
Circuit Symmetries in Synthesis and Verification

Donald Chai

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2009-115

http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-115.html

August 12, 2009

Copyright 2009, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Circuit Symmetries in Synthesis and Verification

by

Donald Chai

B.S. (Cornell University) 2001
M.S. (University of California at Berkeley) 2004

A dissertation submitted in partial satisfaction of the
requirements for the degree of

Doctor of Philosophy

in

Engineering–Electrical Engineering and Computer Sciences

in the

GRADUATE DIVISION
of the

UNIVERSITY OF CALIFORNIA, BERKELEY

Committee in charge:
Professor Andreas Kuehlmann, Chair

Professor Sanjit Seshia
Professor Alper Atamtürk

Fall 2009

The dissertation of Donald Chai is approved:

Chair Date

Date

Date

University of California, Berkeley

Fall 2009

Circuit Symmetries in Synthesis and Verification

Copyright 2009

by

Donald Chai

1

Abstract

Circuit Symmetries in Synthesis and Verification

by

Donald Chai

Doctor of Philosophy in Engineering–Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Andreas Kuehlmann, Chair

This dissertation explores the application of logical symmetries in the synthesis and verifi-

cation of digital systems. Given a high-level description of a design, synthesis algorithms

are employed to obtain a low-level description which is suitable for manufacture. To make

the process computationally feasible, each step assumes a simplified model of the imple-

mentation platform. For example, many of the earlier steps disregard the fact that current

technologies require that components are laid out in a two-dimensional plane, and there-

fore that the necessary wiring between components may become problematic. If the cost

and performance requirements are not met, then the synthesis process is repeated, back-

propagating the current results to refine any estimates for the next iteration.

Rather than forcing designers and tools to make early decisions with incomplete

and/or inaccurate information, we propose the use of logical symmetries to defer some

decisions until more information is available. For example, instead of assuming a fixed

circuit structure, we may use symmetries to permute wires during the final stages of syn-

thesis, when wirelengths are known, to improve the design’s performance. In addition,

symmetries can be used to eliminate redundant cases during verification. For example, in

verifying a traffic light controller, one may often assume that the rules are identical for all

four directions and simply check for one of them.

The first part of this dissertation reviews the necessary mathematical underpin-

nings of group theory, allowing us to efficiently reason about symmetries. With this back-

ground, we introduce our approaches to find symmetry in circuits.

The second part presents the application of symmetries in synthesis and verifica-

2

tion. We show how symmetries may be used in the technology mapping and placement

stages, two major steps in synthesis. In technology mapping, we derive alternative repre-

sentations of the design besides the local minimum obtained from technology independent

optimization. In placement, we modify the circuit topology to reduce wirelength. In both

cases, symmetries expand the design space with no loss in quality (assuming stable algo-

rithms). Afterwards, we present our approach for improving so-called “symmetry break-

ing predicates” to speed up Boolean SAT solvers, which are heavily used in verification.

Professor Andreas Kuehlmann
Dissertation Committee Chair

i

Contents

1 Introduction 1
1.1 Contemporary Synthesis and Verification Flow 2

1.1.1 Synthesis . 3
1.1.2 Verification . 7

1.2 Symmetry . 8
1.3 Better CAD through Symmetry . 9

1.3.1 Improving Technology Mapping . 9
1.3.2 Improving Placement . 10
1.3.3 Accelerating SAT . 11

1.4 Challenges to Solve . 12
1.5 Contributions of this Dissertation . 14
1.6 Organization of this Dissertation . 14

2 Permutation Group Theory 15
2.1 Basic Definitions . 15

2.1.1 Groups . 15
2.1.2 Permutations . 18
2.1.3 Permutation Groups . 19

2.2 Stabilizer Chains . 20
2.3 Jerrum’s Branching Structure . 22

2.3.1 Membership Check . 24
2.3.2 Transversal Computation . 25

2.4 From Points to Literals and Connections . 29

3 Functional Symmetries 30
3.1 Graph Formulation . 33

3.1.1 The Trivial Graph Formulation . 34

ii

3.2 Improved Graph Formulation for Single Outputs 35
3.2.1 Reducing |VM| with Satisfy Counts . 37
3.2.2 Reducing |E| with Satisfy Counts . 37
3.2.3 Reducing |VM| with Unateness . 38
3.2.4 Combining Transformations . 40

3.3 Multiple-output Functions . 42
3.4 Experimental Results . 43
3.5 Previous Work . 44

3.5.1 Spectral Methods . 46
3.5.2 Minterm Comparison . 47

3.6 Previous Work for Other Types of Symmetry 48
3.7 Conclusion . 49

4 Symmetries in Circuits 50
4.1 Boolean Networks . 51
4.2 Structural Symmetries of Boolean Networks 51
4.3 Structural Symmetries of Maximal Decompositions 54

4.3.1 Reduction to Graph Automorphism 59
4.3.2 Polytrees . 61

4.4 Applications in CAD . 62
4.4.1 Technology Mapping . 63
4.4.2 Placement . 63
4.4.3 Boolean Satisfiability . 65

4.5 Decomposition Heuristic . 65
4.6 Conclusion . 69

5 Technology Mapping 71
5.1 Introduction . 71
5.2 Previous Improvements in Technology Mapping 76

5.2.1 Cuts, Boolean Matching, and DAG covering 76
5.2.2 Choices and Supergates . 77

5.3 Creating Choices Through Symmetry . 79
5.3.1 AND/XORs . 80
5.3.2 Prime Functions . 83

5.4 Experimental Results . 84
5.4.1 AND Trees . 85
5.4.2 Prime Functions . 89

5.5 Previous Work with Symmetries . 93
5.6 Conclusion . 96

6 Placement 97
6.1 Introduction . 98
6.2 Previous Work . 99
6.3 Preliminaries . 100

6.3.1 Circuit Model . 100

iii

6.3.2 Assignment Problem . 101
6.4 Rewiring Algorithms . 102

6.4.1 Leaf Rewiring . 102
6.4.2 Tree Restructuring . 103

6.5 Iterative Placement with Rewiring . 106
6.6 Experimental Results . 107

6.6.1 Post-placement Optimization . 107
6.6.2 Integration into Iterative Placer . 108
6.6.3 Timing-driven Rewiring . 110
6.6.4 Industrial Designs . 112

6.7 Conclusion . 112

7 Boolean Satisfiability 116
7.1 Introduction . 116
7.2 Preliminaries and Previous Work . 120
7.3 Strong Symmetry Breaking Predicates . 121

7.3.1 Motivation for Strengthening . 122
7.3.2 Desired Traits of SBPs . 124

7.4 Algorithms . 127
7.4.1 Jerrum Branching . 127
7.4.2 Base Change . 128
7.4.3 Permutation Simplification . 131
7.4.4 Variable Reordering . 132

7.5 Experimental Results . 134
7.6 Conclusion . 138

8 Conclusion 140
8.1 Contributions . 140
8.2 Strengths and Weaknesses . 141

Bibliography 143

Index 152

iv

Two copies of a subregion of the Penrose tiling P3. This tiling is aperiodic, that is, it has
no translational symmetry. However any finite subregion appears infinitely often. The
overlap between the two copies illustrates this repetition.

v

Acknowledgments

I would like to thank my advisor Andreas Kuehlmann, who showed me all I know about

the research process, from the brainstorming of new ideas to the dissemination of findings

to the community at large. A large part of my training has been on the crisp formalization

of results. To this day, I do not consider an idea well thought out until it has been well

exposited.

I would also like to thank the other members of my dissertation committee, Sanjit

A. Seshia and Alper Atamtürk. Professor Seshia is a source of inspiration for me, with

his boundless enthusiasm for research. Professor Atamtürk has been a wonderful teacher,

and his theoretical and practical approaches to optimization have helped greatly in my

research.

In addition, I would like to thank Robert K. Brayton, who had served on my

qualification exam committee and co-advised me during my first year at Berkeley. His

words have inspired some of the work in Chapter 5.

Besides the professors, one of the advantages to attending a world-class univer-

sity is in the quality of students that one is able to interact with. I am grateful for the

opportunity to meet the students in the DOP center and elsewhere in the department; they

have helped me grow both as a researcher and as a human.

The administrative staff at Berkeley have always been a great help in filing paper-

work. In particular, I would like to thank Jennifer Stone and Ruth Gjerde for going beyond

the normal call of duty and keeping me from panicking over deadlines.

Finally, various other researchers have greatly assisted in performing the research

in this dissertation. I would like to thank Alan Mishchenko for his aid in the use of his ABC

program, and Kai-Hui Chang and Igor Markov for their help with portions of UMpack

(i.e., PhySyn). I would also like to thank Philip Chong for his assistance in running our

tool on industrial designs.

1

1. Introduction

Symmetry, as popularly understood, is the property of self-similarity or invariance under

various geometric transformations. A sphere remains the same no matter which way it is

rotated. Likewise, a dome remains the same no matter which way it is rotated about the

vertical axis. In structural engineering, this property of self-similarity lends strength to a

physical system and simplifies design and analysis:

• A basic principle of structural engineering is that all forces and torques in a system

must sum to zero to maintain static equilibrium—a nonzero net force implies that the

structure is accelerating (i.e. falling). Symmetry guarantees that the top of a dome

experience zero net horizontal force.

• Supposing we have a correct design for an arch (a 2-dimensional dome), it is a simple

matter to create a dome by superimposing multiple arches which are rotated about

the vertical axis.

Exploiting such symmetry is thus one of the reasons why the Roman Pantheon still stands

1900 years after it was built.

Many things in the physical world possess symmetries with respect to one prop-

erty, but are asymmetric with respect to another. A vase still functions as a vase when ro-

tated about a vertical axis, but one side may be more attractive than another and thus cho-

sen to face the potential viewer. In erecting a building, commodities which are mostly in-

terchangeable may be allocated in order to maximize some objective: Miyamoto Musashi’s

2

master carpenter assigns material and personnel to best suit the necessary tasks [Miy82]. If

Musashi’s carpenter faces a new team of workmen, he may first assign them using the in-

formation currently available to him, and later reassign the workers as he discovers their

specialties. Fortunately for the carpenter, late personnel changes are relatively easy to

make.

This dissertation explores the application of logical symmetries in the synthesis

and verification of digital systems. As we have just seen, knowledge of symmetries allows

us to enlarge the design space for various optimization problems (positioning of vase), and

to shrink the search space for others (analysis of dome).

Outline of this Introduction. To motivate for our work, we first briefly review the steps

taken in a traditional electronic design and verification flow which uses computed-aided

design (CAD) tools. Then we describe the concept of symmetries as used in this disserta-

tion, and provide examples in which symmetries may be exploited in the CAD flow.

1.1 Contemporary Synthesis and Verification Flow

Given a high-level description of an electronic system, a variety of algorithms are usu-

ally employed to arrive at (or “synthesize”) a low-level description which is suitable for

manufacture on a target platform. Naturally, the final implementation must satisfy certain

constraints and optimize certain objectives over cost and performance.

In the case of the Pantheon, Apollodorus of Damascus was given a description,

“temple”, and synthesized a set of blueprints which could be communicated to craftsmen

and which minimized the amount of granite required for construction. The design needed

to be verified to ensure that it indeed correctly implemented “temple”, and did not instead

implement “pile of rubble”.

In a digital design scenario, a designer may write a set of Boolean equations de-

scribing the behavior of a traffic light controller, and then use synthesis tools to produce a

layout of polygons to be drawn on a silicon wafer. Verification tools are used to ensure that

the initial set of equations do not allow traffic flows to intersect, and that the final layout is

a valid refinement of the initial set of equations.

To make the synthesis task computationally feasible, the process is divided into a

series of smaller steps, each of which assumes a simplified model of the final implementa-

3

tion platform. For example, many of the earlier steps disregard the fact that current target

platforms require components to be laid out in a two-dimensional plane, and therefore

that the necessary wiring between components may become problematic. If the desired

cost and performance requirements are not met, then the synthesis process is repeated,

backpropagating the current results to refine the estimates for the next iteration. Many

iterations may be required to achieve so-called “design closure”.

Figure 1.1 shows one possible demarcation of a typical CAD flow for application

specific integrated circuits (ASICs), which we will adhere to in the following description.

Industrial-scale CAD flows usually consist of many “point tools” which are applied in

succession—our description will focus on a few of the major steps. For reference, the

introductory chapter of [DGK94] illustrates a similar CAD flow with a different emphasis.

1.1.1 Synthesis

Consider the function f that evaluates to true iff two or three of its four inputs a, b, c, d are

true. The designer provides the following register transfer level (RTL) description:

f (a, b, c, d) = āb̄cd + ābc̄d + ābcd̄ + ābcd + ab̄c̄d + ab̄cd̄ + ab̄cd + abc̄d̄ + abc̄d + abcd̄

Here ā denotes the negation of binary variable a (alternatively ¬a). The expressions ab and

a + b denote the Boolean AND (a ∧ b) and OR (a ∨ b) operations, respectively.

The technology-independent optimization stage transforms the above RTL into

a subject graph consisting of two-input AND and one-input INV (also known as NOT)

primitives. As implied by its name, this stage uses a cost model which is independent of

target technologies, but shows some correlation to the final implementation cost. For our

purposes, let the cost of a subject graph be the number of AND primitives in the graph.

Our synthesis tool first simplifies the sum-of-products (SOP) expression we

provided by reducing the number of product terms by using an algorithm such as

ESPRESSO [BHMSV84]. One possible minimal Boolean expression for f is:

f (a, b, c, d) = ab̄c + ac̄d + ad̄b + ācd + ābd + ābc

This expression is minimal with respect to the number of sum terms. A different minimal

expression might be:

f (a, b, c, d) = ab̄d + ab̄c + abd̄ + ābc + bc̄d + b̄cd

4

Specification

RTL Synthesis Manual
Input

Technology
Independent
Optimization

Technology
Mapping

Subject
Graph

Gate-level
netlist

Register
Transfer Level

description

Placement

Routing

Equivalence
Checker

Simulation

Standard
cell library

Layout

Meets
Constraints?

YES

NO

Figure 1.1: Typical CAD flow

5

The two expressions represent the same function, but are different: the variables appear

a different number of times in each. If the values for a and b arrive at different times,

one expression may lead to a faster implementation than the other. However, without

further information, the synthesis tool can arbitrarily choose either of these as a minimal

representation of the function.

Suppose we choose the first SOP. Let us define a literal to be a variable or its

negation. We extract common factors from the expression to minimize the total number of

literals, and reexpress the function as a Boolean network, where each node implements a

local function:

y1 = c + d

y2 = cd + by1

y3 = b̄c + c̄d + d̄b

f = ay3 + āy2

A number of methods may be applied to minimize the network in terms of literal count or

the longest path from inputs to output. We ignore them in this discussion because they are

not relevant. In our example, the extraction reduced the literal count from 18 to 16.

Given a Boolean network, we convert it into a subject graph (shown in Fig-

ure 1.2a) by decomposing each of the constituent nodes into AND and INV primitives.

Each product (sum) of more than 3 literals (terms) is arbitrarily decomposed into a tree of

AND primitives.

From a subject graph, we find an implementation consisting of standard cells.

This is called technology mapping (or library binding). For example, provided a library

containing the following five cells

Cell Name Function

INV(x0) x̄0

AO22(x0, x1, x2, x3) x0x1 + x2x3

AO21(x0, x1, x2) x0x1 + x2

OA21(x0, x1, x2) (x0 + x1)x2

MUX(x0, x1, x2) x0x1 + x̄0x2

we may instantiate cells as in the blue (or shaded) blobs in Figure 1.2b. Each instance of

a library cell requires some area, and the technology mapper may aim to find a mapping

6

c d c db b c c d d b

a a

y1

y2
y3

(a) Subject graph

MUX

MUX

AO21AO21

OA21

INV
c d c db b c c d d b

a a

(b) Mapping to cell library

Figure 1.2: A subject graph and a potential mapping. Black circles are NOT primitives,

larger circles are AND primitives. Pairs of NOTs may be added to allow more

cells to match.

7

which requires the least total cell area. If the only nodes in the subject graph with outdegree

greater than 1 are the input nodes, the technology mapping problem for minimal area is

solvable in polynomial time [Keu87]. Otherwise, the problem is NP-hard [KR89].

After a Boolean network is mapped into a set of standard cells, the standard cells

need to be placed on the plane and wires (interconnect) need to be added to connect the

cells. Placement and orientation of the cells is a strong factor in determining whether a

feasible wiring exists, and if so, the length of the interconnect. Since the delay of a wire is

roughly proportional to the square of its length, placement also determines the speed of

the final circuit.1 Thus, placement algorithms typically place the cells so as to minimize

the total estimated wirelength. In estimating wirelength, we assume that many wires may

pass over the same point, which may not be correct. The actual wirelength is not known

until the next stage (routing).

At each step of the mapping from Boolean expression to network of standard

cells, the synthesis program makes an arbitrary choice, all other things being equal. Rather

than forcing designers and tools to make early decisions with incomplete and/or inaccu-

rate information, we propose to use logical symmetries to defer some of the decisions until

more information is available. As we will later show, certain symmetries may be analyzed

in an efficient manner. Thus, deferring these decisions will not significantly increase the

complexity of the synthesis task.

1.1.2 Verification

The results of each step of the synthesis flow must be verified against results from previous

steps to guard against errors due to computer bugs or human error. Boolean satisfiabil-

ity (SAT) forms the cornerstone of many modern verification tools, for example bounded

model checkers [BCCZ99] and combinational equivalence checkers [SBSV96]. While the

SAT problem is NP-complete, recent advances in SAT solving technology make current

solvers scalable for many practical problems [MMZ+01, ES03]

Regardless, current solvers are based on the Davis-Putman-Logemann-Loveland

(DPLL) algorithm [DP60, DLL62], and thus require exponential runtime to solve many

problems which are otherwise solvable in polynomial time [Hak85, Urq87].

1A long wire may be segmented with buffers (also known as repeaters), to improve delay, but this carries
with it other costs.

8

1.2 Symmetry

As we have stated previously, symmetry is the property of invariance under certain trans-

formation. We will also use the term “symmetry” to refer to any such transformation. For

a Boolean function, we define symmetry to be invariance of the function under permu-

tation and/or negation of its inputs and/or outputs. This is often referred to as group

invariance in the classical literature [McC56], and NPN-equivalence in more recent litera-

ture [Mur71, MM90]. For example, the XOR function

f = abcd̄ + abc̄d + ab̄cd + ab̄c̄d̄ + ābcd + ābc̄d̄ + āb̄cd̄ + āb̄c̄d

contains a wealth of symmetries. The inputs may be arbitrarily permuted, and any even

number from the set of inputs and output may be negated, e.g. inverting a and the output

does not change the function:

f = ābcd̄ + ābc̄d + āb̄cd + āb̄c̄d̄ + abcd + abc̄d̄ + ab̄cd̄ + ab̄c̄d

As is the case with other symmetries, functional symmetries have the important property

that they form a group (in the mathematical sense), that is, any sequence of symmetries

may be applied to a function without changing the function. Thus while there are n!2n

valid transformations of the XOR function, we may efficiently manage and manipulate

them using results from group theory. For example, we can represent each valid transfor-

mation by a composition of elements drawn from a set of n transformations, also known

as a generating set.

When reasoning about a logical circuit consisting of multiple levels of logic, the

situation is different. Let us refer to the Boolean network for the synthesis example, in

which f evaluates to true iff two or three of a, b, c, d are true:

y1 = c + d

y2 = cd + by1

y3 = b̄c + c̄d + d̄b

f = ay3 + āy2

We have already established that the input variables of the function may be arbitrarily

permuted without changing the function. In the Boolean network, this might mean, for

9

example replacing every instance of a with b and every instance of b with a as follows:

y′1 = c + d

y′2 = cd + ay′1

y′3 = āc + c̄d + d̄a

f ′ = by′3 + b̄y′2

Since there are intermediate variables in a Boolean network, we can do more than

simply modify connections to the primary inputs a, b, c, d for the global function. We may

also take any subgraph of the Boolean network, find its functional symmetries, and modify

the local connections accordingly. For example, the output of the subgraph encompassing

nodes y′1 and y′2 is true iff one or two of a, c, d are true—any of the 6 permutations of a, c, d

are correct. The following shows the result after swapping a with c:

y′′1 = a + d

y′′2 = ad + cy′′1

y′′3 = āc + c̄d + d̄a

f ′′ = by′′3 + b̄y′′2

The nodes for y′3 and f ′ are unchanged.

Since many subgraphs may be drawn from a Boolean network, subject graph, or

logical circuit, there are ample opportunities to find symmetry—even if a circuit’s global

function contains none, many of its local functions contain symmetries.

Having established the notion of symmetry in logical circuits, we now provide

examples where synthesis and verification may be improved with its use.

1.3 Better CAD through Symmetry

1.3.1 Improving Technology Mapping

The problem with the traditional approach to technology mapping is that the choice of

subject graph may cause the resulting mapping to be suboptimal. In the same way that

our language shapes our thoughts, the structure of the subject graph has an effect on the

final mapping—any instance of a standard cell in the final mapping must correspond to a

10

y

b

ba

d e

c

OAI21
(2)

NAND2
(1.5)

NAND2
(1.5)

OR2
(2)

_

(a)

NAND2
(1.5)

NAND2
(1.5)

OAI22
(2.5)

_

y

b

b

a

d e
c

(b)

Figure 1.3: Permuting subgraph nodes according to symmetry creates an additional

mapping option. Black circles are NOT primitives, larger circles are AND

primitives.

subgraph in the subject graph. Thus, any given subject graph allows only a certain set of

mappings.

Figure 5.5a shows a subject graph, where the small black circles are INV primi-

tives, the larger circles are AND primitives, and each shaded region represents a subgraph

implemented by a standard cell. By analyzing the symmetries of the subject graph, we

find that we can swap a and c, resulting in Figure 5.5b, which leads to a smaller circuit.

Other modifications to the subject graph are clearly possible, and may result in

a smaller circuit as well, but may require repeating some of the technology independent

optimization steps. However, iteration is precisely what we are trying to avoid. Chapter 5

describes our approach more fully.

1.3.2 Improving Placement

During the placement stage, we take a network of standard cells and assign the cells to

non-overlapping locations in the plane so as to minimize the total estimated wirelength.

Figure 1.4a shows a placement of five cells which is optimal assuming that the six inputs

and output are fixed, and that the gray region is occupied by other (immobile) cells. The

11

AND

AND

AND

AND

AND

(a) Placed design before restructuring

AND

AND

AND

AND

AND

(b) After restructuring

Figure 1.4: Restructuring a placed design may reduce wirelength.

subcircuit implements a 6-input AND, and we may reassign the connections as long as this

functionality is preserved. Figure 1.4b shows the same circuit after having reassigned the

connections optimally. Connections to and connections among other cells are not modified,

therefore the total estimated wirelength has decreased.

For efficiency, placement algorithms assume that the connectivity of the circuit is

fixed. Wirelength may be improved if connections may be modified, either

• after the placement is determined, as in the above example, or

• during the placement step.

Alternatively, a circuit may be modified after placement using resynthesis [LESJ98] or

redundancy addition and removal [JKCMS97]. The difference is that symmetry-based

restructuring is more efficient, which allows its use during placement. Our restructuring

algorithm is described in Chapter 6.

1.3.3 Accelerating SAT

Boolean satisfiability solvers, besides being workhorses in verification, are also increas-

ingly used for various synthesis tasks [NSR99, SVBY06, LJL08] which are in NP (or co-

NP) but for which no polynomial time algorithm is known. Thus any improvements in

SAT solving technology would have a great effect on many different stages of the CAD

flow.

12

The DPLL algorithm [DP60, DLL62] used in all complete SAT solvers combines

a branch-and-bound search with the resolution rule of logic. At each step of the search, a

SAT solver assigns a value to some variable which has not already been assigned one. If

any of the constraints are not satisfied, modern solvers record a nogood [SS77] using the

resolution rule [MSS99] and subsequently backtrack.

Suppose we are given an instance of the pigeonhole problem with 11 pigeons and

10 holes, and are told to assign each pigeon to a hole without sharing. After we encode the

instance as SAT and input the instance to a SAT solver, the solver:

• puts pigeon 1 in hole 1 and fails to assign the remaining 10 pigeons to the remaining

9 holes,

• puts pigeon 1 in hole 2 and fails to assign the remaining 10 pigeons to the remaining

9 holes,

• puts pigeon 1 in hole 3 and fails to assign the remaining 10 pigeons to the remaining

9 holes,

• . . .

• puts pigeon 1 in hole 10 and failing to assign the remaining 10 pigeons to the remain-

ing 9 holes, finally quits.

Since the pigeons and holes are identical, we can safely conclude that the problem is un-

satisfiable after putting pigeon 1 in hole 1, and not try putting pigeon 1 in any other hole.

Then, we assume without loss of generality that pigeon 2 is in hole 2, and so on. Us-

ing this reasoning, we can prove unsatisfiability in linear time rather than in exponential

time [Hak85].

The general approach which we will follow is that of [CGLR96], which adds sym-

metry breaking predicates to a SAT formula in order to eliminate redundant parts of the

search space. Chapter 7 describes our approach to formulate symmetry breaking predi-

cates.

1.4 Challenges to Solve

Since our proposed approach of using symmetries is one of many competing solutions for

solving the synthesis and verification problems, we must tackle the perennial tradeoffs

13

AND

AND

AND

B

A

C

(a)

AND
AND

AND
B

A

(b) Swap B with C

AND

AND

AND

B

A

C

(c) Swap A with C

Figure 1.5: Symmetries within a circuit do not form a group.

between quality of results and runtime.

• The problem of finding symmetries in Boolean functions has not been completely

solved. Current solutions either specialize for the case of functions with one out-

put [AP05, CK06, ABPS07, KK08] or reduce the problem to an instance of graph iso-

morphism using an exponentially-sized graph [CMB05a].

• Symmetries within a circuit do not form a group. In the circuit in Figure 1.5a, con-

nection A may be swapped with connection B, and connection B may be swapped

with connection C Figure 1.5b. However, swapping A with C is incorrect, because

it creates a cycle (Figure 1.5c). Thus, algorithms to reason about functions cannot be

used without modification for circuits.

• A large number of subgraphs can be extracted from any Boolean network, subject

graph, or logical circuit for analysis of symmetries. Finding all symmetries may not

be practical, and therefore we must isolate those which provide the most potential

for optimization.

• After finding symmetries, we must be able to efficiently apply them in synthesis.

Explicit enumeration of permutations is not practical.

• The use of symmetries in SAT is purely to reduce the amount of time needed to solve

a given SAT formula. It is possible that finding symmetries or generating effective

symmetry breaking predicates may take longer than solving the SAT problem di-

rectly to begin with. Another possibility is that the augmented SAT problem may be

more difficult to solve due to the sheer number of added predicates.

14

1.5 Contributions of this Dissertation

This dissertation presents the following contributions toward the utilization of symmetries

for synthesis and verification:

• An efficient method to find symmetries in functions which have multiple outputs.

Our method is based on a reduction to small instances of graph isomorphism which

can be solved for practical functions.

• An approach to finding symmetries in a circuit by analyzing the circuit’s structure

to locate subgraphs which are likely to contain symmetries that are productive for

optimization.

• A general approach for applying symmetries in technology mapping and placement

by decomposing a group into orthogonal subgroups, each of which may be explored

efficiently using a specialized procedure. Enumeration is thus limited to the number

of subgroups, rather than to the total number of symmetries.

• An efficient preprocessor for generating symmetry breaking predicates for SAT for-

mulas. Our preprocessor analyzes the structure of a formula’s symmetry group in

order to produce a small set of predicates that breaks as many symmetries as practi-

cally possible.

1.6 Organization of this Dissertation

This dissertation is organized into two parts:

• Part I provides the framework for finding symmetries in circuits. Chapter 2 reviews

basic group theory and algorithms for permutation groups. Chapter 3 describes a

procedure for finding symmetries of multiple-output functions. Chapter 4 describes

our subgraph selection heuristic for finding symmetries in circuits.

• Part II applies the background established in Part I towards three problems in CAD.

Chapters 5, 6, and 7 discuss technology mapping, placement, and SAT, respectively.

Finally, the conclusion summarizes our contributions and points out their strengths and

weaknesses.

15

2. Permutation Group Theory

In this dissertation, the concept of symmetry refers to the ability to permute connections

in a circuit without affecting its logical behavior. Permutation group theory is a mature

branch of mathematics, and any efficient algorithms which use symmetries will rely on it.

Therefore, this chapter serves to provide a sufficient background for the remainder of this

dissertation. The reader is referred to [Hal59, Ser02] for a more thorough treatment.

2.1 Basic Definitions

2.1.1 Groups

A group is a set G that together with a binary operation · : G×G → G, satisfies four group

axioms:

1. Closure: for any a, b in G, a · b ∈ G.

2. Associativity: for any a, b, c ∈ G, (a · b) · c = a · (b · c)

3. Identity: there exists some i ∈ G such that for any x ∈ G, i · x = x · i = x.

4. Inverse: for any element a ∈ G, there exists an element b ∈ G such that a · b = b · a =

i.

16

Example 2.1. Let us define a binary operation · over the set Z6 = {1, 2, 4, 8, 16, 32}, such

that a · b = 2lg(ab) mod 6, where lg is the base-2 logarithm. The following “multiplication

table” (or Cayley table) shows the operation explicitly:

· 1 2 4 8 16 32

1 1 2 4 8 16 32

2 2 4 8 16 32 1

4 4 8 16 32 1 2

8 8 16 32 1 2 4

16 16 32 1 2 4 8

32 32 1 2 4 8 16

The set Z6 forms a group with · since it satisfies the four group axioms:

1. Closure: from the definition of ·, if a and b are powers of 2, then a · b is also a power

of 2 between 20 and 25, inclusive.

2. Associativity: from the associativity of addition

2lg(ab)+lg(c) mod 6 = 2lg(a)+lg(bc) mod 6

3. Identity: x · 1 = x for any x ∈ Z6.

4. Inverse: 2 · 32 = 4 · 16 = 8 · 8 = 1.

We use multiplicative conventions to refer to the binary operation ·, i.e. a · b (or

simply ab) is the product of a and b. Its exact definition will be understood from its context.

Since · is associative, we omit parentheses from algebraic expressions. The group axioms

imply that each element has a unique inverse, and the inverse of a is denoted by a−1.

As a consequence of the group axioms, a group may be described implicitly by a

small set of generators. A set K generates group G, i.e. 〈K〉 = G, if every a ∈ G can be

written as a product of elements from K, and if every product of elements in K is also in G.

17

Example 2.2. The group Z6 from the previous example is generated by the set {2}:

2 = 2

4 = 2 · 2
8 = 2 · 2 · 2

16 = 2 · 2 · 2 · 2
32 = 2 · 2 · 2 · 2 · 2

1 = 2 · 2 · 2 · 2 · 2 · 2

A subgroup H of a group G, is a subset of G that with the same operation, satisfies

the four group axioms. This relationship is denoted by H ≤ G. For example, the set {1, 8}
forms a subgroup of Z6.

For groups G, H, where H ≤ G, the (right) coset of H for some x ∈ G is defined

as {hx : h ∈ H} and denoted by Hx. The cosets of H form equivalence classes. A set

consisting of an element from each class is called a (right) transversal of H, denoted by

G : H. The size of the transversal is denoted by |G : H|, and Lagrange’s Theorem states

that |G| = |G : H||H|. In other words, the cosets form a partition of G.

Example 2.3. Suppose that G = Z6 and H = {1, 8}. We enumerate the cosets Hx for

each x ∈ G as follows:

Cosets Hx

{1, 8}·1 = {1 · 1, 8 · 1} = {1, 8} = H

{1, 8}·2 = {1 · 2, 8 · 2} = {2, 16}
{1, 8}·4 = {1 · 4, 8 · 4} = {4, 32}
{1, 8}·8 = {8, 1}
{1, 8}·16 = {16, 2}
{1, 8}·32 = {32, 4}

The table shows 3 distinct cosets which each appear 2 times. This conforms to Lagrange’s

Theorem—since |G| = 6 and |H| = 2, |G : H| = 3. Here, the cosets of H are H, {2, 16},
and {4, 32}; the set {1, 2, 4} forms a transversal. Another way to show this is to represent

18

each element g ∈ G as a product hx of some h ∈ H and x ∈ {1, 2, 4} = (G : H).

g = h ·x
1 = 1 ·1
2 = 1 ·2
4 = 1 ·4
8 = 8 ·1

16 = 8 ·2
32 = 8 ·4

Left cosets and left transversals are defined similarly, e.g. xH = {xh : h ∈ H},
with identical properties. We will not be using the “left” variants, but introduce them

in order to caution against their inadvertent use. Since a left (right) transversal may be

obtained from a right (left) transversal by inverting each element, it is easy to confuse the

two. (The difference will be apparent later, when the binary operation is not commutative.)

As we will see, symmetries form a group. These results imply that symmetries

may be represented compactly, and that symmetries may be partitioned into a disjoint set

of cosets for efficient processing.

2.1.2 Permutations

Let Ω = {1, 2, . . . , n} be a finite set of points. A permutation π is a bijection from Ω to

itself. Permutations may be written in cyclic notation, e.g. the permutation (1, 3)(2, 4, 5)

swaps 1 with 3 and simultaneously moves 2 to 4, 4 to 5, and 5 to 2. The identity permuta-

tion is denoted by (). The image of a point i under π is written iπ, e.g. 5(1,3)(2,4,5) = 2. The

set of moved points of a permutation is the set {i ∈ Ω : iπ 6= i}; conversely, a permutation

(pointwise) stabilizes a set if none of the points in the set are moved. For example, the

permutation (1, 3)(2, 4, 5) moves {1, 2, 3, 4, 5} and stabilizes {6, 7, . . . , n}.
Permutations may also be written in Cartesian notation, which lists the images of

each point. For example, (1, 3)(2, 4, 5) may be written as (34152), and () may be written

as (12345). Unspecified images are denoted by dashes, e.g. if π = (53 - - -) then 1π = 5,

2π = 3, and 3π, 4π, 5π are unspecified. We will use this notation when permutations are

partially specified or when enumerating elements of a permutation group. Otherwise, we

19

prefer to use cyclic notation because properties such as the set of moved points can be

determined by inspection.

