
On the Design of Concurrent, Distributed Real-Time

Systems

Yang Zhao

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2009-117

http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-117.html

August 13, 2009

Copyright 2009, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

On the Design of Concurrent, Distributed Real-Time Systems

by

Yang Zhao

B.Eng. (Tsinghua University) 1997
M.Sci. (UC Berkeley) 2003

A dissertation submitted in partial satisfaction
of the requirements for the degree of

Doctor of Philosophy

in

Engineering-Electrical Engineering and Computer Sciences

in the

GRADUATE DIVISION

of the

UNIVERSITY OF CALIFORNIA, BERKELEY

Committee in charge:

Professor Edward A. Lee, Chair
Professor Ruzena Bajcsy

Professor Lee W. Schruben

Fall 2009

iii

The dissertation of Yang Zhao is approved:

Chair Date

Date

Date

University of California, Berkeley

Fall 2009

On the Design of Concurrent, Distributed Real-Time Systems

Copyright 2009

by

Yang Zhao

Abstract

On the Design of Concurrent, Distributed Real-Time Systems

by

Yang Zhao

Doctor of Philosophy in Engineering-Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Edward A. Lee, Chair

Achieving determinism in distributed real-time systems is challenging, due to uncertainties

in execution time, communication jitter, and resource scheduling. This dissertation presents

a concurrent model of computation (MoC) for distributed real-time systems called PTIDES

(pronounced tides, for Programming Temporally Integrated Distributed Embedded Sys-

tems). PTIDES uses a discrete-event (DE) model as the underlying formal semantics to

achieve analyzable deterministic behavior.

PTIDES programs are discrete-event models constructed as networks of concurrent

components, called actors, communicating via time-stamped events. These time stamps

serve as the basis to define the unique order among events. Rather than using DE models for

performance modeling and simulation, where time stamps are a modeling property bearing

1

no relationship to real time during execution of the model, PTIDES uses DE model as a

specification language for real-time applications. It extends DE models with the capability

of relating events that interact with the physical world with physical time.

Preserving DE semantics at runtime can be challenging, since the global, consistent

notion of time may lead to a total ordering of execution in a distributed system, an un-

necessary waste of resources. A dependency analysis framework is presented to allow out

of order processing of events without compromising determinism and without requiring

backtracking. The key idea is that if two events have independent affects, formally defined

through causality analysis, then they can be processed in any order. As a result, if the

earlier event is delayed due to communication, processing of the later event does not need

to be blocked.

General event triggered real-time systems with multiple shared resources are not

amenable to compile-time feasibility analysis [34]. However, when the discrete activ-

ities can come in predictable patterns, real-time scheduling theories are applicable to

many PTIDES models. This dissertation studies a sufficient condition for a PTIDES

model to be feasible when the inputs to a PTIDES model are sporadic, i.e. when

there is a minimum interval between any two consecutive events of the same input.

Professor Edward A. Lee
Dissertation Committee Chair

2

To Ye, Karen, and my parents Xiumei Zhao and Shengli Bian.

i

Contents

List of Figures v

1 Introduction 1

1.1 Related Work . 5

1.1.1 Common Practice in Real-time Programming 5

Scheduling Periodic Independent Tasks 6

Scheduling Periodic and Sporadic Independent Tasks 9

Pitfalls with Real-time Scheduling 10

1.1.2 Time-Triggered Computation . 12

Time-Triggered Architecture . 12

Time-Triggered Computation Models 15

1.1.3 Event-Triggered Computation Models 23

1.2 Overview of dissertation . 29

2 Background 31

2.1 Actor-Oriented Design . 31

2.2 Tagged Signal Model . 35

2.2.1 Event and Signal . 35

2.2.2 Actor . 37

2.2.3 Fixed Point Semantics . 42

2.3 Timed Actor Networks . 44

2.4 Discrete-Event Models . 47

ii

2.5 Discrete-Event Simulation . 51

3 Relevant Dependency 53

3.1 Causality Interface . 56

3.1.1 Dependency Algebra . 56

3.1.2 Causality Interfaces . 58

3.1.3 Composition of Causality Interfaces 61

3.2 Relevant Dependency . 64

3.3 Relevant Order . 69

3.4 Execution Based on Relevant Order . 70

4 Application to Real-Time Systems 74

4.1 Motivating Example . 76

4.2 PTIDES Programming Concepts . 77

4.2.1 Relating Model time to Real Time 78

4.3 Specification of the Motivating Example . 79

4.4 Run-time Environment . 84

4.4.1 Dependency Analysis . 85

4.4.2 Execution Based on the Relevant Order 87

5 Scheduling Analysis of PTIDES Models 90

5.1 Real-Time Scheduling . 91

5.1.1 Definition and Terminology . 91

5.1.2 EDF for Periodic Independent Tasks 92

5.1.3 EDF for Sporadic Independent Tasks 94

5.2 Precedence Constrains in PTIDES Models 96

5.2.1 Assigning Deadlines . 98

5.3 Feasibility Analysis . 99

5.3.1 Feasibility Analysis with Zero Execution Time 100

5.3.2 Feasibility Analysis with Worst Case Execution Time 102

Feasibility Analysis for Sporadic PTIDES Models 104

Feasibility Analysis for PTIDES Models with Non-sporadic Actors . 111

iii

6 Conclusion and Future Work 115

6.1 Summary of Results . 115

6.2 Future Work . 117

Bibliography 118

iv

List of Figures

1.1 An example of priority inversion in real-time scheduling. 11

1.2 Uncertainty in ordering of two events with one tick difference. 14

1.3 Sparse Time Base in TTA. 15

1.4 An example of task execution sequence in a PBO model. 16

1.5 In Giotto, the outputs are always produced at the end of the execution cycle. 19

1.6 A representation of a Simulink program. 20

1.7 A simplified representation of a Simulink schedule. 21

1.8 A representation of a nesC/TinyOS configuration. 24

1.9 A sketch of the sensor fusion problem as a nesC/TinyOS configuration. . . 26

2.1 composition of actors. 34

2.2 tag sets and signals. 36

2.3 actor example. 38

2.4 networks of functional actors. 39

2.5 open networks of functional actors. 41

2.6 Examples of timed signals with tag set T = R0. 44

2.7 A composition that can be shown to be live. 46

3.1 A simple example with signals unrelated. 54

3.2 An example with signals related but with delay. 55

3.3 A feedforward composition with parallel paths. 62

3.4 An open composition with feedback loops. 63

v

3.5 The causality and relevant dependency graphs for the model in figure 3.2. . 65

3.6 Three different cuts. 71

4.1 Networked camera application. 76

4.2 Specification of the networked camera application. 81

4.3 The program on the camera. 85

4.4 The causality and relevant dependency graphs for the camera. 86

5.1 PTIDES Model for each camera in the motivating example of chapter 4. . . 101

5.2 An example of sporadic triggering signals result to no sporadic signals. . . . 105

5.3 A PTIDES model contains only sporadic actors. 108

5.4 The dependency graph for the model in figure 5.3. 109

5.5 The dependency graph for the model in figure 5.1. 113

vi

Acknowledgements

I am deeply grateful to my adviser, Professor Edward Lee. His constant support and

guidance over the years make the writing of this dissertation possible. I am also very grateful

to Professor Shankar Sastry, Professor Ruzena Bajcsy, Professor Lee W. Schruben and

Professor Raja Sengupta for serving on my qualifying exam and dissertation committees,

and for providing valuable advice to my research.

It is my privilege to work with the past and present members of the Ptolemy group.

Ye Zhou’s work on interface theory provides a formal foundation that this thesis builds

on. Xiaojun Liu’s research on a semantic foundation for the tagged signal model and

Jie Liu’s work on timed multitasking model are great sources of ideas. Slobodan Matic,

Jia Zhou and Thomas Feng’s work on implementing the ideas presented in this thesis on

different platforms are important to make it practical. My work has also benefited a lot

from discussions and collaborations with Jörn Janneck, Gang Zhou, Haiyang Zheng, Adam

Cataldo, Elaine Cheong and Eleftherios Matsikoudis. I would also like to thank Christopher

Brooks, Mary Stewart and Ruth Gjerde for their excellent support.

Finally, I want to thank for the constant support and encouragement from my husband

Ye Tang, parents Xiumei Zhao and Shengli Bian, sister Haijie Zhao, Qiao Zhao and my

extended family.

vii

Chapter 1

Introduction

Real-time systems are computer systems where the correctness of the system behavior

depends not only on the logical results of the computation, but also on when the results

are produced [25]. A real-time system is typically connected to sensors and actuators

where the software reacts to sensor data and issues commands to actuators. The physical

system is an integral part of the design and the software must be conceptualized to operate

in concert with that physical system. Physical systems are intrinsically concurrent and

temporal. Real-time software needs to fulfill not only a set of functional requirements

but also timing constraints. Distributed real-time systems consist of multiple real-time

systems interconnected by a communication network. Applications of distributed real-

time systems include industrial automation, distributed immersive environments, advanced

instrumentation systems, networked control systems, and many modern embedded software

systems that integrate networking.

Despite the fact that both data values and time affect the behavior of real-time systems,

1

no widely used programming language integrates a way to specify timing requirements or

constraints. Instead, the abstractions they offer are about scalability (inheritance, dynamic

binding, polymorphism, memory management). Application designers are required to step

outside the programming language semantics to specify timing properties of the applica-

tions. In typical real-time software design, time is often treated as an afterthought. The

functionality is determined at design time with assumptions such as zero or a fixed non-

zero run-time delay. The actual timing properties are determined at run time by a real-time

operating system (RTOS) [34]. Typically, an RTOS provides mechanisms for prioritizing

tasks. At run-time, multiple tasks often need to share resources including computing re-

sources, like CPU and memory, and communication resources, like buses, networks and I/O.

Whether a task can be granted resources to run largely depends on the hardware platform,

what other tasks are running, and the relative priorities. In many real-time systems, this

time uncertainty is undesirable.

Recent innovations in real-time software provide unconventional ways of programming

concurrent and timed systems by introducing the notion of time and concurrency to the

programming level. Giotto [19] and port-based objects [48] are examples that take a time-

triggered approach, where software components are triggered by some clock signals. Time-

triggered software has the advantage that all triggers are predictable in terms of time and

timing analysis may be easy, but it does not fit as well for systems that need to respond

to irregular activities. Timed Multitasking (TM) [34] takes an event-trigged approach that

controls timing properties through deadlines and events rather than time triggers. By

2

specifying the deadline of each software component, the designer specifies when the com-

putational results are produced to the physical world or to other software components.

This dissertation studies methods for programming distributed real-time systems where

time and concurrency are first-class properties of the program. The approach in this the-

sis leverages the concept of actor-oriented design [29], borrowing ideas from Simulink and

Giotto [19]. However, it addresses a number of limitations in Simulink and Giotto by

building similar multitasking implementations from specifications that combine dataflow

modeling and distributed discrete-event modeling. In discrete-event models, components

interact with one another via events that are placed on a time line. Discrete-event models

have primarily been used in performance modeling and simulation, where time stamps are a

modeling property bearing no relationship to real time during execution of the model. My

approach is not to model physical phenomena, but rather to use discrete event models to

specify real-time systems. Borrowing ideas from TinyOS and nesC [17], this approach in-

troduces real-time components as thin wrappers around hardware to discrete event models.

I propose a programming model, called PTIDES (Programming Temporally Integrated Dis-

tributed Embedded Systems), which has discrete-event semantics, but with carefully chosen

relations between model time and real time. This approach is closest to timed multitasking

(TM)[34], but goes a step further in embracing discrete-event semantics and relating model

time to real time only at sensor and actuator interactions based on the observation that

in many real-time systems time assurance matters only when they react to or act on the

physical world. This offers much flexibility in scheduling the internal software components.

Besides the programming model, this dissertation also studies execution mechanisms

3

that preserve the timing properties in distributed systems. Execution of the software will

first obey discrete-event semantics, just as done in DE simulators, but it will do so with

specified real-time constraints on certain actions.

A great deal of work has been done on efficient and distributed execution of such models,

much of this work originating in either the so-called “conservative” technique of Chandy

and Misra [8] or the speculative execution methods of Jefferson [23]. More interesting is

the work in the Croquet Project [46], which focuses on optimistic techniques in the face of

unreliable components. Croquet has principally been applied to three-D shared immersion

environments on the internet, similar to the ones that might be used in interactive networked

gaming.

While distribution of discrete-event models has long been used to exploit parallel com-

puting to accelerate execution [50], we are not concerned here with accelerating execution.

The focus is instead on efficient distributed real-time execution. To accomplish this, I

develop an execution strategy that obeys DE semantics without the penalty of totally or-

dered executions based on time stamps. Based on causality analysis of DE models, I define

relevant dependency and relevant orders to enable out-of-order execution without compro-

mising determinism and without requiring backtracking. Some level of agreement about

time across distributed components is necessary for this model to have a coherent seman-

tics. This technique relies on having a distributed common notion of time, known to some

precision.

4

In the rest of this chapter, I first review related work on concurrent and distributed

real-time software design, and then give an overview of this dissertation.

1.1 Related Work

This section first reviews common practice in real-time programming and some pit-

falls. It then discusses several time-triggered computation models, including port-based

objects [48], Simulink/RTW Gitto [19], and event-triggered computation models, including

TinyOS [17] and Timed Multitasking (TM) [34]. These models bring the notion of time and

concurrency to the programming level and provide different levels of timing determinism.

1.1.1 Common Practice in Real-time Programming

A distributed real-time system can be decomposed into a set of communicating computer

nodes. Within each node, there is a set of concurrent tasks reacting to inputs from the

physical world, performing computation or producing output to the physical world. A

task is a finite amount of computation that requires some resources and takes some time to

perform [34]. Each task can be executed potentially an infinite number of times during a run

of a real-time system, and each execution of a task is called a job. At run-time, multiple tasks

often need to run concurrently and compete for resources, including computing resources,

like CPU and memory, and communication resources, like buses, networks and I/O. Real-

time systems often incorporate a real-time operating system (RTOS) that provides resource

management and task activation. A common practice in real-time system design is to

adjust priorities among the tasks to fulfill timing constraints, and resources should be

5

granted preferentially to high priority tasks. Priorities might be statically assigned to tasks,

using for example the principle of rate monotonic (RM) scheduling [32], or they might be

dynamically computed at run time.

The process of deciding which task to execute is called real-time scheduling. Since

rate monotonic scheduling was introduced by Liu and Layland [32], real-time scheduling

has been an active research area for more than 30 years, and many scheduling algorithms

and analysis techniques have been developed. The complexity of the general scheduling

problem, i.e. determining whether an arbitrary task system is schedulable or not, is NP-

hard [6]. Hence in the literature, real-time scheduling algorithms have been addressing

limited problems based on some assumption on tasks and resources. Real-time scheduling

algorithms typically assume that the tasks in a real-time system are independent and can

be arbitrarily preempted, and that their worst case execution times (WCET) are fixed and

known. In general, real-time scheduling for multiprocessor tasks may also need information

about the best case execution times of the tasks to protect against Richard’s anomalies [1].

Let τ = {T1, ..., Tn} be a real-time task system that consists a finite set of tasks that

are independent, arbitrarily preemptable and having known WCETs. In the rest of this

section, we review some classic results on assigning priority to the tasks and statically

checking whether τ is schedulable or not.

Scheduling Periodic Independent Tasks

Rate Monotonic Algorithms

6

Rate Monotonic scheduling described by Liu and Layland [32] is a priority assignment

algorithm used with fixed priority preemptive scheduling. It assigns priorities to tasks

according to their period, i.e. tasks with shorter period get higher priority. In the simple

case, it assumes that all tasks are periodic with deadlines equal to their periods and that

tasks are independent of each other. Based on this scheme, schedulability of a real-time

system can be statically checked. A sufficient condition to ensure that a real-time task

system T1, ..., Tn is schedulable is given in [32]:

w1

p1
+ ...+

wn
pn
≤ n(n

√
2− 1) (1.1)

where wi is the worst case execution time and pi is the period of task Ti. The left side,

w1
p1

+...+wn
pn

, is often called the utilization factor of the task system. The right side converges

to ln2 ≈ %69 as n gets large.

Later, Lehoczky, Sha and Ding [22] give a necessary and sufficient condition for such a

task system to be schedulable. Assuming the periods p1 ≤ ... ≤ pn, a task system T1, ..., Tn

is schedulable if and only if:

for all 1 ≤ i ≤ n,mint∈Si

 i∑
j=1

wj
t

⌈
t

pj

⌉ ≤ 1 ,where

Si = {k · pj |1 ≤ j ≤ i, k = 1, ...,
⌊
pi
pj

⌋
}

(1.2)

Lehoczky, Sha and Ding [22] discuss schedulability threshold for several kinds of task

systems, where the schedulability threshold means that the system is schedulable if the

utilization factor is below the threshold value. When the periods of tasks are randomly

generated from a uniform distribution, the schedulable threshold is less than 88%. When

the periods of tasks are close to harmonic, i.e. each task period is an exact multiple of

7

another one, the schedulability threshold approaches 100%, and the worst case schedulability

threshold, ln2 arises when the periods are relative primes [6].

Another well-known fixed priority preemptive scheduling algorithm is the deadline

monotonic algorithm, which assigns priorities to tasks according to their relative deadlines,

i.e. tasks with shorter relative deadline get higher priority [2]. It assumes that all tasks

are periodic and independent of each other, but does not require that tasks have deadlines

equal to periods. With equal periods and deadlines, the deadline monotonic algorithm is

identical to the rate monotonic algorithm. The rate monotonic algorithm is optimal in the

sense that if any static priority scheduling algorithm can meet all the deadlines, then the

rate monotonic algorithm can also do so. When periods are not equal to deadlines, the

deadline monotonic algorithm is optimal.

Earliest Deadline First (EDF) Algorithms

EDF scheduling is a dynamic scheduling algorithm [32]. It assign priorities to tasks ac-

cording to their absolute deadlines and gives higher priorities to tasks with earlier deadlines.

When a task with an earlier deadline is released (i.e. when the task is ready to execute),

the currently executing task, if there is any, will be preempted, and the newly released task

get executed. In the simple case, it assumes that all tasks are periodic and independent of

each other. A real-time task system T1, ..., Tn is schedulable with EDF if and only if

i=1∑
n

wi
pi
≤ 1 (1.3)

EDF is optimal in the sense that if a set of periodic tasks can be scheduled by any

algorithm to meet all the deadlines, the EDF algorithm can also do so. With periodic tasks

8

that have deadlines equal to their periods, EDF has a utilization bound of 100%. That is,

all deadlines are met provided that the total CPU utilization is no more than 100%.

Scheduling Periodic and Sporadic Independent Tasks

Many real-time embedded systems need to react to both cyclic activities and unpre-

dictable discrete activities. If the discrete activities can come in any pattern, then we can

not check the schedulability of the system. Thus, researchers have been focused on the

scheduling of a mixture of periodic tasks and sporadic tasks which have a minimum interval

between any two consecutive release times.

Baruah et al. [3] give the sufficient and necessary condition for a sporadic task system

to be schedulable, and provide a testing algorithm that runs in pseudo-polynomial time.

For a sporadic task set τ = {T1, · · ·Tn} with relative deadlines di, minimal intervals pi,

worst execution times wi, di < pi, ∀i ∈ [1, n], and U =
∑n

i=1
wi
pi
≤ 1, let (i, t) denote the

task invocation of Ti released at t, R denote a set of task invocations and Pow(R) denote

the set of all sets of task invocations. Baruah et al. [3] prove that using EDF, a sporadic

task set is schedulable iff ∀R ∈ Pow(R) (i.e. for all possible task release patterns):

∀t ∈ [0, tu), hR(t) ≤ t (1.4)

where hR(t) is the total processing time request for tasks with deadlines before t, i.e. hR(t) =∑
(i,t0)∈R∧t0+di≤twi, and tu is an upper bound on the value of t determined by some algebraic

manipulations.

9

Ripoll et al. derived a tighter upper bound on t in [43]:

tu =
∑n

i=1(1− di/pi)wi
1− U

(1.5)

Given a sporadic task system, there can be an infinite number of task invocation se-

quences. In [5], Baruah et al. shows that it is relatively easy to identify a unique worst-case

task invocation sequence, such that all other task invocation sequences can be scheduled to

meet all deadlines if and only if this worst-case task invocation sequence can. This worst-

case task invocation sequence is exactly the sequence of jobs generated by the synchronous

periodic task task system with the exact same parameters as the sporadic task system [5].

