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Abstract 

 

Contextual Bootstrapping for Grammar Learning 

by 

Eva H. Mok 

Doctor of Philosophy in Computer Science 

University of California, Berkeley 

Professor Jerome A. Feldman, Chair 
 
 
 

 The problem of grammar learning is a challenging one for both children and machines 

due to impoverished input: hidden grammatical structures, lack of explicit correction, and in 

pro-drop languages, argument omission. This dissertation describes a computational model of 

child grammar learning using a probabilistic version of Embodied Construction Grammar (ECG) 

that demonstrates how the problem of impoverished input is alleviated through bootstrapping 

from the situational context. This model represents the convergence of: (1) a unified 

representation that integrates semantic knowledge, linguistic knowledge, and contextual 

knowledge, (2) a context-aware language understanding process, and (3) a structured grammar 

learning and generalization process. 

Using situated child-directed utterances as learning input, the model performs two 

concurrent learning tasks: structural learning of the grammatical units and statistical learning of 

the associated parameters. The structural learning task is a guided search over the space of 

possible constructions. The search is informed by embodied semantic knowledge that it has 
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gathered through experience with the world even before learning grammar and situational 

knowledge that the model obtains from context. The statistical learning task requires 

continuous updating of the parameters associated with the probabilistic grammar based on 

usage and these parameters reflect shifting preferences on learned grammatical structures.  

The computational model of grammar learning has been validated in two ways. It has 

been applied to a subset of the CHILDES Beijing corpus, which is a corpus of naturalistic 

parent-child interaction in Mandarin Chinese. Its learning behavior has also been more closely 

examined using an artificial miniature language. This learning model provides a precise, 

computational framework for fleshing out theories of construction formation and generalization. 
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Chapter 1.   

Modeling the Learning of Contextual Constructions 

The level of competence that children achieve in their native language in a bare four to 

five years is a remarkable feat given the intricacy and nuances of language. The key problem in 

language acquisition is that the linguistic input alone vastly underdetermines the hidden 

structures that are generally attributed as grammatical knowledge, and this problem is pervasive 

in every aspect of language from phonology to pragmatics. At the phonological level, word 

segments are not denoted in fluent speech by pauses (Jusczyk, 1997) and a child must learn to 

pick out the words. The task of word learning is plagued with the problem of indeterminacy (such 

Quine’s famous “gavagai” example (1960)), which is arguably worse for verbs than for nouns. In 

grammar learning, syntactic structures are not at all present in the input, and yet the ability to 

productively manipulate these structures is considered to be the defining characteristic of 

grammatical knowledge. It seems miraculous that normally developing children become such 

competent language users in such a short period of time. 

Indeed, the very complexity in the task of language learning has been used to argue for 

the innateness of language, and the acquisition of syntax is at the heart of this debate. There are 

good theoretical and psychological reasons, however, to believe that innate knowledge of 

linguistic principles and parameters need not be the case. In contrast to Gold’s theorem (1967), 

which shows that categorical regular languages and context-free languages are not identifiable in 

the limit on the basis of positive examples alone, Horning (1969) demonstrates that stochastic 
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context-free grammars are learnable given some assumptions about the priors of the grammars. 

Many counterarguments to innateness have also been offered on the psychological end of the 

debate, from work directly addressing the poverty of stimulus claim by looking at the input 

children receive (Pullum & Scholz, 2002) to work addressing the logical problem of language 

acquisition by offering alternative mechanistic accounts (Macwhinney, 2004; Perfors, 2008; 

Perfors, Tenenbaum & Regier, 2006). In addition, there are calls for an alternate 

conceptualization of the innateness debate that studies the interaction between genetics and 

environment (1997). Instead of rehashing old arguments, this dissertation takes as a starting point 

the assumption that language is too complex a system to be learned through blind associations 

between linguistic and non-linguistic input. Some form of learning bias must be introduced into 

the learning process; it is the goal of this dissertation to lay out systematically, in a computational 

framework, some learning biases that facilitate the process without resorting to innate knowledge 

of syntax. 

Put in concrete terms, this dissertation is concerned with modeling how semantic 

knowledge about typical actions and events and contextual knowledge about the situation 

surrounding each piece of learning input come together to aid the acquisition of grammar, or 

more precisely, the language-specific ways in which relational meanings between words are 

denoted. For example, the semantic relation that John is the hitter and the ball is the hittee of a 

hitting event is denoted by word order in the English sentence John hit the ball. Grammar, in this 

formulation, consists not of syntactic rules that allow or disallow sentences in a language but of 

conventionalized mappings between linguistic forms and embodied meanings. Building on the 

construction grammar framework (Fillmore et al. 1988; Goldberg 1995; Fillmore et al. 1999; Kay 

et al. 1999), grammatical knowledge comprises form-meaning mappings as rigid as idioms (e.g. 



3 
 

cross your fingers) or early holophrases (e.g. gimme that) and as broad and productive as the 

ditransitive / double-object construction (e.g. John baked Mary a cake).  

 To begin, it is important to keep in mind that as a child receives language input 

throughout infancy, she also accumulates experience with the world through physical interaction 

with objects and communicative acts with her caregivers. By the time she starts attending to 

syntactic cues at around 17 months of age (Hirsh-Pasek, Golinkoff & Naigles, 1996a), she has 

access to a repertoire of embodied knowledge about various objects, people, and motor actions 

that form a rich substrate for language learning. Furthermore, a child learns language not in 

isolation but in context structured by rituals and routines which help guide the child’s 

interpretation of novel utterances.  

The support that context lends to language comprehension is especially pronounced in 

pronoun-dropping (pro-drop) languages, where it is not only permissible but common to omit 

the subject and/or object from sentences (also referred to as zero anaphora or null subject/object). 

In some languages subject omission is the most prevalent (e.g. Spanish, Italian); in others both 

subject and object omissions are permissible (e.g. Chinese, Korean). Furthermore, unlike some 

morphologically rich pro-drop languages, a language like Mandarin Chinese has little inflectional 

morphology that helps to constrain the interpretation of the omitted referent. In this case, 

understanding an utterance requires not just ongoing awareness of the situational and discourse 

context but also inference mechanisms to arrive at the most plausible reference interpretation. 

This is the notion of best-fit constructional analysis as described in (Bryant, 2008a). 

To give the reader a better idea of what this best-fit constructional analysis process entails, 

Figure 1.1 shows the interpretation of a sentence in Mandarin Chinese (which is a SVO language), 

xi1xi1 chi1 yao4 (XiXi eat medicine). A hearer who knows how Mandarin works realizes that this 
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is a transitive sentence and the word order in the sentence signifies that XiXi the child is the eater 

and some Medicine is the eatee of an EAT action denoted by the word chi1. In the figure, these 

word order and meaning relations are signified with bold solid arrows on the left. Language 

understanding is much more than thematic role assignment, however: the hearer has access to 

embodied knowledge about eating and knows that eating typically involves chewing and 

swallowing as sub-processes. She is able to immediately realize that the eater (in this case the 

child) is also the chewer and the swallower if she needs to reason about the eating event. 

 
 
Figure 1.1  Interpreting the sentence xi1xi1 chi1 yao4 (Xixi eat medicine) involves 
establishing constituency relations between the words and semantic relations between the 
corresponding meanings. 

 
Furthermore, language is used in communicative contexts and therefore language 

understanding needs to be appropriately grounded in the discourse and situational context. Here 

the father is coaxing the sick child to take her medicine and has used both gestures and actions to 

establish the cough syrup as their joint attention. This information is captured in Figure 1.1 on 

the right where the father (FAT) is the speaker, the child (CHI) is the addressee, and the cough 

syrup is the attentional-focus of the DISCOURSE_SEGMENT. The hearer’s job is to link the 

sentence in with context and recognize that the speaker is asking specifically for her, the addressee, 
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to be the eater of not just any medicine, but the specific cough syrup that they are jointly 

attending to. These links to context are represented in the figure using bold dashed arrows from 

the Child to CHI and from the eatee to Cough Syrup, etc. This kind of link to context is 

particularly critical for the hearer to understanding other sentences in which arguments are 

omitted. 

A grammar learner’s job is to find a systematic way of turning sequences of words such as 

xi1xi1 chi1 yao4 into coherent interpretations such as the one just shown. Specifically, there are at 

least 4 pieces of linguistic knowledge necessary for this task: 

1. The word xi1xi1 is a label for a child with the name XiXi 

2. The word yao4 is a label for medicines 

3. The word chi1 is a label for the action of eating, which involves two participants, 

the eater (some human) and the eatee (some food), and the motor program of 

putting food in one’s mouth and swallowing it 

4. The sequence object-label – action-label – object-label means that the first object 

is performing the action to the second object.  

By design, the model in this dissertation assumes knowledge of object and action labels 

such as (1) – (3) at the start and learns the language-specific ways to express relational meanings, 

i.e. argument structure constructions, such as those in (4). As pointed out by Givón (2001),  

languages routinely use a combination of  intonation, word order, and morphology (in the form 

of verb agreement and nominal case marking) to mark grammatical relations (and by extension 

semantic relations). Without the computational support of a morphological analyzer1 or a speech 

                                                           
1  The support for inflectional morphology is not in place in ECG or the language understanding system at the time of 
this dissertation work, but ongoing efforts, in particular by Nathan Schneider, are being made in the group to extend 
ECG. 
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recognition system, this model is capable of handling only word order and free morphemes. 

Fortunately this does not affect the use of the model on Mandarin Chinese data, which only 

utilizes those two cues. 

Two possible immediate objections to this simplifying assumption are to the apparent 

sequential nature of the learning and the rich verb semantics that the learner has access to prior to 

syntax. It is a fact that there is no such point in time during language development when word 

learning stops and grammar learning begins. In no way is subsequent or concurrent word 

learning precluded by the current model; the model merely begins at a point at which children 

have learned enough words to begin positing syntactic and semantic relations between them. The 

vocabulary size is kept constant to keep the model simple, but it is a straightforward manipulation 

to gradually expand the vocabulary of the model as learning progresses.  

As for the second concern, for practical reasons2 verb-specific schemas are used, but the 

learning algorithm itself does not depend on the particular shape of the schema hierarchy. 

Furthermore, there is still a lot more about grammar learning that is of interest despite assuming 

relatively precisely-defined action labels. These initial verbs, which are tied to embodied 

experiences of actions and could have been learned through a Bayesian learning process of the 

sort modeled by (Bailey, Feldman, Narayanan & Lakoff, 1997), make no claims about how they 

are used in conjunction with their arguments. To give a few concrete examples in Mandarin 

Chinese, the word mo3 (‘to apply’) is associated with the motor program of APPLY, which involves 

three participants: the applier, the substance applied, and the surface that the substance is applied 

to. One can say mo3 you2 (‘apply lotion’) just as well as mo3 lian3 (‘apply face’), and to express 

                                                           
2 A handwritten, adult-like grammar was created to evaluate how well the language understanding system performs 
under near optimal circumstances. The same semantic types are used in the learner so that the comparison of the 
learned grammar to this baseline would be meaningful. 
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both the substance and the surface, one may use the object-marking coverb ba3, as in ba3 you2 

wang3 lian3 shang4 mo3 (‘CVobj lotion CVdest face LOC apply’). These sorts of argument structure 

constructions are intricate and are not an automatic consequence of mo3 referring to the gestalt 

notion of transporting some substance from one place to the next — the word cheng2 (‘to ladle’, 

roughly) seems to only allow the substance as the direct object. Knowledge about verb argument 

structures such as these is exactly the kind of grammatical knowledge pursued in this dissertation. 

Closely related to the issue of verb meaning is of course concept development throughout the 

period of language learning, which will most certainly impact the kind of linguistic distinctions 

that a child is able to make. We will return to the implications of both vocabulary and concept 

development for the learning model in the final chapter. 

Acknowledging that comprehension and production both play important roles in 

language learning, this work focuses on the task of learning grammatical constructions through 

an iterative process of trying to better understand language in meaningful communicative 

contexts. The learner, as mentioned, starts out with an initial vocabulary of object labels and 

action labels. Since the construction grammar framework provides a parsimonious representation 

for knowledge of words and phrasal structures (i.e. they are all constructions), the initial 

vocabulary is given to the model in the form of a grammar that consists only of lexical 

constructions.  

To satisfy a technical requirement of the best-fit constructional analyzer, the learner 

model has to assume a few grammatical types that can be the basic units of analysis. Conceptually, 

these are units separated by some word, phrase, or sentence boundaries so that the analyzer has 

natural stopping points in estimating its expectation of the next word. In the starting grammar 

these units are MORPHEME, PHRASE, and CLAUSE. All the words that the learner knows in the 
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beginning are subcases of MORPHEME; it has no knowledge of any actual PHRASEs or CLAUSEs 

but will build them up over the course of learning. Extending from the idea that early 

constructions are structured around prototype scenes  (Slobin, 1986), a clause is any construction 

that describes an event while a phrase can be anything else.  

As illustrated in Figure 1.2, the system implements a comprehension-driven learning loop. 

When the learner encounters a piece of situated language input, it tries its best to interpret the 

utterance. Unlike the previous example in Figure 1.1, here the learner does not know most of the 

function words or any syntax. Naturally, it is unable to produce a very complete interpretation 

based on the utterance alone, but it makes up for what it lacks in linguistic knowledge with its 

intention reading abilities and its knowledge about typical events in the world. With each 

exposure to language input, the learner is able to correlate contextually-obtained information 

with the sequences of words; each of these acts of hypothesizing a new grammatical construction 

is referred to in the system as a composition operation.  

 
 

Figure 1.2  A model of comprehension-driven grammar learning. Comprehension of 
language input is aided by current linguistic knowledge, knowledge about the current 
situational context, and general knowledge about categories of entities as well as typicality of 
events. 

 

The contextual information that gets codified into the grammar varies, ranging from role-

filler relations between mentioned entities and events to contextual constraints on the usage of 
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the construction. Chapter 2 supplies the details on how contextual information gets turned into 

new constructions, but the job of the composition operation, at a high-level description, is to 

create constructions that describe the current situational context as faithfully as possible given the 

recognized linguistic input. As a result, these initial constructions are very specific to individual 

lexical items and situational contexts. From these initial constructions the learner is able to build 

up increasingly more complex constructions and make generalizations, as the next example 

illustrates. This progression is consistent with Tomasello's item-based construction hypothesis 

(Tomasello, 2003), which suggests that children initially generalize based on specific words, in 

particular the main verb, forming constructions such as ___'s hitting ___, or I'm ___ing it, and 

only later create more abstract constructions by analogy. 

While useful as guiding principles for learning, most current theories on construction 

formation and generalizations, including Tomasello’s, underspecify the knowledge and 

mechanisms required in the process of grammar learning. The ultimate goal of this dissertation is 

to flesh out these details in precise computational terms. To accomplish this, the model sets out to 

learn the linguistic conventions of how verb arguments are expressed (i.e. the argument structure 

constructions) in a language with argument omission, assuming as pre-existing knowledge words 

for objects and actions, and embodied knowledge about what each action involves. The driving 

principle in this endeavor is that language is not learned in isolation but in discourse and 

situational context. A model of situated language learning thus requires the convergence of: (1) a 

unified representation that captures both semantic knowledge and contextual knowledge, (2) a 

context-aware language understanding process, and (3) a structured learning and generalization 

process. 
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1.1 A preview of the learning model 

We give a sketch here about how the learning model works using a few dialogues taken 

from the BEIJING CHILDES corpus (MacWhinney, 2000; Tardif, 1993; 1996).3  The example 

highlights how non-linguistic and linguistic information are combined as learning input to the 

model, and how constructions learned over time go from specific to general. For simplicity the 

learned constructions will be given in shorthand notation in the diagram. A technical discussion 

of how they are represented in the system is offered in Chapter 2.  

Dialogue 01 in Figure 1.3 starts out with the example sentence we looked at in Section 1.1. 

In (a) the father offers the medicine to Xixi while saying xi1xi1 chi1 yao4 (‘xixi eat medicine’). The 

learner is unable come up with a complete analysis due to its lack of phrasal and clausal grammar 

knowledge, but is able to recognize the words for the child’s name, eating, and medicine and is 

able to leverage context in putting the meanings together. Judging from intonation that it is 

requested to perform an action, the learner guesses that it has to do with eating because the word 

chi1 (‘to eat’) is present in the utterance. Medicine is a likely eatee since it is both available in 

context and mentioned by the father. The learner can then compose a new construction that puts 

together the three words xi1xi1, chi1, and yao4 in that order and denotes an EAT event in which 

xixi is the eater and medicine is the eatee. 

Figure 1.4 puts the composition operation in more concrete terms. Each of the three 

words are recognized separately due to the lack of phrasal or clausal constructions, and the left 

half of the figure displays the three corresponding fragments of analysis (solid linked blocks 

showing the form-meaning mappings). Critically,  references to the entities in context are shared 

between these analysis fragments (indicated by bold dashed arrows from left to right). Namely, 

                                                           
3 Due to the limited corpus data available, transcripts from several children are combined for use in the learning model.  
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the word xi1+x1 refers to the same child in context as the eater of the Eat event denoted by the 

word chi1, and the word yao4 refers to the same medicine in context as the eatee of that Eat event.  

 Dialogue 01 
a) 
 

Context: Father offers child medicine compose: XI1XI1-CHI1-YAO4 

 Input: xi1+xi1 chi1 yao4  
XiXi eat medicine  form: XI1XI1  CHI1 YAO4 

 Gloss: Xixi, take your medicine.  meaning: eater — EAT — eatee 

 
 Dialogue 02 

b) Context: Mother feeds child rice compose: CHI1 
 Input: chi1 bao3 le ma  

eat full PRF Q  form:  CHI1  

 Gloss: Have you eaten yourself full?  meaning: <Child> — EAT — <Rice> 

c) Context: Child offers rice to mother compose: WO3-CHI1 
 Input: wo3 bu4 chi1  

1SG NEG eat  form: WO3 CHI1  

 Gloss: I’m not eating.  meaning: eater — EAT — <Rice> 

d)   generalize:  XI1XI1-CHI1-YAO4, WO3-CHI1 
    form: {WO3, XI1XI1} CHI1 YAO4 

    meaning:      eater — EAT — eatee 

    form: {WO3, XI1XI1} CHI1  

    meaning:      eater — EAT — <Rice> 

e) Context: Mother declines rice compose: NI3-CHI1 

 Input: ni3 chi1 ba 
2SG eat SA  form: NI3 CHI1  

 Gloss: Why don’t you eat the rice?  meaning: eater — EAT — <Rice> 

f)   generalize:  XI1XI1-CHI1-YAO4, WO3-CHI1,  
    NI3-CHI1 

    form: 
{WO3, XI1XI1, 

NI3} CHI1 YAO4 

    meaning:      eater — EAT — eatee 

    form: 
{WO3, XI1XI1, 

NI3} CHI1  

    meaning:      eater — EAT — <Rice> 

 
Figure 1.3  An example learning sequence that takes place across two dialogues about eating 
and their corresponding situations starting with only lexical knowledge. The dialogues 
contain interleaving utterances and events; the sequence of prior events and speech-acts 
leading up to an utterance provides context for that utterance. With each utterance in 
context, a new construction is composed if no existing constructions cover the input. Having 
multiple constructions with comparable meanings in the grammar is a trigger for the 
generalize operation which creates small grammatical categories (denoted above using curly 
brackets) that can be used in place of the lexical items. 
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This sharing of contextual references signifies a meaning relation between previously 

independent pieces of existing constructions such as XI1XI1 and CHI1, while the utterance, by its 

sequential nature, supplies the form relations between them. This association of form relations 

with meaning relations triggers the composition operation from which a new construction,  

XI1XI1-CHI1-YAO4, is created.  

 
 
Figure 1.4  The learner’s attempt at interpreting xi1xi chi1 yao4 using only lexical 
constructions result in an analysis with three fragments or roots. Fortunately, the rich 
context enables shared references (e.g. to the child and to the cough syrup) between these 
fragments to be recovered. These shared references form the basis of new compositions.4 

 
In (b) in dialogue02, the mother and child are sharing a meal. The mother inquires 

whether the child is full with the utterance chi1 bao3 le ma (‘eat full PFV Q’ 5) after feeding him a 

few spoonfuls of rice. Using the same intentional inference mechanisms but unable (yet) to link 

up the meaning of EAT and FULL6, the learner hypothesizes that chi1 can be used on its own as 

                                                           
4 A color convention is adopted for figures for those with a color copy of the document. Existing world and linguistic 
knowledge is depicted with green/blue hues whereas contextually obtained information is depicted in yellow/orange. 
Learning-related information is in purple. 
 
5The gloss generally follows the convention used by Li & Thompson (1981), with a few additions for negation and 
pronouns. The few glosses used here are: 1SG – first person singular, SA – solicit agreement, NEG – negation, PFV – 
perfective, Q – question marker. 
 
6 This is, afterall, an example of a verbal resultative construction which requires some third meaning component such as 
cause-effect or means-and-ends to explain the semantic relation between eat and full. 
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long as the eater is a child and the eatee is some rice. These contextual type restrictions on the 

participants are shown in Figure 1.3 in angle brackets.  

The clausal CHI1 construction, despite having only one constituent, is an example of a 

context-bound construction whose restrictions are relaxed over time through exposure to 

different usages. It is important to note that the learner, through its experience with the world, 

understands that there are core participants in events. Eating, for example, involves at least an 

eater and some food whereas being full involves only one protagonist. In the case of the CHI1 

construction when neither role of EAT is filled linguistically, the learner will still try to recover 

these role fillers from context and remember them as restrictions on the fillers.  

The child then offers the rice to the mother, who declines the food by saying wo3 bu4 chi1 

(‘1SG NEG eat’). Unsure of how to combine the negation word with the rest of the utterance, the 

learner can at least put wo3 and chi1 together while assuming that the missing core role eatee in 

the event refers to the rice. This leads to the WO3-CHI1 construction in (c). At this point, an eager 

learner generalizes based on xi1+xi1 chi1 yao4 and wo3 chi1. By aligning the form and meaning 

relations, the learner realizes that xi1xi1 and wo3 both precede the word chi1 and are, importantly, 

connected semantically to the eater role of the EAT event. The learner concludes that either 

referring expression can be used interchangeably in the  XI1XI-CHI1-YAO4 construction and the 

WO3-CHI1 construction. To do so, a restricted grammatical category consisting of {xi1xi1, wo3} is 

created and two new generalized constructions, each with an open slot, are created in (d). 

This short example illustrates how information from multiple sources is employed in the 

learning process. Figure 1.5 depicts how these sources information come together in the 

implemented system. As depicted in the diagram, both linguistic knowledge and world knowledge 

are employed in the task of language comprehension performed by the analyzer. Linguistic 
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knowledge takes the form of constructions, which, as mentioned before, are conventionalized 

pairings of form and meaning that include both the lexicon and phrasal syntax. A specific flavor 

of construction grammar called Embodied Construction Grammar (ECG) (Bergen & Chang, 

2005), which has a precise computational realization and an emphasis on embodied meaning 

representations, is used by the model and will be explained in the Chapter 2. World knowledge is 

available primarily through embodied meaning schemas (also specified in ECG) that describe 

events, frames, relations , spatial configurations, etc, and a corresponding probabilistic model of 

semantic typicality judgment (e.g. how likely is a ball the throwee of a throw action?). A 

supplementary ontology is also available to the model to assist inference, and its details will too be 

described in Chapter 2.  

 

 
 
Figure 1.5  A more fleshed out diagram of the learning model. Utterances in context are 
analyzed using world knowledge, linguistic knowledge, and support from the context model, 
and usage statistics are gathered in the process. The output of the comprehension process is a 
partial interpretation (given that the grammar is incomplete) which is then used to drive a 
number of utterance-dependent learning mechanisms such as the composition operation. 
Periodically, the learned constructions are reorganized using other learning mechanisms 
which are not directly dependent on the immediate input, such as generalization. Although 
various components of this model are depicted as separate boxes and implemented as 
separate functions by computational necessity, we believe that a number of these processes 
occur simultaneously in the brain. 
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The combination of linguistic and world knowledge helps the analyzer determine the 

overall structure of the meaning of an utterance, but an additional context model is needed to 

relate the interpretation to the current situation. The supplied, dynamically updated, model of 

context, which keeps tab on events and speech acts that unfolds in a discourse, informs the 

analyzer of discourse and situationally-relevant entities that may be referred to, particularly in 

cases of omitted arguments. 

The output of this language comprehension process is a partial interpretation containing 

both a syntactic analysis of the utterance and a meaning representation which is given to the 

learning processes as input. Learning that happens as a result of this comprehension process, such 

as composition in the previous example, is labeled Utterance-Dependent Learning. Other learning 

operations that are less directly tied to an utterance, such as generalization in the last example, are 

labeled Utterance-Independent Learning operations. The result of these learning operations is 

new constructions that are added to the repertoire of linguistic knowledge and subsequently used 

in future iterations of language comprehension.  

Leaving the implementation details of these components to Chapter 4 through Chapter 6, 

I will attempt here an overview of the psychological motivations for the design of this model. 

From the outset, this work is an attempt to pull together known constraints from different 

disciplines in outlining a unified view of how language learning may proceed. While a large part 

of how grammar learning happens remains to be discovered, a fair amount is known about the 

cognitive development of a typical child up to the language learning age. These findings shed light 

on the contribution that a child brings to the task of learning language. The findings most 

relevant to this thesis are in the realms of social abilities, semantic knowledge, and learning 

mechanisms that are in a sense prerequisites for grammar learning.  
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1.2 Developmental support for grammar learning 

The grammar learning process in the model draws on a number of domain-general 

abilities that children have by the time they start positing syntactic and semantic relations 

between words. These are:  

1. Formation of object and event categories 

2. Understanding of other people’s goals and intentions 

3. Rule learning, fast mapping, and structure mapping 

4. Statistical learning mechanisms 

In particular, children’s early words  and concepts form the basis of the model’s initial 

knowledge. Children’s ability to understand other people’s goals and intentions lends support to 

the model’s use of rich contextual information in figuring out the intended meaning of a 

caregiver’s utterance. The model’s construction formation and generalization capabilities are 

supported by evidence of children’s ability to create rules, map structurally across form and 

meaning domains, and analogize between constructions through structural mapping. Finally, the 

model is able to learn probabilistic preferences on constructions just as children are sensitive to 

statistical regularities in their input.  

Formation of object and event categories 

Categorization of objects appears rather early in development. Infants come to a 

rudimentary understanding of objects and their physical properties starting at 3.5 months, 

appreciating the principle of continuity, object permanence, etc (Baillargeon, 2004; Spelke, 1994; 

Munakata et al, 1997). In learning object labels and forming categories, 16- to 21-month old 

infants attend selectively to cues that are informative of the category boundaries, shape being one 
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of these cues (Welder & Graham, 2001). How infants conceptualize events is currently a bit less 

well understood. Mandler (1992) outlines a set of conceptual primitives based on image schemas 

(Johnson, 1987) which includes containment and support, and intersects notions of self motion 

and caused motion with animacy and agency. (Golinkoff, Hirsh-Pasek, Mervis, Frawley & Parillo, 

1995) reviews the experimental evidence for the development of these conceptual primitives and 

offers an account of how these primitive notions of events can be recruited in verb learning.  

Both object and event representations get more fine-grained as children grow older 

(Munakata, McClelland, Johnson & Siegler, 1997; Wilcox & Schweinle, 2002), and so do the 

capacity for mapping verbs to events. For example, the understanding of causality emerges at 

around age 2, but it is not until around age 5 that children have a good grasp of the causal 

relationships in everyday physics (Gopnik, Glymour, Sobel, Schulz, Kushnir & Danks, 2004). In 

an experimental setting, 18-month-olds were found to require explicit cues in order to extract the 

relevant dimensions of a labeled action and use them to extend the label to another actor 

performing the same action (Maguire, Hennon, Hirsh-Pasek, Golinkoff, Slutzky & Sootsman, 

2001). In a separate experiment, 22-month-old infants were unable to override perceptual cues 

and learn a new action label based on sociolinguistic cues unlike the 34-month-olds subjects 

(Brandone, Pence, Golinkoff & Hirsh-Pasek, 2007). 

In light of these findings, the current model does make some aggressive assumptions 

about the structure and organization of the linguistically-relevant semantic knowledge available 

to the learner at the start. However, since the model is also focused on later, more sophisticated 

linguistic phenomena (e.g. coverb-marked argument displacement), the assumed knowledge is in 

line with the studies of the slightly older toddlers.  
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Understanding of other people’s goals and intentions 

Knowing that parental utterances are intended for communication and being able to 

decipher the intended meaning of an utterance given context is fundamental to the model’s ability 

to learn grammar. Afterall, it is the gap in understanding between what the model can derive from 

its current grammar and what it thinks the utterance is intended to convey that drives the 

hypothesis of new constructions. Support for this approach can be found in children’s fairly 

robust social ability by the time they are one year of age. Infants as young as 3 months old (Hood, 

Willen & Driver, 1998) can reliably follow the eye gaze of an adult and infer the goals of other 

people's actions by 6 months. They are capable of holding joint attention on an object with a 

caretaker by 9 months, which coincides with the age infants start to produce their first words. 

Tomasello argues that the ability to conceive of the triadic relation between self, another person 

and a third object, as well as the ability to think of other people as intentional agent like the self, is 

what allows infants to understand language as a communicative act (Tomasello, 1999; 2001).  

There is ample evidence that children do not rely blindly on learning by association when 

it comes to language. Children do not just associate pieces of language input with whatever they 

happen to be attending to but instead care about the goals of the speaker (Bloom, 2002). When an 

experimenter tries to illustrate a novel word with a particular action, fails to complete the action 

and expresses surprise, children do not mistake the failed action for what the word is intended to 

label (Akhtar & Tomasello, 1996). The learning model in particular relies on an intentional zoom-

lens when it comes to postulating the meaning of a new construction: there is simply too much 

going in any given scene (even given all the computational simplifications) and relevant 

contextual information must be extracted in a sensible way.  
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Rule learning, fast mapping, and structure mapping 

In the learning model, the composition of a new construction is essentially learning a new 

rule, albeit one that involves structured constraints in two domains. One of the first investigations 

of infants’ rule learning ability was done by Marcus and his colleagues, where they found that 7-

month-old infants were able to abstract patterns of the form ABA, ABB or AAB from exposure to 

streams of syllable sounds and discriminate between novel stimuli of the familiar pattern from an 

unfamiliar one (Marcus, Vijayan, Bandi Rao & Vishton, 1999). This rule-learning ability was 

recently found to be not limited to linguistic input: 12-month-old infants were found to able to 

learn rules governing picture sequences of dogs and cats (Saffran, Pollak, Seibel & Shkolnik, 2007). 

Fast mapping is another domain-general learning mechanism that has been shown to be 

useful to word learning (Heibeck, 1985; Markson & Bloom, 1997). It is the idea that a few 

incidental exposures are enough for the learner to form a long-lasting association between two 

stimuli (e.g. an object and a label). Fast mapping on a phrasal level is only beginning to be 

investigated for 5- to 7-year-old children (Casenhiser & Goldberg, 2005). 

Finally, analogy and structure mapping have been proposed by a number of researchers 

as the primary means of creating generalization in a grammar (Gentner & Markman, 1997; 

Gentner & Namy, 2006; Macwhinney, 2004; Tomasello, 2000). Specifically, Tomasello (2000) 

proposes that a child learns verb island constructions through structure mapping between form 

and meaning, and through further processes of structure mapping creates more and more 

abstract constructions (e.g. the simple transitive constructions and then the subject-predicate 

construction). However, having noted that both form and function are critical to structure 

mapping, he conceded that it is still not known what a “good” structure map between 
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construction entails, and whether some “critical mass” of exemplars are required before 

abstraction through structure mapping can take place. 

Statistical learning mechanisms 

Another line of research that has played an important role in language acquisition is that 

of statistical learning. Whereas rule learning is concerned with how children create categories of 

items (also sometimes called algebraic rules), statistical learning is generally concerned with the 

how children track frequencies and probabilities associated with these items (e.g. syllables and 

words).  

Even before they reach 1 year of age, infants are able to extract various statistical 

regularities in their linguistic as well as visual input (Aslin, Saffran & Newport, 1998; Fiser & Aslin, 

2002; Kirkham, Slemmer & Johnson, 2002; Saffran, Aslin & Newport, 1996). Their ability to track 

these statistical regularities multiple domains suggests that statistical learning is a powerful 

domain-general learning mechanism that gives infants a head start in learning language.  

In particular, infants’ ability to make use of transitional probabilities between syllables 

and phonological patterns is argued to help infants segment words from their input (Chambers, 

Onishi & Fisher, 2003; Maye, Werker & Gerken, 2002; Saffran & Thiessen, 2003). There is also 

evidence that the output of this kind of statistical learning are word-like representations that are 

readily integrated into the native language (Saffran, 2001) and that structures like those found in 

natural languages are readily acquired by 12-month-old infants (Saffran, Hauser, Seibel, 

Kapfhamer, Tsao & Cushman, 2008). 

Studies within the statistical learning paradigm have been extended to investigate whether 

children can also extract statistical regularities in non-adjacent dependencies, which are seen as 

the basis of acquiring certain properties of phonology (such as vowel harmony) as well as syntax 
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(such as agreement) (Gomez, 2002; Newport & Aslin, 2004). Gomez found that given a pre-

segmented speech stream, both adults and 18-month-old infants are able to learn the 

dependencies between non-adjacent words if there is a high variation of the intervening words. 

More recently, Thompson and Newport (2007) studied the roles of different structural cues in the 

statistical learning of phrase structure. In particular, they found that structural variations such as 

optional phrases, repetition, movement, class size (when used alone and more so in combination) 

created the right kind of transitional probability variations at phrase boundaries that allowed their 

adult subjects to successfully learn the syntax of a fairly complex artificial language.   

Wonnacott, Newport & Tanenhaus (2008) examined the role of distributional learning in 

acquiring argument structure alternations and their subcategorization restrictions. To use their 

example, the verb throw can participate in both the caused motion construction and the 

ditransitive construction, as in Jack threw Henry the ball and Jack threw the ball to Henry, but 

semantically similar verbs such as carry and push cannot participate in the ditransitive 

construction, as in *Jack carried/pushed Henry the ball. They found that in the absence of 

consequential semantic distinctions, adult subjects are still able to generalize across the stimuli 

and learn both absolute and probabilistic subcategorization constraints.  

With this, we are almost ready to begin the exposition of the learning model. But first, we 

will highlight some important properties of Mandarin Chinese that make it an interesting object 

of study for this work. 

1.3 Case study: Mandarin Chinese as a pro-drop language 

Although the current learning model makes few assumptions that restrict its cross-

linguistic application, Mandarin Chinese is used as the primary language in testing the model for 
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its context-dependent properties and relative simplicity in morphology. Like English, Chinese is a 

predominantly Subject-Verb-Object (SVO) language. However, Chinese differs from English in 

several notable ways that have implications for any computational system that purports to do 

language understanding and language learning. This section gives an overview of aspects of 

Mandarin Chinese relevant to the learning model. The interested reader can refer to Erbaugh 

(1992),  Lee (1996), and Li & Thompson (1981) for more in-depth background of Chinese 

linguistics and the acquisition of Mandarin Chinese.  

Subject-drop and object-drop 

Unlike English, subject-dropping and object-dropping is freely allowed in Chinese. Wang, 

Lillo-Martin, Best & Levitt (1992) recorded conversations between five native adult Mandarin 

speakers with another adult and found that 45.6% of sentences have an omitted subject and 40.1% 

of them have an omitted object. (There is unfortunately no data available on what percent of these 

sentences have both omitted subjects and objects.)  

The subject-drop phenomenon in Chinese is often compared to that in Spanish, Italian, 

or Japanese. However, unlike these other languages, Chinese does not require verb agreement or 

case marking, making the disambiguation of the referent of the omitted subject heavily dependent 

on the discourse and situational context. Kim (2000) compiled a cross-linguistic comparison of 

subject omission, adapted here: 

English Portuguese Italian Mandarin Cantonese Korean Japanese 

2 – 4% 44% 44 – 54% 36% 42% 55 – 65% 62 – 74% 

 
Figure 1.6  Percentage of adult utterances with omitted subjects in seven languages, adapted 
from Kim (2000). 
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To compare the adult argument omission pattern to child-intended speech, in the same 

study Wang et al also asked adult subjects to narrate a story book while pretending that they are 

speaking to their own child. The rate of subject omission was measured to be 36.13% and object 

omission, 10.3%.  

Children’s sensitivities to the adult patterns of argument omission are reflected in their 

production from a young age. Even though children in all languages start out producing fewer 

subjects than adults do, even in a non-pro-drop language like English, English-speaking children 

soon start producing more subjects whereas pro-drop language learners start matching the 

omission rate of the adult speech. In particular, 2- to 2.5-year-old Mandarin-speaking children 

omit subjects 56% of the time, 3- to 3.5-year-olds omit subjects 46% of the time, and those who 

reach 4 years old omit subjects only 38% of the time.  

Topic-comment and topic chain 

Chinese is argued to be a topic-comment language, and notions of topic and topic-chains 

have been proposed (Li & Thompson, 1981; Li, 2004; Shi, 2000). The topic of a sentence, roughly 

speaking, is what the sentence is about, and it either has been introduced in the discourse 

(definite)7 or is a generic. The topic need not coincide with the subject of a sentence and are 

sometimes marked by topic markers, such as a, me, and ne. Here is an example: 

 nei4 ben3 shu1 a, wo3 yi3+jing kan4 wan2 le. 
 that CLS book a 1PS already see ASPfinish CRS. 