2.1.3 Permutation Groups

A permutation group is a group consisting of permutations with a binary operation de-

fined as follows. Given permutations π1 and π2, their product π1π2 is defined such that if

iπ1 = j and jπ2 = k, then i(π1π2) = k. Since i(π1π2) = (iπ1)π2 for any point i, we may omit

the parentheses and simply write iπ1π2 with no ambiguity.

Example 2.4. Suppose that π1 = (1, 3)(2, 4, 5) and π2 = (1, 3)(2, 5, 4), then π1π2 = (),

since 1π1 = 3 and 3π2 = 1, 2π1 = 4 and 4π2 = 2, etc.

The group consisting of all n! permutations over n points is denoted by Sn, and

called the symmetric group when n or Ω are known from the context.

A permutation group G induces a partition of Ω, known as the set of orbits; for

x ∈ Ω, Orbit(x) = {xπ : π ∈ G}.

Example 2.5. Let n = 11 and G = 〈{(1, 3)(2, 4, 5), (6, 7)(9, 11), (7, 8)}〉. The orbits of

G are {{1, 3}, {2, 4, 5}, {6, 7, 8}, {9, 11}, {10}}, and can be obtained using a union-find

algorithm [CLR89] on the cycles of the generators—the generator (6, 7)(9, 11) specifies

that 6 may move to 7, and (7, 8) specifies that 7 may move to 9. By transitivity, 6 may

move to 9, therefore 6 and 9 are in the same orbit.

Note that the product operation over permutations is not commutative, and the

following example illustrates the difference between left and right cosets.

Example 2.6. Suppose G = S3 and H = {(), (2, 3)}. A right transversal is

{(), (1, 2), (1, 3, 2)}, and a left transversal is {()−1, (1, 2)−1, (1, 3, 2)−1}. The following

list shows how G may be partitioned into left cosets and right cosets:

Left cosets xH G Right cosets Hx

() ·() = (123) = () ·()
() ·(2, 3) = (132) = (2, 3) ·()

(1, 2) ·() = (213) = () ·(1, 2)

(1, 2, 3) ·() = (231) = (2, 3) ·(1, 2)

(1, 2) ·(2, 3) = (312) = () ·(1, 3, 2)

(1, 2, 3) ·(2, 3) = (321) = (2, 3) ·(1, 3, 2)

20

Note that two elements from a right transversal, {(1, 2), (1, 3, 2)} lie in the same left coset

(1, 2)H.

2.2 Stabilizer Chains

Given a permutation group G, we would like to formulate efficient algorithms to:

• compute |G|

• enumerate the elements of G

• compute a small set of generators

• check whether a permutation π is in G

• compute the transversal of any given subgroup

Most efficient algorithms [Ser02] rely on the concept of a stabilizer chain for G. This is

a successively shrinking series of subgroups which stabilizes a growing corresponding

sequence of points. A formal definition is given below.

For a group G and set of points S, the stabilizer GS of S in G is the largest subgroup

of G that pointwise stabilizes S, that is GS = {g : g ∈ G ∧ ∧s∈S sg = s}. A base B is a

sequence of points β1, β2, . . . , βk such that GB contains only the identity permutation. Let

G(i) denote G{β1,β2,...,βi} and let G(0) = G. B induces a stabilizer chain as follows:

{()} = G(k) ≤ G(k−1) ≤ · · · ≤ G(2) ≤ G(1) ≤ G(0) = G

The base is reduced if G(i) 6= G(j) for i 6= j. Given a group G and base B, a strong generat-

ing set T ⊆ G is one for which

〈T ∩ G(i)〉 = G(i)

for all i.

Example 2.7. Suppose G = S5. The sequence 1, 2, 3 is not a base for G because two

permutations in G stabilize {1, 2, 3}: () and (4, 5).

21

Example 2.8. Suppose G = S5 and B = 1, 2, 3, 4. The stabilizer chain is as follows:

G(4) = {()}

G(3) = {(), (4, 5)}

G(2) = all 6 permutations over {3, 4, 5}

G(1) = all 24 permutations over {2, 3, 4, 5}

G(0) = all 120 permutations over {1, 2, 3, 4, 5}, i.e. S5

The permutations {(1, 2), (1, 2, 3, 4, 5)} generate S5, but are not a strong generating set

for base B since G(3) = {(), (4, 5)} but 〈{(1, 2), (1, 2, 3, 4, 5)} ∩ {(), (4, 5)}〉 = 〈{()}〉 =

{()} 6= G(3). T0, defined below, is a strong generating set for Sn

T4 = {()}

T3 = T4 ∪ {(4, 5)}

T2 = T3 ∪ {(3, 4, 5)}

T1 = T2 ∪ {(2, 3)}

T0 = T1 ∪ {(1, 2)}

since 〈Ti〉 = G(i).

In the remaining discussion, the base will be assumed to be the sequence of points

1, 2, . . . , n for simplicity and for consistency with [Jer86].

Sims [Sim71] presented the first algorithm for finding a strong generating set

based on a theorem by Schreier [Hal59]. Efficient variations of the so-called Schreier-

Sims method are described in [Jer86] and [Knu91], which present worst-case bounds of

O(n5) runtime. Asymptotic complexity can be improved by adding Monte Carlo meth-

ods [BCF+91], at the expense of possibly computing generators for a subgroup of G, rather

than for the entire group.

Before presenting algorithms to compute |G| or check for membership, we de-

scribe the main results of the algorithm proposed by [Jer86]. Compared to other variants

of the Schreier-Sims method, this algorithm is more comprehensible for readers who are

already familiar with graph theory.

22

2.3 Jerrum’s Branching Structure

We focus on the general approach described in [Jer86], which produces a small generating

set (|T| < n) in the form of a “labeled branching”. The labeled branching decomposes G

into transversals: G = (G(n−2) : G(n−1)) · · · (G(2) : G(3))(G(1) : G(2))(G(0) : G(1)). Since

G(i) = G(i−1)(G(i) : G(i−1)) and G(n−1) = (), the transversals form a generating set for each

G(i), i.e., a strong generating set for G. We now show how Jerrum’s branching represents

these transversals.

The labeled branching (actually a forest) maintains certain structural properties:

1. Nodes are synonymous with points in Ω, and are ordered 1 < 2 < · · · < n.

2. Edges are directed and follow the node ordering: an edge connecting nodes i, j where

i < j is necessarily from i and to j.

3. An edge from i to j is labeled with a permutation σi,j ∈ T where iσi,j = j and all points

less than i are stabilized (aσi,j = a for all a < i).

Thus a path from i to m (i → j → k → · · · → l → m) can be construed as a permutation

π where π = σi,jσj,k · · · σl,m, iπ = m, and all points less than i are stabilized. A path

from i to m exists if and only if m ∈ {iπ : π ∈ G(i−1)}. In other words, the set of points

reachable from point i (including i itself) is equal to the orbit of i in subgroup G(i−1), and

the corresponding paths form the transversal G(i−1) : G(i).

As we stated previously, any permutation π ∈ G(i) can be represented by some

product of elements from the transversals:

G(i) = (G(n−2) : G(n−1)) · · · (G(i) : G(i+1))(G(i−1) : G(i))

Therefore, the edge labels of the subgraph induced by nodes {i, i + 1, . . . , n} generate

G(i−1), and the edge labels of the entire branching form a strong generating set for G.

Example 2.9. Let G = 〈{(1, 2), (1, 3)(2, 4)}〉. This group represents the valid permuta-

tions of the variables in the algebraic expression x1x2 + x3x4. Assuming that variable xi

is represented by point i, x2x1 + x3x4 is an equivalent expression represented by permu-

tation (1, 2). The expression x3x4 + x1x2 is also equivalent, represented by (1, 3)(2, 4).

Finally, x1x2 + x4x3 is also equivalent, represented by (3, 4).

23

1 2 3 4(1,2) (3,4)

(1,3)(2,4)

2 3 4(3,4)

3 4(3,4)

Figure 2.1: Labeled branchings for G = 〈{(1, 2), (1, 3)(2, 4)}〉 and subgroups G(1) and G(2)

The stabilizer chain for G is as follows:

G(3) = {()}

G(2) = {(), (3, 4)}

G(1) = {(), (3, 4)}

G = G(0) = {(), (1, 2), (3, 4), (1, 2)(3, 4), (1, 3)(2, 4), (1, 3, 2, 4), (1, 4, 2, 3), (1, 4)(2, 3)}

Figure 2.1 shows the labeled branching for G, and the induced subgraphs for G(1) and

G(2). From Lagrange’s theorem, we know that |G(0) : G(1)| = |G(0)|
|G(1)| = 4, but do not know

the elements of G(0) : G(1). The paths from each point i form G(i−1) : G(i) as follows:

G(2) : G(3) = {(), σ3,4} = {(), (3, 4)}

G(1) : G(2) = {()} since G(1) = G(2)

G(0) : G(1) = {(), σ1,2, σ1,3, σ1,3σ3,4} = {(), (1, 2), (1, 3)(2, 4), (1, 4, 2, 3)}

Note that each node in a labeled branching has indegree at most 1. For efficiency,

node j is labeled with a permutation τj where τj = τiσi,j if an edge σi,j exists, otherwise

τj = (). Thus for any path i m, the product σi,jσj,k · · · σl,m can be computed in terms of

its endpoints: τ−1
i τm.

Our discussion centers on how to use a labeled branching, and we refer the reader

to [Jer86] for details on how to construct a labeled branching.

Going further, we can calculate |G| recursively as |G(i)| = |G(i) : G(i+1)||G(i+1)|.
We can also randomly select a permutation from G by choosing a random element from

24

1 2 3 4 5

(1,3)(2,4,5)

(2,4,5) (2,5,4)

Figure 2.2: Labeled branching for group 〈{(1, 3)(2, 4, 5)}〉

each G(i) : G(i+1) for i = 0, 1, . . . , n− 1 and taking their product.

Example 2.10. Let G = 〈{(1, 3)(2, 4, 5)}〉, and let the graph in Figure 2.2 be a labeled

branching for G. Point 1 can reach points 1 and 3, and point 2 can reach points 2, 4, and

5, indicating that |G| = 2 · 3 = 6. We can also enumerate the 6 elements of G as products

of elements from each transversal:

() ·() = ()

(2, 4, 5) ·() = (2, 4, 5)

(2, 5, 4) ·() = (2, 5, 4)

() ·(1, 3)(2, 4, 5) = (1, 3)(2, 4, 5)

(2, 4, 5) ·(1, 3)(2, 4, 5) = (1, 3)(2, 5, 4)

(2, 5, 4) ·(1, 3)(2, 4, 5) = (1, 3)

Note that (1, 3) is another valid label for the edge σ1,3. This will be an important point in

a chapter 7.

2.3.1 Membership Check

Checking for membership utilizes a “sifting” procedure which resembles algebraic divi-

sion, or more accurately, the solution of a Rubik’s cube. The solution of a Rubik’s cube

entails restoring one layer at a time until the identity permutation is reached. Similarly,

the sifting procedure systematically attempts to “undo” the movement of points 1, 2, 3,

etc.

Example 2.11. Using the same group and labeled branching from the previous example,

let us check whether (1, 3) ∈ G. Since (1, 3) is not the identity, we multiply by τ−1
3 τ1,

resulting in (2, 5, 4). The result is not the identity either, and we multiply it by τ−1
5 τ2,

resulting in (). Finally, we conclude that (1, 3) ∈ G.

25

Algorithm 1 IS-MEMBER(G, π)
1: while π 6= () do
2: j← the first moved point of π
3: k← jπ

4: if there is no path from j to k then
5: return false
6: end if
7: π← πτ−1

k τj { undo movement from j to k: (τ−1
j τk)−1 = τ−1

k τj }
8: end while
9: return true

Example 2.12. Let us now check whether (2, 4) ∈ G. The first moved point is 2 and

2(2,4) = 4, so we combine with τ−1
4 τ2, resulting in (4, 5). Since there is no path in the

graph from 4 to 5, we conclude that (2, 4) 6∈ G.

2.3.2 Transversal Computation

Jerrum described in [Jer86] how to obtain a transversal Sn : G given a branching structure

for G—the set of topological sorts of the branching structure forms a transversal. We can

extend this concept for any arbitrary G and H where H ≤ G—the set of elements in G con-

sistent with a topological ordering of H’s branching structure forms a transversal G : H.

Note that the labels for the subgroup’s branching structure are not required.

Many group algorithms follow a similar recursive structure. Therefore, for illus-

trative purposes, we first present a naïve version of the algorithm and add optimizations

incrementally. For brevity, the pseudocode equates a group with its respective branching

structure.

Algorithm 2 TRANSVERSAL(G, H)
1: L← {}
2: TRANSVERSAL-RECUR(H, 1, ())
3: return L

The naïve version enumerates the elements of G, and selects those elements

which obey the topological ordering imposed by H’s branching structure.

Suppose that G = 〈{(1, 3), (2, 4), (4, 5)}〉 and H = 〈{(2, 4, 5)}〉. Their correspond-

ing branching structures are shown in Figure 2.3, and indicate that |G| = 12 and |H| = 3.

Therefore, we expect that the algorithm produce a set of 12/3 = 4 permutations.

26

Algorithm 3 TRANSVERSAL-RECUR(G, H, j, π)
1: if j = n then
2: if kπ < lπ for every edge (k, l) in H then
3: { π is consistent with a topological sort of H }
4: L← L ∪ {π}
5: end if
6: else
7: τ ← node labels from G
8: for each k reachable from j in G do
9: TRANSVERSAL-RECUR(G, H, j + 1, τ−1

j τkπ)
10: end for
11: end if

1 2 3 4 5

(1,3)

(2,4)

(4,5)

1 2 3 4 5

(2,4,5) (2,5,4)

G

H

Figure 2.3: Branching structures for G = 〈{(1, 3), (2, 4), (4, 5)}〉 and H = 〈{(2, 4, 5)}〉

27

(- - - - -)

(1 - - - -)

(12 - - -)

(123 - -)

(1234 -) (1235 -)

(12345) (12354)

(143 - -)

(1432 -) (1435 -)

(14325) (14352)

(153 - -)

(1532 -) (1534 -)

(15324) (15342)

(321 - -)

(3214 -) (3215 -)

(32145) (32154)

(341 - -)

(3412 -) (3415 -)

(34125) (34152)

(351 - -)

(3512 -) (3514 -)

(35124) (35142)

(14 - - -) (15 - - -) (32 - - -) (34 - - -) (35 - - -)

(3 - - - -)

Figure 2.4: Search tree to compute G : H

The algorithm works as follows: the images of each point are initially considered

unfinalized. Each recursive call to TRANSVERSAL-RECUR fixes the image of point j for the

current (partial) permutation π (lines 8–9). When the permutation is finalized, it is added

to set L if it is consistent with a topological ordering. Figure 2.4 shows a recursion tree

with the current partial permutation at each step. The leaves set in black text form a right

transversal. The permutation π = (15324) is rejected because 2π > 4π, and there is an

edge from 2 to 4 in H’s branching structure. Other leaves are rejected for similar reasons.

This first version of the algorithm is somewhat inefficient—rather than continuing to the

leaves, the branch (1532 -) can be pruned because 2π and 4π have already been established.

Algorithm 4 incorporates this observation. Since τ−1
j τk stabilizes {1, 2, . . . , j −

1}, the positions of points 1, 2, . . . , j − 1 are fixed, therefore if any of their positions are

inconsistent with a topological ordering, the current recursion may be aborted. The relative

positions of points 1, 2, . . . , j − 2 have already been checked, so each recursive step only

performs a check against j− 1 (lines 1–3). The recursion tree in Figure 2.5 shows a slight

improvement over that in Figure 2.4.

The algorithm can be improved further by analyzing the orbits of group G. The

orbit of 2 is {2, 4, 5}. Therefore, at the branch (15 - - -), we deduce that for any leaf π under

28

Algorithm 4 TRANSVERSAL-RECUR2(G, H, j, π)
1: if there is an edge from i to j− 1 in H and iπ > (j− 1)π then
2: { π is inconsistent with a topological ordering }
3: return
4: else if j = n then
5: L← L ∪ {π}
6: else
7: τ ← node labels from G
8: for each k reachable from j in G do
9: TRANSVERSAL-RECUR2(G, H, j + 1, τ−1

j τkπ)
10: end for
11: end if

(- - - - -)

(1 - - - -)

(12 - - -)

(123 - -)

(1234 -) (1235 -)

(12345) (12354)

(143 - -)

(1432 -) (1435 -)

(14352)

(153 - -)

(1532 -) (1534 -)

(15342)

(321 - -)

(3214 -) (3215 -)

(32145) (32154)

(341 - -)

(3412 -) (3415 -)

(34152)

(351 - -)

(3512 -) (3514 -)

(35142)

(14 - - -) (15 - - -) (32 - - -) (34 - - -) (35 - - -)

(3 - - - -)

Figure 2.5: Search tree to compute G : H with pruning

29

(- - - - -)

(1 - - - -)

(12 - - -)

(123 - -)

(1234 -) (1235 -)

(12345) (12354)

(321 - -)

(3214 -) (3215 -)

(32145) (32154)

(14 - - -) (15 - - -) (32 - - -) (34 - - -) (35 - - -)

(3 - - - -)

Figure 2.6: Search tree to compute G : H with more efficient pruning

this branch, either 4π = 2 or 5π = 2. Both possibilities are invalid because either 2π < 4π

or 2π < 5π will be violated. Figure 2.6 shows the recursion tree with further pruning.

2.4 From Points to Literals and Connections

Having covered the basics of permutation group theory, we are now ready to apply them

to symmetries in functions and circuits. In these cases, permutations are not over points,

but Boolean literals, requiring a slight change in notation. The next two chapters seek to

answer the following questions:

1. Given a logical function, what permutations and/or negations of inputs and/or out-

puts leave the function unchanged?

2. Given a logical circuit, what permutations and/or negations of wires leave the cir-

cuit’s function unchanged?

30

3. Functional Symmetries

Functional symmetries form the basis of this work. Given a function f , a functional sym-

metry is a permutation and/or negation of inputs and/or outputs that leaves the function

unchanged.

In this chapter, we present a set of algorithms for computing the symmetries of a

function given a set of truth tables or binary decision diagrams (BDDs). The next chapter

addresses the situation where a clear-box logical circuit is given, rather than a black-box

truth table. By black-box, we mean that a truth table presents only a mapping between

inputs and outputs, whereas by clear-box, we mean that the internals of a circuit are visible.

Our approach is based on a reduction to graph isomorphism, rather than on

finding symmetries directly. Greenspun’s Tenth Rule of Programming states that any

sufficiently complex C program contains a poorly-written Lisp interpreter.1 A similar

rule holds for us: any program which computes the symmetries of a Boolean func-

tion must reimplement one of the algorithms described in [McK81, Leo91]. Recent

works [HK98, CS03, AP05, CK06] have all been based on the same fundamental approach.

For this reason, and because implementations of the underlying algorithms are freely avail-

able [DLSM04, GAP06], we present our work within the framework of graph automor-

phism, with the understanding that the concepts can be applied to any of the preceding

variants.
1“Any sufficiently complicated C or Fortran program contains an ad-hoc, informally-specified bug-ridden

slow implementation of half of Common Lisp.”, http://philip.greenspun.com/research/

31

The backtrack algorithms described in [McK81, Leo91] (and their numerous

derivatives) are based on the refinement of ordered partitions. Assuming that our per-

mutations are defined over points, an initial partition is provided such that every point

belonging to the same orbit also belongs to the same partition (the initial partition is an

overapproximation of the orbits). The algorithms roughly consist of three steps which are

repeated recursively:

1. Extend the current partial permutation, consisting of the sequence of partitions, with

one element.

2. Make inferences, i.e., refine the ordered partition, in such a way that the refinement

does not eliminate any valid permutations.

3. Block cosets from exploration.

The initial partition and refinement step are defined by the application, while the first and

third steps are a generic portion of the algorithm. The refinement step is used to prevent

the algorithm from searching for symmetry where none exists, so that we do not search

all n! permutations for symmetry. The last step uses the group axiom of closure to avoid

searching for symmetries that can be deduced from other known symmetries; if (1, 2) is a

symmetry and (2, 3) is a symmetry, there is no need to check for (1, 3).

A Note on Notation. Group theory and graph theory use similar notation to refer to

different concepts. Therefore, we let G (set in standard face) denote a permutation group,

and G (set in fraktur face) denote a graph (V, E). Rather than the points {1, 2, . . . , n}, we

allow permutations to be defined over other domains, such as the set of nodes V. To avoid

confusion, we will write permutations in positional notation, so that for any u, v ∈ V, the

tuple (u, v) denotes an edge (not a permutation). Then for some π ∈ G, we may define the

image Gπ of G = (V, E) as follows:

Gπ = (V, {(uπ, vπ) : (u, v) ∈ E})

Definition. A graph isomorphism α : V → V ′ between graphs (V, E) and (V ′, E′) is a

bijection of the nodes that preserves edge relationships: (u, v) ∈ E ⇐⇒ (α(u), α(v)) ∈ E′.

For colored graphs (V, E, c) where c : V → N, an isomorphism must also preserve colors:

c(v) = c′(α(v)). A graph automorphism is an isomorphism between a graph and itself.

32

To use the terminology of [Leo91], graph automorphism is a “subgroup-type”

problem, that is, given a graph G = (V, E) of n nodes and a predicate Aut(π, G) 7→ G =

Gπ, the algorithm finds the largest subgroup G ⊆ Sn such that Aut(π, G), ∀π ∈ G. Sup-

pose p : V → N describes the current partition. The initial partition divides the nodes

according to their degree:

p(a) = p(b) ≡ |{v : (a, v) ∈ E}| = |{v : (b, v) ∈ E}| (3.1)

The refinement step from [McK81] works as follows: given nodes a and b, if their neighbors

are in different partitions, then so are they in the refined partition p′:

p′(a) = p′(b) ≡ p(a) = p(b) ∧ {p(v) : (a, v) ∈ E} = {p(v) : (b, v) ∈ E} (3.2)

This is a consequence of the definition of graph automorphism:

(a, b) ∈ E ≡ (aπ, bπ) ∈ E, ∀π ∈ G (3.3)

Other properties that are invariant under isomorphism may be found [Lev74], and lead to

other possible refinement steps.

Given the task of finding the symmetries of a Boolean function, we may define

an initial partition and refinement step in a similar fashion. We described potential initial

partitioning and refinement steps in [CK06]. The translation from these to equivalent steps

in the graph domain is the subject of the remainder of this chapter. For the remainder, let

n and m indicate the number of inputs and outputs to a function, respectively. Inputs

are denoted by xi ∈ B, or simply x ∈ Bn. Outputs are denoted by f j : Bn → B or

yj ∈ B depending on context. A cube is a conjunction of variables or alternatively the

convex subset of Bn for which the conjunction is true. A cube may be written as a set, a

conjunction, or a bitstring with dashes, e.g. {x3, x̄2, x0}, x3 x̄2x0, and 10-1 are equivalent.

A minterm is a single point in Bn. For a function f , the satisfy count denoted by | f | is

|{x : f (x) = 1}|. The cofactor of f with respect to some literal xi (x̄i), denoted by fxi (f x̄i),

is an n-input function equivalent to f but with xi substituted by 1 (0), e.g.

fxi(x) = f (xn−1, . . . , xi+1, 1, xi−1, . . . , x0)

The cofactor of f with respect to a cube is similar, e.g.

fxi x̄i−1(x) = f (xn−1, . . . , xi+1, 1, 0, xi−2, . . . , x0)

33

An implicant of a function is a cube for which the function evaluates to true. A prime

implicant (or simply prime) is one which is not contained in any other implicants. For

example, if f = x1 + x0, then x1x0 is an implicant of f and contained in the prime x1.

We use the term move as before, to describe the action of permutations. We say

that a point i can be moved to point j if there exists a symmetry π such that iπ = j.

3.1 Graph Formulation

To find the symmetries of a function f : Bn → Bm via graph automorphism, we will define

a mapping from f to a colored graph (VX ∪ VY ∪ VM, E, c). VX consists of 2n nodes to

represent input literals xi, x̄i. VY consists of 2m nodes to represent output literals yj, ȳj.

A permutation and/or negation of inputs and/or outputs of a function f is represented

by a permutation π over VX ∪ VY; the new function is denoted by f π. What remains is to

define VM, E, and c so that the graph’s automorphisms correspond exactly to the function’s

symmetries. In other words, VM, E, and c will uniquely encode f . It is understood that

when we say an automorphism is a functional symmetry, we consider only the mapping

over VX ∪VY; similarly, when we say a functional symmetry is an automorphism, we mean

that it can be suitably extended to nodes in VM.

Let Sym(f) denote the symmetries of f , and Aut(G) denote the automorphisms

of G. The graph formulations in this chapter satisfy the criteria in the following theorem:

Theorem 1. Suppose Γ maps a function f to a colored graph G = (VX ∪VY ∪VM, E, c) with the

following criteria:

1. VX and VY are defined as above.

2. For any u, v ∈ VX, (u, v) ∈ E iff u = v̄ and for any u, v ∈ VY, (u, v) ∈ E iff u = v̄.

3. c(v) is 0 if v ∈ VX, 1 if v ∈ VY, and some number ≥ 2 otherwise.

4. Γ is an bijection, i.e. f = f ′ iff Γ(f) = Γ(f ′) (modulo relabeling of nodes in VM). For-

mally, f = f ′ iff there exists an isomorphism φ between Γ(f) and Γ(f ′) where ∀l ∈
VX ∪VY, φ(l) = l.

5. For any π, there exists an isomorphism φ between Γ(f π) and Γ(f) where ∀l ∈ VX ∪
VY, π(l) = φ(l).

34

f

Γ(f)
φ

π

(4)(4) (5)

fπ

Γ(fπ)

Figure 3.1: Diamond property required by Theorem 1.

Then α ∈ Sym(f)⇐⇒ α ∈ Aut(Γ(f)).

Proof. (=⇒) follows trivially from criteria 1 and 4. (⇐=) criteria 2 and 3 ensure that per-

mutations of literals correspond to valid permutations/negations of inputs/outputs, and

criteria 4 and 5 ensure that an isomorphism φ between Γ(f) and Γ(f ′) implies f φ = f ′.

Criterion 2 enforces Boolean consistency, e.g. α(xi) = α(x̄i). Criteria 4 excludes

the degenerate case where VM consists of a single node with a unique label or color. Crite-

rion 5 excludes the case where Γ encodes f in |VM|. Another way of restating the criteria is

that Γ is information preserving, or that Γ treats all literals identically. Figure 3.1 illustrates

the so-called diamond property enforced by criteria 4 and 5.

3.1.1 The Trivial Graph Formulation

Let f be a multiple-output function for which f j : Bn → B describes the function of the j-th

output. In the naïve graph formulation, VM consists of 2n nodes, each synonymous with

a minterm in Bn. An edge connects node u ∈ VX with v ∈ VM iff the literal u appears in

minterm v. An edge connects connects v ∈ VM with yj ∈ VY iff f j(v) = 1, otherwise v is

connected to ȳj.

It follows directly that any automorphism of G is a symmetry of f .

Luks [Luk99] provides an equally simple reduction to hypergraph automorphism, and

Kisielewicz [Kis98] provides a simple reduction from graph automorphism to the symme-

try problem for Boolean functions.

Example 3.1. Suppose we are given the single-output function f0 = x2(x̄1 + x0). VX

consists of six nodes {x2, x̄2, x1, x̄1, x0, x̄0}, VY consists of two nodes, and VM consists of

35

eight nodes. Figure 3.2a shows the graph formulation for f0. Labels and line styles are

not part of the formulation, but rather are visual aids for the reader.

A few remarks should be repeated. First, the exponential size of G (|VM| = 2n)

is likely to be problematic for runtime and memory. Second, the refinement rule for graph

automorphism is based on one of many invariants that hold for automorphisms of G. As

the continuation of our example shows, several invocations of this refinement rule may be

required to equal one invocation of one of the application-specific rules from [CK06].

Example 3.2. In the function f = x2(x̄1 + x0), variable x2 cannot be moved to x0 without

changing f . This follows from the fact that | fx2 | 6= | fx0 |, or if we consider negations,

{| fx2 |, | f x̄2 |, | f̄x2 |, | f̄ x̄2 |} 6= {| fx0 |, | f x̄0 |, | f̄x0 |, | f̄ x̄0 |}

All of the satisfy counts may be computed from a BDD for f , in time which is polynomial

with respect to the size of the BDD. This same fact can be established by performing

several refinement steps on Figure 3.2a. We first partition the nodes by color:

(VX, VY, VM)

then by degree:

(VX, {y0}, {ȳ0}, VM)

The splitting of VY causes VM to split via the refinement step:

(VX, {y0}, {ȳ0}, {100, 101, 111}, {000, 001, 010, 011, 110})

This in turn, causes VX to split when we count for each node in VX its neighbors in

{100, 101, 111} and {000, 001, 010, 011, 110}. It is not a coincidence that these are the

satisfy counts. The difference is in runtime: each refinement step on the graph takes

O(2n) time (since |VM| = 2n), while the runtime to compute satisfy counts would usually

be polynomial in n given a BDD.

3.2 Improved Graph Formulation for Single Outputs

Let us assume for now that f is a function with a single output. We present three im-

provements to the graph formulation which reduce the size of G and/or expose more

36

000 001 010 011 100 101 110 111

x̄1 x̄0x1 x0

Minterm

Input literal

Output literal

(a)

100 101 111

x̄1 x̄0x1 x0

(b)

100 101 111

x̄1 x̄0x1 x0

(c)

Figure 3.2: Graph formulations for f0 = x2(x̄1 + x0).

37

information to a graph automorphism solver.

3.2.1 Reducing |VM| with Satisfy Counts

In the naïve formulation, VM contains a node for each minterm in Bn in order to represent

symmetries which negate the output. Suppose that we are computing symmetries over

the inputs only and do not want symmetries which negate the output. That is, we seek

those π such that f = f π and yπ = y. Since the codomain of f is B, f = f π if and only if

f̄ = (f̄)π. Then there is no need to introduce both minterm nodes for which f (x) = 1 as

well as minterm nodes for which f (x) = 0; we can arbitrarily choose one of the two sets

without adding or removing automorphisms from G.

If we are interested in finding all symmetries, but know a priori that no symme-

tries negate the output, we can again safely remove one of the two sets of minterms. The

satisfy counts are an efficient means to determine this fact: if | f | 6= | f̄ |, then no symmetry

moves y to ȳ. We codify this into the following rule:

• if | f | < | f̄ |, remove nodes corresponding to minterms in f̄

• if | f | > | f̄ |, remove nodes corresponding to minterms in f

For the degenerate case where f = 0 (f̄ = 0) we remove VM and mark y (ȳ) with a new

color. The result of applying this rule on Figure 3.2a is shown in Figure 3.2b.

We note that in contrast, the construction proposed in [CMB05a] colored the 2n

minterm nodes using two colors for the on- and off-set.2 This forces the graph automor-

phism solver to unnecessarily compute symmetries for both f and f̄ .

3.2.2 Reducing |E| with Satisfy Counts

As in the previous case, we may reduce the size of G if we can determine a priori that certain

symmetries are not possible. If | fxi | 6= | f x̄i |, then xi cannot be moved to x̄i, and the edges

from xi (or x̄i) to nodes in VM may be removed. In order to preserve all automorphisms of

G we need to apply any rule consistently for each input. We use the following:

• if | fxi | < | f x̄i |, remove edges from x̄i to nodes in VM. Additionally, if | fxi | = 0, connect

x̄i to y and xi to ȳ.

2For an m-output function, 2m colors are used.

38

• if | fxi | > | f x̄i |, remove edges from xi to nodes in VM. Additionally, if | f x̄i | = 0, connect

xi to y and x̄i to ȳ.

The case where | fxi | = 0 is a generalization of the case where f = 0. Note that the rule

removes edges from x̄i in one case and xi in the other. This is necessary in case some xi

may be moved to some x̄j, as in the following example.

Example 3.3. Let f = x2(x̄1 + x0). If we compare the satisfy counts of the various cofac-

tors, | f x̄2 | < | fx2 |, | fx1 | < | f x̄1 | and | f x̄0 | < | fx0 |. Therefore, node x2 x̄1 x̄0y is replaced by

node x̄0y, x2 x̄1x0y by y, and node x2x1x0 is replaced by x1y. Node x2 is connected to y0

since | f x̄2 | = 0. The result is shown in Figure 3.2c. Note that swapping x̄1 with x0 is a

symmetry of f , and the new graph preserves the corresponding automorphism.

3.2.3 Reducing |VM| with Unateness

Rather than represent a function f using minterms, we can use any representation which is

unique and which does not depend on an ordering of the variables. The set of all minterms

is unique, but large. A BDD for a function is often small, but depends on an ordering of the

variables. A sum-of-products is often small, but not unique unless if we include implicants

based only on some variable-agnostic property, for example:

• the set of all implicants

• the set of all implicants with n literals (minterms)

• the set of all implicants with at least k literals

• the set of all prime implicants

• the set of all essential prime implicants plus those minterms not covered by the es-

sential primes. A prime is essential if it contains a minterm that is not contained in

any other prime.

These sets all satisfy Theorem 1; e.g. for any f and f π, their respective sets of primes are

isomorphic. These sets are large for the general class of Boolean functions, but small for a

very common subclass (unate functions).

39

10- 1-1

x̄1 x̄0x1 x0

neg pos

Figure 3.3: Graph containing primes of x2(x̄1 + x0).

Definition. A function f is positive (negative) unate in xi if fxi ⊇ f x̄i (fxi ⊆ f x̄i); when f

is understood from context, we refer to the variables themselves as unate. A variable is

binate if it is not unate. A function is unate if it is unate in all variables.

It is well-known that all primes of a unate function are essential, and therefore this

set is small [BHMSV84]. Furthermore if f is unate, then so is f̄ . Then any unate function

f can be represented by the primes of f and f̄ , for an exponential decrease in graph size

compared to enumeration of minterms.

Example 3.4. Let f = x2(x̄1 + x0). The primes of f are {x2 x̄1, x2x0} and the primes of f̄

are {x̄2, x1 x̄1} for a total of 4 nodes in VM. In comparison, there are 8 minterms in B3.

We modify our formulation as follows. Two new nodes of color 3 are introduced

to mark each literal as being positive or negative unate in f . A special property of unate

functions is that if f is positive (negative) unate in x, then f̄ is negative (positive) unate

in x. To preserve symmetry, the node denoting positive unateness is adjacent to the node

labeled “ f ”, and the node denoting negative unateness is adjacent to the node labeled “ f̄ ”.

