Discovering Functional Dependencies in Pay-As-You-
Go Data Integration Systems

Daisy Zhe Wang
Michael Franklin
Luna Dong

Anish Das Sarma
Alon Halevy

I FEELC LLL]

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2009-119
http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-119.html

August 15, 2009

Copyright 2009, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Discovering Functional Dependencies
in Pay-As-You-Go Data Integration Systems

Daisy Zhe Wang*, Luna Dong', Anish Das Sarma?*, Alon Halevy?, and Michael J. Franklin*

*Univ. of California, Berkeley EECS and

ABSTRACT

Functional dependency is one of the most extensively researched
subjects in database theory, originally for improving quality of
schemas, and recently for improving quality of data. In a pay-
as-you-go data integration system, where the goal is to provide
best-effort service even without thorough understanding of the
underlying domain and the various data sources, functional de-
pendency can play an even more important role, applied in nor-
malizing an automatically generated mediated schema, pinpoint-
ing sources of low quality, resolving conflicts in data from dif-
ferent sources, improving efficiency of query answering, and so
on. Despite its importance, discovering functional dependencies
in such a context is challenging: we cannot assume upfront do-
main knowledge for specifying dependencies, and the data can
be dirty, incomplete, or even misinterpreted, so make automatic
discovery of dependencies hard.

This paper studies how one can automatically discover func-
tional dependencies in a pay-as-you-go data integration system.
We introduce the notion of probabilistic functional dependencies
(pFDs) and design Bayes models that compute probabilities of
dependencies according to data from various sources. As an ap-
plication, we study how to normalize a mediated schema based on
the pFDs we generate. Experiments on real-world data sets with
tens or hundreds of data sources show that our techniques obtain
high precision and recall in dependency discovery and generate
high-quality results in mediated-schema normalization.

1. INTRODUCTION

Functional dependency is one of the most thoroughly re-
searched subjects in database theory [5]. Consider two sets
of attributes X and Y in a relational schema. A functional
dependency X — Y states that all tuples with the same
value of X must have the same value of Y. It is origi-
nally studied for improving quality of schema: according to
functional dependencies, we can decompose a relation into
several relations in certain normal forms, such as 3NF and
BCNF. Recently, the topic is revisited for improving qual-
ity of data: the knowledge of functional dependencies can

T AT&T Research and

Stanford University and Google Inc.

help remove dirtiness and resolve inconsistency existing in
real-world data. Whereas the problem has been extensively
studied for a single data source, how one can discover func-
tional dependencies and apply them in various data manage-
ment tasks when there are multiple data sources, typically
heterogeneous and dirty, remains an open problem.

This paper studies discovery and possible applications of
functional dependencies in a data integration system. In
particular, we focus on a pay-as-you-go data integration sys-
tem [6], where we may not fully understand the underlying
domain and the data sources, but aim at providing best-
effort services from the outset and improve them over time
as we gain more knowledge of the data and the queries.
Functional dependencies are especially helpful in such a sys-
tem and we next list a few applications.

First, bootstrapping a pay-as-you-go data integration sys-
tem requires a mediated schema, which captures the salient
aspects of the domain, and mappings from source schemas
to the mediated schema, which describe the semantic rela-
tionship between data from different sources. Recently tech-
niques have been proposed to automatically create the me-
diated schema and the mappings (such as [18]); however, the
created mediated schema typically is not perfect and not well
normalized (if normalized at all). Knowledge of functional
dependencies can help us normalize the mediated schema
into relations that correspond to meaningful real-world en-
tities and relationships, and so help users better understand
the underlying data. In addition, observation of violation
of some dependencies can help us pinpoint suspicious map-
pings between schemas. Second, the problem of dirtiness of
data can be even more prominent in a pay-as-you-go system,
where the data sources are only loosely coupled and are of-
ten of various quality. When we query such a system and
integrate answers from different data sources, it is important
to resolve conflicts from different sources to return clean an-
swers to the user; the knowledge of functional dependencies
can help in this aspect. Third, functional dependencies can
often help us obtain more precise estimation of selectivity
for query optimization and so improve efficiency in query
answering.

Typically functional dependencies should be specified ac-
cording to domain knowledge (and it is well known that
data by themselves may suggest incorrect functional depen-
dencies); however, this is often impossible in a pay-as-you-go
system, where we cannot assume any upfront knowledge of
the underlying domain and sometimes even domain experts
can have uncertainty on some part of the domain. In such
a setting, we have to discover functional dependencies from

data provided by various sources. The problem of automatic
discovery of functional dependencies from data has been ad-
dressed in previous work [9, 11]; however, these techniques
ailm at a single data source and typically assume relatively
clean and complete data. In a pay-as-you-go system, with
presence of inconsistent information, missing data, differ-
ent representations of the same object, misinterpretation of
semantics of data (i.e., wrong schema mappings), the func-
tional dependencies we discover are at best probabilistic.

The key contribution of this paper is the concept of prob-
abilistic functional dependencies (pFDs), where the prob-
ability captures our uncertainty on correctness of the de-
pendency in the underlying domain. We study how we can
compute such probabilities automatically from data. Specif-
ically, we first develop Bayes models that compute the prob-
ability of a functional dependency X — Y conditioned on
our observation of data from various sources. Our models
examine not only the tuples that observe or violate the de-
pendency, but also the variety of the violation tuples on the
value of Y. We then enhance our basic models in two ways.
First, we examine whether the set of functional dependencies
for which we compute a high probability observes the tran-
sitivity rule and adjust the probabilities accordingly. Sec-
ond, when the source schemas contain multiple tables, we
consider the normalization already performed at the source
side as stronger evidence of whether a functional dependency
holds.

As an application of the pFDs we discover, we study how
to normalize a mediated schema. We assume existence of a
mediated schema generated automatically by existing tech-
niques and study how we can normalize it to improve its
understandability. Our goal in normalization is slightly dif-
ferent from that of traditional normalization: instead of try-
ing to obtain a schema in a certain normal form, we aim at
normalizing the schema into relations that correspond to
real-world entities and relationships. We show how we can
achieve this goal based on the pFDs we generate.

Specifically, this paper makes the following contributions:

e We formally define pFDs, describe Bayes models that
generate pFDs from source data in a pay-as-you-to
data integration system, and study various properties
of our models.

e As an application, we study normalization of a medi-
ated schema, most likely generated automatically, in a
pay-as-you-go system. We present an algorithm that
selects the best set of functional dependencies from the
pFDs we generate and normalize accordingly.

e We experimented on data sources extracted from the
web in different domains. Experimental results show
that our pFD-discovery algorithm obtains high preci-
sion and recall and our normalization algorithm gen-
erates high-quality results.

This paper is organized as follows. Section 2 formally
defines pFDs and the problems we solve in this paper. Sec-
tion 3 describes two basic models that compute probability
of a functional dependency according to source data. Sec-
tion 4 describes two enhancements that improve results of
the basic models. Section 5 studies normalization of a me-
diated schema in a pay-as-you-go system. Section 6 reports
experimental results. Finally, Section 7 discusses related
work and Section 8 concludes.

2. OVERVIEW

This section describes the several challenges we face in dis-
covery of functional dependencies in a pay-as-you-go data in-
tegration system, formally defines the notion of probabilistic
functional dependency and the problems this paper solves.