That book, I have already finished reading.  

The notion of topic becomes quite important when resolving the intended references of 

omitted subjects or objects. The idea of a topic chain, as proposed by Li & Thompson (1981), is 

                                                           
7 The original formulation in Li & Thompson (1981) does not include situational context, but the data from the child 
language corpus shows that a salient person/object/event in the situational context can serve as the topic as well. 
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that a referent (the topic) is introduced in the first clause, and subsequent clauses can refer to the 

topic without explicit mentions. With evidence from written narrative text, W. Li (2004) proposes 

a modified notion of topic chain where the topic of a chain need not even appear in the initial 

clause. The topic can be coreferential either anaphorically with a previous sentence, or 

cataphorically with a noun phrase later in the sentence.  

Coverbs 

Chinese uses coverbs, a closed class of grammatical words, to express the equivalent of 

case relations, such as object, dative, benefactive, locative, ablative, and terminals (Erbaugh, 1992; 

Li & Thompson, 1981). Coverbs precede a noun phrase and the resulting coverb phrase generally 

precedes the main verb, though iconicity sometimes influences the word order. As an example, 

whereas cong2, which marks the origin, comes before the main verb, dao4, which marks the 

destination, comes after the verb, in accordance with the iconicity of motion. This need not be the 

case, as exemplified by wang3, which marks the direction and comes before the verb. Here are 

examples of these three coverbs being used: 

 ba3 qiu2 cong2 na4 bian1 na2 guo4 lai2. 
 CVobj ball CVorigin that side carry across towards. 

  Bring the ball over here from there. 
 

 ba3 qiu2 fang4 dao4 na4 bian1. 
 CVobj ball put CVdestination that side 

  Put the ball there. 
 

 ba3 qiu2 wang3 na4 bian1 reng4. 
 CVobj ball CVdirection that side throw. 

  Throw the ball towards there. 
 

Coverbs are historically derived from full, free verbs. A handful of coverbs, such as ba3 

(direct object marker) or bei4 (agent marker), can no longer be interpreted as full verbs, but other 
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ones can take aspect markers even when functioning as case markers. Some of these coverbs 

retain a separate present-day sense as full verbs, such as gei3 (benefactive / recipient marker) 

which can also mean to give. This confusion in coverbs is problematic for children acquiring 

Mandarin, and the bleached coverbs such as ba3 are sometimes mistakenly used as full verbs 

(Erbaugh, 1992).  

The prevalence of argument omission together with the use of topic-comment 

constructions as well as a coverb that allow objects to be fronted suggests that word order is not as 

reliable a cue of semantic relations as it may be in other word order languages. 

Serial verbs and conditionals 

The serial verb construction is often used in Chinese, where two or more verb phrases or 

clauses are conjoined without any marker indicating what the relation is. The form of the 

construction looks like (parenthesis denoting optional elements): 

  (NP)  VP (NP)  (NP)  VP (NP) 

Li & Thompson (1981) categorizes the serial verb construction into four groups: 

i. Two or more separate events, which can be related as a temporal sequence, a 

causal sequence, co-occurrence, or the circumstances of occurrence.  

 (NP)  VP (NP)  (NP)  VP (NP) 

 
ii. One verb phrase serving as the subject or direct object of another verb, similar to 

sentential complements in English. 

  (NP)  VP  (NP)  VP (NP) 

 

  (NP)  VP  (NP)  VP (NP) 

direct-object 

subject 
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iii. Pivotal constructions, where the intervening noun phrase serves as both the 

direct object of the first verb and as the subject of the second verb.  

  (NP)  VP  NP  VP (NP) 

 

iv. Descriptive clauses, where the second verb phrase describes or modifies the direct 

object of the first verb phrase in some way.  

  (NP)  VP NP  (NP)  VP (NP) 

 

In addition, a further potential point of confusion is that the Mandarin conditionals 

overlap strongly with the serial verb construction. In Mandarin conditionals, there are no verb 

tense or mood changes, and the two clauses (the premise and the conclusion) can be expressed 

without any conjunctions or conditional markets. Therefore, analogous to noun-noun 

compounds in English, deducing the relation between two conjoining verb clauses in Mandarin 

Chinese can be a difficult inference problem. We will see that the model has difficulty with this as 

well. In the remainder of this section, we summarize the developmental trajectory of children 

acquiring Mandarin Chinese, drawing on surveys done by Erbaugh (1992) and Lee (1996). 

Acquisition of Mandarin Chinese 

Erbaugh (1992) based her studies on 64 hours of longitudinal data with four Chinese 

children (1;10 – 3;10) in Taiwan and concluded that children generally followed the canonical 

SVO word order throughout development and were reluctant to violate the SVO order, especially 

when they were young, even in situations where an OV re-ordering (using the ba3 direct object 

marker) is required. A summary of her findings is presented in Figure 1.7. Lee (1996), on the 

other hand, argued that Mandarin-speaking children's word order was not as rigid as Erbaugh 

subject direct- 
object 

describes 
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suggested, citing other studies that showed children producing incorrect OV sentences such as 

Di4+di ma4 ('brother scold') (2;0) in answering "who did Ah San scold?".  

 

Age Developmental Characteristics 

before 2 

 Mean length of utterance (MLU) < 2.0 
 nouns: kinship terms, concrete nouns 
 verbs: actions, activities, statives 
 rare use of modals 

around 2 

 1.8 < MLU < 2.5 
 strong SVO order: producing either SV or VO chunks 
 rare use of the complete SVO 
 topicalization to OV not present 
 some uses of SV to indicate patient state 
 use of the modal yao4 (want) 

2;3 to 3;2 

 3.0 < MLU < 4.0 
 strong SVO order 
 topicalization of direct object with ba3, and agent with bei4 
 serial verbs: lai2 ('come'), qu4 ('go'), gan3 ('dare'), bang ('help') 
 benefactive gei3 appears 
 use of some modals: hui4 ('can', 'might') and neng2 ('can', 'able to') 
 aspect: perfective le acquired before durative zai4 and progressive 

zhe 
 event time rarely marked 
 duration and manner rarely present 
 mistakes particles/coverbs for full verbs 
 overuses the general ge4 classifier 
 special classifiers associated with prototypes 
 yes/no questions of the form A-NOT-A appears (using modals) 
 wh-questions first appear with shen2me ('what') 

after 3;2 

 MLU > 4.0 
 full sentence syntax 
 modals and serial verbs fully present 
 aspect: use of past experiential marker guo4, progressive still 

difficult 
 event ordering is implicitly present in verb ordering 
 more special classifiers emerge, though problematic till as old as 7 
 some use of discourse-sensitive particles, topicalization, and re-

ordering. 
 
Figure 1.7  Summary of the linguistic development of Mandarin-speaking children (adapted 
from Erbaugh, 1992) 
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As an additional confound to the acquisition of word order, it is unclear from the two 

studies how frequently children confused word classes. Erbaugh reported that her subjects never 

used nouns as verbs, although they sometimes confused adjectives or adverbs with verbs. In citing 

errors made by the child Laohu (2;0), who used wo3 ji1qi4ren2 le ('I robot PFV') to mean “I have 

become a robot”, she suggested that the child had incorrectly suffixed the perfective marker le to 

nouns and omitted the main verb. However, Lee suggested that a different method of error 

accounting can attribute the error to the child's confusion between nouns and verbs, and showed 

examples of other mistakes of this kind, such as a child (2;4) using bey shou3 deng1 ('baby hand 

lamp') to mean “baby touched the lamp”.  

This brings up another point of contention in how Mandarin Chinese is acquired — 

whether verbs are really verbs (Bates, Chen, Tzeng, Li & Opie, 1991; Li, Jin & Tan, 2004). This 

question arose in the context of an apparent lack of a noun bias in Chinese(Tardif, 1996; Tardif, 

Shatz & Naigles, 1997), as reflected in the much higher proportion of verbs in the early vocabulary 

of Mandarin-speaking children. Tardif (2006) argued that early verbs in Chinese are indeed verbs 

by virtual of distinct syntactic markings used by children on the verbs (e.g. negation, resultative 

verb complement). Instead, Chinese verbs are easier to acquire because they are more imageable 

(Ma, Golinkoff, Hirsh-Pasek, McDonough & Tardif, 2008), and this is indirectly confirmed by a 

replication of the human simulation experiment (Gillette, Gleitman, Gleitman & Lederer, 1999) 

in Mandarin (Snedeker, Li & Yuan, 2003). In these experiments, adult subjects see videos of 

caregiver interaction with the audio removed and have to guess the word that the caregiver is 

using wherever a beep is signaled. English-speaking subjects were much worse at guessing English 

verbs than English nouns (Gillette et al., 1999), underscoring the difficulty in inferring the 
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intended meaning of verbs. However, when asked to perform the same task on muted videos of 

Mandarin-speaking mothers playing with their children, both English-speaking and Mandarin-

speaking subjects were just as good at guessing the muted verbs as the nouns.  

1.4 Summary 

What is beginning to emerge is a very complicated picture of how a language is learned by 

children, especially when cross-linguistic variations are taken into account. In the current 

modeling endeavor we will hold fast to principles of domain-general learning and attempt to 

show how one small piece of languge learning — argument structure constructions in Mandarin 

Chinese — can be learned. Chapter 2 lays out the representational foundation for this work and 

show how situated language understanding can be modeled given this representation. Chapter 3 

gives the precise computational definition of the learning problem. The details of how the 

learning model implements each learning operation and updates its statistics on the grammar are 

given in Chapter 4 through Chapter 6. Experimental results on a subset of the Beijing CHILDES 

corpus of parent-child interactions are reported in Chapter 7 and follow-up experiments using 

artificial languages are reported in Chapter 8. A general discussion of the learning model and 

ideas for future work are offered in Chapter 9. 
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Chapter 2.  

Understanding an Utterance in Context 

The last chapter introduced the basic formulation of the comprehension-driven learning 

system: how semantic structures obtained from context are leveraged to create syntactic and 

semantic structures (constructions) in the grammar, and how these constructions are 

subsequently generalized. This chapter lays out the foundations for describing the learning model 

in technical detail. The model is an integral part of the NTL simulation-based language 

understanding paradigm (Chang, Feldman & Narayanan, 2004; Feldman, 2006; Narayanan, 1999) 

which stipulates that language understanding requires active simulation of the meaning 

representation in addition to the constructional analysis of a sentence. For example, the 

constructional analysis of  

Put the bear in the basket. 

creates a specification of thematic role-filler relations (e.g. the addressee is the putter, and the bear 

is the puttee, and the basket is the goal). Simulation, which is a process of active inference, 

generates additional predictions about actions, causes, and consequences (e.g. the bear is likely to 

be contained by the basket at the end of the put action and will be transported along with the 

basket if the basket is moved, unless the basket is not big enough for the bear). The outcome of 

simulation is therefore a product of linguistically-derived cues (such as the thematic role-filler 

relations) and ontological knowledge (such as knowledge about the size of a typical toy bear or a 

specific bear in context).  
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The embodied simulation-based language understanding hypothesis posits that active 

simulation is carried out using the same neural substrates that underlie motor actions. In 

computational terms, a mental representation of the state of the world is updated continuously 

through monitoring of the situational context as well as eager integration of constraints from 

linguistic input. These convergent constraints often reduce ambiguity in the input and help a 

language user arrive at what seems to be the obvious interpretation. The dynamically updated 

embodied mental representation also allows for additional inference about the state of the world 

as it existed in another time, place, or mind.  

The empirical support for online integration of constraints and online update of mental 

representation comes from a number of psycholinguistic experiments not traditionally associated 

with the embodied simulation view. A bulk of this work is performed in the visual world 

paradigm using eye-tracking techniques, where a static picture depicting various people and/or 

objects is presented to the subject as an auditory sentence unfolds. The subject’s eye movements 

to various objects are taken to be reflective of the subject’s processing vis-à-vis visual attention. 

Adult subjects have been demonstrated to be sensitive to contextual cues such as affordances of 

surrounding objects, taking into account sizes of depicted containers in a visual scene (Chambers, 

Tanenhaus, Eberhard, Filip & Carlson, 2002) when movement of an object is described, or 

whether a glass contains remaining wine when a drinking event is described in the past tense 

(Altmann & Kamide, 2007). Similar results on the effect of visual context have also been obtained 

in the mouse movement paradigm where subjects are asked to move objects on a computer screen 

based on an auditory stimuli (Spivey, 2008; Spivey & Dale, 2006). Altmann has additionally 

shown that subjects make note of and look to linguistically updated locations of depicted objects 
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even though the visual scene remains static, indicating an integration of linguistic and visual 

information (Altmann & Kamide, (under review)).  

The empirical evidence for embodied representations supporting the active simulation 

comes from a host of studies of the mirror neuron system. These studies suggest shared 

mechanisms for both action observation and action execution (Gallese, Fadiga, Fogassi & 

Rizzolatti, 1996; Murata, Fadiga, Fogassi, Gallese, Raos & Rizzolatti, 1997), and there is growing 

evidence that the same system is also utilized in language understanding (Buccino, Riggio, Melli, 

Binkofski, Gallese & Rizzolatti, 2005; Gallese & Lakoff, 2005; Skipper, Goldin-Meadow, Nusbaum 

& Small, 2007). In behavioral studies, Bergen found a facilitation effect for directional motor 

movements congruent with the direction specified by linguistic stimuli and interference for 

incongruent stimuli (Bergen, Chang & Narayan, 2004; Bergen & Wheeler, 2005), again suggesting 

that action language may (partially) activate the neural circuitry used to execute actions. 

Matlock’s work on understanding fictive motion sentences (e.g. the path runs along the river) 

indicates that processing times of these sentences correlate with the difficulty of the terrain of the 

path imagined, further suggesting that even metaphorical usages of action words are understood 

in terms of their grounded, physical meaning (Bergen, Lindsay, Matlock & Narayanan, 2007; 

Matlock, 2004).  

The embodied simulation hypothesis and the associated language understanding 

framework have important implications for the learning model. A crucial step in the 

comprehension-based learning loop is extracting as much of a coherent interpretation as possible 

from the input given an impoverished grammar, and as such the model makes use of a best-fit 

constructional analyzer (Bryant, 2008a) (properties of which will be described in further detail in 

the next sections). Both the constructional analyzer and the learning model represent grammar in 
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the Embodied Construction Grammar (ECG) formalism (Bergen & Chang, 2005), which will be 

described briefly in the next section along with extensions to the formalism that provide a tighter 

link to context. Readers who are interested in the linguistic details of the ECG formalism can refer 

to Feldman, Dodge & Bryant (to appear). 

Unfortunately, due to implementation constraints in the current system, the 

constructional analysis process and the simulation/context-based inference procedure are 

implemented as sequential processes. This simplification will not detract from the main findings 

of the learning model, however. A fully parallel model of language understanding will outperform 

the current model in its ability to extract coherent interpretations from context, and learning 

results are expected to improve given a better language comprehension mechanism. 

2.1 Representing Context in Embodied Construction Grammar 

Central to the simulation-based understanding paradigm is a theory of grammar that puts 

syntax and semantics on equal footing and allows constraints from both domains to be 

incorporated simultaneously during sentence processing. Construction grammar, proposed first 

by Kay and Filmore and further developed by Goldberg (Goldberg, 1995; Kay & Fillmore, 1999), 

does exactly that. The basic unit of grammar according to the construction grammar view is a 

construction — a conventionalized pairing of form and meaning. Constructions encompass not 

only phrases and clauses but also lexical items, and can range from fixed idioms (e.g. kick the 

bucket) to semi-productive constructions (e.g. What’s X doing Y8 or the way construction9) to 

                                                           
8  The WXDY construction [Kay Filmore] expresses both surprise and disapproval, as in what's a nice girl like you doing 
in a place like this? or waiter, waiter, what’s the fly doing in my soup? 
 
9 The way construction uses a path phrase in conjunction with a manner of motion or activity verb to express the means 
of achieving a goal, as in he waltzed his way through the party or she talked her way out of the difficult situation.  
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fully productive argument structure constructions (e.g. the ditransitive or double-object 

construction10). Another central feature of construction grammar is its allowance for non-

compositional meanings. Non-compositional meaning refers to meaning attributed to a 

construction that cannot be further decomposed into its constituents, making the whole greater 

than the sum of its parts. Unlike other constraint-based grammars such as LFG, whose meaning-

carrying units are lexical items only, construction grammar allows both compositional meaning 

and non-compositional meanings to be expressed at all levels of constructions. The ability to 

attach meanings to all levels of constructions is essential for capturing linguistic facts such as the 

surprise and disapproval in the WXDY construction or the transfer scene in the ditransitive 

construction.  

As a unification-based construction grammar formalism, ECG is not only capable of 

representing form-meaning mappings but also grounds the meaning representations in embodied 

schemas. Language understanding and reasoning are thus performed in terms of basic motor 

schemas, image schemas, and frames, whereas abstract reasoning is enabled by metaphors  

(Lakoff, 1987; Lakoff & Johnson, 1980; Langacker, 1990; Talmy, 2000). It is important to stress 

that these schemas, assumed to have at least partially developed in children when they begin to 

use language, provide the substrate for the learner to both understand the unfolding events and to 

create mappings from form to meaning.   

ECG basic: schemas, constructions and SemSpecs 

The four primitive types in ECG are: schemas, constructions, maps, and situations (see 

Appendix A for the technical specification of the formalism). Of these, schemas (the basic unit of 

                                                           
10  The English ditransitive construction expresses a meaning of transfer or intended transfer which is supplied not by 
any lexical items but by the construction itself, as in I wrote him an email or she baked me a cake. There are, of course, 
semantic restrictions on what verbs can be used in the construction, e.g. *Mow me a lawn. [Goldberg?] 
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meaning) and constructions (the pairing of form and meaning) are directly relevant to this 

research and are described in this section. Schemas can be divided into two distinct and 

important kinds: conceptual schemas and structural schemas. Conceptual schemas are the bulk of 

the embodied knowledge, such as the aforementioned motor schemas, image schemas, and frames. 

Structural schemas, on the other hand, are computational conventions for the bookkeeping of 

information that is important to the constructional analysis process. These include the 

EVENT_DESCRIPTOR schema and the referent descriptor schema (RD) which will be introduced 

later in this section. Constructions can be lexical or phrasal/ clausal (i.e. they have constituents) 

and their meanings are defined in terms of the set of conceptual schemas.  

Additionally, an ontology defined externally to the grammar is also provided to the 

learner (the detailed implementation of the ontology is not germane to this dissertation; its full 

specification can be found on the ECG wiki at http://ecgweb.pbwiki.com). Whereas ECG schemas 

capture aspects of sensorimotor and other knowledge that are linguistically relevant, the ontology 

captures general knowledge that may be relevant for simulation and can be accessed by the 

grammar if necessary (using the special @ symbol; see further illustrations later in this section). 

We may represent the toy bear in our first example as a BEAR schema which states its status as a 

physical object (perhaps a small, movable physical object) but we may also like to store other facts 

about the specific bear in question, e.g. it was a gift from grandma for the child’s last birthday. 

These additional facts can be stored in the ontology. 

During analysis of a sentence, a semantic specification (or SemSpec) is created as its 

meaning representation. The SemSpec is a network of instantiated schemas and ontology items 

created from the meaning poles of the recognized constructions, with the appropriate roles from 

various schemas unified and filled in. These schematic representations of events can in turn be 



36 
 

used for simulation. Simulation is computationally realized using X-nets, which are Petri-net 

based active structures for event-based asynchronous control that can capture both sequential 

flow and concurrency (Narayanan, 1997). Simulation is a dynamic process which includes 

executing the X-nets specified in the SemSpec and propagating belief updates in a belief network. 

Returning to the put the bear in the basket example, a put action involves a putter, a puttee, a 

trajectory of the puttee and a manner of motion. These are specifiable by language and are 

represented in an ECG schema. However, lower-level motor control parameters of a put action, 

including the arm movements, hand shape, and the weight of the object, can be captured in an X-

net. Work within the NTL group illustrated correspondence between hierarchies of motor action 

and argument structure constructions (Feldman et al., to appear) and provided understanding of 

metaphoric language through mappings on embodied simulation (Narayanan, 1999). This thesis 

will thus take as given low-level representations of actions (Bailey et al., 1997) and focus on 

learning more complex linguistic structures using relatively high-level, schematic descriptions.  

As mentioned in the last section, multiple facets of constructional analysis occur  

simultaneously in the ideal system: (1) recognizing instances of constructions in an utterance and 

putting together the meaning schemas according to their unification constraints (analysis), (2) 

resolving references (resolution),  (3) filling in additional details about events based on knowledge 

about the context (context fitting), and (4) making active inferences to resolve ambiguities and to 

update the model of context (simulation). As implemented, these processes are carried out in 

three sequential stages: (i) analysis and resolution in parallel, preserving ambiguities as separate 

analyses, (ii) context fitting to find the analysis that best matches the context (which also forms 

the basis for learning), and (iii) simulation. 
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The remainder of the section demonstrates this framework of understanding language in 

context using an example in Mandarin taken from the CHILDES Beijing corpus (MacWhinney, 

2000; Tardif, 1993; Tardif et al., 1997). The mother directs her child to give a peach to the 

investigator, who is referred to as yi2 (aunt):  

ni2 gei3 yi2 (2PS give aunt). 

Figure 2.1illustrates the desired analysis. The top half shows the constructional tree and 

the bottom half shows a feature structure representation of the semantics. The sentence is 

recognized as an instance of the ACTIVE_SUBJECT_VP construction whose subject is filled by the 

construction NI3 and the verb phrase is filled by a DITRANSITIVE_VP, which takes one verb and 

two noun phrases as constituents. The main verb in the DITRANSITIVE_VP is filled by the verb 

GEI3, the first object NP by YI2 and the second object NP is unfilled.  

The overall meaning of the sentence is  an instance of the EVENT_DESCRIPTOR schema 

named EVENT_DESCRIPTOR01, which describes an event as the name suggests. Its 

profiled_process, given by the verb phrase, is a giving action captured by the schema instance 

GIVE02 (bracketed numbers denote co-indexation). The giver, recipient, and theme roles of 

GIVE02 are of types @Human, @Aunt, and @Entity respectively. The RDs (RD03, RD04, and 

RD05) are helper schemas that direct the analyzer to  look up the three referenced entities in 

context; how this is accomplished is described in the rest of this chapter. As a convention, schema 

and constructions are written in all-caps in this dissertation.  
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Figure 2.1  The constructional tree and semantic specification (SemSpec) for the ideal 
analysis of ni3 gei3 yi2 (you give aunt). The constructional tree shows the use of the 
DITRANSITIVE_VP construction as  the vp constituent of the ACTIVE_SUBJECT_VP 
construction. The corresponding meaning, created jointly with the constructional tree, can 
be described using feature structure notation, as shown in the bottom half. 

 

Feature structure notation 

The feature structure notation in the bottom half of Figure 2.1 is a standard Computer 

Science technique of representing structured information 11. Basic familiarity with feature 

structures and unification grammar is assumed for the dissertation, but terminology will be 

established here for clarity. Each schema has roles (also referred to as features). A role establishes 

                                                           
11 The reader can also refer to [Bryant, 2008] for additional technical details on how this feature structure 
representation is used in constructional analysis. 
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a pointer to a slot (or a placeholder) that may have a type constraint (indicated in italics) as well as 

an atomic or structured value (indicated through coindexation using the bracketed numbers).  

Each feature structure can be visualized as a directed acyclic graph (DAG), as shown in 

Figure 2.2. Outgoing edges indicate features and nodes indicate slots, and conveniently, multiple 

incoming edges into a node signify coindexation. In this DAG representation, slot chains can be 

easily understood as following edges through the graph to a particular slot. For example, the 5-

way coindexation between GIVE02.protagonist, GIVE02.giver, RD03.referent, 

RD03.ontological_category and EVENT_DESCRIPTOR01.profiled_participant are shown as the 

edges pointing to an unfilled slot whose type constraint (in italics in Figure 2.2) is @Human. The 

identity of the human is not known and therefore the slot is not filled with a value. At the end of 

the analysis and context-fitting process described in this chapter, the contextual filler of this slot is 

identified as the child in the scene.  

 
 
Figure 2.2  Directed Acyclic Graph representation of the semspec of ni3 gei3 yi2 (you give 
aunt). Edges denote features and nodes denote slots, which can have type constraints (in 
italics) and atomic fillers (not shown) or structured fillers (outgoing edges from the slot). 
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Entities and referring expressions 

Words like ni2 (you) and yi2 (aunt) are represented as lexical constructions and perfectly 

illustrates how grammar is tied to context in ECG. Both constructions are subcases of the 

referring expression construction REF_EXP, which is an abstract construction12 that defines a 

grammatical category. A referring expression denotes an @Element in context. This is written as 

a type constraint on its meaning pole, which is accessed using the special slotchain self.m. The 

self keyword in ECG refers to the current schema and m is short for meaning. As subcases of 

REF_EXP, NI2 and YI2 inherit its roles and constraints but can posit further type restrictions such 

as @Human and @Aunt. These types are defined in an external ontology (signified by the @ 

symbol in ECG and written in title case in this thesis as a convention).  

construction NI2 
 subcase of REF_EXP 
 form 
  self.f.orth <-- “ni2” 
 meaning : @Human   
 constraints 
   rd.ontological_category <--> self.m 
   rd.discourse_role <-- @Addressee 
   rd.set_size <-- @Singleton 

 abstract construction REF_EXP 
 meaning: @Element 
  evokes RD as rd 
  constraints 
   rd.referent <--> self.m 

 

schema RD 
 roles 
  classifier_category 
  grammatical_gender 
  givenness 
  definiteness 
  ontological_category 
  discourse_role 
  set_size 
  quantifier 
  participanting_event 
  modifiers 
  referent 

  

construction YI2 
 subcase of REF_EXP 
 form 
  self.f.orth <-- “yi2” 
 meaning : @Aunt 
  constraints 
   rd.ontological_category <--> self.m 

 

 
Figure 2.3  RDs, or referent descriptors, tie meanings of referring expressions to context in 
ECG. 

                                                           
12  A newer general keyword replaces the abstract keyword in newer ECG conventions, but to avoid confusion with 
concrete constructions that are learned generalizations of lexically-specific constructions, the abstract keyword will be 
used throughout this dissertation. 
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The  REF_EXP also ties the construction to context by providing a package of information 

in the RD schema (short for referent descriptor) evoked in the meaning pole. The evokes … as 

keyword denotes this relationship of concept co-activation by specifying the type and local name 

of an evoked item. The RD schema contains relevant syntactic and semantic features for resolving 

references to context; its presence in a constructional analysis signals that information about an 

entity needs to be retrieved from context. In the current model (Bryant, 2008a), the analyzer looks 

in its recency model for entities that match those specified features, the exact collection of which 

is customizable for the application. Examples of syntactic features are classifier_category, 

grammatical_gender, givenness, and definiteness, and examples of semantic features are 

ontological_category, discourse_role, set_size, quantifier, participanting_event, and modifiers.  

The current learning model use a much smaller subset of these features, namely, 

ontological_category (a type defined in the external ontology, usually specified by something like 

common nouns), discourse_role (the role in the current segment of discourse, denoted by one of: 

@Speaker, @Addressee, and@Attentional_Focus), and a set_size (the number of the referent, 

denoted by one of : @Singleton, @Pair, and @Multitude). In the NI2 construction, the 

combination of the constraints highlighted in bold in Figure 2.3 suffices to direct the analyzer to 

look for a singular addressee in the current discourse segment. It also specifies that the addressee 

has to be (construable as) a @Human. In contrast, the YI2 construction does not require a 

particular discourse role of its referent, so the analyzer is directed to look for some entity in 

context of type @Aunt.  
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Actions and verbs  

Figure 2.4 has an example GIVE schema that denotes the prototypical giving scene and a 

lexical construction GEI3 for the polysemous Mandarin morpheme gei3. Each sense of gei3 is 

written down as a separate construction; the one shown here has the meaning of GIVE which 

involves three participants (reflecting a child’s understanding of physical giving). 

Notice that GIVE is a subcase of the TRANSFER schema (which is in turn a subcase of 

ACTION which is a subcase of PROCESS, not shown). Schemas, like the constructions and the 

ontology, are structured by an inheritance lattice, supporting all the expected inheritance 

semantics along with multiple inheritance. The semantic hierarchy plays a crucial role in 

generalization by guiding the formation of grammatical categories, as will be shown in later 

chapters. Both typed and untyped roles can be specified for each schema. In this case, the 

TRANSFER schema inherits a protagonist role from the ACTION schemas, specifies three 

additional roles (giver, recipient, and theme), and furthermore unifies the protagonist with the 

giver role through an identification constraint13 (shown in bold). The GIVE schema in turn 

constrains these roles to be Animate, Animate, and Manipulable_Inanimate_Object respectively.  

Another important idea to this research is that of core semantic roles, which may or may 

not be required as syntactic arguments. Core semantic roles, long recognized in PropBank 

(Kingsbury & Palmer, 2002) and FrameNet (Baker, Fillmore & Lowe, 1998), can be roughly 

characterized as “central participants in the conceptualization of an event”. In a TRANSFER scene, 

the giver, recipient, and theme roles are all core roles – meaning that there must be three parties 

involved, even if some of them may remain unnamed. A notion of core roles is important for 

understanding non pro-drop languages in cases when some constructions make it optional for 

                                                           
13 also called a unification constraint or a coindexation constraint. 
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expressing some core roles (e.g. the seller is implicit in I bought the car for $1500.), but it is even 

more crucial in pro-drop languages when core roles are often unexpressed. The learning model 

must be aware of the core roles in order to know which semantic pieces to recover from context, 

and thus to realize which constructional constituents are omissible.  

Core semantic roles are not explicitly marked in ECG schemas and are given by schema-

writing convention (local roles are generally taken as core). In an adult grammar, different verbs 

put different demands on how core arguments are expressed(e.g. buy requires the buyer and 

goods to be expressed, while sell requires the seller and goods to be expressed). By convention one 

RD per core role is evoked by verbs to notate such differences14. Obviously, this is part of the 

grammatical knowledge a learner has to acquire and the model is not supplied with these verb-

specific RDs in its starting lexicon of verbs.  

abstract construction VERB 
 meaning: PROCESS 
 

 construction GEI3 
 subcase of VERB 
 form 
  self.f.orth <-- “gei3” 
 meaning : GIVE 

 

schema TRANSFER 
 subcase of ACTION 
 roles 
  giver : @Entity 
  recipient : @Entity 
  theme : @Entity 
 constraints 
  giver <--> protagonist 

 schema GIVE 
 subcase of TRANSFER 
 roles 
  giver : @Animate 
  recipient : @Animate 
  theme : @Manipulable_Inanimate_Object 

 
Figure 2.4  Processes, like other schemas, are described in a schema hierarchy and have core 
semantic roles (not explicitly marked in ECG). Shown here is the verb gei3 (give), which has a 
meaning of GIVE. 
 

                                                           
14 FrameNet (Baker et al., 1998) makes a further distinction between the unexpressed or Null Instantiated arguments: in 
the case of I bought a car for $1500, there is a definite, specific seller even if it is unnamed, whereas in Have you eaten?, a 
generic instance of meal is pictured. These two cases are referred to as Definite Null Instantiation (DNI) and Indefinite 
Null Instantiation (INI) respectively.  
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Events and clauses 

An event is made up of one or more actions in different temporal configurations. An  

event descriptor characterizes events by the overall scene as well as the profiled process, profiled 

participant and modifiers. The separate designation of event type from profiled process provides 

added compositionality: an INTENDED_TRANSFER scene may have a BAKE event as its profiled 

process, as in Mary baked me a cake, or a CAUSED_MOTION may have a HIT event (which does 

not always entail motion) as its profiled process, as in hitting the ball out of the ball park. 

schema EVENT_DESCRIPTOR 
 roles 
  event_type : Process 
  profiled_process : Process 
  profiled_participant : @Element 
  event_structure : Event_Structure 
  modifiers : Modification 
  spatial_setting 
  temporal_setting 
  affectedness : @Affectedness 
  referent : @Process 

 
Figure 2.5  The EVENT_DESCRIPTOR schema, which characterizes finite clauses,  has 
distinct roles event_type and profiled_process that allow a full range of complex events 
to be described.  

 
Putting it together, prior to the resolution of references to context, the utterance ni3 gei3 

yi2 specifies “the addressee gives to aunt whatever it is that the speaker and addressee are jointly 

attending to”. This is accomplished by combining a subject with a DITRANSITIVE_VP 

construction that specifies the syntactic and semantic relations between the words, shown in 

Figure 2.6.15 Though the Mandarin ditransitive has stricter semantic restrictions on its verb, its 

central case is comparable to the English one. There are three blocks in this ditransitive 

construction: constructional, form, and meaning. Ignoring the numbers in brackets for the 

                                                           
15 This DITRANSTIVE construction and others in this chapter are vastly simplified for the purpose of illustrating 
features in ECG. The full grammar written for the parsing exercise described in Section 2.5 uses a more complicated 
grammar hierarchy and slightly different meaning representations to enhance constructional compositionality.  
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moment, the constructional block specifies that there are three constituents in this construction: 

the double objects, which are REF_EXP with local names n1 and n2, and one VERB with a local 

name v.  

construction DITRANSITIVE_VP 
 subcase of TRANSITIVE_VP 
 constructional 
  constituents 
   v : VERB 
   n1 : REF_EXP  [0.6, 1.0] 
   n2 : REF_EXP  [0.4, 0.7] 
 form 
  constraints 
   v.f meets n1.f 
   n1.f meets n2.f 
 meaning : EVENT_DESCRIPTOR  
  evokes TRANSFER as transfer 
  evokes RD as rd1 
  evokes RD as rd2 
  evokes RD as rd3 
  constraints 
   self.m.event_type <--> transfer 
   self.m.profiled_process <--> v.m 
   transfer <--> v.m 
   self.m.profiled_participant <--> transfer.giver 
   transfer.recipient <--> n1.m 
   transfer.theme <--> n2.m 
   rd1.referent <--> v.m.giver 
   rd2.referent <--> v.m.recipient 
   rd3.referent <--> v.m.theme 
   rd3.discourse_role <-- @Attentional_Focus 

  

abstract construction TRANSITIVE_VP 
 subcase of VERB_CLAUSE 
 meaning: EVENT_DESCRIPTOR 

 
Figure 2.6  The EVENT_DESCRIPTOR schema in use in the DITRANSITIVE_VP 
construction. Notice that the event_type is a TRANSFER scene while the 
profiled_process can be made more specific by the verb. In this case the transfer scene is 
unified with the verb meaning, but it need not be in other constructions, such as the caused 
motion construction. 

 

The form block constrains the ordering of these three constituents, ensuring that the verb 

v appears immediately before the first object n1 and n1 immediately before the second object n2. 

The meaning of this verb phrase is an EVENT_DESCRIPTOR schema whose scene type is a 
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TRANSFER scene. This is accomplished through the first two constraint lines highlighted in bold 

in Figure 2.6. The profiled_process is specified by the meaning of the verb, which is constrained 

to be a verb that has a transfer meaning in the next bolded constraints. The core roles of the 

transfer scene are handled in the next three unification constraints. The profiled_participant in 

this event is to be supplied by the subject, but whatever it is, it is also the giver in the scene. As 

expected, the recipient and theme in the transfer scene are supplied by the two referring 

expressions. Finally, three RDs are evoked by this construction for the three core roles along with 

any particular contextual restrictions. For the purpose of illustration, neither the giver nor 

recipient is restricted, but the theme has to be the attentional focus of the current discourse.  

The giver is supplied by the subject in the ACTIVE_SUBJECT_VP construction shown in 

Figure 2.7. Recall that the profiled_participant of  the event described by the DITRANSITIVE_VP 

construction is already unified with the giver role, so all that the ACTIVE_SUBJECT_VP 

construction needs to do is to unify the subject with the profiled_participant in the VERB_CLAUSE 

construction. 

construction ACTIVE_TRANSITIVE_VP 
 subcase of CLAUSE 
 constructional 
  constituents 
   s : REF_EXP  [0.3, 1.0] 
   vp : VERB_CLAUSE 
 form 
  constraints 
   s.f before vp.f 
 meaning : EVENT_DESCRIPTOR 
  constraints 
   self.m <--> vp.m 
   self.m.profiled_participant <--> s.m 

 
Figure 2.7  An ACTIVE_TRANSITIVE_VP construction that handles voicing exploits 
compositionality in ECG. 

 
As explained briefly in Chapter 1, the learner begins with three the abstract categories: 

MORPHEME, PHRASE, and CLAUSE, which roughly correspond to “a word”, “parts of  an 
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utterance”, and “complete utterance”. The learning model uses the EVENT_DESCRIPTOR schema 

as the default meaning of a CLAUSE for extensibility, but the remainder of this dissertation will 

skip the display of the EVENT_DESCRIPTOR schema and use the profiled_process (which in most 

basic cases is the same as the event_type) directly as the meaning pole of clauses for brevity.  

Optional, omissible and extraposed arguments  

It was introduced in Chapter 1 that two interesting features about Mandarin Chinese is its 

common omission of arguments and its relatively flexible phrasal structure that allows frequent 

topicalization and fronting of the object. These two phenomena must be accommodated by any 

grammar formalism. ECG includes two representational mechanisms, supported by underlying 

processing machinery, that handle fronting and omission. We first introduce the representation 

here, and discuss the processing support in Section 2.3. 