The resulting graph for f = x2(x̄1 + x0) is shown in Figure 3.3. Since | f | < | f̄ |, only f is

represented.

Suppose a function f is unate in only a subset of its variables, say XU and binate

in variables XB = X \ XU . Then f can be uniquely written as 2|XB| sets of primes, one for

40

10-00- -10 -11

x̄1 x̄0x1 x0

neg pos

Figure 3.4: Graph containing primes of x̄1x2 + x1x0.

each cofactor of f with respect to the binate variables. Thus the function

f = (x0 ⊕ x1)x2 + (x0 + x1)x3

which is unate in x2 and x3, is uniquely represented by the five cubes

f = x0 x̄1 fx0 x̄1 + x̄0x1 f x̄0x1 + x0x1 fx0x1

= x0 x̄1(x2 + x3) + x̄0x1(x2 + x3) + x0x1(x3)

= x0 x̄1x2 + x0 x̄1x3 + x̄0x1x2 + x̄0x1x3 + x0x1x3

For this case, the binate variables are obviously not connected to either of the nodes mark-

ing unateness.

Example 3.5. Let f = x̄1x2 + x1x0. Since | f | = | f̄ |, both f and f̄ need to be represented

in any graph formulation. The primes of f (x̄1x2 + x1x0) and f̄ (x̄1 x̄2 + x1 x̄0) are shown

in Figure 3.4. Note that y0 can be moved to ȳ0 iff the unate variables are simultaneously

negated.

3.2.4 Combining Transformations

One may notice that it is not strictly necessary to mark variables as unate or not in the

previous examples—the connectivities of the graphs already show this. However, doing

41

Algorithm 5 GRAPH-REDUCTION(f)
1: XP ← positive unate variables of f
2: XN ← negative unate variables of f
3: XB ← binate variables of f
4: connect nodes in XP to “pos” node
5: connect nodes in XN to “neg” node
6: add edge (“pos”, y)
7: add edge (“neg”, ȳ)
8: if | f | ≤ | f̄ | then
9: for each assignment c to XB variables do

10: for each prime implicant p of fc do
11: add node pc to VM
12: add edge (pc, y)
13: for each literal li in cube p do
14: add edge (li, pc)
15: end for
16: for each literal li in cube c do
17: if | fli | ≤ | f l̄i | then
18: add edge (li, pc)
19: end if
20: end for
21: end for
22: end for
23: end if
24: if | f | ≥ | f̄ | then
25: do same as above, but with f̄ and ȳ instead of f and y
26: end if

so allows us to correctly apply other transformations without destroying this information.

Suppose xi is binate, and | f | < | f̄ | and | fxi | < | f x̄i |. If we were to remove all edges from x̄i,

it would no longer be distinguishable from the unate variables. Algorithm 5 illustrates the

combination of the previous three techniques.

Note that the unateness transformation exposes some differences between input

variables and obscures others. Before this transformation, the degree of node xi is | fxi |+ 1,

assuming | f | < | f̄ | and | fxi | < | f x̄i |. This means that the graph automorphism refinement

procedure will distinguish two variables xi and xj if | fxi | 6= | fxj | since the degrees of the

respective nodes will also differ (see Equation 3.1). This does not necessarily hold if we use

prime implicants to represent f . The following example adapted from [CK06] illustrates

this in detail.

42

x5 x4 x3 x2 x1 x0

0 0 0 1 1 1
0 1 1 0 0 1
0 1 1 0 1 1
0 0 1 0 1 1
1 1 1 1 1 1
1 0 0 1 1 0

〈b
,2

,?
〉

〈b
,3

,?
〉

〈b
,4

,?
〉

〈b
,3

,?
〉

〈p
,5

,?
〉

〈b
,5

,?
〉

(a)

x5 x4 x3 x2 x1 x0

0 0 0 1 1 1
0 1 1 0 - 1

0 0 1 0 1 1
1 1 1 1 1 1
1 0 0 1 1 0

〈b
,2

,2
〉

〈b
,3

,2
〉

〈b
,4

,3
〉

〈b
,3

,3
〉

〈p
,5

,4
〉

〈b
,5

,4
〉

(b)

x1 x5 x4 x2 x3 x0

1 0 0 1 0 1
- 0 1 0 1 1

1 0 0 0 1 1
1 1 1 1 1 1
1 1 0 1 0 0

〈p
,5

,4
〉

〈b
,2

,2
〉

〈b
,3

,2
〉

〈b
,3

,3
〉

〈b
,4

,3
〉

〈b
,5

,4
〉

(c)

Figure 3.5: Refining variable partitions of
f = x5 x̄4 x̄3x2x1 x̄0 + (x̄5 x̄4 x̄3 + x5x4x3)x2x1x0 + (x4 + x1)x̄5x3 x̄2x0 using an
implicant table.

Example 3.6. Let f = x5 x̄4 x̄3x2x1 x̄0 + (x̄5 x̄4 x̄3 + x5x4x3)x2x1x0 + (x4 + x1)x̄5x3 x̄2x0. The

function contains no symmetry, and we would like to confirm this using a minimal

amount of branch and bound. The table in Figure 3.5a shows the six minterm impli-

cants in f ; since | f | = 6 < | f̄ | = 26, f̄ is not represented. Under each column for xi is a

triple denoting whether xi is binate and | fxi |. From this information, we can deduce that

x5 cannot be moved to x4. Other facts cannot be deduced: we do not know whether x4

can be moved to x̄4 since | fx4 | = | f x̄4 | = 3.

Since x1 is unate, the implicants are rewritten as the entries in Figure 3.5b. The

last entry in each triple is the number of 1s in each column, i.e. the number of times

literal xi appears in the implicants. Since a 2 appears for x4, and 2 6= 3, we deduce that

x4 cannot be moved to x̄4. However, a 2 appears for both x5 and x4, meaning that the

degrees of their respective nodes are now equal and thus the variables cannot be distin-

guished anymore using only a single application of Equation 3.1. In order to facilitate

the graph automorphism solver, it may be beneficial (but not necessary) to provide this

information as an extension to the graph formulation.

3.3 Multiple-output Functions

Suppose f consists of more than one output (m > 1). Then the graph formulation is simply

the composition of the formulations for each f j, where the 2n nodes for VX are shared. This

43

explains why unate variables are marked as such by connecting to special nodes—different

outputs are unate for different variables. Any nodes in VM with identical neighbors in VX

may also be merged, so that the outputs are defined over a shared space of at most 3n

nodes.

Definition. Given a multiple output function (f0(x), f1(x), . . . , fm−1(x)), the characteristic

function χ is defined such that χ(x, y0, y1, . . . , ym−1) =
∧m−1

i=0 (fi(x) ≡ yi).

An alternative is to analyze the characteristic function of f . The symmetries of f

can then be obtained by analyzing χ, where we consider all negations and permutations

of inputs xi and yi for which an x input is not swapped with a y input.

3.4 Experimental Results

To assess the relative improvement realized by various encodings, we compare different

graph encodings on a variety of functions. All experiments were performed on a Pen-

tium4 2GHz computer running Linux with the perfctr library3 for cycle-accurate timing

measurement, CUDD4 for BDD manipulation, and Saucy [DLSM04] for finding graph au-

tomorphisms. Reported runtimes include all steps necessary to find all symmetries of a

multi-output function expressed as m BDDs. Each formulation was verified to produce

the correct symmetry group.

The first set of experiments tests whether redundant nodes and edges are useful

in the refinement steps of the Saucy solver, or whether they unnecessarily add to run-

time. We extracted single-output functions from two mapped circuits from the IWLS 2005

benchmark suite and computed their symmetries using three graph formulations: the basic

formulation, the formulation reduced with §3.2.1, and the formulation reduced with §3.2.1

and §3.2.2. The results are in Table 3.1. Column n denotes the number of inputs, while #

denotes the number of functions examined. “Time”, “|V|”, and “|E|” respectively denote

average runtime in milliseconds, vertices in graph, and edges in graph. As the results in-

dicate, the proposed optimizations greatly reduce the runtime and memory requirements

for symmetry detection.

3http://user.it.uu.se/~{}mikpe/linux/perfctr/
4http://vlsi.colorado.edu/~fabio/CUDD/

http://user.it.uu.se/~{}mikpe/linux/perfctr/
http://vlsi.colorado.edu/~fabio/CUDD/

44

Basic Using §3.2.1 Using §3.2.1 and §3.2.2
n # Time |V| |E| Time |V| |E| Time |V| |E|
3 10259 0.053 16 36 0.058 12.9 23.7 0.053 12.9 21.3
4 8433 0.105 26 85 0.087 17.5 42.7 0.075 17.5 37.7
5 9017 0.254 44 198 0.198 28.0 102 0.149 28.0 85.8
6 4800 0.981 78 455 1.167 46.9 237 0.735 46.9 191
7 1743 5.383 144 1032 2.743 58.5 348 1.667 58.5 273
8 806 2.501 274 2313 1.070 92.9 683 0.669 92.9 504
9 344 5.320 532 5130 1.204 141 1218 0.685 141 837

Table 3.1: Single-output functions.

The second set of experiments compares three graph formulations for multiple-

output functions. Each benchmark circuit in Table 3.2 is analyzed as a single multiple-

output function, e.g. pcle is a 19-input 9-output function. Formulation “χ” represents the

trivial formulation which treats each circuit using its characteristic function. The next set of

columns represents this formulation after applying the rules in §3.2.2–§3.2.3. The last set of

columns represents the formulation which treats each output independently and simply

composes the graphs for each output. The results indicate that for binate functions, e.g.

alu4, the trivial formulation may be best by a small margin. However, in most cases, the

formulation which composes the graphs corresponding to each output is best by a large

margin.

3.5 Previous Work

A number of previous works have addressed the problem of finding symmetries of

Boolean functions, and all complete algorithms5 rely on the same basic ideas set forth

in [McK81] and [Leo91]. We can divide these algorithms into two sets: those based on

comparison of satisfy counts (spectral methods) and those based on comparison of out-

put values at various input minterms. Both families of algorithms are targeted towards

finding symmetries of single-output functions, as we explain below. For simplicity, let us

assume that we are searching only for symmetries among the n!m! permutations of inputs

and outputs, and disregard negation.

5That is, algorithms which are able to find all symmetries.

45

χ
χ

w
it

h
§3

.2
.1

–§
3.

2.
3

§3
.3

w
it

h
§3

.2
.1

–§
3.

2.
3

Be
nc

hm
ar

k
n

m
Ti

m
e

|V
|

|E
|

Ti
m

e
|V
|

|E
|

Ti
m

e
|V
|

|E
|

al
u4

14
25

13
4.

97
2

16
42

8
36

04
70

23
1.

14
3

16
46

0
29

93
16

15
1.

63
23

81
6

24
94

56

b1
2

15
9

22
5.

29
3

32
81

6
78

64
56

11
3.

09
5

13
19

6
21

34
86

2.
00

09
13

0
54

9

cm
16

3a
16

5
67

2.
04

4
65

57
8

1.
37

62
8e

6
35

9.
22

8
27

84
0

49
57

25
1.

66
44

23
3

15
47

cu
14

11
20

3.
44

8
16

43
4

40
96

25
97

.1
85

1
63

66
99

79
5

2.
07

57
92

30
1

m
is

ex
3

14
14

12
6.

08
9

16
44

0
45

87
80

87
.0

73
73

64
12

11
42

90
.8

01
15

07
4

14
67

89

pc
le

19
9

85
85

.5
7

52
43

44
1.

46
80

1e
7

20
01

.9
9

12
44

75
2.

74
0e

6
4.

71
99

83
9

75
42

pm
1

16
13

22
55

.8
1

65
59

4
1.

90
05

7e
6

33
49

.9
9

65
64

6
1.

28
7e

6
1.

62
72

11
6

32
7

sc
t

19
15

14
25

8.
6

52
43

56
1.

78
25

8e
7

86
69

.9
6

52
44

16
1.

17
9e

7
8.

55
26

63
4

56
90

sp
la

16
46

17
61

.1
3

65
66

0
4.

06
32

9e
6

48
6.

63
2

22
22

5
40

56
76

10
7.

92
99

18
94

78
0

ta
bl

e3
14

14
13

9.
16

5
16

44
0

45
87

80
61

.5
10

5
33

83
56

63
7

64
.6

44
86

84
82

78
8

ta
bl

e5
17

15
24

38
.3

4
13

11
36

4.
19

43
4e

6
47

3.
38

28
79

2
59

77
28

67
2.

80
10

58
36

1.
14

2e
6

tc
on

17
16

3.
89

3e
6

13
11

38
4.

32
54

1e
6

23
51

7.
2

13
12

02
3.

80
12

e6
1.

40
30

14
6

24
1

vd
a

17
39

54
14

.1
7

13
11

84
7.

34
00

9e
6

95
7.

75
1

42
66

7
79

84
12

14
1.

51
69

31
49

77
2

Ta
bl

e
3.

2:
M

C
N

C
91

be
nc

hm
ar

ks
.

46

3.5.1 Spectral Methods

Algorithms such as [AP05, Wan06, ABPS07] try to reduce the complexity of a function

by abstracting the function’s 2n minterms into a small set of signatures based on various

satisfy counts. To recap, the satisfy count of a function f , denoted by | f |, is |{x| f (x) = 1}|.
If two variables have differing signatures, for example if | fx0 | 6= | fx1 |, then x0 cannot be

moved to x1.

Spectral techniques are fast only when the signatures are effective at distinguish-

ing variables, but as the authors of [MMM95] show, signatures are not particularly effec-

tive at doing so. As an illustration, the algorithm proposed in [AP05] performs partition

refinement using the (n2 + n)/2 signatures of the form | fxi | and | fxixj |, and no others. Let

us define the order of a signature as the number of literals in the cube with which we are

cofactoring, i.e. | f | is a zeroth order signature, | fx0 | is a first order signature, and | fx0x1 |
is a second order signature. First order signatures | fxi | are used for an initial partition-

ing analogous to Equation 3.1, and second order signatures | fxixj | are used for refinement

analogous to Equation 3.2.

It is entirely likely that two variables xi and xj have the same signatures, i.e.

| fxi | = | fxj | and | fxixk | = | fxjxk |, yet xi may not be moved to xj. In this case, the algo-

rithm in [AP05] would need to exhaustively search through a large set of permutations to

find the few symmetries of f . The next example illustrates this point.

Example 3.7. Let us suppose that we are searching for the symmetries of the two output

function described by:

f0 = x2 + x1 + x0

f1 = x1 ⊕ x0

Since none of the algorithms work directly with multiple-output functions, we define

the single-output characteristic function χ(x, y) = (f0(x) ≡ y0) ∧ (f1(x) ≡ y1). The

following truth table for χ shows the rows for which χ(x, y) = 1.

x2 x1 x0 y1 y0 χ

0 0 0 0 0 1
0 0 1 1 1 1
0 1 0 1 1 1
0 1 1 0 1 1
1 0 0 0 1 1
1 0 1 1 1 1
1 1 0 1 1 1
1 1 1 0 1 1

otherwise 0

47

x2 x1 x0 y1 y0 χ
0 0 0 0 0 1
0 0 1 1 1 1
0 1 0 1 1 1
0 1 1 0 1 1
1 0 0 0 1 1
1 0 1 1 1 1
1 1 0 1 1 1
1 1 1 0 1 1

(a) |χy1x0 | = 2

x2 x1 x0 y1 y0 χ
0 0 0 0 0 1
0 0 1 1 1 1
0 1 0 1 1 1
0 1 1 0 1 1
1 0 0 0 1 1
1 0 1 1 1 1
1 1 0 1 1 1
1 1 1 0 1 1

(b) |χy1x1 | = 2

x2 x1 x0 y1 y0 χ
0 0 0 0 0 1
0 0 1 1 1 1
0 1 0 1 1 1
0 1 1 0 1 1
1 0 0 0 1 1
1 0 1 1 1 1
1 1 0 1 1 1
1 1 1 0 1 1

(c) |χy1x2 | = 2

Figure 3.6: Signatures of χ = ((x2 + x1 + x0) ≡ y0) ∧ ((x1 ⊕ x2) ≡ y1).

By expressing f as a characteristic function, we increase the order of the signatures by

one, e.g. | f0| = |χy0 | and |(f0)x0 | = |χy0x0 |. Second order signatures that would be used if

analyzing f0 or f1 in isolation are not used, because they are now third order signatures

of χ. Many first and second order signatures of χ are equal by construction: |χxi | = 2n−1

and |χxixj | = 2n−2, e.g. there are 22 rows of the above truth table where x2 = 1 and 21

rows where x2 = x1 = 1. This limits our ability to perform partition refinement with

signatures.

In this example, it is clear that x2 cannot be moved to x1 or x0, since doing so

would change f1. Let us see if the available signatures indicate this fact. As the tables

in Figure 3.6 show, the signatures |χy1x0 |, |χy1x1 |, and |χy1x2 | are identical. As we just

explained, other signatures are identical by construction. Thus, to show that x2 cannot

be moved to x1, we need to explore the permutations which move x2 to x1 and confirm

that they are not symmetries.

3.5.2 Minterm Comparison

Minterm-based techniques [PR94, HK98, CS03] compare the value of a function at various

points of Boolean space. For example, given a single-output function f (x2, x1, x0), we com-

pare the values of f (1, 0, 0) , f (0, 1, 0) and f (0, 0, 1) at the root of a search tree. Assuming

their values are 1, 0 and 0 respectively, we can conclude that moving x2 to x1 or x0 would

change f . This results in the variable partition {{x2}, {x1, x0}}. We systematically examine

f for other values of x to refine the partition or confirm that x0 can be swapped in x1.

The main drawback of this approach is that we may have to examine f for 2n val-

ues of x. Our work in [CK06] reduces this number by applying the same transformations

48

used in this chapter.

Two alternative extensions exist in order to find symmetries of a multiple-output

function:

1. Convert to a single-output characteristic function. Converting f to a characteristic

function χ eliminates many of the properties which [CK06] relies on. For example,

given f0 = x̄0 the characteristic function χ(x0, y0) = x0 ⊕ y0 is binate.

2. Add explicit support for multiple-output functions. This requires extensive book-

keeping to record which variables are unate for which outputs, etc. This facility is

already provided to us in a graph automorphism solver, as we have shown in this

chapter.

Thus, minterm-based techniques are not suitable for finding symmetries of multiple-

output functions.

3.6 Previous Work for Other Types of Symmetry

For completeness, we note that other algorithms for finding symmetry have been pro-

posed, for alternative definitions of symmetry. If we say that x0 and x1 can be swapped

without changing f , this is equivalent to the follow equality:

fx0 x̄1 = f x̄0x1

The authors of [EH78, CJ99, Mis03, KK08] consider other equalities such as

fx0x1 = f x̄0x1

generalized symmetries. These symmetries are “generalized” in the sense that they compare

arbitrary pairs of cofactors, and do not necessarily correspond to permutations or nega-

tions of variables. This definition is less general than ours in that each symmetry involves

only two variables.

The authors of [YM91, Mau06] explore symmetries which entail not only negation

and/or permutation of inputs and outputs, but also the addition of XORs at the inputs. The

concept is proposed as an additional source of flexibility in circuit implementation, but no

complete algorithm to find the symmetries is provided.

49

3.7 Conclusion

The search for functional symmetry forms a cornerstone of our work, since in order to use

symmetries, we must first find them. A number of prior works have proposed algorithms

to solve the symmetry finding problem, but do not perform well when repurposed for

multiple-output functions.

Rather than extend these specialized algorithms to work well for multiple-output

functions, we reduce the symmetry finding problem to graph automorphism, since generic

solvers which implement backtrack search with partition refinement are readily available.

The partition refinement procedure is generally application-specific and critical to the per-

formance of the solver because it helps prevent fruitless pursuit of symmetry. We incorpo-

rate the refinement rules presented in [CK06] to reduce the sizes of the graphs and reduce

the time required in backtrack search.

We presented our graph formulation, and showed that it results in small graphs

and exposes more information to the refinement rule Equation 3.2. Experimental results

confirm that our formulations are solved efficiently by the Saucy graph automorphism

package.

50

4. Symmetries in Circuits

In the previous chapter, we detected the symmetries of a function by reducing it to a graph

for analysis by graph automorphism software. The procedure operates on a function’s

implicants, which may be too numerous. In addition, the procedure does not provide any

insight into how to analyze and optimize a circuit. This chapter serves to transition into

the rest of this dissertation by addressing the following concerns:

• Can we quickly find a function’s symmetries without enumerating its implicants?

• How should we find the symmetries within a circuit?

• How will we use symmetries in circuits?

This chapter is organized as follows. We first review previous work for finding symme-

tries of circuits based on netlist automorphisms, and discuss conditions for when these

algorithms find all symmetries of the corresponding function—a netlist must be a tree of

associative and “prime” functions. When a netlist satisfies these conditions, the optimiza-

tion potential of symmetries is also plainly laid out. We discuss how these symmetries can

be categorized into three types, which will then be used in the next three chapters:

1. symmetries of individual components, in technology mapping

2. circuit symmetries, in placement

3. symmetries at primary inputs, in Boolean satisfiability

51

Finally, since real netlists typically do not come in the form of trees, we discuss heuristics

for extracting portions which implement “prime” functions.

4.1 Boolean Networks

A netlist is a tuple of components and connections (V, n, m, E), where V is the set of com-

ponents and E ⊆ V ×N× V ×N is the set of connections. Functions n : V → N and

m : V → N record the number of input and output ports of each component, i.e. compo-

nent v ∈ V has n(v) input ports. The input ports of each component v are numbered from

1 through n(v), and the output ports are numbered from 1 through m(v). Connections

are made between ports, and the tuple (u, i, v, j) is a valid connection from u to v only if

1 ≤ i ≤ m(u) and 1 ≤ j ≤ n(v). Furthermore, exactly one connection is made to any

input port, that is for any v ∈ V and j ∈ {1, . . . , n(v)} the set {(u, i) : (u, i, v, j) ∈ E} has a

cardinality of 1. A primary input is a component with no inputs (n(v) = 0) and a primary

output is a component with no outputs (m(v) = 0).

Some authors conflate the terms “graph” and “netlist”, which we use to describe

different things. We stress that a graph is similar to but not a netlist, no more than a set is

a sequence of elements—a netlist allows multiple connections between two components,

and the ports of a component are distinct. Clearly, we can discard information from a

netlist to obtain a graph G = (V, {(u, v) : (u, i, v, j) ∈ E). Each primary input would then

be called a source in G, and each primary output a sink in G.

A Boolean network is a netlist where every component v is associated with a

Boolean function f (v) : Bn(v) → Bm(v). Note the similarity to the notation used in the

previous chapter, which manipulates some f : Bn → Bm. We adopt the convention used

in previous literature and call each component in a Boolean network a “node”. A node

which is not a primary input nor output is called an internal node.

Thus, the motivation for distinguishing “graph” from “netlist” is clear—the in-

puts to each Boolean function f (v) are not generally interchangeable.

4.2 Structural Symmetries of Boolean Networks

Suppose that we would like to find the symmetries of a function f . The previous chapter

provides a method to formulate this function as a graph of implicants to be analyzed for

52

automorphisms. An alternative approach is to first express f as a graph N, where each

node implements a function which is symmetric with respect to its local set of inputs,

e.g. AND and INV functions. We color each node according to its function, e.g. all nodes

implementing AND are assigned color 0, and nodes implementing INV are assigned color

1. It is clear that any automorphism of N corresponds to a symmetry of f , i.e. Aut(N) ⊆
Sym(f). However, many symmetries of f may not exist as automorphisms of N, which

motivates an extension to find more symmetries.

The authors of [WKSV03] propose two extensions to this concept to create a graph

N′ which exposes more symmetries of f as automorphisms. If N is an AND/INV graph,

then Aut(N) ⊆ Aut(N′) ⊆ Sym(f). They specify the following rules for constructing N′:

1. Each node implements the AND function, INV function, or is a primary input.

2. Each INV node has an outdegree of 1, and a pair of INV nodes in succession is re-

placed by a direct connection.

3. Each primary input is represented by a pair of strongly connected nodes denoting

an input variable and its negation. No INV nodes are connected to primary inputs—

AND nodes connect to one of the nodes in an input pair as necessary.

4. For a given AND node, any AND node at its inputs is absorbed. For example, a

subgraph corresponding to AND(X ∪ {AND(Y)}) is replaced by AND(X ∪Y).

The combination of the above rules implies that N′ consists entirely of NOR functions,

since AND nodes are separated by an odd number of INV nodes—this construction is called

a “NOR graph” in [WKSV03]. By making each local function depend on a maximal num-

ber of inputs, f is guaranteed to be expressed uniquely when N′ is a tree. The proof of a

generalization of this assertion appears in [Ash59], and we will revisit this concept in the

next section.

Let us now relax our notation so that xi is denoted by i, and x̄i is denoted

by ī. Furthermore, the motion of negative literals is omitted from descriptions of per-

mutations when they follow their positive counterparts, i.e. we write (1, 2, 3) instead of

(1, 2, 3)(1̄, 2̄, 3̄).

53

AND

AND

AND

AND

1 2
3 4

(a) Boolean network N

_
1 1

_
2 2

_
3 3

_
4 4

(b) Graph N′

Figure 4.1: Boolean network and corresponding “NOR graph”

Example 4.1. Figure 4.1a shows a Boolean network which computes the two functions

x3x1x2 and x1x2x3x4. The graph in Figure 4.1b computes the same two functions, but

exposes the symmetry (1, 3) as an automorphism.

Example 4.2. Figure 4.2a shows a Boolean network which computes the MUX function

x̄1x2 + x1x3. This network has no automorphisms. By representing each primary input

as a pair of nodes, as in Figure 4.2b, we find the symmetry (1, 1̄)(2, 3). The symmetry

(2, 2̄)(3, 3̄)(y, ȳ) is neither present in N nor in N′.

Note that if N is not an AND/INV graph, Aut(N) ⊆ Aut(N′) does not necessarily

hold. Suppose that N consists of a single node implementing the function ab + ac + bc.

All symmetries of this function are automorphisms of N. If we use the distributive law

in constructing (first an AND/INV graph and then) N′, we may obtain a graph which is

isomorphic to ab + c(a + b). The symmetry (a, b) is present in N′, but (a, c) is not. In order

to expose every symmetry of f , we need to encode f in a canonical manner, such as the

formulation presented in the previous chapter. The next section combines these concepts to

define a canonical Boolean network for any function, so that all symmetries can be found.

To conclude this discussion, we repeat that the method proposed in [WKSV03]

finds many symmetries of a function, but not all. The original motivation behind this

54

AND AND

12 3

OR

NOT

(a) Boolean network N

_
1 1

_
2 2

_
3 3

(b) Graph N′

Figure 4.2: Boolean network and corresponding “NOR graph”

approach was to detect symmetries quickly. In contrast, for our purposes we will use N′

in later chapters to classify symmetries which are not useful in synthesis.

Remark. Certain graph automorphism software packages, e.g. Saucy [DLSM04], assume

that the graph to be analyzed is undirected. If the graph is directed and acyclic, then we

assign each node a color such that nodes which have different depths (or levels) are colored

differently. The depth (or level) of a node is the length of the longest path from a source

(or primary input) to that node. A strongly connected pair of nodes is considered a single

node for the purpose of computing levels. Having recolored the graph, we can proceed to

compute automorphisms assuming that edges are undirected.

4.3 Structural Symmetries of Maximal Decompositions

Definition. A function f defined over a set of variables X is said to possess a disjoint

decomposition if it can be written in the form f (X) = g(X0, h1(X1), h2(X2), . . . , hk(Xk)),

where the Xi form a partition of X. It is assumed that the decomposition is nontrivial, that

is k > 0 and |Xi| > 1 for i > 0. If f does not have a nontrivial decomposition, we say that

55

it is prime. We say that f is maximally decomposed if:

• f is one of the associative functions (AND, XOR) with inputs or output possibly

negated, or

• f is prime, otherwise

• f is expressed as g(X0, h1(X1), h2(X2), . . .) and the functions g and hi are themselves

maximally decomposed.

The first case has precedence over the third case—AND(a,b,c) can be decomposed into

AND(AND(a,b),c), but the maximal decomposition is defined to be AND(a,b,c). Thus the

term “maximal” implies both that decomposition is performed recursively, and that asso-

ciative functions in the decomposition have a maximal number of inputs.

Theorem 2 (Ashenhurst, 1956 [Ash59]). Suppose that f is maximally decomposed. This de-

composition is unique modulo negation and permutation of the inputs and output of each local

function.

Example 4.3. Suppose that we are given the circuit in Figure 4.3a. Each component

in the diagram represents a prime or associative function, respectively MUX or XOR.

Thus, this circuit represents a maximal decomposition of the corresponding function f .

A different maximal decomposition is given in Figure 4.3b, which is equivalent modulo

the permutation/negation (1, 7)(2, 6)(3, 5)(4, 8)(9, 9̄)—negating one of the inputs of the

rightmost XOR negates the “select” input of the root MUX, which then exchanges its “0”

and “1” inputs.

We have defined equivalence and symmetry for Boolean functions, and isomor-

phism and automorphism for graphs. Boolean networks are graph-like, but generally are

not graphs because the function of a component may not be symmetric. Therefore, let us

now define automorphism over Boolean networks. For comparison, let us first describe in

an abstract manner the automorphism computation of graph G = (V, E) as a computation

over groups:

1. Group G specifies that for any v ∈ V, all edges to v are interchangeable.

2. Group B specifies that nodes of the same degree are interchangeable.

56

28

17 18

19 21

25 26 27

29

30

11

12 13 14 15

16

20 22 23 24

32

XOR

MUX
1 0

XOR XOR

MUX
10

MUX
1 0

1 2 3 4 5 6 7 8 9 10

31

(a)

XOR

MUX
1 0

XOR XOR

MUX
10

MUX
1 0

7 6 5 8 3 2 1 4
_
9 10

(b)

Figure 4.3: Two “isomorphic” maximal decompositions. The second decomposition

swaps inputs {1,2,3,4} with {7,6,5,8} while negating 9.

57

3. Group C specifies that edges are preserved, i.e. Equation 3.3 holds.

For any groups G, B, the union G ∪ B is defined to be the smallest group that contains

both G and B. Then the automorphisms of G are described by the group (G ∪ B) ∩ C. The

automorphisms of a decomposition are found with a similar sequence of computations:

1. We introduce a variable for each connection point to an internal node in the decom-

position. More precisely, we introduce two points i and ī to Ω representing a variable

and its negation.

2. For each internal component b, we find its symmetries Sym(b) and a permutation πb

leading to its canonical representation.

3. We define an initial group consisting of the symmetries of each internal component:

G =
⋃
b

Sym(b)

4. Suppose internal components b and c have the same number of input variables. Let

πb,c denote the permutation which swaps the inputs of b with those of c and simulta-

neously swaps their outputs. Any automorphism of the decomposition only swaps

equivalent components. Therefore, let

B = 〈{πbπb,cπ−1
c : b and c have the same canonical representation}〉

5. We define a group which allows primary inputs and outputs to move freely:

I = 〈{all permutations and negations of primary inputs}

∪ {all permutations and negations of primary outputs}〉

We separate I from G and B for reasons which will be clear later.

6. We constrain each variable pair corresponding to the ends of a connection to move

in unison. One end of a connection may be negated iff the other is as well.

C = 〈{(i, u)(j, v) : i connects to j, and u connects to v}

∪ {(i, ī)(j, j̄) : i connects to j}〉

Using the groups we have just defined, we present two corollaries which follow directly

from Ashenhurst’s theorem:

58

Definition. Let X be the symmetric group over all variables representing internal nodes.

The subset of permutations in X which do not change the overall function of the Boolean

network are called circuit symmetries.

Corollary 1. The circuit symmetries of a maximal decomposition are described by G ∪ B. In other

words, unlike the example in Figure 1.4, the circuit symmetries of a maximal decomposition form a

group.

Definition. The group (G ∪ B ∪ I) ∩ C forms the automorphisms of a decomposition.

Corollary 2. Every symmetry of f corresponds to an automorphism of its maximal decomposition,

and |Sym(f)| = |(G ∪ B ∪ I) ∩ C|.

Example 4.4. Let us compute the automorphisms of the circuit in Figure 4.3a. The groups

G, B, I and C are defined below:

G = 〈{
(12, 12)(13, 13)(17, 17)
(12, 13)(11, 11)

}
symmetries of MUX component

...

(19, 20)
(19, 19)(25, 25)

}
symmetries of XOR component

...
}〉

B = 〈{
(11, 16)(12, 15)(13, 14)(17, 18)
(11, 30)(12, 29)(13, 28)(17, 31)

}
can exchange MUX components

(19, 21)(20, 22)(25, 26)
(19, 23)(20, 24)(25, 27)

}
can exchange XOR components

}〉
I = 〈{

(1, 2)
(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)

}
can exchange primary inputs

(1, 1̄)
}

can negate primary inputs

(32, 32)
}

can negate primary output

}〉
C = 〈{

(1, 11)(2, 12)
(1, 11)(3, 13)

...
(1, 11)(27, 30)
(1, 11)(31, 32)


can exchange connections

(1, 1)(11, 11)
}

connection variables are negated in unison

}〉

59

The final result (G ∪ B ∪ I) ∩ C has the following set of generators:

(G ∪ B ∪ I) ∩ C = 〈{(9, 9̄)(10, 10)(23, 23)(24, 24),
(9, 10)(23, 24),

(1, 1̄)(2, 3)(11, 11)(12, 13),

(2, 2̄)(3, 3̄)(4, 4̄)(12, 12) · · · (20, 20),

(1, 7)(2, 6)(3, 5)(4, 8)(9, 9̄)(11, 16) · · · (28, 29)(30, 30)}〉

By construction, each permutation moves an entire subtree of the decomposition. This

explains why |Sym(f)| = |(G ∪ B ∪ I) ∩ C|. We can then project these generators onto

permutations over the primary inputs and outputs only:

Sym(f) = 〈{(9, 9̄)(10, 10),
(9, 10),
(1, 1̄)(2, 3),
(2, 2̄)(3, 3̄)(4, 4̄),
(1, 7)(2, 6)(3, 5)(4, 8)(9, 9̄)}〉

Thus, this leads to a method to find all of the symmetries of a function, provided

that we are given (or can obtain) a maximal decomposition—we again turn to regular

graph automorphism to perform the necessary computation.