Pitfalls with Real-time Scheduling

Many of the assumptions made by real-time scheduling algorithms can be too restric-

tive in reality. For example, tasks in a real-time system may need to access shared data

repositories, typically using a mutual exclusion mechanism. In such a case, higher priority

tasks can be blocked by lower priority tasks if the lower priority tasks are holding the mu-

tex and updating the shared data. Even worse, the higher priority tasks may be blocked

indefinitely given there are some intermediate priority tasks. As an example, consider a

real-time system τ = {T1, T2, T3} with three tasks, and assume the priorities among them

satisfy ρ1 > ρ2 > ρ3, where ρi is the priority of task Ti for i = 1, 2, 3. Suppose tasks T1 and

T3 share some data, while T2 is independent of T1 and T3. As shown in figure 1.1, suppose

that at some point, while task T1 is blocked by T3 to finish updating the shared data, T2 is

ready to execute. Since T2 has a higher priority than T3 and is independent of T3, T3 will

be preempted and T2 gets the resource to execute. This causes the execution of the high

10

Figure 1.1. An example of priority inversion in real-time scheduling.

priority task T1 to be further delayed. Assume that there are multiple intermediate-priority

tasks like T2 in the system, then the high priority task T1 can be blocked indefinitely. This

problem is well-known as priority-inversion in real-time scheduling.

Priority inversion can be prevented by priority inheritance and priority ceiling protocols

[45]. With priority ceilings, each resource is assigned a priority, which equals the highest

priority of the tasks that require this resource. When a task locks a resource, the scheduler

temporarilly raises the priority of the task to the priority level of the resource. Taking

the example above, the mutex for accessing the shared data will have the same priority as

T1, and when T3 acquires the mutex, its priority is raised to ρ1, thus keeping intermediate

priority tasks like T2 from preempting T3 and thereby solving the priority inversion problem.

With priority inheritance, a task inherits the highest priority level of all the tasks that are

blocked by this task on accessing some shared resource and regains its original priority after

11

releases the shared resources [45]. The Priority inheritance protocol can also effectively

prevent intermediate priority tasks from blocking higher priority task and hence prevent

priority inversion. These protocols are widely used in real-time operating systems like

VxWorks and QNX. However, the footprint and the run-time overhead of these protocols

are not trivial, and many lightweight real-time kernels do not support them [34].

Although there are ways to prevent priority inversion, the problem reveals some more

fundamental issues in real-time programming. One key problem is the lack of interaction

mechanisms between tasks. Designers are required to implement communication strategies

of their own, typically using mutual exclusion to access shared data repositories. Tasks

interact both through the real-time scheduler and the mutual exclusion mechanism. Rea-

soning about the interactions between these two mechanisms can be very difficult, and the

result is often fragile designs [28]. Further, there are no coherent compositional semantics

between these two mechanisms. As the complexity of real-time applications grows, they

will be increasingly difficult to design.

1.1.2 Time-Triggered Computation

Time-Triggered Architecture

The Time-Triggered Architecture (TTA) provides computing infrastructure for safety-

critical distributed real-time systems. It addresses the fundamental issues of real-time

programming by treating time as a first class quantity. The interaction between software

components is fully specified both in the value domain and in the temporal domain, so that

12

compilers and run-time systems can schedule and optimize the software to achieve timing

determinism [34].

TTA includes a fault-tolerant clock synchronization algorithm that establishes a global

time base. A real-time application is usually decomposed into several sub-systems run-

ning on different nodes and a global time is generated at every node. The global time is

used as the model of time in TTA to specify the interaction between nodes, to schedule

communication and to perform prompt error detection [26].

“A global time is an abstract notion that is approximated by properly selected microticks

from the synchronized local physical clocks of an ensemble” explains Kopetz [25], where a

microtick is a periodically generated event by a oscillation mechanism that increases the

counter of a physical clock. Given a set of clocks C synchronized with a precision ε, we can

select a subset of microticks of each local clock as the local implementation of a global notion

of time. For example, every tenth microtick of a local clock k may be selected as the global

tick, and the i × 10th microtick of clock k is used as tki , the ith global tick approximated

by clock k. Global time is a weaker notion of a universal time reference. The global time t

is called reasonable if all local implementations of the global time satisfy the condition

g > ε (1.6)

where g is the granularity, the duration between two consecutive ticks, of the global time.

The time-stamp of an event is assigned according to the local global time after the event

occurs. Notice that if the global time is reasonable, then the time stamp for a single event

e that is observed by any two different clocks of the ensemble can differ by at most one tick.

13

Figure 1.2. Uncertainty in ordering of two events with one tick difference.

The limitation of the global time is that it can not be used to order events whose global

time stamps are only 1 tick apart. For example, if we are given two events e1 and e2 where

e1 has global time stamp one tick smaller than e2, can we conclude e1 happens earlier than

e2? We cannot because it is possible that an event that happens later gets a time stamp

smaller than an event happens earlier, as shown in figure 1.2, where e1 is time stamped

by clock j with global time 3, e2 is time stamped by clock k with global time 2. However,

if the time stamp of e1 is smaller than the time stamp of e2 by at least two ticks, we can

safely conclude that e1 happens earlier than e2.

In order to consistently order events based on their global times, TTA introduces a

sparse time base. In the sparse-time model there is a silence period between any two

activity durations [26] as shown in figure 1.3. Events can only happen in the activity

interval. Events with the same global time stamp are called simultaneous. Kopetz [25]

shows that when the silence interval s satisfies s ≥ 3g, events that happens during different

durations of the activity interval, which hence have different global time stamps, can be

consistently ordered based on their global time stamps.

Computation in the Time- Triggered Architecture is based on the time-triggered (TT)

14

Figure 1.3. Sparse Time Base in TTA.

model, where software components react to events that are repeated with a fixed period.

Thanks to the regularity of the computation, the time when a message is sent or fetched from

a node is known a priori. TTA includes a communication service to schedule and deliver

the messages from the sending nodes to the receiving nodes based on the a priori known

time instances of transforming and fetching [26]. The network protocol that provides this

communication service in the TTA is the fault-tolerant TTP protocol. The communication

in TTP is organized into rounds, where every node must send a message in every round.

TTP offers fault-tolerant message transport between distributed nodes with bounded delay

by employing a TDMA medium access strategy on replicated communication channels [26].

Time-Triggered Computation Models

Time triggered computation has been widely explored for safely critical systems. It has

the advantage that all triggers are predictable in terms of time, and timing analysis becomes

easy. I review three examples of time-triggered models in this section.

Port-Based Object

The port-based object (PBO) [48] is a software framework developed in the Advanced

Manipulators Laboratory at Carnegie Mellon University (CMU). It was first introduced to

15

Figure 1.4. An example of task execution sequence in a PBO model.

program reconfigurable robots. In the PBO model, an task is modeled as a port-based object

with input ports and output ports. The term object used in PBO has different meaning from

the “object” in object-oriented design. A PBO is an independent concurrent process. The

execution of each PBO is activated by time periodically. Communication between PBOs is

mediated by input ports and output ports. The communication between output and input

ports is via state variables that are stored in a global table. Each PBO stores a subset of the

data that is needed from the global table in its own local table. Before executing a PBO,

the state variables corresponding to its input ports stored in its local table are updated

from the global table. After the execution completes, the state variables corresponding to

its output ports are copied from its local table to the global table.

In the PBO model, synchronization is needed to ensure the accesses to the same state

variable in the global table are mutually exclusive. The PBO framework provides a mecha-

nism using spin-locks [40] for synchronizing access to the global state variable table. When

a PBO needs to access the global table, it first locks the processor on which it is executing,

16

and then waits to obtain the global lock for the global table. The global lock has the highest

priority of all the PBOs and the object holding the lock inherits its priority. This way, the

object that holds the global lock is assured being on a different processor and will not be

preempted. The PBO model assumes that the amount of data exchanged through the state

variables are very small, so that each object does not need to hold the global lock long to

finish its critical section accessing the global table.

In the PBO model, the communication between PBOs is not deterministic. As the

execution finish time of an PBO varies from time to time, the time when the state variables

corresponding to its output ports get updated in the global table may not be regular. If

another object needs to read these output ports, it may or may not get the results of the

current cycle. As an example, consider a simple PBO model with two tasks T1 and T2,

where T2 reads the output of T1. Suppose T1 and T2 are running on different CPUs and

T1 get activated at every time instance t = 2k and T2 get activated at every time instance

t = 2k+ 2, where k = 0, 1, 2, · · · . A possible execution trace of T1 and T2 is shown in figure

1.4. In the first period of T2, the output of T1 has not been produced, so it reads the stale

value of the state variable corresponding to the output of T1 (in this case, it is the initialized

value of the state variable). However, in the second period of T2, it reads the fresh output

of T1. This communication uncertainty may not be desired in many real-time applications.

I review two other time-triggered models below that provide deterministic communication

between components.

Giotto

17

The Giotto programming language [19] provides a time-triggered programming model

for periodic, hard real-time systems. Similar to the PBO model, the execution of each task

in Giotto is activated by periodic clocks. But the communication between tasks in Giotto is

more restricted. Unlike the PBO model where the communication between PBOs may vary

from time to time, communication between tasks in Giotto is well defined. The execution

of a task in Giotto has a start time, which is the starting time instant the execution period

starts, and a stop time, which is the end time instance the execution period ends. A task

reads all its inputs at the start time and makes its outputs available to other tasks at its

stop time.

In exchange for the communication determinism, Giotto (implicitly) introduces a unit

delay at the rate of the slow task on every connection. Consider a Giotto model with two

tasks T1 and T2 both having a period of 4, and task T2 reads the output of task T1. Figure

1.5 (b) shows the timing diagram of the execution of this model. Task B always reads data

output by A in the previous cycle. Hence there is a precise 4 seconds delay introduced

by task A. This one unit delay may not be desirable for some applications, but it gives

Giotto strong formal structure, deterministic behavior in both functional and timing and

the ability to perform static schedulability analysis.

Giotto also introduces a composite construct called mode. A mode contains a set of

tasks and mode switch conditions. Different modes can contain different sets of tasks or

have tasks run at different frequencies. At any particular time instant, a Giotto program

runs in one mode. Mode switches are also time-triggered and are checked periodically to

decide whether to stay in the current mode or switch to another one. Mode switches provide

18

Figure 1.5. In Giotto, the outputs are always produced at the end of the execution cycle.

Giotto the capability to run tasks at different frequencies, to remove tasks or to add tasks

dynamically.

Simulink with Real-Time Workshop

Simulink was originally developed as a modeling environment, primarily for control sys-

tems. Although initially Simulink focused on simulating continuous dynamics and provid-

ing excellent numerical integration, it also has acquired a discrete capability. Semantically,

discrete signals are piecewise-constant continuous-time signals which change value only at

discrete points on the time line. In addition to discrete signals, Simulink has discrete blocks.

These have a sampleTime parameter, which specifies the period of a periodic execution. Any

output of a discrete block is a piecewise constant signal. Inputs are sampled at multiples of

the sampleTime.

Certain arrangements of discrete blocks turn out to be particularly easy to execute. An

interconnection of discrete blocks that all have the same sampleTime value, for example, can

19

discrete controller

A ZOH B Unit
Delay

C

ZOH
Physical

Dynamics

0.02 0.020.1

Figure 1.6. A representation of a Simulink program.

be efficiently compiled into real-time software. But even blocks with different sampleTime

parameters can yield efficient models, when the sampleTime values are related by simple

integer multiples. Fortunately, in the design of control systems (and many other signal pro-

cessing systems), there is a common design pattern where discrete blocks with harmonically

related sampleTime values are commonly used to specify the software of embedded control

systems.

Figure 1.6 shows schematically a typical Simulink model of a control system. There is a

portion of the model that is a model of the physical dynamics of the system to be controlled.

There is no need, usually, to compile that specification into real-time software. There is

another portion of the model that represents a discrete controller. In this example, we have

shown a controller that involves multiple values of the sampleTime parameter, shown as

numbers below the discrete blocks. This controller is a specification for a program that we

wish to execute in an real-time system.

Real-Time Workshop is a product from The MathWorks associated with Simulink. It

20

U
ni

tD
el

ay
C A C A C A C A C A

B
 (

st
ar

t)

B
 (

co
nt

)

B
 (

co
nt

)

B
 (

en
d)

preempted idle

low

high

priority
Z

O
H

Figure 1.7. A simplified representation of a Simulink schedule.

takes models like that in figure 1.6 and generates code. Although it will generate code for

any model, it is intended principally to be used only on the discrete controller, and indeed,

this is where its strengths come through.

The discrete controller shown in figure 1.6 has fast running components (with sample-

Time values of 0.02, or 20 ms) and slow running components (with sampleTime values of

0.1, or 1/10 of a second). In such situations, it is not unusual for the slow running com-

ponents to involve much heavier computational loads than the fast running components.

It would not do to schedule these computations to execute atomically. This would permit

the slow running component to interfere with the responsivity (and time correctness) of the

fast running components.

Simulink with Real-Time Workshop uses a clever technique to circumvent this prob-

lem. The technique exploits an underlying multitasking operating system with preemptive

priority-driven multitasking. The slow running blocks are executed in a separate thread

from the fast running blocks, as shown in figure 1.7. The thread for the fast running blocks

is given higher priority than that for the slow running blocks, ensuring that the slow run-

21

ning code cannot block the fast running code. So far, this just follows the principles of

rate-monotonic scheduling [33]. But the situation is a bit more subtle than this, because

data flows across the rate boundaries. Recall that Simulink signals have continuous-time

semantics, and that discrete signals are piecewise constant. The slow running blocks should

“see” at their input a piecewise constant signal that changes values at the slow rate. To

guarantee that, the model builder is required to put a zero-order hold (ZOH) block at the

point of the rate conversion. Failure to do so will trigger an error message. Cleverly, the

code for the ZOH runs at the rate of the slow block but at the priority of the fast block.

This makes it completely unnecessary to do semaphore synchronization when exchanging

data across these threads.

When rate conversions go the other way, from slow blocks to fast blocks, the designer

is required to put a UnitDelay block, as shown in figure 1.6. This is because the execution

of the slow block will typically stretch over several executions of the fast block, as shown in

figure 1.7.

To ensure determinacy, the updated output of the block must be delayed by the worst

case, which will occur if the execution stretches over all executions of the fast block in one

period of the slow block. The unit delay gives the software the slack it needs in order to be

able to permit the execution of the slow block to stretch over several executions of the fast

one. The UnitDelay executes at the rate of the slow block but at the priority of the fast

block.

Giotto and Simulink/RTW are intended primarily for periodic real-time tasks. These

22

purely time-triggered approaches require tasks to be periodic and do not fit well with sys-

tems reacting to unpredictable irregularly spaced events from the external physical pro-

cesses. For example, consider a sensor fusion problem where two sensors produce events

randomly and we need to calculates a running average of the sensor data using a discounting

strategy. While it would be straightforward to construct a discrete multitasking model in

Simulink/RTW that polls the sensors at regular (harmonic) rates, reacting to stimulus from

the sensors at random times does not fit the semantics very well. I review event-triggered

computation models in the next section.

1.1.3 Event-Triggered Computation Models

An event-triggered approach fits well with systems reacting to unpredictable discrete

events from external physical processes. The arrival time of events may sometimes be highly

unpredictable, which makes timing and schedulability analysis of event-triggered software

harder. But in many cases, physical dynamics actually guarantees a lower bound on the

interval between certain kind of events, and recent work shows under such constraints

event-driven software can be subject to scheduability analysis as well [44]. I review three

event-triggered computation models in this section.

TinyOS

TinyOS is a specialized, small-footprint operating system for use on extremely resource-

constrained computers, such as 8 bit microcontrollers with small amounts of memory [17].

It is typically used with nesC, a programming language that describes “configurations,”

which are assemblies of TinyOS components.

23

Component 1

interface us ed

interface provided

Component 2

interface us ed

interface provided

command invoked

command implemented event signaled

event handled

Figure 1.8. A representation of a nesC/TinyOS configuration.

A visual rendition of a two-component configuration is shown in figure 1.8, where the

visual notation is that used in [17]. The components are gray boxes with names. Each com-

ponent has some number of interfaces, some of which it uses and some of which it provides.

The interfaces it provides are put on top of the box and the interfaces it uses are put on

the bottom. Each interface consists of a number of methods, shown as triangles. The filled

triangles represent methods that are called commands and the unfilled triangles represent

event handlers. Commands propagate downwards, whereas events propagate upwards.

After initialization, computation typically begins with events. In figure 1.8, Component

2 might be a thin wrapper for hardware, and the interrupt service routine associated with

that hardware would call a procedure in Component 1 that would “signal an event.” What

it means to signal an event is that a procedure call is made upwards in the diagram via

the connections between the unfilled triangles. Component 1 provides an event handler

24

procedure. The event handler can signal an event to another component, passing the event

up in the diagram. It can also call a command, downwards in the diagram. A component

that provides an interface provides a procedure to implement a command.

Execution of an event handler triggered by an interrupt (and execution of any commands

or other event handlers that it calls) may be preempted by another interrupt. This is the

principal source of concurrency in the model. It is potentially problematic because event

handler procedures may be in the middle of being executed when an interrupt occurs that

causes them to begin execution again to handle a new event. Problems are averted through

judicious use of the atomic keyword in nesC. Code that is enclosed in an atomic block

cannot be interrupted (this is implemented very efficiently by disabling interrupts in the

hardware).

Clearly, however, in a real-time system, interrupts should not be disabled for extensive

periods of time. In fact, nesC prohibits calling commands or signaling events from within

an atomic block. Moreover, no mechanism is provided for an atomic test-and-set, so there is

no mechanism besides the atomic keyword for implementing mutual exclusion. The system

is a bit like a multithreaded system but with only one mutual exclusion lock. This makes

it impossible for the mutual exclusion mechanism to cause deadlock.

Of course, this limited expressiveness means that event handlers cannot perform non-

trivial concurrent computation. To regain expressiveness, TinyOS has tasks. An event

handler may “post a task.” Posted tasks are executed when the machine is idle (no interrupt

service routines are being executed). A task may call commands through the interfaces it

25

Fuse r

Se nsor1

reading

reading

Printer

print

Se nsor2

reading

reading print

Figure 1.9. A sketch of the sensor fusion problem as a nesC/TinyOS configuration.

uses. It is not expected to signal events, however. Once task execution starts, it completes

before any other task execution is started. That is, task execution is atomic with respect

to other tasks. This greatly simplifies the concurrency model, because now variables or

resources that are shared across tasks do not require mutual exclusion protocols to protect

their accesses. Tasks may be preempted by event handlers, however, so some care must

be exercised when shared data is accessed here to avoid race conditions. Interestingly, it is

relatively easy to statically analyze a program for potential race conditions [17].

Consider the sensor fusion example mentioned in section 1.1.2 where two sensors produce

events randomly and we need to calculates a running average of the sensor data using a

discounting strategy. A configuration for this is sketched in figure 1.9. The two sensors

have interfaces called “reading” that accept a command a signal an event. The command

is used to configure the sensors. The event is signaled when an interrupt from the sensor

hardware is handled. Each time such an event is signaled, the Fuser component records the

sensor reading and posts a task to update the discounted average. The task will then invoke

the command in the print interface of the Printer component to display the result. Because

26

tasks execute atomically with respect to one another, in the order in which they are posted,

the only tricky part of this implementation is in recording the sensor data. However, tasks

in TinyOS can be passed arguments on the stack, so the sensor data can be recorded there.

The management of concurrency becomes extremely simple in this example.

In effect, in nesC/TinyOS, concurrency is much more disciplined than with threads.

There is no arbitrary interleaving of code execution, there are no blocking operations to

cause deadlock, and there is a very simple mechanism for managing the one nondeterministic

preemption that can be caused by interrupts. The price paid for this, however, is that

applications must be divided into small, quickly executing procedures to maintain reactivity.

Since tasks run to completion, a long-running task will starve all other tasks.