As shown in the DITRANSITIVE_VP construction in Figure 2.6, two of its constituents (n1 

and n2) have bracketed probabilities to the right of its type constraint. Each set of bracketed 

numbers for constituent β denote  

[P(β is expressed), P(β is expressed locally | β is expressed)] 

For short we will henceforth refer to the two probabilities as the locality probabilities. For 

example, the [0.6, 1.0] next to the constituent n1 indicates that the first object in the 

DITRANSITIVE construction is expected to appear 60% of the time and always in its specified 

location inside the construction and never extraposed. This is in contrast with the second object 

n2, which is assigned [0.4, 0.7], indicating that it is not only expected to be present 40% of the 

time, but is also expected to show up outside the normal DITRANSITIVE_VP construction in 30% 

of the cases when it is overtly mentioned. These probabilities are chosen to reflect the ability to 

extrapose or front the object in Mandarin, as in 
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ba3 tao3 gei3 yi2 (‘CVobj peach give aunt’) 

The fronting construction that puts the fronted object together with the VP makes use of 

another ECG keyword, extraposed. While constructions with an extraposed constituent are not 

learned by the current learning model as implemented, they can be with an easy extension to the 

model. More importantly, these constructions are introduced here to demonstrate the 

representational power of ECG and its suitability as a grammar representation for learning 

models. In the TRANSITIVE_VP_WITH_FRONTED_OBJECT construction shown in Figure 2.8, the 

object is marked with the extraposed keyword. During processing, the extraposed object sets up 

a syntactic context in which later constituents (in this case the TRANSITIVE_VP construction) can 

have one of its constituents expressed non-locally.  

 

construction TRANSITIVE_VP_WITH_FRONTED_OBJECT 
 subcase of VERB_CLAUSE 
 constructional 
  constituents 
   ba : BA3-CV 
   extraposed obj : REF_EXP 
   vc : TRANSITIVE_VP 
 form 
  constraints 
   ba.f meets obj.f 
   obj.f meets vc.f 
 meaning : EVENT_DESCRIPTOR 
  constraints 
   self.m <--> vc.m 
   ba.prototransitive <--> vc.prototransitive 
   ba.prototransitive.proto_patient <--> obj.m 
   vc.m.affectedness <-- @Affected 

 
Figure 2.8  An object-fronting construction in Mandarin demonstrates the use of the 
extraposed keyword. It sets up an expectation that one of the constituents of the vc 
(TRANSITIVE_VP) is expressed nonlocally. 
 

 
Unlike omissible or extraposed constituents, which generally constituent the core parts of 

the meaning, some constituents are truly optional. These are sometimes referred to as adjuncts 

but in this work are inclusive of modifiers (nominal and clausal) and sometimes grammatical 
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morphemes. These are marked in ECG with the optional keyword and can have an associated 

probability of being expressed. For example, an optional post-verbal aspect marker may be added 

as a constituent of the  DITRANSITIVE_VP2 construction as shown in Figure 2.9, with a locality 

probability P(β is expressed) specified at 0.5.  

The probabilities shown in the examples are based on a grammar writer’s intuitions. As a 

proof of concept, I carried out an exercise jointly with John Bryant in learning these parameters 

about a CHILDES corpus in Mandarin Chinese. Those results are described in Section 2.5.  

 

construction DITRANSITIVE_VP2 
 subcase of TRANSITIVE_VP 
 constructional 
  constituents 
   v : VERB 
   optional post_asp : POSTVERBAL_ASPECT_MARKER [0.5] 
   n1 : REF_EXP  [0.6, 1.0] 
   n2 : REF_EXP  [0.4, 0.7] 
 form 
  constraints 
   v.f meets n1.f 
   n1.f meets n2.f 
 meaning : EVENT_DESCRIPTOR  
  evokes TRANSFER as transfer 
  evokes RD as rd1 
  evokes RD as rd2 
  evokes RD as rd3 
  constraints 
   self.m.event_type <--> transfer 
   self.m.profiled_process <--> v.m 
   transfer <--> v.m 
   self.m.profiled_participant <--> transfer.giver 
   transfer.recipient <--> n1.m 
   transfer.theme <--> n2.m 
   rd1.referent <--> v.m.giver 
   rd2.referent <--> v.m.recipient 
   rd3.referent <--> v.m.theme 
   rd3.discourse_role <-- @Attentional_Focus 

 
Figure 2.9  A DITRANSITIVE_VP2 construction that allows probabilistic omission of its 
objects as well as an optional postverbial aspect marker. 
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Discourse and speech acts 

One final aspect of the grammar representation in this model is the description of a 

segment of discourse. The DISCOURSE_SEGMENT schema, often shortened as DS, provides a 

simple way of notating the identity of the speaker, addressee, attentional focus, and speech act. 

One DISCOURSE_SEGMENT schema is attached to the ROOT of each analysis to help ground the 

analysis in context. 

Speech acts are also represented as schemas. The general SPEECH_ACT schema has roles 

for the speaker, the addressee, the content of the speech act as well as the forcefulness of the tone. 

Speech acts are further divided into their subtypes: explaining, answering, approving, admonishing, 

requesting action, requesting answer, calling, exclaiming, and practicing. Each is represented as a 

schema with roles that further elaborate the interchange. More about why these schemas are 

chosen and how they are used to annotate the learning data will be described in Chapter 7. 

schema DISCOURSE_SEGMENT 
 roles 
  speaker : @Human 
  addressee : @Human 
  attentional_focus : @Entity 
  speech_act : SPEECH_ACT 
 constraints 
  speaker <--> speech_act.speaker 
  addressee <--> speech_act.addressee 

 
Figure 2.10  The DISCOURSE_SEGMENT schema is attached to the root of each analysis. 

 

schema SPEECH_ACT 
 roles 
  speaker : @Human 
  addressee : @Human 
  content : Event_Descriptor 
  forcefulness : @Forcefulness 

 
Figure 2.11  The SPEECH_ACT schema gives additional details about the speech act, 
including the content and forcefulness (as indicated by intonation). Subtypes of speech acts 
elaborate on the details of the speech act.  
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2.2 Simulating events in context to update the world model 

A rich context model is important for understanding language, particularly when 

arguments are omitted from utterances and have to be retrieved from context. The last section 

discussed the mechanisms (RD, or referent descriptors) with which language is tied to context. 

This section describes how the context model is built and maintained dynamically in order to 

assist the understanding of child and parent utterances and bootstrap grammar learning. 

A child learner has access not only to visual, audio, and tactile input during her daily 

interaction with her caretaker, but also to her internal states and desires (e.g. being hungry, 

wanting to eat, or wanting to be held). These sorts of situational information undoubtedly factor 

into language learning in unexpected ways but are beyond the scope of the current context model. 

There are, however, two basic functions that the model of context must provide: 

1. Remembering a recent history of mentioned and enacted actions so that linguistic 

references to entities and events can be resolved against context. 

2. Tracking the state of people and objects in the surrounding (e.g. locations, postures, 

and possessions), so that the plausibility of future events can be evaluated. 

The current system relies on a simplistic relational database to store facts about entities 

and relations per time slice and provide limited capability of maintaining knowledge through 

time. The details of how the context model is implemented are irrelevant for current purposes 

except for the basic structure of the context model shown in Figure 2.12. The model is organized 

by temporal durations into intervals. Contained in intervals are context elements and relations on 

these context elements. Roughly speaking, noun phrases refer to context elements whereas finite 

clauses and verbs refer to intervals. Intervals can be contained inside another interval, as shown 

by downward arrows in the diagram: all relations that are true in the parent interval are expected 
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to hold true in the sub-interval. Horizontal arrows are temporal links representing propagation 

through time: only a subset of (predefined) relations persists through time.  

The top-most interval, Dialogue, represents the duration of the entire dialogue and 

records facts that hold true throughout the whole dialogue, such as who the participants are, what 

objects are around, and relations between them. Other relations such as locations of objects 

change throughout time and are recorded in the Start interval. As expected of a transcript of 

parent-child interaction, there are interleaving events and utterances (labeled DS for discourse 

segment). Events can have sub-components and these are represented using the same sub-interval 

mechanisms. For any given utterance, the previous history of events and discourse segments 

leading up to it are available to the analyzer and the learning model. The next two sections 

describe how the system utilizes this information to aid language understanding. The rest of this 

section gives a quick sketch on how the context model is dynamically updated throughout the 

course of a dialogue from the transcribed learning data. 

 

Figure 2.12  The context model supports the analysis process by tracking sequences of events 
and dialogues and is arranged hierarchically using temporal intervals. Relations in a parent 
interval (e.g. Setting) hold true in a child interval (e.g. Start) unless explicitly blocked. This 
model of context is used to maintain (non-probabilistic) beliefs over time and is updated 
using event annotations in the learning corpus and a simple simulator. 
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Figure 2.13  Utterances and event annotations surrounding the ni3 gei3 yi2 utterance. 16 
 
 

The context model contains information about ongoing events, and at the start of a 

dialogue, the context model contains only the Setting and Start intervals. The contents of these 

intervals and the subsequent event and discourse intervals have to be created from the input data, 

which are transcribed dialogues. Unfortunately such rich annotations are not available as part of 

the Beijing CHILDES corpus and had to be added manually. The added annotations include 

information about the surroundings (e.g. objects within the room), initial settings, and ongoing 

events. With no video or audio transcript available, event annotations are inserted whenever an 
                                                           
16 Compound words such as a1+yi2 come pre-segmented as part of the CHILDES corpus and most are left intact in the 
learner’s lexicon as fixed chunks . Other pre-segmented nouns such as xi1+gua1 (watermelon) and verbs such as 
hao3+kan4(pretty, lit. good looking) or liu2+xue3 (bleed, lit. stream blood) are left as compound words in the learning 
input as well as the starter lexicon. They seem to be collocated frequently enough that they should be made available to 
the learner as fixed phrases. Exceptions are verb + resultative particle compounds such as zou3+kai1 (walk away) and 
jian3+qi3+lai2 (pick up, lit. pick up towards) which are deemed inappropriate as pre-existing knowledge for the learner. 
The pre-segmentation is thus removed and the learner has to learn the combinations.  
 

 <event cat="Fetch" id="fetch01"> 
  <binding field="fetcher" ref="CHI"/> 
  <binding field="fetched" ref="peach"/> 
 </event> 
 
 MOT: ni3 rang4 a1+yi2 chi1 (you let aunt eat) 
 
 <event cat="Offer" id="offer02"> 
  <binding field="offerer" ref="CHI"/> 
  <binding field="offeree" ref="INV"/> 
  <binding field="offered" ref="peach"/> 
 </event> 
 
 MOT: ni3 gei3 yi2 (you give aunt) 
 
 <event cat="Give" id="give03"> 
  <binding field="giver" ref="CHI"/> 
  <binding field="recipient" ref="INV"/> 
  <binding field="theme" ref="peach"/> 
 </event> 
 
 INV: xie4 xie4 (thank you) 
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action is judged to have taken based on the ongoing dialogue. Any reasonable action in each 

situation suffices for the purpose of modeling grammar development. It is important to note, 

however, that events are annotated according to their times of occurrence. This means that the 

events mentioned in utterances, especially commands, are not always found in context.  

Example event annotations, as inserted around the utterance ni3 gei3 yi2 (you give aunt), 

are shown in Figure 2.13 in XML (see Appendix B for the complete transcript). Each event is 

specified by an event type and a unique ID17 . Highlighted in bold in Figure 2.13 is the event 

fetch01 of category Fetch. The annotated event types are drawn from the ontology, whose 

hierarchy is assumed to mirror that of the schema process hierarchy (recall that the ontology is 

expected to contain linguistically relevant information and more). Participants are specified on 

the event, such as the fetched role being filled by the peach18.  

Because the learning model requires that the context model not only record events but 

also track the entities, each piece of event annotation is further processed by a simulator that 

updates the context model with consequences of the action. Compatible with the idea of 

simulation-based understanding but drastically simplified for current purposes, the simulator 

uses a given set of scripts to make inferences about pre-conditions and post-conditions. For 

example, at the end of the Offer event, the child retains possession of the peach, whereas at the 

end of the Give event, the investigator obtains possession of the peach. Though this is not 

currently done, the same simulator can be used to evaluate different interpretations of an 

utterances by checking if mentioned events have satisfiable pre-conditions and can be carried out. 

2.3 Finding the best-fit analysis of an utterance given limited context 

                                                           
17 specified in XML as event objects with the properties cat and id respectively 
 
18 specified in XML as binding objects using properties field and ref, respectively.  
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The ability of learning model to learn from a situated utterance depends greatly on its 

ability to determine the most appropriate interpretation of the utterance. Effortless as language 

comprehension may seem in adults, this is no simple task due to inherent ambiguity in natural 

language. There may be multiple interpretations of an utterance even when constructions have 

detailed form and meaning constraints. Grammar, semantic judgment, situational and discourse 

context as well as conventional usage all play a role in this selection process.  

Consider the running example, ni3 gei3 yi2 (you give aunt). The strict ordering 

constraints and type restrictions (e.g. that the theme must be a Manipulable_Inanimate_Object) 

of the DITRANSITIVE_VP leaves little room for ambiguous interpretations. However, more 

generous type restrictions (e.g. that the theme can be any Physical_Object, including Human) are 

expected in a more sophisticated, adult-like grammar. In this case, there are at least two 

interpretations of the sentence ni3 gei3 yi2, one where the aunt is analyzed as the recipient, and 

the other where the aunt is the theme. It may be semantically unreasonable for an aunt to be a 

theme and much more reasonable for her to be a recipient, and this is exactly the sort of 

information that needs to go into choosing the correct analysis. Another less obvious source of 

information has to do with grammar usage statistics — how often the theme is omitted versus 

how often the recipient is omitted, as well as how often the first object of the ditransitive is filled 

by a pronoun versus a common noun or a proper noun, etc. A third source of information comes 

from the situational context surrounding the utterance: if the mother is gesturing at a peach, or if 

the child has just given the peach to the aunt, then there is an obvious better interpretation of the 

utterance.  

A language understanding system needs to concretize these intuitions and the learning 

model uses Bryant’s best-fit constructional analyzer (Bryant, 2008a) to determine the best 
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interpretation or analysis of each utterance in context. Best-fit refers to a quantitative measure of 

integrating multiple sources of information, in this case constructional, semantic, and contextual 

cues. Context-free grammar formalisms have long been pragmatically extended with probabilities 

on rules, referred to as Probabilistic Context-Free Grammars (PCFG) in traditional parsing 

systems. The idea is similar in construction grammar, but probabilities can be attached to both 

constructional constituent as well as semantics roles. Broadly speaking, the task of the analyzer is 

to find the most probable analysis given a grammar, a sentence, and its context: 

argmax P( | , , )
a

a a sentence grammar context=  

The Bryant analyzer uses a left-corner parsing algorithm which maintains a stack of 

possible, competing analyses as it incrementally processes the input. The reader can refer to 

(Bryant, 2008a) for how the analyzer decomposes the above probability into manageable factors 

that can be estimated incrementally, but the following example appeals to the intuition behind the 

parsing algorithm. As the analyzer encounters each word in the input, it tries its best to connect it 

to the current best-guess constructional tree, as illustrated in Figure 2.14. After the first two words 

in ni3 gei3 yi2, one of the several competing analyses in Figure 2.14 looks like a fragment of the 

ideal analysis in Figure 2.1: the analyzer has built up a partial structure over the ni3 and gei3, and 

now needs to decide what to do with yi2. It needs to push a lexical construction onto the stack to 

cover the word, and in this case it is straightforwardly YI2 (this may not be so easy a decision if 

there are homonyms in the grammar). The analyzer can then attach YI2 to the DITRANSITIVE_VP 

as constituent n1 (semantically the recipient), or it can decide that n1 is omitted and attach YI2 as 

constituent n2 (semantically the theme).  
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Figure 2.14  Incremental parsing: the analyzer maintains a stack of possible analyses and 
decides the best parsing operation to take at any given point. One possible analyses after the 
first two words  is shown above, and the ideal analysis (with the Aunt filling the recipient 
role of the GIVE schema) can be achievable if the right steps are taken. Another competing 
analysis going forward includes the one where the Aunt fills the theme role of the GIVE 
schema. Other competing analyses at this stage of analysis include one where ni3 is the 
subject and gei3 is a benefactive coverb. 

 

Constructional, semantic, and contextual cues guide the choice between various 

operations, and the Bryant analyzer computes the cost of each operation based on these cues. For 

the purpose of the current discussion, four sets of parameters in particular are relevant: 

• The locality probabilities, i.e. P( | )expressedβ α and P( | , )local expressedβ β α , where 

both expressed and local are binary variables. This is the set of probabilities given in 

brackets in the ECG notation discussed in the last section: the probability that a 

constituent β of construction α is expressed (as opposed to omitted), and the 

probability that the constituent occurs locally if it is expressed.  

• The constructional filler probabilities, P( | , )filler expressedβ β α . This refers to the 

probability that a constituent β of construction α is realized as fillerβ if the constituent 

is expressed. An example is the probability that the constituent v in the 

DITRANSITIVE_VP is filled by the construction GEI3 (as opposed to other verbs, for 

example). Given this powerful piece of statistical information, constructional 
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categories can technically be defined purely probabilistically as distributions over 

constructional fillers. However, we contend that with this approach, the number of 

parameters associated with the grammar is greatly increased and important linguistic 

insights are lost, so in this work both concrete and abstract constructions are used. 

• The semantic presence probabilities, P( | , )role ffilled role f . This refers to the 

probability that a particular rolef of a frame f is filled. This probability is particularly 

important for properly evaluating the semantic fit for infrequently filled roles, such as 

a non-core argument like instrument. 

• The semantic role probabilities, P( | , )frole filler f . This refers to the probability 

that a particular filler filler fills a role rolef in the frame f. One example of such a 

probability is that of the aunt filling the recipient role of the GIVE frame. Obviously, 

in a unification grammar representation of deep semantics, the same filler may 

participate in multiple frames. For example, the giver in a GIVE frame may also be the 

force_supplier in a FORCE_APPLICATION frame if a physical handing-off of an object 

is described. In practice an aggregating function such as averaging is used to 

determine the score of a particular semantic binding.  

The last two probabilities make up the semantic model in the system, providing the 

commonsense or typicality judgment of events. Using probability measures derived from these 

parameters, the analyzer examines the trade-offs between interpretations and chooses the most 

likely analysis. The returned analysis consists of a constructional tree that describes constituency 

relations, a SemSpec containing meaning bindings, as well as a set of proposed referents for each 

RD. In addition, the model of context is able to provide even richer structure than the analyzer is 
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designed to retrieve from context, and this extra post-processing step, termed context fitting, is 

described in the next section.  

From a learning model point of view, it is important to distinguish which kinds of 

statistical knowledge can be presumed of the learner in the initial stage. The semantic model, 

assumed to be built up through interaction with the world and experience with events, is pre-

existing knowledge for the learning model. On the other hand, the other two sets of parameters, 

the constructional filler probabilities and locality probabilities, are linguistic parameters and have 

to be learned. Chapter 6 is devoted to describing how the learner learns these and other statistics 

on the input.  

Robust parsing 

One crucial but yet unmentioned topic is that of analysis under noise, such as disfluencies 

in real speech or an incomplete or incorrect child grammar. Under such conditions the analyzer 

cannot expect to achieve a well-formed single-rooted constructional tree to span the entire input. 

Instead it tries to recognize as many coherent fragments as possible. Again an appeal to intuition 

is used here, and the reader is strongly encouraged to get the details from Chapter 8 in (Bryant, 

2008a). 

Assume that the learning model has acquired a lexically-specific chunk ni3 gei3 by rote 

memorization, creating a NI3-GEI3 construction with only two constituents. When the learner 

now attempts to analyze ni3 gei3 yi2, a possible analysis after the first two words look like part (a) 

of Figure 2.15. The analyzer is able to use the learned construction NI3-GEI3 to cover the first two 

words but it now has two choices going forward: it needs to find a way to connect yi2 to NI3-GEI3 

or give up on it and make a separate constructional tree beginning with yi2, as illustrated in (b) 
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and (c) respectively. In order to connect  yi2 to NI3-GEI3, it needs to propose19 another 

construction that has both as constituents — this is shown in (b) as the bottom-most question 

mark. This is obviously not feasible if no such construction exists, but there are associated costs 

even if it does. On the other hand, the analyzer can choose to abandon (at least temporarily) the 

current constructional tree and start a new one at the next word, as in (c). However, the analyzer 

has to pay a user-set penalty for each additional root in the analysis so that the cohesiveness of the 

analysis is properly traded-off with the cost of using an possibly infrequent or unlikely 

construction to put the words together. The likely result of (c), given that yi2 is the last word in 

the utterance, is an analysis with two roots (NI3-GEI3 and YI2) with no semantic connections 

between them.  

In fact, the current analyzer has the ability to put a current constructional tree on hold, 

start and finish a new constructional tree, and then go back and continue with the first tree, 

essentially skipping over a root. This is extremely useful for analyzing disfluent speech, such as I 

went to the, uh, store yesterday, where a complete interpretation is achievable using the regular self 

motion construction despite an intervening chunk of interjections. It is also helpful in recovering 

a coherent interpretation if the grammar is limited in coverage. Consider the sentence Put the frog 

on the napkin in the box. If the grammar has no coverage for reduced relative clauses and the 

analyzer does not have the ability to skip roots, the only possible interpretation is one where the 

goal of the put action is the napkin. Using the root skipping feature, a competing analysis — the 

correct one, where the goal is the box — can be derived.  

                                                           
19 The term propose , like push and attach, is used in the technical terminology of left-corner parsing. It indicates the 
creation of a new stack state and does not involving grammar learning as described in this dissertation.  
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a)  

 
b)  

 
c )  

Figure 2.15  Robust parsing: in a situation with noisy input (e.g. disfluencies or incomplete 
grammar), the analyzer may (a) try to create a single-rooted analysis regardless or (b) decide 
to not connect the next word to the current constructional tree and instead start a new 
constructional tree for the next word, paying a penalty in the process. The resulting analysis 
of (b) is one with multiple constructional trees, also referred to as a constructional forest or a 
multi-rooted analysis. 

 

The learner model relies critically on the analyzer’s robustness feature since it enables the 

learner to understand utterances even without a  complete grammar. From these analysis 

fragments the learner can create new form-meaning mappings based on relations found in 

context (e.g. that the aunt is the recipient in context enables a new construction to be composed 

between NI3-GEI3 and YI2). The recovery of meaning from context is the subject of the next 

section. 

2.4 Fitting the best analysis to full context 

Just as REFERENT_DESCRIPTORs, or RDs, are designed to capture linguistic references to 

entities in context (or reified processes, e.g. an accident or the robbery), EVENT_DESCRIPTORs are 
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created to capture linguistic descriptions of events and maintain their correspondences to events 

in context. Unfortunately, the current implementation of the analyzer is unable to take full 

advantage of the context model and returns as a result only a type-compatible list of candidates 

for each RD, leaving events unresolved.  

The main thrust of this work, on the other hand, is about how the rich structure of events 

in context can be used to bootstrap grammar learning, so a post-processing of the analyzer’s 

output is necessary. After obtaining a best-fit analysis of an utterance, the learner currently 

performs a greedy search over the context model to match mentioned processes to prior events. 

In top-down order established by the precedence below, slots are searched recursively from an 

event instance to its roles in order to preserve the structural integrity of events. This post-

processing step is referred to as context-fitting in this work. 

 
Casual observation of the Beijing corpus and of the particular sets of dialogues chosen as 

learning input for this model found that parents rarely label actions as the actions unfold. Most 

action descriptions appear in the form of announcing an intention (e.g. Let me get you some rice) 

or a request for the child to perform an action (e.g. Remember to spit out the bones). Naturally, 

then, complete match of event descriptors to events preceding an utterance are infrequent. 

Though children may be able to use post-utterance situational context to infer word and 

utterance meaning, to be conservative, the learner relies only on events that occur temporally 

before the utterance, leading to two other forms of context matches that may be exploited: 

Context fitting precedence: 
 
 DS > Discourse Participant > Complex Process > 
 Structured Simple Process > Unstructured Simple Process > 
 Structured Entities > Unstructured Entities 
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• partial matches: given the repetitive nature of parental utterances and play sessions, 

the same event may often be described multiple times using different lexical items 

(e.g. pick up and take) or from different perspectives (e.g. give and take). Similarly, 

similar actions may be performed on multiple objects (e.g. picking up a bear and 

picking up a monkey). This kind of repetition can be exploited by allowing partial 

matches of an event to context as long as the types of event are closely related 

according to the schema hierarchy. Noise is unavoidably introduced into the learning 

model through partial matches, but we believe this to be consistent with mistakes a 

child may make in reading other people’s intention.  

• precondition matches: one action often enables another action to be carried out. This 

is the notion of preconditions in action planning in classic Artificial Intelligence. The 

picking up of a toy, for example, enables the child to then give it to her caregiver. The 

same action obviously also enables the child to then throw the toy onto the ground, 

so one action by itself may not be a good predictor of the next one, but it can be used 

to reduce the noise in the partial matching process. Though not current supported, 

the use of precondition matching is an easy extension to the current simulator 

implementation.  

At the end of the context-fitting process, each slot is assigned a context element or event, 

or null if no match is found. In the multi-rooted analysis from Figure 2.15 (b), there are two 

separate slots for the recipient role of the GIVE schema and the meaning pole of YI2 (‘aunt’) since 

no semantic bindings are specified grammatically. However, after context fitting, the investigator 

(i.e. aunt) is found to be an appropriate contextual filler of both slots. The discovery of new 
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semantic relations from context is an important concept for the composition operation that puts 

together new constructions, which will be discussed in Chapter 4. 

2.5 Analyzer Demonstration: analyzing Mandarin Chinese  

Now we turn to an attempt at analyzing a corpus of parent-child interaction in Mandarin 

Chinese using a hand-written grammar in hopes of demonstrating both that the chosen grammar 

formalism is sufficiently powerful to capture linguistic knowledge pursued by the learning model 

and that the analysis mechanism is able to generate the desired analyses in the ideal grammar 

scenario. There are two parts to this exercise, the first of which is an evaluation of the 

constructional analyzer on the child language corpus using the handwritten grammar, and the 

second of which is an attempt to learn some parameters associated with the grammar in a 

supervised way. This work, carried out in collaboration with John Bryant and updated for this 

dissertation, has also been described in (Bryant, 2008a) with emphasis on algorithmic extensions 

to the analyzer to provide robust analysis in conditions of incomplete grammar and disfluencies 

in natural speech. 

The data consists of 35 short dialogues and 4 long dialogues taken from the Tardif Beijing 

corpus in CHILDES (MacWhinney, 2000; Tardif, 1993; Tardif et al., 1997). Data from four 

subjects make up these dialogues. Short dialogues are manually selected on the basis of forming a 

coherent episode of interaction. Selected utterances are spaced closely together temporally in the 

transcript and contain generally no more than two ongoing activities, e.g. eating dinner and child 

being distracted with some toys, whereas the long dialogues are contiguous segments of 

transcripts taken from the beginnings and ends of recording sessions. Each short dialogue 

contains on average 11 clauses and each long dialogue contains on average 80 clauses. Of those 
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705 clauses, 132 contain only interjections and are not used for evaluation purposes. The mean 

length of the remaining 570 content clauses is about 3.58 words. Clauses are obtained by 

separating transcribed utterances wherever pauses are notated in the transcript; this is done for 

convenience and uniformity since naturalistic data often contains run-on sentences of different 

speech acts. For the purpose of the parameter learning exercise, the 35 dialogues and 2 of the long 

dialogues are used as training data and the remaining 2 long dialogues are used as test data. 

In order to automatically evaluate the correctness of the analyses, frame-based semantic 

“gold standard” annotations are manually added for each utterance. The semantic annotations are 

added for both verbal arguments as well as argument structure arguments, as shown in Figure 

2.16 for the sentence mo3 wai4+tou2 ke3 jiu4 bu4 hao3+kan4 le a (‘if you apply [the lotion] to 

your forehead then you won’t be pretty’). 

 

 
 
Figure 2.16  Gold standard annotation of the utterance mo3 wai4+tou2 ke3 jiu4 bu4 
hao3+kan4 le a (‘if you apply [the lotion] to your forehead then you won’t be pretty’). Both 
verb arguments and argument structure (phrasal) arguments are annotated, as shown in the 
bottom four annotations for the two clauses. Bracketing information is supplied (verb 
brackets shown in thick solid lines, phrasal brackets in thin solid lines, and any additional 
words or arguments in double-lines) as well as any interesting sentential constructions (e.g. 
conditionals).  
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As shown in the bottom half of the diagram, each verb phrase is annotated with two 

layers of annotation: that the verb mo3 has a meaning of APPLY, whose arguments are the child 

and the child’s forehead, and that the phrase mo3 wai4+tou2 has a meaning of a 

CAUSED_MOTION scene whose arguments, as it turns out, overlap completely with the verb 

arguments. The same is done for the second half of the utterance. These four annotations in the 

bottom are the bulk of the scoring criteria used for the output of the constructional analyzer. The 

correctness of the event type as well as the argument types are counted in the core argument 

scores, with minor adjustments for argument omission. Further details of the scoring algorithm 

are given in Chapter 7. 

For annotation completeness, additional linguistic phenomena are noted, e.g. the 

conditional with the first event (applying lotion to the forehead) as the premise and the second 

event (not being pretty). This information, however, is not used in the final scoring due to the 

inadequacy of the handwritten grammar20.  

The Mandarin Chinese grammar is written based on native speaker’s intuition and the 

short dialogues alone. The idea is that a reasonable grammar should extend with statistical 

information to cover unseen data. The grammar has 263 schemas for common event types (e.g. 

eating, playing, throwing, being naughty) and an additional 174 ontology types for common 

entities (e.g. doll, soup, rice, chairs). These are paired with about 609 constructions of which: 

• a few are blanket constructions for handling unknown words, interjections and 

reduplication 

• 106 are abstract and define phrasal and lexical category structure. 

                                                           
20 As it turns out, conditionals and other clausal relations in Mandarin are very difficult to deduce grammatically. Often 
conditionals are implied by temporal conjunctions, and temporal relations are implied by phrasal ordering. Those 
interested can refer to (Yang, 2007) for an account of conditional constructions in Mandarin. 
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• 73 are concrete phrasal or lexical constructions including argument structure 

constructions, noun phrase constructions, modifier constructions and a few 

sentential constructions.  

• 283 are open class lexical items such as verbs and nouns (covering all dialogues) 

• 135 are closed class function words 

Analyzing the corpus with the handwritten grammar 

Without learning any additional statistical parameter except for the grammar writer’s 

expected omission probabilities of arguments, the analyzer is used to analyze the 700 or so 

utterances without using the robustness feature. About 136 utterances fail to be analyzed due 

mostly to insufficient coverage of the grammar. Of the remaining 560 or so utterances in the 

training and test sets, the analyzer achieves the results reported in Figure 2.17 using the automatic 

scoring. 

 Core Argument 
Precision 

Core Argument 
Recall 

Core Argument 
F-score 

Resolution  
F-score 

training set 
(35 short + 2 long) 0.824 0.744 0.782 0.685 
 
test set 
(2 long dialogues) 0.819 0.724 0.768 0.785 

 
Figure 2.17  Automatic scoring of the analyses of child-directed utterances. Core argument 
scores are based on the type constraints given in the SemSpec, whereas resolution score are 
based on the resolution results (entities in context) suggested by the analyzer. 
 

The analyzer is expected produce a different number of semantic bindings than is given 

in the gold standard annotation, so a modified precision/recall measure is used to score the 

returned analyses, the details of which are given in Section 7.2. Core arguments are scored on the 

basis of the type constraints given in the SemSpec, whereas resolution results are scored based on 

the context elements suggested by the analyzer for each RD. 
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As can be observed, the analyzer does a reasonably good job with the utterances. It is 

difficult, however, to assess these scores without a standard benchmark. I have therefore 

performed a detailed manual analysis of the first 150 utterances in the training set ignoring 

repeats and this result is reported in (Bryant, 2008a) as well. The analyzer found an analysis for 

125 of the 150 utterances; the remaining 25 required constructions that were not part of the 

handwritten grammar. Of the 125 returned analysis, 76 of which were judged to be the correct 

analysis in terms of both the SemSpec and the resolution results. Of the 49 incorrect analyses, 

• 8 had the right constructional interpretation but the omitted arguments were 

incorrectly resolved, 

• 9 could not be properly analyzed because the necessary constructions were not in the 

grammar. The analyzer instead creatively used a combination of other constructions 

to interpret the utterance, 

• 12 used an incorrect word sense or had an incorrectly attached modifier phrase, 

• 3 had problems with topicalization, 

• 12 had incorrect constituent omissions, 

• 1 had a problem with reduplication, and 

• 3 had trouble with a sentence final le marker, which sometimes act as an aspect 

marker and sometimes a current relevant state marker and sometimes both. 

Tuning the statistical parameters of the grammar 

Finally, we describe a brief exercise in trying to learn from data more accurate locality 

probabilities, constructional filler probabilities, and semantic role probabilities. Using the 

supervised, iterative estimation techniques described in (Bryant, 2008a), the returned analyses of 

the training set are automatically re-ranked using the gold standard and the probabilities are 
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recalculated using the post-reranking top analyses. The learned parameters are then used in 

analyzing the test set.  

This exercise is a proof-of-concept in testing the learnability of the parameters. The 

training data is very limited in view of the number of parameters that need to be estimated, and is 

certain very small compared to most other machine learning applications in NLP systems. 

Nonetheless, an encouraging improvement of parsing performance is observed, as shown in 

Figure 2.18. These results are updated from the ones described in (Bryant, 2008a) due to slight 

grammar and scoring changes but show the same trends. We take these results to be an indication 

that this may be a fruitful direction for future research. 

Training set Core Argument 
Precision 

Core Argument 
Recall 

Core Argument 
F-score 

Resolution  
F-score 

0 0.824 0.744 0.782 0.685 
1 0.843 0.798 0.820 0.747 
2 0.843 0.798 0.820 0.745 
3 0.844 0.798 0.820 0.741 
4 0.844 0.798 0.820 0.742 
5 0.845 0.798 0.821 0.745 

 
Test set Core Argument 

Precision 
Core Argument 
Recall 

Core Argument 
F-score 

Resolution  
F-score 

0 0.819 0.724 0.768 0.785 
1 0.882 0.824 0.852 0.825 
2 0.881 0.815 0.846 0.838 
3 0.881 0.815 0.846 0.831 
4 0.881 0.815 0.846 0.838 
5 0.881 0.815 0.846 0.831 

 
Figure 2.18  Iterative estimation of grammar parameters lead to improvements in both the 
training and test set. Iteration 0 is the initial state without parameters as replicated from 
Figure 2.17. The learned parameters surprisingly lead to greater improvements in the test set, 
and could be due to the fact that the grammar was written with the training set closely in 
mind. 
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Chapter 3.  

Learning a Construction Grammar 

This chapter gives the first technical overview of how the learner creates new grammatical 

structures that link form relations to meaning relations. A stable starting vocabulary is assumed 

for the learner since it is outside the scope of the current thesis to address word learning directly, 

but it will become clear as we go along that word learning is extremely compatible with the 

current framework. We will revisit the topic of word learning in the final chapter; for now we will 

turn our attention to how grammatical structures are learned by the model. 

Readers who are familiar with chunk-and-merge style grammar induction in context free 

grammars e.g. (Langley & Stromsten, 2000; Wolff, 1988) can relate easily to the basic operations 

proposed here. Composition is the basic chunking mechanism that groups separate units into 

one constituent structure, and generalization is the basic merging mechanism that replaces 

multiple chunks with a generalization. This intuition runs into a limitation when both form and 

meaning have to be considered. Induction in context free grammars are driven primarily by 

statistical information (which can be extremely sophisticated), but in construction grammar 

semantics play a much more foregrounded role. Not only are composition and generalization 

driven by semantic similarity, but the internal semantic structure of each chunk has to be induced 

as well. In describing how grammar induction works for a construction grammar, it is necessary 

to first lay out the elements that the learner considers in its hypothesis space.  
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3.1 Hypothesis space of construction grammars 

Recall that within the framework of construction grammar, both lexical units and 

phrasal/clausal units are represented as constructions. Each construction can specify a set of 

constituents in addition to form and meaning relations. Without delving into phonology and 

morphology, which are concerned with constituency structure among phonological and 

morphological units, a lexical construction maps an orthographic form to a meaning 

representation. The meaning of a lexical construction, as demonstrated in the following examples, 

can range in complexity from a single schema or ontological type (yao4, which means medicine, 

below left) to a set of schemas with role bindings and type restrictions (chi1, which means eat, 

below right). It can be seen that even word learning in this paradigm goes beyond simple one-to-

one mappings between symbolic units, and that the formalism is capable of representing layers of 

meaning that are of different degrees of relevance to a lexical item.  

Construction YAO4-N 
 subcase of Morpheme  
 form 
  constraints 
   self.f.orth <-- "yao4" 
 meaning : @Medicine 

 Construction CHI1-V 
 subcase of Morpheme  
 form 
  constraints 
   self.f.orth <-- "chi1" 
 meaning : EAT 
  evokes EVENT_STRUCTURE as event_structure 
  constraints 
   event_structure.inherent_aspect <-->  
   self.m.inherent_aspect 

 
Figure 3.1   Two lexical items in ECG: yao4 (medicine) and chi1 (eat). A lexical construction 
maps a form to a meaning and has no constituents. The meaning of a lexical construction can 
be quite simple, such as the ontological type on the left, or very structured, such as the 
process on the right. 
 