4.3.1 Reduction to Graph Automorphism

We have just shown how to find the automorphisms of a decomposition by finding the

symmetries for each component in the decomposition and combining them with a series

of group calculations. For each connection in the decomposition, we introduced a pair of

variables as input and output. Each variable is then represented by a pair of points, for the

variable and its negation.

Having placed ordinary graph automorphism into the same framework, it is

straightforward to reduce Boolean network automorphism into ordinary graph automor-

phism. For each component in a Boolean network, we create a “widget” using the for-

mulation presented in the previous chapter. Each edge in the Boolean network translates

directly into a pair of edges between widgets. Figure 4.4a shows a Boolean network, and

Figure 4.4b shows its conversion into an ordinary graph.

60

5

6 4

1

2

3

XOR

MUX
10

7

(a) Decomposition

_
1 1

_
2 2

_
3 3

_
5 5

n p

_
7 7

_
6 6

_
4 4

(b) Graph automorphism encoding

Figure 4.4: Graph automorphism encoding of a decomposed function

61

9 10

11

12 13

14

15 16

17 18
19 20 21 22

23 24 25 26 27 28

29 30 31

MUX
1 0

MUX
1 0

XOR XOR XOR

1 2 3 4 75 6 8

32 33 34

Figure 4.5: Maximal decomposition in the form of a polytree

4.3.2 Polytrees

Definition. A polytree is a directed acyclic graph which has at most one path between any

pair of nodes. We will say that a netlist is a polytree iff its underlying graph is a polytree.

A netlist which is not a polytree is said to have reconvergence, and a pair of nodes which

have multiple paths between them are said to have reconverging paths.

The discussion so far has centered on single-output functions, but most circuits

have multiple outputs. The same results hold for multiple-output functions, if we assume

a decomposition in the form of a polytree. Every multiple-output function has a poly-

tree decomposition; in the worst case we obtain a tree decomposition for each output and

merely share primary input nodes.

The group formulation for a polytree is similar to that for a tree. We explicitly add

a junction point to the Boolean network for each node with multiple fanouts. Each junction

point can be thought of as a component with one input and multiple outputs which each

compute the identity function. This simplifies the construction by keeping all connections

point-to-point. Groups G, B, and C are defined in the same way as before. Group I is

augmented with permutations which swap junctions of the same degree.

62

Example 4.5. For the polytree in Figure 4.5, we define I as follows:

I = 〈{
(1, 2)
(1, 2, 3, 4, 5, 6, 7, 8)

}
can exchange primary inputs

(1, 1̄)
}

can negate primary inputs

(32, 33)
(32, 34)

}
can exchange primary outputs

(32, 32)
}

can negate primary outputs

(19, 20)
(21, 22)

}
outputs of junctions are interchangeable

(17, 17)(19, 19)(20, 20)
(18, 18)(21, 21)(22, 22)

}
propagate negated values

(19, 21)(20, 22)(17, 18)
}

can exchange junctions
}〉

The automorphisms of the polytree are again (G ∪ B ∪ I) ∩ C, shown below. Cycles of

internal points are not shown.

(G ∪ B ∪ I) ∩ C = 〈{(2, 3)(4, 4̄) · · · ,

(2, 2̄)(3, 3̄) · · · (32, 32)(33, 33),

(8, 8̄) · · · (34, 34),
(1, 8)(2, 5)(3, 6)(4, 7) · · · (32, 34)}〉

4.4 Applications in CAD

This dissertation addresses the application of symmetries in CAD, and we have just de-

fined three groups of interest for a given maximal decomposition:

• The symmetries of all components, G.

• Circuit symmetries, G ∪ B.

• The automorphisms of the Boolean network, (G ∪ B ∪ I) ∩ C.

Our motivation for using symmetries is to increase the design space (for synthesis), and

to shrink the search space (for verification). For each application in this dissertation, one

of these three groups will be useful for this goal, while the other two will not be. Thus,

63

it is important to analyze each problem to use symmetries efficiently and correctly before

formulating any algorithms to solve them. We tackle the problems of technology mapping,

placement, and Boolean satisfiability. In this section, we continue with the assumption that

the Boolean network with which we are presented is a maximal decomposition.

4.4.1 Technology Mapping

For the technology mapping problem, we are presented with a subject graph of AND and

INV primitives and tasked to find a covering of this graph which minimizes some objective.

We use symmetries to derive a different subject graph which implements the same overall

function, because the best covering of this new graph may be better than the best covering

of the original graph.

Suppose there exists a covering/partitioning of our subject graph which is iso-

morphic to the maximal decomposition. Then we can permute the inputs of each block

according to G in order to create a new subject graph. Let us assume that blocks in the

decomposition which implement equivalent functions contain identical subgraphs. Then

exchanging the contents of two equivalent blocks will not modify the subject graph at all.

Therefore we do not use group B for technology mapping. Similarly, we do not use group

(G ∪ B ∪ I) ∩ C.

Example 4.6. Figure 4.6a shows a subject graph similar to that in Figure 5.5a, where

white circles represent AND primitives and black circles represent INV primitives. By

permuting the contents of the topmost block, we obtain a new graph (Figure 4.6b) which

permits a different covering. Exchanging the contents of the two blocks on the lower

right (as per group B) would not change the subject graph in a meaningful way.

4.4.2 Placement

In the placement problem, we would like to restructure a netlist in order to minimize some

objective which is determined by the physical locations of the components. Therefore,

exchanging connections between identical components under group B will affect our ob-

jective since identical components will have different locations under any legal placement.

Furthermore, the ports on each component have distinct locations, and exchanging con-

nections under group G may also affect our objective. Typically, the locations of primary

64

(a) Subject graph which forms a

maximal decomposition

(b) Same subject graph, with inputs

to top block permuted

Figure 4.6: Subject graphs. White circles are AND primitives, small black circles are INV

primitives.

65

inputs and outputs are fixed and therefore group (G ∪ B ∪ I) ∩ C does not apply to the

placement problem.

In summary, we optimize over group G ∪ B for the placement problem.

4.4.3 Boolean Satisfiability

The Boolean satisfiability problem searches for an assignment to x ∈ Bn such that f (x)

is true. Suppose we know some symmetry π ∈ Sym(f), i.e. f = f π. Then f (x) is false

iff f (xπ) is false—there is no need to explicitly check the value of both. Thus, given a

decomposition for f , we find the automorphisms (G ∪ B ∪ I) ∩ C which equate to the

symmetries of f . We then add a symmetry breaking predicate φ which evaluates to true

for a “transversal” of Sym(f). More precisely, Sym(f) creates equivalence classes of Bn,

and φ is used to select one element (or more) from each. The formula f = (x1 + x2)

exhibits the symmetry (x1, x2) which implies that f (0, 1) ≡ f (1, 0). We can exclude the

case x1 = 1, x2 = 0 by forming the constraint φ = (x̄1 + x2), and directing a SAT solver to

solve f φ.

Symmetries of a subformula of f cannot be used for symmetry breaking predi-

cates unless if they are also symmetries of f . Suppose f = gh where g = (x1 + x2) and

h = (x1)(x̄2). Subformula g exhibits the symmetry (x1, x2) which can be broken with the

predicate φ from above. Subformula h does not exhibit the same symmetry. The unsat-

isfiability of ghφ does not imply that gh is also unsatisfiable—in fact, ghφ is unsatisfiable

while gh can be satisfied with x1 = 1, x2 = 0.

In conclusion, the groups G and B represent symmetries of subformulas and do

not themselves lead to valid symmetry breaking predicates for SAT problems. We must

use the automorphisms (G ∪ B ∪ I) ∩ C.

4.5 Decomposition Heuristic

So far in this chapter, we have analyzed the symmetries of maximally decomposed func-

tions and discussed the use of these symmetries in three application contexts. In the case

of SAT, it is sufficient to find the symmetries of a formula with no regard to the formula’s

internal structure, since symmetries of subformulas are not used. For technology mapping

and placement, the structure of the decomposition will dictate the symmetries available

66

to us. When the decomposition forms a (poly)tree, we find and use the groups G and

B for technology mapping and placement, knowing that these groups fully describe the

optimization potential over permutations and negations of connections within the decom-

position.

However, subject graphs and standard cell netlists are not presented in the form

of a polytree decomposition.

First, subject graphs and standard cell netlists are composed of AND/INV prim-

itives or standard cells, respectively, rather than prime functions. It is not obvious how

to recover a maximal decomposition when the prime functions are further decomposed

into smaller units. Figure 4.6b shows the same function decomposed three different ways:

AND/INV primitives (white and black circles), standard cells (blue or shaded “blobs”),

and prime functions (dotted rectangles). The graph of AND/INV primitives represents the

function at a very low level—it would be easier to derive the unique (modulo permutation)

decomposition and the AND/INV graph which follows, than to work backwards from an

unstructured AND/INV graph.

Second, a subject graph or netlist may not be decomposed maximally. One rea-

son is that signals in the maximal decomposition may not be present in the netlist. For

example, the OAI22 cell in Figure 4.6b spans two decomposition blocks, and connections

within a standard cell may not be modified. Another reason is possible sharing between

outputs. Suppose we start with a high-level description f of a circuit which specifies that

the two outputs implement x1x2 and x1x2x3, respectively. The maximal decomposition of

f simply consists of two nodes, AND(x1, x2) and AND(x1, x2, x3). A direct translation to an

AND/INV graph yields:

y1 = AND(x1, x2)

t = AND(x1, x2)

y2 = AND(t, x3)

The variables {x1, x2, x3} can be arbitrarily permuted among the last two AND nodes. In

contrast, the smallest AND/INV graph consists of two AND nodes:

y1 = AND(x1, x2)

y2 = AND(y1, x3)

67

The first AND is shared between the two outputs, meaning that connections to x1 and x3

cannot be exchanged without changing the first output. This limits the amount of flexibil-

ity at our disposal.

Thus, a subject graph or standard cell netlist may not be a maximal decomposi-

tion, and if it were, it would be difficult to find the boundaries of each block in the decom-

position. Instead, we use a heuristic guided by the principles of maximal decomposition

to select regions of a subject graph (or standard cell netlist).

To simplify the discussion, let us assume the task of finding symmetries for use

in technology mapping. As before, we would like to isolate regions of the subject graph

to perform modifications over. Each region defines a local function over the inputs to the

region, and we find the symmetries with respect to those local inputs, which we denoted

earlier by G. A large number of subgraphs can be selected from a graph, and it would be

infeasible to explicitly search for symmetries on each subgraph. For some subgraphs, we

may not find any symmetries. For other subgraphs, we may find so-called “higher-order”

symmetries (symmetries in G ∪ B) which signify wasted effort. This motivates a heuristic

to find regions which represent prime functions. Regions representing ANDs of maximal

size are handled specially because they can be found in linear time.

Definition. In a directed graph, a node d dominates node u if all paths from u to the sinks

passes through d. Node d is the immediate dominator of u if no other node dominates all

paths from u to d.

Theorem 3. Let f (x) be the function described by an AND/INV graph G. An output f j is prime

only if there exists an input xi such that there are at least two distinct paths from source xi to sink

yj, where the two paths share no common prefix or suffix besides the endpoints.

Proof. For f j to be prime, G must contain some reconvergence. Otherwise f j is represented

by a tree of associative functions (AND nodes) with inputs or outputs possibly negated

(INV nodes) and is therefore not prime.

More generally, suppose there exists a partition of the variables X into sets X0, X1,

X2, . . . such that (a) there exists only one path from each xi ∈ X0 to yj and (b) all xi ∈ Xk for

k > 0 are dominated by tk where tk 6= yj. Then f j can be decomposed into some function

g(X0, t1, t2, . . .) and is therefore not prime.

By the above theorem, any subgraph we select should contain reconverging paths

68

t

e

c

d

x1

x5

u

x6

a

x2 x3

b

x4

(a) Graph

t

e

c

d

x1

x5

u

x6

a

x2 x3

b

x4

(b) Subgraph with inputs a, b, x3

Figure 4.7: A graph which contains a subgraph (rooted at t) implementing a prime

function

from an input which culminate at an output node. This places a restriction on the nodes

which can act as outputs of subgraphs, as well as a minimum limit on the size of each

subgraph—a subgraph must be large enough to have a source of reconvergence as an in-

put.

Example 4.7. Let us analyze the AND/INV graph in Figure 4.7a. Any subgraph with

u as its output is not prime because all nodes/variables on the left side are dominated

by t, and there is only one path from x6 to u. The subgraph with t as its output and

{a, x3, x4, x5} as inputs may be prime because t is the immediate dominator of a.

The issue at this stage is the maximum size of a subgraph. For efficiency, we re-

strict subgraph inputs to multifanout nodes dominated by output nodes, and “side inputs”

which must be included to define a proper subgraph. This also serves as a heuristic to

maximize the amount of symmetry found.

Example 4.8. Let us assume a subgraph rooted at t in Figure 4.7b. Nodes x1 and x2 are

dominated by a, therefore we select node a to serve as an input, which has two paths to

t: a → d → t and a → c → e → t. Node b is an input to c and d and must be included

in the subgraph, either as an internal node or as an input node. Similarly, node x5 is a

69

side input to e and must be included in the subgraph. We thus extract the subgraph with

output t and inputs a, b, x5.

We incorporate these heuristics into Algorithm 6. For a node u, out(u) denotes

{v : (u, v) ∈ E}; similarly in(v) = {u : (u, v) ∈ E}. The immediate dominator of node

u is denoted by dom(u). It is assumed that nodes are topologically sorted, i.e. u < v

for all v ∈ out(u). Furthermore, AND nodes are expanded maximally up to multifanout

nodes—a tree of ANDs is replaced by a single AND of all the tree’s inputs.

The algorithm proceeds in three passes to find a subgraph with r as a sink. The

first (backwards) pass finds a set of nodes I such that each u ∈ I has one path of length l

to r, has at least one other path to r, and is not dominated by some tk where tk < r. The

second (forward) pass marks the paths from nodes in I to r. The third pass defines inputs

X and outputs Y which form a proper subgraph.

4.6 Conclusion

In this chapter we reviewed the concept of “structural symmetries” as presented

in [WKSV03]. The idea is to find the symmetries of a function by obtaining the auto-

morphisms of a netlist. It follows from Ashenhurst’s theory of decomposition [Ash59] that

these two sets are equal if the netlist forms a maximal decomposition composed of asso-

ciative functions and prime functions. The equality of these two sets allows us to reason

precisely about the potential use of symmetries in optimizing such netlists, and we showed

how three groups of symmetries are used in three different applications.

Practical circuits generally do not form maximal decompositions, and therefore

we have proposed a heuristic to extract subcircuits which implement prime-like functions.

This heuristic uses the fact that AND/INV graphs of prime functions must have reconver-

gence.

The next three chapters discuss efficient algorithms to use our newfound symme-

tries in technology mapping, placement, and Boolean satisfiability.

70

Algorithm 6 EXTRACT-PRIME(r, l)
1: for each u ∈ V do
2: δ[u]← ∞
3: end for
4: queue q is initialized to r
5: δ[r]← 0
6: I ← ∅
7: while q is not empty do
8: v← remove front element of q
9: if δ[v] < l then

10: for each u ∈ in(v) do
11: if δ[u] = ∞ then
12: δ[u]← δ[v] + 1
13: append u to back of q
14: else if dom(u) ≥ r and δ[u] = l then
15: I ← I ∪ {u}
16: end if
17: end for
18: end if
19: end while
20:
21: q← I
22: while q is not empty do
23: u← remove front element of q
24: if u 6∈ S then
25: S← S ∪ {v}
26: for each v ∈ out(u) such that δ[v] 6= ∞ do
27: append v to back of q
28: end for
29: end if
30: end while
31:
32: X ← ∅
33: Y ← ∅
34: for each v ∈ S do
35: if {u : u ∈ in(v) ∧ u ∈ S} = ∅ then
36: X ← X ∪ {v}
37: else
38: X ← X ∪ {u : u ∈ in(v) ∧ u 6∈ S}
39: end if
40: if ∃w ∈ out(v) where w 6∈ S then
41: Y ← Y ∪ {v}
42: end if
43: end for

71

5. Technology Mapping

In this chapter, we use circuit symmetries of subject graphs in order to improve the results

of technology mapping. Technology independent logic synthesis algorithms typically aim

to minimize the size of a Boolean network in terms of literals or of an AND/INV graph in

terms of AND nodes: this is used as a heuristic to minimize the size of the final implemen-

tation whether as in the number of FPGA look-up tables or area consumed by standard

cells.

The size of an AND/INV graph is not a perfect indicator of the size of the final

implementation, and two AND/INV graphs of equal size may lead to implementations of

different sizes. We propose two algorithms which permute nodes in a subject graph to

aid in technology mapping. This chapter is organized as follows. First, we review the

basic technology mapping procedure which uses cuts, matching, and covering. Then we

review previous work in adding choices to subject graphs, and our algorithms to exploit

symmetry. Finally, we report the results of our algorithms after technology mapping, and

conclude the chapter.

5.1 Introduction

Technology mapping is invoked after the general logic synthesis phase. Given a subject

graph of primitives (generally 2-input AND gates and inverters), a technology mapper

obtains a logically equivalent network consisting of components from a technology library.

72

Usually these are standard cells, but may be lookup tables or combinational logic blocks

in the case of FPGAs.

Technology mapping consists of two phases:

1. enumerating subgraphs and matching them against library cells, followed by

2. performing a covering of the graph with the matches found.

The matching step defines a solution space for the following covering step. A covering

is valid if each primary output is produced by a component, and for each component, its

inputs are in turn produced by other components or by primary inputs.

The first general mapping procedure (DAGON) was described in [Keu87]. Previ-

ously, each new technology library would require a new mapping procedure. The DAGON

procedure partitions a circuit into leaf-dags,1 and for each leaf-dag:

1. enumerates matches using structural patterns of AND and INV primitives, then

2. finds a minimum-cost matching using a dynamic programming algorithm.

The solutions for the leaf-dags are then stitched together to form the solution for the en-

tire subject graph. While the general approach is sound, the DAGON procedure is limited

by the fact that it only considers leaf-dags and that it limits itself to the structure dictated

by the provided subject graph. The first limitation has two effects: first, it removes the

possibility of matching against components which have multiple outputs, and second, it

disallows the covering of a subject graph node by multiple components. Figure 5.1 illus-

trates the case where covering subject graph node x twice leads to a smaller final circuit:

in one particular technology, the circuit in Figure 5.1a has an area of 6.5, while the one in

Figure 5.1b has an area of 5.5.

The second limitation of the DAGON procedure, that it is limited to the structure

dictated by the subject graph, is illustrated in Figure 5.2. The matching step of the mapping

procedure implies that every signal in the final result must have existed in the subject

graph. The upper circuit in Figure 5.2 may be more desirable, but the gate AND(c,b) cannot

result from the subject graph because there is no subgraph implementing the function cb.

Thus, it is important to have a “good” subject graph beforehand in order to produce a good

final circuit.
1A tree in which leaves are permitted to appear multiple times.

73

NOR2
(1.5)

AND2
(2)

NAND2
(1.5)

NOR2
(1.5)

x

a b

f

c

g

(a) Without duplication

XOR2
(3.5)

NAND3
(2)

x

a b

f

c

g

(b) With duplication

Figure 5.1: Duplication of a subject graph node leads to a smaller circuit (areas in

parentheses from Nangate library)

c

a b

f

f
c

ab

f
a

cb

Figure 5.2: Some circuits cannot be obtained without modifying the subject graph.

74

The objective of logic synthesis then, is to obtain a good subject graph for the tech-

nology mapper. Logic synthesis usually attempts to obtain a small (in terms of the number

of AND primitives) and/or shallow subject graph to minimize the final area and/or delay

of the circuit. However, due to the following reasons, the size of the subject graph does not

necessarily correlate to the size of the final circuit:

• Inverters in the subject graph are assigned a cost of 0, but usually have nonzero cost

in a technology library.

• Nodes with multiple fanouts may need to be covered multiple times, i.e. duplicated,

to obtain a smaller circuit.

• Different technology libraries are constructed using different design rules, and favor

certain gates more than others.

To illustrate the relative strengths of different technology libraries, Table 5.1

shows the cell areas of three freely available cell libraries, normalized to the area of an

inverter. We focus on cell area in our discussion because it is easier to quantify than other

metric such as delay. A few trends are apparent:

• The GSC library has different costs for cells from AND and OR families (NAND4

versus NOR4 and AOI21 versus OAI21)

• The GSC library favors MUX and XOR gates.

• The Nangate library favors AOI and OAI gates.

Example 5.1. The function f (a, b, c) can be expressed as a(bc̄ + b̄c) + ābc, or as (ab +

c(a + b))(abc). Both expressions consist of 7 AND/INV nodes, shown in Figure 5.3.

However, the circuit in Figure 5.3a is preferable if using the GSC library, and the cir-

cuit in Figure 5.3b is preferable if using the Nangate library. The logic synthesis step

which precedes technology mapping has no way to determine which respective subject

graph should be generated.

75

Cell Function
Normalized Size

GSCLib [Cad05] Nangate [Nan08] vsclib [Pet08]

INV ā 1 1 1

NAND2 ab 1.25 1.5 1.3

NAND3 abc 1.75 2 1.7

NAND4 abcd 2 2.5 2.3

NOR2 a + b 1.25 1.5 1.3

NOR3 a + b + c 3 2 1.7

NOR4 a + b + c + d 4.75 2.5 2.3

AND2 ab 1.5 2 1.7

OR2 a + b 1.5 2 1.7

AOI21 a1a2 + b 1.5 2 1.7

AOI22 a1a2 + b1b2 2 2.5 2.3

AOI211 a1a2 + b + c — 2.5 2

OAI21 (a1 + a2)b 2 2 1.7

OAI22 (a1 + a2)(b1 + b2) 3 2.5 2.3

OAI211 (a1 + a2)bc — 2.5 2

MUX2 s̄a + sb 3 4 2.7

XOR2 āb + ab̄ 2.75 3.5 2.7

XNOR2 āb̄ + ab — 5 2.7

Table 5.1: Normalized sizes for standard cells from three libraries. When multiple sizes

(e.g. NAND2X1 or NAND2X2) exist, the smallest is shown. A dash (“—”)

denotes that no such cell exists in the library.

76

b c

a

b c

f

MUX2
(3)
(4)

AND2
(1.5)

(2)

XOR2
(2.75)
(3.5)

GSC:
Nangate:

7.25
9.5

(a)

a b c

a b

b

c a

f

AND2
(1.5)

(2)

NAND2
(1.25)
(1.5)

NAND2
(1.25)
(1.5)

NAND3
(1.75)

(2)

OAI21
(2)
(2)

GSC:
Nangate:

7.75
9

(b)

Figure 5.3: Two implementations of the same function. Cell areas with GSC and Nangate

libraries shown in parentheses.

5.2 Previous Improvements in Technology Mapping

The problem we face in technology mapping is that the mapping procedure is too highly

dependent on the structure of the subject graph. A number of previous works have sought

to address some of the deficiencies in the DAGON procedure. We have grouped them

according to the problem they address.

5.2.1 Cuts, Boolean Matching, and DAG covering

The first problem in DAGON we cited was the reliance on leaf-dags to perform matching

and covering. An alternative procedure based on cuts and Boolean matching removes

these restrictions, and solves the mapping problem on a more abstract level.

A k-feasible cut[k@k-feasible cut] [CD94, CWD99] for a node u in a subject graph

is a set of k or fewer nodes X such that every path from the primary inputs to u passes

through a node in X. Sets of cuts are defined recursively:

• For a primary input u, K-CUTS(u) = {{u}}.

77

• For a node u = AND(a, b),

K-CUTS(u) = {{u}} ∪ {c1 ∪ c2 : c1 ∈ K-CUTS(a), c2 ∈ K-CUTS(b), |c1 ∪ c2| ≤ k}

• For a node u = INV(a), K-CUTS(u) = K-CUTS(a).

Each k-feasible cut defines a subgraph with sources X and sink u, and a function u = f (X).

We then identify a component from our target technology which implements f ,

if any. For FPGAs which use lookup tables (LUTs), f (X) can be implemented by a LUT iff

|X| is lesser than or equal to the number of inputs to a LUT. For standard cell libraries, the

task of Boolean matching [MM90] identifies a component g and permutation/negation π

such that gπ = f .

Finally, we select a valid covering of the subject graph. This is called a “binate”

covering problem [Rud89, VKBSV97] because of the presence of constraints for a feasible

covering—a component may be used iff the values at its inputs are provided by other

components.

5.2.2 Choices and Supergates

The second problem in DAGON, that every component in the final implementation must

have a corresponding node u in the subject graph, is ameliorated through the use of choice

nodes [LWGH97]. Choice nodes are used to encode multiple logically equivalent subject

graphs into a single structure. The work in [LWGH97] enumerates choices based on alge-

braic rules such as distributivity: a(b + c) = ab + ac. However, the concept of choices is

not limited to algebraic rewriting. An ordinary AND/INV graph can be obtained from an

enriched graph by replacing every edge from a choice node by an edge from either of the

choice node’s inputs.

For example, we can combine the two subject graphs in Figure 5.3 with a choice

node that says “choose Figure 5.3a or Figure 5.3b”. We also add a choice node indicating

that (bc)a and b(ca) are equivalent; the result shown in Figure 5.4 represents three different

AND/INV graphs. The technology mapper is free to select any of the choices that improves

its objective. The difference between embedding choices into the subject graph and choos-

ing the best of n subject graphs is that the effect of choices is multiplicative, so one would

have to use many choice-less subject graphs. (The variant proposed in [LWGH97] allows

78

b c

a

b c

f

a b

c

a bb c a

X

X

a

X choice

AND

INV

Figure 5.4: Subject graph with choices formed by combining Figure 5.3a and Figure 5.3b

and adding a choice for associativity

cycles to occur in the enriched subject graph, which amplifies the effect of choices even fur-

ther.) Another difference is a matter of efficiency: some choices may be eliminated early

on in the technology mapper.

However, the addition of choices carries with it a cost as the technology mapper

must explore a larger search space. Furthermore, since many technology mapping algo-

rithms are based on heuristics, increasing the design space may worsen the final quality.2

Then, we need a more global mechanism to filter out poor choices in the subject graph,

rather than rely on the somewhat more local mechanism in the technology mapper itself.

Another limitation of the procedure described in [LWGH97] is that only algebraic

manipulations are performed: the Boolean axioms are not used. On the other hand, by

restricting themselves to algebraic manipulations, the authors may claim to exhaustively

enumerate algebraic choices.

The work published in [CMB+05b] overcomes the structural dependency by sim-

ply merging several logically equivalent subject graphs. Given a subject graph, they gen-

erate a new graph using several local Boolean operations. Then for a set of subject graphs,

they identify internal points which are equivalent; each set of equivalences is now a set of

choices in the final enriched graph.

2Many previous works place an emphasis on reducing the number of cuts enumerated [CWD99, MCB07]

79

Another method proposed in [CMB+05b] combines multiple technology compo-

nents into a supergate. A supergate is a macro component consisting of several individual

technology components; the benefit of using a supergate is that the internal point(s) of a

supergate need not exist in the subject graph. For example, we can create two different

supergates: one supergate based on the covering in Figure 5.3a and one supergate based

on Figure 5.3b. In this case, we do not need choice nodes to encode the respective sub-

ject graphs, because the complexity is shifted to the Boolean matcher. For any subject

graph representing f = abc̄ + ab̄c + ābc, we can use the cut X = {a, b, c} and query the

Boolean matcher for a component (here a supergate) g and permutation/negation π such

that gπ = f . The disadvantage of supergates is that we need to explicitly enumerate and

add them to our technology library.

A complete technology mapping procedure which incorporates cut enumeration,

Boolean matching, choices, and supergates is described in [Cha07].

5.3 Creating Choices Through Symmetry

Rather than create choices using unpredictable and ad-hoc logic synthesis steps, we pro-

pose to use symmetries to make changes to a subject graph. Since symmetries by definition

only permute and/or negate connections, they do not increase the number of AND nodes

in the subject graph.

Example 5.2. The function f = ab + c(a + b) is symmetric in all of its variables. Therefore

another valid representation is f = cb + a(c + b). This function occurs in the subject

graphs in Figure 5.5, where a = d + e. As the figure shows, the two representations lead

to different minimal implementations.

As a general mechanism, we can use symmetries to generate choices in a subject

graph. Given any subgraph of a subject graph, we find the functional symmetries and add

the respective images of the subgraph as choices. For example, given the subject graph

in Figure 5.5a, we permute the connections from X = {a, b, c}, obtaining its image in

Figure 5.5b. We then add this image as a choice.

Following the theory laid out in the previous chapter, we use the symmetries in

group G, which are the symmetries of AND/XOR trees and of prime functions. For various

reasons, these two types of functions are processed differently:

80

y

b

ba

d e

c

OAI21
(2)

NAND2
(1.5)

NAND2
(1.5)

OR2
(2)

_

(a)

NAND2
(1.5)

NAND2
(1.5)

OAI22
(2.5)

_

y

b

b

a

d e
c

(b)

Figure 5.5: Permuting subgraph nodes according to symmetry creates an additional

mapping option.

1. AND and XOR trees are easier to identify than prime functions.

2. Not only may the inputs of AND/XOR trees be arbitrarily permuted, these trees can

also be restructured in any way.

3. For efficiency, we need to limit the number of AND/XOR restructurings generated,

since any n-input AND function can be represented by O(2n) different trees of 2-

input ANDs.

4. Many of the symmetries of a prime function f are also symmetries of f ’s constituent

AND trees in the subject graph. Example 5.4 will illustrate this point.

5.3.1 AND/XORs

The associative and commutative properties of the AND (and XOR) functions are typically

used to restructure trees. For example, we can minimize circuit depth by balancing paths

in a Huffman-like manner: beginning with a set of variables xi and arrival times for each

xi, we can construct a minimum depth AND tree by iteratively removing two variables

with lowest arrival time and replacing them with the AND of the two [Cor03].

81

With this procedure, we can restructure every AND tree in a circuit in topological

order, and minimize the total depth of the circuit. However, unless our cell library consists

purely of 2-input AND gates and inverters, this does not necessarily minimize the delay

of the mapped circuit, simply because we don’t use the actual arrival times during the

balancing procedure. In addition, this does not help the case where we want to minimize

the total cell area consumed by the final implementation.

We propose an alternative procedure which examines the overall structure of the

subject graph in order to perform modifications. This procedure is based on the concept of

k-feasible cuts introduced previously. As we described, a k-feasible cut X for a node cor-

responds to a possible implementation of the node using some f (X) from the technology

library. For two nodes x0 and xi with respective cuts X and X′, the AND of x0 and xi has

a cut X ∪ X′. If X and X′ overlap, it is possible that X ∪ X′ is k-feasible. Thus, our heuris-

tic procedure tries to reorder the leaves of a tree of ANDs in order to increase overlaps

between cuts.

Recall that each node has a (potentially large) set of k-feasible cuts. Rather than

explicitly compute the overlaps between the cuts for each pair of nodes, we maintain a

count of the number of occurrences of each node in each node’s set of cuts. Then for each

pair of nodes, we compare their counts—if there is a high overlap in the counts, it is highly

likely that one cut from each of their cutsets will overlap. The following example illustrates

this principle.

Example 5.3. Figure 5.6a shows an AND-tree which implements x1(x2(x3x4)). At the

next-to-lowest level, the internal node y has no small cut in terms of nodes {a, b, . . . , h}—
the 4-feasible cuts are {{x4, a, b, d}, {x4, a, e, f }, {x3, f , g, h}}. For each input xi to the

AND-tree, we calculate a vector representing the number of occurrences of other nodes

in its k-input cuts. For node x1, c1 = (1 1 1 0 0 0 0 0)T, and for x3, c3 = (2 1 0 1 1 1 0 0)T.

We compute a weight w1,3 = c1 · c3 = 3. Weights for other pairs are defined similarly,

while wi,i is left undefined.

W =


· 0 3 0

0 · 1 3

3 1 · 1

0 3 1 ·



82

Algorithm 7 CUT-BALANCE(X)
1: if |X| ≤ 2 then
2: return AND(X)
3: else
4: for each xi ∈ X do
5: C ← k-input cuts for xi
6: for each u ∈ X do
7: ci

u ← number of occurrences of node u in C
8: end for
9: end for

10: for each xi, xj ∈ X do
11: wi,j ← ∑u ci

ucj
u

12: end for
13: select a partition X1, X2 which minimizes ∑

xi∈X1

∑
xj∈X2

wi,j

14: return AND(CUT-BALANCE(X1), CUT-BALANCE(X2))
15: end if

y

x1: {{a,b,c}}

x2: {{f,g,h}}

x3: {{a,b,d}, {a,e,f}} x4: {{f,g,h}}

(a) Before

x1: {{a,b,c}}

x2: {{f,g,h}}

x3: {{a,b,d}, {a,e,f}}

x4: {{f,g,h}}

z
{{f,g,h}}

{{a,b,c,d}}

(b) After

Figure 5.6: Rewriting AND-tree to merge cuts

Then we partition the inputs {x1, x2, x3, x4} into sets X1 and X2 to minimize

∑
xi∈X1

∑
xj∈X2

wi,j

For this example, we choose X1 = {x1, x3} and X2 = {x2, x4}, which results in an objec-

tive value of w3,2 + w3,4 = 2. We recursively partition these two sets, and finally obtain

the tree AND(AND(x1, x3), AND(x2, x4)) as shown in Figure 5.6b. As we can see, node z

has a small cut {a, b, c, d} because its children x1 and x3 have overlapping cuts.

Note that the parameter k for the k-feasible cuts (line 5 of Algorithm 7) is not

83

necessarily the same one used for the actual technology mapping step, and that certain

values of k may lead to better results.

5.3.2 Prime Functions

The other type of function in a maximal decomposition is a prime function—a function

which does not have a disjoint decomposition. In the previous chapter, we described a

heuristic algorithm EXTRACT-PRIME which targets regions containing reconvergence be-

cause they are likely to represent prime functions.