Timed Multitasting (TM)

The TM model is built on top of a component-based approach, where components are

called Ptolemy actors [34] [21]. In TM, each task is represented by an actor, which encapsu-

lates a sequence of finite computation. The interface of each actor consists of input/output

ports and parameters. An actor communicates with other actors via sending/receiving

events through its ports. The communication among the actors has an event semantics

in the sense that every piece of data will be produced and consumed exactly once [34].

An actor can specify its execution requirements, including priority, execution times, and

deadlines, through its parameters. The deadline of a task is specified as a real-time value.

The output events are produced if and only if the deadline is reached. In TM, a task is

eligible to execute if there is an event that triggers it. By controlling when output events

27

are produced, TM controls both the starting time and stopping time of each task, thus

obtaining deterministic timing properties [34].

TM distinguishes two types of actors: actors that respond to external events and actors

that are triggered internally by messages generated by other actors. The first type of actors

are called interrupt service routines (ISRs) and the second type of actors are called regular

tasks. An ISR actor is represented as a source actor – actor that do not have input ports. It

converts inputs from the outside world into events that triggers other actors. An ISR actor

has no trigger conditions and no deadlines. Its output is made available to downstream

actors immediately when the external event occurs. A regular task actor has a much richer

interface (including priorities, execution times and deadlines) than an ISR actor and is

generally triggered by events at its input ports.

TM assumes there is a single computation resource shared by all the task actors, and

the execution of an ISR actor is managed by an independent thread. The execution of the

ISR actors is triggered chronologically based on the time stamp of the external events. The

execution of other task actors is handled by a priority-based event dispatcher, which sorts

and dispatches events based on their priorities. At any given time, only one task actor gets

executed. If preemption is allowed, then the execution of a task can by preempted by higher

priority tasks. For example, when task A is running, an ISR actor produces an event that

triggers task B which has a higher priority than A, then A will be preempted by B. The

run time environment of TM tracks when an output event can be produced. If the task can

finish its execution before its deadline, the output is made available to its downstream tasks

when the deadline is reached. In case a task misses its deadline, TM uses overrun handlers

28

to complete the current execution of the task quickly to preserve time determinism as much

as possible [34].

1.2 Overview of dissertation

This dissertation presents a concurrent model of computation (MoC) for distributed real-

time systems called PTIDES (pronounced “tides,” for Programming Temporally Integrated

Distributed Embedded Systems). Similar to TM, PTIDES is also an event-triggered com-

putation model. But PTIDES achieves deterministic timing behavior for real-time systems

in a different way than TM. PTIDES uses a discrete-event (DE) model as the underlying

formal semantics to achieve deterministic behavior in both time and value.

In PTIDES, applications are developed as discrete event (DE) models. Whereas tradi-

tionally DE has been used as a simulation technology, I am using it as a basis for model-

based design of real-time software. The time stamps in conventional discrete-event models

are model times just for ordering events and do not need to carry a relationship with real-

time. Mapping model time to real time everywhere in a discrete-event model is not efficient

as it will lead to total ordering of execution in a distributed system, an unnecessary waste of

resources. Based on the observation that in many real-time systems time assurance matters

only when they react or act to the physical world, PTIDES relates model time to real time

only at sensor and actuator interactions.

Key to making this model effective is to ensure that constraints that guarantee deter-

minacy in the semantics are preserved at runtime. A dependency analysis framework is

29

presented to allow out of order processing of events without compromising determinism

and without requiring backtracking. The basic idea is that if two events have independent

effects, then they can be processed in any order. As a result, if the earlier event is delayed

due to communication, processing of the later event does not need to be blocked.

Chapter 2 introduces the reader to actor-oriented design and DE models. Chapter

3 presents the dependency analysis framework that allows out of order event processing.

Chapter 4 describes the PTIDES model and implementation of a runtime environment for

PTIDES models. Chapter 5 studies schedulability of PTIDES systems. Chapter 6 concludes

this dissertation.

30

Chapter 2

Background

This chapter introduces actor-oriented design and the discrete event (DE) model of com-

putation. These form the background knowledge required for understanding the PTIDES

model and techniques presented later in this dissertation.

2.1 Actor-Oriented Design

Object-oriented design emphasizes inheritance and procedural interfaces. Actor-

oriented design emphasizes concurrency and communication, and admits time as a first-

class concept [28]. As a component model, actor is more suitable for concurrent and timed

systems. There are many examples of actor-oriented frameworks, including Simulink (from

The MathWorks), LabVIEW (from National Instruments) from the industry, Metropolis

[18], Giotto [19], Ptolemy and Ptolemy II [21] from the academic community. Hardware

design languages, such as VHDL, Verilog, and SystemC, are also actor oriented.

31

The actor model was first proposed by Carl Hewitt, where actors have their own thread

of control and interact via message passing [20]. Gul Agha develops a formal theory for

describing concurrent systems that combined Hewitt’s message passing with local state

update [41]. Agha uses the term “actors,” which he defines to extend the concept of

objects to concurrent computation. Agha’s actors encapsulate a thread of control and

have interfaces for interacting with other actors. The protocols used for this interface are

called interaction patterns, and are part of the model of computation [28].

Lee generalizes the notion of actors and applies it to software design for concurrent

systems [21]. He suggests the term “actor-oriented design” as a refactored software archi-

tecture, where instead of objects, actors are the primary unit to construct applications.

Actors have a well defined interface, which abstracts internal state and execution of an

actor and restricts how an actor interacts with its environment. Externally, this interface

includes ports that represent points of communication for an actor and parameters which

are used to configure the behavior of an actor [41]. The use of the term actors by Lee is

broader in the sense that actors are not required to encapsulate a thread of control [28].

This dissertation uses Lee’s concept of actors.

In traditional object-oriented programming, what flows through an object is sequential

control. In other words, things happen to objects. In actor-oriented programming, what

flows through an actor is evolving data [9]. An actor reacts to input data by performing

some computation and producing (possibly) new data to its output port.

Actor-oriented languages can be either self-contained programming languages (e.g. Es-

32

terel, Lustre) or coordination languages (e.g. Manifold [42], Simulink, Ptolemy II). In the

former case, the “atomic actors” are the language primitives. In the latter case, the “atomic

actors” are defined in a host language that is typically not actor oriented (but is often ob-

ject oriented). Actor-oriented design is amenable to both textual syntax, which resemble

those of more traditional computer programs, and visual syntax with “boxes” representing

actors and “wires” representing connections. The synchronous languages Esterel, Lustre,

and Signal, for example, have principally textual syntaxes, although recently visual syn-

taxes for some of them have started to catch on. Ports and connectors are syntactically

represented in these languages by variable names. Using the same variable name in two

modules implicitly defines ports for those modules and a connection between those ports.

Visual syntaxes are more explicit about this architecture. Examples with visual syntaxes

include Simulink, LabVIEW, and Ptolemy II.

Actors can be aggregated to form composite actors. A visual syntax for a simple three-

actor composition is shown in figure 2.1(a). Here, the actors are rendered as boxes, the

ports as triangles, and the connectors as wires between ports. The ports pointing into the

boxes are input ports and the ports pointing out of the boxes are output ports. A textual

syntax for the same composition might associate a language primitive or a user-defined

module with each of the boxes and a variable name with each of the wires.

The semantics of composition, including the communication style, is given by a model

of computation. A model of computation can be thought of as the “laws of physics” that

govern component interactions [28]. Unlike sequential computation where the Von Neumann

model provides a wildly successful universal abstraction, no universal model of computation

33

a3
a1

p1

p3

p6
p2

a2

p4

p5

Figure 2.1. composition of actors.

has yet emerged for concurrent computation. There are many models of computation, each

dealing with concurrency and time in different ways. A detailed introduction of different

models of computations is given in [28], and some examples are briefly described here. In

dataflow models, actors are triggered by the availability of input data values (tokens), and

connections between actors represent the flow of data from a producer actor to a consumer

actor. In rendezvous models, the actors are processes, and they communicate in atomic,

instantaneous actions called rendezvous. In time triggered models, actors are driven by

clocks, and connections between components represent signals with events that are repeated

indefinitely with a fixed period. In discrete-event (DE) models of computation, actors are

triggered by events , and the connections represent sets of events placed on a time line. I

will discuss the DE model of computation in more details in section 2.4.

34

2.2 Tagged Signal Model

Actors and actor compositions are formally described in the tagged signal model [30] by

Lee and Sangiovanni-Vincentelli.

2.2.1 Event and Signal

In the tagged signal model, actors interact with each other by tagged signals. Formally,

let T be a poset of tags, V a non-empty set of values. An event e = (t, v) is a tag-value

pair. That is, e is a member of T ×V . The partial order on the tag set T specifies ordering

of events. Given two events e1 = (t1, v1), e2 = (t2, v2), e1 < e2 ⇐⇒ t1 < t2. Two events e1

and e2 is said not comparable if neither e1 < e2 nor e2 < e1.

Definition 2.1 (Down Set). A down set D ⊆ T is a subset of T such that,

t ∈ D =⇒ ∀t′ ∈ T where t′ ≤ t, t′ ∈ D.

Definition 2.2 (Signal). A signal s : T ⇁ V is a partial function from T to V such that

dom(s) is a down set of T , where dom(s) denotes the subset of T on which s is defined.

Let S(T , V) denote the set of all signals with tag set T and value set V . S(T , V) is a

poset under the prefix order [37].

Definition 2.3 (Prefix Order). For any s1, s2 ∈ S(T , V), s1 is a prefix of s2, denoted by

s1 v s2, if and only if dom(s1) ⊆ dom(s2), and s1(t) = s2(t), ∀t ∈ dom(s1).

It is often useful to form a tuple s of N signals. The set of all such tuples will be denoted

as SN .

35

)0,(0
rt)1,(1

rt)2,(2
rt)3,(3

rt

st0
st1

st2
st3

)0,(0
st)1,(1

st)2,(2
st)3,(3

st

rt0
rt1

rt2
rt3

(a)

0 1 2 3 t

t 1 2 3 0 0.5 1.5 2.5

r

s

(b)

s1

s2

Figure 2.2. (a) two streams r, s and their tag set shown as a Hasse diagram with a small
variation. Dots represent events, and circles represent tags. (b) two timed signals s1 and
s2.

The algebraic properties of the tag set are determined by the model of computation.

Tags can be used to model time, precedence relationships, synchronization points, and

other key properties of a model of computation [30]. We can specify a particular model of

computation in the tagged signal model framework by defining the tag set for signals [36].

Figure 2.2 shows some examples of tag sets and signals taken from [36]. Figure 2.2 (a)

shows two streams r and s and their tag sets. The tag set of a stream s is {tsk | k ∈ N} with

the ordering tsi ≤ tsj for all i, j ∈ N such that i ≤ j. The events of a stream are totally

ordered. Two tags from different streams are not comparable. Figure 2.2 (b) shows two

timed signals, in which the tags mark time. Not only the events of one timed signal are

totally ordered, but two events from different signals are also ordered by their tags, i.e. the

events of the two timed signals are totally ordered.

36

2.2.2 Actor

An actor is a computational unit that relates a set of signals. An actor a with N ports

is a subset of SN , i.e. a ⊆ SN . Given s ∈ SN , s is called a behavior of a if s ∈ a. Thus

an actor is a set of possible behaviors. Note that we can easily embrace nondeterminism in

this model, but we should introduce nondeterminism only when it is needed.

A connector c between M ports Pc is a particularly simple actor c ⊂ SM where signals

at each port p ∈ Pc are constrained identical.

In many actor-oriented formalisms, ports are either inputs or outputs to an actor but

not both. Consider an actor a ⊆ SN where I ⊆ {1, · · · , N} denotes the indices of the

input ports, and O ⊆ {1, · · · , N} denotes the indices of the output ports. We assume that

I ∪ O = {1, · · · , N} and I ∩ O = ∅. Given a signal tuple s ∈ a, we define πI(s) to be

the projection of s on a’s input ports, and πO(s) on output ports. The actor is said to be

functional if,

∀s, s’ ∈ a, πI(s) = πI(s’) =⇒ πO(s) = πO(s’)

Given a functional actor a with |I| input ports and |O| output ports, we can define an

actor function with the following form:

Fa : S|I| −→ S|O|

where |.| denotes the size of a set. When it creates no confusion, we make no distinction

between the actor a (a set of behaviors) and the actor function Fa [51].

A source actor is an actor that only has output ports. It is functional if and only if its

37

Add
s1

s2

s3

Figure 2.3. an Add actor.

behavior set is a singleton set. That is, it has only one behavior. A sink actor is an actor

that only has input ports. It is always functional.

Figure 2.3 illustrates an actor that adds two timed signals s1 and s2 to produce the signal

s3. Suppose that addition +: V ×V → V is defined on a value set V . Let +ε : Vε×Vε → Vε

be defined by

+ε v2 ∈ V v2 = ε

v1 ∈ V v1 + v2 v1

v1 = ε v2 ε

(2.1)

where ε represents the absence of a normal value. For any normal value set V , Vε =

V ∪ {ε}.

The Add actor Add ⊆ S3 has 3 ports and is functional with I = {1, 2} being the indices

of the input ports and O = {3} being the indices of the output ports. It has the form:

Add : S2 −→ S1

38

a3
a1

p1

p3

p6
p2

a2

p4

p5

a3

a1

p1

p3
p6

p2

a2

p4

p5

q1

q3

q2

q4

q6

q5

a

(b)(a)

Figure 2.4. composition of functional actors.

Given a signal tuple s = (s1, s2) ∈ S2, the Add actor adds s1, s2 by:

Add(s1, s2) = s3 where

dom(s3) = dom(s1) ∩ dom(s2),

s3(t) = s1(t) +ε s2(t).

(2.2)

Actors can be composed to form a network of actors, and from now on we only consider

composition of functional actors. The composite actor is the intersection of all possible

behaviors of the actors and the connectors in the composition. We have to use some care

in forming this intersection. Before we can form such an intersection, each process to

be composed must be augmented as a subset of the same set of signals SN [31]. Note

that unlike composition of the objects and threads model, composition of actors does not

introduce nondeterminism.

Figure 2.4 (a) shows a composite actor constructed from three actors. We can rearrange

39

the actors and compose them into one composite actor a as shown in figure 2.4 (b), where

internally it has no directed cycles and externally it can be viewed as a feedback system.

In fact, any network of actors can be converted to a feedback system, like that in figure

2.4 (b). A constructive procedure that performs this conversion is to create one input port

and one output port for each signal in the original network. Then connect the output port

providing the signal to the new output port, and connect the new input port to input ports

that observe the signal [51].

If the component actors are functional, then the composite actor is functional [30]. Let

Fa denote the actor function of a. Assuming a1 , a2 and a3 are functional, Fa has the form

Fa : S3 −→ S3

Given a signal tuple s ∈ a,

Fa(s) = s (2.3)

A solution that satisfies equation 2.3 is called a fixed point of the composition. A key

question is whether such a fixed point exists, and whether it is unique. The answer to this

question will be discussed in the next section.

The composition in figure 2.4 has no external input ports, i.e. ports that are not

connected to the output of any actor in the composition. The composition is called closed

if it has no external input ports. Otherwise, it is called open. We can generalize the

fixed point formulation to allow open composition. We partition the input ports of the

composition actor into two disjoint indice sets I = I1 ∪ I2, where I1 is the indices of the

external input ports, and I2 is the indices of the other input ports of the composite actor.

40

a3
a1

p1

p3

p6
p2

a2

p4

p5

a3

a1

p1

p3
p6

p2

a2

p4

p5

q1

q3

q2

q4

q6

q5

b

p7
p7q7

(b)(a)

Figure 2.5. open composition of functional actors.

Figure 2.5 shows a composition with one external input port and the rearrangement as a

feedback system. For this open composition b ⊆ S7, I1 = {7}, and I2 = {1, 2, 3}. Let O be

the indices of the output ports of b, and O = {4, 5, 6} in figure 2.5. Let Fb denote the actor

function of b. Fb has the form

Fb : S|I1| × S|I2| −→ S|O|

Given a signal tuple s ∈ b, πI2(s) = πO(s). The output s2 ∈ S|O| satisfies

∀s1 ∈ S|I1|, s2 = F̃b(s2),whereF̃b : s2 7→ Fb(s1, s2). (2.4)

That is, the behavior on the output ports is a fixed point of a function that is parame-

terized by the input signal.

41

2.2.3 Fixed Point Semantics

Monotonicity and continuity plays important role in ensuring the existence of the fixed

point and finding it constructively. We review some classical results from [10] and apply

them to our formulation of actor networks.

Definition 2.4 (monotonic). Let (S1,v) and (S2,v) be CPOs. A function F : S1 → S2 is

monotonic if

∀s, s′ ∈ S1, s v s′ =⇒ F (s) v F (s′).

Definition 2.5 (continuous). Let (S1,v) and (S2,v) be CPOs. A function F : S1 → S2 is

(Scott) continuous if for all directed sets D ⊆ S1, F (D) is a directed set and

F (
∨
D) =

∨
{F (d)|d ∈ D}.

Continuity implies monotonicity [10]. A well-known fixed point theorem [10] states that

a continuous function has a least fixed point and gives a constructive way to find it.

Theorem 2.6 (Fixed Point Theorem). Let S be a CPO with partial order ≤ and the least

element ⊥, and F : S → S a continuous function. Then F has a least fixed point given by:

fix(F) = ∨{Fn(⊥)|n ∈ N},

where N = {1, 2, · · · } is the set of natural numbers.

For closed actor networks like those in figure 2.4, if each component actor is continuous,

then the composite actor Fa is a continuous function on a CPO. Thus, it has a least fixed

point, and that fixed point is given by (2.3). If a fixed point exists, we define the semantics

of the diagram in figure 2.4 to be the least fixed point in the prefix order.

42

The fixed point theorem 2.6 can also be applied to open systems with a bit more work.

Following [37], let (D,v) and (E,v) be CPOs, and now we consider a function of the form

G : D × E → E. (2.5)

For a given d ∈ D, let G(d) : E → E be the function such that

∀ e ∈ E, (G(d))(e) = G(d, e).

If G is continuous, then for all d ∈ D, G(d) is continuous (lemma 8.10 in [49]). Hence, G(d)

has a unique least fixed point, and that fixed point is

∨
{(G(d))n(⊥E) | n ∈ N},

where ⊥E is the least element of E.

We recognize immediately that the feedback system function of (2.4) is a function of

form (2.5). Moreover, if the component actors are continuous, then the feedback system

function will be continuous, and given an input signal s1 ∈ S|I1|, F̃b : s2 7→ Fb(s1, s2) is

continuous and hence has a least fixed point.

Continuity ensures the existence of a least fixed point. However, even there exist a least

fixed point for a continuous actor network, the fixed point can be a trivial signal, i.e. the

empty signal s⊥ that is defined nowhere (dom(s) = ∅). For example, suppose that in figure

2.4 (b) Fa is the identity function, which is continuous. It is easy to see that the least fixed

point assigns to each port the empty signal [51]. The next section focus on timed actor

networks and study the sufficient condition ensuring a useful fixed point.

43

0 1 2 3 t

(a)

0 1 2 3 t

(b)

0 1 2 3 t

(c)

0 1 2 3 t

(d)

Figure 2.6. Examples of timed signals: (a) const1, (b) clock1, (c) zeno, (d) dzeno.

2.3 Timed Actor Networks

A subclass of tagged systems are timed systems, in which all signals share a common tag

set. The tag set is totally ordered, and is a model of global time in the system. Examples of

timed systems include synchronous/reactive (SR) models, discrete-event (DE) models, and

continuous-time (CT) models. For SR models, the tag set is the set of natural numbers N.

For DE and CT models, Any non-empty interval of real numbers may be used as the tag set.

In this thesis, the non-negative real numbers R0 = [0,∞) will be used as a representative.

Following [37], we represent a signal s as a tuple (dom(s), E), where dom(s) is the

domain of the signal (a down set of T), and E is the set of events that are not absent,

E = {(t, s(t)) | t ∈ dom(s), s(t) 6= ε}.

I assume that every value set V contains a special element ε ∈ V that represents absence

of a value.

44

The following examples, with T = R0 and V = {0, 1, ε}, are sketched in figure 2.6:

const1 = (R0, {(t, 1) | t ∈ R0}),

clock1 = (R0, {(k, 1) | k ∈ N}),

zeno = (R0, {(1− 1/2k, 1) | k ∈ N}),

dzeno = ([0, 1), {(1− 1/2k, 1) | k ∈ N}).