Simple as it seems to represent lexical meaning, it is important to note that a lot of 

intricacy in the meaning representation is encapsulated in the schemas. As expected, the EAT 

schema, shown in Figure 3.2, captures the fact that eating is an action involving two participants 

(the ingester and the ingested) by inheriting these roles from the Ingestion schema. Additionally, 
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it captures the knowledge that the eating process involves two additional sub-processes — 

chewing and swallowing — by evoking those schemas and setting up bindings between the eater 

and chewer/swallower and between the eatee and the chewee/swallowee21.  

schema EAT 
 subcase of INGESTION 
  evokes CHEW as chew 
  evokes SWALLOW as swallow 
  roles 
   ingester : @Entity // inherited 
   ingested : @Entity // inherited 
  constraints 
   ingester <--> protagonist // inherited 
   inherent_aspect <-- @Inherent_Activity 
   ingester <-- @Animate 
   ingested <-- @Manipulable_Inanimate_Object 
   ingester <--> chew.ingester 
   ingested <--> chew.ingested 
   ingester <--> swallow.ingester 
   ingested <--> swallow.ingested 

 
Figure 3.2   The EAT schema captures not only two core participants in the scene but also 
sub-process relations between eating, chewing and swallowing. The complexity in meaning 
leads to a large hypothesis space for phrasal and clausal constructions. 
 

Unlike lexical constructions such as YAO4-N and CHI1-V, phrasal constructions are 

composed of constituents whose form can be ordered and whose meaning can be tapped into. 

The learned construction, XI1XI1-CHI1-YAO4, taken from the example in Chapter 1 and shown 

in Figure 3.3, illustrates the hypothesis space that a construction grammar learning model can 

explore. Intuitively, a number of learning choices are made in this learning scenario. One choice 

is in the constituency (or branching) structure: the learner can put all three constituents,  x0 

(XI1XI1), c1 (CHI1) and y2 (YAO4) in a flat structure inside one construction like it has done 

here, or in a binary branching hierarchy. The current model sees no a prior reason to assume 

binary branching, but it may still restrict the number of constituents that can be assembled into a 

construction at any given time to reflect some sort of working memory constraint. A second 

                                                           
21 The three schemas, Eat, Chew and Swallow as defined all have the inherited role names of ingester and ingested, 
but for ease of distinction they will be referred to as eater/chewer/swallower and eatee/chewee/swallowee respectively. 
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choice is made in the ordering constraints amongst the three constituents: the phrase xi1xi1 chi1 

yao4 can be generated from different sets of form constraints, from unordered to fully ordered. 

Here the choice is to write down the most restrictive pairwise ordering using the meets relation, 

but the less restrictive before relation is also consistent with the data. A third choice, 

contributing the most to the size of the hypothesis space, is in the meaning representation of this 

construction. In this example, the learner gains three major pieces of information from the 

situational context:  (1) An eating event is about to happen. (2) The eater is the child XiXi. (3) The 

eatee is the medicine. 

Construction XI1XI1-CHI1-YAO4 
 subcase of CLAUSE 
 constructional 
  constituents 
   x0 : XI1XI1 
   c1 : CHI1 
   y2 : YAO4 
 form 
  constraints  
   x0.f meets c1.f 
   c1.f meets y2.f 
 meaning: EAT 
  evokes RD as rd0 
  evokes RD as rd1 
  evokes DISCOURSE_SEGMENT as DS 
  constraints 
   self.m <--> c1.m 
   x0.m <--> c1.m.ingester 
   y2.m <--> c1.m.ingested 
   rd0 <--> x0.rd 
   rd0.referent <--> c1.m.ingester 
   rd1.referent <--> c1.m.ingested 
   rd1.ontological_category <-- @Medicine 
   rd1.discourse_participant_role <-- @Attentional_Focus 
   DS.speech_act <-- @Requesting_Action 

 
Figure 3.3   Each domain (constructional, form and meaning) contains structures and 
relations and the current grammar learning problem is a large-scale mapping problem across 
domains.  
 

However, as in a real learning situation, a great number of other pieces of information are 

present in the surrounding. Some may be relevant (e.g. that the child is also the addressee in this 

utterance) and some probably not (e.g. that the medicine is a cherry-flavored syrup). The learner 
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selects the set of meaning constraints using a number of heuristics which will be described in 

Chapter 4. 

Abstractly speaking, then, learning in construction grammar involves a search over 

mappings across three domains — constituent structures, form relations, and meaning 

structures — none of which is given a priori and all of which are determined simultaneously. This 

stands in stark contrast to work in syntactic grammar induction. The majority of automatic 

grammar induction work are done in formalisms that focus solely on syntax such as Context-Free 

Grammar (CFG) and Dependency Grammar (Clark, 2001; Klein, 2005), while more recently 

efforts are seen in inducing grammars with shallow, generally logic-based semantic 

representations, such as  Lexical Functional Grammar (LFG) (Burke, Lam, Cahill, Chan, 

O'Donovan, Bodomo, Genabith & Way, 2004; Cahill, Burke, O'Donovan, Riezler, van Genabith & 

Way, 2008), Tree-Adjoining Grammar (TAG) (Chen, Bangalore & Vijay-Shanker, 2005; Xia, Han, 

Palmer & Joshi, 2001), and Combinatory Categorial Grammar (CCG) (Hockenmaier & Steedman, 

2002; Zettlemoyer & Collins, 2007). Even so, semantics is secondary to syntax if at all present and 

are limited to pre-defined syntax-driven combinatorial rules in these systems. 

As some of that work demonstrates, grammar induction is a notoriously difficult machine 

learning problem even with fairly rigid and shallow semantic representations. In a way,  

traditional grammar induction tasks are so difficult precisely because the grammars are 

underdetermined given little or very shallow semantic representations — judging purely from 

syntax, many parses look just as good as any other. In contrast, the model here is able to rely on 

the richness of the semantics in order to hone in on the correct constructions. However, the 

inclusion of unification-based semantics makes for a potentially unbounded search space. By 

disallowing cycles in the semantic feature structures (as per standard unification grammars) and 
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using a set of predefined meaning schemas with fixed sets of features and discrete fillers, the 

search space can be made finite, though the number of possible sets of mappings across the three 

domains is still exponentially big.  

A related work on grammar induction in construction grammar (Alishahi, 2008; Alishahi 

& Stevenson, 2008) sidesteps this issue by treating constructions as probabilistic clusters of verb 

frames. Two major simplifying assumptions are made in their work: (1) It defines constructions 

as probabilistic clusters of verb argument frames. Constructions do not introduce novel meaning 

components and instead only provide a distribution over values of meaning features. The learner 

problem is reduced to a clustering problem based on six features with fixed values. (2) The 

learning utterance-scenario pairs are constructed so that the exact meaning of each utterance is 

supplied in the input, eliminating uncertainty and noise. Furthermore, the learner is equipped 

with predefined syntactic patterns (e.g. arg1 verb arg2 arg3), dramatically limiting the hypothesis 

space. While this formulation of the learning problem provides a parsimonious mathematical 

model of comprehension and production, it suffers from problems of cognitive plausibility. The 

representation fails to capture the full extent of compositionality in construction grammar, 

particularly the interaction between verb arguments and constructional arguments which may 

differ in number and type restrictions. From a learning standpoint, the assumption that the 

learner begins with pre-formed notions of syntactic pattern is a presumptuous one to make.  

It has to be acknowledged, however, that the learning problem is not tractable without 

some form of learning bias. The current learner, in preserving cognitive plausibility, relies on a set 

of structural biases in the form of learning operations and representational restriction to limit the 

search over the hypothesis space. This framework has been initially developed by Chang to study 

the acquisition of early argument structure constructions in English (Chang, 2008; Chang & 
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Gurevich, 2004). It is extended here with a structured model of context to cope with context-

reliant linguistic phenomena such as argument omission (Chang & Mok, 2006a; b) and a 

probabilistic version of Embodied Construction Grammar (Bryant, 2008b) is adopted. The 

current language understanding framework features a heavier reliance on the situational context, 

which is reflected both by constructions that express contextual restrictions and a context-aware 

constructional analysis process as described in Chapter 2. In light of these changes and the 

introduction of a probability model to the grammar formalism, learning operations proposed in 

(Chang, 2008) are updated and new operations are introduced. The overview of these learning 

operations is given in this chapter and their technical details are the subjects of the next three 

chapters. 

A bit of terminology is in order here. Recall that the learning model is a comprehension-

driven loop which iterates through transcripts of parent-child interaction, analyzes each utterance, 

attempts to learn from utterances that it does not fully understand, and periodically reorganizes 

the grammar. We will refer to each of these transcripts as a dialogue, and each sets of learning 

operations between utterances as a learning episode. Obviously, learning can take place after 

both adult and child utterances in a child learner, but since production is not modeled in this 

dissertation, no learning is performed after a child utterance. For consistency, however, learning 

episodes are numbered regardless of whether any learning takes place so that the episode count is 

the same as the total number of utterances encountered by the learner. Finally, in practice, the 

same set of dialogues may be used for multiple iterations to improve learning results.  
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3.2 Searching in the hypothesis space 

Treating each grammar (the collection of schemas and constructions) as a state, the 

grammar learning procedure can be conceptualized as a search through the state space of possible 

grammars in ECG. Unfortunately, this space is infinite and there is no hope of arriving at the 

probabilistically correct grammar using a blind search. The main thrust of this dissertation is 

twofold: a richly-structured meaning representation in the form of embodied meaning schemas 

that helps locate the learner in a good region of the hypothesis space, and a set of cognitively 

motivated learning operations that navigate the learner through it. 

At the risk of oversimplification, we appeal to a context-free grammar (CFG) based 

intuition behind each operation while keeping in mind that the problem at hand is immensely 

more complex due to the semantic structures. Roughly speaking, concrete constructions 

correspond to a rule or production, lexical constructions correspond to terminals in CFG, and 

non-lexical constructions correspond to non-terminals. Abstract constructions have no direct 

equivalent in CFG: they can often function like unary rewrite rules but they also contain the 

shared structures amongst its children, so this is where the CFG analogy starts to break down. 

The two primary learning operations, composition, and generalization, only add to an 

existing grammar. The four refinment operations, construction revision, constituent omission, 

category merge, and category expansion provide ways to fine-tune the grammar and both add and 

subtract from the grammar (depending on implementation). Finally a catch-all decay operation 

periodically removes unused constructions from the grammar to keep analysis ambiguity under 

control. The overview of these operations is described in Figure 3.4 and the technical details are 

given in Chapter 4 and Chapter 5. 
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Learning Operation CFG Construction Grammar 
Composition adds a new 
concrete construction that 
puts together other 
constructions in the 
grammar. 

given 
 collocate(a, b) 
add 
 c  a b 

given 
 
 
add 

a and b used in the same analysis 
a and b share contextual references 
 
cxn c with constituents a and b 

Generalization adds new 
grammatical categories and 
generalized concrete 
constructions based on 
similarly structured 
constructions in the 
grammar. 

given 
 a  b c d 
 f  g c d 
add 
 x  b 
 x  g 
 y  g c d 

given 
 
 
 
add 
 

cxn a with constituents b, c, and d 
cxn f with constituents g, c, and d 
condSub(a, f) OR condSub(f, a) 
 
abstract cxn x with subcases b and g 
cxn y with constituents x, c, d 

Construction revision 
takes existing constructions in 
grammar and creates a 
modified version which is 
allowed to compete with the 
original one. 
 

given 
 a  b d 
 collocate(a, c) 
add 
 a  b c d 

given 
 
 
 
 
 
 
add 

cxn a with constituents b, d 
cxn f with constituents g, d 
NOT condSub(a, f) AND  
((sem(a, f) AND NOT syn(a,f)) OR  
(syn(a, f) AND NOT sem(a, f)) 
collocation of c with a, b or d 
 
cxn a with constituents b, c, d 

Constituent omission 
takes pairs of minimally 
contrasting constructions and 
creates a new construction 
with omissible or optional 
constituents that can take the 
place of the pair. 

replace 
 a  b d 
 a  b c d 
with 
 a  b [c] d 

given 
 
replace 
 
with 
 

syn(a, f) AND sem(a, f) 
 
cxn a with constituents b, d 
cxn f with constituents b, c, d 
cxn a with constituents b, [c], d 

Category merge takes two 
or more overlapping 
constructional categories and 
smash them together into one 
category. 

replace 
 x  a | b 
 y  a | c 
with 
 x  a | b | c 

given 
 
 
replace 
 
 
with 

abstract constructions x, y 
sem(x, y) 
 
cxn a with parents x, y 
cxn b with parent x 
cxn c with parent y 
cxn a, b, c each with parent x 

Category expansion 
takes a constructional 
category and extends it to 
non-member items.  
 

given 
 x  a 
 distributional sim. 
 between a and b 
add 
 x  b 

given 
 
 
add 
 

abstract construction x 
sem(x, b) 
 
cxn b with parent x 

Decay removes unused 
constructions from the 
grammar 

remove 
 a  b c d 

remove 
 

construction a 

 
Figure 3.4   The learner operations provided in the learning model and their analogue in a 
CFG-based system. Brackets denote omissible constituents. sem(x, y) denotes semantic 
subsumption, syn(x,y) denotes syntactic subsumption, and condSub(x, y) denotes 
conditional subsumption, all of which will be defined in Section 3.4.  
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While many more operations can be implemented in the model, this set of 7 operations 

provides a reasonable point of departure for a model of grammar learning. The skeletal structure 

of the learning model can conceptualized as the simple loop in Figure 1.5, reproduced here: 

 
 

Figure 3.5   The simple comprehenshion-driven learning loop implemented in the model. 
 

3.3 Overview: learning model 

The learning operations are grouped here based on whether each derives information 

from a situated utterance and its analysis. The utterance-dependent learning operations are 

composition, construction revision, and constituent omission22. The utterance-independent 

operations are generalization, category merge, and category expansion, which do not incorporate 

any new information from the current analysis. In order to avoid an exhaustive search over the 

                                                           
22 This may be less obvious from the previous descriptions and the rationale has to do with how one construction may 
be embedded in another in an analysis. Consider the possibility of a series of operations that first compose XI1XI1 
(XiXi) with CHI1 (eat) to get the construction XI1XI1-CHI1 (XiXi eat) and then compose XI1XI1-CHI1 (XiXi eat) 
with YAO4 (medicine) to get the construction XI1XI1-CHI1-YAO4 (XiXi eat medicine). The fact that both XI1XI1-
CHI1 and XI1XI1-CHI1-YAO4 both exist in the grammar does not mean that the YAO4 constituent in XI1XI1-CHI1-
YAO4  is omissible precisely because XI1XI1-CHI1-YAO4  takes XI1XI1-CHI1 as a constituent. The learner must wait 
till it encounters an utterance with only Xi1+Xi1 chi1. 
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entire grammar at every learning episode, the utterance-independent operations are triggered on 

the constructions that are most recently used (i.e. used in an analysis, newly created, or recently 

modified).  

 
 
Figure 3.6  Pseudo-code description of the learning algorithm. Given an initial grammar g 
and a set of dialogues D, the learner iterates over the dialogues n times, initiating a context 
model update after each event annotation and a learning episode after each utterance. The 
learning sequence begins with the analysis of the utterance (including context fitting, which 
may re-rank the returned analyses), after which usage statistics are gathered based on the top 
analysis.  

 

3.4 Structural comparison of constructions 

As has been discussed all along, a number of learning operations on a construction 

grammar require structural comparison of constructions. For example, in generalization, the two 

specific constructions must have compatible constituency structure as well as form and semantic 

constraints, though they need not be identical. It is therefore important to define construction 

comparison and compatibility precisely.  

given Grammar g, Dialogues D, MaxIteration n 
 
for i from 1 to n: 
 for dialogue d in D: 
  for item t in d: 
   if (t is an event annotation): 
    updateContextModel(t) 
   else if (t is an utterance): 
    Analysis a = chooseBestAnalysis(t) 
    Set<Construction> seeds = getRecentlyUsedCxns(a) 
    updateGrammarUsageStatistics(g, a) 
 
    reviseConstructions(g, a) 
    checkForOmission(g, a) 
    composeConstructions(g, a) 
 
    seeds = generalizeConstructions(g, seeds) 
    seeds = mergeCategories(g, seeds) 
    seeds = expandCategories(g, seeds) 
    decay(g); 
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The structural comparison procedure cannot be carried out using textual comparison 

between constraints written in ECG as there are many ways of expressing equivalent constraints. 

As an example, the set of constraints {a <--> b, b <--> c} is equivalent to {a <--> b, a <--> c} due to 

the transitivity in unification semantics. A number of different algorithms can be used to assess 

equivalence; the one adopted by this learning system is described here. Given any two 

constructions α and β,  

• a constituent mapping is a one-to-one correspondence between constituents of α 

and constituents of β. The correspondence between a pair of constituents is defined 

by a correspondence function f. Depending on the learning operation, this function 

can be an equality (exact constructional type constraint match), constructional 

subtype, or semantic subtype match.  

• an evoked role mapping  is a one-to-one correspondence between evoked items of α 

and evoked items of β. The correspondence function between a pair of evoked items 

can be an equality (exact semantic type constraint match) or semantic subtype match. 

• α syntactically subsumes β given a constituent map m if the set of (mapped) form 

constraints in α are more general than those in β. For example, the before relation 

subsumes the meets relation: any pair of constituents that satisfy the meets relation 

also satisfy the before relation. To determine if α syntactically subsumes β given a 

constituent map m: 

o A form constraint matrix is computed for β.  

o Each form constraint from α is mapped to  β’s term using m and is 

verified on the constraint matrix.  
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o If every such constraint is covered by the matrix,  α syntactically 

subsumes β. 

• α semantically subsumes β given a constituent map m and an evoked item map e if 

(1) the meaning pole type of α is a subtype of that of β, and (2) the set of (mapped) 

meaning constraints in α are more general than those in β. The spirit behind the 

algorithm to check for semantic subsumption is similar:  

o A feature structure representation is instantiated for the meaning of β 

(therefore incorporating all of  β’s semantic constraints). 

o Each meaning constraint from α is mapped to β’s term using m and e and 

is verified on the feature structure.  

o A unification constraint from α is contained in β if both slot chains in the 

mapped constraint point to the same slot in the feature structure. 

o An assignment constraint from α is contained in β if the referenced slot 

has the same atomic filler or an equally or more restrictive type 

constraint as the one specified by the constraint. 

o An assignment constraint from α is relaxable in β if the type constraint of 

the referenced slot shares a common ancestor with the type specified the 

constraint.  

o If all constraints from α are contained in β,  α semantically subsumes β. 

• Construction α subsumes construction β if there exist a pair of constituent map and 

evoked role map <m, e> such that α subsumes β both syntactically and semantically. 

• Construction α is equivalent to construction β if they are mutually subsumed. 
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• Construction α conditionally subsumes construction β if there exist a pair of 

constituent map and evoked role map <m, e> such that (1) α subsumes β syntactically, 

and (2) α subsumes β semantically with up to N relaxable assignment constraints. 

Notice that this definition is flexible enough that two constructions with different 

numbers of constituents can still be structurally aligned. Note also, however, that optional and 

omissible constituents are not given particular considerations in this definition, in part because 

omissible constituents are probabilistically defined. This is something that can be improved on as 

part of future work, but for now, the model uses the stated definitions to discourage structurally 

aligning constructions with different numbers of optional and omissible constituents. With this, 

we will launch into the details of the composition and generalization operations.  
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Chapter 4.  

Creating Structure in a Grammar 

This chapter details the two basic mechanisms through which the learner creates 

structure in the grammar: the composition and the generalization operations. Composition 

creates concrete constructions out of smaller ones by positing form and meaning relations 

between them, while generalization relaxes constraints on existing constructions and in the 

process creates linguistic categories. This and the next chapter examine dialogue01 from Chapter 

1, where the father offers medicine to the child, to illustrate the various learning operations. 

4.1 Composition 

The information available to the learner at the start of this learning episode is shown in 

Figure 4.1. Analyzing with an incomplete grammar (in fact, a lexicon-only grammar), the learner 

obtains a multi-rooted analysis of the phrase xi1+xi1 chi1 yao4 (XiXi eat medicine). As a result of 

the context fitting process, the learner finds shared references between those pieces of analyses. 

For example, the learner finds that the word xi1+xi1 refers to the same child (CHI) as the eater of 

the EAT event denoted by the word chi1. It also realizes that yao4 refers to the same entity (Cough 

Syrup) as the eatee role of that EAT event. These pairs of shared references are denoted in Figure 

4.1 with bold, dashed arrows. With these shared references supplied by context, the learner is able 

to begin the composition operation. 
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Figure 4.1  Pictorial representation of the resulting analysis from using a lexicon-only 
grammar to analyze the utterance xi1+xi1 chi1 yao4 (XiXi eat medicine). On the left, no 
semantic relations are given in the SemSpec between the lexical constructions due to the lack 
of phrasal constructions. On the right, the context model contains rich semantic and 
discourse relations between various entities. After context fitting, the learner finds shared 
contextual references (bold dashed arrows) which form the basis of the composition learning 
operation. 
 

Navigating the SemSpec and context fitting output 

The clean diagram above belies the complexity of the constructional analysis of a 

seemingly innocuous utterance such as this. As explained in Chapter 2, the output of the 

constructional analysis is constructional tree and a semantic specification. Both the constructional 

tree and the semantic specific can be represented in the same feature structure, shown in Figure 

2.2. As was illustrated in the directed acyclic graph representation in Chapter 2, there can be 

multiple paths that traverse from the ROOT of the analysis to any given slot. This presents a design 

decision for the learning model: recall that the goal of the composition operation is to specify 

semantic bindings between slots (e.g. that the eater of the EAT action denoted by chi1 is the same 

as the human denoted by xi1+xi1). If there are multiple ways to refer to each slot (i.e. multiple 

essentially equivalent slot chains), the learner could benefit from consistency in its choice when 

creating a new construction.  
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A simplified version of the slot chains to relevant semantic slots is given in Figure 4.3. A 

semantic slot is considered relevant for learning if its type constraint is a subcase of the PROCESS 

schema or the Entity ontology type. This table shows on the left all possible paths from ROOT to 

each relevant slot in the three incomplete analyses, leaving out ROOT.s from each chain23 and 

redundant DISCOURSE_SEGMENT slots for brevity. The middle column gives the type constraint 

on each of these slots as well as the fillers, if present. On the right are suggested context elements 

matched to each slot, given by the context fitter. None of the PROCESSes (Eat, Chew, and Swallow) 

have been fitted because the utterance is an imperative (i.e. no complete fit) and no similar 

instances of eating have occurred in context either (i.e. no partial fit).  

Five slots are fitted with a context element during context fitting, three of which are 

assigned to the child and two to the cough syrup. The fact that separate slots are fitted to the same 

entity in context (or contextually unified) indicates that a semantic unification constraint can be 

proposed to unify these roles in a new construction. The serial nature of spoken utterances in a 

word order language such as Mandarin or English yields natural form constraints which can be 

paired with the semantic constraints. More of the meaning structure in the new construction also 

has to be determined. While the new construction needs to capture the fact that the protagonist of 

the EAT event (CHI1-V.m.protagonist) is the same as the reference of the name XI1XI1-N 

(XI1XI1-N.m), there are other constraints that can be learned, some helpful and some not. For 

example, the utterance can be taken as evidence that XI1XI1-N can only be used when the 

corresponding child is also the addressee, but such strict contextual restrictions is unhelpful to the 

grammar in the long run. On the other hand, in a case of argument omission, the learner may in 

fact want to learn that the subject can be omitted if it is also the addressee.   

                                                           
23 The ROOT construction with the s constituent is an artifact of the current analyzer implementation and can be 
ignored for the purpose of this technical discussion.  
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Figure 4.2  Feature structure representation of the same constructional analysis of Xi1+xi 
chi1 yao4 prior to context fitting. There are three ROOTs in this analysis, one for each word. 
Each root is given its own DISCOURSE_SEGMENT schema because they may come from 
different parts of the utterance and carry different speech acts. The DISCOURSE_SEGMENTs 
are unified in the context fitting process, yielding the (simplified) co-indexed slot chain 
representation shown in the next figure.  
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Co-indexed Slot Chains 
 

 Slot Filler Context 
Element 

DS.speaker  
DS.speech_act.speaker 
 

[2] (unfilled) 
@Human  

FAT 

DS.addressee  
DS.speech_act.addressee 
 

[3] (unfilled) 
@Human 
 

CHI 

XI1XI1-N.m  
XI1XI1-N.rd.referent  
XI1XI1-N.rd.ontological_category 

[1] (unfilled) 
@Child 

CHI 

 
CHI1-V.m 
 

 EAT null 

CHI1-V.m.chew 
 

 CHEW null 

CHI1-V.m.swallow 
 

 SWALLOW null 

CHI1-V.m.protagonist  
CHI1-V.m.ingester  
CHI1-V.m.chew.protagonist  
CHI1-V.m.chew.ingester  
CHI1-V.m.swallow.protagonist  
CHI1-V.m.swallow.ingester 
 

[5] (unfilled) 
@Animate 

CHI 

CHI1-V.m.ingested  
CHI1-V.m.chew.ingested  
CHI1-V.m.swallow.ingested 
 

[6] (unfilled) 
@Manipulable_ 
Inanimate_Object 

Cough Syrup 

CHI1-V.m.instrument  (unfilled) 
@Entity 

null 

 
YAO4-N.m  [9] (unfilled) 

@Medicine  
Cough Syrup 

 
Figure 4.3   The leftmost column shows the set of (simplified) slot chains from each ROOT to 
each slot that is relevant to the learner (any slot whose type constraint is a subcase of 
PROCESS or @Entity). The middle column shows the slot filler as returned by the analyzer 
(either structures or type constraints on unfilled slots), and the matching context element 
suggested by the context fitter. Redundant DISCOURSE_SEGMENT schemas are removed for 
space. 
 

 
In sum, for each new construction, the learner needs to determine: 

• the appropriate constructions to recruit as proposed constructional constituents 

• the order constraints between the new constituents 

• the relevant contextual unifications for the new construction 

• a coherent overall meaning for the new construction 
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Associative learning of constituents and meaning constraints 

To concretize the task , the result of the composition operation is a set of candidates each 

consisting of the following: 

• cxnName: a name for the new construction 

• { c : constructional constituent specified by type and local name } 

• { p : constructional parents of the new construction } 

• { o : ordering constraints in the form block } 

• mType : type of the meaning pole 

• { e : evoked role in the meaning pole specified by type and local name } 

• { u : unification constraints in the meaning pole } 

• { a : assignment constraints in the meaning pole } 

The current learning algorithm relies on a form of associative learning that is very 

structured while care is taken to reduce noise. The use of contextual information to guide 

utterance interpretation greatly focuses the analyses to a few nearly correct ones and amounts to 

the use of attentional and intention cues by young children. Even then, with a multi-word 

utterance by the parent, multiple perspectives and levels of granularity of understanding an event, 

as well as possibly multiple relevant events in a scene, the scope for a new construction search is 

big. In an extreme approach, the learner can memorize the entire constructional forest and 

semantic specification as a new construction, set the generalization mechanism to work and hope 

for the best. While this approach may be computationally feasible given copious amounts of data, 

its cognitive plausibility is challenged by both its memory requirements and psychological 

evidence about how children learn.  
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The learning model therefore adopts a moderated associative learning approach which 

selectively associates meaning relations with form relations using a set of heuristics. For simplicity, 

the composition procedure first searches for single-unifier compositions, i.e. forming a new 

constructions based on constructions in the analysis that are semantically connected through one 

single context element. In the example, XI1XI1-N and CHI1-V are connected through the child 

CHI, and CHI-V and YAO4 are connected through the Cough Syrup. A single-unifier composition 

puts either XI1XI1-N and CHI1-V together or CHI-V and YAO4 together but not all three.  

Once the learner locates all the single-unifier compositions, it can easily group the 

semantically connected ones into a larger construction by combining the respective form and 

meaning constraints as long as the constituents are (nearly) adjacent. In the case of the example, 

XI1XI1-N, CHI1-V, and YAO4 are semantically connected through the EAT schema, so a 

construction with all three as constituents can be learned by the learner. The formation of single-

unifier compositions is most illustrative of the composition operation and the rest of this section 

will focus on this topic. 

Constructional constituents and ordering constraints 

In choosing single-unifier compositions, the learner looks for two or more slots in the 

SemSpec that share references to the same context element. Each of these slots can be traced back 

to a (set of) constructions, which can be in one of the configurations shown in Figure 4.4. Each 

configuration shows the input string ‘a x b x y’ on top, the constructional tree in the top half, and 

the semantic DAG as well as contextual references in the bottom half. In this notation, each 

construction covers the alphabets in its name, e.g. CXN-A is a lexical construction with an 

orthography of ‘a’, and m denotes the respective meaning pole schemas.  
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In the simplest case such as (a), CXN-A, CXN-X and CXN-B share contextual references to 

CE1 and are selected as constituents of a new construction and obey the form constraints of CXN-

A meets CXN-X and CXN-X meets CXN-B. These form constraints are deduced from the spans of 

each of these constructions in the input string: constituents are ordered based on their spans24 and 

a form constraint is written between each constituent and its succeeding one. The most restrictive 

form constraints is always used, so adjacent constituents are assigned a meets constraint and 

non-adjacent constituents are assigned a before constraint.  

As the learner builds up phrasal constructions, the constructional trees will gain depth in 

their derivational structures. Suppose that construction CXN-AB, which covers CXN-A and CXN-B 

as long as CXN-A comes before CXN-B, has been learned. Configurations such as (b) and (c) are 

now possible. In these and all other cases, the constructions closest to roots, i.e. the longest 

spanning constructions, are chosen as constituents so long as their spans do not overlap. In (b), 

CXN-AB spans [0, 3] and CXN-Y spans [4, 5], and they are chosen as new constituents with the 

expected ordering constraints. (c) is possible, however, due to the robust analyzer’s ability to skip 

over an unconnected root within an analysis (refer to Section 2.3 for explanation of the analyzer). 

In this case, CXN-AB’s [0, 3] span engulfs CXN-X’s [1, 2] span. The construction resulting from 

composing CXN-AB with CXN-X does not have acceptable form constraints because the current 

ECG implementation disallows crossing constituent spans. To remedy this situation, CXN-AB is 

“flattened” inside the new constructions, i.e. the constituents of CXN-AB, CXN-A and CXN-B, are 

used as constituents along with CXN-X. The learned construction will have the same constituent 

and form structure as in configuration (a), and the meaning constraints are adjusted accordingly.  

                                                           
24 Spans are given in standard NLP notation as denoted by the subscripts for the string a x b x y: 
 0 1 2 3 4 5a x b x y  
CXN-A, which covers ‘a’, thus has a span of [0, 1]. 
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Figure 4.4   The constituency structure of a new construction depends on the configuration 
of constructions used in an analysis. (a) and (b) are straightforward cases where the topmost 
(largest spanning) constructions are selected as new constituents. (c) arises due to the 
analyzer’s robust parsing ability which skips over a completed root inside another root. In 
this case the spans of the topmost constructions cross (which leads to a malformed ECG 
construction) and the learner must “flatten” the topmost constructions in order to use them 
as constituents of a new construction. 

 

Even though more than one construction can be on the paths to a slot, those 

constructions are guaranteed to be in the same constructional derivation (d1) rather than under 

separate roots (d2). (d2) is not achievable because the constraint that co-indexes CXN-X.m with 

 

  

new constituents:  CXN-A, CXN-X, CXN-B 

ordering constraints:  CXN-A meets CXN-X,  
     CXN-X meets CXN-B 

new constituents:  CXN-AB, CXN-Y 

ordering constraints:  CXN-AB before CXN-Y 

new constituents:  CXN-A, CXN-B, CXN-X 

ordering constraints:  CXN-A meets CXN-X,  
     CXN-X meets CXN-B 

  d1)   possible configuration  vs           d2)  impossible configuration 

  b )         c)   

  a ) 
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CXN-B.m must by definition reside in a third construction that takes CXN-X and CXN-B as 

constituents. For the coindexation to be present in the SemSpec this third construction will have 

been introduced into the analysis. (d1), on the other hand, is commonly encountered, and by the 

constituent selection heuristic described in the last paragraph, CXN-AB and CXN-Y are chosen as 

new constituents. The resulting construction from (d) has the same constituent structure as that 

of (c), but with different semantic constraints, obviously. 

Constructional parent 

New constructions need to be assigned constructional parents for practical reasons25, and 

it was mentioned in Chapter 1 that the learner begins with vague notions of word-like things, 

phrase-like things, and sentence-like things. These are given in the initial grammar as the abstract 

constructions MORPHEME, WORD, PHRASE, and CLAUSE. New compositions are either PHRASEs 

or CLAUSEs, depending on their meaning pole type. The constructions that have an overall 

meaning of a process are made subcases of CLAUSE, and those that do not are made subcases of 

PHRASE. How the construction meaning is determined is our next topic of discussion. 

Meaning pole type and meaning constraints 

At the same time as selecting the constructional constituents, all paths to each reference-

sharing slot can be computed, some of which are then used to create new unification constraints 

in the new construction. Taking Figure 4.3 again as an example, three slots share references to 

CHI and two are “rooted” by a construction. Once those two constructions, XI1XI1-N and CH1-V, 

are chosen to be constituents of a new construction, the meaning pole can be decided. For purely 

aesthetic reasons, easy-to-understand constraints such as XI1XI1-N.m <--> CHI1-V.m.ingester 

are preferred over the equivalent XI1XI1-N.rd.referent <--> CHI1-V.m.swallow.ingester. 
                                                           
25 The analyzer needs to know which constructions can act as a ROOT of a constructional analysis. 
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However, most slot chains to either slot suffice because they are all co-indexed by definition of the 

two lexical constructions, as long as care is taken in other learning operations to perform 

structural comparisons between constructions (as discussed in Chapter 3) rather than direct slot 

chain comparisons .26 In practice the shortest chain (in terms of number of slots in the slot chain) 

is chosen for each slot, with a preference for locally defined roles wherever possible. 

In addition to selecting unification constraints for the new construction, the learner also 

attempts to find a coherent meaning pole type, which is particularly important considering the 

potentially complex network of meaning schemas introduced by the constituents. A few things 

are desired for the meaning pole: we would like the learner to select an process meaning such as 

EAT for clausal constructions such as XI1XI1-CHI1-YAO4, and we also need the learner to 

consider other meaning types such as complex events or image schemas in other constructions. 

The learner determines the meaning pole type by determining the number of meaning roots and 

process schemas present. Meaning poles of constituents are meaning roots only if they are not 

unified with a role in another schema. For example, in XI1XI1-CHI1-YAO4, only the EAT schema 

is a meaning root since both @Child and @Medicine fill roles of the EAT schema, even though 

they are all direct meaning poles of the three constituents. On the other hand, in a serial verb 

construction such as XI1XI1-LAI2-CHI1 (XiXi-Come-Eat), both COME and EAT are meaning roots. 

The heuristics showin in Figure 4.5 are used by the learner to choose the meaning pole type. 

 

 

 

                                                           
26  There is one additional caveat: slot chains found in the semspec are not guaranteed to be well-formed when used as a 
meaning constraint in ECG. An untyped role, for example, may be type restricted in a semspec due to its unification 
with another role and then filled with a structured filler. As a result, there is a path in the SemSpec DAG that goes from 
the untyped role, r1, to a role in the structured filler, r2. However, the slot chain r1.r2 is malformed given the current 
ECG rules enforced by the analyzer because r1 by itself does not have the necessary type constraint.  
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 No meaning roots One meaning root Multiple meaning roots 
No process 
 

any present 
meaning 

meaning root non-compositional 

One process process process; evokes meaning 
root if different 

process + evokes 
meaning roots 

Multiple processes 
 

non-compositional meaning root non-compositional 

 
Figure 4.5  Choosing a meaning pole based on the number of process and root meanings. 

 
Non-compositional meaning refers to meaning components introduced into the new 

construction that are not found in any of its constituents. In the case of the serial verb example 

XI1XI1-LAI2-CHI1 (XiXi-Come-Eat), since both COME and EAT are processes, a reasonable 

meaning pole for the construction is a SERIAL_PROCESS where COME is its first event and EAT is its 

second event. Since this meaning is introduced by the new construction, an additional search over 

appropriate schemas must be performed when learning such a construction.  

The current learner contains a proof-of-concept implementation for learning 

constructions with non-compositional meaning. It searches over its known schemas and looks for 

schemas that have type-appropriate roles for the multiple meaning roots or processes. Once a list 

of potential candidates is generated, the semantic appropriateness can be evaluated using the 

semantic model described in Section 2.3. This learning process is obviously noise-prone. The 

future work chapter gives more details on how this work can be improved and extended to cover 

other types of non-compositional meanings and their radial extensions. 

Contextual constraints on core roles and speech acts 

Finally but not the least importantly, information about the current scene is learned as 

contextual restrictions on the new construction. While current scene information can be 

unbounded — it may, for example, include the history of events leading up to the present 

utterance — and is modulated by a combination of factors such as memory, perceptual and 
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emotional salience in a child learner, the present model limits the learnable constraints to 

information about the current discourse segment. This includes identities of the participating 

context elements and information about the current speech act (speaker/addressee information, 

attentional focus, and speech act type), which are learned as constraints on core process roles.  