For each region, we compute the symmetry group G for its corresponding func-

tion f . We may then add the image of this region for any permutation π ∈ G as a choice

representing an alternative implementation of f , since f π = f . For two reasons, we do not

proceed exactly in this manner:

1. Since EXTRACT-PRIME does not exactly partition a circuit into prime functions, we

need to run EXTRACT-PRIME with various values of the depth parameter l.

2. Since the subject graph is composed of AND and INV primitives, many of the symme-

tries in G can also be thought of as symmetries of associative functions, and examined

using the algorithm from section 4.2. The next example illustrates this concept.

We incorporate these two observations into the algorithm ADD-CHOICES.

Algorithm 8 ADD-CHOICES

1: for each u ∈ V do
2: for each l ∈ {2, 3, 4, . . .} do
3: X, Y ← EXTRACT-PRIME(u, l)
4: N← the subgraph of G bordered by
5: N′ ← the NOR-graph of N as described in section 4.2
6: f ← the Boolean function from X to Y
7: G ← Sym(f)
8: H ← Aut(N′)
9: for each π ∈ (G : H) do

10: add Nπ to G as a choice
11: end for
12: end for
13: end for

84

x2x1 x3

(123) (213) (312)

(132) (231) (321)

x1x2 x3 x1x3 x2

x3x1 x2 x3x2 x1 x2x3 x1

Figure 5.7: Image of an AND/INV graph for each permutation in S3

Example 5.4. The function f = x2x3 + x1(x2 + x3) is symmetric in all its variables (G =

S3), and its AND/INV graph possesses a “structural symmetry” H = {(), (2, 3)}. Note

that these are the same groups shown in Example 2.6. Figure 5.7 shows the image of the

AND/INV (sub)graph for each permutation in S3. Clearly, each graph in the top row is

equivalent to the one immediately below it; the two corresponding permutations are a

right coset of H in G. Meanwhile, the graphs in the top row are not isomorphic to one

another, and the corresponding permutations form a right transversal G : H.

5.4 Experimental Results

We tested our improvements to synthesis on instances from the IWLS 2005 suite of bench-

marks [IWL05]. We first converted each design to a combinational AND/INV graph by

replacing each register with an input/output pair and each standard cell with its equiv-

alent AND/INV nodes. We implemented our algorithms in ABC version 70930 [Ber], a

state-of-the-art logic synthesis tool which includes facilities for technology mapping.

85

5.4.1 AND Trees

The first set of experiments tests the cut-based restructuring of AND functions described in

Algorithm 7. We implemented the restructuring as an ABC command fbalance, which

accepts a parameter k indicating the size of the cuts to be computed, and modifies every

AND tree in a Boolean network using CUT-BALANCE. For comparison, the ABC command

balance restructures AND functions to minimize circuit depth.

We first show the effects of restructuring on FPGA mapping. As a baseline, we

apply the following sequence of ABC commands from [MBC08] on each benchmark:

resyn; resyn2 # rewrite netlist using algebraic rules
if -a -K 4 # map netlist onto K-input LUTs
choice # unmap netlist, and add choices with algebraic rules
if -a -K 4 # remap netlist onto K-input LUTs
choice; if -a -K 4 # repeat 3 more times
choice; if -a -K 4
choice; if -a -K 4

The script performs technology-independent optimizations on a netlist, and repeatedly

maps the netlist onto a minimal number of 4-input LUTs. Between each pair of map-

ping iterations, we enrich the netlist using the built-in choice command. The choice

command adds choices to a netlist based on the approach described in [CMB+05b]. The

commands resyn, resyn2 and choice all use the balance command through the alias

b. To test the effect of CUT-BALANCE, we replace every use of balance with fbalance:

alias b ’fbalance -k 5’
resyn; resyn2
if -a -K 4
choice; if -a -K 4
choice; if -a -K 4
choice; if -a -K 4
choice; if -a -K 4

The results are presented in Table 5.2, comparing area (in LUTs) at each step of

the two parallel scripts. Each pair of columns indicates the LUT count after a mapping

step in the original script, and the relative improvement after the same step in the revised

script. The following annotated script describes the results for wb_conmax.

load wb_conmax.aig
resyn; resyn2
if -a -K 4 # circuit now consists of 16357 LUTs

86

Be
nc

hm
ar

k
LU

Ts
%

LU
Ts

%
LU

Ts
%

LU
Ts

%
LU

Ts
%

pc
i_

co
nf

_c
yc

_a
dd

r_
de

c
43

0.
00

43
0.

00
43

0.
00

43
-2

.3
3

43
-2

.3
3

st
ep

pe
rm

ot
or

dr
iv

e
63

19
.0

5
60

20
.0

0
48

0.
00

48
0.

00
49

0.
00

ss
_p

cm
12

3
-0

.8
1

12
3

-0
.8

1
12

3
-0

.8
1

12
3

0.
00

12
3

0.
00

us
b_

ph
y

18
3

1.
64

18
3

1.
64

18
1

1.
66

18
2

2.
20

18
0

1.
67

sa
sc

20
5

0.
49

19
7

-3
.5

5
19

7
-3

.5
5

19
7

-3
.0

5
19

7
-2

.5
4

si
m

pl
e_

sp
i

28
3

-1
.7

7
28

1
-1

.4
2

27
8

-2
.1

6
27

9
-1

.7
9

27
9

-2
.1

5
pc

i_
sp

oc
i_

ct
rl

36
4

4.
95

33
8

3.
85

32
8

4.
57

31
6

2.
85

30
6

0.
33

i2
c

36
4

1.
65

35
4

2.
54

34
6

2.
02

34
4

2.
62

34
6

2.
02

sy
st

em
cd

es
10

71
7.

38
10

71
7.

38
10

00
7.

50
99

5
4.

22
96

5
4.

77
sp

i
12

18
6.

90
12

21
9.

66
11

29
4.

34
11

08
3.

34
10

99
3.

37
w

b_
dm

a
13

75
0.

80
13

50
1.

19
13

29
-0

.3
8

13
34

0.
45

13
25

-0
.0

8
de

s_
ar

ea
19

18
3.

23
19

73
5.

63
19

01
4.

58
19

43
7.

72
18

64
3.

38
tv

80
26

89
5.

32
26

15
7.

88
24

94
5.

09
24

73
5.

05
24

53
4.

77
sy

st
em

ca
es

29
44

-1
.5

3
29

00
-2

.4
8

28
29

-0
.3

2
27

67
-2

.5
7

27
54

-0
.1

8
m

em
_c

tr
l

34
80

12
.3

9
29

94
5.

58
29

18
5.

24
28

86
5.

27
28

64
5.

31
ac

97
_c

tr
l

38
70

0.
59

39
22

2.
68

39
08

1.
92

38
90

2.
06

38
27

0.
13

us
b_

fu
nc

t
48

41
8.

72
47

16
8.

14
45

19
4.

74
44

71
4.

12
44

22
3.

71
pc

i_
br

id
ge

32
60

83
-1

.0
4

60
41

-0
.9

1
59

88
-1

.4
0

59
78

-1
.5

1
59

63
-1

.6
4

ae
s_

co
re

84
94

2.
73

84
46

2.
27

83
36

2.
16

83
07

2.
26

82
80

2.
63

w
b_

co
nm

ax
16

35
7

-0
.0

2
15

48
2

-2
.1

8
14

84
6

2.
18

14
55

3
2.

02
14

45
7

2.
22

et
he

rn
et

20
12

3
-2

.0
8

20
03

3
-2

.5
9

19
96

5
-2

.7
4

19
92

4
-2

.5
5

19
87

8
-2

.8
6

vg
a_

lc
d

30
45

5
-2

.4
9

29
97

2
-1

.9
9

29
92

6
-2

.3
7

29
93

3
-2

.8
2

29
95

9
-2

.7
2

de
s_

pe
rf

33
32

0
7.

51
32

78
2

7.
74

31
63

8
7.

82
30

90
0

7.
17

30
49

1
7.

00
TO

TA
L

13
98

66
1.

96
13

70
97

1.
72

13
42

70
1.

80
13

29
94

1.
48

13
21

24
1.

34

Ta
bl

e
5.

2:
C

ut
-b

as
ed

re
st

ru
ct

ur
in

g
of

A
N

D
tr

ee
s

(k
=

5)
,m

ap
pe

d
to

4-
in

pu
tL

U
Ts

87

choice; if -a -K 4 # 15482 LUTs
choice; if -a -K 4 # 14846 LUTs
choice; if -a -K 4 # 14553 LUTs
choice; if -a -K 4 # 14457 LUTs
load wb_conmax.aig
alias b ’fbalance -k 5’
resyn; resyn2
if -a -K 4 # circuit consists of 16361 LUTs ≈ 16357× 100.02%
choice; if -a -K 4 # 15819 LUTs ≈ 15482× 102.18%
choice; if -a -K 4 # 14523 LUTs ≈ 14846× 97.82%
choice; if -a -K 4 # 14259 LUTs ≈ 14553× 97.98%
choice; if -a -K 4 # 14136 LUTs ≈ 14457× 97.78%

The first pair of columns in Table 5.2 shows an overall improvement of 1.96%

after the first mapping iteration, for a total area of 137130. This is roughly equal to the LUT

count achieved by otherwise simply performing another mapping iteration: 137097 LUTs.

In addition, AND tree restructuring leads to a smaller relative area improvement when we

perform many iterations of FPGA mapping. For example, if we perform five iterations

of mapping to 4-input LUTs, the overall improvement drops to 1.34%. These raise the

question of whether our AND tree restructuring can be removed in favor of performing

one more iteration of FPGA mapping; this question is explored in the next experiment.

Previously, we used the fbalance command implicitly in every call to resyn,

resyn2, and choice. To more accurately compare against a single iteration of FPGA

mapping, we use fbalance during one call to resyn/resyn2 or choice (which calls

resyn/resyn2) and the original balance during all others. The results for the bench-

mark suite as a whole are shown in Table 5.3. Each row represents one additional iter-

ation of FPGA mapping; the column “LUTs” denotes the LUT count assuming no use

of fbalance and are identical to the figures in the last row of Table 5.2. The next six

columns present the improvement gained from applying fbalance -k 5 at the first, sec-

ond, third, etc. call to resyn/resyn2 or choice. For example, the following script

resyn; resyn2
if -a -K 4
choice; if -a -K 4
choice; if -a -K 4

yields a baseline set of circuits requiring 134270 LUTs, while

resyn; resyn2
if -a -K 4

88

Mapping iterations LUTs % improvement
1 139866 1.96
2 137097 2.32 2.67
3 134270 1.78 2.05 1.27
4 132994 1.40 1.41 1.62 1.07
5 132124 1.26 1.08 1.19 1.13 0.56
6 131957 1.31 1.19 1.20 1.18 1.31 0.62
7 131205 1.01 0.81 0.77 0.78 0.95 0.91 0.07

Table 5.3: Effects of one series of AND tree restructuring at various points in the
technology mapping flow

choice; if -a -K 4
alias b ’fbalance -k 5’
choice
alias b ’balance’
if -a -K 4

yields a 1.27% improvement. From the results, we can draw two conclusions. First, if we

are to limit the use of fbalance for computational efficiency, we should use it earlier in the

technology mapping process. Second, the gains from fbalance do not equate to a con-

stant number of additional iterations of FPGA mapping. To achieve a 1.96% improvement

over the 139866 LUTs at mapping iteration 1 requires one additional mapping iteration

assuming no usage of fbalance. To achieve a 1.40% improvement over the 132994 LUTs

after iteration 4 requires at least three more iterations. Therefore we conclude that CUT-

BALANCE as implemented in fbalance provides a significant improvement that cannot

otherwise be obtained by repeatedly performing FPGA mapping.

The next set of experiments explores the effect of the parameter k on the efficacy of

fbalance, and the effect of fbalance when mapping to different LUT sizes K. Table 5.4

and Table 5.5 show the final LUT counts when we vary the LUT size K ∈ {4, 5, 6} and

parameter k ∈ {2, 3, . . . , K, K + 1, K + 2} in the following script:

alias b ’fbalance -k k’
resyn; resyn2
if -a -K K
choice; if -a -K K
choice; if -a -K K
choice; if -a -K K
choice; if -a -K K

The results show that fbalance yields more improvement as K increases. In addition, the

89

data indicate that a value of k = 4 or k = 5 works well in most cases, though k = 2 works

best for K = 4.

Finally, we examine the effect of fbalance when performing technology map-

ping with standard cells. In order to encourage the technology mapper to minimize area,

we modified the data for the GSCLib library [Cad05] so that every gate has a delay of 1.

We then run the below script on each design to arrive at a baseline set of areas.

resyn; resyn2
read_library gsclibUNIT.genlib
map

Then we use fbalance with a parameter k ∈ {2, 3, 4, 5, 6} for comparison.

alias b ’fbalance -k k’
resyn; resyn2
read_library gsclibUNIT.genlib
map

The results are shown in Table 5.6. As Table 5.1 shows, the standard cells all have 4 or

fewer inputs. This predicts that fbalance will be ineffective for k = 5 or k = 6. In fact,

the results show that using fbalance deteriorates total area for k 6= 2.

Thus far, we have shown that Algorithm 7 provides improvements for both FPGA

and standard cell mapping. Care should be taken to use the proper parameter k depending

on the target platform.

5.4.2 Prime Functions

We now present results with Algorithm 8 (ADD-CHOICES). In contrast to Algorithm 7

(CUT-BALANCE), Algorithm 8 is geared specifically for standard cell mapping rather

than for FPGA mapping: the permutation of subject graph nodes is meant to permit

more standard cell matches to be made. We implemented Algorithm 8 as the command

transversal in ABC. To control the size of the subject graph, we impose a limit of 8 on

the number of elements from G : H on line 9 of Algorithm 8. We also add a command

choicetrans which combines the choices added from the built-in choice command

with our transversal command.

We again perform standard cell mapping with our modified version of GSCLib:

resyn; resyn2
read_library gsclibUNIT.genlib
map

90

Be
nc

hm
ar

k
K

=
4

K
=

5

LU
Ts

%
im

pr
ov

em
en

t
LU

Ts
%

im
pr

ov
em

en
t

k
=

2
k

=
3

k
=

4
k

=
5

k
=

6
k

=
2

k
=

3
k

=
4

k
=

5
k

=
6

k
=

7
pc

i_
co

nf
..

.
43

-2
.3

3
-2

.3
3

-2
.3

3
-2

.3
3

-2
.3

3
43

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

st
ep

pe
r.

..
49

2.
04

2.
04

0.
00

0.
00

0.
00

41
0.

00
2.

44
2.

44
0.

00
2.

44
4.

88
ss

_p
cm

12
3

0.
00

-0
.8

1
0.

00
0.

00
0.

00
12

1
1.

65
0.

83
0.

83
0.

83
0.

83
0.

83
us

b_
ph

y
18

0
2.

78
2.

22
1.

67
1.

67
1.

67
15

7
0.

64
1.

27
1.

91
-0

.6
4

0.
00

-1
.2

7
sa

sc
19

7
0.

00
-3

.0
5

-2
.5

4
-2

.5
4

-3
.0

5
16

4
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
si

m
pl

e_
sp

i
27

9
3.

94
1.

08
-1

.0
8

-2
.1

5
-1

.4
3

23
4

0.
43

0.
43

4.
70

5.
13

3.
85

3.
85

pc
i_

sp
oc

i_
ct

rl
30

6
1.

96
3.

92
3.

59
0.

33
-0

.3
3

25
6

4.
30

-0
.3

9
5.

86
3.

91
2.

73
7.

03
i2

c
34

6
1.

16
1.

73
2.

89
2.

02
3.

76
27

4
-2

.5
5

-1
.8

2
-0

.7
3

-0
.3

6
-2

.9
2

0.
36

sy
st

em
cd

es
96

5
4.

87
6.

01
5.

28
4.

77
5.

49
63

8
4.

39
10

.5
0

14
.1

1
14

.2
6

14
.5

8
13

.0
1

sp
i

10
99

0.
73

4.
91

3.
09

3.
37

1.
09

80
1

-3
.0

0
0.

00
-1

.5
0

-3
.0

0
0.

00
-0

.8
7

w
b_

dm
a

13
25

0.
30

0.
30

-0
.9

1
-0

.0
8

0.
38

11
65

0.
00

0.
69

0.
26

1.
37

0.
26

0.
60

de
s_

ar
ea

18
64

-0
.3

8
5.

53
3.

54
3.

38
3.

27
13

74
-0

.5
8

0.
36

1.
38

2.
69

1.
75

2.
11

tv
80

24
53

2.
94

4.
77

4.
28

4.
77

3.
30

20
24

3.
80

3.
71

5.
29

6.
47

5.
53

4.
84

sy
st

em
ca

es
27

54
1.

16
0.

00
-0

.2
9

-0
.1

8
-0

.2
9

22
18

2.
25

1.
94

1.
40

2.
93

1.
44

1.
13

m
em

_c
tr

l
28

64
0.

94
2.

79
4.

33
5.

31
5.

52
24

51
-0

.1
6

1.
63

3.
79

3.
75

4.
12

4.
12

ac
97

_c
tr

l
38

27
1.

78
0.

76
0.

29
0.

13
0.

44
32

69
0.

43
0.

03
0.

61
1.

16
1.

50
1.

25
us

b_
fu

nc
t

44
22

3.
46

3.
64

3.
64

3.
71

3.
01

36
53

4.
11

2.
35

2.
55

2.
24

4.
68

5.
37

pc
i_

br
id

ge
32

59
63

0.
35

-1
.8

3
-1

.3
2

-1
.6

4
-1

.0
2

54
08

0.
28

0.
11

0.
24

0.
06

-0
.0

4
-1

.0
2

ae
s_

co
re

82
80

2.
51

3.
43

2.
67

2.
63

2.
00

63
40

1.
88

4.
76

4.
64

3.
08

2.
00

0.
71

w
b_

co
nm

ax
14

45
7

3.
12

-2
.0

8
-0

.5
7

2.
22

0.
95

12
42

2
3.

03
4.

36
7.

31
9.

02
7.

94
8.

58
et

he
rn

et
19

87
8

0.
12

-3
.3

5
-2

.5
8

-2
.8

6
-2

.5
1

17
55

7
-0

.3
6

-1
.3

9
-1

.3
6

-0
.7

6
-1

.0
3

-1
.1

0
vg

a_
lc

d
29

95
9

0.
49

-1
.6

5
-2

.3
0

-2
.7

2
-2

.4
2

28
36

4
0.

14
-0

.8
5

-0
.9

0
-1

.1
2

-1
.5

5
-1

.3
2

de
s_

pe
rf

30
49

1
2.

68
5.

20
5.

77
7.

00
7.

09
16

88
0

2.
33

5.
63

5.
21

6.
49

5.
59

5.
82

TO
TA

L
13

21
24

1.
59

0.
70

0.
88

1.
34

1.
29

10
58

54
1.

11
1.

55
1.

96
2.

37
1.

92
1.

96

Ta
bl

e
5.

4:
C

ut
-b

as
ed

re
st

ru
ct

ur
in

g
of

A
N

D
tr

ee
s,

m
ap

pe
d

to
K

-i
np

ut
LU

Ts

91

Benchmark
K = 6

LUTs
% improvement

k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8
pci_conf_cyc_addr_dec 35 -2.86 -2.86 -2.86 -2.86 -2.86 -2.86 -2.86
steppermotordrive 37 -2.70 0.00 -2.70 -2.70 0.00 0.00 0.00
ss_pcm 102 0.00 -0.98 0.00 0.00 0.00 0.00 0.00
usb_phy 138 2.17 0.72 2.17 2.17 0.72 0.72 0.72
sasc 145 0.00 0.00 0.00 0.00 0.00 0.00 0.00
simple_spi 196 0.51 -0.51 0.51 0.51 0.00 0.00 0.00
pci_spoci_ctrl 216 -3.24 -0.46 2.31 0.93 3.24 -0.46 1.85
i2c 238 -0.84 -1.26 1.26 2.94 0.00 1.68 1.26
systemcdes 494 -0.81 -1.01 1.42 0.81 0.81 -4.86 -6.28
spi 670 8.51 8.06 4.18 4.63 6.42 3.73 8.96
wb_dma 1039 0.29 0.58 0.87 0.96 0.77 0.38 0.10
des_area 941 2.55 -0.32 1.06 -1.49 2.76 1.59 3.40
tv80 1694 -0.18 4.37 5.37 6.38 5.08 3.84 1.77
systemcaes 1821 1.10 -0.22 -1.15 -0.05 0.33 -1.32 -1.48
mem_ctrl 2199 0.77 1.05 2.59 2.91 4.18 3.32 4.46
ac97_ctrl 2870 0.56 0.73 -0.63 -0.66 -0.77 -0.73 -0.38
usb_funct 3103 0.23 1.93 1.19 1.26 1.93 1.58 1.13
pci_bridge32 5082 0.55 3.05 3.76 3.05 3.50 3.94 3.56
aes_core 3128 -6.01 3.71 5.91 3.87 1.44 -8.70 -9.37
wb_conmax 10040 2.53 6.18 10.36 9.72 8.52 8.43 8.87
ethernet 16711 0.80 2.28 5.49 4.70 2.27 2.73 2.69
vga_lcd 26951 0.48 4.98 4.47 4.45 4.09 4.19 4.16
des_perf 12712 0.00 0.00 0.00 0.00 0.00 0.00 0.00
TOTAL 90562 0.54 3.13 4.14 3.83 3.17 2.79 2.81

Table 5.5: Cut-based restructuring of AND trees, mapped to K-input LUTs

92

Benchmark Area k = 2 k = 3 k = 4 k = 5 k = 6
pci_conf_cyc_addr_dec 97 0.00 0.00 0.00 0.00 0.00
steppermotordrive 184 17.12 16.85 15.35 15.35 16.98
ss_pcm 408 -15.33 -15.94 -15.45 -15.45 -15.45
usb_phy 454 0.66 0.88 0.72 -0.22 -0.28
sasc 572 -0.13 -1.49 -2.49 -2.49 -2.32
simple_spi 769 1.46 -1.40 -3.35 -3.32 -4.13
pci_spoci_ctrl 976 4.36 3.82 5.25 3.92 4.02
i2c 981 -3.03 -2.29 -3.67 -4.10 -2.73
systemcdes 2724 -0.17 0.20 -0.96 -1.15 -0.61
spi 3304 2.00 1.81 1.21 1.54 1.97
wb_dma 3706 -1.87 -0.49 0.42 -0.44 -0.31
des_area 4437 0.57 -6.45 -4.04 -3.04 -4.85
tv80 7302 2.83 3.79 1.31 1.99 0.93
mem_ctrl 8903 2.38 3.56 7.89 8.83 8.41
systemcaes 9589 -5.78 -6.63 -0.77 -6.42 -6.79
ac97_ctrl 10112 1.94 -3.44 -3.35 -3.53 -3.56
usb_funct 14110 1.86 1.84 1.33 1.51 1.36
pci_bridge32 16030 -0.04 -2.79 -3.90 -3.66 -3.76
aes_core 21662 4.69 4.56 4.07 3.99 4.10
wb_conmax 36430 5.71 5.27 -3.98 -7.12 -5.07
ethernet 52653 0.15 -4.55 -4.76 -4.45 -4.88
vga_lcd 78099 -0.14 -6.96 -6.82 -6.85 -7.03
des_perf 81990 2.07 1.68 1.13 1.04 1.35
TOTAL 355494 1.43 -1.24 -2.17 -2.58 -2.46

Table 5.6: Cut-based restructuring of AND trees, mapped to elements from GSClib

93

To compare the choices created by our proposed ADD-CHOICES with the existing

work, we run the same script three more times, first with choice before map, then with

transversal before map, and finally with choicetrans before map. The results are

shown in Table 5.7. The column “Base area” shows the same baseline area results as in

Table 5.6. The next three pairs of columns show the number of choice nodes created by

the corresponding command, and the resulting percent improvement in area after technol-

ogy mapping. The numbers show that transversal generally adds fewer choices than

choice. Furthermore, the results show that the map command in ABC, while being able

to use choice nodes, does not typically use them well, since adding flexibility to a problem

should never degrade the solution quality.

Since ABC’s map command does not cope well with choices, we repeat the pre-

vious experiment without choice nodes. For any given subject graph with choices, we

create 15 subject graphs without choices by randomly selecting branches from each of the

choice nodes. The results after performing technology mapping on these subject graphs

are shown in Table 5.8. For each set of 15 subject graphs, we show the minimum, mean,

and maximum standard cell area. The results show that the graphs which follow from the

choice command generally lead to a smaller standard cell area. In contrast, the graphs

following from transversal do not. The one exception is vga_lcd: the final results after

transversal averaged 78098 compared to the baseline of 78099.

Note that the choices generated by choice and transversal for the bench-

mark wb_conmax combine well: the results in from applying choicetrans are better

than from either choice or transversal alone, as shown in Table 5.7 and Table 5.8.

This shows that there is indeed some potential in the use of ADD-CHOICES over the exist-

ing choice command, albeit little. It is possible that a different technology mapper will

be better able to exploit the choices we generate.

5.5 Previous Work with Symmetries

Previous works have used functional symmetries in logic synthesis and/or technol-

ogy mapping, for example [KD91, KS00]. These were primarily constructive synthesis

techniques—they for better or worse completely ignore the structure of the original logical

description. Given a function f based on a set of variables, they locate a set of variables

X which are symmetric, and re-express f in terms of a g(X), where g has fewer than |X|

94

Be
nc

hm
ar

ks
Ba

se
c
h
o
i
c
e

t
r
a
n
s
v
e
r
s
a
l

c
h
o
i
c
e
t
r
a
n
s

ar
ea

ch
oi

ce
s

%
im

p
ch

oi
ce

s
%

im
p

ch
oi

ce
s

%
im

p
pc

i_
co

nf
_c

yc
_a

dd
r_

de
c

97
0

0.
00

0
0.

00
0

0.
00

st
ep

pe
rm

ot
or

dr
iv

e
18

4
16

5.
43

0
0.

00
16

5.
43

ss
_p

cm
40

7
27

-0
.4

9
0

0.
00

27
-0

.4
9

us
b_

ph
y

45
4

9
0.

22
0

0.
00

9
0.

44
sa

sc
57

2
29

-3
.1

5
0

0.
00

29
-3

.2
3

si
m

pl
e_

sp
i

76
8

47
-2

.9
9

0
0.

00
47

-2
.9

6
pc

i_
sp

oc
i_

ct
rl

97
5

71
5.

23
0

0.
00

71
5.

38
i2

c
98

0
76

2.
24

0
0.

00
76

2.
14

sy
st

em
cd

es
27

24
22

2
1.

47
2

0.
05

22
4

1.
39

sp
i

33
04

29
3

-0
.3

0
11

2
-0

.1
7

42
4

0.
28

w
b_

dm
a

37
06

21
1

1.
16

0
0.

13
21

1
1.

20
de

s_
ar

ea
44

36
35

6
-7

.4
2

1
0.

02
35

6
-7

.2
7

tv
80

73
02

50
0

0.
04

48
-0

.3
7

57
3

0.
41

m
em

_c
tr

l
89

03
64

0
12

.1
6

60
0.

00
69

5
12

.3
0

sy
st

em
ca

es
95

89
22

2
1.

69
79

0.
14

13
10

0.
91

ac
97

_c
tr

l
10

11
2

87
6

-2
.6

1
0

0.
00

87
6

-2
.4

7
us

b_
fu

nc
t

14
11

0
11

57
0.

96
32

0.
00

12
13

0.
95

pc
i_

br
id

ge
32

16
03

0
10

63
-2

.0
3

11
6

-1
.2

2
13

13
-3

.2
4

ae
s_

co
re

21
66

2
33

87
0.

00
17

3
0.

21
37

34
-0

.0
8

w
b_

co
nm

ax
36

43
0

34
33

-1
2.

72
12

61
-7

.4
8

47
22

3.
81

et
he

rn
et

52
65

3
78

4
-8

.3
9

18
0.

00
79

6
-8

.3
1

vg
a_

lc
d

78
09

9
14

36
6

-1
3.

85
4

0.
00

14
36

7
-1

3.
84

de
s_

pe
rf

81
99

0
80

60
0.

63
25

0.
00

80
73

0.
59

TO
TA

L
35

54
94

-5
.2

8
-0

.8
1

-3
.6

4

Ta
bl

e
5.

7:
Te

ch
no

lo
gy

m
ap

pi
ng

re
su

lt
s

w
it

h
ch

oi
ce

s

95

Be
nc

hm
ar

ks
c
h
o
i
c
e

t
r
a
n
s
v
e
r
s
a
l

c
h
o
i
c
e
t
r
a
n
s

m
in

m
ea

n
m

ax
m

in
m

ea
n

m
ax

m
in

m
ea

n
m

ax
pc

i_
co

nf
_c

yc
_a

dd
r_

de
c

97
97

97
97

97
97

97
97

97
st

ep
pe

rm
ot

or
dr

iv
e

17
0

17
4

18
2

18
4

18
4

18
4

17
7

17
9

18
6

ss
_p

cm
40

9
41

3
41

5
40

7
40

7
40

7
45

2
45

4
45

6
us

b_
ph

y
45

0
45

4
45

6
45

4
45

4
45

4
40

9
41

1
41

4
sa

sc
57

0
57

3
57

4
57

2
57

2
57

2
57

1
57

2
57

4
si

m
pl

e_
sp

i
75

9
76

7
77

6
76

8
76

8
76

8
76

0
76

6
77

4
pc

i_
sp

oc
i_

ct
rl

94
0

94
8

95
9

97
5

97
5

97
5

93
8

94
6

96
8

i2
c

96
1

96
7

97
6

98
0

98
0

98
0

95
8

96
8

97
3

sy
st

em
cd

es
27

05
27

13
27

30
27

22
27

22
27

24
27

08
27

18
27

31
sp

i
32

80
32

88
32

99
32

98
33

00
33

05
32

90
33

00
33

04
w

b_
dm

a
36

53
36

64
36

76
37

01
37

01
37

01
36

52
36

56
36

66
de

s_
ar

ea
44

37
44

42
44

53
44

35
44

35
44

36
44

24
44

44
44

55
tv

80
71

05
71

26
71

51
73

04
73

07
73

11
71

32
71

41
71

53
m

em
_c

tr
l

78
15

78
82

79
26

88
98

89
02

89
08

78
25

78
75

79
02

sy
st

em
ca

es
95

46
95

65
96

04
95

69
95

83
95

87
99

86
99

95
10

00
0

ac
97

_c
tr

l
99

89
10

00
2

10
00

6
10

11
2

10
11

2
10

11
2

95
59

95
73

95
96

us
b_

fu
nc

t
13

81
3

13
85

0
13

87
7

14
10

3
14

10
7

14
10

9
13

83
0

13
86

3
13

87
6

pc
i_

br
id

ge
32

15
94

1
15

97
1

15
98

1
16

03
4

16
03

8
16

03
9

15
99

1
16

05
8

16
09

7
ae

s_
co

re
21

64
1

21
66

7
21

71
1

21
64

3
21

66
4

21
67

2
21

64
8

21
69

0
21

73
6

w
b_

co
nm

ax
35

11
4

35
16

2
35

30
9

36
43

2
36

43
8

36
44

2
35

06
2

35
18

7
35

29
0

et
he

rn
et

52
43

7
52

45
3

52
48

4
52

64
6

52
64

8
52

65
1

52
43

7
52

45
3

52
47

8
vg

a_
lc

d
78

57
5

78
60

8
78

69
4

78
09

7
78

09
8

78
10

0
81

76
3

81
87

8
81

92
8

de
s_

pe
rf

81
73

8
81

80
6

81
82

7
81

98
1

81
98

7
81

99
0

78
55

8
78

58
6

78
72

8
TO

TA
L

35
21

53
35

25
99

35
31

70
35

54
21

35
54

89
35

55
31

35
22

27
35

28
09

35
33

83

Ta
bl

e
5.

8:
Te

ch
no

lo
gy

m
ap

pi
ng

re
su

lt
s

af
te

r
re

m
ov

in
g

ch
oi

ce
s

96

outputs. The technique does not work as well when there is less symmetry, and [WD98]

addresses some of the problems that occur when the function f is not completely symmet-

ric.

5.6 Conclusion

In this chapter we explored the usage of symmetries in the context of technology mapping.

Previously, we identified two classes of symmetries, namely those of associative functions

and those of prime functions. For each class, we provided an algorithm to permute nodes

within a subject graph:

• For associative functions such as ANDs, we calculate the dependencies of each input

to the function, and rearrange the inputs so that inputs with common dependencies

are adjacent. This reduced the final implementation area for both FPGA and standard

cell technologies.

• For a prime function, we calculate the transversal of its symmetry group and add

a choice node for the elements in the transversal in order to increase the number of

possible matches during mapping to standard cells. Unfortunately, the results are not

as encouraging in this case. One reason is that there are not many choices introduced

by our algorithm. Another reason is that we depend on nodes with multiple fanouts

to create prime functions, but at the same time, a node with multiple fanouts is often

a good candidate to form the output of a standard cell, implying that the choices we

add may not result in more useful matches to the cell library. Future work should

take this into account, for example by performing a preliminary mapping to identify

areas where choices can help.

The next chapter applies symmetry to the placement problem in order to reduce wire-

length.

97

6. Placement

After the technology mapping phase in Figure 1.1, comes the placement phase. Most cur-

rent approaches assume a static circuit netlist, i.e., the connectivity between the gates is

assumed to be immutable during placement. This restriction makes the placement prob-

lem more tractable but may cause a placer to miss important opportunities for further

improvement.

In this chapter, we apply circuit symmetries to improve the results of placement

algorithms. Instead of considering all possible symmetries, we restrict the search to two

specific forms of symmetry: (1) fully symmetric inputs of tree-based subcircuits, and (2)

alternative tree compositions of such subcircuits. We present a polynomial time algorithm

that avoids enumerating symmetries and results in an approach that is fast enough to be

applied between iterations of a placement algorithm.

This chapter is organized as follows. First, we review the placement problem and

basic approaches to solve it. Then, we survey previous works which apply symmetries

to optimize placement. Afterwards, we introduce the model and underlying algorithm

used in our approach, and show how they are applied in placement. Finally, we present

experimental results on a variety of benchmarks and conclude this chapter.