A closed actor network is said to be live if the input and output of the network are

defined for all tags in T . An open composition is live if if the output of the network are

defined at least up to t when all input signals are defined up to t for some t ∈ T . It is well

known that, in general, whether a network of actors is live is undecidable (this is known for

Kahn process networks) [37]. For timed systems, a sufficient and checkable condition for a

network to be live is that the composite actor is a contraction map, where a metric space of

signals is constructed and contraction maps combined with the Banach fixed point theorem

yield live systems. Liu and Lee [37] give a sufficient condition for a timed system to be live

without requiring a metric space.

Definition 2.7 (Causality). Let A ⊆ SN be an actor with N ports. Let I and O be the

indices of the input and output ports, where I ∩ O = ∅ and I ∪ O = {1, · · · , N}. Given

s ∈ SN , and ∀i ∈ {1, · · · , N}, let si be the projection of s on port i. A is causal if it is

monotonic, and for all s ∈ A,

⋂
i∈I

dom(si) ⊆
⋂
j∈O

dom(sj) . (2.6)

Intuitively, this definition says that if the inputs of a causal actor are known up to some

45

Figure 2.7. A composition that can be shown to be live.

tag t ∈ T , where T is a totally ordered tag set, then the outputs are known at least up to

tag t.

It is easy to see that any composition of causal actors without directed cycles is itself

a causal actor. This is not in general true when there are directed cycles. In this case, the

composite actor is causal if at least one actor in the loop is strictly causal [37], as defined

next.

Definition 2.8 (Strict Causality). Let A ⊆ SN be an actor with N ports. Let I and O be

the indices of the input and output ports, where I ∩O = ∅ and I ∪O = {1, · · · , N}. Given

s ∈ SN , and ∀i ∈ {1, · · · , N}, let si be the projection of s on port i. A is strictly causal if

it is monotonic, and for all s ∈ A,

⋂
i∈I

dom(si) ⊂
⋂
j∈O

dom(sj) . (2.7)

A causal actor is live. Thus, a sufficient condition for a composition of actors to be live

is that the composition is causal. The following theorem is from [37].

Theorem 2.9 (Causality of Feedback Compositions). Given a totally ordered tag set and

a network of causal and continuous actors where in every dependency loop in the network

there is at least one strictly causal actor, then the network is a causal and continuous actor.

Figure 2.7 shows a composition of the Delayd and Merge actor as given in [37]. Let d

46

be any positive real number. The Delayd : S → S actor shifts every event in its input signal

by d into the future such that if r = Delayd(s), then

dom(r) = {t ∈ T | t− d ∈ dom(s) or t− d /∈ T },

r(t) =

s(t− d) t− d ∈ dom(s),

ε otherwise.

(2.8)

The Merge : S2 → S actor combines the present events in its input signals into its output

signal, giving precedence to its first input when both input signals are present at the same

time. Specifically, if s = Merge(s1, s2), then

dom(s) = dom(s1) ∩ dom(s2),

s(t) =

s1(t) s1(t) 6= ε,

s2(t) otherwise.

(2.9)

It is easy to prove that Delayd and Merge are both continuous and causal [36]. Delayd

is also strictly causal for any d > 0 with the tag set T = R0. The composition of figure 2.7

is continuous and causal when Delayd is strictly causal, and hence live.

2.4 Discrete-Event Models

The following definitions are from [37]:

Definition 2.10 (Discrete Event Signal). A timed signal s ∈ S(T , Vε) is a discrete event

(DE) signal if there exists a directed set D ⊆ S(T , Vε) of finite timed signals such that

s =
∨
D .

47

This definition states that DE signals can be approximated by finite signals of S(T , Vε).

Let Sd(T , Vε) ⊆ S(T , Vε) denote the set of all DE signals with the same tag and value sets

as S(T , Vε). Among the signals in figure 2.6, clock1 and dzeno are DE signals, but not

const1 and zeno.

Let D(t) = {τ ∈ T |τ ≤ t} for some t ∈ T denote the smallest down set including

t. There are several equivalent definitions of DE signals, as established by the following

lemmas [37].

Lemma 2.11. A timed signal s is a DE signal if and only if for all t ∈ dom(s), s � D(t) is

a finite signal.

Lemma 2.12. A timed signal s ∈ S(T , Vε) is a DE signal if and only if s−1(V \ {ε}) is

order-isomorphic to a down set of N, and if s−1(V \ {ε}) is an infinite set, then

dom(s) =
⋃

t∈s−1(V \{ε})

D(t). (2.10)

Lemma 2.11 is very useful in proving properties of DE signals. lemma 2.12 is used in

[27]. If s−1(V \ {ε}) is order-isomorphic to a down set of N, then the present events of s

can be enumerated in the order of their time. If s is present at an infinite number of times,

then equation 2.10 guarantees that for any t ∈ dom(s), s is present at a time later than t.

Definition 2.13 (Non-Zeno Signal). A DE signal s ∈ Sd(T , Vε) is non-Zeno if either s is a

finite signal, or s is a total signal, i.e. dom(s) = T .

Of the signals in figure 2.6, clock1 is the only non-Zeno DE signal. The only other DE

signal, dzeno, is a Zeno signal, as dom(dzeno) = [0, 1) 6= T = [0, 1]. Note the role of the

48

tag set T in definition 2.13. If we change the tag set to T = [0, 1), then the signal

([0, 1), {(1− 1
2k
, 1) | k ∈ N})

is present at the same set of times as dzeno, but it is a non-Zeno signal because its tag set

T is [0, 1) and it is a total signal.

A key property of non-zeno DE signals is that all approximations defined over a subset

of T have a finite number of (non-absent) events. This property is extremely helpful when

computing the signals in a composition. It means that a computation can successively

approximate signals over down sets of T , iteratively increasing these down sets toward the

limit of T , and the computation will never have to represent more than a finite number of

events [37].

Definition 2.14 (Discrete-Event Actor). A discrete event actor is a function from DE

signals to DE signals.

All input and output signals of a DE actor have the same tag set. Among the actors

discussed above, Delayd and Merge are DE actors. As an example, the MaxMerge actor

given in [37] is not a DE actor. The MaxMerge actor s = MaxMerge(s1, s2) is given by:

dom(s) = {t ∈ dom(s1) | ∀τ ∈ D(t) \ dom(s2), s1(τ) 6= ε}, (2.11)

s(t) =

s1(t) s1(t) 6= ε,

s2(t) otherwise.

(2.12)

Intuitively, if the input signal s1 is continuously present over a time interval beyond dom(s2),

then those present events are in the output of MaxMerge. The “Max” in the name is

49

suggestive that this actor, unlike Merge, produces the maximal output for a given pair of

inputs. Consider

s1 = ([0, 1], {(1, 1)}) ,

s2 = dzeno,

MaxMerge(s1, s2) = ([0, 1], {(1− 1
2k
, 1) | k ∈ N} ∪ {(1, 1)}) .

MaxMerge(s1, s2) is not a DE signal.

Definition 2.15 (Non-Zeno Actor). A DE actor A : Sd(T , Vε) → Sd(T , Vε) is a non-Zeno

actor if for any non-Zeno signal s ∈ Sd(T , Vε), A(s) is a non-Zeno signal.

A causal DE actor is non-Zeno [37]. Combining the previous result from 2.9, we have

the following corollary.

Corollary 2.16. If all actors in a DE actor network are causal and continuous, and in

every dependency loop in the network there is at least one strictly causal actor, then the

network is non-Zeno.

For causal functional actors, if the input is the prefix of the potentially infinite-length

input signal up to time t, then the output is the prefix of the final output signal up to at least

time t [35]. Furthermore, for non-zeno composition, the prefix of the input or output signals

up to time t is finite [36]. This means for discrete event systems, the behavior of the system

can be simulated iteratively by computing partial behaviors chronologically. Discrete-event

simulators, for example, execute a composition precisely in this manner. A typical Discrete-

event simulator operates by keeping a list of events sorted by time stamp. The event with

the smallest time stamp is processed and removed from the list. The simulator maintains a

50

global, monotonically increasing notion of time, and computes the behavior of the system

step by step.

2.5 Discrete-Event Simulation

The discrete-event model of computation is frequently used in simulators for such appli-

cations as circuit design (e.g. in hardware description languages such as Verilog and VHDL),

communication network modeling such as OPNET Modeler1, Ns-22 and VisualSense [4]),

etc. Recently, the discrete event model is getting applied to intrinsically distributed systems,

such as networked computer games and collaborative virtual environments (e.g. Croquet

[46]). In these applications, time is mainly used as a convenient coordination mechanism.

When DE models are executed on distributed platforms, the objective is usually to

accelerate simulation [16, 7, 14], not to implement distributed real-time systems. With

distributed discrete-event simulation, multiple nodes can process events in parallel and

advance time differently. However, every node is required to process events in chronological

order. The so-called “conservative” approaches advance model time to t only when each

node can be assured that it has seen all events time stamped t or earlier. In the well-known

Chandy and Misra technique [8], extra (null) messages are used for one execution node to

notify another that there are no such earlier events. This technique binds the execution

at the nodes too tightly, making it very difficult to meet realistic real-time constraints.

The so-called “optimistic” techniques perform speculative execution and backtrack if and
1http://opnet.com/products/modeler/home.html
2http://www.isi.edu/nsnam/ns

51

when the speculation was incorrect [23]. Such optimistic techniques may not be feasible for

executing real-time systems, since backtracking physical interactions is usually not possible.

In the next chapter, I develop a dependency analysis framework to allow out of order

processing of events without compromising determinism and without requiring backtrack-

ing. This approach is conservative, in the sense that events are processed only when it is safe

to do so. But it achieves significantly looser coupling than Chandy and Misra’s approach.

52

Chapter 3

Relevant Dependency

As discussed in last chapter, a conventional discrete-event simulator computes the be-

havior of discrete-event systems chronologically. The simulator maintains a global, mono-

tonically increasing notion of time. Events are sorted in a list by time stamp. Events with

the smallest time stamp are processed and removed from the list, and new events may be

generated and inserted to the list. In order to process an event e with time stamp t, the

simulator needs to know all events before e and make sure these events have been processed.

This approach is very restrictive in processing events. In this chapter, I develop a new strat-

egy that preserves the discrete event semantics without requiring to process all events in

their time stamp order. In chapter 4, I will show why this new strategy is preferred when

DE is used to specify real-time systems.

Consider a very simple example as shown in figure 3.1 where the Merge and Delay are

the same actors as discussed in chapter 2. Let si be the signal at port pi. Given a signal

53

Merge
p1

p2

p4

Delay
p3 p5

Figure 3.1. A simple example with signals unrelated.

tuple s = (s1, s2, s3) ∈ S3, the system maps it to a signal tuple s′ = (s4, s5) ∈ S2 as:

(s4, s5) = (Merge(s1, s2), Delay(s3))

Or we can write the above equation as:

s4 = Merge(s1, s2), s5 = Delay(s3)

For causal functional actors, if the input is a prefix of the potentially infinite-length

input signal up to time t, then the output is a prefix of the final output signal at least up

to time t. Let s � D(t) denote the prefix of s up to t. Recall D(t) = {τ ∈ T |τ ≤ t} for some

t ∈ T is the smallest down set including t. In this dissertation, s � D(t) is often read as s

defined on D(t) or s is known up to t. It is easy to see that for this system, given s1, s2

and s3 we can compute signal s4 and s5 separately.

∀t ∈ dom(s1) ∩ dom(s2), t′ ∈ dom(s3), s4 � D(t) ⊆Merge(s1 � D(t), s2 � D(t))

s5 � D(t′) ⊆ Delay(s3 � D(t′))

∀t1, t2 ∈ dom(s1) ∩ dom(s2)and t1 ≤ t2, s4 � D(t1) ⊆ s4 � D(t2). Similarly, ∀t′1, t′2 ∈

dom(s3)and t′1 ≤ t′2, s5 � D(t′1) ⊆ s5 � D(t′2). There are many ways to approximate s4 and

54

Merge
p1

p2

p4

Delay
p3 p5

Figure 3.2. An example with signals related but with delay.

s5. The conventional simulation approach is just one way of them which requires t = t′

and t ∈ dom(s1) ∩ dom(s2) ∩ dom(s3) when approximating s4 and s5. Suppose we know

s1 and s2 up to t and s3 up to t′ with t > t′. The conventional discrete event simulator

only computes s4 and s5 based on events at s1, s2 and s3 up to t′, while as shown above

s4 can be compute based on events at s1 and s2 up to t. This chapter will develop a new

simulation strategy that allows us to advance time stamp at different signals separately.

Now we consider a slightly different example as shown in figure 3.2 where the output of

the Delayd actor is connected to the second input of the Merge actor. For this system, given

a signal tuple s = (s1, s2, s3) ∈ S3, the system maps it to a signal tuple s′ = (s4, s5) ∈ S2

as:

(s4, s5) = (Merge(s1, s2), Delay(s3)), and s2 = s5

Knowing that the Delay actor shifts every event in its input signal by d into the future,

we can compute s4 and s5 as follows:

∀t ∈ dom(s1), t′ ∈ dom(s3), t ≤ t′ + d, s4 � D(t) ⊆Merge(s1 � D(t), s2 � D(t))

s2 � D(t) = s5 � D(t) ⊆ (Delay(s3 � D(t′))

That is, we can approximate s4 at least up to t if we know events of s1 up to t and

55

events of s3 up to t − d, while the conventional simulation approach can only compute s4

up to t− d.

Recall that actors respond to events at input ports by producing events at output

ports. Knowing which portion of an input signal will affect a given portion of an output

signal and whether two input signals will affect the same output signal can help us process

events in a discrete-event system more flexibly as shown in the two examples above. In

this chapter, I first review a component interface called causality interface that captures

the causal relationship between an input and an output signal. Then I develop relevant

dependency that specifies how two input signals affect an output signal. At the end, I show

how relevant dependency can be used to facilitate discrete event simulation.

3.1 Causality Interface

Causality interface for actor networks were developed by Zhou et al. in [52]. It is general

enough for many models of computation to statically analyze liveness of the network. I

review the key results here related to discrete event models.

3.1.1 Dependency Algebra

The dependency algebra is a 4-tuple (D,≤,⊕,⊗). The dependency set D contains

elements, called dependencies, that represent the dependency relations between ports. The

56

ordering relation ≤ is a partial order such that,

∀ d ∈ D, d ≤ d

∀ d1, d2 ∈ D, d1 ≤ d2 and d2 ≤ d1 ⇒ d1 = d2

∀ d1, d2, d3 ∈ D, d1 ≤ d2 and d2 ≤ d3 ⇒ d1 ≤ d3.

We use d1 < d2 to mean (d1 ≤ d2) ∧ (d1 6= d2).

⊕ and ⊗ are two binary operations that satisfy the following axioms.

First, we require that the operators ⊕ and ⊗ be associative,

∀ d1, d2, d3 ∈ D, (d1 ⊕ d2)⊕ d3 = d1 ⊕ (d2 ⊕ d3), (3.1)

∀ d1, d2, d3 ∈ D, (d1 ⊗ d2)⊗ d3 = d1 ⊗ (d2 ⊗ d3). (3.2)

Second, we require that ⊕ (but not ⊗) be commutative,

∀ d1, d2 ∈ D, d1 ⊕ d2 = d2 ⊕ d1, (3.3)

and idempotent,

∀ d ∈ D, d⊕ d = d. (3.4)

In addition, we require an additive and a multiplicative identity, called 0 and 1, that

satisfy:

∃ 0 ∈ D such that ∀ d ∈ D, d⊕ 0 = d

∃ 1 ∈ D such that ∀ d ∈ D, d⊗ 1 = 1⊗ d = d

∀ d ∈ D, d⊗ 0 = 0.

57

3.1.2 Causality Interfaces

In timed systems, causality means the time of output events cannot be earlier than the

time of input events that caused them. Causality interfaces offer a formalization of this

intuition.

A causality interface for an actor a with input ports Pi and output ports Po is a function

δ : Pi × Po → D, (3.5)

where D is a dependency algebra as defined in the previous section. Ports connected by

connectors will always have causality interface 1, and lack of dependency between ports will

be modeled with causality interface 0.

For discrete event models with a totally ordered tag set T , we define the dependency

set D to be a set of functions:

D = (D(T)→ D(T)), (3.6)

where (X → Y) denotes the set of total functions with domain X and range contained by Y ,

and D(T) is the set of down sets of the tag set T . The order relation ≤ on the dependency

set D is defined as ∀ d1, d2 ∈ D, d1 ≤ d2 if ∀ T ∈ D(T), d1(T) ⊆ d2(T).

For input port p and output port p′ of an actor a, the causality interface δa(p, p′) is

interpreted to mean that a signal defined on T ∈ D(T) at port p can affect the signal

defined on (δa(p, p′))(T) at port p′. That is, there is a causal relationship between the

portion of the input signal defined on T and the portion of the output signal defined on

(δa(p, p′))(T).

58

Another way to look at δa(p, p′) is from the output signal’s point of view. That is,

in order to compute the portion of the output signal defined on (δa(p, p′))(T), we need to

know the input signal defined on T at port p. In this thesis, we will view causality interface

this way since we want to determine what is the least portion of each input signal that is

required in order to compute a particular portion of an output signal.

Consider the Delay actor with a delay parameter d as an example. The causality

interface between its input port p1 and an output port p2 is:

∀T ∈ D(T), δDelay(p1, p2)(T) = {t ∈ T |t− d ∈ T or t− d /∈ T }

Note that the causality interface gives us a conservative estimation on which portion of

the input signal we need to know to compute the portion of the output signal defined on

(δa(p1, p2))(T). Given an input event e1 = (t1, v1) at port p1, the Delay actor may produce

an event e2 = (t2, v2) where t2 ≥ t1 + d or no event at all in response to e1, but it is enough

to know the input signal at p1 up to t1 to determine the output signal at p2 up to t1 + d.

A port p′ is said to have a causal dependency on port p if dI ≤ δ(p, p′). A port p′ is

said to have a strict causal dependency on port p if dI ≺ δ(p, p′), where the relation ≺ on

D is a strict partial order defined as follows. ∀ d1, d2 ∈ D, d1 ≺ d2 if

1. d1 6= d2, and,

2. for each T ∈ D(T), (d1(T) ⊂ d2(T))∨ (d1(T) = d2(T) = T), where ⊂ denotes a strict

subset.

59

A timed actor with at least one input port is said to be causal if every output port has

a causal dependency on every input port.

For a functional source actor, we define a fictional absent input port ε, and for any

output port po, δa(ε, po) is given by

∀ T ∈ D(T), (δa(ε, po))(T) = dom(s),

where s is the unique signal that satisfies the actor at po. If s is complete, dom(s) = T ,

then δa(ε, po) = d>, where d>(T) = T , ∀ T ∈ D(T). A source actor, of course, is always

causal.

Similarly, we define the causality interface of a sink actor to be a function that maps

an input port pi of the actor and a fictional absent output port to the bottom function. I.e.,

δa(pi, ε) = d⊥,

where d⊥(T) = ∅, ∀ T ∈ D(T).

The causality interface for a connector is simply the multiplicative identity 1 = dI .

The ⊕ operation computes the greatest lower bound of two elements in D. I.e., ∀ d1, d2 ∈

D, the function (d1 ⊕ d2) : D(T)→ D(T) is defined by

∀ T ∈ D(T), (d1 ⊕ d2)(T) = d1(T) ∩ d2(T). (3.7)

The ⊗ operator is function composition. I.e., ∀ d1, d2 ∈ D, the function (d1 ⊗

d2) : D(T)→ D(T) is defined by

d1 ⊗ d2 = d2 ◦ d1

60

or

∀ T ∈ D(T), (d1 ⊗ d2)(T) = d2(d1(T)).

The additive identity 0 is the top function, d> : D(T)→ D(T), given by

∀ T ∈ D(T), d>(T) = T .

The multiplicative identity 1 is the identity function, dI : D(T)→ D(T), given by

∀ T ∈ D(T), dI(T) = T.

With these definitions, the dependency set (3.6) satisfies all of the axioms described in

section 3.1.1.

