
networks. In VLDB, 2008.

[9] J. Dean and S. Ghemawat. MapReduce: Simplified data
processing on large clusters. In OSDI, 2004.

[10] G. DeCandia et al. Dynamo: Amazon’s highly available
key-value store. In SOSP, 2007.

[11] J. Eisner, E. Goldlust, and N. A. Smith. Dyna: a declarative
language for implementing dynamic programs. In Proc.
ACL, 2004.

[12] S. Ghemawat, H. Gobioff, and S.-T. Leung. The Google file
system. In SOSP, 2003.

[13] H. S. Gunawi et al. SQCK: A Declarative File System
Checker. In OSDI, 2008.

[14] M. B. Jones. Interposition agents: transparently interposing
user code at the system interface. In SOSP, 1993.

[15] M. S. Lam et al. Context-sensitive program analysis as
database queries. In PODS, 2005.

[16] L. Lamport. The part-time parliament. ACM Transactions on
Computer Systems, 16(2):133–169, 1998.

[17] Hadoop jira issue tracker, July 2009.
http://issues.apache.org/jira/browse/HADOOP.

[18] B. T. Loo et al. Implementing declarative overlays. In SOSP,
2005.

[19] B. T. Loo et al. Declarative networking: language, execution
and optimization. In SIGMOD, 2006.

[20] N. A. Lynch. Distributed Algorithms. Morgan Kaufmann,
1997.

[21] W. R. Marczak et al. Declarative reconfigurable trust
management. In CIDR, 2009.

[22] Nokia Corporation. disco: massive data – minimal code,
2009. http://discoproject.org/.

[23] T. Schutt et al. Scalaris: Reliable transactional P2P key/value
store. In SIGPLAN Workshop on Erlang, 2008.

[24] R. Sears and E. Brewer. Stasis: flexible transactional storage.
In OSDI, 2006.

[25] A. Singh et al. Using queries for distributed monitoring and
forensics. In EuroSys, 2006.

[26] M. Stonebraker. Inclusion of new types in relational data
base systems. In ICDE, 1986.

[27] The Hive Project. Hive home page, 2009.
http://hadoop.apache.org/hive/.

[28] J. D. Ullman. Principles of Database and Knowledge-Base
Systems: Volume II: The New Technologies. W. H. Freeman
& Co., New York, NY, USA, 1990.

[29] W. White et al. Scaling games to epic proportions. In
SIGMOD, 2007.

[30] F. Yang et al. Hilda: A high-level language for data-driven
web applications. In ICDE, 2006.

[31] Y. Yu et al. DryadLINQ: A system for general-purpose
distributed data-parallel computing using a high-level
language. In OSDI, 2008.

[32] M. Zaharia et al. Improving MapReduce performance in
heterogeneous environments. In OSDI, 2008.

path(@From, To, To, Cost)
:- link(@From, To, Cost);

path(@From, End, To, Cost1+Cost2)
:- link(@From, To, Cost1),

path(@To, End, NextHop, Cost2);

WITH path(Start, End, NextHop, Cost) AS
(SELECT link.From, path.End,

link.To, link.Cost+path.Cost
FROM link, path

WHERE link.To = path.Start);

Figure 3: Example Overlog for computing paths from links,
along with an SQL translation of the second rule.

// fqpath: Fully-qualified paths.
// Base case: root directory has null parent
fqpath(Path, FileId) :-

file(FileId, FParentId, _, true),
FParentId = null, Path = "/";

fqpath(Path, FileId) :-
file(FileId, FParentId, FName, _),
fqpath(ParentPath, FParentId),
// Do not add extra slash if parent is root dir
PathSep = (ParentPath = "/" ? "" : "/"),
Path = ParentPath + PathSep + FName;

Figure 4: Example Overlog for computing fully-qualified path-
names from the base file system metadata in BOOM-FS.

APPENDIX
A. DATALOG BACKGROUND

The Datalog language is defined over relational tables; it is a
purely logical query language that makes no changes to the stored
tables. A Datalog program is a set of rules or named queries, in the
spirit of SQL’s views. A simple Datalog rule has the form:

rhead(〈col-list〉) :- r1(〈col-list〉), . . . , rn(〈col-list〉)

Each term ri represents a relation, either stored (a database table)
or derived (the result of other rules). Relations’ columns are listed
as a comma-separated list of variable names; by convention, vari-
ables begin with capital letters. Terms to the right of the :- symbol
form the rule body (corresponding to the FROM and WHERE clauses
in SQL), the relation to the left is called the head (corresponding
to the SELECT clause in SQL). Each rule is a logical assertion that
the head relation contains those tuples that can be generated from
the body relations. Tables in the body are unified (joined together)
based on the positions of the repeated variables in the column lists
of the body terms. For example, a canonical Datalog program for
recursively computing paths from links [19] is shown in Figure 3
(ignoring the Overlog-specific @ notation), along with analogous
SQL for the inductive rule. Note how the SQL WHERE clause corre-
sponds to the repeated use of the variable To in the Datalog.