98

(a) Standard cell in core area,

surrounded by terminals

(b) Placed design

Figure 6.1: Standard cell placement arranges cells into rows

6.1 Introduction

During the placement phase, we are given a core area surrounded by a set of fixed termi-

nals, and the netlist from the technology mapping phase. We are tasked to assign cells1

to non-overlapping locations within the core area, typically in rows. Rather than selecting

any arbitrarily legal assignment of locations, we usually aim to optimize some objective,

e.g. the total estimated wirelength between cells. Figure 6.1a shows an example of a core

area surrounded by terminals; Figure 6.1b shows the same set of terminals interfacing with

a placed design. Note that the wires (gray lines) among the cells and terminals denote es-

timated routes for interconnections: actual routes are not determined until the next step of

the CAD flow.

The placement problem itself is typically divided into global placement, detailed

placement, and legalization. As the name implies, a global placer produces a rough place-

ment which may not be legal—the other two steps are applied afterwards to obtain a le-

gal placement. Techniques to solve the global placement problem are classified into three

groups:

• simulated annealing based on stochastic optimization, e.g. TimberWolf [Sec88].

• analytic placement based on numerical optimization, e.g. [CK84, KSJA91].

1We focus on standard cell placement in this chapter because of our choice of experimentation platform.
Many of the ideas may be carried over to FPGA placement.

99

(a) Cells start at center of core

area

cut size = 6

(b) After bipartitioning

Figure 6.2: One step in an iterative placement algorithm

• partitioning-based placement [Bre77, CKM00] based on recursive partition-

ing [KL70].

We will use Capo [CKM00], which is an iterative partitioning-based placer, for our exper-

iments, because it is competitive with other placers [Nam06] and its source code is freely

available.2 Therefore, we elaborate further on partitioning-based placement. Placers based

on simulated annealing and/or numerical optimization may also be amenable to our ap-

proach.

A partitioning-based (global) placer works similarly to the algorithm described

in subsection 5.3.1. First, all moveable standard cells are assumed to lie in the center of the

core area, as shown in Figure 6.2a. Then, we divide the core area in half, and distribute the

cells among the two regions so that the number of connections that cross from one region

to the other is minimized. We continue splitting each region this way until the number of

cells assigned to a region is small. At any step during this procedure, we may estimate the

total wirelength by assuming that each cell is located in the center of its assigned region.

6.2 Previous Work

Previous researchers have used symmetries to optimize a circuit for timing or wirelength,

but the algorithms they propose are slow and/or suboptimal.

2http://www.openedatools.org/projects/umpack/

http://www.openedatools.org/projects/umpack/

100

The authors of [CHH+04] use symmetries to rewire a circuit for various metrics.

Their analysis, based on ATPG techniques, uses logic propagation of noncontrolling val-

ues to find wires that may be swapped. They swap one pair of wires at a time using an

extension of the algorithm proposed in [Cou97] to optimize the circuit.

The authors of [CMB05a] perform rewiring based on the classical definition of

symmetries as permutations of circuit inputs. To perform rewiring among a set of wires,

they define a subcircuit using these wires as inputs, and perform an exhaustive search

for legal permutations of inputs and outputs at the boundary. Then they enumerate 1000

permutations and select the best rewiring out of these 1000. In order to modify wires inside

the subcircuit, a new subcircuit must be defined using this new set of wires as inputs. This

method suffers from the large number of potential subcircuits, as well as long runtimes to

optimize each subcircuit.

Our proposed method improves on previous work by reducing runtime while

preserving quality of results. The key is to efficiently evaluate a set of wire permutations

without full enumeration. Given a set of n symmetric wires (for example, the inputs of a

parity tree), the previous approaches would potentially have to evaluate n! permutations.

In contrast, our approach only requires O(n3) in runtime.

6.3 Preliminaries

6.3.1 Circuit Model

In order to concurrently represent the functionality of a circuit as well as its physical infor-

mation, we model a circuit by a graph of nodes representing terminals and logic primitives.

Each n-input m-output gate is modeled by n + m terminal nodes surrounding logic prim-

itives representing the function of the gate. Terminal nodes may be classified as “source”-

type, which are gate outputs and primary inputs, or “sink”-type, which are gate inputs

and primary outputs. Throughout this chapter, it is assumed that gates are decomposed

into AND and INV primitives; the algorithms can be extended to deal with XOR primitives

as well.

The benefit of this model is that we may uniformly reason about both simple

gates and complex gates. Figure 6.3 shows a circuit and the corresponding graph which

models its functionality. The node labels are used in a later section.

101

(a) Original circuit

A

B

C

D

1

2

3

4

r
2

r
1

Terminal

AND

INV

(b) Resulting graph

Figure 6.3: Conversion from circuit to graph

6.3.2 Assignment Problem

The assignment problem is an optimization problem with the goal to find a minimum cost

matching in a bipartite graph. The classical problem statement is as follows:

We are given n workers and n jobs, where a cost cij is incurred if worker i
performs job j. Each worker can only perform one job. Find an assignment of
workers to jobs such that all jobs are performed and the sum of incurred costs
is minimized.

Figure 6.4 shows the cost matrix for a problem with workers {A,B,C,D} and jobs {1,2,3,4}.

The optimal solution is to have worker A perform job 4, B do 2, C do 1, and D do 3 for a

total cost of 14.

The assignment problem can be solved in O(n3) time using the Kuhn-Munkres

algorithm [Mun57] or one of its variants. The algorithm uses the fact that adding a constant

to every entry in a row or every entry in a column does not change the optimal solution,

only its cost. First the algorithm tries to employ as many workers as possible for zero

cost, i.e. find a maximal zero-cost matching. If the matching is complete, the algorithm

terminates. Otherwise, it calculates the minimum additional cost required for a larger

matching, adds or subtracts this constant to create more zeros, and restarts (at most n

102

1 2 3 4

A 6 4 8 5

B 5 1 10 4

C 3 8 9 6

D 10 2 5 6

Figure 6.4: Assignment problem (solution in bold)

times). Each iteration of the loop requires time O(n2). Since the matrix is modified in the

algorithm, the actual cost of the optimal assignment is calculated using the original matrix.

6.4 Rewiring Algorithms

In this work, symmetries are identified in a similar manner to that in [CHH+04]. Given a

circuit graph, we create partitions representing maximal AND-trees as follows:

1. Split the graph at multiple-fanout points, resulting in a set of trees.

2. Split each tree wherever two AND primitives are connected through an odd number

of inverters.

This results in trees representing ANDs of maximal size, where some of the inputs may

appear inverted. For convenience, we assume that a tree is rooted at an AND node. For

example, the graph of Figure 6.3b decomposes into two trees, one rooted at r1 and one

rooted at r2. Finally, since rewiring can only be performed at terminals, we prune the

leaves of each tree to the first sink-type terminal.

From the above decomposition step, we have maximal AND-trees, where each

tree is fed by a set of terminals. The terminals of a given tree may be partitioned into two

sets according to the number of inverters on the path to the root: a terminal is positive if

the number is even, otherwise the terminal is negative. We call this attribute the terminal’s

phase. Now we discuss how to optimize the wiring of each tree.

6.4.1 Leaf Rewiring

Given a tree implementing an AND function, inputs of the same phase may be arbitrarily

permuted without changing the function. Thus a minimum cost permutation can be cal-

103

culated by solving two assignment problems, one for the positive terminals and one for

the negative terminals.

The cost is calculated as follows. First, all the sinks are assumed to be discon-

nected. Then, for source i and sink j, the cost cij is the increase in size of the bounding box

of i if j were added to it.

For example, the tree in Figure 6.3b rooted at r1 is to be optimized. We calculate

the cost of each connection between leaves {1,2,3,4} and their sources {A,B,C,D}, shown

in Figure 6.4. After solving the assignment problem, we find that the best rewiring is to

connect source A to sink 4, source B to sink 2, and so on.

We argue that this wiring assignment is optimal. First, the Kuhn-Munkres algo-

rithm gives an optimal assignment for a given cost matrix. Second, the cost matrix reflects

the true cost of wirelength. The source nets are assumed to be distinct; therefore the cost

of any connection is independent of all others and reflects the true increase in wirelength.

If the source nets are not distinct, then they can be made so by removing a redundancy.

The algorithm can be adapted for wirelength minimization under timing con-

straints simply by disallowing connections which decrease timing slack, or by weighting

the wirelength costs with timing slack.

6.4.2 Tree Restructuring

The wirelength of a tree can be further improved by exchanging wires within the tree

rather than only the inputs. In this case, we construct an assignment problem encompass-

ing all the terminals, with two constraints:

1. Terminals are matched according to phase.

2. The solution does not contain a cycle.

The first constraint is satisfied in the same way as before, by performing assignment for

positive and negative terminals separately. For simplicity, the rewiring problem is pre-

sented as a single assignment problem, where invalid assignments have a cost of ∞. How-

ever, since the underlying algorithm is in O(n3), it is more efficient to solve it as two smaller

problems.

The cycle-free constraint cannot be easily enforced because the assignment prob-

lem assumes that all permutations are feasible, and that costs are independent. Therefore,

104

A

B

C

D

1

2

3

4

E

F

5

6

r
1
...

(a) Tree to be optimized

1 2 3 4 5 6

A 6 4 8 5 3 ∞

B 5 1 10 4 10 ∞

C 3 8 9 6 5 ∞

D 10 2 5 6 4 ∞

E ∞ ∞ 9 5 6 ∞

F ∞ ∞ ∞ ∞ ∞ 8

(b) Cost matrix

Figure 6.5: Tree restructuring

we have adopted a cycle-avoiding rewiring algorithm that does not necessarily find the

best cycle-free permutation, but is guaranteed to be no worse than the previous algorithm.

Given a tree, we start with the original set of gates, and allow any source terminal

in the tree to connect to any sink terminal in the tree, with the exception of terminals of

different phases, and simple cycles between a gate output and its inputs. Figure 6.5a shows

the same tree as before, where the two gates are outlined with dotted boxes. The root r1

is not considered a gate because its output is not part of the rewiring problem. To avoid a

cycle, we forbid a connection between source E and sinks 1 or 2, which is reflected in the

cost matrix in Figure 6.5b.

If the solution to the n × n assignment problem results in a cycle in the graph,

we choose an arbitrary source-type terminal node in the cycle and force a connection to its

original sink, effectively merging two gates and removing the two terminal nodes. We then

solve the new (n− 1)× (n− 1) assignment problem. If the solution to the new assignment

problem does not lead to a cycle, we have a valid solution. Otherwise, we merge another

pair of gates. In the worst case, we revert to the case of leaf rewiring in which we have a

single large gate and perform rewiring at the inputs only.

Our experiments confirm that in practical designs, the solution to the assignment

problem rarely contains a cycle. Thus, the approach we take is faster than one that would

find the best cycle-free solution, with nearly the same results. In the worst case, our tree

restructuring degrades to the leaf rewiring problem in the previous section.

105

A

B

F

1

2

6

5

D

C

4

r
k

E 3
...

...

...

...

(a) Tree to be optimized

1 2 3 4 5 6

A 5 3 8 3 ∞ ∞

B 4 4 6 9 ∞ ∞

C 3 5 10 8 ∞ ∞

D 2 6 8 7 ∞ ∞

E ∞ ∞ ∞ ∞ 4 3

F ∞ ∞ ∞ ∞ 4 4

(b) Cost matrix

A

B

F

1

2

6

5

D

C

4

r
k

E 3
...

...

...

...

(c) Tree after removing cycle

1 2 3 4 5 6

A 5 3 8 3 ∞ ∞

B 4 4 6 9 ∞ ∞

C ∞ ∞ 10 8 ∞ ∞

D 2 6 8 7 ∞ ∞

E ∞ ∞ ∞ ∞ 4 ∞

F ∞ ∞ ∞ ∞ ∞ 4

(d) Cost matrix after removing cycle

Figure 6.6: Tree restructuring, avoiding cycles

106

Consider graph in Figure 6.6a, which shows three gates implementing the func-

tion ab f̄ . The optimum solution to the assignment problem in Figure 6.6b leads to a cycle

involving the nodes 1, E, 6, and D. To avoid this cycle, we choose an arbitrary source-type

terminal node and force a connection to its original sink. In the example, we force E to

connect to 5 by setting cEj = ∞ for all j 6= 5 and ci5 = ∞ for all i 6= E. Then we for-

bid connections between the inputs and output of this new merged gate. The resulting

decomposition and cost matrix are shown in Figures 6.6c and 6.6d.

Note that since we consider all feasible restructurings of the tree, we do not need

to try different buckets as in [CMB05a, fig. 6]. The algorithm presented in [CMB05a]

requires considering multiple overlapping buckets to be able to restructure a tree.

6.5 Iterative Placement with Rewiring

Current global placers assume a fixed netlist structure that must be preserved when plac-

ing a design. Instead of keeping a fixed netlist, we propose a placer flow which adaptively

restructures the netlist during the placement flow as more information is available. The

approach can be used with any placer based on recursive (bi-)partitioning. After each par-

titioning step, the chip area is sliced into disjoint bins, and the gates within a bin are given

temporary locations for the next partitioning step. At this point, we may run one of the

proposed rewiring algorithms using the temporary placement.

Unfortunately, current placers are sensitive to small changes in their input. We

take the following measures in Capo to avoid disturbing its results:

1. The adjacency list representation of the restructured netlist is kept the same as that

of the original netlist wherever possible.

2. Netlist restructuring is done only when the gates are close to their final locations.

This is the case in Capo when CapoPlacer::atBottomLayers() returns true.

Until then, Capo operates in a feedback loop to find a good coarse placement. We

found that changing the netlist structure interferes with the heuristics used in the

feedback loop.

3. The difference in wirelength from moving a wire from one gate to another in the same

bin is assumed to be zero. This is because we do not yet know the final placement of

the gates within the bin.

107

6.6 Experimental Results

To evaluate the two proposed rewiring algorithms, we used instances from the OpenCores

subset of the IWLS benchmarks. We obtained legal placements by randomly assigning pad

locations along the boundary and running MetaPl/Capo 10.53. We disabled Y-direction

whitespace optimization in MetaPl (“-noYFlow”) to improve wirelength. Each experiment

is performed with an identical set of 15 random seeds for MetaPl, and the average result

reported. All experiments on the OpenCores benchmarks are performed on an Intel Xeon

E5345 2.33GHz machine, and all rewirings are verified with an equivalence checker.

6.6.1 Post-placement Optimization

Our work differs from previous work in the types of symmetries considered, and in the

optimization method. To evaluate the effects of these independently, our first set of exper-

iments compares four different methods for post-placement rewiring:

1. PhySyn from UMpack-0709194, written by the authors of [CMB05a]. This implemen-

tation differs from their paper in that it does not consider all possible symmetries, but

only simple symmetries such as those that occur in AND and XOR functions. The re-

moval of these optimization opportunities is reported to decrease the optimization

potential by about 20%5.

2. PhySyn+, our own implementation of the method described in [CMB05a]. This uses

generalized symmetries and exhaustively searches among all valid permutations for

the best rewiring.

3. Leaf Rewiring (§6.4.1).

4. Tree Restructuring (§6.4.2).

Figure 6.7 outlines the differences between the different postprocessors. There is more

potential for optimization if generalized symmetries are used instead of simple AND/XOR

symmetries, as well as if multiple overlapping subcircuits are optimized instead of disjoint

trees. However, both of these require additional runtime to exploit fully. Our first set of

experiments evaluates the tradeoff between runtime and solution quality.
3http://www.openedatools.org/projects/umpack/
4Ibid.
5Kai-Hui Chang, personal communication.

http://www.openedatools.org/projects/umpack/

108

This

Work

PhySyn+PhySyn

AND/XOR Generalized

T
re
e

C
lu
s
te
r

Symmetries Used

O
p
ti
m
iz
a
ti
o
n
 U
n
it

runtime

ru
n
ti
m
e

Figure 6.7: Comparison of postprocessors

The results are shown in Table 6.1. Results for postprocessors are shown as per-

cent improvement in wirelength with respect to the final placement. PhySyn is run with

two different input size limits for clusters, 8 and 16. PhySyn+ could not complete bench-

marks ethernet or vga_lcd within several hours. To conserve space, we report the fastest of

the three runtimes for the cluster-based algorithms, and the slowest of the two runtimes for

the algorithms we proposed.

The results for PhySyn and PhySyn+ show that using generalized symmetries

will improve wirelength, but not enough to warrant the additional runtime required to

find the generalized symmetries. The results for our proposed tree-based rewiring meth-

ods show that by more efficiently searching a smaller search space, we can achieve superior

results compared to previous work with a >20x improvement in runtime. The improve-

ment in runtime makes it feasible to run our algorithm several times in an iterative placer

and thus unlocks more optimization potential.

6.6.2 Integration into Iterative Placer

The next set of experiments examines the effect of integrating symmetry-based rewiring

into an iterative placer versus its use purely as a postprocessor. We integrated tree restruc-

turing into MetaPl/Capo as described in §6.5. The results are shown in Table 6.2. The

column group “MetaPl/Capo” shows the results for placement followed by symmetry-

based rewiring after legalization. The column group “MetaPl/Capo/Rewire” shows the

results for placement with integrated rewiring followed by a final pass of rewiring after

legalization. The columns marked “%” show the percent improvement in wirelength with

respect to MetaPl/Capo.

109

Be
nc

hm
ar

k
Pl

ac
em

en
t

C
lu

st
er

-b
as

ed
R

ew
ir

in
g

Tr
ee

-b
as

ed
R

ew
ir

in
g

Ti
m

e
(s

)
W

ir
el

en
gt

h
Ti

m
e

(s
)

Ph
yS

yn
-8

Ph
yS

yn
-1

6
Ph

yS
yn

+
Ti

m
e

(s
)

Le
af

R
es

tr
uc

t

(P
hy

Sy
n-

8)
%

%
%

(R
es

tr
uc

t)
%

%

st
ep

pe
rm

ot
or

dr
iv

e
0.

85
1.

08
5e

07
0.

26
1.

36
7

1.
36

7
1.

14
2

0.
04

0.
64

2
0.

81
3

sa
sc

2.
52

3.
65

4e
07

0.
18

0.
47

9
0.

47
9

0.
45

4
0.

05
0.

33
6

0.
36

4

ac
97

_c
tr

l
89

.7
3

1.
09

6e
09

4.
24

0.
31

8
0.

31
8

0.
33

6
0.

54
0.

26
2

0.
27

7

us
b_

fu
nc

t
10

0.
38

1.
50

1e
09

8.
20

0.
49

8
0.

50
2

0.
52

7
0.

61
0.

38
4

0.
47

2

pc
i_

br
id

ge
32

13
9.

69
2.

06
4e

09
16

.5
0

0.
33

4
0.

33
8

0.
39

9
0.

75
0.

20
3

0.
30

6

ae
s_

co
re

17
0.

39
2.

44
0e

09
21

.5
7

0.
49

8
0.

49
8

0.
53

5
0.

90
0.

36
6

0.
48

3

w
b_

co
nm

ax
30

4.
19

6.
54

7e
09

50
.2

3
0.

27
1

0.
27

1
0.

36
0

1.
68

0.
21

6
0.

30
8

et
he

rn
et

71
8.

77
8.

22
3e

09
13

0.
36

0.
38

0
0.

38
9

—
3.

32
0.

30
6

0.
43

9

de
s_

pe
rf

11
57

.3
6

1.
19

6e
10

59
.8

1
0.

36
3

0.
36

3
0.

37
2

4.
01

0.
28

6
0.

34
8

vg
a_

lc
d

20
06

.9
0

2.
39

9e
10

25
2.

80
0.

33
3

0.
34

0
—

13
.5

2
0.

18
4

0.
34

9

O
ve

ra
ll

46
90

.8
0

5.
78

6e
10

54
4.

15
0.

35
0

0.
35

5
—

25
.4

3
0.

24
1

0.
36

3

Ta
bl

e
6.

1:
Pr

ep
ro

ce
ss

in
g

re
su

lt
s

fo
r

O
pe

nC
or

es
be

nc
hm

ar
ks

110

The results show that rewiring can be integrated into a placer with less than

10% increase in runtime. In all but one benchmark, the integration of rewiring into

the placer results in better wirelength. Overall, the benefits of rewiring are additive:

MetaPl/Capo/Rewire+postproc gives better results than MetaPl/Capo+postproc. The

reason is that integration into a placer allows for the optimal placement of a fluid netlist

structure, rather than the placement of a fixed netlist structure.

6.6.3 Timing-driven Rewiring

The next set of experiments explores the efficacy of rewiring as a postplacement speed-up

technique where certain wires are deemed “critical” and others are not. We ran a static

timing analysis tool (OAGear Timer6) and marked the top 5% of wires with most negative

timing slack as critical. Rewiring is performed on the same placements as before, this

time to minimize the weighted wirelength, where critical wires have a weight of 20 and all

others have a weight of 1. The results are shown in Table 6.3. Wirelengths for noncritical

and critical wires are shown separately. In most cases, rewiring is able to focus more effort

on the critical wires, and is thus useful as a speed-up technique.

The final set of experiments assumes that wire criticality is known before place-

ment, and that therefore the placer can be given weights for all the wires. Placement

and rewiring are performed to minimize the weighted wirelength, using the same set of

weights as in the previous timing-driven experiment. The results are shown in Table 6.4

with the same placer set-ups as before. Again, percent improvements are shown with re-

spect to MetaPl/Capo. The results indicate that rewiring is able to achieve large improve-

ments in wirelength for critical wires with no degradation of noncritical wires. As before,

the integration of rewiring into the placer causes problems for the smallest benchmark.

Overall, however, the results again indicate that rewiring achieves larger improvements

when integrated into the placer than when simply run as a postprocessor. Compared to

Table 6.3, MetaPl/Capo will shorten critical wires and lengthen noncritical wires as ex-

pected when given wire weights. Furthermore, the reduction in HPWL for critical wires

is obviously greater than what rewiring alone can achieve, since we alternately modify

placement and netlist structure. However, this actually increases the optimization poten-

tial of rewiring for both noncritical and critical wires. Thus, symmetry-based rewiring is

6http://www.openedatools.org/projects/oagear/

http://www.openedatools.org/projects/oagear/

111

M
et

aP
l/

C
ap

o
M

et
aP

l/
C

ap
o/

R
ew

ir
e

Pl
ac

em
en

t
+

po
st

pr
oc

Pl
ac

em
en

t
+

po
st

pr
oc

Be
nc

hm
ar

k
Ti

m
e

(s
)

H
PW

L
%

Ti
m

e(
s)

H
PW

L
%

%

st
ep

pe
rm

ot
or

dr
iv

e
0.

85
1.

08
5e

07
0.

81
4

0.
91

1.
08

5e
07

-0
.0

38
0.

49
3

sa
sc

2.
52

3.
65

4e
07

0.
36

4
2.

63
3.

64
3e

07
0.

29
5

0.
54

1

ac
97

_c
tr

l
89

.7
3

1.
09

6e
09

0.
27

7
95

.1
6

1.
09

5e
09

0.
11

9
0.

31
5

us
b_

fu
nc

t
10

0.
38

1.
50

1e
09

0.
47

2
10

4.
99

1.
49

7e
09

0.
28

6
0.

55
0

pc
i_

br
id

ge
32

13
9.

69
2.

06
4e

09
0.

30
6

14
7.

85
2.

05
7e

09
0.

31
8

0.
47

4

ae
s_

co
re

17
0.

39
2.

44
0e

09
0.

48
3

18
2.

65
2.

42
8e

09
0.

47
7

0.
73

0

w
b_

co
nm

ax
30

4.
19

6.
54

7e
09

0.
30

8
31

4.
21

6.
53

2e
09

0.
23

6
0.

42
6

et
he

rn
et

71
8.

77
8.

22
3e

09
0.

51
4

75
7.

78
8.

17
1e

09
0.

63
1

0.
80

7

de
s_

pe
rf

11
57

.3
6

1.
19

6e
10

0.
34

8
12

42
.3

6
1.

19
4e

10
0.

16
7

0.
39

6

vg
a_

lc
d

20
06

.9
0

2.
39

9e
10

0.
35

0
21

63
.9

3
2.

37
8e

10
0.

89
2

1.
00

2

O
ve

ra
ll

46
90

.8
0

5.
78

6e
10

0.
37

4
50

12
.4

6
5.

75
4e

10
0.

56
2

0.
72

8

Ta
bl

e
6.

2:
In

te
gr

at
io

n
of

re
w

ir
in

g
in

to
M

et
aP

l/
C

ap
o

112

Placement + postproc

Benchmark Noncrit HPWL Crit HPWL Noncrit % Crit %

steppermotordrive 1.039e07 4.526e05 0.786 1.157

sasc 3.506e07 1.479e06 0.367 0.216

ac97_ctrl 1.035e09 6.043e07 0.260 0.451

usb_funct 1.391e09 1.103e08 0.468 0.391

pci_bridge32 1.916e09 1.475e08 0.257 0.671

aes_core 2.302e09 1.378e08 0.436 0.917

wb_conmax 5.799e09 7.481e08 0.201 0.748

ethernet 7.750e09 4.733e08 0.331 1.044

des_perf 1.072e10 1.239e09 0.330 0.377

vga_lcd 2.216e10 1.826e09 0.151 1.909

Overall 5.312e10 4.744e09 0.246 1.118

Table 6.3: Timing-driven postplacement rewiring using weighted wires

equally applicable whether wire weights are given to the placer or not.

6.6.4 Industrial Designs

To evaluate our tree restructuring algorithm, we also performed postplacement rewiring

on a variety of industrial designs. We were unable to run MetaPl/Capo on these de-

signs, and therefore only present postplacement results. The designs were synthesized

and placed with a commercial tool; we ran our algorithm afterwards on the placed de-

signs on an 3.2GHz Intel Xeon processor. Column 5 in Table 6.5 shows the improvement in

wirelength assuming all wires have unit weight. We also ran our algorithm giving higher

weight (20) to the 5% most critical wires. Column 10 shows the improvement in wirelength

for critical wires. As the results show, our algorithm is scalable to very large designs; we

expect that integration into a placer will result in even better wirelength improvement.

6.7 Conclusion

In this chapter we presented an approach to wirelength optimization based on exploiting

functional symmetries, in which a set of wires may be permuted without changing func-

113

M
et

aP
l/

C
ap

o
M

et
aP

l/
C

ap
o/

R
ew

ir
e

Pl
ac

em
en

t
+

po
st

pr
oc

Pl
ac

em
en

t
+

po
st

pr
oc

Be
nc

hm
ar

k
N

on
cr

it
H

PW
L

C
ri

tH
PW

L
N

on
cr

it
%

C
ri

t%
N

on
cr

it
%

C
ri

t%
N

on
cr

it
%

C
ri

t%

st
ep

pe
rm

ot
or

dr
iv

e
1.

08
6e

07
2.

78
9e

05
0.

83
7

2.
31

4
0.

37
9

-6
.0

87
0.

76
3

-3
.8

43

sa
sc

3.
82

8e
07

1.
02

5e
06

0.
30

5
0.

34
1

0.
05

6
1.

56
6

0.
26

3
1.

84
0

ac
97

_c
tr

l
1.

14
7e

09
2.

48
3e

07
0.

24
8

1.
06

7
0.

13
6

0.
34

8
0.

31
0

1.
08

4

us
b_

fu
nc

t
1.

56
0e

09
5.

73
4e

07
0.

39
6

0.
68

6
0.

23
3

0.
17

3
0.

47
9

0.
73

1

pc
i_

br
id

ge
32

2.
26

9e
09

4.
62

7e
07

0.
31

7
1.

81
3

0.
55

3
0.

82
1

0.
67

8
2.

12
9

ae
s_

co
re

2.
54

8e
09

4.
80

6e
07

0.
43

5
1.

60
9

0.
44

0
0.

93
2

0.
66

6
2.

05
3

w
b_

co
nm

ax
7.

14
7e

09
3.

65
6e

08
0.

26
0

0.
37

1
0.

15
7

0.
10

2
0.

32
0

0.
39

6

et
he

rn
et

9.
25

5e
09

2.
77

9e
08

1.
03

9
1.

40
1

1.
55

0
1.

29
2

1.
73

6
1.

83
3

de
s_

pe
rf

1.
54

3e
10

3.
80

7e
08

0.
24

3
1.

11
6

0.
09

1
0.

66
7

0.
25

5
1.

55
6

vg
a_

lc
d

2.
96

6e
10

7.
00

1e
08

4.
06

7
3.

11
9

5.
59

3
4.

74
6

5.
90

9
5.

93
7

O
ve

ra
ll

6.
90

7e
10

1.
90

2e
09

2.
00

7
1.

76
7

2.
68

8
2.

14
2

2.
92

4
2.

98
1

Ta
bl

e
6.

4:
In

te
gr

at
io

n
of

re
w

ir
in

g
in

to
M

et
aP

l/
C

ap
o

w
it

h
w

ei
gh

te
d

w
ir

es

114

Be
nc

hm
ar

k
R

ew
ir

in
g

R
ew

ir
in

g
w

it
h

w
ei

gh
te

d
w

ir
es

N
am

e
C

el
ls

H
PW

L
Ti

m
e

(s
)

H
PW

L
(%

)
N

on
cr

it
H

PW
L

C
ri

tH
PW

L
Ti

m
e

(s
)

N
on

cr
it

%
C

ri
t%

86
25

60
46

2.
38

1e
08

0.
98

0.
98

2.
31

0e
08

7.
11

9e
06

1.
09

0.
91

2.
21

f4
9d

85
45

3.
80

0e
08

1.
12

1.
12

3.
56

8e
08

2.
31

8e
07

1.
19

1.
00

2.
49

d5
56

32
67

7
5.

18
1e

09
4.

66
0.

26
5.

03
6e

09
1.

45
4e

08
5.

57
0.

26
0.

17
31

f9
34

79
7

4.
36

8e
09

5.
78

0.
43

4.
05

5e
09

3.
12

9e
08

7.
14

0.
41

0.
44

61
07

46
55

2
6.

36
2e

09
5.

35
0.

85
6.

01
4e

09
3.

48
3e

08
6.

87
0.

78
1.

54
87

43
62

66
3

2.
85

0e
09

6.
51

0.
36

2.
77

2e
09

7.
76

8e
07

7.
87

0.
33

1.
43

23
63

63
75

7
1.

30
2e

10
15

.2
0

0.
16

1.
25

8e
10

4.
42

1e
08

16
.6

2
0.

16
0.

04
0a

bf
72

05
3

2.
81

9e
09

9.
99

0.
86

2.
58

5e
09

2.
34

4e
08

11
.8

9
0.

79
1.

29
c5

97
10

07
33

1.
04

9e
10

16
.2

3
0.

70
1.

01
9e

10
3.

07
7e

08
18

.9
5

0.
61

2.
89

7e
a7

10
78

71
1.

66
0e

10
11

.1
4

0.
27

1.
58

3e
10

7.
71

0e
08

13
.4

5
0.

24
0.

80
77

44
13

84
17

1.
02

9e
10

19
.3

8
0.

44
9.

90
1e

09
3.

87
8e

08
22

.4
5

0.
40

1.
14

94
d5

15
31

00
3.

28
6e

10
23

.3
3

0.
27

3.
16

6e
10

1.
20

2e
09

28
.5

0
0.

12
2.

36
ba

19
20

68
98

3.
21

3e
10

24
.4

8
0.

27
3.

06
1e

10
1.

52
0e

09
30

.1
6

0.
25

0.
59

b3
85

22
21

67
8.

55
0e

09
17

.0
7

0.
64

7.
67

7e
09

8.
72

8e
08

20
.5

0
0.

46
1.

89
ab

b0
36

38
27

1.
85

8e
10

35
.9

0
0.

40
1.

71
0e

10
1.

48
4e

09
42

.0
4

0.
39

0.
53

c6
7e

36
72

36
6.

63
4e

10
54

.4
0

0.
47

6.
07

8e
10

5.
55

8e
09

64
.9

1
0.

47
0.

37
bc

04
44

25
10

3.
42

0e
10

27
.3

2
0.

09
3.

05
8e

10
3.

62
5e

09
35

.3
7

0.
09

0.
02

O
ve

ra
ll

2.
65

3e
11

27
8.

83
0.

36
2.

47
9e

11
1.

73
2e

10
33

4.
55

0.
32

0.
66

Ta
bl

e
6.

5:
R

ew
ir

in
g

re
su

lt
s

fo
r

in
du

st
ri

al
de

si
gn

s

115

tionality. The symmetries we used are based on properties of AND trees, namely that any

acyclic restructuring of a tree implements the same function. These represent a large sub-

set of the total set of symmetries, and permit solution with polynomial time algorithms.

The efficiency of our algorithms permits us to integrate tree restructuring into an iterative

placer. The results demonstrate that the combination achieves better wirelength than the

two separately, with a small runtime penalty.

As a post-processing step, our proposed algorithms offer a fast and consistent

improvement in results. As an optimization step between placement iterations, our algo-

rithms allow the placer to implicitly explore a larger solution space, and with the exception

of the smallest benchmark, obtain better results.

In the next chapter, we address the use of symmetries in Boolean satisfiability.

116

7. Boolean Satisfiability

The SAT problem is an important NP-complete problem, with applications in optimiza-

tion and verification. Certain examples are known to require exponential time to solve

using the resolution principle [Urq87], but only polynomial time if we use the principle of

symmetry [Kri85]. Previous work introduces symmetry breaking predicates which allows

us to use the symmetry principle with an off-the-shelf SAT solver. We improve on pre-

vious work by identifying key properties of symmetry breaking predicates and provide

an algorithm to obtain strong predicates. Experimental results show that our algorithm is

efficient and leads to faster SAT solution times.

This chapter is organized as follows. First, we illustrate the basic idea behind

symmetry-breaking in SAT, and show where efficiency improvements are to be expected.

Then, we summarize the approach taken in previous work to break symmetries, and de-

scribe our improvements to enhance the effect of symmetry-breaking. Finally, we compare

the solution times for various SAT instances using different techniques for symmetry.

7.1 Introduction

Boolean satisfiability (SAT) is a well-studied NP-complete problem, permitting efficient

reductions from problems in optimization and verification [BCCZ99]. Modern SAT solvers

are based on the Davis-Putnam-Logemann-Loveland (DPLL) procedure [DP60, DLL62],

which uses the resolution rule to find a solution to a CNF formula or prove unsatisfiability.

117

By using a conflict-based mechanism to choose which resolution steps to apply, modern

SAT solvers are able to find solutions quickly to wide variety of problems [ZMMM01].