3.1.3 Composition of Causality Interfaces

Given a set A of actors, a set C of connectors, and the causality interfaces for the actors

and the connectors, the causality interfaces of the composition is determined by using ⊗

for serial composition and ⊕ for parallel composition. To do this, we form a weighted,

directed graph G = {P,E}, called the dependency graph, where P is the set of ports in the

composition and E is the set of edges. If p is an input port and p′ is an output port, there

is an edge in G between p and p′ if p and p′ belong to the same actor a and δa(p, p′) 6= 0.

In such a case, the weight of the edge is δa(p, p′). If p is an output port and p′ is an input

port, there is an edge between p and p′ if there is a connector between p and p′. In this

case, the weight of the edge is 1. In all other cases, the weight of an edge would be 0, but

we do not show such edges. ∀p, p′ ∈ P , to compute the value of δ(p, p′), we need to consider

61

Figure 3.3. A feedforward composition with parallel paths.

all the paths between p and p′. We first discuss feed-forward compositions and then deal

with feedback compositions.

A feed-forward system does not have any cycles in its dependency graph. For example,

figure 3.3 shows a feed-forward composition, which is abstracted into a single actor b with

external input port q1 and output port q2. To determine the causality interface of actor b,

we need to consider all the paths from q1 to q2, and δb(q1, q2) is given by

δb(q1, q2) = δc(q1, p1)⊗ δa1(p1, p5)⊗ [(δc(p5, p2)⊗ δa2(p2, p4))⊕

(δc(p5, p7)⊗ δa3(p7, p6)⊗ δc(p6, p3)⊗ δa2(p3, p4))]⊗ δc3(p4, q2),

where δa1 , δa2 and δa3 are the causality interfaces for actors a1, a2 and a3, respectively, and

δc are the causality interfaces for connectors. Since connectors have causality interface 1,

the above equation simplifies to

δb(q1, q2) = δa1(p1, p5)⊗ [δa2(p2, p4)⊕ (δa3(p7, p6)⊗ δa2(p3, p4))]. (3.8)

The dependency graph of a feedback system contains cyclic paths. Given a cyclic path

c = (p1, p2, ..., pn, p1), where pi’s (1 ≤ i ≤ n) are ports of the composition, we define the

gain of c to be:

gc = δ(p1, p2)⊗ δ(p2, p3)⊗ ...⊗ δ(pn, p1).

62

Figure 3.4. An open composition with feedback loops.

Causality interface compositions for feedback systems are more complex and depend on

the semantics of the model of computation. For live timed actor networks, [52] shows that

the causality interface for systems as shown in figure 3.4 has a much simpler form. The

following theorem gives a necessary condition for a timed actor network to be live.

Theorem 1. A finite network of continuous and live actors where the tag set T is totally-

ordered is continuous and live if and only if for every cyclic path c in the dependency graph,

1 ≺ gc, where 1 = dI is the multiplicative identity.

Given the composite actor b as shown in figure 3.4(b), actor b is live if and only if actor

a is live and 1 ≺ δa(p2, p3). Assuming D(T) is totally-ordered, the causality interface of b

is given by

∀ T ∈ D(T), δb(q1, q2)(T) = δa(p1, p3)(T) ∩ T0

where T0 is the least fixed point of δa(p2, p3). If dI ≺ δa(p2, p3), then T0 = T , and therefore

δb(q1, q2) = δa(p1, p3).

We can continue to add ports to actor a to construct any actor networks. The above

analysis on causal dependencies can be adapted easily.

63

3.2 Relevant Dependency

As the example shown in figure 3.2, ∀T ∈ D(T), to compute an output signal, say s4,

defined on T , we need to know the corresponding portions of the input signals, s1, s2 and

s3, that can causally affect s4. While causality interfaces provide a powerful tool to specify

and reason about causal relationships among actors, these dependency values between an

input port and an output port do not tell the whole story. Consider the Merge actor in

figure 3.2, with two input ports. When we construct the dependency graph, it is easy to

find that there is no path between the two input ports p1 and p2. But, these two ports are

not completely independent. In fact, the Merge actor cannot react to an event at one port

with time stamp t until it is sure it has seen all events at the other port with time stamp

less than or equal to t. This fact is not captured in the causal dependencies. To capture it,

I define relevant dependencies.

A relevant dependency for a composition with input ports PI is a function

d : PI × PI → D, (3.9)

where D = (D(T)→ D(T)) as defined in the previous section.

Note that unlike a causality interface that is specified between an input and an output

port, relevant dependency is defined on a pair of input ports. The relevant dependency

d(p1, p2)(T) indicates which portion of signal s2 can be processed with s1 defined on T ∈

D(T).

The relevant dependency between ports in a composition can be calculated in a way

64

p1

p2

p4

p3 p5

p1

p2

p4

p3 p5

G1,2 G2,1

(a) (b)

Figure 3.5. The causality and relevant dependency graphs for the model in figure 3.2.

similar to the causal dependency above. We introduce a binary relation Gi,j between input

port pi and pj of the same actor. Specifically, considering an individual actor a, G1,2 = 1

if two input ports p1 and p2 of a will affect the same output port; otherwise G1,2 = 0.

Formally, ∀pi, pj of some actor a, pi 6= pj ,

Gi,j =

1 ∃p ∈ Po, such that δa(pi, p) 6= 0 and δa(pj , p) 6= 0,

0 otherwise.

where Po is the set of output ports of a. Ports pi and pj are called equivalent if Gi,j = 1.

For example, in figure 3.2, both input ports of the Merge actor affect its output port,

i.e. δMerge(p1, p4) 6= 0 and δMerge(p2, p4) 6= 0. Thus G1,2 = 1.

In addition, we assume that if any actor has state that is modified or used in reacting

to events at more than one input port, then that state is treated as a hidden output port.

Thus, with the above definition, two input ports are equivalent if they are coupled by the

same state variables of the actor.

We next modify the dependency graph by adding edges between equivalent ports, i.e.

65

there is an edge with weight 1 from pi to pj if Gi,j = 1, to create a new graph that we call

the relevant dependency graph. Similar to causal dependencies, relevant dependencies are

calculated by examining weights of the relevant dependency graph. ∀pi, pj ∈ P , to compute

the value of d(pi, pj), we need to consider all the paths between pi and pj . We again combine

parallel paths using ⊕ and serial paths using ⊗. It is easy to show that if every actor in a

composition is causal, then dI ≤ d(pi, pj).

∀T = D(t1) ∈ T , the relevant dependency d(p1, p2)(T) = D(t2) means that any events

with a tag t ∈ d(p1, p2)(T) at port p2 can be processed when events of the signal at port

p1 are known up to t1. If t2 > t1, then d(p1, p2)(T) = [0, t2] ⊃ [0, t1]. This means that we

can process events at p2 up to t2 with knowing events at p1 only up to t1. In particular,

d(p1, p2) = d> indicates that events at port p2 can be processed without knowing anything

about events at port p1.

Consider the model shown in figure 3.2 as an example. The causality interface for each

actor in the model is:

δDelay(p3, p5) = (T 7→ {t ∈ T |t− d ∈ T or t− d /∈ T }),∀T ∈ D(T)

δMerge(p1, p4) = 1, δMerge(p2, p4) = 1

(3.10)

The causality interface for each connector is 1. There is only one connector in this

example, i.e. δc(p5, p2) = 1.

Figure 3.5(a) shows the causality dependency graph for the example model in figure 3.2.

The weights of edges are not explicitly shown in the graph. We can compute the causality

66

interface for the composition as follows:

δ(p1, p4) = δMerge(p1, p4) = 1

δ(p2, p4) = δMerge(p2, p4) = 1

δ(p3, p4) = δDelay(p3, p5)⊗ δc(p5, p2)⊗ δMerge(p2, p4)

= (T 7→ {t ∈ T |t− d ∈ T or t− d /∈ T }), ∀T ∈ D(T)

δ(p1, p5) = 0

δ(p2, p5) = 0

δ(p3, p5) = δDelay(p3, p5)

= (T 7→ {t ∈ T |t− d ∈ T or t− d /∈ T }),∀T ∈ D(T)

(3.11)

Based on the causality interface of actors in the model, we can determine that binary

relation Gi,j between input ports pi and pj for each actor.

G1,2 = 1, G2,1 = 1 (3.12)

Figure 3.5(b) shows the relevant dependency graph for this example. It is easy to check

67

the relevant dependency in this composition.

d(p1, p2) = G1,2 = 1

d(p2, p1) = G2,1 = 1

d(p1, p3) = 0

d(p3, p1) = δ(p3, p5)⊗ δc(p5, p2)⊗G2,1

= (T 7→ {t ∈ T |t− d ∈ T or t− d /∈ T }),∀T ∈ D(T)

d(p2, p3) = 0

d(p3, p2) = δ(p3, p5)⊗ δc(p5, p2)

= (T 7→ {t ∈ T |t− d ∈ T or t− d /∈ T }),∀T ∈ D(T)

(3.13)

∀T ∈ T , d(p3, p1)(T) = {t ∈ T |t − d ∈ T or t − d /∈ T }) means that any events with a

tag t ∈ d(p3, p1)(T) at port p1 can be processed when the signal at port p3 are defined on

T . This flexibility in processing events is precisely the result we were after as discussed at

the beginning of this chapter.

Intuitively, relevant dependency indicates which portion of a signal can be processed at

a port without knowing all the events on the other ports in a composition. By knowing how

signals on different ports depends on each other, we can advance time stamp on ports at

different paces, while the conventional discrete event simulation approach advance all ports

to the same time stamp each step.

Note that relevant dependency is asymmetric. For example, d(p1, p3) does not equal to

d(p3, p1) since the output that depends on events at p3 does not depends on events at p1

while the output that depends on events at p1 does depends on events at p3.

68

From the definition of relevant dependency, we have the following Corollary,

Corollary 1. Let PI be the set of input ports of the a composition of causal actors. ∀p1, p2 ∈

PI ,∀T ∈ D(T), d(p1, p2)(T) ⊇ T

That is, ∀pi ∈ PI , if the signals on other input ports are defined on T = D(t), then we

can process events of si at least to t.

3.3 Relevant Order

What we gain from the dependency analysis is that we can process certain events out of

their linear chronological order. Consider the model shown in figure 3.2 as an example. An

event e at port p1 with time stamp t1 can be processed if the events at port p3 are known

up to t3 and D(t1) = d(p1, p2)(D(t3)). Given d > 0, we have t1 = t3 + d. This means we

can process e without knowing any events at p1 with time stamp in D(t1)\D(t3), while the

conventional discrete event simulation approach based on chronological order would require

we know all events at p3 in D(t1) before e can be processed. Essentially, we can introduce

a new order, which we call relevant order (≤r), on events based on relevant dependency

analysis.

We define the relevant order on events as follows,

Definition 3.1 (Relevant Order). Let e1 = (t1, v1) be an event at at port p1 and e2 =

(t2, v2) be an event at at port p2.

e1 <r e2 ⇐⇒ d(p1, p2)(D(t1)) ⊂ D(t2).

Recall D(t) = {τ ∈ T |τ ≤ t} for some t ∈ T is the smallest down set including t. That

69

is, e1 <r e2 if processing the signal defined on D(t2) at port p2 depends on the signal defined

on D(t1) at port p1. We interpret e1 <r e2 as e1 needs to be processed before e2.

Two events e1 and e2 are not comparable, denoted as e1||re2, if neither e1 <r e2, nor

e2 <r e1. If e1||re2, then e1, e2 can be processed in any order.

We have the following lemma that relates the relevant order and the ordinary time

stamp order of events,

Lemma 1. ∀e1, e2, e1 <r e2 ⇒ e1 < e2.

Proof. e1 <r e2 ⇒ d(p1, p2)D(t1) ⊂ D(t2). From corollary 1, we have d(p1, p2)D(t1) ⊃

D(t1). Then we have D(t1) ⊂ D(t2). This means t1 < t2, hence e1 < e2.

3.4 Execution Based on Relevant Order

We now design execution strategies based on the relevant order to enable out of order

execution without hurting determinism.

Following the concept used in distributed snapshot, we define cut and consistent cut for

discrete event systems.

Definition 3.2 (Cut). Given a composition with input port PI and output port PO, a cut

c =
⋃
{pi∈PI} si � D(ti). That is, a cut contains a prefix of each input signal.

Definition 3.3 (Consistent Cut). A cut c is called consistent if ∀e1 <r e2, e2 ∈ c⇒ e1 ∈ c.

That is, if a consistent cut contains an event e, it also contains all events that are

relevantly ordered smaller than e.

70

s1

s2

s3

2.7

0 2 41 3 5

0.5 1.5

s1

s2

s3

2.20 1 1.5

2

54

4.5 2.7

0 2 41 3 5

0.5 1.5

2.20 1 1.5

2

54

4.5

s1

s2

s3

2.7

0 2 41 3 5

0.5 1.5

2.20 1 1.5

2

54

4.5

2.8

3.3

2.8

3.3

2.8

3.3

e1

e2

t t

t

(a)

(c)

(b)

Figure 3.6. Three different cuts.

71

Figure 3.6 shows three different cuts given that s1, s2 and s3 are the three input signals

at port p1, p2 and p3 for the composition shown in figure 3.2. Suppose the Delay actor has

a delay parameter d = 0.5, then the cut in figure 3.6 (a) and (c) are both consistent cuts

as we can verify that ∀e1 <r e2, e2 ∈ c⇒ e1 ∈ c, but the cut in 3.6 (b) is not, i.e. e1 <r e2

but it is not contained by the cut.

The execution algorithm based on relevant order works as follows:

1. Start with E, a set of events in the event queue.

2. Choose r ⊂ E, s.t. each event in r is minimal in E.

3. Process events in r, which may produce a set of new events E′.

4. UpdateE to (E \ r) ∪ E′.

5. Go to 2.

An event e = (t, v) at port p is minimal in E if ∀e′ ∈ E, e <r e′, or e||re′.

Each iteration i, we process a set of events r. Let ci = ci−1 ∪ r, and c0 = ∅, be the set

of events that have been executed. It is easy to see that ci is a consistent cut.

The progress of a discrete-event simulation can be visualized as the forward movement

of the frontier of a consistent cut. Since events are only partially ordered by the relevant

order, there may be multiple ways to construct consistent cuts, hence multiple ways to

compute the behavior of a discrete-event system. However, they all approximate the same

fixed point. The conventional discrete-event simulation based on chronological order is just

one way to construct consistent cuts, which requires the cut of all the input signals to be

72

at the same time tag t and processes all events with time stamp smaller than t before it

moves to the next cut.

Definition 3.4 (Synchronized Cut). A cut c is called synchronized if ∀e1 ≤ e2, e2 ∈ c ⇒

e1 ∈ c.

Note e2 ≤ e1 is defined based on their time stamp order. If the latest event contained

by a synchronized cut c has time stamp t, then we say c is defined up to t. It is easy to see

that a synchronized cut defined up to t contains a prefix of each input signal restricted to

the same down set D(t), i.e. c =
⋃
{pi∈PI} si � D(t).

Lemma 2. If a cut c is synchronized, it is consistent.

Proof. ∀e1, e2, e1 <r e2 ⇒ e1 < e2. Then if e2 ∈ c, we have e1 ∈ c. So c is consistent.

For the two consistent cuts shown in figure 3.6 (a) and (c), the cut in (c) is also a

synchronized cut, but (a) is not.

Lemma 2 means given a set E of events, if the conventional discrete-event simulation

approach can process events on each input port up to t, then the simulation based on relevant

order of events can at least process events on each input port up to t. If ∃e1 = (t1, v1) with

t1 > t at port p such that any event e2 <r e1 has time stamp t2 < t, then the set of events

can be processed based on relevant order is strictly larger than that can be processed by

the conventional approach.

73

Chapter 4

Application to Real-Time Systems

DE models have primarily been used in performance modeling and simulation, where

time stamps are a modeling property bearing no relationship to real time during execution

of the model. This chapter extends DE models with the capability of relating certain events

to physical time. In this approach, DE is not a simulation technology, but rather an appli-

cation specification language, which serves as a semantic basis for obtaining determinism in

distributed real-time systems. Applications are given as distributed DE models, where for

certain events, their modeling time is mapped to physical time. For example, a programmer

may specify that an actuator must produce a physical output at the time determined by

the time stamp of an event sent to the actuator. When these models are executed in a

runtime environment that ensures DE semantics, we know that the applications will have

deterministic behaviors regardless of the actual implementations. I call this programming

model PTIDES (pronounced “tides”), for Programming Temporally Integrated Distributed

Embedded Systems.

74

Preserving DE semantics at runtime can be challenging, since the global, consistent no-

tion of time may lead to a total ordering of execution in a distributed system, an unnecessary

waste of resources. The execution strategy based on relevant dependencies and relevant or-

ders developed in chapter 3 can be used to build a more efficient run-time environment for

distributed real-time systems specified by PTIDES models. The runtime environment is

divided into two layers: global coordination, and local resource scheduling. When receiving

an event from the network, the global coordination layer determines whether the event can

be processed immediately or it needs to wait for other potentially preceding events based

on the underlying DE semantics. Once it is sure that the current event can be processed, it

hands the event over to local resource scheduler, which may use existing real-time scheduling

algorithms, such as earliest deadline first (EDF) to prioritize the processing of all pending

events. This chapter focuses on the global coordination layer, which is key to achieving DE

semantics in distributed systems. Real-time scheduling and schedulability analysis will be

discussed in chapter 5.

Unlike many hard real-time distributed systems that depend on domain specific net-

work architectures, the only assumption of communication behavior in PTIDES is that it

delivers packets reliably with a known bounded delay. PTIDES relies on network time

synchronization [24], where the computing nodes on the network share a common notion

of time to a known precision. This has the potential for being lightweight and delivering

repeatable and predictable behaviors at a variety of timing precisions. Network time syn-

chronization is available on a variety of platforms, including standard computers on the

Internet (e.g. NTP [39]), time-triggered buses such as TTA or FlexRay [25], TCP/IP over

75

20

40

40

20

50

30

30

20

40

40

20

50

30

30

Figure 4.1. Networked camera application.

Ethernet (e.g. IEEE 1588), and wireless networks (e.g. RBS [13]). Implementations of

IEEE 1588 have demonstrated time synchronization as precise as tens of nanoseconds over

networks that stretch over hundreds of meters, more than adequate for many manufacturing

and instrumentation systems.

4.1 Motivating Example

This chapter uses a camera network as a motivating scenario and a running example in

later discussions. Throughout this chapter, I use t for model time and τ for physical time.

Consider N cameras connected via Ethernet are distributed over a football field as

shown in figure 4.1. Suppose that the clocks at all the cameras and the central computer

are precisely synchronized. All the cameras have computer-controlled picture and zoom

capabilities. Each camera only has a partial view of the field. We can control a camera

76

to take a picture or zoom precisely at some physical time. Precise time synchronization

allows cameras to take sequences of pictures simultaneously. The images produced by each

camera are time stamped and transferred over the network to the central computer, where

the images get processed to produce a composite view of the field or a sequence of views

for some interesting moment. A user sitting in front of the central computer may issue

commands to the cameras to zoom or change the frequency at which images are taken.

Suppose that zooming takes time κ to stabilize, and during this period of time no picture

should be taken. Given that the commands controlling the cameras are transmitted over the

network with a bounded delay, the challenges here are how to coordinate the zooming and

picture taking actions properly on each camera so that the retrieved images are precisely

synchronized.

This application is inspired by the “eye vision” project1 at CMU and CBS Television.

However, rather than focusing on the challenges in real-time image processing and control,

this chapter considers how to program the whole system at a high level and how to realize

the timing relations in the system. The principles are general enough to apply in many

scenarios that require distributed time-coordinated physical actions.

4.2 PTIDES Programming Concepts

Taking an actor-oriented approach for building discrete-event systems [27], components

in PTIDES are actors with further annotations. Borrowing ideas from TinyOS and nesC

[17], PTIDES introduces real-time components as thin wrappers around hardware to DE
1http://www.ri.cmu.edu/events/sb35/tksuperbowl.html

77

models. The time stamps in a PTIDES model are values of model time. However, some

actors can bind model time to physical time by imposing real-time constraints.

4.2.1 Relating Model time to Real Time

Definition 4.1 (Real-time Constraint). A real-time constraint is a function from model

time to physical time, γ : T → R0, where T is the set of model time and R0, the non-negative

real numbers, is the set of physical time.