Operationally, these contextual constraints are captured in constructions as restrictions 

on RDs, or referent descriptors, also introduced in Chapter 2. In new constructions that have 

process meaning, one RD is evoked for each core role and two pieces of information are kept: the 

type constraint and discourse participant role of its referent. In the XI1XI1-CHI1-YAO4 example, 

an RD (rd1) is evoked for the ingested role and the learner posits that the ingested must be of type 

medicine as well as be the attentional focus. This is captured with these two constraints: 

rd1.ontological_category <-- @Medicine 

rd1.discourse_role <-- @Attentional_Focus 

To avoid excessive number of dangling RDs, care must be taken to unify existing ones. In 

the example, the construction XI1XI1-N already evokes an RD, so the new construction simply 

evokes an RD (rd0) for its ingester role and unifies it with the RD evoked by XI1XI1-N. Over time, 

through generalization, these learned constraints on the RDs are relaxed or dropped altogether, 

but they give a means of expressing contextual constraints on referents when constructions with 

omissible elements are learned. 

Summary: the composition operation 

The composition operation, as the primary means of generating new grammatical 

structure, is driven by contextual unification of meaning slots in a multi-rooted constructional 

tree. When two slots descending from different roots (e.g. the agent role of an action and the 

meaning of a proper noun) point to the same entity in context, a new construction is created with 
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a meaning constraint to capture this unification. Ordering constraints are created based on word 

order in the input string and the constituent structure is derived from the constructional analysis. 

The meaning pole of the new construction is determined by the combination of process and root 

meanings brought in by the constituents, which in turns determines the constructional parent of 

the new construction. A number of semantically-connected single-unifier composition can be 

combined to create constructions with more constituents and more complex meaning, if desired, 

as exemplified by the learned construction XI1XI1-CHI1-YAO4 (XiXi eat medicine) in Figure 4.6. 

If the resulting composition is not subsumed by other constructions in the current grammar27, the 

composition is added to the grammar for use in the next cycle of learning episodes. 

 
Construction XI1XI1-CHI1-YAO4 
 subcase of CLAUSE 
 constructional 
  constituents 
   x0 : XI1XI1-N 
   c1 : CHI1-V 
   y2 : YAO4-N 
 form 
  constraints  
   x0.f meets c1.f 
   c1.f meets y2.f 
 meaning : EAT 
  evokes RD as rd0 
  evokes RD as rd1 
  evokes DISCOURSE_SEGMENT as DS 
  constraints 
   self.m <--> c1.m 
   x0.m <--> c1.m.ingester 
   y2.m <--> c1.m.ingested 
   rd0 <--> w0.rd 
   rd0.referent <--> c1.m.ingester 
   rd1.ontological_category <-- @Human 
   rd1.discourse_role <-- @Addressee 
   rd1.referent <--> c1.m.ingested 
   rd1.ontological_category <-- @Medicine 
   rd1.discourse_role <-- @Attentional_Focus 
   DS.speech_act <-- REQUESTING_ACTION 
 

 
Figure 4.6  XI1XI1-CHI1-YAO4 (XiXi eat medicine): the learned construction from 
composing XI1XI1-N, CHI1-V, and YAO4-V based on the input utterance xi1+xi1 chi1 yao4 in 
context. This is obtained by combining two single-unifier compositions, XI1XI1-CHI1 (XiXi 
eat) and CHI1-YAO4 (eat medicine). 

                                                           
27 which occasionally happens when the larger construction exists but the analyzer decides not to use it in the best 
analysis due to associated semantic or constructional costs. 
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Here are some other examples of constructions learned through composition in the 

model: 

Construction CHE1_HUAI4-c023 
 subcase of CLAUSE 
 constructional 
  constituents 
   c0 : CHE1-N 
   h1 : HUAI4-V 
 form 
  constraints 
   c0.f meets h1.f 
 meaning : BROKEN 
  evokes RD as rd0 
  evokes DISCOURSE_SEGMENT as DS 
  constraints 
   self.m <--> h1.m 
   rd0.referent <--> h1.m.protagonist 
   c0.m <--> rd0.referent 
   rd0.ontological_category <-- @Car 
   rd0.discourse_role <-- @Attentional_Focus 
   DS.speech_act <-- EXPLAINING 

 
Figure 4.7  CHE1-HUAI4 (car broken) : an early instance of the subject-verb construction that 
denotes object-state. There is one core role, the protagonist, and thus one evoked RD; it is 
filled by the meaning of CHE1-N. The car happens to be the attentional focus during the 
utterance, whose speech-act is explaining.  

 

Construction TI1-c143 
 subcase of CLAUSE 
 constructional 
  constituents 
   t0 : TI1-V 
 meaning : KICK 
  evokes RD as rd0 
  evokes RD as rd1 
  evokes DISCOURSE_SEGMENT as DS 
  constraints 
   self.m <--> t0.m 
   rd0.referent <--> t0.m.force_recipient 
   rd1.referent <--> t0.m.agent 
   rd0.ontological_category <-- @Ball 
   rd0.discourse_role <-- @Attentional_Focus 
   rd1.ontological_category <-- @Child 
   rd1.discourse_role <-- @Addressee 
   DS.speech_act <-- APPROVING 

 
Figure 4.8  TI1 (kick): a construction learned when the mother encourages the child to keep 
kicking the ball. No arguments were expressed in the utterance but the construction keeps 
two RDs for the two core roles, agent, and force_recipient which turn out to be the Addressee 
and Attentional _Focus, respectively.  
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Construction NI3-QIAO2-MO3-cN010 
 subcase of CLAUSE 
 constructional 
  constituents 
   n0 : NI3_VARIANT-N 
   q1 : QIAO2-V 
   m2 : MO3-V 
 form 
  constraints 
   n0.f meets q1.f 
   q1.f meets m2.f 
 meaning : COMPLEX_PROCESS 
  evokes RD as rd0 
  evokes DISCOURSE_SEGMENT as DS 
  constraints 
   self.m.process1 <--> q1.m 
   self.m.process2 <--> m2.m 
   q1.m.perceiver <--> m2.m.force_supplier 
   q1.m.perceiver <--> n0.m 
   rd0.referent <--> self.m.protagonist 
   DS.speech_act <-- EXPLAINING 

 
Figure 4.9  NI3-QIAO2-MO3 (you see apply): an erroneous (but sensible) construction learned 
when the mother scolded the child for applying too much lotion all over her hands. The 
utterance was ni3 qiao2 mo3 zhe yi1 shou3 (you see apply DUR one hand / you see how you 
got it all over your hands). The context fitter did not manage to associate the applying event 
with the percept, but at least found that both the perceiver and the applier are the same 
person. A COMPLEX_PROCESS is proposed as the non-compositional meaning to tie the two 
processes together.  

 

Construction ZHEI4-SHEN2ME-c157 
 subcase of CLAUSE 
 constructional 
  constituents 
   z0 : zhe4_variant-D 
   s1 : shen2me-WH 
 form 
  constraints 
   z0.f meets s1.f 
 meaning: @Element 
  evokes Discourse_Segment as DS 
  constraints 
   z0.m <--> s1.m 
   self.m <--> z0.m 
   DS.speech_act <-- REQUESTING_ANSWER 

 
Figure 4.10  ZHEI4-SHEN2ME (this what): A phrase learned when the mother asked the child 
what an object is. Often zhei4 shen2me is the entire utterance for asking “what is this”, with 
the copula so unstressed as to being omitted altogether. Since there is no process in the 
meaning, the construction is the subcase of a PHRASE. However, it still captures the fact that 
the speech act is a request for answers.  
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4.2 Generalization 

While the last section gives one basic way to create new concrete constructions, a child's 

ability to generalize grammatical patterns is vital to the formation of a productive, adult-like 

grammar. One generalization phenomenon of primary interest is knowledge about argument 

structures, including, in the case of pro-drop languages, allowable patterns of argument omission. 

This kind of generalization allows the learner to obtain from xi1+xi1 chi1 yao4 (XiXi eat medicine) 

and xi1+xi1 chi1 fan4 (XiXi eat rice) not only a ingester-EAT-ingested construction, but 

eventually the more general active transitive construction as well. 

Representational choices in generalization 

It is important to recognize that there are two operational components in service of 

generalization in a grammar: the formation of grammatical categories and the replacement of 

specific constituents in a construction with placeholders that have more relaxed type constraints.  

The first operational component, the formation of a grammatical category, is 

implemented as the creation of an abstract construction in ECG. An abstract construction allows 

its subcases to go in places wherever something of that abstract type is required. For example, 

verb phrase (VP) is a grammatical category that encompasses many different types of verb phrases 

which may not share a lot in common syntactically or semantically except for perhaps a main verb 

and a process meaning. However, any construction that is a subtype of VP can be joined with the 

subject in a SUBJECT-VP construction.  

The second operational component, the replacement of specific constituents in a 

construction with placeholders, is implemented as the creation of a new concrete (albeit more 

general) construction in ECG. For example, a particular kind of verb phrase, such as a Caused-
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Motion-With-PP construction, contains constituents that allow different verbs, objects, and 

prepositional phrases. The Caused-Motion-With-PP construction thus represents a generalization 

over many verb-island constructions that otherwise need to be enumerated.  

Let us examine first the basic case of generalizing across two constructions with equal 

number of constituents, e.g. WO3-CHI1 (I eat) and NI3-HE1 (you drink), shown below. At the end 

of generalization, two new categories CAT001:{WO3-N, NI3-N} and CAT002:{CHI1-V, HE1-V} as 

well as one new concrete construction CAT001-CAT002 are created, as demonstrated in the next 

set of figures. 

Construction WO3-CHI1 
 subcase of CLAUSE 
 constructional 
  constituents 
   w0 : WO3-N 
   c1 : CHI1-V 
 form 
  constraints  
   w0.f meets c1.f 
 meaning : EAT 
  evokes RD as rd0 
  evokes RD as rd1 
  evokes DISCOURSE_SEGMENT as DS 
  constraints 
   self.m <--> c1.m 
   w0.m <--> c1.m.ingester 
   rd0 <--> w0.rd 
   rd0.referent <--> c1.m.ingester 
   rd1.referent <--> c1.m.ingested 
   rd1.ontological_category <-- @Rice 
   rd1.discourse_role <--   
    @Attentional_Focus 
   DS.speech_act <-- EXPLAINING 

Construction NI3-HE1 
 subcase of CLAUSE 
 constructional 
  constituents 
   n0 : NI3-N 
   h1 : HE1-V 
 form 
  constraints  
   n0.f meets h1.f 
 meaning : DRINK 
  evokes RD as rd0 
  evokes RD as rd1 
  evokes DISCOURSE_SEGMENT as DS 
  constraints 
   self.m <--> h1.m 
   n0.m <--> h1.Twom.ingester 
   rd0 <--> n0.rd 
   rd0.referent <--> h1.m.ingester 
   rd1.referent <--> h1.m.ingested 
   rd1.ontological_category <-- @Soup 
   rd1.discourse_role <--   
    @Attentional_Focus 
   DS.speech_act <-- REQUESTING_ACTION 

 
Figure 4.11  Two constructions to be generalized: WO3-CHI1 (I eat) and NI3-HE1 (you drink) . 

 

The new category CAT001 contains the shared evoked roles and constraints between 

WO3-N (I) and NI3-N (you), whereas the new category CAT002 contains shared structures 

between CHI1-V (eat) and HE1-V (drink) and has an appropriate meaning of INGESTION. These 

two new categories are used in a new concrete construction as shown in Figure 4.12. 
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abstract construction CAT001 
 subcase of Morpheme 
 meaning : @Human 
 evokes DISCOURSE_SEGMENT as DS 
 evokes RD@SCHEMA as rd 
 constraints 
  rd.referent <--> self.m 
  rd.ontological_category <--> self.m 
 

abstract construction CAT002 
 subcase of Morpheme 
 meaning : INGESTION 
 evokes EVENT_STRUCTURE as event_structure 
 constraints 
  event_structure.inherent_aspect <-->  
   self.m.inherent_aspect 

    
construction WO3-N 
 subcase of CAT001 Morpheme  
 meaning 
 constraints 
  self.m <--> DS.speaker 
  rd.discourse_role <-- @Speaker 

 construction CHI1-V 
 subcase of CAT002 Morpheme  
 form 
  constraints 
   self.f.orth <-- "chi1" 
 meaning : EAT 

   
construction NI3-N 
 subcase of CAT001 Morpheme  
 meaning 
 constraints 
  self.m <--> DS.addressee 
   rd.discourse_role <-- @Addressee 

 construction HE1-V 
 subcase of CAT002 Morpheme  
 form 
  constraints 
   self.f.orth <-- "chi1" 
 meaning : DRINK 
 

 
Construction CAT001-CAT002 
 subcase of CLAUSE 
 constructional 
  constituents 
   c0 : CAT001 
   c1 : CAT002 
 form 
  constraints  
   c0.f meets c1.f 
 meaning : INGESTION 
  evokes RD as rd0 
  evokes RD as rd1 
  evokes DISCOURSE_SEGMENT as DS 
  constraints 
   self.m <--> c1.m 
   c0.m <--> c1.m.ingester 
   rd0 <--> c0.rd 
   rd0.referent <--> c1.m.ingester 
   rd1.referent <--> c1.m.ingested 
   rd1.ontological_category <-- @Food 
   rd1.discourse_role <-- @Attentional_Focus 

 
Figure 4.12  By generalizing over WO3-CHI1 and NI3-HE1, two abstract constructions — 
CAT001 and CAT002 — and a concrete construction that uses those two as constituents are 
created. 

 

The rest of this section gives the implementation overview of how candidate 

constructions are selected and how the new constructions are created. The overall generalization 

procedure is a loop that is seeded with a set of recently used constructions. Generalization on the 

seeds is performed as long as they are available, and the new grammar at the end of the process is 
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compared with the old grammar. If the new grammar is preferable to the old grammar, it is 

adopted by the learner. Preferences of grammars can be expressed in terms of a wide variety of 

measures, including most obviously Bayesian models that include the data likelihood and 

probabilistic priors on the kinds of grammars, or an information-theoretic approach such as 

Minimum Description Length. Here it is unclear whether any of these measures is appropriate 

since the specific constructions remain in the grammar alongside the generalizations. This issue 

will be discussed in detail in the final chapter. For the basic model, the new, more general 

grammar is always accepted. 

 
 
Figure 4.13   At each learning episode the learner starts the generalization process using the 
recently used constructions and tries to make all the generalizations warranted by the data.  
 

Searching for constructions to generalize over 

One of the more fundamental questions about language learning is why generalizations 

occur in the order they do. Two competing hypotheses are explored in the model: 

• Constituent-based generalization. Constructions are selected for generalization 

based on shared constituents. XI1XI1-CHI1-YAO4 (XiXi eat medicine) and CHI1-

FAN4 (eat rice) may be selected for generalization based on the shared constituent 

CHI1 (eat), but so may XI1XI1-CHI1-YAO4 (XiXi eat medicine) and XI1XI1-LAI2 

(XiXi come) based on the shared constituent XI1XI1-N.  

given Grammar g, Set<Construction> seeds 
 
g’ = g.makeCopy(); 
 
while (indexer has next candidate construction pair {c1, c2}): 
 if (alignsStructurally(c1, c2)): 
  generalize(g’, c1, c2) 
 else: 
  notate for future refinement 
 
if (acceptChanges(g’, g)): 
 g = g’ 



104 
 

• Semantic-based generalization. Constructions are selected for generalization based 

on meaning similarity as dictated by the schema hierarchy. XI1XI1-CHI1-YAO4 (XiXi 

eat medicine) and CHI1-FAN4 (eat rice) may be selected for generalization based on 

the shared meaning of a eating scene. XI1XI1-CHI1-YAO4 has similar enough 

meaning to NI3-HE1 (you drink) to be generalized, but not with XI1XI1-LAI2 (XiXi 

come). 

After brief experimentation, the constituent-based generalization strategy is found to lead 

to hasty generalizations across verb scene types. It has been explained that XI1XI1-CHI1-YAO4 

(XiXi eat medicine) and XI1XI1-LAI2 (XiXi come) are immediately generalizable using this 

strategy, leading to a XI1XI1-VP-like construction that has vague semantics for the VP. Similar 

problems can occur with pairs such as CHI1-FAN4 (eat rice) and CHENG2-FAN4 (load rice). This 

generalization creates a category of verbs that encompasses CHI1 and CHENG2, something 

children are not observed to do until much later in the language learning process (Abbot-Smith, 

Lieven & Tomasello, 2004; Akhtar & Tomasello, 1997; Tomasello, 2003).  

The model implemented and described here thus follows the second strategy, which 

selects constructions that are semantically compatible with the seeds for generalization. The 

schema lattice acts as a crucial moderator of this generalization process, gradually allowing more 

semantically divergent constructions to be generalized. Given a seed construction, other 

constructions with meaning that are its parents, children or siblings are retrieved. This particular 

requirement is a parameter of the learner which, along with the schema lattice, can be 

experimented with.  

Figure 4.14 shows a small section of the schema lattice in use by the system, where the 

non-leaf nodes (unshaded) represent the structure of the semantic hierarchy and the leaf nodes 
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are schemas that correspond to meanings of lexical items. For example, within the section of the 

lattice shown below, a construction with a Translational_Forceful_Motion meaning triggers 

retrieval of constructions with Forceful_Motion, Translational_Motion, Load, and 

Translational_Self_Motion. Only the handful of retrieved constructions which align structurally 

with the seed construction can be generalized; this is the subject of the next subsection.  

 

 
 

Figure 4.14  A fragment of the process schema lattice used by the learner. The learner 
requires that only semantically close constructions can be generalized (i.e. parent, children 
and sibling types). In doing so, this (or similar) schema lattice moderates the pace of 
generalization. 

 

Structural alignment between candidate constructions 

The goal of structurally aligning a pair of candidate constructions is to make sure that 

they propose comparable meaning relations between their corresponding constituents. Take as an 

example two constructions such as WO3-CHI1 (I eat) and YAO4-CHI1 (medicine eat), which may 

be learned from an utterance such as ba3 yao4 chi1 le (CVobj medicine eat ASP). The former posits 

that the meaning of first constituent is connected to the eater role whereas the latter posits that 
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the meaning of the first constituent is connected to the eatee role. The learner needs to prevent 

these two constructions from being erroneously generalized over.  

Section 3.4 gave the details on how two constructions can be structurally compared. For 

the purpose of generalization across two constructions, the learner requires that one of them 

conditionally subsumes the other28, allowing a small number (3 or 4) of assignment constraints to 

be relaxed. These assignment constraints, as explained in Section 1.1, express contextual 

restrictions on core schema role fillers and necessarily differ across situations. 

If one construction does conditionally or unconditionally subsume the other, the pair of 

constructions can proceed to be generalized. Otherwise they are examined for potential revisions. 

The exact details of revision triggers and revision procedures are given in the next chapter, but the 

intuition can be taken from the just-mentioned example of WO3-CHI1 (I eat) and YAO4-CHI1 

(medicine eat). Since the two forms are similar but they mean different things, by the Gricean 

assumption (Grice, 1975), there ought to be other differences in the constructions that went 

unnoticed. The structural alignment process conveniently locates these contrasting pairs as a by-

product of searching for possible generalizations and notates them for future examination. 

Recursive generalization of constituents 

When two constructions are selected for generalization, generalizations of their 

constituents are also triggered. This is demonstrated in the example of the creation of the lexical 

categories CAT001:{WO3, NI3} and CAT002:{CHI1, HE1}. This is modeled as a recursive process 

which triggers the creation of new categories and new concrete constructions.  

 

                                                           
28 A more prudent learner can also require that the constructions are equivalent given a constituent map. Due to the 
limited learning data available, a less exact matching algorithm is adopted to encourage generalization. 
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The base case of recursion is when either of the constructions is lexical. A new abstract 

category is created since there is no internal structure to support further decomposition. 

Otherwise one or two new concrete constructions are returned at the end of the generalization 

process depending on whether the two specific constructions are of the same length. Pairs of 

structurally aligned constituents are examined and new constituent types are determined 

recursively as stated in the pseudo-code in Figure 4.15. Categories are automatically merged if a 

new category is created over one or more existing categories. The merging operation is further 

described in Section 5.4. 

 
 
Figure 4.15  The procedure for generalizing two constructions c1 and c2. If their constituents 
do not have an existing parent type, a recursive generalization is triggered.  

 

generalize(grammar g’, cxn c1, cxn c2, constituentMap m, 
evokedRoleMap e) 
 
 
if (isLexical(c1) || isLexical(c2)): 
  
 return createNewCategory(c1, c2) 
 
else: 
 
 // determine constructional types of new constituents 
 
 for (constituent pair <t1, t2> in m): 
  if (t1 = t2): 
   use t1 as new type 
  else if (subtype(t1, t2)): 
   use t2 
  else if (subtype(t2, t1)): 
   use t1 
  else if (∃ t3 such that subtype(t1, t3) && subtype(t2, t3)): 
   use t3 
  else: 
   if (generalize(g’, t1, t2) returns a unique construction): 
    use generalize(g’, t1, t2) 
   else: 
    use createNewCategory(t1, t2) 
 
 if (sameLength(c1, c2)): 
  return one new concrete construction 
 else: 
  return two new concrete constructions 



108 
 

Lifting form and meaning constraints 

After constituents are aligned and the new constituent types are determined, the form 

constraint, meaning pole type, and meaning constraints of the general construction have to be 

determined. As the new concrete construction is intended to eventually replace the specific 

constructions, all constraints are expected to be lifted to the new construction.  

The least specific set of form constraints from the two candidates are retained. The 

meaning pole type, as expected, is the most specific common ancestor of the two original meaning 

pole, and the same goes for each contextual constraint. Slot chains are re-written using new 

constituent names, new local names for lifted evoked elements, and mapped role names if the 

meanings of constituents have been generalized. An seen in the resulting construction CAT001-

CAT002 construction in the WO3-CHI1 (I eat) / NI3-HE1 (you drink) example, the new meaning 

pole type is INGESTION, the contextual constraints on its rd1 is relaxed and the speech_act 

constraint is dropped altogether.  

In rare instances, certain constraints can no longer be representable given the new 

constituent types since the required roles are no longer accessible given a more general 

constituent meaning. In these situations, the generalization operation is aborted. 

Generalizing across two constructions with differing number of constituents 

In order to compensate for sparse input data and frequent argument omission, the model 

implements an aggressive generalization algorithm that also works when two constructions differ 

in length by one constituent, such as WO3-CHI1 (I eat) and XI1XI1-CHI1-YAO4 (XiXi eat 

medicine). Much of the algorithm remains unchanged, and the structural alignment process 

proceeds with only the shared constituents. A generalized version of each of the constructions is 
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created, leaving most of the constraints intact but replacing some constituents with the 

generalizations. 

In this example, one new category CAT003:{WO3-N, XI1XI1-N} is created and two 

additional new concrete constructions CAT003-CHI1 and CAT003-CHI1-YAO4 are learned. These 

two concrete constructions resemble their corresponding specific constructions as shown in 

Figure 4.16. 

 
Construction CAT003-CHI1 
 subcase of CLAUSE 
 constructional 
  constituents 
   c0 : CAT004 
   c1 : CHI1-V 
 form 
  constraints  
   c0.f meets c1.f 
 meaning : EAT 
  evokes RD as rd0 
  evokes RD as rd1 
  evokes DISCOURSE_SEGMENT as DS 
  constraints 
   self.m <--> c1.m 
   c0.m <--> c1.m.ingester 
   rd0 <--> c0.rd 
   rd0.referent <--> c1.m.ingester 
   rd1.referent <--> c1.m.ingested 
   rd1.ontological_category <-- @Rice 
   rd1.discourse_role <--   
    @Attentional_Focus 
   DS.speech_act <-- EXPLAINING 
 

Construction CAT003-CHI1-YAO4 
 subcase of CLAUSE 
 constructional 
  constituents 
   c0 : CAT004 
   c1 : CHI1-V 
   y2 : YAO4 
 form 
  constraints  
   c0.f meets c1.f 
   c1.f meets y2.f 
 meaning: EAT 
  evokes RD as rd0 
  evokes RD as rd1 
  evokes DISCOURSE_SEGMENT as DS 
  constraints 
   self.m <--> c1.m 
   c0.m <--> c1.m.ingester 
   y2.m <--> c1.m.ingested 
   rd0 <--> c0.rd 
   rd0.referent <--> c1.m.ingester 
   rd1.referent <--> c1.m.ingested 
   rd1.ontological_category <-- @Medicine 
   rd1.discourse_role <--  
    @Attentional_Focus 
   DS.speech_act <--   
    REQUESTING_ACTION 

 
Figure 4.16  Creating two new concrete constructions when constructions of differing lengths 
are generalized. In this case, generalization across WO3-CHI1 (I eat) and XI1XI1-CHI1-YAO4 
(XiXi eat medicine) lead to a new category with WO3-N and XI1XI1-N as members and two 
new constructions CAT003-CHI1 and CAT003-CHI1-YAO4.  

 
 

Competition between general and specific constructions 

In this learning model, there are 3 options for the more (lexically-) specific constructions 

such as WO3-CHI1 (I eat) and NI3-HE1 (you drink) after they have been generalized: (1) they can 



110 
 

be left unchanged, essentially letting lexically-specific constructions compete with the newly 

learned CAT001-CAT002 ({I, you} {eat, drink}) construction, (2) they can be made subcases of the 

new construction, or (3) they can be removed from the grammar at the time of generalization. 

There are competing claims in the literature with respect to whether the lexical constructions 

continue to exist in the grammar, though there is strong evidence that they do (Bybee & 

Scheibman., 1999). The initial implementation uses option (1), but the other options will be left as 

experiments to be tested on the model.  

Summary: the generalization operation 

The current formulation of the generalization process separates the issue of retrieval 

strategy (selecting constructions from the grammar to try to generalize — shared constituents or 

shared semantics) from that of analogy (deciding whether a pair of constructions is similar 

enough to generalize). This learning model provides a formalized framework that allows both to 

be manipulated in computational experiments, and in particular to examine constructional 

generalization from six perspectives: 

1. form: ordering constraints are used as a filter on whether two constructions are 

candidates for generalization.  

2. meaning: while the semantics of a construction acts as a filter for retrieving possible 

generalization candidates, detailed structural alignment of semantic constraints is 

also necessary for two constructions to generalize 

3. constituent structure: the model allows for conservative generalization where 

constituent structures have to match perfectly as well as aggressive generalization 

where partial matches are permitted. 
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4. grammatical context: triggered generalization, including category formation, 

necessarily take into account the syntactic context of a constituent because these 

generalizations are brought about by some other constructions that use it 

5. situational context: a fixed number of contextual constraints are allowed to be relaxed. 

6. discourse context: a fixed number of discourse constraints are allowed to be relaxed. 
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Chapter 5.  

Refining Previously Learned Constructions 

The last chapter gave the basic mechanisms with which grammatical constructions are 

learned, but in a noise-prone learning environment learning mistakes are unavoidable. Incorrect 

context fitting may lead to incorrect meaning relations in constructions being posited, and 

inattention to unstressed grammatical particles may lead to important syntactic distinctions being 

lost. Spurious constructions with overly specific contextual constraints could be learned, while at 

other times generalizations may be too conservative to be useful. The model therefore provides 

five means of refinement and correction: constituent omission, construction revision, category 

merge, category expansion, and grammar decay. 

5.1 Detecting the need for refinement 

As was briefly mentioned in Chapter 4, misalignment during the structural comparison 

process indicates a need for refinement for one or both of the constructions. Consider the 

following pair of learned constructions, YUE4LIANG4-CAT006 (Moon - CAT006) and NI3-

CAT006 (you - CAT006), where CAT006 are made up of verbs such as SI1-V (tear), BAI1-V (rip 

apart), HUI3-V (damage). They both refer to the same scene: it turned out that in the scene, the 

child came across a page in a picture book which she had accidentally ripped some time ago —  

the word yue4+liang4 (moon) was used metonymically for the page on which the moon was 

drawn. By aligning the constituents in the two constituents (y0 with n0, and c1 with c1) the 

learner realizes that the two constructions look syntactically similar (a verb preceded by a noun) 
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while the meaning relations are in conflict. In YUE4LIANG4-CAT006, the moon is the undergoer 

of the TEAR action, whereas in NI3-CAT006, the addressee is the actor in the TEAR action. The rest 

of the situational contexts look largely compatible so there is reason to suspect that there are 

additional grammatical cues that the learner has missed which will help differentiate the two 

meanings. This pair of constructions is put on a revision watch list. 

Construction YUE4LIANG4-CAT006 
 subcase of CLAUSE 
 constructional 
  constituents 
   y0 : YUE4LIANG4-N 
   c1 : CAT006 
 form 
  constraints 
   y0.f meets c1.f 
 meaning : TEAR 
  evokes DISCOURSE_SEGMENT as DS 
  evokes RD as rd1 
  evokes RD as rd0 
  constraints 
   c1.m.undergoer <--> y0.m 
   rd0.referent <--> c1.m.undergoer 
   rd1.referent <--> c1.m.actor 
   rd0.ontological_category <-- @Moon 
   rd1.ontological_category <-- @Child 
   rd1.discourse_role <-- @Addressee 
   DS.speech_act <-- EXPLAINING 

 Construction NI3-CAT006 
 subcase of CLAUSE 
 constructional 
  constituents 
   n0 : NI3_VARIANT 
   c1 : CAT006 
 form 
  constraints 
   n0.f before c1.f 
 meaning : TEAR 
  evokes DISCOURSE_SEGMENT as DS 
  evokes RD as rd1 
  evokes RD as rd0 
  constraints 
   c1.m.actor <--> n0.m 
   rd0.referent <--> c1.m.undergoer 
   rd1.referent <--> c1.m.actor 
   rd1 <--> n0.rd 
   rd0.ontological_category <-- @Moon 
   DS.speech_act <-- EXPLAINING 

 
Figure 5.1  Two constructions, YUE4LIANG4-CAT006 (moon {tear, rip, damage}) and NI3-

CAT006 (you {tear, rip, damage}), that align in form but not meaning. The pair is a candidate 
for revision. 

 
The same kind of structural alignment takes place between constructions of unequal 

length as well, such as the pair in Figure 5.2. The first , GEI3-CLAUSE, contains just the verb 

GEI3_VARIANT-V (give) whereas the second, GEI3-WO3, contains both the verb and a noun WO3 

(I) who is the recipient. Aligning the verb with the other verb in these two constructions, the 

learner found that the two constructions have the same meaning (a GIVE scene) as well as 

contextual constraints (a Child as the giver and a Pen as the theme) except for the difference of 

one constituent (w1). It is possible that w1 is either optional or omissible, but the learner cannot 

make a conclusion on the basis of the two constructions themselves —  even if GEI3-CLAUSE is in 
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the grammar alongside GEI3-WO3, GEI3-CLAUSE can be used as a constituent of another 

construction which supplies the additional arguments. The learner thus needs to wait and see how 

the shorter construction is used. The pair of construction is put on an omission watch list. 

Construction GEI3-CLAUSE 
 subcase of CLAUSE 
 constructional 
  constituents 
   g0 : GEI3_VARIANT-V 
 meaning : GIVE 
  evokes DISCOURSE_SEGMENT as DS 
  evokes RD as rd1 
  evokes RD as rd0 
  evokes RD as rd2 
  constraints 
   self.m <--> g0.m 
   rd0.referent <--> g0.m.giver 
   rd1.referent <--> g0.m.theme 
   rd2.referent <--> g0.m.recipient 
   rd0.ontological_category <-- @Child 
   rd0.discourse_role <-- @Addressee 
   rd1.ontological_category <-- @Pen 

 Construction GEI3-WO3 
 subcase of CLAUSE 
 constructional 
  constituents 
   g0 : GEI3_VARIANT-V 
   w1 : WO3 
 form 
  constraints 
   g0.f meets w1.f 
 meaning : GIVE 
  evokes RD as rd0 
  evokes RD as rd1 
  evokes RD as rd2 
  evokes DISCOURSE_SEGMENT as DS 
  constraints 
   self.m <--> g0.m 
   rd0.referent <--> g0.m.giver 
   rd1.referent <--> g0.m.theme 
   rd2.referent <--> g0.m.recipient 
   w1.m <--> rd2.referent 
   w1.rd <--> rd2 
   rd0.ontological_category <-- @Child 
   rd0.discourse_role <-- @Addressee 
   rd1.ontological_category <-- @Pen 
   rd2.ontological_category <-- @Mother 
   rd2.discourse_role <-- @Speaker 
   DS.speech_act <-- EXPLAINING 

 
Figure 5.2  Two constructions that differ in length by one constituent. The different 
constituent, w1, may be omissible but the learner needs to wait till GEI3-CLAUSE is used 
again — alone — to be sure. 
 

5.2 Construction revision 

When a construction on the shortlist for revision is used in the analysis of an utterance, 

the revision operation is triggered. Its primary function is to look for additional grammatical cues 

that might differentiate two constructions that look the same syntactically and mean different 

things. These cues may be in the form of additional function words or content words. We turn 

again to the first example given in the last section to illustrate the operation, but real data is 
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always much more complicated. The following is the dialogue from which the constructions are 

learned: 

1 yue4+liang4   si1  er(le) 
moon     tear  PERF  
  

(the moon is torn) 

2 zhei4  si1  le 
 this tear CRS/PERF 
 

(this is torn) 

3 ni3  kan4 
you  see  
 

(you see) 

4 ni2  gei3  si1  le 
you CV tear CRS/PERF 
 

(you tore (it)) 

5 ba3  yue4+liang4  gei3  si1  le 
CV moon   GEI3 tear CRS/PERF 

(you) tore the moon 

 
Recall that the need for revision arose because the two constructions create an ambiguity 

in the grammar: the noun-verb pattern seems to allow both the actor and the undergoer readings. 

It turns out both readings are indeed confirmed by data but the difference is subtle. As can be 

seen from (1) and (2), the undergoer can be the subject of a sentence but the construction actually 

denotes undergoer-state. This sentence-final particle le, which denotes both a current relevant 

state (CRS) and a perfective aspect, is important in turning the verb into a stative description of 

the undergoer and making the sentence grammatical.  

A different way of placing the undergoer preverbally without the stative reading is by 

fronting it using the ba3 coverb as in (5).29  The learner needs to pay attention to the pre-nominal 

ba3 particle which clearly marks the moon as the object. For the purpose of improving the 

grammar, it suffices for the learner to incorporate either the aspect particle le or the object-

marking coverb ba3 into the construction. With no knowledge about specific function words, 

                                                           
29 In some local dialects of Mandarin an additional gei3 particle is also used to emphasize affectedness. It is not exactly a 
passive but is most often used when the object appears preverbally.  
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however, how is the learner to tell these two useful particles apart from the other unknown words 

in the sentence?  

 The model uses a combination of adjacency constraints and usage statistics to select new 

constituents to serve as grammatical cues in differentiating two conflicting constructions. When a 

construction on the revision watch list is used in an analysis, the learner looks for other 

constructions in the analysis that are immediately next to or fall inside the span of the watched 

construction — the latter happens because of the analyzer’s ability to do robust parsing and skip 

over unconnected roots. A usage-based filter is then applied to all those adjacent constructions. 

There are a number of possible frequency-based heuristics, the choice among which is an 

empirical or an engineering issue. For model simplicity, we put a threshold on the constructional 

bigram. For each adjacent construction that exceeds the threshold, a new version of the 

construction in question with the extra constituent is created.  

 
 
Figure 5.3  Using adjacency and frequency information to sift out grammatical cues in 
revision. 

 

Figure 5.4  The expected analysis of (5) using YUE4LIANG4-CAT006. BA3, GEI3-V, and LE are 
all adjacent to YUE4LIANG4-CAT006 or its constituents.  

given Revisable construction r, Analysis a 
 
Set<Construction> C = constructions in a adjacent to r 
Set<Construction> O = old constituents of r 
 
for c in C: 
 for o in O: 
  bigram(c,o) = P(c|o) if o is before c in a, P(o|c) o.w. 
  if (bigram(c, o) > threshold): 
   create one new construction with constituents {O, c} 
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Carrying this operation out on YUE4LIANG4-CAT006 the next time it is used to analyze (5), 

one constructional analyses will look like the above.30 Since all of BA3, GEI3-V and LE are potential 

new constituents to add to the YUE4LIANG4-CAT006 construction due to adjacency, the bigrams 

P(YUE4LIANG4-N | BA3), P(GEI3-V|YUE4LIANG4-N), P(SI1-V|GEI3-V), and P(LE|SI1-V) are 

examined to determine the appropriateness of each as a new constituent. If BA3 passes the 

criterion, a new construction BA3-YUE4LIANG4-CAT006, as shown below, will be created.  

Construction BA3-YUE4LIANG4-CAT006 
 subcase of CLAUSE 
 constructional 
  constituents 
   b0 : BA3 
   y1 : YUE4LIANG4-N 
   c2 : CAT006 
 form 
  constraints 
   y0.f meets c1.f 
 meaning : TEAR 
  evokes DISCOURSE_SEGMENT as DS 
  evokes RD as rd1 
  evokes RD as rd0 
  constraints 
   c1.m.undergoer <--> y0.m 
   rd0.referent <--> c1.m.undergoer 
   rd1.referent <--> c1.m.actor 
   rd0.ontological_category <-- @Moon 
   rd1.ontological_category <-- @Child 
   rd1.discourse_role <-- @Addressee 
   DS.speech_act <-- EXPLAINING 

 
Figure 5.5  A revised version of YUE4LIANG4-CAT006 with an additional particle BA3 is 
created and added to the grammar. 