However, certain problems cannot be solved using a polynomial number of reso-

lution steps, for example instances of the pigeonhole problem [Hak85] for any fixed value

of n. The pigeonhole principle states that n + 1 pigeons cannot be placed into n holes

without two pigeons sharing a hole. The author of [Urq87] provides other examples of

problems which require exponential-size proofs.

Using the principle of symmetry, many formulas can be proven with exponen-

tially shorter proofs [Kri85]. For example, to prove the pigeonhole principle for some

value of n, we assume that pigeon 1 is placed into hole 1, as well as an inductive hypoth-

esis that n pigeons cannot be placed into n− 1 holes. To complete the proof, we can argue

that the result would be the same no matter which hole pigeon 1 is placed in—the n cases

are symmetric. The following example shows how symmetries can be applied for another

SAT formula.

Example 7.1. Let h be the function x1x2 + x2x3 + x3x4 + x4x1. Assuming that we are

interested in solving the satisfiability problem, we can divide B4 into two partitions:

those points in B4 for which h evaluates to false, and those for which h evaluates to true.

Given an oracle which provides points from any specified partition (but doesn’t know

which is which), we can simply ask the oracle for a point from each (Figure 7.1a) to solve

the SAT problem for h. Without such an oracle, we assume that each minterm lies in its

own class (Figure 7.1b), and use the DPLL procedure. (Note that in this chapter, x1 is

shown as the leftmost bit in any minterm.)

Symmetry allows us to establish a different partition. Let H denote h’s sym-

metries Sym(h) = 〈{(1, 2, 3, 4)}〉 = {(), (1, 2, 3, 4), (1, 3)(2, 4), (1, 4, 3, 2)}. Recall that by

definition, h(x) = h(xπ) for any π ∈ H. Then given x = 0001 and π = (1, 2, 3, 4), x and

xπ = 1000 may be placed into one equivalence class, since h(x) = h(xπ). By exhausting

all permutations from H, we define the partitions shown in Figure 7.1c. Thus, to check

satisfiability for h, it suffices to check h(x) for x ∈ {0000, 0100, 1001, 1010, 0111, 1111} or

for any other six representatives from the equivalence classes.

Given a SAT formula and its symmetries, the problem we are looking to solve is

the enumeration of minterms from each of the equivalence classes. One way to do this is

to extend a constraint solver to handle a “symmetry rule” in addition to a resolution rule

118

0000
0001
0101

1000
1010

0100 0010

0011
0111
1111

1001
1011

1100
1101

0110
1110

(a) Coarsest equivalence

classes (h and h̄)

0000

0001 0101

1000

1010

0100

0010

0011 0111 1111

1001

1011

1100

1101

0110 1110

(b) Finest equivalence classes

(minterms)

0000

1111

0001 1000 0100 0010π

0101 1010π

π π

0011 1001 1100 0110π π π

0111 1011 1101 1110π π π

(c) Classes formed from symmetry π = (1, 2, 3, 4)

Figure 7.1: Equivalence classes for the satisfiability problem of

h = x1x2 + x2x3 + x3x4 + x4x1

0000

1111

0001 1000 0100 0010

0101 1010

0011 1001 1100 0110

0111 1011 1101 1110

Figure 7.2: SBP (x̄1 ∨ x2) ∧ (x̄3 ∨ x4) removes 7
16 of the search space

119

and any other inference rules [BFP89a]. This approach is direct and effective, but such an

approach may not be able to exploit ongoing advances in SAT solvers.

An alternative approach is to encode symmetries as ordinary constraints to be

given to an off-the-shelf SAT solver. These so-called “symmetry breaking predicates”

(SBPs) prevent the solver from exploring the entirety of the search space by evaluating

to false for some (but not all) elements from each equivalence class. The runtime savings

comes from the assumption that the original formula evaluates to false for some of these

same minterms as well, though the solver takes longer to show this for the original SAT

formula than it does to evaluate the SBPs—the SBPs provide a shortcut to bypass portions

of the search space.

Example 7.2. Given a complex SAT formula φ with the same symmetries as before

(Sym(φ) = 〈{(1, 2, 3, 4)}〉), we can instead provide the SAT solver with a new formula

φ′ = φ∧ ψ where ψ = (x̄1 ∨ x2)∧ (x̄3 ∨ x4). The SBP ψ is valid because it permits at least

one element from each equivalence class (Figure 7.2). If we assume a simplistic model

of the SAT solver whereby solution time is linear with respect to the size of the search

space, we can conclude that our SBP reduces solution time by 7
16 .

The penalty of the SBP approach is that many predicates may be required to break

all symmetries of a formula, which defeats the purpose of using SBPs—the basic premise

is that it is more efficient for a SAT solver to process the SBPs than it is to process the

original formula. Thus, there is a trade-off between emitting too many SBPs (causing a

corresponding slowdown in the SAT solver), or emitting too few and allowing the SAT

solver to perform excess search.

The SBP approach consists of three steps: 1) finding the set of symmetries, 2)

identifying good symmetries to break, and 3) encoding the symmetries as CNF constraints.

With recent advances in solving graph automorphism [DLSM04, DSM08], the first step is

effectively solved. The last step is also a solved problem [ASM06]. Our work focuses on

the second step, for which no clear strategy has been proposed. We develop a procedure to

find a small set of symmetries, which when broken, remove a comparatively large portion

of the search space.

120

7.2 Preliminaries and Previous Work

The basic framework for constructing symmetry breaking predicates was first described

in [CGLR96]. The task is divided into three subproblems:

1. find automorphisms/symmetries G of a CNF formula, using for example

Nauty [McK81] or Saucy [DLSM04]

2. select a set of permutations in G

3. emit predicates for those permutations

The authors propose three methods to select symmetries: 1) choose generators from Nauty,

2) choose nodes from a “symmetry tree”, and 3) arbitrarily. Given a permutation π and an

ordering of the variables V = x1, x2, . . . the following set of constraints breaks symmetries

between variable assignments by imposing a lexicographical ordering among points in Bn:

v1 ≤ vπ
1

v1 = vπ
1 =⇒ v2 ≤ vπ

2

(v1 = vπ
1) ∧ (v2 = vπ

2) =⇒ v3 ≤ vπ
3

...

where x ≤ y is shorthand for (x̄ ∨ y). Using the same ordering of the variables, we emit a

set of constraints for each permutation as desired. The constraints for any given permuta-

tion are kept linear in length by introducing auxiliary variables ei:

e1 ∧
∧

i

((ei =⇒ vi ≤ vπ
i) ∧ (ei ∧ (vi = vπ

i) =⇒ ei+1))

We can simplify further using the fact that (x ≤ y) implies that (x = y) ≡ (x = 1∨ y = 0).

Afterwards, [ARSM03] extends the approach to support phase shift symme-

tries, i.e. symmetries that involve the swapping of literals with different polarities. Thus

the symmetry (x0, x̄0)(x1, x2) of a multiplexer x0x1 + x̄0x2 is supported. The authors

of [ASM06] describe various optimizations which apply if, for example, lπ
i = li or lπ

i = l̄i.

As a consequence, the size of the SBP is linear with respect to the number of moved points

of π.

The authors of [LR02] and [Roy07] present theoretical bounds on the number of

predicates required to break all symmetries, assuming G satisfies certain properties (which

121

may not necessarily be the case). The practical application of that work is limited, because

the number of additional predicates may outweigh the benefit of breaking all symmetries,

since the runtime of a SAT solver is dependent on the number of predicates.

The authors of [KP08] present a complete characterization of the symmetry-

induced equivalence classes for formulas which consist entirely of so-called packing or

partitioning constraints. In contrast, we consider SAT formulas which may consist of arbi-

trary clauses.

7.3 Strong Symmetry Breaking Predicates

For a permutation π and sequence V, let P(π, V) denote the symmetry breaking predicate

as defined previously, where the variables are assumed to be ordered according to V.

P(π, V) =
n∧

i=1

i−1∧
j=1

(vj = vπ
j) =⇒ vi ≤ vπ

i


It is assumed that we will use auxiliary variables to achieve a linear-length encoding, but

they are not shown to simplify the presentation. As before, we adopt the notational con-

venience whereby we use the same symbol to denote a function/expression as well as the

set of minterms in Bn for which the expression evaluates to true.

To reiterate the objective of this chapter, our goal is: given a formula f and its

symmetries Sym(f), determine a set of permutations T ⊆ Sym(f) and variable ordering

V such that P(T, V) consists of a small number of constraints and |P(T, V)| is small. The

following conjecture directs the heuristics which we apply toward this problem:

Conjecture. Given a set of permutations T over the set of points {1, 2, . . . , n}, let G denote the

group generated by T: G = 〈T〉. Suppose that there exists a sequence of points β such that β and

T form a base and strong generating set (SGS) for G. Then there exists an ordering V such that V

and T form a base and SGS for G, and |P(T, V)| is minimal over all n! orderings.

Thus, one possible (but very inefficient) strategy for solving our problem is to

arbitrarily choose some T ⊆ Sym(f) and then find an ordering V which makes T an SGS.

The next example illustrates the effect of variable ordering on the efficiency of SBPs—given

two different variable orderings V and V ′, |P(T, V)| < |P(T, V ′)|.

122

Example 7.3. Let T = {(1, 3), (1, 2)(3, 4)}, representing the symmetries of function

x1x3 + x2x4. It can be shown that the equivalence classes of B4 under 〈T〉 are the same

as those shown in Figure 7.1c, i.e. there are six classes.

Under the variable ordering of V = x2, x1, x3, x4, T forms an SGS with stabilizer

chain 〈T〉 ⊇ 〈{(1, 3)}〉 ⊇ {()}. P(T, V) consists of the following constraints:

(x1 ≤ x3)(x2 ≤ x1)(x2 = x1 =⇒ x3 ≤ x4)

The only points in Bn which satisfy P(T, V) are the six minterms 0000, 0001, 0011, 1010,

1011, and 1111—one for each class. In other words, |P(T, V)| is minimal among the 24

orderings of xi.

Assuming a different ordering V ′ = x1, x2, x3, x4, we arrive at the following

constraints P(T, V ′):

(x1 ≤ x3)(x1 ≤ x2)(x1 = x2 =⇒ x3 ≤ x4)

It can be verified that |P(T, V ′)| = 8, with P(T, V ′) consisting of the minterms 0000, 0001,

0011, 0100, 0101, 0110, 0111, 1111.

Since we know of no efficient algorithm to determine a base which makes a gen-

erating set a strong generating set, our strategy is to proceed in the opposite direction—first

determine a variable ordering V, then find an SGS T, and finally refine our choices for T

and V.

7.3.1 Motivation for Strengthening

Before proceeding further, it would be prudent to evaluate the output of an automorphism

finder (step 1 of the SBP approach) to determine whether it can be used directly to construct

effective SBPs.

In [ARSM03], the authors acknowledge that certain generators are better than

others, e.g. {(1, 2), (2, 3), (3, 4)} are better than {(1, 2), (1, 2, 3, 4)}. They note that the

software program they use (Saucy) is “lucky” and produces good generators for T. One

can verify that this does not always occur, for example if the order of the variables are

changed.

123

Example 7.4. Consider the following instance of the pigeonhole problem for n = 3.

Pigeon i is in hole j iff variable x3(j−1)+i is true.

(x1 ∨ x2 ∨ x3) (x̄1 ∨ x̄4) (x̄2 ∨ x̄5) (x̄3 ∨ x̄6)

(x4 ∨ x5 ∨ x6) (x̄1 ∨ x̄7) (x̄2 ∨ x̄8) (x̄3 ∨ x̄9)

(x7 ∨ x8 ∨ x9) (x̄1 ∨ x̄10) (x̄2 ∨ x̄11) (x̄3 ∨ x̄12)

(x10 ∨ x11 ∨ x12) (x̄4 ∨ x̄7) (x̄5 ∨ x̄8) (x̄6 ∨ x̄9)

(x̄4 ∨ x̄10) (x̄5 ∨ x̄11) (x̄6 ∨ x̄12)

(x̄7 ∨ x̄10) (x̄8 ∨ x̄11) (x̄9 ∨ x̄12)

By providing the graphical representation of this CNF to Saucy, we obtain the generators

T = {(1, 4)(2, 5)(3, 6), (1, 2)(4, 5)(7, 8)(10, 11), (2, 3)(5, 6)(8, 9)(11, 12), (4, 7)(5, 8)(6, 9),

(7, 10)(8, 11)(9, 12)}. Assuming V = x1, x2, . . . , x12, P(T, V) is satisfied by only 87

minterms, which is a large reduction from the 4096 minterms in B12.

If we rewrite the CNF using a different assignment of variables for pigeons, i.e.

using an ordering V ′ = x3, x7, x12, x11, x1, x6, x9, x2, x8, x5, x4, x10

(x3 ∨ x7 ∨ x12) (x̄3 ∨ x̄11) (x̄7 ∨ x̄1) (x̄12 ∨ x̄6)

(x11 ∨ x1 ∨ x6) (x̄3 ∨ x̄9) . . .

(x9 ∨ x2 ∨ x8) (x̄3 ∨ x̄5) . . .

(x5 ∨ x4 ∨ x10) . . .

then we obtain a different set of generators from Saucy: T′ =

{(1, 12, 11, 7, 6, 3)(2, 10, 9, 4, 8, 5), (1, 11)(2, 9)(3, 7)(4, 5), (1, 6)(2, 8)(4, 10)(7, 12),

(1, 2)(6, 8)(9, 11), (2, 4)(5, 9)(8, 10)}. This time, Saucy is not as “lucky” as before.

Using either variable ordering V or V ′ yields inferior SBPs, since |P(T′, V)| = 394 and

|P(T′, V ′)| = 122.

This illustrates the need for algorithms to determine good values for T and V.

In the next subsection, we explore and model the effects that different permutations and

variable ordering have on the efficiency of SBPs.

124

7.3.2 Desired Traits of SBPs

Besides the property of V and T forming a base and SGS, two traits of P(T, V) contribute

to larger reductions in search space. These are: transitivity among the inequalities, and

small sets of moved points for each associated permutation.1

Transitivity

Transitivity among inequalities, i.e. constraints of the form (x1 ≤ x2)(x2 ≤ x3), increases

the pruning power over constraints with no transitivity, i.e. (x1 ≤ x2)(x1 ≤ x3). The first

pair permits 4 minterms from B3 while the second pair permits 5. The difference grows

exponentially as there are more constraints—the number of minterms in Bk which satisfy

k− 1 transitive constraints is k + 1∣∣∣∣∣ k∧
i=2

(xi−1 ≤ xi)

∣∣∣∣∣ = k + 1

while the number of minterms which satisfy an equal number of non-transitive constraints

is 2k−1 + 1 ∣∣∣∣∣ k∧
i=2

(x1 ≤ xi)

∣∣∣∣∣ =

∣∣∣∣∣ k∧
i=2

(xi ≤ x1)

∣∣∣∣∣ = 2k−1 + 1

The cost model can be generalized from simple “serial” and “parallel” sets of

inequalities to those which form a tree. Given a set of inequalities xi ≤ xj, we construct a

graph with a directed edge (i, j) for each inequality xi ≤ xj. Assuming that the graph is a

tree, the following rules describe how to compute |∧(xi ≤ xj)|.

Proposition 1. Given a tree of n nodes representing a system of inequalities over variables in B,

the number of points in Bn which satisfy the inequalities is p(r), assuming the tree is rooted at r:

• For a leaf node i, p(i) = 2.

• For a non-leaf node i, p(i) = Πj∈child(i)p(j) + 1

Proof. Since each node represents a fresh Boolean variable, each leaf node represents the

two minterms {0, 1} in its own independent B1 space.

For a non-leaf node i, there are two possible cases: xi = 0 and xi = 1. When

xi = 0, each of i’s children is an independent Boolean space unconstrained by xi, and

1One may argue that these are a byproduct of the property of having a base and SGS.

125

1

5 2 3 4 7 10

9 6 8 11

12 2

2 2 2

2 2 2 2 2

2+1=3

25×2×2×2×2×2+1=801

3×2×2×2+1=25

Figure 7.3: A tree of inequalities which permits 801 minterms from B12

the values for each of variables represented by i’s descendants may be drawn from its

respective space. However, if xi = 1 then the variables for all of i’s descendants must be 1

as well.

Example 7.5. The following set of inequalities

P =

 ∧
i∈{5,2,3,4,7,10}

(x1 ≤ xi)

 ∧
 ∧

i∈{9,6,8,11}
(x5 ≤ xi)

 ∧ (x9 ≤ x12)

is represented graphically by the tree in Figure 7.3. By applying the above set of rules,

we find that |P| = p(1) = 801.

Moved Points

The other factor which affects the quality of P(T, V) is the set of moved points for each

π ∈ T.2 Assuming the variable ordering V = x1, x2, . . . , xn, the fraction of Bn pruned by

the constraint
k−1∧
i=1

(xi = xπ
i) =⇒ xk ≤ xπ

k

within the predicate P(π, V) (assuming that xk 6= xπ
k) depends on the number of moved

points among {x1, x2, . . . , xk−1}.
2Recall that the set of moved points for π is the set {i : iπ 6= i}.

126

Proposition 2. Any irredundant set of k equalities of the form xi = xj constrains Bn space by a

factor of 2−k.

Proof. Note that a cycle of equalities x1 = x2, x2 = x3, . . . , xl = x1 contains one redundant

equality, and constrains Boolean space by 21−l . A set of k irredundant equalities either

forms a cycle of length k + 1, or a set of m disjoint cycles whose lengths add to k + m.

Thus, each successive constraint in the series P(π, V) prunes an ever decreasing

portion of Boolean space, since each constraint is predicated on a larger set of equalities.

Example 7.6. Suppose π = (1, 2)(4, 3, 5) and V = x1, x2, x3, x4, x5. The predicate P(π, V)

consists of the following constraints which individually prune some fraction of Bn:

x1 ≤ x2 1/4 of Bn

(x1 = x2) =⇒x2 ≤ x1 0 (end of cycle)

(x1 = x2) =⇒x3 ≤ x5 1/8

(x1 = x2)(x3 = x5) =⇒x4 ≤ x3 1/16

(x1 = x2)(x3 = x5)(x4 = x3) =⇒x5 ≤ x4 0

Altogether, P(π, V) prunes 7/16 of Boolean space.

Proposition 3. For any permutation π and variable ordering V, the predicate P(π, V) prunes

Boolean space by at most 1/2.

Proof. Suppose π does not map any variable xi to its negation x̄i. Since each constraint

within P(π, V) is orthogonal, and each successive constraint has half the pruning power

of the previous one, we have the infinite series ∑∞
i=2 2−i = 1/2. In particular, if π moves m

points and consists of c cycles, then |P(π, V)| = (1/2 + 1/21+m−c)2n.

If π maps a variable to its negation, then P(π, V) contains a constraint

k−1∧
i=1

(xi = xπ
i) =⇒ xk ≤ x̄k

and |P(π, V)| is precisely (1/2)2n.

These lead us to conclude on two “rules of thumb” regarding T and V. First, it

is beneficial to reduce the number of moved points for each permutation π, because each

127

additional constraint in P(π, V) leads to diminishing returns. Second, for any variable xj,

there should exist some π such that xj 6= xπ
j and that there are few moved points that

precede xj in the ordering V, i.e. {xi : (xi 6= xπ
i) ∧ (xi ≺V xj)} is small. This produces the

constraint ∧
(small number of equalities) =⇒ xj ≤ xπ

j

for each xj, and more effectively distributes the pruning effect for the permutations in T.

7.4 Algorithms

In this section describe four steps which may be applied in order to derive a T and V for

which P(T, V) consists of relatively few constraints, for for which |P(T, V)| is small.

1. construct Jerrum branching

2. order base variables to maximize chaining

3. simplify permutations

4. establish ordering among non-base variables

7.4.1 Jerrum Branching

The first step to finding good values for T ⊆ G and V is to construct a Jerrum branching

for the group G using some initial ordering of the variables. This provides the following:

• The labels of the branching are a strong generating set for G.

• By creating a branching/forest, rather than a dag, transitivity among the correspond-

ing constraints is maximized. This is explained in the next example.

• The pruning power of the resulting permutations can be estimated using the cost

model developed in the previous subsection.

The following example illustrates the second point.

128

Example 7.7. Consider the generating set T = {(1, 3), (1, 2)(3, 4)} as before, with V =

x4, x1, x2, x3. P(T, V) thus consists of

(x1 ≤ x3)(x4 ≤ x3)(x4 = x3 =⇒ x1 ≤ x2)

In this case, |P(T, V)| = 9, despite V and T forming a base and SGS, because of the

lack of transitivity among the first two constraints. Note that the permutations in T do

not describe a branching, since they would correspond to edges from 1 and 4 to 3. By

applying the algorithm to construct a Jerrum branching, we obtain the permutations

T′ = {(1, 3), (1, 2, 3, 4)} leading to these constraints for P(T′, V):

(x1 ≤ x3)(x4 ≤ x1)(x4 = x1 =⇒ x1 ≤ x2)((x4 = x1)(x1 = x2) =⇒ x2 ≤ x3)

where |P(T′, V)| = 7. While both T and T′ form an SGS with base V, the transitivity

among the constraints in P(T′, V) allows them to prune a larger portion of Bn.

Implementation Issues

Since Jerrum’s algorithm requires O(n5) time, it is cannot be used for large values of n.

Fortunately, circuit symmetries and symmetries of SAT formulas usually have a block-

like structure. In other words, any permutation g ∈ G can be described by the product

g = h1h2 . . . hk for hi ∈ Hi where each group Hi acts on a different set of points. There-

fore, we simply apply Jerrum’s algorithm for each Hi. For simplicity, the remainder of the

presentation assumes a single branching for G.

7.4.2 Base Change

Having constructed a Jerrum branching with labels T and variable ordering V, we can

compute an upper bound on P(T, V) using the cost model developed previously. If R is

the set of root nodes in the branching, then

|P(T, V)| ≤ Πr∈R p(r)

The structure of the branching determines the right-hand side of the above inequality, and

the choice of V determines the structure of the Jerrum branching. Thus, our next task is to

determine a good ordering V.

129

1 2 3

4 5 6

7 8 9

10 11 12

(a)

1 2 3

4 5 6

7 8 9

10 11 12

(b)

1 2 3

4 5 6

7 8 9

10 11 12

(c)

1 2 3

4 5 6

7 8 9

10 11 12

(d)

Figure 7.4: Stabilizer chain with base 1, 5, 9

Recall that a base B is called reduced if each group in the stabilizer chain relative

to B is a strict subset of its predecessor. Revisiting the pigeonhole problem in Example 7.4,

we find the symmetries of the CNF formula to be

G = 〈{

(1, 4)(2, 5)(3, 6),

(4, 7)(5, 8)(6, 9),

(7, 10)(8, 11)(9, 12),

 swap variables for pigeons/rows

(1, 2)(4, 5)(7, 8)(10, 11),

(2, 3)(5, 6)(8, 9)(11, 12)

 swap variables for holes/columns

}〉

where the same group can be viewed graphically as the various permutations of rows and

columns of the grid in Figure 7.4a. The stabilizer of 1 in G is

G{1} = 〈{(4, 7)(5, 8)(6, 9), (7, 10)(8, 11)(9, 12), (2, 3)(5, 6)(8, 9)(11, 12)}〉

as shown in Figure 7.4b. The series of diagrams in Figure 7.4 illustrate the stabilizer chain

for G using base B = 1, 5, 9. This sequence is a reduced base since

G ⊃ G{1} ⊃ G{1,5} ⊃ G{1,5,9} = {()}

The base 1, 5, 6, 9 would not be reduced because G{1,5} = G{1,5,6}. This fact can be readily

seen from Figure 7.4c, as square 6 may only map to itself. Another reduced base for G

is the sequence 1, 2, 5, 9, shown graphically in Figure 7.5. We stress that this base is not

minimal (since 1, 5, 9 is a base), but is reduced since the following holds:

G ⊃ G{1} ⊃ G{1,2} ⊃ G{1,2,5} ⊃ G{1,2,5,9} = {()}

130

1 2 3

4 5 6

7 8 9

10 11 12

(a)

1 2 3

4 5 6

7 8 9

10 11 12

(b)

1 2 3

4 5 6

7 8 9

10 11 12

(c)

1 2 3

4 5 6

7 8 9

10 11 12

(d)

1 2 3

4 5 6

7 8 9

10 11 12

(e)

Figure 7.5: Stabilizer chain with base 1, 2, 5, 9

1 5 9 2 3 4 7 10 6 8 11 12

base points

(a) Base B = 1, 5, 9

1 2 5 9 4 6 7 10 3 8 11 12

base points

(b) Base B = 1, 2, 5, 9

Figure 7.6: Jerrum branchings for two bases

Each of these two bases leads to a different Jerrum branching, shown in Figure 7.6 with la-

bels omitted. Using Proposition 1, we can calculate upper bounds for SBPs generated from

the respective labels and variable orders. The upper bound obtained for base 1, 5, 9 is 801

minterms, shown in Figure 7.3, while the upper bound for base 1, 2, 5, 9 is 721 minterms.

We have thus shown that a judicious choice for the base can lead to better SBPs.

Using Proposition 1 for a first-order approximation, we seek to minimize the

number of leaf nodes in our Jerrum branching as a heuristic to obtain good SBPs. In other

words, we want to maximize the number of non-leaf nodes. Each non-leaf node corre-

sponds to a point in a reduced base, so this heuristic is equivalent to finding a maximal-

length reduced base.

131

A simple greedy heuristic for finding a short base is described in [Bla92]—we

repeatedly pick βi from a largest orbit in G(i−1). Then to find a long base, we reverse

the heuristic and repeatedly pick βi from a smallest nontrivial orbit in G(i−1). Each mod-

ification to the Jerrum branching can be performed in O(n3) time using the algorithm

from [BFP89b].

Example 7.8. Assuming the same group G as in the previous pigeonhole example, we

calculate the orbits of G to find the first base point. All points are in the same orbit, so

we choose 1 for the first base point. Next, we calculate the orbits of G{1} to determine

the second base point. As can be seen in Figure 7.5b, the orbits of G{1} are {{1}, {2, 3},
{4, 7, 10}, {5, 8, 11}, {6, 9, 12}}. Thus, we choose 2 (or 3) for the second base point. We

continue in this manner until we arrive at the trivial group.

7.4.3 Permutation Simplification

Remark. In this and the following subsection, we assume the natural ordering V =

x1, x2, . . . , xn to remove a layer of indirection and to match the convention in [Jer86]. In the

case that V is not the natural ordering, we rewrite T (and all other references to variables in

the SAT problem) so that it is. For example, T = {(3, 4), (1, 2, 5)} with V = x5, x1, x2, x3, x4

becomes T′ = {(4, 5), (2, 3, 1)} and V ′ = x1, x2, x3, x4, x5. Formally, supposing ν maps i to

vi, we obtain conjugate permutations T′ = {νπν−1 : π ∈ T}.
In subsection 7.3.2, we established that for a given permutation π ∈ G, if kπ 6= k,

then the predicate P(π, V) contains the following constraint

k−1∧
i=1

(xi = xπ
i) =⇒ xk ≤ xπ

k

whose pruning power depends on the number of points i < k which are moved by π—the

more points which are moved, the less powerful the constraint.

Thus, we seek to reduce the number of moved points for π. Here we try to “undo”

the movement of k by π. Suppose that l = kπ and there exists a permutation σk,l ∈ G such

that kσk,l = l. The product πσ−1
k.l is also in group G, and the movement of k is undone,

that is kπσ−1
k.l = k. Furthermore, suppose iσk,l = i for all i < k. Then P(σk,l , V) will already

contain the constraint xk ≤ xl , making the above (. . . =⇒ xk ≤ xl) redundant.

The algorithm to simplify a permutation π is shown in Algorithm 9.

132

• We attempt to undo moves that correspond to paths in the Jerrum branching, because

it is easy to identify a permutation π′ where lπ′ = k. Furthermore, the first moved

point of π′ is guaranteed to be no smaller than i.

• The algorithm maintains the invariant that i is the first moved point of π, and iπ = j.

This implies that we can process the edges of a Jerrum branching, and the results will

also form a valid branching.

• The permutation π′ on lines 9 and 19 is assumed to have been processed by

SIMPLIFY-PERM.

• The check on line 22 is needed to guarantee termination.

We apply SIMPLIFY-PERM on the labels of a branching in topological order from the leaves

(Algorithm 10). If SIMPLIFY-PERM results in a permutation which moves fewer points, we

keep the result.

Example 7.9. Consider the group G generated by T = {(1, 3)(2, 4, 5), (2, 4, 5), (2, 5, 4)},
shown in Figure 2.2. Let π = (1, 3)(2, 4, 5). The procedure SIMPLIFY-PERM(π, G) first

tries to reverse any movement on 2, for which π′ = (2, 4, 5)−1 = (2, 5, 4). Since 3π′ = 3

and 1ππ′ = 3, we replace π by the simpler ππ′ = (1, 3).

7.4.4 Variable Reordering

In subsection 7.4.2, we maximized the estimated pruning power of the generators T of

a group G by finding a base of maximal length. As a side effect, the base points occur

as the initial points in the ordering V, meaning that most of the pruning by P(T, V) is

concentrated on the variables corresponding to the base points.

The general idea to improve the ordering is as follows. Suppose we have two

permutations π and π′, and kπ′ = k. Then we can move k up in the ordering V, resulting

in a V ′ for which P(π′, V) = P(π′, V ′). However, it is likely that there is less overlap in the

portions of Bn which satisfy the constraints:

|P(π, V ′) ∩ P(π′, V ′)| < |P(π, V) ∩ P(π′, V)|

that is,

|P({π, π′}, V ′)| < |P({π, π′}, V)|

133

Algorithm 9 SIMPLIFY-PERM(π, G)
1: i← first moved point of π
2: j← iπ

3: for k← i + 1 to n do
4: l ← kπ { note that both l ≥ i and k ≥ i }
5: if k = l or k = j and l = i then
6: skip, nothing to undo
7: else if k < l and there exists a path from k to l in G then
8: if there exists an edge σk,l then
9: π′ ← σ−1

k,l
10: else
11: π′ ← τ−1

l τk
12: π′ ← SIMPLIFY-PERM(π′, G)
13: end if
14: if jπ′ = j then
15: π ← ππ′ { now kπ = k }
16: end if
17: else if k > l and there exists a path from l to k then
18: if there exists an edge σl,k then
19: π′ ← σl,k
20: else
21: π′ ← τ−1

l τk
22: if l > i then
23: π′ ← SIMPLIFY-PERM(π′, G)
24: end if
25: end if
26: if jπ′ = j then
27: π ← ππ′ { now kπ = k }
28: end if
29: end if
30: end for{ i is still the first moved point of π, and iπ is still j }
31: return π

Algorithm 10 SIMPLIFY-PERMS(G)
1: for i← n downto 1 do
2: for each edge σi,j do
3: π ← SIMPLIFY-PERM(σi,j, G)
4: if π moves fewer points than σi,j then
5: σi,j ← π
6: update τ
7: end if
8: end for
9: end for

134

Example 7.10. Suppose T = {(1, 4)(2, 5)(3, 6)(7, 8), (2, 6), (3, 5)} and V = x1, x2, . . . , x8.

The pruning power of this combination is |P(T, V)| = 96. Little pruning is performed

on x7 and x8 because they occur last in the ordering V. Some improvement can be

attained by moving 7 and 8 up in the ordering—for V ′ = x1, x7, x8, x2, x3, x4, x5, x6,

|P(T, V ′)| = 86. However, we can do better using V ′′ = x1, x4, x7, x8, x2, x6, x3, x5, for

which |P(T, V ′′)| = 78.

The algorithm to find a new ordering is described in Algorithm 11. For any k

which is not a base point, BUBBLE-POINTS finds the smallest i such that G(i) stabilizes k.

The permutations T remain an SGS for 〈T〉 as long as k appears after i—BUBBLE-POINTS

puts k after i and before the next point in the reduced base (if any).

Algorithm 11 BUBBLE-POINTS(T)
1: for k← 1 to n do
2: sk ← 0
3: end for
4: for each π ∈ T do
5: i← first moved point of π
6: for k← 1 to n do
7: if kπ 6= k and sk < i then
8: sk ← i
9: end if

10: end for
11: end for
12: V ← 1, 2, . . . , n
13: stable-sort V using s as keys
14: return V

Example 7.11. Let T be the same as in the previous example. BUBBLE-POINTS(T) com-

putes s = 1, 2, 3, 1, 3, 2, 1, 1 and returns V = 1, 4, 7, 8, 2, 6, 3, 5.

7.5 Experimental Results

To test the effective of our proposed algorithms, we examined an assortment of SAT bench-

marks from synthesis and verification:

• ENGINE-UNSAT v1.0, PIPE-UNSAT v1.1, VLIW-UNSAT v2.0 from http://www.

miroslav-velev.com/sat_benchmarks.html. These examples all come from

microprocessor verification.

http://www.miroslav-velev.com/sat_benchmarks.html
http://www.miroslav-velev.com/sat_benchmarks.html

135

• DAC’02 benchmarks from http://www.aloul.net/benchmarks.html, which

are used in [ARSM03]. These consist of instances of pigeonhole problems, Urquhart

problems [Urq87], and instances from FPGA synthesis.

All experiments are performed on an Intel Xeon E5345 2.33GHz processor, and all runtimes

are reported in milliseconds. SAT formulas are solved using Minisat version 1.143. We

use as a baseline the approach described in [ASM06], which takes symmetry generators

from Saucy [DLSM04] and directly translates them into SBPs. Therefore, we do not report

the time required to find symmetries, nor do we report the time to solve any of the SAT

instances without SBPs.

Upon further inspection, we discovered that for the microprocessor verification

instances, all orbits are of size one or two. For example, the symmetries of one instance

may look like:

T = {(1, 2)(3, 4)(5, 6), (7, 8), (9, 10)(11, 12)}

G = 〈T〉

where x1 can only move to x2, x3 can only move to x4, etc. Note that T already forms a

strong generating set for G for any base. For all intents and purposes, T cannot be further

simplified nor strengthened. Thus, in our experiments, we focus on the DAC’02 suite of

SAT instances.

Given a SAT instance φ, we convert it into a graph and obtain symmetry gener-

ators from Saucy. From these generators, we evaluate six combinations of algorithms to

derive a set of SBPs P(T, V):

• “Baseline” — T consists of the symmetry generators, and V = x1, x2, . . . , xn.