The main goal of this paper is to generate a set of func-
tional dependencies in a pay-as-you-go data integration sys-
tem. We consider the relational model, where each schema
contains a set of relations and each relation contains a set
of attributes. Let X,Y be two subsets of attributes in the
schema. We say X functionally determines Y, denoted by
X — Y, if all tuples with the same value of X must have
the same value of Y. To simplify notations, our discussion
focuses on a special case where both X and Y contain only
a single attribute; however, the techniques we propose shall
apply to the general case.

We assume existence of a mediated schema with a set of
mediated attributes representing important attributes from
the sources, and also the existence of matchings from source
attributes to the mediated attributes. The mediated schema
in a pay-as-you-go system is often automatically generated,
so it is neither perfect nor necessarily well normalized. In-
deed, one important motivation of finding functional depen-
dencies is to facilitate normalization of an automatically
generated mediated schema. For convenience, we assume
we have preprocessed by replacing each source attribute by
the mediated attribute it matches to; however, this step is
not critical to our techniques.

We assume the sources are independent of each other and
tuples in each source are independent of each other; however,
our experiments on real-world data show that our techniques
work well even on data sets that may violate these assump-
tions. For now we restrict ourselves to data sources that
are in the same domain and contain only a few relations. It
turns out that even for this setting, the problem is already
hard. We defer considering more complex data sources to
future work and the techniques we develop in this paper
would be fundamental even in a more complex setting.

Challenges Discovering FDs usually requires an under-
standing of the domain and the data. However, the goal
of a pay-as-you-go system is to provide some service from
the outset even without a thorough understanding of the
underlying domain. Thus, we cannot assume any upfront
domain knowledge and have to rely on the source data for
recognition of FDs. We face at least three challenges in this
process:

e Real-world data are often dirty: there can be incon-
sistent and noisy data. Such dirtiness can prevent us
from discovering correct FDs. For example, wrong in-
formation on publication year may lead to the wrong
belief that paper ID does not functionally determine
publication year.

e Data in a source are often incomplete: a source can
provide only a small portion of data in the underly-
ing domain. Such incompleteness can lead us to be-
lieve false FDs. For example, if a data source con-
tains only publications in one conference, we can draw
the wrong conclusion that publication year function-
ally determines conference name.

e The above challenges are aggravated when the sources
are heterogeneous, as we can have wrong mappings
from source schemas to the mediated schema, or do

not realize different representations of the same value
(such as “California” and “CA”).

Probabilistic functional dependency The key idea in
our solution is to introduce the notion of probabilistic func-
tional dependency (pFD), which captures our uncertainty
about whether an FD holds in the domain.

DEFINITION 2.1. (PROBABILISTIC FUNCTIONAL DEPEN-
DENCY (PEFD)) Let S be a set of relational data sources, X
and A be two different attributes in the mediated schema for
S. A probabilistic functional dependency is in the form of
X —P A, where p indicates the likelihood that X — A holds
in the underlying domain of the data sources in S. d

In this paper, we study how to generate pFDs from the
source data in a pay-as-you-go data integration system. Our
goal is to compute a high probability for a true FD and a
low probability for a false FD.

Normalization of mediated schemas As an application,
we study normalization of mediated schemas. Given a set
of source schemas, [18] proposed a technique that generates
a mediated schema with a single relation. In this paper, we
study how we can normalize such a schema into multiple re-
lations, where each relation describes an entity or a relation-
ship between entities in the domain of the source schemas.
We call such normalization semantic normalization.
Existing schema normalization techniques typically aim
at normalizing the schema into a certain normal form. For
example, the most common normal form, BCNF, requires
that no attribute in a relation is functionally determined
by a set of attributes that do not form a key of the rela-
tion. BCNF normalization finds all FDs that violate this
condition and splits the relation accordingly. Our goal of
semantic normalization is a bit different: each relation in
our results should represent one and only one entity or re-
lationship. Note that one subtle issue here is granularity of
entities; we would like to avoid oversplitting: an entity with
only a few attributes (too fine-grained) should be combined
with its associated entity when appropriate to form a more
coarse-grained entity. For example, rather than having a
seperate relation Zipcode(zip, state) (zip functionally deter-
mines state), we would merge it with the Address relation.

3. BASICMODELS FOR PFD GENERATION

Given an FD D : X — A, we consider how to compute its
probability, denoted by P(D). In this computation, we need
to take into account the possible noise (caused by dirtiness)
and bias (caused by incompleteness) of data.

In this section, we describe two models for computing
P(D), the per-value model and the per-tuple model. The
per-tuple model measures noise and bias at the tuple gran-
ularity; that is, what is the probability that each tuple con-
tains noise or is biased on the value of A. The per-value
model measures noise and bias at the value granularity; that
is, for a particular value x of X, what is the probability that
tuples with X = z contain noise or are biased on the value
of A. Both models apply Bayesian analysis to compute the
probability of an FD based on the source data.

3.1 Per-tuple model

We start from the per-tuple model, which considers viola-
tion of an FD at the tuple granularity. We first define what
we mean by a tuple observing or violating an FD.

If an FD X — A holds, for each value of X, there should
be a single value of A. In real data sets, there can be multiple
values of A because of noise on A or on X. Given a particular
value = of X, we decide the true value of A in a particular
data source S, denoted by a(z,S), as the value of A that
occurs in most of the tuples with value X = z. Accordingly,
a tuple with value X = z is considered as observing the FD
if A= a(z,S), and violating the FD otherwise. We denote
by O(S) all tuples in S that observe the FD, and by V(5)
all tuples that violate it. We denote their sizes by |O(S)|
and |V(.S)] respectively.

Let €, be the probability that if an FD is true, a tuple
contains noise and violates it. In other words, the probabil-
ity that a tuple violates a true FD is

P(f € V(S)ID) = etn. (1)

On the other hand, let €, be the probability that if an
FD is false, a tuple with X = z happens to have value
A = a(z,S). In other words, the probability that a tuple
observes a false FD is

P(f € O(S)D) = eu. (2)

As we assume the tuples in a data source are indepen-
dent of each other, the probability that data from source S
observe or violate D can be computed as follows:

P(S|D) VO (1 =)10 (3)
P(SID) = ey (1 e) VL, ()

Finally, as we assume the data sources are independent
of each other, we can compute the probability that data
from various sources in S observe or violate D by taking the
product of that probability for each individual data source.

P(SID) = IlsesP(S|D); (5)
P(S|D) = TsesP(S|D). (6)

By applying Bayesian analysis, we can compute the prob-
ability of an FD conditioned on our observation of the source
data. Specifically, if we denote V = Xses|V(S)|, and O =
Y5es|O(S)|, and denote the a-priori belief that D holds by
P(D) (we describe how we set the parameters at the end of
this section), we have

P(D)P(S|D)
P(D)P(S|D) + (1 - P(D))P(S|D)

= (1+ ot o ne ot =)

1—én €tn

P(DIS) =

ExaMPLE 3.1. Consider dependency D : B — C and the
following two data sources.

Si||A|B|C
t1 al b1 cl
tz a2 b] cl
t3 a3 | b1 | cl
ta a4 | b1 | cl
ts ab | b1 | cl

Ss ||l A|B| C
te ab | b1 | cl’
tr a7 | b2 | c2
ts a7 | b2 | ¢3
to a7 | b2 | c4

Among the nine source tuples, ts and to violate D and the
other 7 tuples observe it. If we set €1, = .1,€n, = .4 and
P(D) = .5, we compute the following probability for B — C
using the per-tuple model, showing that the FD is likely to
be true.