That is, a real-time constraint maps a model time to a physical time. In this thesis,

R0 = [0,∞) will be used as a representative for the tag set T . The idea can be easily

generated to other choices of the tag set.

We say a port is a real-time port if there is a real-time constraint associated with it. If

an input port is a real-time port with constrain γ, then an event e = (t, v) at this port must

be processed before γ(t). If an output port is a real-time port with constrain γ, it means

an event e = (t, v) will be generated at this port no later than γ(t).

Actors that wrap the interaction with some underlying hardware generally introduce

real-time constraints and hence have real-time input or output ports. A Sensor actor is a

thin wrapper for sensors or input devices. It is modeled as a source actor with one or more

real-time output ports. The interrupt service routine associated with the hardware would

invoke a method in the actor to post events that satisfies the real-time constraints associated

with its output ports. An Actuator actor is a thin wrapper for actuators or output devices.

It is modeled as a sink actor with one or more real-time input ports. Events at its input

ports need to be delivered to the hardware driver to fulfill the real-time constraints. We

78

may also have actors as both sensor and actuator, which have real-time input and output

ports. The Camera actor discussed in the next section is an example of such an actor.

We limit the relationship of model time to physical time to only those circumstances

where this relationship is needed. For other actors in the model, there is no real-time

constraint and model time is used to define execution semantics.

4.3 Specification of the Motivating Example

PTIDES uses DE as an application specification language, which serves as a semantic

basis for obtaining determinism in distributed real-time systems.

Cameras in this application are both sensors and actuators. We need to generate pre-

cisely timed physical actions, like picture taking and zooming, at each camera, and the

cameras respond with time stamped images. We model a camera as an actor that has one

input port and two output ports, depicted graphically as follows:

Device

This actor is a software component that wraps the interaction with the camera driver.

At its input port, it receives a potentially infinite number of events in chronological order.

The time stamp of an event specifies when an action should be taken, and the value of

the event dictates what kind of action (zooming level or shutter speed) should be taken.

Obviously, in order to generate the physical action at the actuator, it needs to receive an

input event with time stamp t at some physical time τ ≤ t. Hence the input port is a

79

real-time port with constraint γ(t) = t. If desired, we can also specify a setup time σ for a

real-time input port, in which case it requires that each input event with time stamp t be

received before physical time reaches t−σ. That is, the real-time constraint is γ(t) = t−σ.

In this example, we simply assume σ = 0

Assume there is a response delay µ ≥ 0 of the digital output device. The first output

port of the Device actor produces an event for each input event e = (t, v), where the time

stamp of the output event t+ µ is strictly greater than that of the input event, to indicate

the physical action has completed. The real-time constraint for the first output port is

γ(t) = t. The second output port produces the time-stamped image and sends it to the

central computer. The time stamp of the output event on the second output port is the

same as the time stamp of the input event. The real-time constraint for the first output

port is γ(t) = t+ µ.

Figure 4.2 shows a distributed DE model to be executed on the cameras and the central

computer platform. The dashed boxes divide the model into two parts, the top one to be

executed on each camera and the bottom one to be executed on the central computer. The

parts communicate via signal s1 and s2. We assume that events in these signals are sent

over the network as time-stamped values.

The Command actor is a Sensor actor. It wraps interactions with the user input device.

When a user input comes in, the Command actor checks with its synchronized clock for the

current time, uses the returned time value to time stamp the input message and sends the

time stamped message to all the cameras. Its output port is a real-time port with constraint

80

Clock

Merge

Camera

Display
Command

Central
Computer

s1

Device

Delay
d

Queue

Process
Image

s2

Route

Figure 4.2. Specification of the Networked camera application.

γ(t) = t, i.e. an event with time stamp t is generated at physical time no later than t. In

particular, this actor will output an an event with time stamp t exactly at physical time

τ = t.

All other actors in the model shown in figure 4.2 do not impose real-time constraints

on their ports. The right part of the model on the central computer processes the images

taken at each camera and displays the result.

The Clock actor produces time-stamped outputs where the time stamp is some integer

multiple of a period p. The time stamps are used to control when the camera takes pictures.

The period can be different for each clock and can be changed during run time upon receiving

an input on the second input port. If there is an event with value v and time stamp t at

81

the second input, the Clock actor will scale its period from p to p′ = p ∗ v and produce an

output with time stamp t0 + np′ where t0 is the time stamp of the last output and n is the

smallest integer so that t0 + np′ ≥ t. We can specify a minimal period Pmin for the Clock

actor. The feedback loop around the clock actor is used to trigger the next output, and we

assume there is an initial event on the first input at the beginning.

Two kinds of user commands are received at each camera, the change frequency com-

mand and the adjust zoom command. The Router actor separates these events and sends

the change frequency events to the Clock actor and the adjust zoom events to the Merge

actor.

The Delay actor is the same actors as defined in chapter 2. The Delay actor with a

delay parameter d will produce an event with time stamp t+ d at its output given an event

with time stamp t at its input.

The Merge actor merges the events on the two input ports in chronological order. It

gives higher priority to the second input port when there are simultaneous events at both

of its input ports. That is, we give higher priority to the user to control a camera.

The Queue actor buffers its input event until an event is received at the trigger port,

which is the one at the top of the actor. The Device actor sends a trigger event to the

Queue actor when a physical action is done, and we assume there is an initial event on

the trigger port at the beginning. The feedback loop around the Queue and Device actor

ensures that the Device does not get overwhelmed with future requests. It may not be able

to buffer those requests, or it may have a finite buffer.

82

As shown in this example, PTIDES programs are discrete-event models constructed as

networks of actors. For each actor, we specify a physical host to execute the actor. To

represent the underlying communication explicitly between actors on different hosts, we

use a NetworkOut actor for sending events over the network and a NetworkIn actor for

receiving events from the network. Figure 4.3 shows the models running on each camera

and the central computer platform with the network communication explicitly modeled

and ports named. We assume distributed models interact with each other via “real-time”

events, i.e. events send or received by the NetworkOut or NetworkIn actor have time

stamps that are related to physical time. The NetworkOut actor is an Actuator actor

with real-time constraint on its input port. In particular, we specify that the NetworkOut

actor on the central computer has real-time constraint γ(t) = t, while the NetworkOut

actor on each camera has constraint γ(t) = t + µ, assuming the image processing part on

the central computer can tolerate some latency µ + ∆ on receiving images. We assume

the communication network delivers packets reliably with a known bounded delay ∆. The

NetworkIn actor in the camera model is a Sensor actor with real-time constraint γ(t) = t+∆

on its output port. That is an event with time stamp t will be produced at its output port

no later than physical time t+ ∆. The NetworkIn actor in the central computer model has

real-time constraint γ(t) = t+ µ+ ∆.

We view the model shown in figure 4.3 as a representative scenario for many distributed

embedded applications. For example, the Command actor can be viewed as an example

of sensor components, the Device actor is an example of actuator components, and other

actors in between are the control or computation part. The problems discussed in this paper

83

are common to many distributed sensing and actuation systems, such as manufacturing,

instrumentation, surveillance, and scientific experiments.

4.4 Run-time Environment

How to build a run-time environment to execute the distributed model shown in figure

4.3 to deliver the correct behavior and meet the real-time constrains is a challenging prob-

lem. A first-come-first-serve strategy cannot preserve deterministic DE semantics, since the

network may alter the order that events are delivered. A brute-force implementation of

a conservative distributed DE execution of this model would stall execution in a camera

at some time stamp t until an event with time stamp t or larger has been seen on signal

s1. Were we to use the Chandy and Misra approach [8], we would insert null events into

s1 to minimize the real-time delay of these stalls. However, this brute-force technique will

unnecessarily postpone the release time of events even when these events can be safely

processed. The so-called “optimistic” techniques for distributed DE execution will also not

work in our context. Optimistic approaches perform speculative execution and backtrack

if and when the speculation was incorrect [23]. Since we have physical interactions in the

system, backtracking is not possible.

In this section, I show how to apply dependency analysis to the model running on each

camera and how the execution strategy based on relevant order can help to meet real-time

constraints in the model.

84

Clock

Merge Device
Delay
d

Queue

Route

p13

p1

p6
p7

p8
p9

p11p10 p14

p15p12 p16

p2

p4
p5

p3 p17

NetworkIn

p0

NetworkOut

p18

Figure 4.3. The program on the camera.

4.4.1 Dependency Analysis

Consider the model shown in figure 4.3 as an example. The causality interface for each

actor in the model is:

δDelay(p1, p2) = (T 7→ {t ∈ T |t− d ∈ T or t− d /∈ T }),∀T ∈ D(T),

δRouter(p3, p4) = 1, δRouter(p3, p5) = 1,

δClock(p6, p8) = (T 7→ {t ∈ T |t− Pmin ∈ T or t− Pmin /∈ T }), ∀T ∈ D(T),

δClock(p7, p8) = 1,

δMerge(p9, p11) = 1, δMerge(p10, p11) = 1,

δQueue(p12, p14) = 1, δQueue(p13, p14) = 1,

δDevice(p15, p16) = (T 7→ {t ∈ T |t− µ ∈ T or t− µ /∈ T }), ∀T ∈ D(T),

δDevice(p15, p17) = 1

(4.1)

85

p3

p6

p4

p5p2

p15
p7

p10

p8 p9

p14

p13

p16

p1

p11

p12

p0 p17 p18

p3

p6

p4

p5p2

p15
p7

p10

p8 p9

p14

p13

p16

p1

p11

p12

p0 p17 p18

1 1

(a)

(b)

1 1
1 1

Figure 4.4. The causality and relevant dependency graphs for the camera

.

where Pmin represents the minimum time interval between two consecutive picture taking

actions at the camera, and µ ≥ 0 is the response delay of the digital output device (i.e. the

minimum model-time delay across the input and the first output of the Device actor).

Figure 4.4 (a) shows the causality dependency graph for the model in figure 4.3, and

(b) shows the relevant dependency graph. The weights of edges are not explicitly shown in

the graph except for the binary relations that are equal to 1. Based on the dependencies

specified for each actor, It is easy to check the relevant dependency in this composition.

As an example, the relevant dependency between port p9 and p1 is d(p1, p9) = (T 7→ {t ∈

86

T |t+ d ∈ T}),∀T ∈ D(T). This means that any events with a tag t ∈ T at port p9 can be

processed when the signal at port p1 are known up to t − d. Assume the network delay is

bounded by ∆, at physical time τ = t− d+ ∆ we are sure that we have seen all events with

time stamps smaller than t − d at p1. Hence, an event e at p9 with time stamp t can be

processed at physical time τ or later. Note that although the Delay actor has no real-time

properties at all (it simply manipulates model time), its presence loosens the constraints on

the execution. By choosing d properly, i.e. d ≥ ∆, we can deliver e to p15 before physical

time reaches t and thus satisfy the actuation constraint at p15. This is precisely the result

we were after. It would not be achieved with a Chandy and Misra policy. And unlike

optimistic policies, there will never be any need to backtrack.

4.4.2 Execution Based on the Relevant Order

We leverage and improve on distributed DE techniques to relax constraints on execution

based on relevant dependency analysis. The key idea is that events only need to be processed

in time-stamp order when they are causally related. Based on relevant order of events, the

global coordination layer can release received events out of their time stamp order while

preserving DE semantics and without requiring backtracking. This out-of-order execution

also loosens some constraints for the local resource schedulers.

In chapter 3, I discussed an execution strategy based on the relevant order to enable out

of order execution. However, it fails when there are events coming from external hardware,

i.e. events from a real-time output port. The pitfall here is that it assumes all the events

that have been generated in the system are in E (the set of events in the event queue), but

87

in a distributed system with network delays, this is not true. The execution strategy needs

some adjustment to be used in the coordination layer of the run-time environment.

To take account of external events injected into the system via real-time output ports,

I define real-time minimal for events.

Definition 4.2 (Real-time Minimal). An event e = (t, v) in E is real-time minimal if it

satisfies 1 and 2 below,

1. it is minimal in E

2. we are assured that we have seen all events that are less than it in the relevant order.

If e depends on events from a real-time port up to t′ with real-time constraint γ, then

at physical time τ = t′+γ(t′) we are assured that we have seen all events that are less than

it in the relevant order. If e depends on events from multiple real-time port, then we need

to wait for the maximum of τ of each real-time port. The idea is simple: if there is some

event from external hardware that needs to be processed before e, the coordination layer

needs to make sure it has received and released all these events before it releases e. Based

on this idea, we can adjust the execution strategy as follows to be used in the coordination

layer:

1. Start with E, a set of events in the event queue.

2. Choose r ⊂ E, s.t. each event in r is real-time minimal in E.

3. Process events in r, which may produce a set of new events E′.

4. Update E to (E \ r) ∪ E′.

5. Go to 2.

88

When clocks in the distributed systems are not perfectly synchronized, we also need

to take into account the time synchronization errors in the estimated physical time τ . In

particular, if the difference of the clock time between any two nodes in the systems is

bounded by ξ, we need to wait until the current physical time is τ + ξ to make sure e is

minimal.

89

Chapter 5

Scheduling Analysis of PTIDES

Models

In chapter 4, I introduced a two-layer architecture for the run time environment of

PTIDES programs: a global coordination layer and a resource scheduling layer. Assume

an action is associated with each input port to process events received at the port. When

events come in, the global coordination layer intercepts the events and decides when the

corresponding actions can be enabled and posts them to the scheduling layer. Actions may

compete for resources, such as CPU, I/O access or network bandwidth. The scheduling

layer is responsible for allocating resources and scheduling actions.

In a PTIDES model, events are ordered according to the relevant order (<r), which

in turn introduces precedence constraint on action executions. I discuss how the coordina-

tion layer translates relevant order and precedence constraints into deadline constrains on

actions. By doing so, the complexity of resource scheduling is significantly reduced. The

90

scheduling layer can follow an EDF execution strategy, invoking actions based on the event

deadlines.

A key requirement for preserving runtime determinism of PTIDES programs is to ensure

that events at a real-time port meet their real-time constraints. A PTIDES program is said

feasible if the real-time constraints can be guaranteed. This chapter studies techniques that

statically check feasibility for a given PTIDES program with system characteristics such as

communication delays and execution time bounds.

This chapter is organized as follows. Section 5.1 discusses related work on real-time

scheduling algorithms. Section 5.2 develops algorithms for assigning deadlines to ensure the

precedence constraints on actions. Section 5.3 first studies feasibility analysis for PTIDES

models where actions have negligible execution time, and then adapts work on feasibility

analysis for sporadic task systems [5] to PTIDES models to derive sufficient conditions when

the execution time can not be ignored.

5.1 Real-Time Scheduling

5.1.1 Definition and Terminology

The terminology reviewed here is based on [5]. A real-time task system τ = {T1, ..., Tn}

consists a finite set of tasks. Each task can be executed potentially infinite number of times

during a run of a real-time system, and each execution of a task is called a job. A job j is

characterized by three parameters – a release time r which is the time instance when the

job is available for execution, an execution time w and a deadline d by which the job shall

91

be completed. That is, job j requires w of execution time during [r, d). In a periodic task

system, each task gets released at regular periodic intervals. In a sporadic task system,

tasks are not release at regular intervals but there is a minimum interval between any two

consecutive release times of the task. A periodic task Ti is characterized by 4 parameters –

an offset Oi which is the release time of the first job of the task, a period Pi that denotes

the interval between the release times of two consecutive jobs of the task, a relative deadline

Di that means a job of the task released at t shall be finished by t+Di, and a worst case

execution time Wi that specifies the upper limit on the execution time of each job of the

task. We use a 4-tuple (Oi, Pi, Di,Wi) to denote a periodic task Ti. A periodic task system

τ = {T1, ..., Tn} is called a synchronous task system if the offsets of all tasks are equal.

Similarly, a sporadic task Ti is characterized by 3 parameters – Pi, Di and Wi with Di and

Wi meaning the same as for periodic tasks, while Pi means that the interval between the

release time of successive jobs is at least Pi. Similar to periodic tasks, a 3-tuple (Pi, Di,Wi)

is used to denote a sporadic task Ti.

5.1.2 EDF for Periodic Independent Tasks

Determining whether an arbitrary periodic task system is feasible with EDF is co-NP-

complete in the strong sense [5]. However, the following cases are tractable.

• A periodic real-time task system τ = {T1, ..., Tn} in which every task Ti has relative

deadline equal to its period (Di = Pi) is feasible if and only if

n∑
i=1

Wi

Pi
≤ 1 (5.1)

92

Let U(τ) =
∑n

i=1
Wi
Pi

. U is often called the utilization factor. With periodic tasks that

have deadlines equal to their periods, EDF has a utilization bound of 100%. That is,

all deadlines are met provided that U(τ) is no more than 100%.

• For synchronous task systems with U bounded by a constant strictly less than one,

there is a pseudo-polynomial time algorithm for the feasibility analysis.

For arbitrary periodic task systems even with a utilization bounded by a constant strictly

less than one, exact feasibility analysis is also co-NP-complete in the strong sense. However,

it is known that there is a pseudo-polynomial algorithm for the sufficient feasibility check

of such systems based on the following theorems and lemma from [5].

Theorem 2. A real-time periodic task system τ = {T1 = (O1, P1, D1,W1), ..., Tn =

(On, Pn, Dn,Wn)} is feasible if the synchronous periodic task system τ ′ = {T ′1 =

(0, P1, D1,W1), ..., T ′n = (0, Pn, Dn,Wn)} is feasible.

Theorem 3. A synchronous periodic task system is feasible if and only if for all t > 0,

η(0, t) ≤ t.

Where η(t1, t2) is the total processing time demand for tasks over the interval [t1, t2].

η(t1, t2) is defined to be the sum of the execution time of jobs that have arrival times

at or after time-instant t1 and deadlines at or before time-instant t2. For synchronous

periodic task system τ ′ = {T ′1 = (0, P1, D1,W1), ..., T ′n = (0, Pn, Dn,Wn)}, η(0, t) =∑n
i=1Wi ·max

{
0,
⌊
t−Di
Pi

⌋
+ 1
}

Despite the simplicity of theorem 3, feasibility analysis for general synchronous periodic

task system is as intractable as for arbitrary task systems. However, when the utilization

93

U(τ) = W1
P1

+ ... + Wn
Pn

of a synchronous periodic task system is bounded by a constant

0 < c < 1, the following lemma indicates that feasibility analysis is pseudo-polynomial for

such systems.

Lemma 3. Let c be a constant and 0 < c < 1. If a synchronous periodic task system τ

with U(τ) ≤ c is not feasible, then there exists a t0 such that 0 < t0 <
c

1−cmax(Pi − Di)

and η(0, t0) > t0.

Lemma 3 suggests a pseudo-polynomial time feasibility analysis algorithm for a syn-

chronous periodic task system τ with bounded utilization. We can generate the EDF

schedule for τ until c
1−cmax(Pi −Di) and declare that τ is feasible if and only if no dead-

lines are missed in this schedule [5].

5.1.3 EDF for Sporadic Independent Tasks

For periodic task systems the set of jobs to be scheduled is known a priori during

feasibility analysis. For sporadic task systems, however, there is no a priori knowledge

about which set of jobs will be generated by the task system during run-time. In analyzing

sporadic task systems, therefore, every conceivable sequence of possible requests must be

considered.

Given a sporadic task system τ = {T1 = (P1, D1,W1), ..., Tn = (Pn, Dn,Wn)}, let (i, t)

denote the job of task Ti released at t. A legal sequence of jobs Rτ is a (possibly infinite)

list of jobs such that if (i, t1) and (i, t2) both belong to Rτ , then |t2 − t1| ≥ Pi.

Given a sporadic task system, there can be infinite number of legal job sequences. Fortu-

nately, it turns out that, at least in the context of dynamic-priority preemptive uniprocessor

94

scheduling, it is relatively easy to identify a unique worst-case legal sequence of jobs, such

that all legal sequences of jobs can be scheduled to meet all deadlines if and only if this

worst-case legal sequence can. This particular worst-case legal sequence of jobs is exactly

the unique legal sequence of jobs generated by the synchronous periodic task system with

exactly the same parameters as the sporadic task system [5]:

Lemma 4. A sporadic task system τ = {T1 = (P1, D1,W1), ..., Tn = (Pn, Dn,Wn)} is fea-

sible if and only if the synchronous periodic task system τ ′ = {T ′1 = (0, P1, D1,W1), ..., T ′n =

(0, Pn, Dn,Wn)} is feasible.