 

5.3 Constituent omission 

The omission watch list, as the reader may recall, contains pairs of constructions that 

mean the same thing (in context) but differ in their number of constituents. When the learner 

encounters an analysis in which the shorter construction in a pair is used, the omission operation 

                                                           
30 The gei3 is likely to be misinterpreted to be a verb, depending on the starting lexicon. How the function word sense of 
gei3 can be separated from the most frequently used verb sense leaves another story to be discussed, though the short 
answer is a combination of collocation frequency and semantic-context fit.  
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is triggered. The usage of the shorter construction is by itself insufficient evident for an omissible 

or optional constituent — the construction maybe be embedded in a larger one that supplies the 

“missing” meaning — so semantic verification must be carried out. 

 Specifically, semantic roles that are connected with the differing constituent in the longer 

construction must be verified in the current analysis that uses the shorter construction. If they are 

not filled in constructionally, indicating that the meaning is either only contextually specified or 

has to be inferred, it implies that the differing constituent does not need to be overtly mentioned. 

If the corresponding semantic role(s) are core roles, the constituent is notated as omissible, else 

the constituent is marked optional using the optional keyword. In essence, the optionality or 

omissibility of the constituents of a construction is determined by contrasting it with the usage of 

a minimally different construction.  

 
 
Figure 5.6  When the shorter construction of a marked pair is used in an analysis, an effort 
is made to ensure that no other constructions are filling in the corresponding semantic roles 
before making the differing constituents optional or omissible. 

 
Taking as a concrete example the pair GEI3-CLAUSE and GEI3-WO3 introduced in Figure 

5.2, the learner’s job is to determine if the constituent w1 in the latter is an optional or omissible. 

These three unification constraints, 

rd2.referent <--> g0.m.recipient 

w1.m <--> rd2.referent 

given Grammar g, Pair<Construction> {shorter, longer},  
differing constituent c, Analysis a  
 
find semantic roles R connected to c in longer 
look up R in a 
 
if (none of R is filled in constructionally): 
 if (one or more of R are core roles): 
  c is marked omissible in longer  
 else: 
  c is marked optional in longer  
 
remove shorter from g 
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w1.rd <--> rd2 

tells the learner that w1 is connected to the recipient role of the GIVE schema. If GEI3-CLAUSE is 

used again to analyze another utterance, the recipient role is examined in the resulting analysis. If 

it is filled in constructionally, that is, if there is a path from another construction in the analysis to 

the recipient slot, nothing can be concluded from the learning input. However, if it is not 

constructionally filled, the learner deduces that w1 need not be overtly expressed. Since recipient 

is a core role, the learner marks w1 as omissible.  

5.4 Category merge 

Every so often, a new grammatical category is created over other existing grammatical 

categories due to generalization operations. Take as an example CAT016 below, consisting of the 

verbs CUO1-V (Mash) and RENG1-V (Throw), and this category is used by, say, construction 

CXNA. Another construction, say,  CXNB, that uses the verb TI1-V (Kick) comes along and is 

generalized with CXNA, creating a new CAT033 over the existing CAT016. One obvious 

optimization is to merge CAT013 into CAT033. 

 
 
Figure 5.7  A generalization operation may cause a new category to be created over an 
existing one. A natural optimization is to merge the two categories. 

 
A more general scenario is when the grammar may be better served by combining two or 

more categories that already share some members, as illustrated in Figure 5.8. Category merge is a 

lot more like generalization than it seems at first because abstract constructions may have 
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constituents and semantic constraints as well as evoked roles. When two categories are merged 

the shared structures have to be extracted. Unfortunately, because a category also acts like an 

interface to constructions which use it, guaranteeing the semantic contents of its members,  

merging two interfaces that make different guarantees (or have different names for the same 

semantic roles) will break the ‘contracts’ with their users. 

 
Figure 5.8  A more general problem of merging multiple categories. Because abstract 
constructions contain constituency, form, and meaning structures, when performing a merge 
between categories, the shared structures have to be retained and unshared ones pushed back 
downwards to the respective category members. This may potentially break a category’s 
“contract” or guarantees with users of the category, but a general solution is beyond the 
scope of the current work.  

 
There is no general solution to automatically fix the grammar if the semantic guarantees 

of a linguistic category are altered, and the degree of optimization is mostly of engineering 

consequence. As such, category merge is only partially supported by the learner in cases where the 

least restrictive of the merged category suffices as an interface for all the resulting members. In 

other words, category merge between a set of grammatical categories is performed pairwise with 

no attempt at reconciliation between role names until all categories are merged or until the 

operation results in broken ‘contracts’ between categories and their users. 

Pairwise category merge is carried out using the same algorithm that creates a linguistic 

category in the first place. By generalizing over the two categories, only the shared components 

are retained in the new category (the placeholder category in the following pseudo-code), which is 

to be used in the grammar in place of the original ones. The placeholder category, however, may 



121 
 

have fewer constraints than in either of the original categories. Since multiple inheritance is 

allowed in ECG, some of these constraints may still be inherited by members of the original 

categories from other parents. Those that are not, however, are pushed back downwards. 

 
 
Figure 5.9  The category merge operation makes use of the generalization algorithm that 
creates a linguistic category in order to extract the shared structures between two categories. 
The unshared structures are examined and pushed back down to the members if necessary. 
 

5.5 Category expansion 

The generalization operation described in Section 4.2 is a very conservative generalization 

operation. The generalization between two constructions creates very narrow linguistic categories 

that may consist of only two items, and until the categories get broader, the use of the 

generalization is very limited. This learning model therefore allows for a specific kind of 

semantics-based category expanion that is triggered when the category is used or otherwise 

touched on by another learning operation. Continuing with the example introduced in Figure 5.7, 

we have CAT033 with three members now after the merge:  CUO1-V (Mash), RENG1-V (Throw), 

given Grammar g, Construction cat1, Construction cat2 
 
g’ = g.makeCopy() 
placeholder = generalize(g, cat1, cat2) 
 
Set<Constraints> T1 = all constraints in cat1 not in placeholder 
for construction member in cat1: 
 for each constraint t in T1: 
  if (t is not in member through other means of inheritance): 
   add t back to member  
 
Set<Constraints> T2 = all constraints in cat2 not in placeholder 
for construction member in cat2: 
 for each constraint t in T2: 
  if (t is not in member through other means of inheritance): 
   add t back to member  
 
remove cat1, cat2 from g’ 
rename placeholder as cat1 and add to g’ 
if (well-formed(g’)): 
 accept g’ 
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and TI1-V (Kick). The learner looks for ways to further extend the category by checking the 

schema lattice. It attempts to extend CAT033 to constructions with meanings that are sibling to 

MASH, THROW, and KICK, namely, DA3-V (Beat), ZHUI4-V (Pound), PAI1-V (Slap), and the like.  

 

 
 
Figure 5.10  CAT033 from the last example is now being semantically extended to include 
other verbs of agentive impact.  

 

 
 
Figure 5.11  Portion of the semantic lattice showing semantic siblings of MASH, THROW, and 
KICK 

 

Given this intuition, the learner has to proceed with caution in making sure that 

constructions recruited to be new members conform to the additional semantic constraints which 

the category poses. That is, each new member must already be subsumed both syntactically and 

semantically by the category (see Section 3.4 for how the learner determines subsumption 

between constructions). The whole algorithm goes as follows: 
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Figure 5.12  The category expansion operation is a semantically driven way to increase the 
generalization capacity of the grammar. 

 

5.6 Grammar decay 

At each learning step, old, unused concrete constructions are purged. Each construction 

is timestamped with a date of last modification which is initially set when the construction is 

created and is updated each subsequent time the construction is updated (e.g. modification of 

constructional parent). The current ‘date’ increments each time any modification is made to the 

grammar, effectively numbering the different versions of grammar that the learning model has 

gone through. Constructions that are learned long time ago (older than a user-set duration) and 

are not entrenched (usage frequency less than a user-set number) are removed from the grammar. 

Any resulting orphaned categories (categories that are no longer used by any constructions) are 

removed as well.  

 
  

given Grammar g, Construction cat 
 
Schema m = meaning pole type of cat 
Set<Schema> S = siblings(m) 
Set<Construction> C = constructions whose meaning is among S 
 
for Construction c in C: 
 if (subsumes(cat, c)): 
  add cat to parents of c 
  Set<Constraints> T = constraints in c already in cat 
  remove T from c 
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Chapter 6.  

Keeping Statistics on a Grammar 

If constructions provide the structures that guide the understanding of language, then 

statistical information on these constructions expresses preferences on these structures. Bryant, 

Bybee, and Gahl have all separately argued that these sorts of probabilistic knowledge should be 

considered a part of grammatical knowledge (Bryant, 2008b; Bybee, 2006; Gahl & Garnsey, 2004; 

2006). That is the approach adopted in this work. 

 The importance of statistical information to this model is illustrated by how the use (and 

non-use) of newly learned constructions greatly affects the trajectory of learning. Usage matters in 

more ways than one: the use of a construction may trigger generalization (see Section 4.2), while 

extended non-use leads to its removal from the grammar (see Section 5.6). A third, arguably more 

impactful, way in which usage matters is through competition during the analysis process 

between specific and general constructions. Entrenchment, or frequent usage, of a specific 

construction increases its likelihood of being used again in the future. Comparatively, its 

generalization becomes less likely to be used, to the point where the generalization may eventually 

be lost to grammar decay. This is a trade-off that a grammar learning model must cope with as 

long as it allows specific constructions to co-exist alongside their generalizations. We will return 

again to this idea in our final discussion in Chapter 9.  

Consider the generalization between WO3-CHI1 (I eat) and NI3-HE1 (you drink) in 

Section 4.2 that leads to the CAT001-CAT002 construction and two narrowly defined categories 

CAT001 and CAT002, each consisting of two members. In the simplest implementation, the two 
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specific constructions are retained in the grammar along with the new general construction. 

Notice, however, that until either category is expanded, the CAT001-CAT002 construction is only 

slightly more general than the two more specific constructions combined. The learner only gains 

the ability to analyze wo3 he1 (I drink) and ni3 chi1 (you eat) in addition to wo3 chi1 (I eat) and 

ni3 he1 (you drink). If the learning input is sufficiently large and diverse, we may expect the 

generalization to eventually dominate in usage. However, in practice, even though standard 

smoothing procedures are applied to the usage counts to assign non-zero probabilities to new 

constructions, the input data to the learning model is so sparse that new constructions can benefit 

from some amount of additional probability mass to help them gain traction in usage. At the 

same time, omission probabilities must also be properly updated in order for the analyzer to make 

the right trade-off between a shorter construction with fewer constituents and a longer, 

semantically richer construction with omitted constituents. Getting the learned constructions to 

be used correctly in future language understanding is a big part of the learning process.  

As explained in Section 2.3, the analyzer takes as input these probabilities for all 

constructions α, constituents β of α, and frames f: 

• The locality probabilities, expressedβ αP( | ) and local expressedβ β αP( | , ) , which 

represent the probability that constituent β of construction α is expressed and the 

probability that constituent β of α is expressed locally given that it is expressed. An 

example is the probability that constituent c0 in the CAT001-CAT002 construction is 

not expressed (i.e. omitted). 

• The constructional filler probability, filler expressedβ β αP( | , ) , which represents the 

probability that constituent β of construction α is filled by construction fillerβ . An 
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example is the probability that constituent c0 in the CAT001-CAT002 construction is 

filled by WO3-N. 

• The semantic presence probabilities, role ffilled role fP( | , ) , which represents the 

probability that a particular role frole of frame f is filled. An example is the 

probability that the ingested role of  the INGESTION schema being filled. 

• The semantic role probabilities, frole filler fP( | , ) , which represents the probability 

that a particular filler filler is assigned to the role frole given frame f. An example is 

the probability that a @Peach fills the ingested role of  the INGESTION schema. 

The two semantic probabilities are taken to be prior knowledge and remain stable 

throughout learning to simplify the model. The two constructional probabilities are taken to be 

learned linguistic knowledge and are accumulated through exposure to linguistic input. This 

chapter describes how they are updated throughout learning. We will focus first on how the 

locality and constructional filler counts are tracked throughout usage, then discuss how each 

learning operation explicitly manipulates the counts to encourage the use of new constructions. 

The method for smoothing the occurrence counts for the analyzer’s use will be discussed in the 

last part of this chapter. 

6.1 Updating statistics through usage 

Given a static, stable grammar, statistics on existing constructions are gathered in a fairly 

straightforward manner as the model encounters learning input. Both lexical and constructional 

unigram and bigram probabilities for words wi and constructions αi are gathered: iwP( ) , iαP( ) , 

i iw w −1P( | ) , i iα α −1P( | ) . The corresponding unigram and bigram frequencies, iwfreq( ) , 
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iαfreq( ) , i iw w−1freq( , ) , i iα α−1freq( , ) are updated based on the constructional tree of the best 

analysis for each utterance. In addition, the locality counts and constructional filler counts from 

which the locality probabilities and constructional filler probabilities are derived are updated 

throughout learning. For each construction α in the best analysis, the learner keeps track of: 

•  jlocality α
β α βC( , , ) : the number of times its jth constituent j

αβ  has locality localityβ
, 

where localityβ
 can take on one of four constant values: 

 LOCAL: j
αβ  is expressed locally 

 EXTRAPOSED: j
αβ  is expressed nonlocally 

 OMITTED : a non-optional constituents j
αβ is omitted 

 UNFILLED: an optional constituents j
αβ is unfilled 

•  jfiller α
β α βC( , , ) : for each constituent j

αβ that is filled (either locally or extraposed), 

the number of times constituents j
αβ is filled by fillerβ  

Notice that only concrete constructions can be fillers of constituents. Additionally, a 

subtle choice is made with this update process with regard to construction generalizations, 

namely, that the counts of the more lexically-specific constructions are updated independently of 

those of the subsequently derived generalizations, pitting the constructions directly against one 

another during use. (An alternative procedure may be to assign partial credit to generalization 

parents and/or children as well). The implications of this choice will be discussed in Chapter 9.  
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6.2 Updating statistics through learning 

Given that constructional statistics express preferences on grammatical structures, we 

expect these preferences to shift over the course of learning, possibly due to explicit interventions 

from the learning operations. With little past empirical work to inform these choices, this section 

is an attempt to systematically outline how statistical information is updated per learning 

operation.  

For any given construction α, let us define a user υ as a construction which has one or 

more constituents that can expand directly into α (in other words, a construction with one or 

more constituents whose type constraint is an ancestor of α). For each new construction α with 

constituents  𝛽𝛽1
𝛼𝛼 … 𝛽𝛽𝑛𝑛

𝛼𝛼  and potential users 𝜐𝜐1 …, 𝜐𝜐𝑚𝑚 , these distributions available for adjustment 

during learning: 

• P(𝛼𝛼): the constructional unigram probability of α 

• P(𝛼𝛼|𝜑𝜑) and P(𝜑𝜑|𝛼𝛼): the constructional bigram probabilities for all constructions φ in 

the grammar, i.e. the probability of construction α given that the preceding 

construction is φ, and the probability of construction φ given that the preceding 

construction is α.  

• P(𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝛽𝛽 |𝛼𝛼, 𝛽𝛽𝑗𝑗
𝛼𝛼 ): the probability that the jth constituent 𝛽𝛽𝑗𝑗

𝛼𝛼  of α is filled by 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝛽𝛽 . 

For brevity we refer to this as the internal constructional filler distributions 

• P(𝛼𝛼| 𝜐𝜐, 𝛽𝛽𝑘𝑘
𝜐𝜐 ): the probability that α fills the kth constituent 𝛽𝛽𝑘𝑘

𝜐𝜐  of a user υ. For brevity 

we refer to this as the external constructional filler distributions. 

• P�𝑓𝑓𝑒𝑒𝑒𝑒𝑓𝑓𝑓𝑓𝑒𝑒𝑒𝑒𝑓𝑓𝑒𝑒𝛽𝛽 |𝛼𝛼� and P�𝑓𝑓𝑙𝑙𝑙𝑙𝑙𝑙𝑓𝑓β |𝑓𝑓𝑒𝑒𝑒𝑒𝑓𝑓𝑓𝑓𝑒𝑒𝑒𝑒𝑓𝑓𝑒𝑒𝛽𝛽 , 𝛼𝛼�: the locality distributions for each 

constituent j
αβ  
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From a language understanding accuracy standpoint, the best performance can be 

obtained by re-estimating all these parameters from the entire set of learning data every time a 

new construction is added. This is obviously neither efficient nor cognitively plausible. An 

alternative is for the model to update in a principled way the occurrence counts for the new 

construction based on existing ones, for each learning operation. The basic update calculations, 

which will be explained in detail over the next few subsections, are derived from the assuming 

each learned construction is correct and supported by all previously encountered data, such that a 

new composition immediately assumes a count of 1 (that is, the current utterance which triggered 

the composition counts as one piece of evidence for the new composition being used) and a new 

generalization assumes the total counts of the specific constructions (that is, all previous 

utterances that are covered by the specific constructions are now evidence for the new 

generalization). Obviously, the input data is noisy and the learner can make mistakes, so a 

parameter 0 ≤ γ ≤ 1 is used as a discount factor for the count updates to reflect the uncertainty in 

the learning process. 

The idea of constituent mapping is important throughout the explanation of the update 

mechanism. Recall from Section 3.4 that a constituent mapping is a one-to-one correspondence 

(null permitted) between constituents of α and constituents of β. Constituent maps exist (1) 

between a general construction and the specific constructions from which it is created, (2) 

between a revision and the construction that is revised, and (3) between a construction with 

omissible or optional constituents and the pair of constructions from which the omission / 

optionality status is deduced. Examples of these will be given over the next sections. 
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Composition 

Composed constructions are made up of smaller existing constructions. Assuming that 

the composition is correct, the utterance which leads to the composition is evidence that this 

composition is used. Therefore, the undiscounted constructional unigram frequency for each new 

composed construction, αfreq( ) , is 1. There is little basis in the kept statistics for estimating the 

constructional bigrams for a new composition, so they remains unchanged.  

The constituents β of the new composition α are narrowly type restricted to the 

constructions present in the constructional analysis at the time of the composition operation, and 

the internal constructional filler occurrences jfiller α
β α βC( , , )  are incremented by γ each. The 

new construction α, being a subcase of either PHRASE or CLAUSE, may be used as a constituent in 

another construction ν that has a constituent of those types. The external constructional filler 

occurrences k
να ν βC( , , )  for each potential user ν may therefore also be adjusted. Whether to 

update this count is a design decision of the learning model. Incrementing this count is equivalent 

to saying that the newly learned construction α has been observed in the constructional context of 

another construction ν. It is not currently implemented since such an update does not seem to be 

warranted by the data. Finally, since each constituent β of the new composition α comes from a 

construction used in the analysis, its LOCAL count is incremented by γ.  

These updates are illustrated in Figure 6.1 below using the composed construction 

XI1XI1-CHI1-YAO4 (Xixi eat medicine) from Figure 4.6, which has constituents x0, c1 and y2. 

We take the utterance from which it was learned, xi1+xi1 chi1 yao4, as evidence of its use.  
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Figure 6.1  Example of updating the statistics after a composition operation.  

 

Generalization 

The updates after a constructional generalization are a bit more complex. Taking first the 

simple case when the specific constructions are all equal length and one new concrete, general 

construction αnew from a set of more specific constructions α1 … αi is created. Since the 

generalization αnew subsumes  α1 … αi and is intended to eventually replace them in the grammar, 

on most statistics it gets the sum of the counts held by the specific constructions, treating the 

evidence for the specific constructions as evidence for itself.  

More precisely, the constructional unigram frequency of the general construction, 

freq(αnew ), is the discounted sum of the unigram frequencies of the specific constructions,  

COMPOSITION  
new construction: XI1XI1-CHI1-YAO4 (Xixi eat medicine) 
composed from: XI1XI1-N, CHI1-V, YAO4-N 
 
constructional unigram frequency 
freq(XI1XI1-CHI1-YAO4) = γ ∙ 1  
 
constructional bigram frequency 
no change 
 
internal constructional filler counts 
C (XI1XI1-N, XI1XI1-CHI1-YAO4, x0) = γ ∙ 1 
C (CHI1-V, XI1XI1-CHI1-YAO4, c1) = γ ∙ 1 
C (YAO4-N, XI1XI1-CHI1-YAO4, y2) = γ ∙ 1 
 
external constructional filler counts 
no change 
 
locality counts 
C (LOCAL, XI1XI1-CHI1-YAO4, x0) = γ ∙ 1 
C (LOCAL, XI1XI1-CHI1-YAO4, c1) = γ ∙ 1 
C (LOCAL, XI1XI1-CHI1-YAO4, y2) = γ ∙ 1. 
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𝛾𝛾 ∑ freq(αi)𝑓𝑓 . The constructional bigram frequency of the new construction freq(𝜑𝜑, 𝛼𝛼𝑛𝑛𝑓𝑓𝑛𝑛 ) is the 

discounted sum of the bigram frequencies of the specific constructions, 𝛾𝛾 ∑ freq(𝜑𝜑, αi)𝑓𝑓 , for all 

constructions φ. The same applies for the other bigram frequency freq(𝛼𝛼, 𝜑𝜑).  

The internal constructional filler count for constituent 𝛽𝛽𝑗𝑗
𝛼𝛼  in αnew, C(𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝛽𝛽 , 𝛼𝛼𝑛𝑛𝑓𝑓𝑛𝑛 , 𝛽𝛽𝑗𝑗

𝛼𝛼 ), is 

given by the discounted sums of the internal constructional filler counts of the corresponding 

constituents in the specific constructions, 𝛾𝛾 ∑ C(𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝛽𝛽 , 𝛼𝛼𝑓𝑓 , 𝛽𝛽𝑗𝑗
𝛼𝛼𝑓𝑓 )𝑓𝑓 . The intuition is that whatever 

can act as a constituent of the specific construction can act as a constituent of the general 

construction, too. The external constructional filler count of construction αnew in constituent 𝛽𝛽𝑘𝑘
𝜐𝜐  

in user υ, C(𝛼𝛼𝑛𝑛𝑓𝑓𝑛𝑛 , 𝜐𝜐, 𝛽𝛽𝑘𝑘
𝜐𝜐 ), is given by the discounted sums of the external constructional filler 

counts of the specific constructions, 𝛾𝛾 ∑ C(αi , υ, 𝛽𝛽𝑘𝑘
υ)𝑓𝑓 . The intuition here is that wherever the 

specific constructions are used, the general construction can be used, too. This is feasible because 

both the specific constructions and the generalization(s) share the same constructional parents 

(PHRASE or CLAUSE). Finally, the locality count of the general construction, C(𝑓𝑓𝑙𝑙𝑙𝑙𝑙𝑙𝑓𝑓𝑓𝑓𝑙𝑙𝑙𝑙𝛽𝛽 , 𝛼𝛼𝑛𝑛𝑓𝑓 𝑛𝑛 ), 

is obtained likewise by summing across the locality counts of the specific constructions, 

𝛾𝛾 ∑ C(𝑓𝑓𝑙𝑙𝑙𝑙𝑙𝑙𝑓𝑓𝑓𝑓𝑙𝑙𝑙𝑙𝛽𝛽 , αi)𝑓𝑓 .  

These update operations are illustrated in Figure 6.2 using the CAT001-CAT002 

construction from Figure 4.12 which is generalized from WO3-CHI1 and NI3-HE1. The two 

categories created concurrently are CAT001:{WO3, NI3} and CAT002:{CHI1, HE1}.  
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Figure 6.2  Example of updating the statistics after a generalization operation between two 
constructions of equal length.  

 

CONCRETE GENERALIZATION 
new construction: CAT001-CAT002  
generalized from: WO3-CHI1 (I eat) and NI3-HE1 (you drink) 
created categories: CAT001:{WO3, NI3}, CAT002:{CHI1, HE1} 
 
final constituent mapping: 
<CAT001-CAT002, c0>: <WO3-CHI1, w0>, <NI3-HE1, n0> 
<CAT001-CAT002, c0>: <WO3-CHI1, w0>, <NI3-HE1, n0> 
 
constructional unigram frequency 
freq(CAT001-CAT002) = γ ∙ ( freq(WO3-CHI1) + freq(NI3-HE1)) 

 
constructional bigram frequency 
freq(φ, CAT001-CAT002) =  γ ∙ ( freq(φ, WO3-CHI1) + freq(φ, NI3-HE1)) 

freq(CAT001-CAT002, φ) =  γ ∙ ( freq(WO3-CHI1, φ) + freq(NI3-HE1, φ)) 

 
internal constructional filler counts 
C (filler,  CAT001-CAT002, c0) = γ ∙ (C (filler,  WO3-CHI1, w0) + C (filler, NI3-HE1, n0)) 
 
which, due to the narrow type constraints on w0 and n0 effectively means that 
C (WO3-N,  CAT001-CAT002, c0) = γ C (WO3-N,  WO3-CHI1, w0) 

C (NI3-N,  CAT001-CAT002, c0) = γ C (NI3-N,  NI3-HE1, n0) 
which works out to be 
C (WO3-N,  CAT001-CAT002, c0) = γ freq(WO3-CHI1) 

C (NI3-N,  CAT001-CAT002, c0) = γ freq(NI3-CHI1) 
if there are no pronunciation variants of wo3 and ni3. 
 
external constructional filler counts 
C (CAT001-CAT002, ν, βν ) = γ∙ (C (WO3-CHI1, ν, βν ) + C (NI3-HE1, ν, βν )) 
 
locality counts 
C (LOCAL, CAT001-CAT002, c0)  
 = γ ∙ ( C (LOCAL, WO3-CHI1, w0) + C (LOCAL, NI3-HE1, n0)) 
C (EXTRAPOSED, CAT001-CAT002, c0)  
  = γ ∙ ( C (EXTRAPOSED, WO3-CHI1, w0) + C (EXTRAPOSED, NI3-HE1, n0)) 
C (OMITTED, CAT001-CAT002, c0)  
  = γ ∙ ( C (OMITTED, WO3-CHI1, w0) + C (OMITTED, NI3-HE1, n0)) 
C (UNFILLED, CAT001-CAT002, c0)  
  = γ ∙ ( C (UNFILLED, WO3-CHI1, w0) + C (UNFILLED, NI3-HE1, n0)) 
likewise for constituent c1 in CAT001-CAT002  
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All the previous utterances that have been analyzed either of  WO3-CHI1 and NI3-HE1 are 

now analyzable by and thus count towards the CAT001-CAT002 construction. To do this, the final 

constituent mapping is necessary. Constituent c0 (of type CAT001) in CAT001-CAT002 is mapped 

to constituent w0 (WO3-N) in WO3-CHI1 and constituent n0 (NI3-N) in NI3-HE1. Constituent c1 

(CAT002) in CAT001-CAT002 is mapped to constituent c1 (CHI1-V) in WO3-CHI1 and 

constituent h1 (HE1-V) in NI3-HE1. 

The more aggressive generalization between constructions of different lengths leads to a 

modified update algorithm. The principle that a generalization replaces the specific constructions 

still holds, but since multiple generalizations are created out of multiple constructions, each 

general construction combines only the counts of the specific constructions it replaces. Take 

CAT003-CHI1 and CAT003-CHI1-YAO4 from Figure 4.16 as example. These are created from the 

generalization between WO3-CHI1 (I eat) and XI1XI1-CHI1-YAO4 (Xi1Xi1 eat medicine), with the 

new category  CAT003 being {WO3, XI1XI1}. CAT003-CHI1 thus gets the discounted counts of 

WO3-CHI1 and CAT003-CHI1-YAO4 gets the discounted counts of  XI1XI1-CHI1-YAO4 such that 

the constructional unigram frequencies, for example, are updated with 

freq(CAT003-CHI1) = γ ∙  freq(WO3-CHI1)  

freq(CAT003-CHI1-YAO4) = γ freq(XI1XI1-CHI1-YAO4)  

and the internal constructional filler counts are updated with 

C (filler, CAT003-CHI1, c0) = γ C (filler, WO3-CHI1, w0)  

C (filler, CAT003-CHI1, c1) = γ C (filler, WO3-CHI1, c1)  

C (filler, CAT003-CHI1-YAO4, c0) = γ C(filler, XI1XI1-CHI1-YAO4, x0)  

C (filler, CAT003-CHI1-YAO4, c1) = γ C (filler, XI1XI1-CHI1-YAO4, c1)  

C (filler, CAT003-CHI1-YAO4, y2) = γ C (filler, XI1XI1-CHI1-YAO4, y2) . 
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Construction revision 

A revision is the modification of meaning constraints or the addition of syntactic cues to 

an existing construction to resolve its conflict with another construction. The revised 

construction is intended to replace the original but they are put into competition since the learner 

cannot be sure of the correctness of the revision (lack of semantics in function words as well as 

inconsistency in the input come to mind). The revised construction receives all the counts of the 

original discounted by the factor γ. In other words, the constructional unigram frequency of the 

revised construction, freq(αnew ), is the discounted constructional unigram frequency of the 

original construction,  𝛾𝛾freq(𝛼𝛼). The constructional bigram frequency of the new construction 

freq(𝜑𝜑, 𝛼𝛼𝑛𝑛𝑓𝑓𝑛𝑛 ) is the discounted bigram frequency of the original constructions, 𝛾𝛾 ∑ freq(𝜑𝜑, α)𝑓𝑓  

for all constructions 𝜑𝜑. The same applies for the other bigram frequency freq(𝛼𝛼, 𝜑𝜑).  

The internal constructional filler counts for constituents that exist in the original 

construction are discounted and re-used in the revised construction, and for the newly added 

constituents the internal constructional filler count is the same as the constructional unigram 

frequency. That is,  C �𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝛽𝛽 , 𝛼𝛼𝑛𝑛𝑓𝑓𝑛𝑛 , 𝛽𝛽𝑗𝑗
𝛼𝛼𝑛𝑛𝑓𝑓𝑛𝑛 � = γ ∙ C�𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝛽𝛽 , 𝛼𝛼, 𝛽𝛽𝑗𝑗

𝛼𝛼 �  if 𝛽𝛽𝑗𝑗
𝛼𝛼𝑛𝑛𝑓𝑓𝑛𝑛  is also in α and 

C �𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝛽𝛽 , 𝛼𝛼𝑛𝑛𝑓𝑓𝑛𝑛 , 𝛽𝛽𝑗𝑗
𝛼𝛼𝑛𝑛𝑓𝑓𝑛𝑛 � = γ ∙ freq(𝛼𝛼) otherwise. The external constructional filler count of 

construction αnew in constituent 𝛽𝛽𝑘𝑘
𝜐𝜐  in user υ, C(𝛼𝛼𝑛𝑛𝑓𝑓𝑛𝑛 , 𝜐𝜐, 𝛽𝛽𝑘𝑘

𝜐𝜐 ), is a straightforward discount of the 

external constructional filler count of original construction, 𝛾𝛾C(αi , υ, 𝛽𝛽𝑘𝑘
υ). The locality counts for 

constituents that exist in the original construction are discounted and re-used in the revised 

construction, and LOCAL count for the newly added constituents is the same as the constructional 

unigram frequency. That is, C �𝑓𝑓𝑙𝑙𝑙𝑙𝑙𝑙𝑓𝑓𝑓𝑓𝑙𝑙𝑙𝑙𝛽𝛽 , 𝛼𝛼𝑛𝑛𝑓𝑓𝑛𝑛 , 𝛽𝛽𝑗𝑗
𝛼𝛼𝑛𝑛𝑓𝑓𝑛𝑛 � = 𝛾𝛾C (𝑓𝑓𝑙𝑙𝑙𝑙𝑙𝑙𝑓𝑓𝑓𝑓𝑙𝑙𝑙𝑙𝛽𝛽 , 𝛼𝛼, 𝛽𝛽𝑗𝑗

𝛼𝛼 ) if 𝛽𝛽𝑗𝑗
𝛼𝛼𝑛𝑛𝑓𝑓𝑛𝑛  is in α 

and C �𝑓𝑓𝑙𝑙𝑙𝑙𝑙𝑙𝑓𝑓𝑓𝑓𝑙𝑙𝑙𝑙𝛽𝛽 , 𝛼𝛼𝑛𝑛𝑓𝑓𝑛𝑛 , 𝛽𝛽𝑗𝑗
𝛼𝛼𝑛𝑛𝑓𝑓𝑛𝑛 � = 𝛾𝛾freq(α) otherwise. 
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The example used here is BA3-YUE4LIANG4-CAT006 (CVobj moon tear/rip/damage) from 

Figure 5.5, which was revised from YUE4LIANG4-CAT006 (moon tear/rip/damage) with an 

additional coverb BA3 which marks the direct object.  

 

 
 
Figure 6.3  Example of updating the statistics after a revision operation.  
 

Constituent omission 

A constructional constituent is learned to be omissible or optional through contrasting 

two constructions that differ by one or more constituents in length (e.g. GEI3-CLAUSE and GEI3-

WO3 introduced from Figure 5.2). Let s be the shorter construction and l be the longer 

construction. Constituents in l but not in s (e.g. w1 in GEI3-WO3) have their omission /optionality 

REVISION 
new construction: BA3-YUE4LIANG4-CAT006 (CVobj moon tear/rip/damage) 
revised from YUE4LIANG4-CAT006 (moon tear/rip/damage) 
 
constructional unigram frequency 
freq(BA3-YUE4LIANG4-CAT006) = γ ∙ freq(YUE4LIANG4-CAT006)  
 
constructional bigram frequency 
freq(φ, BA3-YUE4LIANG4-CAT006) =  γ ∙ freq(φ, YUE4LIANG4-CAT006) 
freq(BA3-YUE4LIANG4-CAT006, φ) =  γ ∙ freq(YUE4LIANG4-CAT006, φ) 
 
internal constructional filler counts 
C (BA3, BA3-YUE4LIANG4-CAT006, b0) = γ freq(YUE4LIANG4-CAT006)  

C (filler, BA3-YUE4LIANG4-CAT006, y1) = γ C (filler, YUE4LIANG4-CAT006, y0)  

C (filler, BA3-YUE4LIANG4-CAT006, c2) = γ C (filler, YUE4LIANG4-CAT006, c1)  
 
external constructional filler counts 
C(BA3-YUE4LIANG4-CAT006, ν, βν ) = γ C(YUE4LIANG4-CAT006, ν, βν ) 

 
locality counts 
C (LOCAL, BA3-YUE4LIANG4-CAT006, b0) = γ freq(YUE4LIANG4-CAT006)  

C (locality, BA3-YUE4LIANG4-CAT006, y1) = γ C (locality, YUE4LIANG4-CAT006, y0)  

C (locality, BA3-YUE4LIANG4-CAT006, c2) = γ C (locality, YUE4LIANG4-CAT006, c1)  

 



137 
 

statuses modified so that l can now be used to analyze sentences originally covered by s. In this 

sense, a constituent omission operation is a special case of the concrete generalization operation 

and the statistics update for the resulting modified longer construction l’ proceeds quite like that 

for generalization. However, in the current implementation, s is removed from the grammar at 

the end of this operation and l’ is kept in place of l, so no discounting is necessary. 

Concretely, the constructional unigram frequency of the modified longer construction 

freq(𝑓𝑓′) is the sum of the constructional unigram frequencies of the shorter construction and its 

original version, i.e., freq(𝑒𝑒) +  freq(𝑓𝑓). The constructional bigram frequencies are summed in 

the same way for all constructions φ in the grammar such that freq(𝜑𝜑, 𝑓𝑓′) = freq(𝜑𝜑, s) +

 freq(𝜑𝜑, 𝑓𝑓) and  freq(𝑓𝑓′, 𝜑𝜑) = freq(𝑒𝑒, 𝜑𝜑) +  freq(𝑓𝑓, 𝜑𝜑). 

The external constructional filler counts are again a straightforward summation of the 

counts held by the original pair of constructions, i.e. C(𝑓𝑓′, υ, 𝛽𝛽𝑘𝑘
υ) = C(𝑒𝑒, υ, 𝛽𝛽𝑘𝑘

υ) + C(𝑓𝑓, υ, 𝛽𝛽𝑘𝑘
υ). The 

update of the internal constructional filler counts and locality counts requires a bit of care and the 

example will make this a lot clearer. For the shared constituents between s and l, both the 

constructional filler counts and the locality counts are summed as usual, i.e. C�𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝛽𝛽 , 𝑓𝑓′, 𝛽𝛽𝑗𝑗
𝑓𝑓′ � =

 C�𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝛽𝛽 , 𝑒𝑒, 𝛽𝛽𝑗𝑗
𝑒𝑒� + C�𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝛽𝛽 , 𝑓𝑓, 𝛽𝛽𝑗𝑗

𝑓𝑓 � and C�𝑓𝑓𝑙𝑙𝑙𝑙𝑙𝑙𝑓𝑓𝑓𝑓𝑙𝑙𝑙𝑙𝛽𝛽 , 𝑓𝑓′� = C�𝑓𝑓𝑙𝑙𝑙𝑙𝑙𝑙𝑓𝑓𝑓𝑓𝑙𝑙𝑙𝑙𝛽𝛽 , 𝑒𝑒� +  C�𝑓𝑓𝑙𝑙𝑙𝑙𝑙𝑙𝑓𝑓𝑓𝑓𝑙𝑙𝑙𝑙𝛽𝛽 , 𝑓𝑓�. 