-1
P(D|{S1, S2}) = <1+1-(1;—41)7 . (%)2> =.89. O

The per-tuple model has several nice properties: the more
source tuples observing the FD, the higher probability shall
we compute; the more source tuples violating the FD, the
lower probability shall we compute; also, our belief of an
FD will be strengthened if we have more data sources. We
formally state the properties in the following theorem and
give proofs in the full version of this paper.

THOREM 3.2. Equation (7) has the following properties.

1. Under condition ew + € < 1, if we fix V, P(DIS)
increases as O increases, and if we fix O, P(D|S) de-
creases as V increases.

2. Assume each source contains o tuples that observe D
and v tuples that violate D. Then, under condition

(L —)’ < epn(l —€tn) (8)

P(D|S) increases as the number of sources increases;
otherwise, P(D|S) decreases as the number of sources
decreases. O

Note that if P(D) = .5 (i.e., we do not have any a-
priori preference on whether D holds), under condition (8),
Pr(D|S) > .5 for any single data source S, and we consider
D as more likely to be true. Then, the more data sources
we have, the higher is the probability computed for D and
so our belief is strengthened.

3.2 Per-value model

The per-value model defines violation of an FD D : X —
A for each value of X; that is, for each value x of X, it
examines if the set of tuples with X = z in a source S
observe or violate the FD. According to the definition of
functional dependency, these tuples observe D if they all
have the same value of A and violate D otherwise. We
denote by X*(S) the set of values of X in S whose tuples
observe D and by X7 (.5) the set of values of X whose tuples
violate D.

We now consider how to compute the probability that
tuples with a particular value X = x observe or violate
X — A. We denote by €,y the probability that if D is true,
tuples with the same value of X contain noise and introduce
an extra value of A. If we denote by A(x, S) the set of values
of A for tuples with value X = z, the probability that a value
x violates a true FD is the probability that the tuples with
X = z introduce |A(z, S) —1| noise values. If we assume the
noise values are independent of each other, the conditional
probability should be

P(a € X (8)|D) = efn ™7, 9
The probability that a value x does not violate a true FD is

the probability that the tuples with X = z do not introduce
any number of noise values; thus,

1—2
Pz € XT(S)[D) =1 —epn — -+ — €, = — v

wn T

(10)

1—evn

On the other hand, we denote by €., the probability that
if D is false, tuples with the same value of X are possibly
incomplete and provide a single value of A. Thus,

P(z € X*(5)|D) €ub; (11)
P(x € X (S)|D) 1— €yp- (12)

Again, we assume independence of tuples in a data source
and have

A(z,S)|—1 1—2e¢
P(S|D) = erstﬁv‘m() 'erx+(3)1_7€::@3)

= - +
P(SID) = (1 —ey)X). XTEN (14)

Finally, we assume independence of data sources and ap-
ply the Bayes Rule to compute the conditional probabil-
ity P(DI|S). If we denote by X = 3¢ 5 |X"(5)| and by
X7 =3 5es X7 (9)], we have

PODIS) = (1 + (P(D)™" —1)-(CllCom)yx
1 —2eun
(1 — e'ub)X7

)71
A(x,S)|—-1
HSESHZGX*(S)E!UW,<I,)l

(15)

ExampLE 3.3. Continue with Example 3.1. In both sources,
the value bl satisfies B — C; however, the value b2 in
source S violates B — C'. If we set €y, = .1, €0 = .4 and
P(D) = .5, we obtain the following probability for B — C
using the per-value model:

.4(1—.1))2. 1—4

P(DI|{51,52}) = (1+1'(17.1*2 12

y~1 = .08.

We observe that the by-value model computes a signifi-
cantly lower probability for B — C, both because it does not
differentiate the various tuples with B = bl, and because
there are three different values of C' for B = b2. O

The per-value model has similar properties as the per-
tuple model. In addition, the number of values of A for a
particular value of X affects the probability we compute:
the higher variety of values of A for a value of X, the lower
probability shall we compute. We next formally state the
properties.

THOREM 3.4. Equation (15) has the following properties.

1. If we fix X+ and X, and fir |A(z, S)| for all z and
S € S except for xo and Sy, P(DI|S) decreases as
|A(zo, So)| increases.

2. Assume |A(z,S)| is the same for each z and S € S.
Under condition €y + 2¢un < 1, if we fit X, P(D|S)
increases as X1 increases, and if we fir X*, P(D|S)
decreases as X~ increases.

8. Assume each source contains o values of X that ob-

serve D and v values of X that violate D, and |A(z, S)|=a

for each x and S € §. Then, under condition

1—2e

egp(1 = €p)” < (——)%(ewn)"“", (16)
1—e€vn

P(D|S) increases as the number of sources increases;
otherwise, P(D|S) decreases as the number of sources

decreases. O

Per-tuple v.s. Per-value The per-tuple model and the
per-value model are different in two aspects. First, the per-
tuple model takes frequency of each value of X into account,
but the per-value model does not; thus, a popular value of X
will affect our belief of the probability of an FD much more
in the per-tuple model than in the per-value model. Second,
the per-value model takes into consideration the variety of
values of A for each value of X, but the per-tuple model con-
siders the various values just as randomly introduced noise

and so does not view a higher variety necessarily as more
negative.

Each of the models has its strength. The per-tuple model
is more suitable for data sets where the low quality of data
is mainly caused by noise values. On the other hand, the
per-value model is more appropriate for some skewed un-
normalized data set, where a value of X gets popular just
because the instance it represents is associated with a large
number of instances of another entity type (such as the data
set in Example 3.1).

We compared the two models in our experiments. On
our data sets (details described in Section 6), the per-value
model obtained better results than the per-tuple model.

3.3 Armstrong’s Axioms

We now examine if the pFDs we discover have proper-
ties comparable to the Armstrong’s Axioms for deterministic
FDs. Based on this analysis, we discuss in the next section
how we can improve the pFDs we generate.

On deterministic FDs, we have the following three rules,
called Armstrong’s Axioms:

e Reflexivity: If X O Y, then X — Y;
o Augmentation: If X — Y, then XZ — YZ for any Z;
e Transitivity: If X — Y and Y — Z, then X — Z.

Among them, we can easily find a comparable rule on
pFDs for the reflexivity rule, formally stated as follows.

THOREM 3.5. Let n be the total number of tuples in all
data sources. If X DY, then,

e in the per-tuple model, under condition € + €1n < 1,
P(D|S) — 1 when n — oo.

e in the per-value model, under condition €yp + 2€pn < 1,
P(D|S) — 1 when n — co. O

For the Augmentation rule, we can find a comparable rule
for the per-tuple model, but not for the per-value model. We
first state the results formally for the per-tuple model.

THOREM 3.6. Let S be a set of data sources. Let X —PY
and XZ —P YZ be two pFDs generated on S by the per-
tuple model. Then, p < p'. d

The following example shows that the same theorem does
not hold for the per-value model.

ExAMPLE 3.7. Consider the following relation.

A|B|C
a | bl | cl
a | b1 | c2
a | b2 | cl
a | b2 | c2

For FD A — B, we have one violation value a. However,
for FD AC — BC, we have two violation values (a,cl) and
(a,c2). Thus, by applying the per-value model, we compute
lower probability for AC — BC than for A — B. Note
however that a similar analysis shows that we compute the
same probability for the two FDs in per-tuple model. (]

Finally, as the following example shows, using both mod-
els, we can compute a much lower probability for X — Z
than that of X - Y and Y — Z.

ExaAMPLE 3.8. Consider the following relation.

A|B|C
al | b1 | cl
al | b2 | c2
a2 | b3 | c8
a2 | b3 | ¢/

In the per-tuple model, there is one tuple violating A — B
and one tuple violating B — C, but two tuples violating
A — C. So the computed probability of A — C is lower
than that of A — B and that of B — C.