• 4 (i.e., subsection 7.4.4) — T consists of the symmetry generators, and V is deter-

mined by BUBBLE-POINTS.

• 1 (i.e., subsection 7.4.1) — T consists of labels from a Jerrum branching, and V =

x1, x2, . . . , xn.

• 1,3 — T consists of labels from a Jerrum branching processed by SIMPLIFY-PERMS,

and V = x1, x2, . . . , xn.
3http://minisat.se/MiniSat.html

http://www.aloul.net/benchmarks.html
http://minisat.se/MiniSat.html

136

• 1,3,4 — T consists of labels from a Jerrum branching processed by SIMPLIFY-PERMS,

and V is determined by BUBBLE-POINTS.

• 1,2,3,4 — We find a maximal-length base for the symmetry group. T consists of labels

from a Jerrum branching processed by SIMPLIFY-PERMS, and V is determined by

BUBBLE-POINTS.

The results for the DAC’02 instances are shown in Table 7.1 as six pairs of columns. The

first number in each pair is the time to derive SBPs from symmetry generators, and the

second number is the time required by Minisat to solve φ ∧ P(T, V). A dash indicates that

Minisat is unable to solve the instance within 900 seconds. Furthermore the benchmarks

in Table 7.1 are divided into two sets: the instances in the top half are unsatisfiable, while

the instances in the bottom half are satisfiable. From these results, we can make a few

observations:

• Besides the Urquhart problems, every instance is easily solved using the baseline

SBPs.

• The Urquhart problems are difficult using the baseline SBPs, but trivial once we com-

pute a strong generating set.

• Finding a maximal-length base (subsection 7.4.2) greatly increases the time to gener-

ate SBPs.

In the next set of experiments, we take the same set of SAT instances, and create

25 variants of each in which the variables are randomly renumbered. We then provide

these instances to Saucy and again use the same six combinations of algorithms to derive

SBPs. The results are shown in Table 7.2—except for Urq5_5, the reported runtimes are

averages over the 25 variants. These results show:

• reordering the variables in V using BUBBLE-POINTS yields stronger SBPs on the chnl

and hole series of benchmarks, even without finding a strong generating set for T.

• on the same series of benchmarks, SIMPLIFY-PERMS and BUBBLE-POINTS greatly re-

duce the time required by Minisat (columns “1,3” and “1,3,4”).

• Base-length maximization as suggested in subsection 7.4.2 does not greatly affect the

SAT solution time (columns “1,2,3,4”).

137

Benchmark Baseline
SBP Strengthening

4 1 1,3 1,3,4 1,2,3,4

Urq3_5 0 140 0 132 8 0 8 0 8 4 4 0
Urq4_5 4 1400 4 1380 4 4 16 0 8 0 16 0
Urq5_5 4 311623 8 311891 24 4 28 4 28 4 56 4
Urq6_5 4 — 8 — 68 0 76 0 76 0 160 4
Urq7_5 8 — 12 — 156 0 156 8 168 4 344 0
Urq8_5 12 — 16 — 356 4 364 0 364 0 804 0
chnl10_11 0 0 0 0 112 32 136 16 132 20 316 16
chnl10_12 4 4 4 0 136 32 176 24 180 16 408 16
chnl10_13 4 0 8 8 164 32 208 20 220 24 484 20
chnl11_12 4 4 8 4 172 44 216 24 220 24 508 20
chnl11_13 4 4 12 4 200 56 272 28 276 24 624 32
chnl11_20 8 4 8 4 564 104 916 80 924 72 2052 64
hole7 8 0 0 4 8 4 4 4 8 0 8 4
hole8 0 4 0 0 8 4 12 4 12 4 12 0
hole9 0 0 0 0 20 12 24 8 20 0 32 4
hole10 0 8 0 0 24 16 32 8 44 8 44 12
hole11 0 0 0 4 40 24 60 16 56 12 76 12
hole12 0 0 8 0 56 24 92 20 92 16 120 24
fpga10_8 0 0 0 0 28 8 28 12 32 16 32 4
fpga10_9 0 4 4 0 20 4 24 4 20 4 28 0
fpga12_8 0 4 4 0 36 20 32 20 36 16 44 4
fpga12_9 0 4 0 8 36 12 28 8 32 8 44 8
fpga12_11 4 8 4 8 44 20 52 12 52 12 72 4
fpga12_12 0 0 0 8 92 28 96 36 96 28 120 20
fpga13_9 4 4 0 4 40 16 36 12 36 16 56 4
fpga13_10 4 4 4 8 48 16 44 12 48 12 68 4
fpga13_12 4 4 4 4 76 28 72 12 72 16 116 4
s3-3-3-1 8 28 8 32 120 192 120 188 128 188 176 240
s3-3-3-3 12 60 8 60 232 120 232 112 236 120 316 220
s3-3-3-4 12 52 4 52 144 204 140 208 152 200 220 40
s3-3-3-8 4 28 16 24 184 140 180 144 196 136 268 296
s3-3-3-10 8 124 12 128 228 228 224 228 244 228 296 120

Table 7.1: DAC’02 benchmarks with varying methods of symmetry breaking

138

• Overall, the combination “1,3,4” performs best over the entire set of SAT problems.

In summary, the baseline method of producing SBPs works well on every instance

in the DAC’02 benchmarks, with the exception of the Urq series. When the variables are

randomly renamed/reordered, Saucy produces poor symmetry generators for use with

the baseline method. However, applying our proposed algorithms allows us to construct

a useful set of SBPs.

7.6 Conclusion

In this chapter we explored various issues that arise when generating so-called “symme-

try breaking predicates” for Boolean satisfiability problems. We adapt the concepts of

stabilizer chains and strong generating sets from computational group theory to analyze

properties of potential predicates. These concepts enable efficient heuristics for formulat-

ing effective predicates. Experimental results show that our reformulated predicates allow

significant and consistent speedups compared to previous work.

139

Benchmark Baseline
SBP Strengthening

4 1 1,3 1,3,4 1,2,3,4

Urq3_5 2 108 2 107 3 1 4 1 4 1 6 1
Urq4_5 2 4586 3 4616 8 1 9 1 9 1 16 1
Urq5_5† 4 264581 3 265015 27 1 26 1 26 1 56 2
Urq6_5 5 — 5 — 75 1 76 2 76 1 165 1
Urq7_5 6 — 7 — 155 2 156 2 156 2 340 1
Urq8_5 10 — 11 — 360 3 363 3 364 3 808 2
chnl10_11 5 299 5 66 129 67 132 42 134 11 303 21
chnl10_12 4 308 6 63 155 71 161 47 163 10 369 21
chnl10_13 5 295 6 62 191 72 199 46 200 12 452 22
chnl11_12 5 1594 5 301 197 184 203 131 208 13 472 42
chnl11_13 5 2013 7 264 238 183 248 115 250 14 568 43
chnl11_20 11 2303 11 331 691 226 725 144 729 24 1664 54
hole7 1 4 1 3 8 3 8 4 8 2 14 3
hole8 2 12 1 5 14 8 14 8 15 3 27 3
hole9 2 49 2 14 23 19 23 15 23 4 43 6
hole10 2 233 2 59 35 56 36 38 35 6 68 14
hole11 3 1641 2 211 52 156 52 105 52 8 102 31
hole12 3 15210 4 1052 78 490 79 282 77 12 151 68
fpga10_8 1 4 2 5 23 13 23 12 23 8 38 8
fpga10_9 3 2 3 5 31 11 30 11 30 8 50 5
fpga12_8 2 5 4 4 35 20 36 22 37 15 57 13
fpga12_9 4 8 3 6 43 40 45 33 47 18 73 18
fpga12_11 4 8 4 6 70 40 70 40 71 17 119 27
fpga12_12 3 5 4 5 80 34 85 104 85 24 152 56
fpga13_9 4 8 3 5 54 57 55 74 56 29 88 27
fpga13_10 3 13 4 12 72 57 74 81 72 29 121 61
fpga13_12 5 10 5 7 111 81 119 95 118 31 193 264
s3-3-3-1 10 768 9 420 86 415 87 318 92 328 144 388
s3-3-3-3 12 641 11 446 124 483 125 371 134 355 206 337
s3-3-3-4 10 317 9 264 97 390 100 428 107 202 166 213
s3-3-3-8 11 594 10 621 108 467 107 493 115 326 179 328
s3-3-3-10 12 751 13 550 131 558 131 379 143 360 217 410

†16 of 25 variants solved using SBP methods “Baseline” and “4”. Nine remaining unsolved
variants are not included in the average.

Table 7.2: Randomized DAC’02 benchmarks with varying methods of symmetry breaking

140

8. Conclusion

In this dissertation, we looked at the use of functional symmetries in the context of cir-

cuits and Boolean formulas, where symmetries are permutations of connections/variables

which do not change the functionality/meaning. In particular, we explored the possibil-

ity of using symmetries to expand the solution space for optimization problems. This may

help overcome some of the limitations of a linear EDA flow which traps a design into a

local minimum at every stage. We also explored the use of symmetries to shrink the search

space for search problems.

Now we summarize the contributions of this dissertation and point out the

strengths and weaknesses of our approach.

8.1 Contributions

In chapter 3, we described an approach to symmetry detection for functions over many

variables. We provide a compact reduction from functions to graphs which avoids the

exponential size requirement of the naïve formulation. This allows us to exploit recent ad-

vances in graph automorphism solvers, and to easily analyze functions which have mul-

tiple outputs. In comparison, related work in Boolean matching [CK06, ABPS07] does not

work on multiple-output functions.

In chapter 4, we introduced the concept of circuit symmetries as permutations of

connections within a circuit. We distinguish between three families of symmetries, each a

141

subgroup of the group G ∪ B ∪ I, and discuss the applicability of each subgroup towards

a different problem in CAD.

In chapter 5, we tackled the problem of technology mapping, also known as li-

brary binding. The technology mapping problem usually assumes a fixed subject graph

of AND and INV nodes. We showed how symmetries can be used to derive alternative

decompositions of functions, which may permit better solutions from the technology map-

per. For efficiency, our approach divides the group G into cosets. Wherever connections in

the subject graph can be arbitrarily permuted, we use a partitioning algorithm to perform

restructuring over subgroup H ≤ G. For other symmetries, we enumerate permutations

from the transversal G : H. Our results show that symmetries (particularly those of AND

trees) allow us to greatly reduce the area required after technology mapping.

In chapter 6, we used symmetries to reduce wirelength during the placement

stage of synthesis. Many current placement algorithms are based on iteratively moving

cells in decreasing amounts until a final legal placement is reached; the connectivity of

the network is assumed to be fixed throughout the placement flow. We use symmetries to

remove this restriction, restructuring the network between placement iterations. Similar

to in the technology mapping problem, we can restructure the netlist using the full set

of symmetries G ∪ B, or simply those over AND trees. Our results show that usage of

symmetries provides a consistent improvement in wirelength over an unmodified version

of the Capo placer.

In chapter 7, we addressed the problem of deriving symmetry-breaking predi-

cates for SAT formulas. We showed how directly translating generators from a symmetry

group into predicates does not lead to the most effective predicates in terms of minimizing

the time required by a SAT solver, and provide algorithms to obtain short and effective

predicates for breaking symmetries. Experiments with Minisat show that our algorithms

make certain hard SAT problems trivial, and guard the SAT solving process against bad

variable orderings.

8.2 Strengths and Weaknesses

A major benefit of using symmetries for expanding the solution space during synthesis is

that no additional Boolean reasoning is required after identifying symmetries—all manip-

ulation afterwards is purely structural. For example, area-oriented optimization in chapter

142

5 is performed using graph partitioning. This implies that optimization using symmetries

is potentially more efficient than other methods.

Another benefit of symmetries is that they exist at all stages of the design flow,

and can be used at any time, since the concept of connections between components ex-

ists at all stages. Furthermore, exchanging connections is much simpler to carry out at

later stages of the design flow, since the routing of wires is one of the final stages. In

contrast, resynthesis after placement will require updating the placement to accommodate

new cells.

The main weakness of our approach is that many of the circuits and SAT problems

that we examined do not exhibit a large number of complex symmetries. By this, we mean

that in circuits, most of the symmetries we found were those of AND trees—functions

such as ab + c(a + b) do not occur very often, or are not found by our procedure. In SAT

problems, many of the symmetries are limited to swaps between two sets of variables, that

is, there is a one-to-one correspondence between variables in sets X1 and X2.

In the case of Boolean satisfiability, this means that symmetry-breaking predi-

cates may not be able to prune much of the search space. For swaps between X1 =

{x1, x2, x3} and X2 = {x4, x5, x6}, the symmetry-breaking predicate from the permutation

(1, 4)(2, 5)(3, 6) cannot prune more than 1/2 of the search space.

In the case of synthesis problems in which we expand the solution space, i.e.

technology mapping and placement, the limited set of symmetries is a mixed blessing. On

the one hand, this implies that there is not much potential beyond optimizing AND trees.

On the other hand, the most efficient algorithms that we know of are those that operate

over symmetries of AND trees.

143

Bibliography

[ABPS07] Giovanni Agosta, Francesco Bruschi, Gerardo Pelosi, and Donatella Sciuto.

A unified approach to canonical form-based Boolean matching. In Design

Automation Conference, pages 841–846, 2007.

[AP05] Afshin Abdollahi and Massoud Pedram. A new canonical form for fast

Boolean matching in logic synthesis and verification. In Design Automation

Conference, pages 379–384, 2005.

[ARSM03] Fadi A. Aloul, Arathi Ramani, Karem A. Sakallah, and Igor L. Markov. Solv-

ing difficult instances of Boolean satisfiability in the presence of symmetry.

IEEE Transactions on CAD, 22(9):1117–1137, September 2003.

[Ash59] R. Ashenhurst. The decomposition of switching functions. In International

Symposium on the Theory of Switching, volume 29 of Annals of the Computa-

tion Laboratory of Harvard University, pages 74–116. Harvard University Press,

1959.

[ASM06] Fadi A. Aloul, Karem A. Sakallah, and Igor L. Markov. Efficient symmetry

breaking for Boolean satisfiability. IEEE Transactions on Computers, 55(5):549–

558, May 2006.

[BCCZ99] Armin Biere, Alessandro Cimatti, Edmund M. Clarke, and Yunshan Zhu.

Symbolic model checking without BDDs. In 5th International Conference on

144

Tools and Algorithms for Construction and Analysis of Systems, pages 193–207,

Amsterdam, The Netherlands, March 1999.

[BCF+91] László Babai, Gene Cooperman, Larry Finkelstein, Eugene M. Luks, and Ákos

Seress. Fast Monte Carlo algorithms for permutation groups. In Annual ACM

Symposium on Theory of Computing, pages 90–100, 1991.

[Ber] Berkeley Logic Synthesis and Verification Group. ABC: A system for se-

quential synthesis and verification. http://www.eecs.berkeley.edu/

~alanmi/abc/.

[BFP89a] Cynthia A. Brown, Larry Finkelstein, and Paul Walton Purdom, Jr. Backtrack

searching in the presence of symmetry. In International Conference on Applied

Algebra, Algebraic Algorithms and Error-Correcting Codes, Lecture Notes in Com-

puter Science, volume 357. Springer, 1989.

[BFP89b] Cynthia A. Brown, Larry Finkelstein, and Paul Walton Purdom, Jr. A new

base change algorithm for permutation groups. SIAM Journal on Computing,

18(5):1037–1047, 1989.

[BHMSV84] R. Brayton, G. Hachtel, C. McMullen, and A. Sangiovanni-Vincentelli. Logic

Minimization Algorithms for VLSI Synthesis. Kluwer Academic Publishers,

1984.

[Bla92] Kenneth D. Blaha. Minimum bases for permutation groups: The greedy ap-

proximation. Journal of Algorithms, 13(2):297–306, 1992.

[Bre77] Melvin A. Breuer. A class of min-cut placement algorithms. In Design Au-

tomation Conference, pages 284–290, 1977.

[Cad05] Cadence Design Systems. CRETE 180nm generic library. http://iwls.

org/iwls2005/benchmarks.html, 2005.

[CD94] Jason Cong and Yuzheng Ding. FlowMap: An optimal technology mapping

algorithm for delay optimization in lookup-table based FPGA designs. IEEE

Transactions on CAD, 13(1):1–12, January 1994.

http://www.eecs.berkeley.edu/~alanmi/abc/
http://www.eecs.berkeley.edu/~alanmi/abc/
http://iwls.org/iwls2005/benchmarks.html
http://iwls.org/iwls2005/benchmarks.html

145

[CGLR96] James Crawford, Matthew Ginsberg, Eugue Luks, and Amitabha Roy.

Symmetry-breaking predicates for search problems. In Fifth International Con-

ference on Principles of Knowledge Representation and Reasoning, 1996.

[Cha07] Satrajit Chatterjee. On Algorithms for Technology Mapping. PhD thesis, UC

Berkeley, 2007.

[CHH+04] Chih-Wei Chang, Ming-Fu Hsiao, Bo Hu, Kai Wang, Malgorzata Marek-

Sadowska, Chung-Kuan Cheng, and Sao-Jie Chen. Fast postplacement op-

timization using functional symmetries. IEEE Transactions on CAD, 23(1):102–

118, January 2004.

[CJ99] Malgorzata Chrzanowska-Jeske. Generalized symmetric and generalized

pseudo-symmetric functions. In Electronics, Circuits and Systems, 1999. Pro-

ceedings of ICECS ’99. The 6th IEEE International Conference on, 1999.

[CK84] Chung-Kuan Cheng and Ernest S. Kuh. Module placement based on resistive

network optimization. IEEE Transactions on CAD, 3(3), July 1984.

[CK06] Donald Chai and Andreas Kuehlmann. Building a better Boolean matching

and symmetry detector. In Design Automation and Test in Europe, pages 1079–

1084, 2006.

[CKM00] Andrew E. Caldwell, Andrew B. Kahng, and Igor L. Markov. Can recursive

bisection alone produce routable placements? In Design Automation Confer-

ence, pages 693–698, 2000.

[CLR89] Thomas H. Cormen, Charles E. Leiserson, and Ronald L Rivest. Introduction

to Algorithms. McGraw-Hill, 1989.

[CMB05a] Kai-Hui Chang, Igor L. Markov, and Valeria Bertacco. Post-placement

rewiring and rebuffering by exhaustive search for functional symmetries. In

International Conference on CAD, pages 56–63, 2005.

[CMB+05b] Satrajit Chatterjee, Alan Mishchenko, Robert K. Brayton, Xinning Wang, and

Timothy Kam. Reducing structural bias in technology mapping. In Interna-

tional Conference on CAD, pages 519–526, 2005.

146

[Cor03] Jordi Cortadella. Timing-driven logic bi-decomposition. IEEE Transactions on

CAD, 22(6):675–685, June 2003.

[Cou97] Olivier Coudert. Gate sizing for constrained delay/power/area optimization.

IEEE Transactions on VLSI, 5(4):465–472, December 1997.

[CS03] Jovanka Ciric and Carl Sechen. Efficient canonical form for Boolean matching

of complex functions in large libraries. IEEE Transactions on CAD, 22(5):535–

544, May 2003.

[CWD99] Jason Cong, Chang Wu, and Yuzheng Ding. Cut ranking and pruning: En-

abling a general and efficient FPGA mapping solution. In International Sym-

posium on FPGAs, pages 29–35, 1999.

[DGK94] Srinivas Devadas, Abhijit Ghosh, and Kurt Keutzer. Logic Synthesis. McGraw-

Hill, 1994.

[DLL62] Martin Davis, George Logemann, and Donald Loveland. A machine program

for theorem proving. Communications of the ACM, 5:394–397, July 1962.

[DLSM04] Paul T. Darga, Mark H. Liffiton, Karem A. Sakallah, and Igor L. Markov. Ex-

ploiting structure in symmetry detection for CNF. In Design Automation Con-

ference, pages 530–534, 2004.

[DP60] Martin Davis and Hilary Putnam. A computing procedure for quantification

theory. Journal of the Association of for Computing Machinery, 7:102–215, 1960.

[DSM08] Paul T. Darga, Karem A. Sakallah, and Igor L. Markov. Faster symmetry dis-

covery using sparsity of symmetries. In Design Automation Conference, pages

149–154, 2008.

[EH78] Colin R. Edwards and S. L. Hurst. A digital synthesis procedure under

function symmetries and mapping methods. IEEE Transactions on Computers,

27(11):985–997, 1978.

[ES03] Niklas Eén and Niklas Sörensson. An extensible SAT solver. In Theory and

Applications of Satisfiability Testing, 2003.

147

[GAP06] The GAP Group. GAP – Groups, Algorithms, and Programming, Version 4.4,

2006. http://www.gap-system.org.

[Hak85] A. Haken. The intractability of resolution. Theoretical Computer Science, 39:297–

308, 1985.

[Hal59] Marshall Hall. The Theory of Groups. Macmillan, 1959.

[HK98] Uwe Hinsberger and Reiner Kolla. Boolean matching for large libraries. In

Design Automation Conference, 1998.

[IWL05] IWLS 2005 benchmarks. http://iwls.org/iwls2005/benchmarks.

html, 2005.

[Jer86] Mark Jerrum. A compact representation for permutation groups. Journal of

Algorithms, 7(1):60–78, 1986.

[JKCMS97] Yi-Min Jiang, Angela Krstic, Kwang-Ting Cheng, and Malgorzata Marek-

Sadowska. Post-layout logic restructuring for performance optimization. In

Design Automation Conference, pages 662–665, 1997.

[KD91] Bo-Gwan Kim and Donald L. Dietmeyer. Multilevel logic synthesis of sym-

metric switching functions. IEEE Transactions on CAD, 10(4):436–446, April

1991.

[Keu87] Kurt Keutzer. DAGON: Technology binding and local optimization by DAG

matching. In Design Automation Conference, pages 341–347, 1987.

[Kis98] Andrzej Kisielewicz. Symmetry groups of Boolean functions and construc-

tions of permutation groups. Journal of Algebra, 199:379–403, 1998.

[KK08] Neil Kettle and Andy King. An anytime algorithm for generalized symmetry

detection in robdds. IEEE Transactions on CAD, 27(4):764–777, April 2008.

[KL70] Brian Kernighan and Shen Lin. An efficient heuristic procedure for partition-

ing graphs. Bell Systems Technical Journal, 49(1):291–307, 1970.

[Knu91] Donald E. Knuth. Efficient representation of perm groups. Combinatorica,

11(1):33–43, 1991.

http://www.gap-system.org
http://iwls.org/iwls2005/benchmarks.html
http://iwls.org/iwls2005/benchmarks.html

148

[KP08] Volker Kaibel and Marc E. Pfetsch. Packing and partitioning orbitopes. Math-

ematical Programming, 114(1):1–36, 2008.

[KR89] Kurt Keutzer and D. Richards. Computational complexity of logic synthesis

and optimization. In International Workshop on Logic Synthesis, 1989.

[Kri85] Balakrishnan Krishnamurthy. Short proofs for tricky formulas. Acta Informat-

ica, 22(3):253–275, 1985.

[KS00] Victor N. Kravets and Karem Sakallah. Constructive library-aware synthesis

using symmetries. In Design Automation and Test in Europe, 2000.

[KSJA91] J. M. Kleinhans, G. Sigl, F. M. Johannes, and K. J. Antreich. GORDIAN: VLSI

placement by quadratic programming and slicing optimization. IEEE Trans-

actions on CAD, 10(3):356–365, March 1991.

[Leo91] Jeffrey S. Leon. Permutation group algorithms based on partitions, I: Theory

and algorithms. Journal of Symbolic Computation, 12:533–583, 1991.

[LESJ98] Aiguo Lu, Hans Eisenmann, Guenter Stenz, and Frank M. Johannes. Com-

bining technology mapping with post-placement resynthesis for performance

optimization. In International Conference on Computer Design, pages 616–621,

1998.

[Lev74] Giorgio Levi. Graph isomorphism: A heuristic edge-partitioning-oriented

algorithm. Computing, 12(4):291–313, December 1974.

[LJL08] Hsuan-Po Lin, Jie-Hong Roland Jiang, and Ruei-Rung Lee. To SAT or not to

SAT: Ashenhurst decomposition in a large scale. In International Conference on

CAD, 2008.

[LR02] Eugene M. Luks and Amitabha Roy. Symmetry breaking in constraint satis-

faction. In Intl. Conf. of Artificial Intelligence and Mathematics, 2002.

[Luk99] Eugene M. Luks. Hypergraph isomorphism and structural equivalence of

Boolean functions. In ACM Symposium on Theory of Computing, pages 652–

658, 1999.

149

[LWGH97] Eric Lehman, Yosinoro Watanabe, Joel Grodstein, and Heather Harkness.

Logic decomposition during technology mapping. IEEE Transactions on CAD,

16(8):813–834, August 1997.

[Mau06] Peter M. Maurer. Using conjugate symmetries to enhance gate-level simula-

tions. In Design Automation and Test in Europe, 2006.

[MBC08] Alan Mishchenko, Robert K. Brayton, and Satrajit Chatterjee. Boolean factor-

ing and decomposition of logic networks. In International Conference on CAD,

2008.

[MCB07] Alan Mishchenko, Satrajit Chatterjee, and Robert K. Brayton. Improvements

to technology mapping for LUT-based FPGAs. IEEE Transactions on CAD,

26(2):240–253, February 2007.

[McC56] Edward J. McCluskey. Group invariance or total symmetry. Bell Systems Tech-

nical Journal, 35(6):1445–1453, November 1956.

[McK81] Brendan D. McKay. Practical graph isomorphism. Congressus Numerantium,

30:45–87, 1981.

[Mis03] Alan Mishchenko. Fast computation of symmetries in Boolean functions.

IEEE Transactions on CAD, 22(11):1588–1593, November 2003.

[Miy82] Musashi Miyamoto. The Book of Five Rings. Bantam, 1982.

[MM90] Frédéric Mailhot and Giovanni De Micheli. Technology mapping using

Boolean matching and don’t care sets. In European Design Automation Con-

ference, pages 212–216, 1990.

[MMM95] Janett Mohnke, Paul Molitor, and Sharad Malik. Limits of using signatures

for permutation independent Boolean comparison. In Asia and South Pacific

Design Automation Conference, pages 459–464, 1995.

[MMZ+01] Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and

Sharad Malik. Chaff: Engineering an efficient SAT solver. In Design Automa-

tion Conference, pages 530–535, 2001.

150

[MSS99] João P. Marques-Silva and Karem A. Sakallah. GRASP: A search algorithm

for propositional satisfiability. IEEE Transactions on CAD, 48:506–521, 1999.

[Mun57] James Munkres. Algorithms for the assignment and transportation problems.

Journal of the Society for Industrial and Applied Mathematics, 5(1):32–38, March

1957.

[Mur71] Saburo Muroga. Threshold Logic And its Applications. John Wiley, 1971.

[Nam06] Gi-Joon Nam. ISPD06 placement contest and benchmark suite. In International

Symposium on Physical Design, 2006.

[Nan08] Nangate Inc. Nangate 45nm open cell library. http://www.nangate.com/

openlibrary/, 2008.

[NSR99] Gi-Joon Nam, Karem A. Sakallah, and Rob A. Rutenbar. Satisfiability-based

detailed FPGA routing. In International Conference On VLSI Design, pages 574–

577, 1999.

[Pet08] Graham Petley. vsclib standard cell library. http://vlsitechnology.

org/html/vsc_description.html, 2008.

[PR94] Irith Pomeranz and Sudhakar M. Reddy. On determining symmetries in in-

puts of logic circuits. IEEE Transactions on CAD, 13(11):1428–1434, November

1994.

[Roy07] Amitabha Roy. Symmetry-breaking formulas for groups with bounded orbit

projections. In International Workshop on Symmetry in Constraint Satisfaction

Problems, 2007.

[Rud89] Richard L. Rudell. Logic synthesis for VLSI design. PhD thesis, UC Berkeley,

1989.

[SBSV96] Paul R. Stephan, Robert K. Brayton, and Alberto L. Sangiovanni-Vincentelli.

Combinational test generation using Boolean satisfiability. IEEE Transactions

on CAD, 15(9):1167–1176, September 1996.

[Sec88] Carl Sechen. VLSI placement and global routing using simulated annealing.

Kluwer Academic Publishers, 1988.

http://www.nangate.com/openlibrary/
http://www.nangate.com/openlibrary/
http://vlsitechnology.org/html/vsc_description.html
http://vlsitechnology.org/html/vsc_description.html

151

[Ser02] Ákos Seress. Permutation Group Algorithms, volume 152 of Cambridge Tracts in

Mathematics. Cambridge University Press, 2002.

[Sim71] Charles C. Sims. Computation with permutation groups. In Symposium on

Symbolic and Algebraic Manipulation, pages 23–28, 1971.

[SS77] Richard M. Stallman and Gerald Jay Sussman. Forward reasoning and depen-

dency directed backtracking in a system for computer aided circuit analysis.

Artificial Intelligence, 9(2):135–196, 1977.

[SVBY06] Sean Safarpour, Andreas Veneris, Gregg Baeckler, and Richard Yuan. Effi-

cient SAT-based boolean matching for FPGA technology mapping. In Design

Automation Conference, pages 466–471, 2006.

[Urq87] Alasdair Urquhart. Hard examples for resolution. Journal of the ACM,

34(1):209–219, 1987.

[VKBSV97] Tiziano Villa, Timothy Kam, Robert K. Brayton, and Alberto L. Sangiovanni-

Vincentelli. Explicit and implicit algorithms for binate covering problems.

IEEE Transactions on CAD, 16(7):677–691, July 1997.

[Wan06] Kuo-Hua Wang. Exploiting k-distance signature for Boolean matching and

G-symmetry detection. In Design Automation Conference, pages 516–521, 2006.

[WD98] Feng Wang and Donald L. Dietmeyer. Exploiting near symmetry in multilevel

logic synthesis. IEEE Transactions on CAD, 17(9):772–781, September 1998.

[WKSV03] G. Wang, A. Kuehlmann, and A. Sangiovanni-Vincentelli. Structural detection

of symmetries in Boolean functions. In International Conference on Computer

Design, pages 498–503, 2003.

[YM91] Jerry Chih-Yuan Yang and Giovanni De Micheli. Spectral techniques for tech-

nology mapping. Technical Report CSL-TR-91-498, Stanford University, 1991.

[ZMMM01] Lintao Zhang, Conor F. Madigan, Matthew H. Moskewicz, and Sharad Malik.

Efficient conflict driven learning in a boolean satisfiability solver. In Interna-

tional Conference on CAD, pages 279–285, 2001.

152

Index

k-feasible cut, 76

base, 20

binate, 39

Boolean matching, 77

Boolean network, 5, 51

Cayley table, 16

characteristic function, 43

choice nodes, 77

circuit symmetries, 58

cofactor, 32

coset, 17

covering, 72

cube, 32

disjoint decomposition, 54

functional symmetries, 8, 30

generators, 16

graph automorphism, 31

graph isomorphism, 31

group, 15

image, 18

immediate dominator, 67

implicant, 33

input ports, 51

internal node, 51

library binding, 5

literal, 5

matching, 72

maximally decomposed, 55

minterm, 32

move, 18, 33

moved points, 18

netlist, 51

node, 5

orbits, 19

153

ordered partitions, 31

output ports, 51

permutation, 18

permutation group, 19

placement, 7

points, 18

polytree, 61

primary input, 51

primary output, 51

prime, 55

prime implicant, 33

product, 16

reconvergence, 61

reconverging paths, 61

reduced base, 20, 129

redundancy addition and removal, 11

resynthesis, 11

routing, 7

satisfy count, 32

signatures, 46

sink, 51

source, 51

stabilizer chain, 20

stabilizes, 18

strong generating set, 20, 121

subgroup, 17

subject graph, 3, 71

supergate, 79

symmetric group, 19

symmetry breaking predicates, 12, 65, 119

technology mapping, 5

technology-independent optimization, 3

transversal, 17, 84

unate, 39

	Introduction
	Contemporary Synthesis and Verification Flow
	Synthesis
	Verification

	Symmetry
	Better CAD through Symmetry
	Improving Technology Mapping
	Improving Placement
	Accelerating SAT

	Challenges to Solve
	Contributions of this Dissertation
	Organization of this Dissertation

	Permutation Group Theory
	Basic Definitions
	Groups
	Permutations
	Permutation Groups

	Stabilizer Chains
	Jerrum's Branching Structure
	Membership Check
	Transversal Computation

	From Points to Literals and Connections

	Functional Symmetries
	Graph Formulation
	The Trivial Graph Formulation

	Improved Graph Formulation for Single Outputs
	Reducing |VM| with Satisfy Counts
	Reducing |E| with Satisfy Counts
	Reducing |VM| with Unateness
	Combining Transformations

	Multiple-output Functions
	Experimental Results
	Previous Work
	Spectral Methods
	Minterm Comparison

	Previous Work for Other Types of Symmetry
	Conclusion

	Symmetries in Circuits
	Boolean Networks
	Structural Symmetries of Boolean Networks
	Structural Symmetries of Maximal Decompositions
	Reduction to Graph Automorphism
	Polytrees

	Applications in CAD
	Technology Mapping
	Placement
	Boolean Satisfiability

	Decomposition Heuristic
	Conclusion

	Technology Mapping
	Introduction
	Previous Improvements in Technology Mapping
	Cuts, Boolean Matching, and DAG covering
	Choices and Supergates

	Creating Choices Through Symmetry
	AND/XORs
	Prime Functions

	Experimental Results
	AND Trees
	Prime Functions

	Previous Work with Symmetries
	Conclusion

	Placement
	Introduction
	Previous Work
	Preliminaries
	Circuit Model
	Assignment Problem

	Rewiring Algorithms
	Leaf Rewiring
	Tree Restructuring

	Iterative Placement with Rewiring
	Experimental Results
	Post-placement Optimization
	Integration into Iterative Placer
	Timing-driven Rewiring
	Industrial Designs

	Conclusion

	Boolean Satisfiability
	Introduction
	Preliminaries and Previous Work
	Strong Symmetry Breaking Predicates
	Motivation for Strengthening
	Desired Traits of SBPs

	Algorithms
	Jerrum Branching
	Base Change
	Permutation Simplification
	Variable Reordering

	Experimental Results
	Conclusion

	Conclusion
	Contributions
	Strengths and Weaknesses

	Bibliography
	Index