The differing constituents are the ones that are now omissible or optional, depending on 

whether they are connected semantically to core roles of the meaning of the construction. The 

constructional filler counts of these constituents, which are already a part of l, are retained. The 

locality probability is the most important aspect of this learning operation. The LOCAL count of 

constituent 𝛽𝛽𝑗𝑗
𝑓𝑓  is the number of times the longer construction is used. If the constituent is 

omissible,  the number of times the shorter construction is the omitted count. If the constituent is 

optional, the unigram frequency of the shorter construction is the unfilled count.  
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C�𝑓𝑓𝑙𝑙𝑙𝑙𝑙𝑙𝑓𝑓𝛽𝛽 , 𝑓𝑓� =  freq (𝑓𝑓) 

C�𝑙𝑙𝑚𝑚𝑓𝑓𝑙𝑙𝑙𝑙𝑓𝑓𝑒𝑒β , 𝑓𝑓� = freq(𝑒𝑒) if 𝛽𝛽𝑗𝑗
𝑓𝑓  is omissible 

C�𝑢𝑢𝑛𝑛𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑒𝑒β , 𝑓𝑓� = freq(𝑒𝑒) otherwise   

Returning to the GEI3-CLAUSE and GEI3-WO3 introduced in Figure 5.2, which led to the 

omissible constituent w0 in the longer construction GEI3-[WO3], the following figure shows how 

the update is performed so that the omission probability of constituent w0 is properly calculated. 

 
 
Figure 6.4  Example of updating the statistics after a constituent omission operation.  
 

Category merge 

A category merge merges an existing category α2 into α1, i.e. all the subtypes of α2 are 

made subcases of α1 and α2 is subsequently removed. Because all the grammar statistics are 

tracked on concrete constructions, none of the statistics need to be udpated. 

CONSTITUENT OMISSION 
new construction: GEI3-[WO3] (give [me]) 
original constructions: GEI3-CLAUSE and GEI3-WO3 

 
constructional unigram frequency 
freq(GEI3-[WO3]) = freq(GEI3-CLAUSE) + freq(GEI3-WO3) 
 
constructional bigram frequency 
freq(φ, GEI3-[WO3]) = freq(φ, GEI3-CLAUSE) + freq(φ, GEI3-WO3) 

freq(GEI3-[WO3] , φ) = freq(GEI3-CLAUSE, φ) + freq(GEI3-WO3, φ) 
 
internal constructional filler counts 
C (filler, GEI3-[WO3], g0) = C (filler, GEI3-CLAUSE, g0) + C (filler, GEI3-WO3, g0)  
C (filler, GEI3-[WO3], w1) = C (filler, GEI3-WO3, w1) 

 
external constructional filler counts 
C(GEI3-[WO3], ν, βν ) = C (GEI3-CLAUSE, ν, βν ) + C (GEI3-WO3, ν, βν ) 

 
locality counts 
C (locality, GEI3-[WO3], g0) = C (locality, GEI3-WO3, g0) 

C (LOCAL, GEI3-[WO3], w1) = freq(GEI3-WO3) 

C (OMITTED, GEI3-[WO3], w1) = freq(GEI3-CLAUSE) 
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Category expansion 

Finally, constructional category membership can be extended to constructions that are 

previously non-members. For example, CAT033 from Figure 5.10 is extended from CUO1-V 

(mash), RENG1-V (throw), and TI1-V (kick) to other constructions with a meaning of agentive 

impact, such as DA3-V (beat) and PAI1-V (slap). Users of the expanded category can have their 

constructional filler probabilities altered to give counts to the new category members, but this is 

imprudent since the category expansion is an aggressive operation to begin with. If new category 

members are also given additional constructional filler counts, the sudden influx of category 

members may dilute the probability mass so much from the existing members that the probability 

of using any one of them (and therefore the probability of the construction) may become too low 

to compete with other constructions. The model thus chooses not to adjust these counts, leaving 

the probability mass to be distributed to the new category members in the smoothing process. 

Decay 

When a construction is removed from the grammar due to decay, its corresponding 

entries in the statistics are simply removed and the distributions re-normalized. 

Summary 

Figure 6.5 shows a summary of the update strategy for each statistic after each learning 

operation. Again, the guiding principle behind all these udpate heuristics is to pretend as if the 

learner has perfect knowledge in creating new constructions and assigning occurrence counts 

using all the previously encountered data as support. A discount factor 0 ≤ γ≤ 1 is then applied 

to these counts to adjust for uncertainty. Crucially, these updates can be done incrementally based 

on existing counts, and no re-estimation using the entire corpus is necessary.  
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Figure 6.5  Strategy adopted by the learner in updating grammar statistics during learning. 
These include the unigram and bigram frequencies, internal constructional filler counts, 
external constructional filler counts, and the constituent locality counts.  
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6.3 Calculating the grammar statistics 

The unigrams and bigrams matter to the learner in only two ways: unigram frequencies 

are used to update the locality probabilities after an omission operation, and bigrams are used to 

filter potential revisions (i.e., recruiting frequently collocated function words as new constituents). 

Neither of these statistics is used by the analyzer and is therefore not smoothed. 

The constructional filler probabilities are obtained by smoothing and 

filler expressed typeConstraintβ β βP( | , ) normalizing the constructional filler counts. The 

smoothing function is a linear combination of filler expressedβ β αP( | , )  and its backoffs given by: 

smoothed filler expressed filler expressed
filler expressed typeConstraint

filler

β β β β

β β β

β

α ρ α
σ ρ

σ

=
+ −
+ −

P ( | , ) P( | , )
(1 )P( | , )

(1 )P( )

where is the context-free backoff that is conditioned only on the type constraint of the constituent, 

and fillerβP( ) is the uniform backoff of all type-suitable fillers. The held-out mass, captured by 

the constants ρ and σ, are given by the standard Witten-Bell smoothing procedure.  

The locality probabilities are calculated from the locality counts without any smoothing. 
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Chapter 7.  

Mandarin Chinese learning experiments 

The learning model is tested on naturalistic child language data as well as an artificial 

language. This chapter describes the computational experiments with Mandarin Chinese data and 

the next chapter describes those with a miniature language, but the procedure for both tasks is the 

same: the learning model is set up with an initial grammar and learning is performed on a 

training set. At set intervals, the learned grammar is tested on a validation set. Note that this 

validation procedure does not provide the learner with any feedback; it only serves as an indicator 

of how well the learning model is performing. 

7.1 Learning data 

The data has been partly described in Section 2.5; an augmented set is used here. The 

training set consists of 150 short dialogues and the validation set consists of 4 long dialogues, all 

of which are taken from the Tardif Beijing corpus in CHILDES (MacWhinney, 2000; Tardif, 1993; 

1996). This is a longitudinal corpus of naturalistic parent-child interaction. The short dialogues 

are created from the transcripts of subjects CXX (Xi Xi), HY (Hao Yu), and LXB (Xiao Bing) 

while the long dialogues are taken from a forth subject WW (Wei Wei). Those four children 

range from 1;9.3 to 1;10.28 at the start of the study and range from 2;1.4 to 2;3.2 at the end of the 

fifth recording sessions. 

The short training dialogues are sections of the transcripts that are manually selected to 

maintain topic coherence, containing generally no more than two ongoing activities though the 
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number of referenced objects varies. Unintelligible sentences are removed but the selected 

utterances are close together temporally. The long testing dialogues, on the other hand, are 

contiguous segments of transcripts taken from the beginning and the end of two recording 

sessions. Few manual edits were made except to remove entire utterances that are unintelligible. 

Transcribed utterances are split into separate utterances wherever pauses are notated, as 

run-on sentences containing different speech acts are fairly common. The resulting training 

corpus contains 2071 utterances of which 1637 are child-directed. The resulting validation corpus 

contains 317 utterances of which 229 are child-directed. Each short dialogue contains on average 

13.8 utterances and each long dialogue contains on average 79.3 utterances. For the training 

corpus, the mean length of the parental utterances (parental MLU) is 3.59 and the meaning length 

of the child utterances (child MLU) is1.79. For the validation corpus, the mean length of parental 

utterances is 3.01 and that of the child utterances is 2.68. Based on the number of open class 

nouns and verbs needed in the starting lexicon to process the combined corpus, there are roughly 

252 verb types31 and 178 noun types present in the utterances.  

Both the training and validation sets are annotated with event and speech acts. The 

validation set is additionally annotated with gold standard semantic annotations. Conveniently, 

due to the parsing experiment described in Chapter 2, the first 35 short dialogues in the training 

set are also annotated with gold standard semantic annotation and can be used as a secondary 

validation set. The secondary validation set (henceforth called the seen validation data) serves as a 

sort of sanity check for the learning model while the long dialogues (henceforth called the unseen 

validation set) truly tests the learner’s ability to generalize from the training data. The event 

                                                           
31 including stative verbs such as hao3+kan4 (pretty), which in English will be more akin to adjectives. In Mandarin no 
copula verb is necessary and therefore these are often analyzed as stative verbs in the linguistic literature. These account 
for about 58 of the 252 verb types. 
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annotation, speech act annotation and gold standard annotation have been briefly described in 

Section 2.5 but will be expanded up on here for completeness. For those interested in the details, 

the annotated data and both the learner grammar and handwritten grammar (from Chapter 2) are 

made available on the ECG wiki (http://ecgweb.pbwiki.com).  

  Short 0 - 35 Short 35-150 Long 0-4 
 

 purpose Training Set /  
Seen Validation 

Training Set Unseen Validation 

co
rp

us
 p

ro
pe

rt
ie

s # of utterances  385 1686 317 

# child-directed 318 1319 229 

MLU (parental) 3.72 3.56 3.01 

MLU (child) 1.64 1.82 2.68 

an
no

ta
tio

n event yes yes yes 

speech act yes yes yes 

goldstandard yes no yes 

 
Figure 7.1  Summary of the corpus data used in the Mandarin Chinese grammar learning 
task 

 

Event annotation 

The attentional focus of the learner is continuously estimated using the context model, 

which relies on data annotations for updates. The setting and event annotation described in 

Section 2.5 is carried out on the expanded training data. Event categories drawn from the 

ontology as well as event participants are annotated in the dialogue wherever an event is 

presumed to have occurred, at the annotator’s discretion. Each dialogue is thus situated in a 

reasonable scene. Figure 7.2 illustrates typical data annotation with another dialogue. 
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Figure 7.2  An example scene where the mother searchers for and retrieved a crayon for the 
child. 

 

Speech act annotation 

Each utterance is annotated with discourse information, including the current speaker, 

addressee, intonational forcefulness and speech act, which is one of the cues used in the context-

fitting heuristics (see Section 2.4). Dore suggests that primitive speech acts expressed by children 

at the one-word stage include labeling, repeating, answering, requesting (action), requesting 

(answer), calling, greeting, protesting, and practicing (Dore, 1974). For the purpose of the learning 

 <event cat="Find" id="find01"> 
  <binding field="finder" ref="MOT"/> 
  <binding field="target" ref="crayon"/> 
 </event>  
 
 MOT: zher4 ne  
 (here SFP / here it is) 
 
 MOT: ma1 gei3 ni3 na2  
 (mother for you retrieve / mother’s getting it for you) 
 
 <event cat="Fetch" id="fetch02"> 
  <binding field="fetcher" ref="MOT"/> 
  <binding field="fetched" ref="crayon"/> 
 </event> 
 
 MOT: gei3 ni3 na2 cai3+bi3  
 (for you retrieve crayon / I’m getting you a crayon) 
 
 <event cat="Give" id="give03"> 
  <binding field="giver" ref="MOT"/> 
  <binding field="recipient" ref="CHI"/> 
  <binding field="theme" ref="crayon"/> 
 </event> 
 
 MOT: ni3 rang4 a1+yi2 kan4+kan4 ni3 de bi3 hao3+kan4 bu4 hao3+kan4 
 (you let aunt look you ASSOC pen pretty NEG pretty / 
 you let aunt see whether your crayon is pretty) 
 
 CHI: a (INJ) 
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model, this list is adapted to create a list of primitive speech acts that seem reasonable for a child 

of grammar-learning age, including ones that do not elicit a response (explaining, answering, 

approving, admonishing), ones that do elicit a response (requesting action, requesting answer, 

calling) and ones that does not necessarily require an audience (exclaiming, practicing). Figure 7.3 

gives a more detailed description of each of the speech act types. 

Explaining Describing an object or event. The object is usually present in 
the environment, while the event can be co-timed, immediately 
before or immediately after the utterance. 

Answering Answering a question or request.  

Approving Usually performed by the parent, expressing approval of a prior 
child utterance or action.  

Admonishing Usually performed by the parent, criticizing the child for a prior 
event, preventing the child from performing future actions, or 
threatening with punishment. 

Requesting action Making a demand that requires a physical response from the 
addressee, often accompanied by gesture. This includes requests 
for the child to perform an action and requests for parents to 
retrieve objects. 

Requesting answer Asking a question that requires a verbal response from the 
addressee. 

Calling Beckoning the addressee. 

Exclaiming Producing exclamations that express surprise, joy, or pain.  

Practicing Usually done by the child, producing words or phrases that are 
either incoherent or do not pertain to the current interaction. 

 
Figure 7.3  List of speech acts used to annotate both adult and child utterances in the corpus.  

 

Initial grammar 

In order to provide coverage for the training and validation data, the initial grammar 

consists of roughly 300 schemas and 706 constructions. The schemas are made up of: 
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• 11 structural schemas such as EVENT_DESCRIPTOR and RD 

• 84 “closed-class” conceptual schemas that define the process lattice, image schemas, 

speech acts, etc 

• 205 “open-class” process schemas 

Included in the set of constructions are: 

• primary abstract constructions: CLAUSE, PHRASE, MORPHEME, WORD, NUMBER, 

DIGIT, INTERJECTION, INTERJECTION_MORPHEME 

• 81 closed class lexical constructions (with meaning), such as pronouns, negation 

words, path particles, directional particles, and digits 

• 252 open class verbs and 178 open class nouns 32 

• 89 function word forms (without meaning), such as coverbs, classifiers, locative 

particles, adverbials and conjunctions 

The ontology contains an additional 204 entity types and about 190 simulation scripts 

corresponding to the annotated events are used to update the context model. 

7.2 Experiment 1: Mandarin Chinese CHILDES corpus — basic experiment 

Training procedure 

The basic learning experiment was run with all the learning operations enabled except 

decay. This is done to make tracing through the learning and generalization history easier. The 

statistic update discount factor γ  was set to 1, noncompositional meaning or maximally -

connected compositions were disabled and a uniform semantic model was used. The learning 

model obtained up to 5 best analyses from the best-fit analyzer using a multi-root penalty of -10 

                                                           
32  Often the same word is pronounced in different tones in fluent speech and transcribed as such. Pronunciation 
variants of a word are represented as subcases of an abstract construction. 
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(in log probability scale). The learner then fits each analysis to context. The analysis with the best 

contextual fit (using an internal metric based on number of referenced entities as a proxy for 

coherence) is selected for learning.  

The learner attempted to perform up to 4 learning iterations over the entire 150 short 

dialogues (or over 2000 total utterances) in the training corpus, but without a decay mechanism, 

the grammar quickly grew too large and the analyzer ran out of memory during one of its 

validation sequences after 750 learning episodes33. The results reported here were thus based on 

barely over one-third of the training data available. Regardless, some 18 categories and 515 

concrete phrasal and clausal constructions were learned at the end of the experiment. The next 

subsections describe these results in qualitative and quantitative terms. 

There is considerable current work in the research group by John Bryant and others to 

scale and optimize the analyzer for larger grammars. For the current work, a few other 

combinations of learning operations were  tested out and will be described in Section 7.3. 

Qualitative results 

To give a concrete sense of what the learning model does with the input data, the next 

three figures show excerpts of the learning steps taken by the model at different stages of the 

learning process. For brevity only the construction name and a summary is shown; the notation is 

explained in the caption of Figure 7.4. With the belief that mistakes are often more informative 

than the correct output, this section tries to give as much coverage about bad choices that the 

model made as the good ones. 

                                                           
33 Because of the many small construction fragments available, the analyzer sometimes get horrendously garden-pathed 
and goes off on a memory-intensive search over all the possible ways to try and connect the words in the utterance 
under the same root in the analysis. 
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As expected, early constructions learned by the model are very lexically specific. Highly 

retricted grammatical categories are first created and they got progressively bigger. The earliest 

generalizations tend to have only one constituent that allows an abstract construction as its type 

constraint (i.e. only one open “slot” such as e.g. ___ eat). This comes about not by specific design 

of the model but as a result of how the model incrementally creates generalizations as they 

become available. The first construction with two open slots appear after 47 learning episodes and 

is a limited construction that expresses {you, mother} - {apply, put}. 34  These kinds of 

constructions get more and more common as further generalizations are made, and constructions 

with omissible and optional constituents were eventually learned as well.  

In the earliest few episodes (a - c) of Figure 7.4, the learner composed lexically specific 

constructions with very strict contextual restrictions on both the discourse role and the 

ontological type of the semantic arguments, shown in angle brackets. After encountering a few 

uses of mo3 (apply), some negated and some not, the learner decided that the negation particle 

BIE2-F (don’t) is an optional constituent of the BIE2-MO3-c005 construction (d). 

  

                                                           
34 apply as in the applying lotion sense of the word, or moving some substance from a source to some surface.  
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Operation 
 Resulting Construction Meaning Gloss + Contextual Restriction 
 a) Compose LIANG4-V (switch on) and DENG1-N (light) 
 LIANG4-DENG1-c002 <addressee#child>- SWITCH_ON - desklamp 

b) Compose HAO3WANR2-V (amusing) 
 HAO3WANR2-c003 < attnFocus#desklamp> - AMUSING 

c) Compose BIE2-F (don’t ) and MO3-V (apply) 
 BIE2-MO3-c005 <addressee#child > - NEG - APPLY - attnFocus#lotion> 

d) Optionalize b0 in BIE2-MO3-c005 (don’t apply) 
 [BIE2]-MO3-c005 [optional NEG] – APPLY 

 
Figure 7.4  The earliest learning operations carried out by the model and the resulting 
constructions. Glosses for lexical items are provided also in parenthesis when appropriate. 
 
A guide to reading this short-hand: The names of lexical constructions end in -N (noun) / -V 
(verb) / -F (function words). This notation is only to aid the reader and is not meaningful to 
the model. The names of learned construction ends in -c followed by a 3-digit ID.  
 
On the right, the meaning poles of the constructions are shown in ALL CAPS such as 
SWITCH_ON. The arguments to the construction are shown in an English-centric order, so 
that <addressee#child>- SWITCH_ON - desklamp denotes a SWITCH_ON event in which the 
child is the agent and the desklamp is the patient. A contextual constraint on a core 
argument that is not present constructionally is shown in angle brackets; the hash mark 
separates the discourse role restriction from the contextual type constraint, as in 
<addressee#child>. An empty angle bracket means that there are no restrictions. Omissible 
constituents are denoted in square brackets and optional constituents are marked as such 
inside square brackets. 
 
Notations in the next diagrams: Members of constructional categories are put in curly 
brackets, as in CAT021: {HAO3WANR2-V, HUAI4-V}. Speech act restrictions are notated in 
parenthesis only if they make an important distinction in the example.  
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e) Compose HUAI4-V (broken) 
 HUAI4-c020 < attnFocus#car> - BROKEN (explaining) 

f) Generalize HAO3WANR2-c003 (amusing) and HUAI4-c020 (broken) 

 CAT021: {HAO3WANR2-V (amusing), HUAI4-V (broken)} 

 CAT021-c022 
 

<attnFocus#ManipulableObject> - INTRANSITIVE_STATE 

g) Generalize XING2-c010  (good-enough) and CHE1_HUAI4-c024 (car broken) 
 CAT025: {XING2-V (good-enough), HUAI4-V (car broken)} 

 CAT025-c026 <addressee#child > - GOOD_ENOUGH 
 CHE1-CAT025-c027 car - BROKEN (explaining) 

h) Generalize HUAI4-c020 (broken) and CHE1-CAT025-c027 (car {good-enough, broken}) 
 CAT025-c029 

 
< attnFocus #car> - BROKEN (explaining) 
 

i) Compose CHE1-N (car) and CAT025-c029 ({good-enough, broken}) 
 CHE1-CAT025-c031 car - BROKEN (approving) 

j) Generalize CAT021-c022 and CHE1_CAT025-c031 (car {good-enough, broken}) 

 CAT032: {CAT021 , CAT025} 

 CAT032-c033 < attnFocus #ManipulableObject> - 
INTRANSITIVE_STATE 

 CHE1-CAT032-c034 car - BROKEN (approving) 

k) Merge CAT021 and CAT025 into CAT032 
 CAT032: { HAO3WANR2-V (amusing), XING2-V (good-enough), HUAI4-V (broken) } 

l) Expand CAT032 onto other words with stative meaning 
 CAT032: { HAO3WANR2-V (amusing), XING2-V (good-enough), HUAI4-V (broken), 

WAN2-V (finished), XIANG1-V (fragrant), GAN1JING4-V (clean), GOU4-V (enough), ...} 
 
Figure 7.5  After a number of lexically-specific constructions are learned, generalizations  
start to appear. 
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Operation 
 Resulting Construction Meaning Gloss + Contextual Restriction 
 m) Generalize A1YI2-CANG2-CXN697 (aunt hide) and TA1-CAT177-C545 
 (existing)  CAT045: {NI3_VARIANT-N (you),  ZAN2MEN-N (we), BAO3BAO3-N (child), 

   MA1MA_VARIANT-N (mother),  NAI3NAI-N (grandma), ...} 

(existing) CAT177: {PAO3-V (run), ZOU3-V (go), LAI2-V (come), CHU1-V (exit),  
   SHANG4-V (ascend), ...} 

 CAT045-CAT177-c713 < > - TRANSLATIONAL_SELF_MOTION - <solid> 

n) Revise  CAT045-CAT177-c713 adding constituent NA2-V (bring) 
 CAT045-NA2-CAT177-c841 < > - TRANSLATIONAL_SELF_MOTION - <solid> 

... 
o) Omit constituent n1 in CAT177-NEI4-c676 
 CAT177-[NEI4]-c676 TRANSLATIONAL_SELF_MOTION – [there] 

... 
p) Generalize CAT981-CAT419-c922 and NA2-CAI3BI3-c1033 
 (existing)  CAT981: {CA1CA1-V (wipe),  DING3-V (throw), DENG4-V (kick), 

   DONG4-V (move),  JIA1-V (pick), ...} 

(existing) CAT419: {XIONG2-N (bear), QIANG1-N (toy gun), QIN2-N (piano),  
   TU3DOU4-N (potato), BAN3DENGR4-N (stool), ...} 

 CAT981-CAT419-c1035 <addressee#child> - GRASP -  ManipulableObject 
(no speechact restrictions) 

q) Generalize CAT981-CAT419-c1035 and qi2_mo2tuo1che1-Cxn1831 
 CAT981-CAT419-c1834 <addressee#child> -

CONTINUOUS_FORCE_APPLICATION - 
ManipulableObject (no speech act restriction) 

 
Figure 7.6  A sample of the later learning operations taken by the learner and the resulting 
constructions. 
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Once a number of lexically-specific constructions had been composed and used, the 

learner was able to form generalizations. From these first few generalizations in Figure 7.5 it is 

immediately apparent that the model is very conservative and takes small, incremental steps in its 

learning. One of the first generalization the learner made (f) was between two clausal 

constructions with stative meaning: HAO3WANR2-c003 (amusing) and HUAI4-c020 (broken), 

resulting in a category CAT021 over the two verbs HAO3WANR2-V (amusing) and HUAI4-V (broken). 

The next generalization (g) was between two stative constructions of different lengths: XING2-c010  

(good-enough) and CHE1_HUAI4-c024 (car broken). This resulted in another category CAT025 

over the verbs XING2-V  (good-enough) and HUAI4-V (broken). It also created a generalized version 

of each of the specific constructions. The general constructions retained the meaning pole 

restrictions of the specific versions, as shown in Figure 7.7, which is arguably not very useful: 

Construction XING2-c010 
 subcase of CLAUSE 
 constructional 
  constituents 
   x0:XING2-V 
 meaning:GOOD_ENOUGH 
  evokes RD as rd0 
  evokes DISCOURSE_SEGMENT as DS 
  constraints 
   self.m <--> x0.m 
   rd0.referent <--> x0.m.protagonist 
   rd0.referent <--> rd0.ontological_category 
   rd0.ontological_category <-- @Child 
   rd0.discourse__role <-- @Addressee 
   DS.speech_act <-- Requesting_Action 

 Construction CAT025-c026 
 subcase of CLAUSE 
 constructional 
  constituents 
   c0:CAT025  
 meaning:GOOD_ENOUGH 
    

⋮ 
 

 
Figure 7.7  A limited generalization between constructions of different lengths results in the 
CAT025-c026 construction on the right, which is only slightly more general than XING2-c010 
in its constituent type requirements (in bold italics) but retain exactly the same semantic 
restrictions on the overall event type.  
 

The learning algorithm allows generalizations between different omission patterns so that 

such data as (the equivalent of) I eat and you eat rice can lead to the generalizations: {I, you}-eat 

and {I, you}-eat-rice. In not wanting to presuppose a verb bias, the current algorithm makes no 

special provisions for the cases when the verbs differ. The learning behavior is therefore such that 
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the semantic restrictions from the specific construction (such as GOOD_ENOUGH in XING2-c010 

above) get retained in the more general version, in this case effectively limiting CAT025-c026 to 

only work with the verb XING2-V. 35 

The category CAT025 in (g) overlaps with CAT021 in (f) but they were not merged until 

later on in (j), when the need presented itself through another generalization. Since CAT021 and 

CAT025 were made subcases of CAT032 in that generalization, a category merge was 

automatically triggered (k). CAT021 and CAT025 were removed from the grammar and their 

category members, HAO3WANR2-V (amusing), XING2-V (good-enough), HUAI4-V (broken), were 

made direct subcases of CAT032. With three members in this category, the learner took a leap of 

faith and extended this category to all other words with a stative process meaning in (l), including 

words that had not been encountered in the learning input, such as WAN2-V (finished), XIANG1-V 

(fragrant), and GAN1JING4-V (clean). Although some existing constructions such as CHE1-

CAT032-c034 were very semantically specific and were not able to take advantage of this newly 

expanded category, the CAT032-c033 construction was now able to cover any sentence that used 

one intransitive verb to describe any manipulable object. 

Notice how a number of compositions were made in the interim between (g) and (k) 

because the utterances encountered differed in the speech act restrictions from existing 

constructions (see (e) and (i)). Differing constructions of this sort were eventually merged further 

down the line, as is made evident by the categories and concrete constructions present in the 

grammar much later in the learning process , shown in Figure 7.6. 

                                                           
35 Obviously, no ends of learning optimizations are possible here, but the goal of this dissertation is to create a set of 
reasonably simplistic learning operations to tease out what is important to the cognitive task of grammar learning 
rather than an engineering system that does the job in the best possible manner.  
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The learning operations shown in Figure 7.6 are those carried out after at least 300 

learning episodes, about halfway through the current learning experiment. A number of rather 

well-established categories already existed prior to the generalization in (m) between A1YI2-

CANG2-CXN697 (aunt hide) and TA1-CAT177-C545 (he {go, run, exit, ...}). The two relevant ones 

are shown in Figure 7.8: CAT045 consists of human-denoting words, and CAT177 of 

TRANSLATIONAL_SELF_MOTION words. When the generalization (m) was carried out, these 

existing categories were conveniently used in the new construction, CAT045-CAT177-c713. This 

construction is itself fairly unrestrictive in meaning. It states that the mover, filled in by 

something of CAT045 but otherwise unrestricted in its ontological type, moves towards a goal that 

is a solid object in context. The construction in its entirety is shown in Figure 7.9. 

Soon after learning the CAT045-CAT177-c713 construction, the learner found that this 

was in conflict with another existing construction, CAT419-CAT177-c420. CAT419 is a category of 

words referring to manipulable objects, and somewhere along the line the learner learned that a 

noun preceding a motion verb can denote the goal of the motion. That is only half the story in 

Mandarin Chinese: the destination of motion can be mentioned before the verb, but a coverb 

such as wang3 is necessary. The learner was correct in believing that one of CAT045-CAT177-c713 

and CAT419-CAT177-c420 required revision, but it chose to revise the wrong construction (partly 

because it encountered data that used the former construction next).  

Abstract Construction CAT045 
  subcase of MORPHEME  
  meaning:@Human 
    evokes RD as rd 
    constraints 
        rd.referent <--> self.m 
        rd.ontological_category<-->self.m 

 Abstract Construction CAT177 
  subcase of MORPHEME  
  meaning:TRANSLATIONAL_SELF_MOTION 

 
Figure 7.8  Two grammatical categories in the grammar half-way through the learning 
experiment. CAT045 is a category of words that refer to humans. CAT177 is a category of 
words that have a meaning of TRANSLATIONAL_SELF_MOTION. 
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Figure 7.9  A generalization between A1YI2-CANG2-CXN697 (aunt hide) and TA1-CAT177-

C545 (he {go, run, exit, ..}) creates a new construction that uses the existing categories 
CAT045 and CAT177. 

 

Construction CAT045-NA2-CAT177-c841 
 subcase of CLAUSE 
 constructional 
  constituents 
   c0:Cat045   [0.71, 1.0] 
   optional n1: na2-V [0.58] 
   c2:Cat177 
 form 
  constraints 
   c0.f meets n1.f 
   n1.f meets c2.f 
 meaning:TRANSLATIONAL_SELF_MOTION 
 

⋮ 

 
Figure 7.10  A misguided but understandable attempt to revise CAT045-CAT177-c713 by 
inserting another verb NA2-V (bring) into the construction. The learner mistakenly 
believes that the verbs in CAT177 co-occur with NA2-V because bleached forms of most of 
those verbs act as path particles in Mandarin Chinese. 

 
 

This mistake was further compounded by the fact that a good number of translation 

motion verbs in Mandarin Chinese such as zou3 (go away), chu1 (exit), qu4 (go), lai (come) have 

a bleached form that are used as path particles. These path particles, unsurprisingly, collocate with 

other forceful motion verbs. Both senses of the word exist in the initial grammar (a topic we will 

Construction CAT045-CAT177-c713 
 subcase of CLAUSE 
 constructional 
  constituents 
   c0:Cat045  
   c2:Cat177 
 form 
  constraints 
   c0.f before c1.f 
 meaning:TRANSLATIONAL_SELF_MOTION 
  evokes RD as rd0 
  evokes RD as rd1 
  evokes DISCOURSE_SEGMENT as DS 
  constraints 
   self.m <--> c1.m 
   c1.m.mover <--> c0.m 
   rd0.referent <--> c1.m.mover 
   rd0 <--> c0.rd 
   rd1.referent <--> c1.m.goal 
   rd1.referent <--> rd1.ontological_category 
   rd1.ontological_category <-- @Solid 
   DS.speech_act <-- EXPLAINING 
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return to in the final chapter), but these particles are often misanalyzed. Here in (n), then, the 

learner decided to add an additional constituent NA2-V into CAT045-CAT177-c713 in order to 

distinguish it from CAT419-CAT177-c420. The result is shown in Figure 7.10. 

The remainder of Figure 7.6 attempts to give a sense of the kinds of constructions 

eventually learned by the learner. One of the last ten generalizations to be made by the learner in 

this experiment, CAT981-CAT419-c1834 is a fairly general construction that describes an event in 

which the addressee (also a child) performs some continuous force application action (e.g. bring, 

carry, grasp) on any manipulable object. 

Quantitative results 

It is certainly the task of a grammar learner to learn a set of reasonable constructions, but 

its most important goal of all is to get better at interpreting utterances and to rely less on the 

context during the interpretation process. Another obvious goal is for the learner to be able to 

produce more communicative sentences, but without the support of a model of production, the 

evaluation strategies of the current work has to be based on the model’s comprehension ability on 

seen and unseen data. Unfortunately there are no well-established benchmarks for evaluating 

grammar learning on a child language corpus in a construction grammar framework, so a few 

numerical measures are used here to assure the reader that the model is working fairly well. The 

first is a sanity check using a scrambled corpus, the second is a measure of semantic accuracy 

using the gold standard semantic annotation, and the third is a measure of analysis cohesiveness 

using the average number of roots per analysis. 

Test 1: Preference procedure with scrambled corpus 

As is consistent with preference procedures in behaviorial language learning experiments, 

we believe that a learner ought to prefer grammatical sentences to ungrammatical ones if it has 
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successfully learned something about the structure of a language. Although this simplistic test 

does not measure the learner’s comprehension ability, any successful learner should pass this test. 

This is carried out in the model by scrambling both validation sets so that words in each utterance 

appear out of their normal order. The best-fit analyzer will then use the initial grammar as well as 

the final grammar to analyze both the original and the scrambled corpus. Recall from Section  2.3 

that the analyzer tries to find the most likely interpretation given the grammar, an utterance and 

its surrounding context, i.e. argmax P( | , , )
a

a a sentence grammar context= . 

During the process, it assigns each utterance a score based on its log probability; the total 

score of the corpus is the sum of the log probabilities. Given the initial grammar (i.e. only the 

lexicon), we expect the learner to make little or no distinctions between the original and the 

scrambled corpus, whereas after successful learning, we expect the log probability of the original 

corpus to be considerably higher than that of the scrambled corpus.  

Figure 7.13 and Figure 7.14 show the total log probability of the training corpus and the 

unseen validation corpus before and after learning. One utterance in each corpus had to be 

thrown out because the analyzer garden-pathed and could not recover before running out of 

memory. In all cases the total log probability of the data increased with learning: this is due to the 

fact that the analyzer is able to parse robustly and extract bigger fragments of analysis even if the 

data is scrambled. Consider a scrambled sentence such as Xi1xi1 yao4 chi1 (Xixi medicine eat). 

An analyzer that has a construction such as XI1XI-CHI1-c028 is able to recognize Xi1xi1 chi1 with 

one construction while skipping over yao4. Both the original and scrambled utterances can be 

analyzed with two roots. Additionally, compared to a lexicon-only grammar, the analysis of the 

scrambled utterance still incurs less multi-root penalty (see Section 2.3) and has a higher 

probability for each of the fragment of analysis.  
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As predicted, the increase in log probability is greater in magnitude in the seen data than 

the unseen data. Crucially, the learning does lead the model to prefer the original corpus to the 

scrambled corpus, as evident both by the total log probability of each corpus after learning as well 

as the average increase in log probability per utterance before and after learning. 

 

Figure 7.11  The total log probability assigned to the original and scrambled seen validation 
data.  
 

 

Figure 7.12  The total log probability assigned to the original and scrambled unseen 
validation data. 

 

The average increase in log probability per utterance in the seen validation data is 8.55 for 

the original corpus and 6.53 for the scrambled corpus. The average increase in log probability per 

utterance in the unseen validation data is 3.91 for the original corpus and 2.29 for the scrambled 
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corpus. Out of the 384 utterances in the original seen validation data, 76 of them are recognized as 

more likely than their scrambled counterpart, 10 are recognized as less likely, and the rest make 

no difference. Out of the 314 utterances in the original unseen validation data, 34 of them are 

recognized as more likely than their scrambled counterpart, 10 are recognized as less likely, and 

the rest make no difference. Again, though not a definitive measure of the quality of the learned 

grammar by itself, this result suggests that the model is going in the right direction. We will next 

look at the gold standard scoring of the analyses of the two validation sets.  

Test 2: Gold standard scoring of returned analyses 

As described in Section 7.2, both the seen and unseen validation sets have gold standard 

annotations which represent the interpretation that the analyzer, using the grammar, minimally 

needs to extract from the utterances. Each annotation contains constituent bracket and semantic 

filler information for core verb arguments and core argument structure arguments.   

 
 
Figure 7.13  (reproduced from Chapter 2) Gold standard annotation of the utterance mo3 
wai4+tou2 ke3 jiu4 bu4 hao3+kan4 le a (if you apply [the lotion] to your forehead then you 
won’t be pretty). Both verb arguments and argument structure (phrasal) arguments are 
annotated, as shown in the bottom four annotations for the two clauses. Bracketing 
information is supplied (verb brackets shown in bolded lines, phrasal brackets in thin lines, 
and any additional words or arguments in double lines) as well as any interesting sentential 
constructions (e.g. conditionals).  
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Combining verb arguments and argument structure arguments in the same scoring 

mechanism, the gold standard annotation naturally affords 4 ways to score a particular analysis. 

These four scores and an example of each are:  

• syntactic bracketing score  

Does the analysis supply the surface role of the APPLY schema with a word at (1, 2)? 

• event core argument semantic type score  

Is the type restriction of the surface role of the APPLY schema in the semspec compatible 

with @Forehead (e.g. @Body_Part or @Physical_Object) 36? 

• event core argument resolution score 

Is the child’s forehead proposed by the analyzer as a possible referent of the surface role? 

• event core argument contextual fit score 

Is the child’s forehead exactly the entity chosen by the context-fitter to be the surface? 

Due to idiosyncrasies of the scoring method (as explained in the footnote), the core 

argument semantic type score is not a measure sensitive to the progress of early grammar learning. 