In the per-value model, there is one value of A that violates
A — B and one value of B that violates B — C, but two
values of A that violate A — C. So again, the computed
probability of A — C is lower than that of A — B and that
of B— C. O

Note that since the augmentation rule and the transitivity
rule do not necessarily hold, from pFDs that contain a single
attribute on each side, we cannot imply the range of the
probability of an FD that contains multiple attributes on
one or both sides. If we are required to generate all pFDs,
we often have to enumerate each possible FD and compute
its probability.

3.4 Applying the basic models

There are two approaches to apply the basic models: one
can directly apply them on the different sources, or one can
also first merge all source data into a single relation and
then apply the basic models on the result relation. We call
the former the separate-data approach and the latter the
merge-data approach.

Compared with separate-data, the merge-data approach
has both advantages and disadvantages. On the one hand,
merging data together can enrich our knowledge on various
possible values of A for a particular value of X and remove
some false positives. On the other hand, because of the
object-identity issue, the same instances of A can be rep-
resented in different ways by different sources, or the same
value of X can mean different instances in different sources;
thus, simply merging all data may cause false negatives. As
an example, consider the data sources in Example 3.1. If
we merge data from S; and S2, we will consider that value
bl violates B — C; however, cl and cl’ might actually be
different representations of the same value. In addition, in
applications where we have a huge number of sources or huge
volume of source data, it is infeasible to merge all data or
even find the majority value of A for each value of X across
sources.

Our experiments show that on our data sets, the merge-
data approach indeed computes low probabilities for some
true FDs and the overall quality of the results is not as good
as the separate-data approach.

Parameter settings Our models require setting parame-
ters € and €¢y, (Or €yp and €,n) and P(D). We found that
in real-world data, €;, is typically much higher than e;n;
however, our experimental results show that our results are
not sensitive to the initial setting of €1, and €. Also, we
can re-compute these parameters according to the pFDs we
discover and reapply the model with the new parameters
until our results converge. We set P(D) = .5, as we do not
assume any a-priori domain knowledge. As in many other
Bayes analysis, our results are not sensitive to the a-priori
probability at all.

4. IMPROVING PFD GENERATION

This section studies how we can improve the pFDs we
generate according to the basic models. We first study how
to improve the results by considering transitivity of FDs
(Section 4.1). Then we study when there exist multi-table
sources, how we can leverage the normalization already per-
formed at the source side to improve pFDs we generate (Sec-
tion 4.2).

4.1 Applying the transitivity rule

Although transitivity is one of the most important proper-
ties of deterministic FDs, as we show in Example 3.8, results
of the basic models may not observe it. We now consider
how we can apply the transitivity rule to improve the pFDs
we generate.

Model Consider a mediated schema with mediated at-
tributes mA and let n be the number of attributes in mA.
There are n(n — 1) non-trivial pFDs (a t¢rivial pFD is X —
X) where each side contains a single attribute; we denote
this set by D. Now consider an FD D : A — B € D. Our
goal is to adjust P(D) based on the probability of other FDs
in D.

We do the adjustment as follows. We enumerate all sub-
sets of FDs in D—{D}. For each such subset D, we compute
the probability that D contains all the true FDs except D,
denoted by P(D). We then re-compute the probability of
D given the fact that only dependencies in D are true. The
computation uses P(D), computed by basic models, as the
a-priori probability of D and the new result is denoted by
P(D|D). Finally, we compute the weighted sum of P(D|D)
over all subsets of D — {D} as the new probability of D:

P(D)= > P(DD)P(D). (17)
DCD—{D}

We first describe given a subset D, how we compute P(D).
If D violates the transitivity; that is, there exist attributes
A,B and C, such that A — B € D, B — C € D, but
A — C ¢ D, then P(D) = 0. Otherwise, as the probabilities
we compute for the pFDs rely only on the source data and
so are independent of each other, we can compute P(D) as

P(D) =Ilp,epP(Do) - Upyep-p—1p}(1 — P(Do)). (18)

We then normalize the probability of each D C D — {D}
such that they add up to 1.

We next describe how we compute P(D|D). Intuitively,
there are several cases in which our belief of D : A — B will
be affected.

e If D contains A — C and C — B, then by the transi-
tivity rule we know A — B must hold.

e If D contains B — C but not A — C, then by the
transitivity rule we know A — B cannot hold; sim-
ilarly, if D contains C — A but not C — B, then
A — B cannot hold.

e If D contains D; : A — C and Dy : B — C, our
belief of A — B will increase. This is because when
A — B does not hold, the probability that both D;
and D3 hold is P(D1)P(D2); however, if A — B holds,
the probability becomes P(D2), which is higher unless
P(D1) = 1. By applying the Bayes rule, we can com-
pute P(D) as

P(D1,D2|D)P(D)

P(D|D1, D>)

1—-P(D)*
1+P(D1)(———— .
(1+ P 55)
Similarly, if D contains D} : C — A and D5 : C — B,
our belief of A — B will increase as well:

1— P(D)))—1.

P(D) (20)

P(D|D}, D)) = (1+P<D’2><

Based on the above analysis, we compute the probability
of D conditioned on D as follows.

e If there exists attribute C, such that A — C € D and
C — B € D, then P(A — B|D) =1.

e If there exists attribute C, such that B — C' € D and
A — C ¢ D, then P(A— B|D) =0.

e If there exists attribute C, such that C — A € D and
C — B ¢ D, then P(A — B|D) =0.

e Otherwise, let Cpost be the set of attributes s.t. for
each C' € Cpost, both A - C € D and B — C € D.
Let Cypre be the set of attributes s.t. for each C' € Cpye,
both C — A € D and C — B € D. If we denote
B ==L then,

P(D‘D) = P(D|Cpost7 CpT‘e)
P(CPOStlD)P(CprelD)P(D)

P (D1, D2|D)P(D) + P(D1, D2|D)(1 — P(D))

(19)

P(Cpost|D)P(Cpre|D)P(D) + P(Cpost| D) P(Cpre| D)P(D)

Note that when Cpost = Cpre = 0, P(D|D) = P(D).

Finally, note that if the pFDs generated by the base mod-
els are of low quality, applying the transitivity rule can even
worsen the results. However, our model works well on pFDs
of reasonable quality, as it takes into account all possible
subsets of pFDs and the probability of each of them.

Algorithm Our pFD-adjustment algorithm runs iteratively
and proceeds in three steps.

1. Compute P(D) for each D € D using the by-tuple or
by-value model.

2. For each D € D, adjust the probability of D according
to Equation (17), using the probabilities computed in
the last round as a-priori probabilities.

3. Repeat step 2 until the change of the probability of
each pFD is below a threshold.

Note that adjusting the probability of each D € D using
Equation (17) requires enumerating all subsets of D — {D}
and computing P(D) conditioned on each subset, which
takes exponential time. To simplify it, we divide pFDs in
D — {D} into three categories: each pFD whose probabil-
ity is above a threshold 60, is considered as existing and is
included in every subset D; each pFDs whose probability
is below a threshold 0> is considered as non-existing and is
excluded from every subset D; the rest of the FDs are con-
sidered as uncertain. Therefore, we only need to enumerate
including or excluding uncertain FDs when we enumerate
the subsets.

We next illustrate the algorithm using an example.