The idea of proving lemma 4 is as follows [5]:

• τ is infeasible if and only if there is some legal sequence of jobs Rτ and some interval

[t, t + t0] such that η(t, t + t0) > t0, where η(t, t + t0) is the total processing time

demand for Rτ .

• The total processing time demand by jobs generated by τ over an interval of length

t0 is maximized if each task in τ generates a job at the start of the interval, and then

generates successive jobs exactly Pi time apart. This is exactly the sequence of jobs

that generated by the synchronous periodic task system τ ′ defined in lemma 4.

Based on lemma 4, to check whether a sporadic task system τ is feasible, we only need

to determine whether the corresponding synchronous task system is feasible. Hence, if the

utilization U(τ) of τ is bounded by a constant 0 < c < 1, the feasibility analysis can be

performed in pseudo-polynomial time.

95

5.2 Precedence Constrains in PTIDES Models

In a PTIDES model, events are ordered according to the relevant order (<r). Assume

an action is associated with each input port to process events received at the port. Similar

to tasks considered by real-time scheduling algorithms, actions are finite amount of com-

putations that require some resources and take some time to execute. Let PI be the set of

input ports of a PTIDES model and ai be the action for the input port pi ∈ PI . During

an execution of the system, pi may receive a sequence of events. Each event triggers ai

being executed once. Each execution of an action is called a job. Let ani denote the job that

corresponds to the nth execution of action ai, where n ∈ N. Let si be the signal at port

pi and si(n) be the nth event of si, where n ∈ N. Given two events si(k) and sj(h) with

si(k) <r sj(h), job aki shall be executed before ahj .

Assume that the scheduling layer has a job queue where the coordination layer posts

actions. Following the terminology discussed in section 5.1, a job ani is characterized by a

release time rni , an execution time wni and a deadline dni . The release time rni is the time

when the job is posted to the job queue. The execution time wni denotes how long the job

takes to execute. The deadline dni is the time when the job shall be completed. Further,

I introduce two other quantities: the start time lni is when the job is started to execute,

and the finish time fni is when the job ends its execution. These quantities are related as

rni ≤ lni ≤ fni .

Precedence constraints can be guaranteed by priority assignment or deadline assignment.

In fixed-priority scheduling, job aki will always precede job ahj if action ai has a higher priority

96

than aj and rki ≤ rhj . Similarly, with EDF aki will always precede action ahj if aki has an earlier

deadline and rki ≤ rhj [38]. For a given scheduling policy, such as fixed-priority or EDF,

the problem of preserving precedence constraints then becomes finding an assignment to

its parameters, priorities for fixed-priority and deadlines for EDF, that ensures consistency

with the precedence constraints. In this thesis, I focus on EDF scheduling and develop an

algorithm that assign deadlines for jobs.

Let aki ≺ ahj denote the precedence constraint between aki and ahj . Spuri and Stankovic

[47] give a general theorem for EDF-like schedulers to satisfy precedence constraints. The

following definition and theorem is from [47] with adaption to the notations used here.

Definition 5.1. Given two jobs aki ≺ ahj , we say the release time and deadline are consistent

with the precedence constraint if

aki ≺ ahj ⇒ rki < rhj and dki ≤ dhj

where dki and dhj represent the deadlines of aki and ahj .

Definition 5.2. Given any schedule of a job set, we say it is quasi-nomal if

rki < rhj and dki ≤ dhj ⇒ fki < lhj .

That is, in a quasi-normal schedule, if aki is released before ahj and aki has an earlier

deadline than ahj , then ahj can not preempt aki and can only start execution after aki is

finished. It is easy to see that schedules based on the EDF scheduling algorithm are quasi-

normal.

Theorem 4. Given a set of jobs with release time and deadlines consistent with their

precedence constraints, any feasible schedule (i.e. that satisfy both the release times and

deadlines) obeys the precedence constraints if it is quasi-normal.

97

The above theorem was stated as a necessary and sufficient condition in [47]. However,

Mangeruca et al. [38] shows that it is only a sufficient condition.

What we learn from theorem 4 is that if the coordination layer post jobs to the scheduling

layer with release time and deadlines consistent with precedence constraints on the jobs, then

any EDF scheduler can be applied in the scheduling layer and the precedence constraints

will be guaranteed.

5.2.1 Assigning Deadlines

Recall that in a PTIDES program, events at a real-time input port need to satisfy the

real-time constraint associated with that port. If an input port pi is a real-time port with

constrain γi, then an event si(k) = (ti, v) at this port must be processed before γi(ti). We

can view γ(ti) as the deadline for job aki . Next, I consider how to compute the deadlines

for jobs triggered by events at non-real-time ports.

Given an event sj(h) = (tj , v) at input port pj , if there exists a real-time input port

pi having relevant dependency on pj , i.e. d(pj , pi) 6= 0, then assign deadline dhj = γi(t) for

job ahj , where D(t) = d(pj , pi)(D(tj)). Intuitively, if sj(h) affects an event at a real-time

port that needs to be processed before γi(t), ahj certainly must be processed before γi(t). In

general, pj may have relevant dependency with multiple real-time input ports, and ahj shall

be processed before the smallest deadline of the real-time events at these ports. Formally,

let Ij denote the set of real-time input ports that have relevant dependency with pj , then

dhj = min{γm(tm)|∀pm ∈ Ij , D(tm) = d(pj , pm)(D(tj))}. (5.2)

98

If pj does not have causal dependency with any real-time input port, we assign infinity

as the deadline of job ahj . This means we do not care when the execution of ahj completed.

Lemma 5. Deadlines assigned by 5.2 are consistent with the precedence constraint, i.e.

∀aki ≺ ahj , equation 5.2 assigns dki ≤ dhj .

Proof. ∀aki ≺ ahj , we have si(k) <r sj(h) and d(pi, pj)(D(ti)) ⊂ D(tj), where si(k) = (ti, v)

and sj(h) = (tj , v′). Let Ij denote the set of real-time input ports that causally depend

on pj . Then ∀pm ∈ Ij , pm also depends on pi, and d(pi, pm) ≤ d(pi, pj) ⊗ d(pj , pm), i.e.

d(pi, pm)(D(ti)) ⊆ d(pj , pm)(d(pi, pj)(D(ti))) ⊆ d(pj , pm)(D(tj)). Hence dki ≤ dhj .

Given two jobs aki ≺ ahj , the release times given by the coordination layer satisfy rki < rhj .

The release times and deadlines given by the coordination layer are consistent with the

precedent constraints. Thus any feasible EDF schedule (i.e. that satisfies both the release

times and deadlines) obeys the precedence constraints. I study when there exists a feasible

EDF schedule for a PTIDES program in the next section.

5.3 Feasibility Analysis

A key requirement for preserving runtime determinism of PTIDES programs is that

event e = (t, v) at a real-time port pi must be processed before γi(t). We call a PTIDES

program feasible if this requirement can be guaranteed. We are interested in statically

checking feasibility for a given PTIDES program and some system characteristics such as

communication delay and execution time bounds. In this section, I first study feasibility

analysis assuming that the execution time of each action is negligible. Then I describe

solution for more general cases which assumes non zero execution times for actions.

99

5.3.1 Feasibility Analysis with Zero Execution Time

When the execution time is negligible, feasibility check becomes straightforward: the

system is feasible if all the events at the real-time input ports of the system can be released

by their model time. Whether an event at a real-time input port can be released depends

on whether this event has relevant dependency with events produced by real-time output

ports, since events from other output ports can be computed in zero time if they do not need

real-time information. Note that I am using the “causal dependency” more liberally here in

the sense that I am referring to causal dependency from an output port to an input port,

which strictly speaking is not defined. However, It is easy to extend the causal dependency

in a composition to be defined between output and input ports and there is no fundamental

change in the computation of these dependencies.

Let O denote the set of real-time output ports in a PTIDES model. Recall that for a

real-time output port pi ∈ O with constrain γi, an event e with model time stamp t will

be generated at this port no later than physical time γi(t). Given a real-time input port

pj ∈ PI , where PI is the set of input ports in the model. if there is a port pi ∈ O such

that the relevant dependency d(pi, pj) 6= 0, then there are order constraints on the events

at pi and pj . That is, an event ei received at pi with model time ti is less than (in the

relevant order, <r) an event ej with model time tj at pj , where d(pi, pj)(D(ti)) = D(tj).

Hence the event ei cannot be processed until we are sure that all events at pi with time

stamp less than ti have been received. In the worst case, we need to wait until the physical

time reaches γi(ti) to make sure all events at pi with model time less than ti have been

100

Clock

Merge Device
Delay
d

Queue

Route

p13

p1

p6
p7

p8
p9

p11p10 p14

p15p12 p16

p2

p4
p5

p3 p17

NetworkIn

p0

NetworkOut

p18

Figure 5.1. PTIDES Model for each camera in the motivating example of chapter 4

.

received. If γi(ti) ≤ γj(t), we can guarantee that the event ej at port pj is processed before

the deadline, and we call port pj feasible. In general, a real time input port pj can have

relevant dependency with multiple output ports in O, then pj is feasible if γi(ti) ≤ γj(t) for

all pi ∈ O that has relevant dependency with pj . We call a system feasible if all its real-time

input ports are feasible.

As an example, consider again the system shown in figure 5.1. The set of real-time

output ports is O = {p0, p16, p17}, and the set of real-time input ports is I = {p15, p18}.

The causality interface for each actor and the relevant dependencies are the same as given

in chapter 4. We can perform the following analysis.

The real-time input port p15 have relevant dependency with ports p0 and p16 in I. The

relevant dependencies are:

d(p0, p16) = (T 7→ {t ∈ T |t− d ∈ T or t− d /∈ T }), ∀T ∈ D(T)

d(p16, p15) = 1

(5.3)

101

That is an event e with model time stamp t at p15 depends on events at p0 up to time

t′ = t − d and events at p16 up to time t′′ = t. The timing constraints on port p0 and p16

are γ0(t′) = t′ + ∆ = t − d + ∆ and γ16(t′′) = t′′ = t. If d ≥ ∆, we have γ0(t′) ≤ γ(t) and

γ16(t′′) ≤ γ(t) and thus port p15 is feasible.

Similarly, one can check the feasibility condition for real-time input port p18, which turns

out also requiring d ≥ ∆. Recall that ∆ represent the upper bound of the network delay.

By choosing the delay parameter properly, i.e. d ≥ ∆, we can make sure the deadlines on

all the real-time input ports in the system are met. Hence the system is feasible if d ≥ ∆.

The analysis discussed above is the beginning of what allows us to statically check

whether a PTIDES specification is feasible over a network of nodes. A full analysis, when

the execution time is not negligible, requires integrating relevant dependency analysis with

real-time scheduling and worse case execution time analysis on individual nodes. I study

this next.

5.3.2 Feasibility Analysis with Worst Case Execution Time

When execution time for actions are not negligible, general event triggered real-time

systems are not amenable to compile-time feasibility analysis [34]. However, when the

discrete activities can come in predictable patterns, real-time scheduling theories are appli-

cable to many PTIDES models. Assuming that the triggering signals of a PTIDES model

are sporadic, i.e. there is a minimum interval between any two consecutive events of the

same signal, the question I try to answer in this section is which kind of PTIDES models

is amenable to feasibility analysis and how to apply real-time scheduling theories to these

102

models. Here the triggering signals of a PTIDES model are signals at its triggering ports,

where actors in a PTIDES model can declare a output port to be a triggering port if events

produced on this port is not from any action of processing input events. For example,

the triggering signals of a PTIDES model can include output signals of all source actors.

Recall that events from sensors or input devices are injected to a PTIDES model via actors

with real-time output ports and they are part of the triggering signals of a PTIDES model.

Signals as the outputs of source actors without real-time constraint are also part of the

triggering signals of a PTIDES model.

Formally, we say a signal si is sporadic if ∀e1 = (t1, v1) ∈ si, e2 = (t2, v2) ∈ si, |t2− t1| >

Pi, where Pi > 0 is the minimal interval of si.

Definition 5.3 (Sporadic Actor). A source actor is sporadic if its output signals are spo-

radic; a sink actor is always sporadic; a transformer actor, which is actor with both input

and output ports, is sporadic if it maps sporadic signals to sporadic signals.

That is, if the input signals of a sporadic actor are sporadic, then the output signals of it

are also sporadic. The nice property of sporadic actors is that it preserves the “sporadicness”

of signals. Thus if the triggering signals to a PTIDES model with only sporadic actors are

sporadic, then all the other signals are also sporadic.

Transformer actors with only one input port is sporadic if the delay from the input port

to any of the output ports is constant. For example, the Delay actor discussed in chapter

3 with a constant delay parameter d is sporadic. Actors with variable delay from its input

port to output port are not sporadic. For example, the VariableDelay actor that shifts

every event in its input signal by a random variable x into the future is not sporadic since

103

there is no minimal interval strictly greater than 0 for its output signal even if its input

signal is sporadic.

For transformer actors with more than one input ports and constant delay from input

to output, whether they are sporadic or not is challenging to decide. Let’s look at two

actors first. The Merge actor is not sporadic. As an example, consider the model shown in

figure 5.2. Signal s1 and s2 represent the triggering signals of the model and assume they

are defined as following:

s1 = (R0, {(k +
1

k + 1
, 1) | k ∈ N}),

s2 = (R0, {(k +
1

k + 2
, 1) | k ∈ N})

Signals s1 and s2 are both sporadic as P1 = 1/2 and P2 = 5/6. Signal s9 is the merge

of s1 and s2. It is easy to see that s9 is not sporadic. On the other hand, the Queue

actor discussed in chapter 4 is sporadic as whether an output event can be produced is

only determined by the signal at it triggering port. So if the signal at the triggering port

is sporadic, then the output signal of the Queue actor is sporadic. In general, for an actor

with output port p depends on more than one input port, it is sporadic if only one input

port can determine when the output get produced and I call this input port the control port

of the output port p.

Feasibility Analysis for Sporadic PTIDES Models

This section studies feasibility analysis for PTIDES Models that contain only sporadic

actors. For actors with more than one input port, I assume there is only one control input

104

Merge

Actuator

Delay
d = 2

Computation_1

NetworkIn

NetworkOut

p2

Sensor
p1

Computation_2

p3 p4

p5

p6

p7

p8 p10

p9 p11 p12 p13

Figure 5.2. An example of sporadic triggering signals result to no sporadic signals

.

port for each output port. Let ai = (Pi, Di,Wi) represent the action at input port pi, where

Pi, Di and Wi have the same meaning as discussed in section 5.1 for tasks. Given that

the triggering signals are sporadic and all the actors in a PTIDES model are sporadic, we

have all the signals sporadic and hence the actions in a PTIDES model are sporadic. Thus

we can use theorem 2 to check the feasibility of the model. Assuming that the worst case

execution time for each action is given, this section focuses on how to compute the minimal

interval and relative deadline for each action in order to apply theorem 2.

Let On be the set of trigger ports. ∀pi ∈ On, let Ii be the set of input ports that have

causal dependency with pi.

∀pj ∈ Ii, depends on whether pj is a control port or not, the minimal interval of the

down-stream actions may or may not depends on pi. To capture this information, we

can separate actions into groups, where an action group Ai is a set of actions that have

minimal interval depends on pi ∈ On. To compute the action groups, we can transform the

dependency graph of a PTIDES model by removing the edge between an input port and an

105

output port of the same actor if the input port is not a control port of the output port.

Then ∀pj ∈ Ii, aj ∈ Ai if there is a path from pi to pj in the transformed graph.

Computing the minimal interval Pj for action aj is straightforward. ∀pi ∈ On, all actions

in Ai inherit the minimal interval of the signal at port pi. Doing this for each pi ∈ On, we

can compute the minimal interval of all the actions. Note that since we assume that there

is only one control input port for each output port, an action can not belong to more than

one action groups.

To compute the relative deadline Dj action aj , we can compute the deadline dj and

release time rj of the action first and then get Dj by Dj = rj − dj . First of all, ∀pi ∈ On,

if pi is a real-time output port, then there is a real-time constraint γi on when an event

e = (t, v) be generated, i.e. e will be generated no later than γi(t); otherwise we can assume

events at pi are generated at physical time no later than their model time (in theory, these

events can be computed when the system just starts since they do not depends on real-time

information, and it is up to the implementation of the run-time environment to decide when

to generate these events as long as they are generated before their model time).

∀aj ∈ Ai, if pj only has relevant dependency with pi and no relevant dependency with

any other port in On, then we can release the action aj at Γi(t), where

Γi(t) =

γi(t) if pi is a real-time triggering port,

t otherwise.

If pj also has relevant dependencies with some other port pm ∈ On, then there are

order constraints on the events at pm and pj . That is, an event received at pm with model

106

time tm is less than (in the relevant order, <r) an event e′ with model time stamp t′ at pj ,

where D(t′) = δ(pi, pj)D(t) and d(pm, pj)(D(tm)) ⊂ D(t′). Hence the action aj to process

e′ cannot be released until we are sure that all events at pm with time stamp less than tm

have been generated. For the worst case, we need to wait until the physical time reaches

max(Γi(t),Γm(tm)), where Γm(tm) is defined in the same way as Γi(t). In general, pj can

have relevant dependencies with several ports in On. We need to compute the generation

times for all the events on these ports that are less than e and take the latest time as the

release time of action aj .

Following the idea from section 5.2.1, ∀aj ∈ Ai, if there exists a real-time input port

pk having relevant dependency on pj , then assign deadline dj = γk(t′) for action ai, where

D(t′) = d(pi, pk)D(t). If pj has relevant dependency with multiple real-time input ports,

then assign the smallest deadline to aj as:

di = min{γk(tk)|∀pk ∈ Rj , D(tk) = d(pi, pk)D(t)}. (5.4)

where Rj is the set of real-time input port that depends on pj .

For each port pi ∈ On, after we determine the release time and the absolute deadline of

each action, we can compute the relative deadline of each action by subtracting the release

time from the absolute deadline. It is easy to show that when the real-time constraints in

the model are all linear functions, the actions are sporadic, i.e. there are minimal intervals

between any two release time of the same action. With the minimal interval and relative

deadline computed for each action, we can check whether the given PTIDES model is

feasible or not based on theorem 2.

107

Figure 5.3. A PTIDES model contains only sporadic actors.

.

One thing that needs to be pointed out is that the release time used above is not

necessary to be consistent with the precedence constraint on jobs. That is two jobs a1(k) ≺

a2(h) can have release time r1(k) ≤ r2(h). This is not a problem when we considering the

feasibility problem since if the system is feasible, this means that there is a schedule for

every sequence of possible job orders which includes the one that satisfies the precedence

constraints between jobs. In a real execution of the system, if a1(k) ≺ a2(h) and two actions

have the same release time, the coordination layer guarantees the precedence constraints

between actions by enqueue a1 to the queue in the scheduling layer before a2.

Now let’s look at an example to apply the algorithm above for computing the minimal

intervals and deadlines. Consider the model shown in figure 5.3, which is quite similar to

the model shown in 5.2 except that the Merge actor is replaced with the Queue actor to

108

Figure 5.4. The dependency graph for the model in figure 5.3.

.

make the model sporadic. The causality interface for each actor in the model is:

δDelay(p3, p4) = (T 7→ {t ∈ T |t− d ∈ T or t− d /∈ T }),∀T ∈ D(T),

δComputation1(p5, p8) = 1,

δQueue(p6, p9) = 1, δQueue(p7, p9) = 1,

δComputation2(p11, p12) = 1,

(5.5)

Output ports p1 and p2 have real-time constraints γ1 and γ2, and input ports p10 and

p13 have real-time constraints γ10 and γ13. The set of triggering ports is On = {p1, p2}.

And assume p7 is the control input port for the Queue actor. Figure 5.4 (a) shows the

dependency graph of the model, and (b) shows the transformed graph by removing the edge

between not controlling input port and the corresponding output port.

We have A1 = {a5, a6, a10} and A2 = {a3, a7, a11, a13}. All actions in A1 have the same

minimal interval as s1, and all actions in A2 have the same minimal interval as s2.

Given an event e = (t1, v1) at p1, action a5 and a10 can be released at γ1(t1) since p5

109

and p10 only have relevant dependency with p1. That is, r5 = γ1(t1) and r10 = γ1(t1).