B. VALIDATION OF INITIAL PROTOTYPE
While improved performance was not a goal of our work, we

wanted to ensure that the performance of BOOM Analytics was
competitive with Hadoop. To that end, we conducted a series of
performance experiments using a 101-node cluster on Amazon EC2.
One node executed the Hadoop JobTracker and the DFS NameN-
ode, while the remaining 100 nodes served as slaves for running
the Hadoop TaskTrackers and DFS DataNodes. The master node
ran on an “high-CPU extra large” EC2 instance with 7.2 GB of
memory and 8 virtual cores. Our slave nodes executed on “high-
CPU medium” EC2 instances with 1.7 GB of memory and 2 virtual

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1 

0  20  40  60  80  100  120  140  160  180  200 

Hadoop/HDFS (map)  Hadoop/HDFS (reduce) 

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1 

0  20  40  60  80  100  120  140  160  180  200 

Hadoop/BOOM‐FS (map)  Hadoop/BOOM‐FS (reduce) 

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1 

0  20  40  60  80  100  120  140  160  180  200 

BOOM‐MR/HDFS (map)  BOOM‐MR/HDFS (reduce) 

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1 

0  20  40  60  80  100  120  140  160  180  200 

BOOM‐MR/BOOM‐FS (map)  BOOM‐MR/BOOM‐FS (reduce) 

Figure 5: CDF of map and reduce task completion for Hadoop and BOOM-MR over HDFS and BOOM-FS. In all graphs, the
horizontal axis is elapsed time in seconds, and the vertical represents % of tasks completed.

cores. Each virtual core is the equivalent of a 2007-era 2.5Ghz Intel
Xeon processor.

For our experiments, we compared BOOM Analytics with Hadoop
18.1. Our workload was a wordcount job on a 30 GB file. The
wordcount job consisted of 481 map tasks and 100 reduce tasks.
Each of the 100 slave nodes hosted a single TaskTracker instance
that can support the simultaneous execution of 2 map tasks and 2
reduce tasks.

Figure 5 contains four performance graphs, comparing the per-
formance of different combinations of Hadoop MapReduce, HDFS,
BOOM-MR, and BOOM-FS. Each graph reports a cumulative dis-
tribution of map and reduce task completion times (in seconds).
The map tasks complete in three distinct “waves”. This is because
only 2×100 map tasks can be scheduled at once. Although all 100
reduce tasks can be scheduled immediately, no reduce task can fin-
ish until all maps have been completed, because each reduce task
requires the output of all map tasks.

The upper-left graph describes the performance of Hadoop run-
ning on top of HDFS, and hence serves as a baseline for the sub-
sequent graphs. The lower-left graph details BOOM-MR running
over HDFS. This graph shows that map and reduce task comple-
tion times under BOOM-MR are nearly identical to Hadoop 18.1.
The upper-right and lower-right graphs detail the performance of
Hadoop MapReduce and BOOM-MR running on top of BOOM-
FS, respectively. BOOM-FS performance is slightly worse than
HDFS, but remains very competitive.

C. MAPREDUCE SCHEDULING
MapReduce scheduling has been the subject of recent research,

and one of our early motivations for building BOOM Analytics was

to make that research extremely easy to carry out. In our initial
BOOM-MR prototype, we implemented Hadoop’s default First-
Come-First-Served policy for task scheduling, which was captured
in 9 rules (96 lines) of scheduler policy. Next, we implemented
the recently-proposed LATE policy [32] to evaluate both (a) the
difficulty of prototyping a new policy, and (b) the faithfulness of
our Overlog-based execution to that of Hadoop using two separate
scheduling algorithms.

The LATE policy presents an alternative scheme for speculative
task execution on straggler tasks [32], in an effort to improve on
Hadoop’s policy. There are two aspects to each policy: choosing
which tasks to speculatively re-execute, and choosing TaskTrack-
ers to run those tasks. Original Hadoop re-executes a task if its
progress is more than 0.2 (on a scale of [0..1]) below the mean
progress of similar tasks; it assigns speculative tasks using the same
policy as it uses for initial tasks. LATE chooses tasks to re-execute
via an estimated finish time metric based on the task’s progress rate.
Moreover, it avoids assigning speculative tasks to TaskTrackers that
exhibit slow performance executing similar tasks, in hopes of pre-
venting the creation of new stragglers.

The LATE policy is specified in the paper via just three lines of
pseudocode, which make use of three performance statistics called
SlowNodeThreshold, SlowTaskThreshold, and SpeculativeCap. The
first two of these statistics correspond to the 25th percentiles of
progress rates across TaskTrackers and across tasks, respectively.
The SpeculativeCap is suggested to be set at 10% of available task
slots [32]. We compute these thresholds via the five Overlog rules
shown in Figure 8. Integrating the rules into BOOM-MR required
modifying two additional Overlog rules that identify tasks to spec-
ulatively re-execute, and that choose TaskTrackers for scheduling

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10 70 130 190 250 310 370

Stragglers No Stragglers Stragglers (LATE)

Figure 6: CDF of reduce task completion times (secs), with and
without stragglers.