-1
(14 8- Teec,,. P(A = O) Tlcec,,. P(C — B))

- (21)

3 3
B—->B-3+0OC-=>DO @B O-+D
60 oD

D1 D2
ORGP ©6_§op

D3 D4

(b)

Figure 1: Example 4.1: (a) pFDs generated by a basic
model. Each node represents an attribute, each edge
represents a pFD with probability p > .1, and the weight
of an edge represents the probability of the pFD; (b)
subsets of pFDs considered for adjusting probability of
A — C in the first round.

(@)

Table 1: Probabilities computed for pFDs in each round
for Example 4.1. We only show the pFDs whose proba-
bilities change in the iteration.

Rnd | A—-D | B—-C|A—-B|C—D|A—-C | B—D
0 .3 .3 .9 .9 .9 .9
1 1 .35 .97 .97 .98 .98
2 1 .36 .97 .97 .98 .98
3 1 .36 97 97 .98 .98

ExXAMPLE 4.1. Consider a mediated schema with attributes
A,B,C and D. Figure 1(a) shows the pFDs we generate
from the data. If we set 1 = .8 and 02 = .2, the pFDs
B — C and A — D are uncertain and the rest of the pFDs
represented in the graph are existing.

Table 1 shows the probabilities we re-compute for the pFDs.
The algorithm converges at the third round. The probability
of A — D is raised to 1 because of the strong evidence from
A— B,B— D and A — C,C — D. The probabilities of
the rest of the pFDs in the figure are also raised, but not
significantly.

As an example, consider adjusting the probability of A —
C' in the first round. Figure 1(b) shows the four subsets of
FDs we need to consider. Among them, the last two are in-
valid, and D1 and D2 have probability .3 and .7 respectively.
As Dy contains A — B and B — C, P(A — C|Dy) = 1.
As Dgy contains A — D and C — D,

P(A— CD2) = (1+.3- 1;9'9)—1 = .97.
Thus, we adjust the probability of A — C to P(A — C) =
Bx14.7%.97 = .98 in the first round. g

Finally, our iterative algorithm is similar to the message-
passing algorithm in a loopy belief network in statistics [16].
It has been shown in the literature that the message-passing
algorithm is not guaranteed to converge, but a number of
researchers have reported excellent experimental results by
using this propagation scheme in graphs that has loops [20].
All our experiments reached convergence within 4 iterations.

4.2 Multi-table sources

When a source schema contains multiple relations, some
normalization has already been (often carefully) performed
at the source side. We can leverage such normalization de-
cision to improve the pFDs we generate.

In particular, consider two attributes X and A. According
to their locations in the source tables, they fall into the
following four categories.

1. Case I: X and A belong to the same relation and X is
a key of the relation.

name email

.98

organization .
9 9 title

country

9
city state

Figure 2: Example 5.1: pFDs for a given mediated
schema. To avoid cluttering the graph, we omit pFDs
whose probabilities are below .9; we also omit most of
the pFDs from name or email to other attributes, whose
probabilities range from .95 to 1.

2. Case II: X and A belong to the same relation but X
is not a key of the relation.

3. Case III: X is a key of relation Ry and A belongs to re-
lation R, ; in addition, there exist relations Ri, Ra, ...,
R, -1, such that for each ¢ € [0,n— 1], R; has a foreign
key referring to a key of R;41.

4. Case IV: X and A belong to different relations but do
not fall into Case III.

Intuitively, in Case I and III, it is more likely that X — A,
and in the other two cases, it is more likely that X /4 A.

Recall that both the per-tuple model and the per-value
model need to compute P(S|D) for each source S. When S
has multiple tables, we compute this probability differently:
we observe the location of the two involved attributes and
decide the probability that they fall into the particular case.
The result is denoted by P, (S|D).

Formally, let €, be the probability that D : X — A is
true but X and A fall into Case II and IV; in other words,
€m is the probability of missing normalization. On the other
hand, let €; be the probability that D is false but X and
A fall into Case I and Case III; in other words, €; is the
probability of false normalization. Thus, in Case I and III,

Pn(SID) = 1—em; (22)
Pn(S|D) = 5. (23)

In Case IT and 1V, if we denote by P(S|D) and P(S|D) the
probabilities we compute using the basic models, we have

Pr(SID) = em - P(SID); (24)
Pm(S|D) = (1—¢5)-P(S|D). (25)

Finally, if keys and foreign-keys are not specified with the
schema, we can discover them by examining cardinality of
attribute values and inclusion of values of one attribute in
those of the key of another table. We ignore the details for
space consideration.

S. NORMALIZING MEDIATED SCHEMAS

As an application of pFDs, we next consider how we can
normalize a mediated schema, possibly generated automat-
ically, in a pay-as-you-go data integration system.

Typically, a relation is normalized by finding FDs that
violate the BCNF or 3NF normal form and splitting the
relation accordingly. However, directly applying such nor-
malization is inadequate in our context, as illustrated in the
following example.

ExAaMPLE 5.1. Consider a mediated schema and a set of
automatically generated pFDs, shown in Figure 2. If we
consider the pF'Ds with a probability of no less than .9 as
deterministic and apply BCNF normalization, we can get
several normalization results, of which one is as follows.

Business-contact(name, email, organization)
Org(organization, address, zip, country, title)
Addr(address, city)

City(city, state)

This result has several problems. First, organization —
title, address — city and city — state do not hold in general,
so the result schema is imprecise: it incorrectly groups title
with attributes for organization, and can fail in representing
cities with the same name but in different states. Second,
address, city, state, zip, country are all attributes that describe
addresses; splitting them into several relations is not desired.
O

We next describe how we solve the problems.

Selecting pFDs A naive way of normalization is to gener-
ate all pFDs, prune some of them by applying a threshold,
consider the remaining ones as deterministic, and apply nor-
malization accordingly. However, the data can be dirty or
incomplete and so the pFDs whose probabilities are above
the given threshold may be incorrect. We thus do a further
pruning according to the following heuristics.

HEeuURrisTICS 5.2. Each non-key attribute belongs to one
and only one entity or relationship. O

Following this heuristics, for each attribute A we only need
to select one pFD that contains A on the right-hand side;
other pFDs either can be implied by transitivity, or are un-
likely to be correct. We thus prune pFDs as follows. We
use threshold 7 as the minimum probability of a pFD being
considered as likely to be true and § as the maximum dif-
ference between two selected pFDs with the same attribute
on the right-hand side. We prune a pFD X —? A if one of
the following three conditions holds.

e p <1
e there exists attribute Y such that Y —?" A,p’ —p > 4
e there exists attribute Y such that Y —?' A,p’ > p,and

there does not exist a set of attributes Z1,...,2;,1 > 0,
for which each of X — 71,721 — Zs,...,Z; — Y has
a probability above n or each of Y — Z;,...,Zs —

Z1,71 — X has a probability above 7.

Consider Example 5.1. If we set n = .9 and § = .05, we
prune pFDs not in the graph and also pFDs organization—title,
organization—state, address—state, and city—state.