Action a6 need to wait till max(γ1(t1), γ2(t′)) since p6 has relevant dependency with p2,

where t′ = t1 − d. So r6 = max(γ1(t1), γ2(t1 − d)). Now we calculate the deadlines for each

actions in A1. Port p5 has relevant dependency with both real-time input ports p10 and p13,

so d5 = min(γ10(t1), γ13(t1)). Port p6 only has relevant dependency with real-time input

ports p13, so d6 = γ13(t1). Port p10 only has relevant dependency with real-time input ports

p10, so d10 = γ10(t1). After get the release time and deadline of each action in A1, it is

straightforward to compute the relative deadline of each action, and we have:

D5 = min(γ10(t1), γ13(t1))− γ1(t1),

D6 = γ13(t1)−max(γ1(t1), γ2(t1 − d)),

D10 = γ10(t1)− γ1(t1),

(5.6)

Similarly, we can calculate the deadline for each action in A2. Given an event e′ = (t2, v2)

at p2, r3 = γ2(t2), r7 = r11 = r13 = max(γ2(t2), γ2(t2 + d)), d3 = d7 = min(γ10(t2 +

d), γ13(t2 + d)), and d11 = d13 = γ13(t2 + d). So the deadlines for actions in in A2 are:

D3 = min(γ10(t2 + d), γ13(t2 + d))− γ2(t2),

D7 = min(γ10(t2 + d), γ13(t2 + d))−max(γ2(t2), γ2(t2 + d)),

D11 = γ13(t2 + d)−max(γ2(t2), γ2(t2 + d)),

D13 = γ13(t2 + d)−max(γ2(t2), γ2(t2 + d)),

(5.7)

Assuming the worst execution time Wi is given for the model. Now we have all the info

to check whether the given PTIDES model is feasible or not based on theorem 2.

110

Feasibility Analysis for PTIDES Models with Non-sporadic Actors

This section extends feasibility analysis to more general PTIDES models where only

actors in a feedback loop are required to be sporadic and other actors in the model can be

non-sporadic DE actors that have constant delay from its input port to output port.

The challenge to deal with non-sporadic actors is that they can map sporadic signals

to non-sporadic signals and making theorem 2 not applicable. One example of such actor

is the Merge actor shown in figure 5.2, where even both the input signals, s1 and s2 are

sporadic, the output signal s9 is not sporadic, which in turn caused the action at port

p11 that connect to p9 not sporadic. To address this problem, we can split action a11 to

two actions, one corresponding to events causally depend on events of s1 and another one

corresponding to events causally depend on events of s2. Then both actions are sporadic.

In general, if an input port pi of a PTIDES model has causal dependency with m ports in

On, we need to split action ai to m actions, with ai � pj representing action of ai that is

triggered by events at port pj ∈ On.

To compute the action group Ai for each pi ∈ On, we do the same transformation on

the dependency graph as discussed in the previous section, i,e., removing the edge between

an input port and an output port if the input port is not a control port. There may be

multiple control input ports now for an output if the actor containing these ports are not

sporadic. For example, both input ports of the Merge actor are control ports of its output

port. Recall that Ii is the set of input ports that have causal dependency with pi. Then

111

∀pj ∈ Ii, add aj � pi to Ai if there is a path from pi to pj in the transformed graph, and All

actions in Ai inherit the minimal interval of the signal at pi.

The algorithm for computing the release time and deadline of each action in an action

group is the same as discussed in the previous section as it does not depends on whether

an actor is sporadic or not. Now we have all the information to check whether the given

PTIDES model is feasible or not based on theorem 2.

As an example, let’s compute the minimal intervals and relative deadlines for actions

in the PTIDES model shown in 5.1, which is the camera model in the motivating example

of chapter 4. As we discussed in last section, the Queue actor in one of the feedback loops

is sporadic and assume port p13 is its control port in this example. The Clock actor in the

other feedback loop is also sporadic with p6 being its control port. All other actors have

constant delay from input port to output port. The causality interface for each actor in the

model has been given in chapter 4, and is listed here again for convenience:

δDelay(p1, p2) = (T 7→ {t ∈ T |t− d ∈ T or t− d /∈ T }),∀T ∈ D(T),

δRouter(p3, p4) = 1, δRouter(p3, p5) = 1,

δClock(p6, p8) = (T 7→ {t ∈ T |t− Pmin ∈ T or t− Pmin /∈ T }), ∀T ∈ D(T),

δClock(p7, p8) = 1,

δMerge(p9, p11) = 1, δMerge(p10, p11) = 1,

δQueue(p12, p14) = 1, δQueue(p13, p14) = 1,

δDevice(p15, p16) = (T 7→ {t ∈ T |t− µ ∈ T or t− µ /∈ T }), ∀T ∈ D(T),

δDevice(p15, p17) = 1

(5.8)

112

Figure 5.5. The dependency graph for the model in figure 5.1.

.

Output ports p0 and p16 have real-time constraints γ0 and γ16, and input ports p15 and

p18 have real-time constraints γ15 and γ18. The set of triggering ports is On = {p0, p8, p16}.

Figure 5.5 (a) shows the dependency graph of the model, and (b) shows the transformed

graph by removing the edge not controlling input port and the corresponding output port.

We have A0 = {a1, a3, a7, a10, a12 � p0}, A8 = {a6, a9, a12 � p8} and A16 = {a13, a15, a18}.

All actions in Ai have the same minimal interval as si, where i = 0, 8, 16.

Given an event e = (t0, v0) at p0, action a1 and a3 can be released at γ0(t0). That

is, r1 = r3 = γ0(t0). Action a7 and a10 need to wait till max(γ0(t0),Γ8(t′)) since p7 and

113

p10 have relevant dependency with p8, where t′ = t0 − d and Γ8(t′) = t′. So r7 = r10 =

max(γ0(t0), t0 − d). Now we calculate the deadlines for each actions in A0. Port p1, p3,

p7 and p10 all have relevant dependency with both real-time input ports p15 and p18, so

d1 = d3 = d7 = d10 = min(γ15(t0 + d), γ18(t0 + d)). So the relative deadline of actions in

A0 are:

D1 = D3 = min(γ15(t0 + d), γ18(t0 + d))− γ0(t0),

D7 = D10 = min(γ15(t0 + d), γ18(t0 + d))−max(γ0(t0), t1 − d),

(5.9)

Similarly, one can calculate the deadlines for actions in A8 and A16. Once we have the

minimal intervals and deadlines for all the actions in this model, we can apply theorem 2

to verify whether it is feasible or not.

114

Chapter 6

Conclusion and Future Work

6.1 Summary of Results

This dissertation addresses several challenging issues of using DE models as a basis

for model-based design of distributed real-time systems. DE models have primarily been

used in performance modeling and simulation, where time stamps are a modeling property

bearing no relationship to real time during execution of the model. When DE is used for

specifying real-time systems, a key question we need to answer is how to relate model time

to real time. Mapping model time to real time everywhere in a DE model is not efficient and

not necessary. I present a programming model called PTIDES that embraces DE semantics

but relates model time to real time only at sensor and actuator interactions based on the

observation that in many real-time systems time assurance matters only when they react

to or act on the physical world.

Besides the programming model, this dissertation studies how to build a run-time en-

115

vironment to execute PTIDES models. Conventional DE simulation strategy orders events

in a DE model totally based on their model times and computes the behavior of the model

chronologically. In order to process an event e with time stamp t, the simulator needs to

know all events before e and make sure these events have been processed. Although simple,

this approach is very restrictive in processing events. I develop a new execution strategy

that preserves DE semantics without requiring to process all events in their time stamp

order. Based on causality analysis of DE models, I define relevant dependency and relevant

orders to enable out-of-order execution without compromising determinism and without

requiring backtracking. A two-layer architecture that includes a global coordination layer

and a resource scheduling layer for the run time environment of PTIDES programs is dis-

cussed. The new execution strategy is used in the coordination layer to release events to

the scheduling layer.

Compile-time schedulability analysis is often important to many real-time systems. Al-

though general event triggered real-time systems are not amenable to compile-time feasibil-

ity analysis, this dissertation shows that when the discrete activities can come in predictable

patterns, real-time scheduling theories are applicable to many PTIDES models. I studies

a sufficient condition for a PTIDES model to be feasible when the inputs of the model are

sporadic and the actors in any feedback loop are sporadic actors. The result developed is

general enough to apply to a wide range of PTIDES models.

116

6.2 Future Work

This dissertation focuses on the formal foundation of a new execution strategy that

allows us to execute PTIDES programs without the penalty of totally ordered executions.

One direction for future work is to make this new execution strategy more practical by

implementing it on different platforms. There are several interesting projects going on in the

Ptolemy group working in this direction. To name a few, Derler, Feng, et al. [11] introduce

the notion of when events are safe to process and discusses a family of strategies that

during execution determine events that are safe to process. Derler, Lee and Matic’s work on

developing a programming and simulation environment [12] for the PTIDES programming

model in Ptolemy II [21] can be used as a visual programming environment for PTIDES and

is very useful for understanding the behavior of PTIDES programs. Forbes, Zhou, Matic

and Lee’s work on PtidyOS [15], a novel lightweight embedded operating system based on

PTIDES, is important to make PTIDES practical.

Another area that remains much to be explored is schedulability analysis of PTIDES

programs. This dissertation studies schedulability analysis for systems with sporadic actors

in their feedback loops. Sporadicness of actors is a very useful concept in determining

whether a PTIDES program is schedulable or not. How to tell whether an actor is sporadic

or not is not addressed by this thesis but opens as an interesting direction to work on. One

may also want to generalize the schedulability analysis work introduced in this thesis to a

broader set PTIDES models or even other event-triggered models.

117

Bibliography

[1] B. Andersson and J. Jonsson. Preemptive multiprocessor scheduling anomalies. In
IPDPS ’02: Proceedings of the 16th International Symposium on Parallel and Dis-
tributed Processing, page 12, Washington, DC, USA, 2002. IEEE Computer Society.

[2] N. Audsley. Deadline monotonic scheduling. Technical report, Department of Computer
Science, University of York, September 1990.

[3] Sanjoy K. B., Aloysius K. M., and Louis E. R. Preemptively scheduling hard-real-
time sporadic tasks on one processor. In IEEE Real-Time Systems Symposium, pages
182–190, 1990.

[4] P. Baldwin, S. Kohli, E. A. Lee, X. Liu, and Y. Zhao. Modeling of sensor nets in
Ptolemy II. In Information Processing in Sensor Networks (IPSN), Berkeley, CA,
USA, 2004.

[5] S. Baruah. Scheduling real-time tasks: Algorithms and complexity. Technical report,
http://www.ulb.ac.be/di/ssd/goossens/baruahGoossens2003-3.pdf, 2003.

[6] A. Burns. Scheduling hard real-time systems: A review. Software Engineering Journal,
pages 116+, may 1991.

[7] C. G. Cassandras. Discrete Event Systems, Modeling and Performance Analysis. Irwin,
1993.

[8] K. M. Chandy and J. Misra. Distributed simulation: A case study in design and
verification of distributed programs. IEEE Trans. on Software Engineering, 5(5), 1979.

[9] E. Cheong. Actor-oriented programming for wireless sensor networks. PhD thesis,
EECS Department, University of California, 2007.

[10] B. A. Davey and H. A. Priestly. Introduction to lattices and order. Cambridge Univer-
sity Press, 1990.

[11] P. Derler, T. H. Feng, E. A. Lee, S. Matic, H. D. Patel, Y. Zhao, and J. Zou. PTIDES:
A programming model for distributed real-time embedded systems. Technical Report
UCB/EECS-2008-72, EECS Department, University of California, Berkeley, May 2008.

118

[12] P. Derler, E. A. Lee, and S. Matic. Simulation and implementation of the PTIDES
programming model. In Proceedings of the 12-th IEEE International Symposium on
Distributed Simulation and Real Time Applications, October 2008.

[13] J. Elson, L. Girod, and D. Estrin. Fine-grained network time synchronization using
reference broadcasts. In Proc. of the Fifth Symposium on Operating Systems Design
and Implementation (OSDI 2002), Boston, MA., December 2002.

[14] G. S. Fishman. Discrete-Event Simulation: Modeling, Programming, and Analysis.
Springer-Verlag, 2001.

[15] S. Forbes, J. Zou, S. Matic, and E. A. Lee. PtidyOS: An operating system based on
the PTIDES programming model. In to appear RTAS 2009, 2009.

[16] R. Fujimoto. Parallel and Distributed Simulation Systems. John Wiley and Sons, 2000.

[17] D. Gay, P. Levis, R. Behren, M. Welsh, E. Brewer, and D. Culler. The nesc language: A
holistic approach to networked embedded systems. In Programming Language Design
and Implementation (PLDI), 2003.

[18] G. Goessler and A. Sangiovanni-Vincentelli. Compositional modeling in Metropolis. In
Second International Workshop on Embedded Software (EMSOFT), Grenoble, France,
2002. Springer-Verlag.

[19] T. A. Henzinger, B. Horowitz, and C. M. Kirsch. Giotto: A time-triggered language
for embedded programming. In EMSOFT 2001, volume LNCS 2211, Tahoe City, CA,
2001. Springer-Verlag.

[20] C. Hewitt. Viewing control structures as patterns of passing messages. Journal of
Artifical Intelligence, 8(3):323–363, 1977.

[21] C. Hylands, E. A. Lee, J. Liu, X. Liu, S. Neuendorffer, , Y Xiong, Y. Zhao, and
H. Zheng. Overview of the Ptolemy project. Technical Report UCB/ERL M03/25,
EECS Department, University of California, Berkeley, July 2003.

[22] L. Sha J. Lehoczky and Y. Ding. The rate monotonic scheduling algorithm: exact
characterization and average case behavior. In IEEE Real-Time Systems Symposium,
pp. 166-171, December 1989.

[23] D. Jefferson. Virtual time. ACM Trans. Programming Languages and Systems,
7(3):404–425, 1985.

[24] S. Johannessen. Time synchronization in a local area network. IEEE Control Systems
Magazine, pages 61–69, April 2004.

[25] H. Kopetz. Real-time systems: design principles for distributed embedded applications.
Kluwer Academic Publishers, 1997.

119

[26] H. Kopetz and I. G. Bauer. The time-triggered architecture. In Proceedings of the
IEEE, pages 112–126, 2003.

[27] E. A. Lee. Modeling concurrent real-time processes using discrete events. Annals of
Software Engineering, 7:25–45, 1999.

[28] E. A. Lee. Embedded software. Advances in Computers, 56, 2002.

[29] E. A. Lee, S. Neuendorffer, and M. J. Wirthlin. Actor-oriented design of embed-
ded hardware and software systems. Journal of Circuits, Systems, and Computers,
12(3):231–260, 2003.

[30] E. A. Lee and A. Sangiovanni-Vincentelli. A framework for comparing models of com-
putation. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 17(12):1217–1229, 1998.

[31] E. A. Lee and A. Sangiovanni-Vincentelli. A framework for comparing models of com-
putation. IEEE Transactions on CAD, 17(12), 1998.

[32] C. L. Liu and J. W. Layland. Scheduling algorithms for multiprogramming in a hard-
real-time environment. Journal of the ACM, 20(1):46–61, 1973.

[33] C. L. Liu and J. W. Leyland. Scheduling algorithms for multiprogramming in a hard
real time environment. Journal of the ACM, 20(1):46–61, 1973.

[34] J. Liu and E. A. Lee. Timed multitasking for real-time embedded software. IEEE
Control Systems Magazine, pages 65–75, 2003.

[35] J. Liu and E. A. Lee. On the causality of mixed-signal and hybrid models. 6th Inter-
national Workshop on Hybrid Systems: Computation and Control (HSCC ’03), April
2005.

[36] X. Liu. Foundation of the tagged signal model. PhD thesis, EECS Department, Uni-
versity of California, December 2005.

[37] X. Liu and E. A. Lee. CPO semantics of timed interactive actor networks. Technical
Report UCB/EECS-2006-67, EECS Department, University of California, Berkeley,
May 2006.

[38] L. Mangeruca, A. Ferrari, and A. Sangiovanni-Vincentelli. Uniprocessor scheduling
under precedence constraints. RTAS, 0:157–166, 2006.

[39] D. L. Mills. A brief history of NTP time: Confessions of an internet timekeeper. ACM
Computer Communications Review, 33, April 2003.

[40] L. D. Molesky, C. Shen, and G. Zlokapa. Predictable synchronization mechanisms for
multiprocessor real-time systems. Technical Report UM-CS-1989-106, University of
Massachusetts, 1989.

120

[41] S. Neuendorffer. Actor-oriented metaprogramming. PhD thesis, EECS Department,
University of California, 2005.

[42] G. A. Papadopoulos, A. Stavrou, and O. Papapetrou. An implementation framework
for software architectures based on the coordination paradigm. Science of Computer
Programming, 60(1):27–67, 2006.

[43] I. Ripoll, A. Crespo, and A. K. Mok. Improvement in feasibility testing for real-time
tasks. Real-Time Syst., 11(1):19–39, 1996.

[44] M. Saksena. Real-time system design: A temporal perspective. In Proc. of IEEE
Canadian Conference on Electrical and Computer Engineering, Waterloo, May 1998.

[45] L. Sha, R. Rajkumar, and J. P. Lehoczky. Priority inheritance protocols: An approach
to real-time synchronization. IEEE Trans. Comput., 39(9):1175–1185, 1990.

[46] D. A. Smith, A. Kay, A. Raab, and D. P. Reed. Croquet - a collaboration system
architecture. Creating, Connecting and Collaborating through Computing, International
Conference on, 0:2, 2003.

[47] M. Spuri and J. Stankovic. How to integrate precedence constraints and shared re-
sources in real-time scheduling. IEEE Transactions on Computers, 43(12):1407–1412,
December 1994.

[48] D. B. Stewart, R. A. Volpe, and P. K. Khosla. Design of dynamically reconfigurable
real-time software using port-based objects. IEEE Trans. Softw. Eng., 23(12):759–776,
1997.

[49] G. Winskel. The formal semantics of programming languages. MIT Press, Cambridge,
MA, USA, 1993.

[50] B. P. Zeigler, H. Praehofer, and T. G. Kim. Theory of modeling and simulation.
Academic Press, 2nd edition, 2000.

[51] Y. Zhou. Interface theories for causality analysis in actor networks. PhD thesis, EECS
Department, University of California, Berkeley, May 2007.

[52] Y. Zhou and E. A. Lee. Causality interfaces for actor networks. Technical Re-
port UCB/EECS-2006-148, EECS Department, University of California, Berkeley, Nov
2006. This paper was accepted for publication by ACM Transactions on Embedded
Computing Systems on March 22, 2007.

121

	List of Figures
	Introduction
	Related Work
	Common Practice in Real-time Programming
	Scheduling Periodic Independent Tasks
	Scheduling Periodic and Sporadic Independent Tasks
	Pitfalls with Real-time Scheduling

	Time-Triggered Computation
	Time-Triggered Architecture
	Time-Triggered Computation Models

	Event-Triggered Computation Models

	Overview of dissertation

	Background
	Actor-Oriented Design
	Tagged Signal Model
	Event and Signal
	Actor
	Fixed Point Semantics

	Timed Actor Networks
	Discrete-Event Models
	Discrete-Event Simulation

	Relevant Dependency
	Causality Interface
	Dependency Algebra
	Causality Interfaces
	Composition of Causality Interfaces

	Relevant Dependency
	Relevant Order
	Execution Based on Relevant Order

	Application to Real-Time Systems
	Motivating Example
	PTIDES Programming Concepts
	Relating Model time to Real Time

	Specification of the Motivating Example
	Run-time Environment
	Dependency Analysis
	Execution Based on the Relevant Order

	Scheduling Analysis of PTIDES Models
	Real-Time Scheduling
	Definition and Terminology
	EDF for Periodic Independent Tasks
	EDF for Sporadic Independent Tasks

	Precedence Constrains in PTIDES Models
	Assigning Deadlines

	Feasibility Analysis
	Feasibility Analysis with Zero Execution Time
	Feasibility Analysis with Worst Case Execution Time
	Feasibility Analysis for Sporadic PTIDES Models
	Feasibility Analysis for PTIDES Models with Non-sporadic Actors

	Conclusion and Future Work
	Summary of Results
	Future Work

	Bibliography