those tasks.
Figure 6 shows the cumulative distribution of the completion

time for reduce task executions on EC2 under normal load, and
with artificial extra load placed on six straggler nodes. The same
wordcount workload was used for this experiment but the number
of reduce tasks was increased from 100 to 400 in order to produce
two waves of reduce tasks. The plots labeled “No Stragglers” rep-
resent normal load. The plots labeled “Stragglers” and “Stragglers
(LATE)” are taken under the (six node) artificial load using the
vanilla Hadoop and LATE policies (respectively) to identify specu-
lative tasks. We do not show a CDF of the map task execution time
since the artificial load barely affects it — the six stragglers have
no effect on other map tasks, they just result in a slower growth
from just below 100% to completion. The first wave of 200 re-
duce tasks is scheduled concurrently with all the map tasks. This
first wave of reduce tasks will not finish until all map tasks have
completed, which increases the completion time of these tasks as
indicated in the right portion of the graph. The second wave of
200 reduce tasks will not experience the delay due to unfinished
map work since it is scheduled after all map tasks have finished.
These shorter completion times are reported in the left portion of
the graph. Furthermore, stragglers have less of an impact on the
second wave of reduce tasks since less work (i.e., no map work)
is being performed. Figure 6 shows this effect, and also demon-
strates how the LATE implementation in BOOM Analytics handles
stragglers much more effectively than the default speculation policy
ported from Hadoop. This echoes the results of Zaharia et al. [32]

D. VALIDATION: HIGH AVAILABILITY
After adding support for high availability to the BOOM-FS Na-

meNode (Section 4), we wanted to evaluate two properties of our
implementation. At a fine-grained level, we wanted to ensure that
our complete Paxos implementation was operating according to the
specifications in the literature. This required logging and analyz-
ing network messages sent during the Paxos protocol. This was a
natural fit for the metaprogrammed tracing tools we discussed in
Section 6.2. We created unit tests to trace the message complexity
of our Paxos code, both at steady state and under churn. When the
message complexity of our implementation matched the specifica-
tion, we had more confidence in the correctness of our code.

Second, we wanted to see the availability feature “in action”,
and to get a sense of how our implementation would perform in
the face of master failures. Specifically, we evaluated the impact of
the consensus protocol on BOOM Analytics system performance,
and the effect of failures on overall completion time. We ran a
Hadoop wordcount job on a 5GB input file with a cluster of 20

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100 120 140 160 180 200

No failure (map) Master failure (map)

No failure (reduce) Master failure (reduce)

Figure 7: CDF of completed tasks over time (secs), with and
without primary master failure.

Number of Failure Avg. Completion Standard
NameNodes Condition Time (secs) Deviation

1 None 101.89 12.12
3 None 102.70 9.53
3 Backup 100.10 9.94
3 Primary 148.47 13.94

Table 5: Job completion times with a single NameNode, 3
Paxos-enabled NameNodes, backup NameNode failure, and
primary NameNode failure.

EC2 nodes, varying the number of master nodes and the failure
condition. These results are summarized in Table 5. We then used
the same workload to perform a set of simple fault-injection exper-
iments to measure the effect of primary master failures on job com-
pletion rates at a finer grain, observing the progress of the map and
reduce jobs involved in the wordcount program. Figure 7 shows
the cumulative distribution of the percentage of completed map
and reduce jobs over time, in normal operation and with a fail-
ure of the primary NameNode during the map phase. Note that
Map tasks read from HDFS and write to local files, whereas Re-
duce tasks read from Mappers and write to HDFS. This explains
why the CDF for Reduce tasks under failure goes so crisply flat
in Figure 7: while failover is underway after an HDFS NameNode
failure, some nearly-finished Map tasks may be able to complete,
but no Reduce task can complete.

// Compute progress rate per task
taskPR(JobId, TaskId, Type, ProgressRate) :-

task(JobId, TaskId, Type, _, _, _, Status),
Status.state() != FAILED,
Time = Status.finish() > 0 ?

Status.finish() : currentTimeMillis(),
ProgressRate = Status.progress() /

(Time - Status.start());

// For each job, compute 25th pctile rate across tasks
taskPRList(JobId, Type, percentile<0.25, PRate>) :-

taskPR(JobId, TaskId, Type, PRate);

// Compute progress rate per tracker
trackerPR(Tracker, JobId, Type, avg<PRate>) :-

task(JobId, TaskId, Type, _),
taskAttempt(JobId, TaskId, _, Progress, State,

Phase, Tracker, Start, Finish),
State != FAILED,
Time = Finish > 0 ? Finish : currentTimeMillis(),
PRate = Progress / (Time - Start);

// For each job, compute 25th pctile rate across trackers
trackerPRList(JobId, Type, percentile<0.25, AvgPRate>) :-

trackerPR(_, JobId, Type, AvgPRate);

// Compute available map/reduce slots
speculativeCap(sum<MapSlots>, sum<ReduceSlots>) :-

taskTracker(_, _, _, _, _, _,
MapCount, ReduceCount,
MaxMap, MaxReduce),

MapSlots = MaxMap - MapCount,
ReduceSlots = MaxReduce - ReduceCount;

Figure 8: Overlog to compute statistics for LATE.