Avoiding oversplitting After the pruning, we consider
the remaining pFDs as deterministic. Rather than apply-
ing BCNF normalization, we apply a dependency-preserving
3NF normalization, such that dependency between attributes
are preserved and so an attribute will remain in the same
relation as the attribute that represents the key of the ob-
ject. Note that when we consider single-attribute FDs, the
result of 3NF normalization is also in BCNF normal form.
The normalization requires recognizing keys of the schema.
We consider an attribute K as a key if it is not determined

NORMALIZATION (Med)
rels «— {Med};n « 0; cont «— true;
while cont do

OO0~ Uk WN -

cont — false;n++;
for each R € rels do
if #attrs in R > n + 1 then
cont < true;
// Generate pFDs with n attributes on the left-hand side
pFDs «— GENERATEPFDS(R, n);
pFDs «— PRUNEPFDs(pF Ds); // Prune inappropriate pFDs
keys «— FINDKEYS(R, pF' Ds); // Find key of the relation

// Remove FDs that can be derived by transitivity
pFDs «— MINSET(pF Ds);
// 3NF Normalization
for each D: X — A € pFDs do

if X ¢ keys then

Normalize R according to D;

17 endif endfor
18 endif endfor
19 rels « (rels — {D}) U {relations of normalization results};
20 endwhile
21 rels = MERGERELS(rels); //Merge tables to avoid splitting
22 return rels;

= e e e
DU WN = O

Figure 3: Algorithm NORMALIZATION: normalize a medi-
ated schema.

by any other attribute, or if it is determined by K’, but
there is also an FD K — K'.

Note that strictly following 3NF normalization can gen-
erate relations with only a few attributes. To avoid over-
splitting, we examine each table T with no more than &k (a
pre-defined threshold) attributes; if there exists a table with
the key of T', we merge T with that table.

Continue with Example 5.1. After we apply pruning, a
dependency-preserving 3NF normalization obtains the fol-
lowing relations.

Business-contact(name, email, title, organization)
Org(organization, address, zip, country)
Addr(address, city)

Zip(zip, state)

If we set k = 2, we merge the last three tables into one
and obtain the following results, effectively identifying two
entities in the domain.

Business-contact(name, email, title, organization)
Org(organization, address, city, state, zip, country)

Algorithm NORMALIZATION (Figure 3) gives the complete
algorithm for mediated-schema normalization. Note that
the normalization first considers only pFDs where each side
contains a single attribute. When there are no more se-
lected pFDs that violate a 3NF, it explores pFDs where the
left side contains multiple attributes. In this way, we can
significantly reduce the number of multi-attribute pFDs for
which we need to compute probability.

6. EXPERIMENTS

We now describe a set of experiments on real-world data
sets extracted from the Web. Our first goal in these experi-
ments is to examine the quality of the pFDs we generated;
our second goal is to examine the quality of our normaliza-
tion based on the pFDs.

6.1 Experimental setup

F-measure Precision

Running Time
Recall 9

=TANE

09 09
08 08
07
06
05

= TANE
= TANE_Tuple
=TANE Vale | o)
= PerTuple 03

= Pervalue 02

People Bib Course People Bib Course

Second

People Bib Course People Bib Course

Figure 4: Quality of FDs and execution time generated by various methods in different domains.

F-measure

Precision Recall

u MergeData

= PerTuple

= PerValue 03

People 8ib Course People

Bib Course People Bib Course

Figure 5: Precision, recall and F-measure of FDs generated by different basic models.

Table 2: Characteristics of data sources in each domain.
For each domain, we report the number of sources, the
average size (number of tuples) of the source tables, and
the keywords that identify the domain.

Dom | #Src ‘:;‘Z’E Keywords
People 49 63 name, one of job and title, and one of
organization, company and employer
Bib 647 48 author, title, year, and

one of journal and conference

one of course and class,
Course 646 57 one of instructor, teacher and lecturer,
and one of subject, department and title

We implemented the algorithms we described in this pa-
per and built the ERDis (Entity/Relationship Discovery)
system. Taking a set of data sources, ERDIs first applies
the methods described in [18] to automatically generate a
single-table mediated schema and mappings from the source
schemas to the mediated schema. ERDIS then generates
pFDs where both sides contain a single attribute in the me-
diated schema. According to the pFDs, ERDIS normalizes
the mediated schema into a set of relations. We implemented
ERDIS in Java and stored data using the Derby DBMS [1].
We conducted experiments on a Windows XP work station
with Intel Core 1.66GHz CPU and 1GB memory.

We experimented on a set of HTML tables extracted from
the Web and select the tables that have clear attribute la-
bels. We considered tables from three domains: Business-
Contact(People), Bibliography(Bib) and Course. For each do-
main, we identify tables in this domain by searching tables
that contain certain keywords in the attribute labels (see
Table 2). The number of tables in each domain vary from
49 to 200. The number of tuples in each source table varies
from 6 to 1123, and on average is 53. For each domain, we
manually normalized the automatically generated mediated
schema according to our domain knowledge (shown in the
second column of Table 5). Each mediated schema contains
two or three relations and the number of attributes in each
relation varies from 2 to 10. We considered each HTML ta-
ble as a (single-table) data source and created a database

for sources in each domain.

For pFD generation, we implemented both the per-tuple
model and the per-value model, and also implemented sev-
eral baseline methods for comparison:

e TANE: Extend the method proposed in TANE [9] to
multiple sources. Specifically, let S be the set of data
sources and let D : X — A be the FD we examine. For
each source S € S, find the set O(S) of tuples in S that
observe D (as described in Section 3.1). Compute the
confidence of D as

_ TseslO(S)
2ses S|
e TANETUPLE: The same as TANE except that we

compute the confidence on each source and then take
the average. In other words,

P(D)

P(D) = AVQSESM~
S|

e TANEVALUE: The same as TANETUPLE except that
for each source, we compute the confidence as the per-
centage of values of X for which the tuples observe D.
(This method has similar spirit as PERVALUE).

e MERGEDATA: First merge data from different sources,
then apply the per-tuple model.

e PERTUPLE: Apply the per-tuple model and then ad-
just the results by applying the transitivity rule.

e PERVALUE: Apply the per-value model and then ad-
just the results by applying the transitivity rule.

For MERGEDATA, PERTUPLE and PERVALUE, we set €, =
€on = .01, €4 = €y = .2 and P(D) = .5 (the a-priori proba-
bility of a dependency). When we apply adjustment accord-
ing to the transitivity rule, we set 1 = 0.9 and 62 = 0.5.

We measured quality of the generated FDs as follows. For
each domain, we manually generated the set of true FDs over
the mediated schema. For each method, we took the set of
FDs whose computed probability is above .8 and compared
it with the golden standard. We reported precision, recall
and F-measure of our results. Let D¢ be the set of FDs
in the golden standard and Dgr be the set of automatically

Table 3: Improvement of applying the transitivity rule over the basic models. We report the number of FDs on which

we changed decisions.

Per-value Per-value w. transitivity
Domain Quality Quality #FDs w. inc pr | #FDs w. dec pr
F-msr | Prec | Rec | F-msr | Prec | Rec | Total | Correct | Total | Correct
People 723 694 | .756 .766 .735 .8 5 4 5 3
Bib .706 686 | .727 .706 686 | .727 0 0 0 0
Course 767 639 | .958 .793 .676 | .958 0 0 2 2
N F-measure Precision Recall Time (sec)
1 1 20
18
0.8 0.8 0.8 ii ‘/,4‘
O_G.ﬁ‘ A T = 06 2 e
0.4 —— tple based [0.4 —— twple -based 0.4 —— tuple based || 8 l,
0.2 ~—f— value based || 0.2 =i value -based 0.2 ~=~f-~ value -based fumm' i v
0 0 0 3
5 10 15 20 25 30 35 40 45 40 5 10 15 20 25 30 35 40 45 49 5 10 15 20 25 30 35 40 45 49 5 10 15 20 %5 30 35 40 45 49
Num of Sources Num of Sources Num of Sources Num of Sources

Figure 6: Effect of more sources on quality of the pFDs we generate and on execution time.

IDgUDR|

generated FDs. Then, precision is defined as P = Dl

. DgUD ;
recall is defined as R = %, and F-measure is com-
puted as F = %.

We describe the various methods we implemented for nor-
malization and measurement of results in Section 6.3.

6.2 Generating pFDs

Figure 4 shows the precision, recall and F-measure of re-
sults of different FD-generation methods. We observe that
PERVALUE obtains the highest F-measure, on average .75,
in all domains. It has higher precision and recall than PER-
TUPLE in all domains and on average increases precision
by 10.3% and increases recall by 9.5%. Among the various
adaptions of the TANE model, TANETUPLE obtains the
best results: on the People and Bib domains, the F-measure
of its results is the same as or slightly worse than PER-
VALUE; however, on the Course domain, the F-measure of
PERVALUE is still 16.9% better than that of TANETUPLE.
In fact, PERVALUE obtains better or the same precision and
recall compared with TANETUPLE in all domains, except
a lower precision in the People domain. This is because the
People domain contains fewer sources and there happens to
be big data sources that observe a false FD; PERVALUE gives
higher weight to larger tables but TANETUPLE treats ta-
bles of different sizes as the same. We also observe that
although TANEVALUE and PERVALUE both consider viola-
tion of FDs at the value granularity, PERVALUE considers
variety of violations and so obtains much higher precision
than TANEVALUE, on average 33% higher.

Figure 4 also shows the execution time of TANE, PERTU-
PLE and PERVALUE (TANETUPLE and TANEVALUE have
similar execution time to TANE). Given a data set with
around 650 sources, PERTUPLE and PERVALUE finished in
about 45 minutes. Because of applying the transitivity rule,
our algorithms took about half time longer than TANE;
however, finding FDs is often a one-time process and the
execution time is still acceptable.

We next examine contributions of different components of
our algorithm to the quality of the results.

Basic models: We first compared results of different basic
models, namely, per-tuple, per-value, and merge-data (Fig-
ure 5). To isolate performance of the basic models from en-

10

hancements, we did not apply the transitivity rule in this set
of experiments. We observe that PERVALUE obtains higher
precision and similar recall compared with PERTUPLE in
all domains. MERGEDATA typically obtains higher precision
but much lower recall, and so lower F-measure, because of
the object-identity problem. Indeed, the recall of PERVALUE
is 35% higher than that of MERGEDATA, and the F-measure
of PERVALUE is 13% higher.

Applying transitivity rule: We next examined improve-
ments of applying enhancements over the basic models. Ta-
ble 3 shows the effect of applying the transitivity rule over
the per-value model. We observe that applying the transi-
tivity rule in most cases increases the probability of a true
FD while decreases the probability of a false dependency. It
increases both precision and recall; in particular, it increases
both precision and recall by 5% in the People domain, and
increases the precision by 5% in the Course domain.

Effect of more sources: We also examined the effect of
having more data sources on the quality of the FDs we gen-
erated. We randomly ordered sources in the People domain,
ran our models initially on the first 5 sources, and then grad-
ually added more sources. We applied the per-value model
and the per-tuple model without transitivity enhancements.
The results are plotted in Figure 6. We observe that having
more sources tend to improve recall of the discovered FDs
for both models and also improve precision of the per-value
model slightly. Overall, the F-measure increased by 62.2%
for per-tuple model and by 80.9% for per-value model. We
also observed that execution time increased linearly with the
number of sources, showing that our algorithm scales well
when we have more sources.

Effect of parameters: We varied parameters in the model.
We observed that when we vary €ys(€s) from .2 t0 .6, €vn (€ub)
from .000001 to .1, and P(D) from .3 to .8, the F-measure
of PERVALUE and PERTUPLE do not change much.

Multi-table Sources: Finally, we examined the effect of
multi-table sources on the quality of pFDs. In each domain,
we randomly selected half of the sources and applied BCNF
according to FDs in the golden standard, and left the rest
of the sources unchanged. We applied our algorithm and set
€m = €5 = .1. Table 4 shows the improvement of the results
in each domain. We observe that leveraging normalization

Table 5: Comparison of manually generated mediated schemas and those generated by ERDIs. Misclassified
attributes in the results of ERDIS are highlighted. ERD1is obtained high-quality mediated schemas.

Dom Golden standard Results of ERDIs #(Mis attrs) | F-msr | Precision | Recall
R1(name, email, phone, fax, R1(name, email, phone, fax,
People title, c?rga.nlzatlon)) title, gddr.ess, o.rganlzat|on) 1 85 84 87
R2(organization, address, city, R2(organization, city, state,
state, zip, country) zip, country)
R1(paperID, title, abstract, authors, | R1(paperlID, title, abstract, authors,
Bib Jout:nal, volume, issue, year, journal, volume, issue, year, 1 78 94 67
subject, source) source)
R2(journal, issn, eissn) R2(journal, issn, eissn, subject)
R1(courselD, cateloglID, section, R1(courselD, cataloglD, section,
time, days, term, location, time, days, term, instructor)
Course instructor, fee) R2(cataloglD, title, subject, 2 .63 .60 .66
R2(cateloglD, title, subject, credits) credits, location)
R3(instructor, institution) R3(instructor, institution, fee)
F-measure Precision . Recall
5 — T] I -
0.8 I 0.9 0.8 -
07 4 — 08 T 07
T 0.7
o i o
0.4 — 1 — gi 0.4 T
0.3 — — 03 0.3 —
0.2 — — 0.2 0.2 —
0.1 — — 01 0.1 —]
0 T T 0 0
People Bib Course People Bib Course People Bib Course

Figure 7: Precision, recall and F-measure of normalization results on each domain. For each of them, we show the

average, minimum and maximum value.

Table 4: Improvement of considering normalization at
the source side.

Single-table sources | Multi-table sources
Domain | F-msr | Prec Rec F-msr | Prec Rec
People 766 735 .8 .8 .8 .8
Bib .706 .686 727 743 .703 788
Course 793 676 .958 .842 727 1

at the source side can improve our results: it improves the
F-measure by 5.3% on average; on the Bib domain, it im-
proves recall by 8.4%; on the People and Course domains, it
improves precision by 15.3% and 13.8% respectively.

6.3 Normalization

We implemented three normalization methods:

e BCNF selects all pFDs whose probability is no less
than .9 and applies BCNF normalization;

e STRICT prunes FDs as described in Section 5 and ap-
plies dependency-preserving 3NF normalization;

e ERDis applies Algorithm NORMALIZATION and is dif-
ferent from STRICT by avoiding oversplitting.

In STrICT and ERD1s, we set n = .9,6 = .02, and in ERDI1s,
we set k = 2.

We compared the results of each method with the golden
standard we manually created. As normalization essentially
can be viewed as clustering attributes into entities, we mea-
sure the quality of the results using precision, recall and
F-measure, standard for clustering. Specifically, let A be
the set of attributes in the mediated schema. Let S be the
schema generated by one of our algorithms and G be the
golden standard. For each pair of attributes A, A" € A
that occur in the same relation in S, we say they are cor-
rectly clustered if they also occur in the same relation in G.
We denote by Corr(S,G) the number of correctly clustered

11

attribute pairs, by Total(S) the number of attribute pairs
that occur in the same relation in S, and by Total(G) the
number of attribute pairs that occur in the same relation

in G. Then, we define precision as P = C;f’#(i’g), recall
as R = %&‘?g), and F-measure as ' = IQ,TE. Note that

depending on the order of pFDs we apply for normalization,
we can generate different results in different runs. We ran
each method 10 times and report the average, minimum and
maximum values.

Table 5 shows the normalization results of ERDIS (among
multiple possible results, the table shows the most frequent
one). We observe that although the F-measure is not high,
the normalization results are actually very close to the golden
standard. This is because there are only two or three rela-
tions in the golden standard in each domain, so once we put
one attribute into a wrong relation, the precision and recall
will be reduced significantly.

Figure 7 shows the quality of normalization results by
each method. We observe that ERDIS has the highest pre-
cision and recall; on average it improves the precision over
BCNF by 13.7% and improves the recall by 73.3%. Avoid
oversplitting can also improve quality of the results: ERDI1s
improves the F-measure over STRICT by 9.3% on average.

7. RELATED WORK

Our work is close to two bodies of work: generation of
functional dependencies from data and creation of mediated
schemas in data integration systems.

Generating functional dependencies: The idea of de-
riving FDs from data was originally proposed in TANE [9]
and CORDS [11], and they call the results approzimate FDs
or soft FDs. Given a relation R, both systems compute
the probability (or confidence) of an FD X — A as the
maximal percentage of R’s tuples that satisfy the FD. Our

strategy is different from theirs in several aspects. First,
we develop probabilistic models suitable for multiple data
sources. In our model, consensus among data sources will
strengthen our belief (Theorem 3.2), but a simple extension
of the TANE model to multiple sources does not have this
feature. Second, we develop the per-value model, which con-
siders violation of an FD at the value granularity and con-
sider the variety of A values in the violation tuples. Third,
our algorithm adjusts the FDs discovered from the data by
considering transitivity of FDs and by leveraging possible
normalizations already performed at the source side; these
are not considered in TANE or CORDS. We describe exper-
imental comparison between our models and the methods in
TANE and CORDS in Section 6.

Recently, there has been work on discovering conditional
FDs from data [7]. A conditional FD associates an FD with
a pattern tableau stating the conditions of tuples that ob-
serve the FD [5]. Discovery of conditional FDs thus focuses
on generating the best condition tableau. The notion of
pFD that we propose has different goals: the probability of
an FD captures our uncertainty on whether an FD holds in
the underlying domain, given the possible noise and incom-
pleteness of data from different sources. Our pFD discovery
algorithms thus focus on applying probabilistic analysis on
the observation of whether data from various sources observe
or violate an FD.

Creating mediated schemas
While there has been recent interest in developing tech-
niques for improving mediated schemas in a data integration
system, these techniques are limiting in at least one of the
following aspects: (1) they are not fully automatic, and (2)
they create an un-normalized single-table mediated schema.
A large body of previous work [2, 3, 10, 12, 14, 17, 15,
19] focused on semi-automatically merging source schemas
to create a mediated schema, where ambiguity needs to
be resolved by users. More recently Chiticariu [4] devel-
oped a system that enumerates multiple promising medi-
ated schemas for a user to select from to solve the entity
mis-alignment problem in presence of multi-table schemas.
Sarma et al. [18] proposed automatically generating a
probabilistic mediated schema from source schemas and then
consolidating them to provide a single-table mediated schema;
however, the mediated schema is not normalized. He and
Chang [8] considered co-occurrence of attributes in source
schemas to automatically create a generative model that is
maximally consistent with the source schemas. The results,
again, are single-relation schemas and there is no discussion
of normalization of the result. Finally, Magnani et al.[13]
proposed using probabilistic relationships between entities
to generate a set of alternative mediated schemas; however,
they did not consider categorizing attributes into entities.
We study the problem of normalizing a (possibly auto-
matically generated) mediated schema. Our normalization
is based on the pFDs we generate from data and is fully
automatic.

8. CONCLUSION AND FUTURE WORK

This paper presents a technique that discovers FDs from
heterogeneous data sources in a pay-as-you-go data integra-
tion system. We propose the notion of probabilistic func-
tional dependencies and develop Bayes models to automat-
ically compute probabilities of FDs according to data from

12

different data sources. As an application, we apply the
pFDs we discover for normalization of automatically gen-
erated mediated schemas. Experimental results show high
precision and recall of the FDs we discover and high quality
of our normalized mediated schemas.

There are several directions to explore for future work.
First, we would like to consider how to improve scalability of
FD discovery by sampling in presence of large data sources.
Second, we would like to extend our work for generation of
mediated schemas in data integration systems where data
can be in multiple underlying domains and each domain can
be complex (with many types of objects and relationships).

9. REFERENCES

[1] Apache Derby. http://db.apache.org/derby/.

(2] C. Batini, M. Lenzerini, and S. B. Navathe. A comparative
analysis of methodologies for database schema integration.
In ACM Computing Surveys, pages 323-364, 1986.

P. Buneman, S. Davidson, and A. Kosky. Theoretical
aspects of schema merging. In Proc. of EDBT, 1992.

L. Chiticariu, M. A. Hernandez, P. G. Kolaitis, and

L. Popa. Semi-automatic schema integration in clio. In
Proc. of VLDB, 07. Demonstration description.

Wenfei Fan. Dependencies revisited for improving data
quality. In PODS, pages 159-170, 2008.

M. Franklin, A. Halevy, and D. Maier. From databases to
dataspaces: a new abstraction for information
management. SIGMOD Rec., 34(4):27-33, 2005.

Lukasz Golab, Howard J. Karloff, Flip Korn, Divesh
Srivastava, and Bei Yu. On generating near-optimal
tableaux for conditional functional dependencies. PVLDB,
1(1):376-390, 2008.

B. He and K. C. Chang. Statistical schema matching across
web query interfaces. In Proc. of ACM SIGMOD, 2003.

Y. Huhtala, J. Karkkidinen, P. Porkka, and H. Toivonen.
TANE: An efficient algorithm for discovering functional
and approximate dependencies. The Computer Journal,
42(2):100-111, 1999.

R. Hull. Relative information capacity of simple relational
database schemata. In Proc. of ACM PODS, 1984.

I. F. Ilyas, V. Markl, P. J. Haas, P. G. Brown, and

A. Aboulnaga. Cords: Automatic generation of correlation
statistics in db2. In Proc. of VLDB, 2004.

L. A. Kalinichenko. Methods and tools for equivalent data
model mapping construction. In Proc. of EDBT, 1990.

M. Magnani, N. Rizopoulos, P. Brien, and D. Montesi.
Schema integration based on uncertain semantic mappings.
Lecture Notes in Computer Science, pages 31-46, 2005.

R. J. Miller, Y. Ioannidis, and R. Ramakrishnan. The use
of information capacity in schema integration and
translation. In Proc. of VLDB, 1993.

A. Motro. Superviews: Virtual integration of multiple
databases. In IEEE Transactions on Software Engineering,
pages 785-798, 1987.

J. Pearl. Probabilistic Reasoning in Intelligent Systems:
Networks of Plausible Inference. 1988.

R. Pottinger and P. Bernstein. Creating a mediated schema
based on initial correspondences. In IEEE Data Eng.
Bulletin, pages 26-31, Sept 2002.

A. Das Sarma, X. Dong, and A. Halevy. Bootstrapping
pay-as-you-go data integration systems. In Proc. of ACM
SIGMOD, 2008.

J. Smith, P. Bernstein, U. Dayal, N. Goodman, T. Landers,
K. Lin, and E. Wong. Multibase integrating heterogenous
distributed database systems. In Proc. of AFIPS, 1981.

Y. Weiss. Correctness of local probability propagation in
graphical models with loops, 1998.

(3]

(4]

[5]
[6]

(7

(8]

[9

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

20]