Similarly, the ability of the context fitter to tie the utterance to context, as reflected by the 

                                                           
36 Notice that the linguistically-supplied semantic type is almost always less specific than the entity found in context (i.e. 
the annotated entity) due to say, pronoun use. The best that the scorer can do is to check that the slot type constraint 
found in the semspec is a supertype of the gold-standard type. This is a big obstacle in determining the semantic 
correctness of the analysis and renders this approach entirely unsuitable for evaluating grammar learning progress. 
Here’s why:  
 
The type constraints given by the schemas on the roles are the most general and are therefore always supertypes of the 
annotated types (e.g. the APPLY schema only requires the surface to be a @Physical_Object). With only lexical 
constructions in the grammar we expect the verb core argument score to be fairly close to 1 (and in practice lower due 
to lexical ambiguity), which is counter-intuitive. As the grammar gets more complicated, different roles are unified, 
contextual constraints are learned, and the type constraints in the corresponding slots get stricter and less likely to be 
correct. This score is therefore expected to decrease initially as mistakes are made and slowly come back up to close to 1 
as the grammar becomes more adult-like. With the focus of the current model being early constructions, the semantic 
argument score is inappropriate. It does, however, work for the analyzer task in Chapter 2 because comparable adult-
like grammars are used.  
 
The argument structure core argument score is expected to be at 0 with a lexicon-only grammar, but there are so few of 
these argument structure core arguments that do not overlap with the verb arguments that this measure is 
unrepresentative as well. 
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contextual fit score, is also largely independent of the early fluctuations in grammar learning. This 

leaves two scoring criteria for the experiment — the syntactic bracketing score and the resolution 

score, combined between verb argument and argument structure arguments — both of which are 

reported as f-scores, i.e. the harmonic mean of precision and recall. Since this is not a standard 

information retrieval task in that the semantic analysis is expected to yield more relations than are 

given in the gold standard, a modified definition of precision and recall is used: 

𝑒𝑒𝑓𝑓𝑓𝑓𝑙𝑙𝑓𝑓𝑒𝑒𝑓𝑓𝑙𝑙𝑛𝑛 =  
#𝑙𝑙𝑙𝑙𝑓𝑓𝑓𝑓𝑓𝑓𝑙𝑙𝑙𝑙

# 𝑙𝑙𝑙𝑙𝑓𝑓𝑓𝑓𝑓𝑓𝑙𝑙𝑙𝑙 + # 𝑓𝑓𝑛𝑛𝑙𝑙𝑙𝑙𝑓𝑓𝑓𝑓𝑓𝑓𝑙𝑙𝑙𝑙
 

𝑓𝑓𝑓𝑓𝑙𝑙𝑙𝑙𝑓𝑓𝑓𝑓 =  
#𝑙𝑙𝑙𝑙𝑓𝑓𝑓𝑓𝑓𝑓𝑙𝑙𝑙𝑙

# 𝑙𝑙𝑙𝑙𝑓𝑓𝑓𝑓𝑓𝑓𝑙𝑙𝑙𝑙 + # 𝑓𝑓𝑛𝑛𝑙𝑙𝑙𝑙𝑓𝑓𝑓𝑓𝑓𝑓𝑙𝑙𝑙𝑙 + # 𝑛𝑛𝑙𝑙𝑚𝑚𝑙𝑙𝑙𝑙𝑙𝑙ℎ
 

where #correct is the number of answers (brackets or resolution) that the analysis gets correct 

out of those expected by the gold standard, #incorrect is the number of answers that the analysis 

gets incorrect out of those expected by the gold standard, and # nomatch is the number of 

answers that the gold standard expects but are not present in the analysis. The f-score is  

2 ∙ 𝑒𝑒𝑓𝑓𝑓𝑓𝑙𝑙𝑓𝑓𝑒𝑒𝑓𝑓𝑙𝑙𝑛𝑛 ∙ 𝑓𝑓𝑓𝑓𝑙𝑙𝑙𝑙𝑓𝑓𝑓𝑓
𝑒𝑒𝑓𝑓𝑓𝑓𝑙𝑙𝑓𝑓𝑒𝑒𝑓𝑓𝑙𝑙𝑛𝑛 +  𝑓𝑓𝑓𝑓𝑙𝑙𝑙𝑙𝑓𝑓𝑓𝑓

 

as is standard. Both the syntactic bracketing score and the resolution score are somewhat 

generous but they provide a reasonable proxy for determining whether the model is able to 

extract increasingly richer interpretation of the utterances based on the learned grammars.  

The constituent bracketing and event core argument resolution scores attained by the 

model are reported in Figure 7.15 and Figure 7.16. After only 750 learning episodes, the model 

improves on both measures on both the seen and unseen validation sets. For the constituent 

bracketing score, precision goes down after learning not unexpectedly: the model initially gets 

(most) main verb brackets correct just based on the lexical constructions and misses everything 

else. After learning, the model is able to suggest a good number of core argument brackets as well, 
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some of them incorrectly. For the core argument resolution, both precision and recall go up. Due 

to the fact that the training was cut short, the coverage of the grammar is still fairly limited as 

evident in the low recall. The progress of learning can be seen in Figure 7.17  which reports the 

resolution scores that are recorded every 50 episodes. 

 
 constituent bracketing  event core argument resolution 
 precision recall f-score precision recall f-score 
pre-learning 1.000 0.454 0.625 0.000 0.000 0.000 
post-learning 0.973 0.547 0.700 0.661 0.243 0.355 
 
Figure 7.14  Seen validation data: constituent bracketing scores and core argument resolution 
scores.  

 
 constituent bracketing  event core argument resolution 
 precision recall f-score precision recall f-score 
pre-learning 1.000 0.424 0.595 0.000 0.000 0.000 
post-learning 0.989 0.505 0.669 0.492 0.121 0.194 
 
Figure 7.15  Unseen validation data: constituent bracketing scores and core argument 
resolution scores.  
 

 

Figure 7.16  The resolution score on the seen and unseen validation sets as recorded 
throughout the learning experiment. 

 
Test 3: Multi-rootedness of returned analyses 

One final measure used here is the average number of roots per analysis, which is the 

number of top-level constructions needed to cover the entire utterance. For example, a total of 
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four constructions are used in both analysis shown in Figure 7.12. However, the analysis on the 

left has one root, XI1XI1-CHI1-YAO4-c040 whereas the one on the right has two roots, XI1XI-

CHI1-c028 and YAO4-N. We expect that prior to learning, the average number of roots in the 

analyses is equal to the mean length of utterance in the corpus, and will slowly decrease as the 

grammar gets more sophisticated. With an adult grammar we expect the average number of roots 

to approach 1.  

  

 
Figure 7.17  On the left, an analysis with one root. On the right, an analysis with two roots. 

 
Tthe average number of roots per analysis in both validation sets is shown in Figure 7.18. 

At the beginning of the learning experiments, the average number of roots is close to the parental 

MLU 37 and gradually decreases as learning progresses. 

 

Figure 7.18  The average number of roots per analysis in the seen and unseen validation set 
throughout the learning experiment.  

                                                           
37 It is a little lower because of a construction in the initial grammar that allows the analyzer to chunk consecutive 
interjections. 
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7.3 Experiment 2: Model variations on the Mandarin CHILDES data 

As is apparent from Experiment 1, the learned grammar quickly outgrew the capacity of 

the analyzer. This section describes a series of model manipulations to examine the behavior of 

the model at the macro level using quantitative measures such as grammar size and resolution 

score as a funtion of learning episodes. The first manipulation attempts to control the size of the 

grammar by enabling the decay operation. The second manipulation examines the effect that the 

grammar statistics update has on the model’s ability to generalize to unseen data by changing the 

statistics update discount factor γ to 0.2. The third manipulation looks at the contribution of a 

good context-fitting mechanism by way of utilizing the gold standard annotation in learning.  

Variation 1: enabling decay 

In this first variation, decay was enabled and set to purge any construction which is last 

modified over 50 learning episodes ago and which has been used fewer than 3 times total. The rest 

of the model remains unchanged and the same training procedure as the basic model was used. 

Figure 7.19 shows the growth in size of the grammars in the “with-decay” model as compared to 

the basic model. After 750 learning episodes, the basic model had 490 learned concrete 

constructions and 18 learned abstract categories in its grammar. In contrast the grammar in the 

“with-decay” model had 176 concrete constructions and 14 abstract categories at the same point 

in time. The grammar in the “with decay” model continued to grow with training input, reaching 

close to 410 concrete constructions by the time the model ran out of memory and had to be 

aborted at episode 1700.  
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Figure 7.19  The size of the grammar grows more slowly with the decay operation enabled in 
the model. The graph reflects the number of learned concrete or abstract constructions that 
are retained in the grammars at any given point (and not the total that it has ever tried to 
learn).  

 

   
Figure 7.20  Resolution scores attained by the learned grammars on the seen and unseen 
validation data, with and without the decay operation enabled. The score on the unseen data 
is largely unaffected by the decay operation and continues to improve long after the basic 
model has to be aborted. 

 

What is interesting here is the performance of the two models on the seen and unseen 

validation data. Figure 7.20 shows the resolution score of the “with-decay” model in comparison 
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with the basic model. The reduction in resolution score is apparent on the seen validation data 

but the performance on the unseen data is largely unaffected. Here is a possible explanation: The 

learner creates lexically-specific constructions to accommodate each piece of training data that 

the learner encounters. These lexically-specific constructions are instrumental in obtaining a good 

resolution score on the seen validation data (which is a subset of the training data that the learner 

just learned about) but are less useful for unseen data. Due to the situation-specific nature of the 

parent-child conversation, a number of these lexically-specific constructions do not get used 

again for a long time after they are learned and are thus purged by the decay operation. This 

causes the resolution score on the seen validation data of the “with decay” model to drop. 

On the other hand, much of the unseen validation data requires generalizations that are 

made across the lexically-specific constructions. Since these generalizations are more recently 

created than the specific ones and are more widely applicable, they are less likley to be removed by 

the decay operation. As a result, the peformance on the unseen validation data is maintained.  

Variation 2: lowering the statistic update discount factor 

An attempt is made to understand how the probability mass given to newly learned 

constructions affect learning. In this second variation, the discount factor γ used in the statistics 

update is reduced while keeping the rest of the settings the same as variation 1. Recall from 

Chapter 6  that γ can be understood in terms of how confident the model is in its ability to learn 

the correct construction during each learning operation. The basic model and variation 1 both use 

γ = 1.0, which corresponds to an extremely confident learner. Here variation γ was reduced to 0.2 

and the decay operation was adjusted correspondingly so that constructions modified over 50 

learning episodes ago which have been used fewer than 0.6 times are purged. This was a necessary 

modification to prevent most compositions from quickly being purged.  
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Figure 7.21  The size of the grammar grows with more fluctuations when γ = 0.2 than when γ 
= 1.0. The grammar seems to stabilize right at around 17 abstract categories though the 
number of concrete constructions continues to increase throughout.   

 

  
Figure 7.22  The resolution scores obtained on both datasets with γ = 0.2 are comparable to 
those with γ = 1.0 even though it takes the learner much longer to arrive at that level of 
performance.  

 

The grammar size fluctuated more between learning episodes when γ = 0.2 compared to 

when γ = 1.0, which is reasonable since new generalizations and categories were less likely to be 
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used with the lower discount factor and were more likely to be purged. It took the learner much 

longer to reach a similar level of performance on either the seen or unseen validation set, although 

it is worth pointing out that this model variation was able to get a better resolution score on the 

unseen data with fewer constructions than the basic model. Using 18 learned categories and 515 

learned concrete constructions, the basic model obtained a resolution score of 0.208. With 17 

learned categories and 313 learned concrete constructions, this variation had a score of 0.237.  

The 17 constructional categories in the grammar learned by the “γ = 0.2” model, shown 

in the lefthand column of Figure 7.23 along with their semantic restrictions, are quite sensible. 

The semantic distinctions made by the categories resembled those made by the argument 

structure constructions in the handwritten adult grammar from Chapter 2. The “γ = 1.0” model 

also settled on 17 (different) constructional categories. They are shown in the righthand column 

of Figure 7.23 for comparison.  

Three observations can be made about the constructional categories in the two learned 

grammars: (1) The two grammars have only 14 categories in common. The categories that are 

unique to each grammar are shaded in gray in the figure. Of the differing categories, those in the 

“γ = 0.2” grammar is semantically more general : CAT9338 (INTRANSITIVE_ACTION) as 

compared to CAT1853 (SIT), and CAT9624 (@Concrete_Entity) as compared to CAT1713 

(@Solid). This may have to do with the fact that the “γ = 0.2” model was able to run for about 4 

times as many iterations and therefore had more chances to form generalizations. (2) The 

categories in the two models are formed in different progressions even though the learning input 

is presented in the same order. (3) Two categories in the “γ = 1.0” grammar, CAT442 and CAT876, 

remained subcases of another category, CAT2496. Recall that when one category A is created as a 

supertype of another category B during learning operations such as generalization or category 
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expansion, the two categories are automatically merged unless the merge results in the breaking of 

semantic guarantees made by category B. The latter scenario is exactly what happened: a number  

γ = 0.2 γ = 1.0 

CAT038 
INTRANSITIVE_STATE 

CAT044 
INTRANSITIVE_STATE 

CAT300 
TRANSLATIONAL_SELF_MOTION 

CAT120 
NEGATION 

CAT2007 
SOURCE_PATH_GOAL 

CAT326 
TRANSLATIONAL_SELF_MOTION 

CAT2051 
TRANSLATIONAL_FORCEFUL_MOTION 

CAT393 
TRANSLATIONAL_FORCEFUL_MOTION 

CAT2240 
FORCE_APPLICATION 

CAT442 SUBCASE OF CAT2496 
COMPLEX_TRANSITIVE_MOTOR_ACTION 

CAT2367 
TRANSITIVE_MOTOR_ACTION 

CAT796 
COMMUNICATION 

CAT2679 
INGESTION 

CAT851 
CAUSE_CHANGE 

CAT3017 
CAUSE_CHANGE 

CAT876 SUBCASE OF CAT2496 
FORCE_APPLICATION 

CAT7673 
NEGATION 

CAT1713 
@Solid 

CAT8980 
PERCEPTION 

CAT1814 
PERCEPTION 

CAT9338 
INTRANSITIVE_ACTION 

CAT1853 
SIT 

CAT2933 
SELF_MOTION 

CAT2343 
TWO_PARTICIPANT_STATE 

CAT9469 
TWO_PARTICIPANT_STATE 

CAT2496 
TRANSITIVE_MOTOR_ACTION 

CAT9662 
@Human 

CAT2694 
INGESTION 

CAT9624 
@Concrete_Entity 

CAT3022 
SELF_MOTION 

CAT13409 
UNCATEGORIZED_TRANSITIVE_ACTION 

CAT3136 
@Human 

CAT16302 
COMMUNICATION 

CAT4077 
UNCATEGORIZED_TRANSITIVE_ACTION 

 
Figure 7.23  The 17 constructional categories in the grammar learned by the γ = 0.2 model 
are shown on the left, and the 17 categories in the grammar learned by the γ = 1.0 model are 
shown on the right. The categories that have no equivalent in the other grammar are shaded 
in gray.  
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of constructions were built around CAT876 and set up bindings with the force_supplier and 

force_recipient roles in its FORCE_APPLICATION schema. These two roles are no longer visible if 

the category is to be merged along with CAT442 into CAT2496, which has a meaning of 

TRANSITIVE_MOTOR_ACTION. These kinds of situations were avoided by the “γ = 0.2”model, 

whose slower path to generalization seemed to have allowed the grammar more wiggle room 

before settling. 

Variation 3: perfect context-fitting 

The central hypothesis in this learning model is that the ability of the learner to utilize 

contextually-obtained information is an enabling component of grammar learning. Though this 

hypothesis cannot be tested directly in this model (given that no learning can take place in this 

model without some way of determining the semantic relations between words), questions can 

still be asked about how important the accuracy of contextual inference is to the learner. Do initial 

learning mistakes based on imperfect intention reading hurt the learner in the long run? 

The variation 1 model (i.e., basic + decay) was thus modified to take advantage of the gold 

standard annotation in the seen validation data. Specifically, the model used only the short 

dialogues as training data and the context-fitting process was tweaked to return only cotextual 

references that are consistent with the gold standard annotation. The learning outcome of the 

“perfect-knowledge” model was contrasted with that of model variation 1 re-run using only the 

short dialogues as training input.  

To ground this comparison, the event core argument contextual fit scores of both models 

on the training data using a lexicon-only grammar were obtained. Recall that this score is a 

measure of how well the context-fitter performs. An evaluation experiment is run so that the 

learning model retreived up to 5 best analyses from the analyzer and re-ranked them using either 
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the unmodified context-fitting process or the goldstandard-based context-fitting process. The top 

analysis (i.e. the one to be used for learning) is scored externally for their contextual fit and the 

respective scores for the two models were: 

 core argument contextual fit 
 precision recall f-score 
unmodified context-fitter 0.584 0.557 0.570 
goldstandard context-fitter 0.991 0.905 0.946 

 
Figure 7.24  The accuracy of the basic context fitter in the variation 1 model versus the 
goldstandard context fitter in the “perfect-knowledge” model. It can be very well expected 
that a lot of noise is introduced into the basic learning model. The learning outcomes of the 
two models are compared. 

 

The f-score of the unmodified context fitter was just around 0.570, injecting noise into 

the learning process. A number of spurious constructions can be expected to be hypothesized by 

the learner based on the incorrect information. In contrast, the gold-standard context fitter had 

an f-score close to 0.95. (It was not at 1.0 because of lexical ambiguity: there is nothing that a 

perfect context fitter can do if the correct word sense is not in any of the analyses.)  

We performed 4 iterations over the reduced training corpus (385 utterances, identical to 

the seen validation set) using both models. As expected, the resulting grammar in the variation 1 

model is considerably larger than that in the “perfect-knowledge” model even as the number of 

abstract constructions (structured largely by the schema lattice) remained roughly equal. The 

“perfect-knowledge” model marginally outperformed the variation 1 model in the seen validation 

set but underperformed it in the unseen data. There could be two reasons why the variation 1 

model with the faulty basic context fitter managed to do just as well as the one with perfect 

knowledge. The first is that there were enough “good” compositions created in the learning 

process that over time the good constructions resulted in useful generalizations and erroneous 

ones were unsed and purged. The second is that some of the spurious constructions were still 
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consistent with Mandarin Chinese grammar even if they were inappropriate for the contextual 

situations in which they were learned. These spurious constructions nonetheless helped the 

learner make a first guess at the unseen data. 

   
Figure 7.25  The number of learned concrete constructions after 4 learning iterations is 
significantly higher for the variation 1 model than the “perfect-knowledge” model, reflecting 
the amount of spurious constructions in the grammar. 

 

   
Figure 7.26  The resolution score on the seen and unseen validation data by the variation 1 vs 
“perfect-knowledge” model. 
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This result speaks to the robustness of the learning model, but two important questions 

about the learning model remain. Firstly, what is the contribution of each learning operation. 

Secondly and more poignantly, the learning results obtained here are far from that expected of a 

competent language user. How does a learner get from here to there? We attempt to address the 

first question in the next chapter using controlled experiments with a miniature artificial 

grammar. The second question is the holy grail of language development research, and this 

dissertation can only offer a discussion of the requirements and roadblocks to answering that 

question in the last chapter. 
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Chapter 8.  

Artificial language learning experiments 

The previous chapter describes two learning experiments using a subset of the Mandarin 

CHILDES corpus. While these experiments provide a strong demonstration of how the learner 

behaves on naturalistic data, the corpus is too big and noisy to systematically study the 

contribution of each learning operation. This chapter describes another set of experiments where 

we examine more closely the behavior of the learner model using a miniature Mandarin-like 

grammar and noiseless data.  

In experiment 3, a simplistic SVO language with argument omission was used and both 

the combination of learning operations and the amount of training data were varied. The first 

manipulation, varying the combinations of learning operations used by the model, directly 

compares the contribution (or detraction, as the case may be) of different operations and 

examines their effect on the size and quality of the grammar eventually obtained. The second 

manipulation, varying the amount of training data, is performed with two objectives. The first 

goal is to understand how the availability of learning data relative to the complexity of the 

language affects learning outcome. The second goal is to better understand the contributions of 

the refinement operations; to push the envelope, so to speak, to see if these operations make more 

of a difference when learning input is scarce. 

In a follow-up experiment, experiment 4, the miniature grammar was made more 

complicated by allowing object fronting and the learning results are compared against those in 

experiment 3. This is to draw attention to the problem both of function particles and more 
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variable word order. This manipulation is a more direct test of the revision operation and is 

suggestive of other possible learning operations, which will be discussed in the final chapter.  

8.1 Experiment 3: Mandarin-like artificial language learning experiment 

Learning data 

The miniature Mandarin Chinese-like language consists of 12 verbs, 20 nouns and no 

other function words (see Figure 8.1). Verbs fall in three semantic classes: intransitive states and 

actions, transitive states and actions and transfer. The noun meanings corresponding roughly to 

four groups: people, food, objects, and pictures. English words are used as the orthography to 

make the examples easily understood by non-Mandarin speakers; the intended corresponding 

Chinese words are provided in the figure for reference. No efforts were put into eliminating 

phonological cues to word classes or accounting for differences in frequencies of the words or 

concepts in real life as these are irrelevant to the current computational model. These words and 

their corresponding meaning are represented in ECG as constructions and schemas. Referent 

descriptors (RDs) are not used in the noun meanings to keep the grammar simple. A few 

representative schemas and constructions are shown in Figure 8.2. 

The training and validation data in this language were obtained by first generating all the 

semantically plausible situational contexts using the available processes and entities, creating a 

total of 860 unique scenes. Example semantic restrictions include animacy requirements for 

processes such as SLEEP and FIND, disallowing reflexives in the transitive scenes, and an object 

type constraint (excluding pictures) on throwable items. Each scene is paired with an utterance in 

the appropriate intransitive / transitive / ditransitive frame as described by these three rules 

(which have the same semantics as English or Mandarin): 
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verbs  nouns 
orth meaning Chinese   orth meaning Chinese 
pretty Pretty mei3  I @Xixi wo3 
    You @Human ni3 
sleep Sleep shui4  Aunt @Aunt a1yi2 
come Come lai2  haoyu @Haoyu hao2yu3 
fall Fall dao3  dad @Father ba1 
       
       
like Like xi3huan1  rice @Rice fan4 
    apple @Apple ping2guo3 
eat Eat chi4  fish @Fish yu3 
disturb Disturb nong4  meat @Meat rou4 
throw Throw reng1  veggies @Vegetables cai4 
take Take na2     
find Find zhao3     
watch Watch kan4  ball @Ball qiu2 
    book @Book shu1 
    pen @Pen bi3 
give Give gei3  car @Car che1 
    stool @Stepstool ban3deng4 
    bear @Bear xiong2 
    horse @Horse ma3 
    giraffe @Giraffe lu4 
       
       
    stars @Stars xing1xing1 
    moon @Moon yue4liang4 

 
Figure 8.1  The miniature language consists of 12 verbs and 20 nouns. Their meanings are 
represented as schemas and ontology types, respectively. The verbs on the left fall in three 
semantic groups: intransitive states/actions, transitive states/actions, and transfer. The finer 
distinctions between types of processes are shown in the process lattice in the next figure. The 
nouns on the right fall in four semantic groups: human nouns, food names, object names, 
depicted objects. 

 

S -> N Vintran 

S -> N Vtran N 

S -> N Vditran N N 

Arguments in each utterance are omitted with the following probabilities: the pre-verbal 

noun at 0.7, the first post-verbal noun at 0.4, and the second post-verbal noun (in ditransitives) at 
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0.6. This produces 860 utterances with distinct situational meanings; utterances may have the 

same form due to omission. The miniature corpus is annotated with events, speech acts, and gold 

standard the same way as the CHILDES corpus used in the experiments in Chapter 7. A sample of 

the generated sentences is shown in Figure 8.3. 

 

Schema PROCESS 
 roles 
  protagonist: @Entity 

  

Schema STATE 
 subcase of Process 

 Schema ACTION 
 subcase of PROCESS 

Schema INTRANSITIVE_PROCESS 
 subcase of Process 

 Schema TWO_PARTICIPANT_PROCESS 
 subcase of PROCESS 
 roles 
  protagonist2: @Entity 

Schema INTRANSITIVE_STATE 
 subcase of STATE, 
 INTRANSITIVE_PROCESS 

 Schema TRANSITIVE_ACTION 
 subcase of ACTION, 
 TWO_PARTICIPANT_PROCESS 

Schema PRETTY 
 subcase of INTRANSITIVE_STATE 

 Schema TAKE 
 subcase of TRANSITIVE_ACTION 

construction PRETTY 
 subcase of MORPHEME 
 form 
  constraints 
   self.f.orth <-- "pretty" 
 meaning: Pretty 

 construction TAKE 
 subcase of MORPHEME 
 form 
  constraints 
   self.f.orth <-- "take" 
 meaning: TAKE 

 
Figure 8.2  A partial view of the process hierarchy and two words, pretty and 
take, in the miniature language. 

 

A sample of the sentences in the miniature language 
 
ball pretty 
sleep 
like rice 
I like fish 

Haoyu disturb horse 
throw 
Aunt throw 
take car 

find fish 
give car 
I give 
give 

 
Figure 8.3  Example of sentences in the miniature language. Each of the sentence here has a 
unique associated situational context. An utterance such as take car may be observed twice in 
the data but the takers in the two scenes are different. 
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Training procedure 

To verify the integrity of the data , a randomly subset of the resulting sentences were 

tested on the analyzer using a handwritten grammar containing only the three subject verb phrase 

constructions. These sentences were correctly analyzed as long as (1) each construction poses 

semantic limitations on the verbs and (2) arguments were allowed to be omitted at the specified 

rate38, 39. This establishes the ceiling of the resolution score measure (see Section 7.2) at 1.0 and the 

floor of the average number of roots per analysis measure (see Section 7.2) at 1.0. 

It is important to keep in mind that even though this miniature grammar is created using 

3 basic syntactic frames, in principle even without constructions that allow omission, 14 clausal 

constructions are sufficient to analyze the data (2 for the two omission patterns in the intransitive 

frame, 4 for the transitive frame and 8 for the ditransitive frame). What argument omission does 

is to allow for compactness and parsimony in the grammar.  

A validation set was created by randomly selecting 20% of the 860 valid sentences. The 

remaining 688 sentences were available as training data in a set of experimental runs. The first 

manipulation was the size of the training corpus: percentages (5%, 25%, 50%, and 100%) of the 

688 sentences were randomly selected as the training set. The second manipulation was the 

combination of learning operations used:  

I. composition only 

II. composition + generalization 

III. composition + generalization + decay 

                                                           
38 Additional settings: the analyzer has to be forced to return single-rooted parses and individual morphemes must be 
disallowed from being the root of an analysis. Otherwise the analyzer in some occasions choose instead multi-rooted 
parses over omitting multiple arguments, or choose a single verb as the final analysis. These problems are consistent 
with those results achieved in [Bryant, 2008].  
 
39 Only one sentence, give book, generated an incorrect analysis. Without semantic constraints on the schema roles of 
give, the book was analyzed as the recipient rather than the theme.  
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IV. composition + generalization + category expansion + decay 

V. composition + generalization + revision + decay 

VI. composition + generalization + omission + decay 

VII. composition + generalization + category expansion + revision + omission + decay 

Variation I is the absolute minimum for the learner. Variation II has just the basic 

composition and generalization mechanisms. Variation III introduces the decay mechanism, 

which we found from Section 7.3 to be useful in keeping the grammar size under control. This is 

what we will be calling the “no refinement” model. Variations IV through VII are the “refinement” 

models with different combinations of refinement operations. Variation VII is the same as the 

basic model introduced in the last chapter with all operations enabled. Category merges triggered 

by generalization and category expansion are allowed in all variations.  

The total of 28 model variations were each run twice with two different randomly selected 

subset of the training corpus with a maximum of 6 iterations. The results across the two runs are 

averaged in the quantitative results reported here. The statistic update discount factor γ  was set to 

0.5, noncompositional meaning or maximally-connected compositions were disabled, and a 

uniform semantic model was used. The learning model obtained up to 5 best analyses from the 

best-fit analyzer using a multi-root penalty of -20 (in log probability scale). Since the primary 

interest here is to examine the contribution of each learning operation, the gold standard context 

fitter was used to eliminate noise just as in the “perfect knowledge” variation of the basic model 

(variation 3) from the previous chapter. 

Quantitative results 

We will begin with the results of using all available training data, that is, a training set size 

of 688 in contrast to a validation set size of 172. The resolution scores of the seven learning 
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operation combinations are reported in Figure 8.4. As expected, the variation I model with only 

the composition operation does not generalize very well to the validation set. The best core 

argument resolution results using this dataset is obtained by using composition, generalization, 

and decay in conjunction with constituent omission, although it does take the model a few 

iterations longer to reach that level of performance. In terms of both the resolution score and the 

average number of root per analysis measures, however, all the model variations that allow 

generalization perform roughly equally well. 

 I II III IV V VI VII 

iter 
Comp Comp+Gen CG+Dec CGD +Exp CGD+Rev CGD +Oms CGD+ 

Exp+Rev+Oms 

0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
1 0.385 0.836 0.836 0.826 0.849 0.766 0.762 
2 0.388 0.854 0.851 0.836 0.843 0.828 0.785 
3 0.398 0.855 0.847 0.829 0.848 0.890 0.791 
4 0.395 0.851 0.849 0.825 0.845 0.918 0.806 
5 0.392 0.845 0.851 0.836 0.855 0.914 0.807 
6 0.395 0.851 0.856 0.839 0.851* 0.907 0.807* 

 
Figure 8.4  The resolution score obtained over the course of 6 iterations using 100% of the 
training data. The best scores were achieved by variation VI and the worst by variation I, 
both highlighted in bold. The seven different combinations are as described on page 179, 
abbreviated here as: Comp = Composition, Comp Gen (CG) = Composition + Generalization, 
CG Dec (CGD) = Composition + Generalization + Decay, Exp = Category Expansion, Rev = 
Construction Revision, Oms = Constituent Omission. 

 
* run ended early40 and the score from the last learning episode is reported instead. The star 
denotes shortened runs in subsequent tables. 

  

                                                           
40 An analysis may be returned by the analyzer even when some of the RDs have no existing compatible referents — this 
is by design because language may introduce new referents. Consequently, it is sometimes possible that none of the top 
analyses returned by the analyzer are compatible with context. These incompatibilities are caught by the gold-standard 
fitter (but not the basic fitter) and the learning episode is skipped as a result.  



182 
 

 I II III IV V VI VII 

iter 
Comp Comp+Gen CG+Dec CGD +Exp CGD+Rev CGD +Oms CGD+ 

Exp+Rev+Oms 

0 2.01 2.01 2.01 2.01 2.01 2.01 2.01 
1 1.34 1.09 1.13 1.03 1.18 1.10 1.06 
2 1.32 1.09 1.11 1.03 1.10 1.10 1.06 
3 1.32 1.09 1.11 1.03 1.10 1.10 1.06 
4 1.32 1.09 1.11 1.03 1.09 1.10 1.06 
5 1.32 1.09 1.11 1.03 1.09 1.10 1.06 
6 1.32 1.09 1.11 1.03 1.09* 1.10 1.06* 

 
Figure 8.5  The average number of roots per analysis over the course of 6 iterations using 
100% of the training data. The most cohesive analyses were achieved by variation IV and the 
least by variation I, highlighted in bold. 

 
Looking at the number of concrete constructions learned across the 7 different 

combinations of learning operation using all the available training data, it is immediately 

apparent that variation I led to an order of magnitude more constructions than any other 

combinations that include generalization. However, as previously discussed, only 3 constructions 

are strictly necessary to analyze the data (14 if omission is not allowed). All model variations 

learned many more constructions than are strictly necessary to analyze the data, reflecting (1) 

idiosyncrasies in the data (including semantic restrictions on the core arguments of processes), (2) 

a conservative learning approach that generalizes only as much as the data warrants, and (3) 

competition between the specific and general constructions that led to the preservation of a large 

number of specific constructions. 

No constructional categories are created by the composition-only model, and as expected, 

category expansion led to bigger and therefore fewer categories. The seven categories learned by 

the composition + generalization model are (semantically): TRANSITIVE_ACTION, 

INTRANSITIVE_ACTION, @Object, @Object, @Object, @Inanimate, @Inanimate. These 

categories have overlapping members but their constructional contexts are distributed differently. 

On the other hand, with category expansion, the learned four constructional categories are 
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(semantically): TRANSITIVE_ACTION, INTRANSITIVE_ACTION, @Object, and @Inanimate. In an 

alternate run with the same setting but a differently chosen training set, the category of inanimate 

nouns merged with the category of object nouns. 

 I II III IV V VI VII 

iter 
Comp Comp+Gen CG+Dec CGD +Exp CGD+Rev CGD +Oms CGD+ 

Exp+Rev+Oms 

0 0 0 0 0 0 0 0 
1 558 164 61 76.5 64.5 68 71 
2 607 163 56.5 76.5 63.5 75 89.5 
3 607 163 56.5 76.5 63.5 77 85 
4 607 163 56.5 76.5 63.5 76.5 83 
5 607 163 56.5 76.5 63.5 77.5 84 
6 607 163 56.5 76.5 63.5 77.5* 85.5* 

 
Figure 8.6  The number of learned concrete constructions after 6 iterations using 100% of 
the training data. The largest grammar results from variation I and the smallest from 
variation III, highlighted in bold. 
 

 I II III IV V VI VII 

iter 
Comp Comp+Gen CG+Dec CGD +Exp CGD+Rev CGD +Oms CGD+ 

Exp+Rev+Oms 

0 0 0 0 0 0 0 0 
1 0 7 5.5 3.5 5 4.5 3.5 
2 0 7 5 3.5 5 4.5 3.5 
3 0 7 5 3.5 5 4.5 3.5 
4 0 7 5 3.5 5 4.5 3.5 
5 0 7 5 3.5 5 4.5 3.5 
6 0 7 5 3.5 5 4.5* 3.5* 

 
Figure 8.7  The number of learned constructional categories after 6 iterations using 100% of 
the training data. Variation I results in no constructional categories, and the most number of 
categories are learned by variation II, highlighted in bold. 

 

The per-iteration results obscure the more interesting changes in grammar size that 

happened within the first two learning iterations, which are plotted in Figure 8.8 and Figure 8.9. 

For the composition-only model, the number of learned concrete constructions increased linearly 

with the number of utterances encountered in the first iteration (slope = 1.05), and increased 

linearly but at a much slower pace during the second iteration (slope = 0.07). This reflects the fact 
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that constructions learned in the first iteration are used to analyze utterances in the second 

iteration such that additional compositions can be performed.  

 
Figure 8.8  The number of learned concrete constructions as a function of the learning 
episodes. 

 

 
Figure 8.9  The number of learned categories as a function of learning episodes. 
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As for the number of constructional categories, model variations II, III, V, and VI 

(Comp+Gen, CG+Dec, CGD+Rev and CGD +Oms) all overshot before settling at the their final 

set of categories41. From a modeling standpoint, it is worth noting that even though all of the 

variations except for composition-only perform similarly well, the variations with the refinement 

operations were able to do so at less than half the grammar size of the Comp+Gen variation. This 

is an important consideration in light of the long-term memory demands that the grammar 

storage may pose on the learner. 

The results reported so far are from using 100% of the 688 examples in the training data. 

The results from the second, training set size manipulation are presented here. The same seven 

variations of the model were trained on 50% (344), 25% (172) and 5% (34) of the available 

learning corpus and tested on a validation set of size 172. By both the core argument resolution 

measure (Figure 8.10) and the average number of roots per analysis measure (Figure 8.11), the 

best-performing variations in the 100% and the 50% conditions are largely comparable even as 

there are slight drop-offs in the other variations. However, the degradation in resolution score is 

much more noticeable between the 50% and the 25% conditions, and between the 25% and the 

5% conditions.  

 I II III IV V VI VII 

% data 
Comp Comp+Gen CG+Dec CGD +Exp CGD+Rev CGD +Oms CGD+ 

Exp+Rev+Oms 

100% 0.395 0.847 0.846 0.837 0.908 0.848 0.807 
50% 0.344 0.805 0.847 0.795 0.905 0.814 0.751 
25% 0.313 0.764 0.762 0.787 0.705 0.783 0.787 

5% 0.194 0.350 0.390 0.565 0.344 0.466 0.570 
 
Figure 8.10  The resolution score obtained at the end of 6 iterations for varying amounts of 
training data. The best performing model in each training set size condition is highlighted in 
bold. 

 
                                                           
41 Even though decay is not enabled in the Comp+Gen variation, category merges triggered by constructional 
generalization are allowed to happen, and in the process ridding the grammar of excess categories. 
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 I II III IV V VI VII 

% data 
Comp Comp+Gen CG+Dec CGD +Exp CGD+Rev CGD +Oms CGD+ 

Exp+Rev+Oms 

100% 1.32 1.09 1.11 1.03 1.09 1.10 1.06 
50% 1.46 1.14 1.14 1.05 1.19 1.13 1.05 
25% 1.56 1.20 1.19 1.07 1.16 1.19 1.04 

5% 1.81 1.66 1.70 1.31 1.69 1.65 1.24 
 
Figure 8.11  The average number of roots per analysis obtained at the end of 6 iterations for 
varying amounts of training data. The best performing model in each training set size 
condition is highlighted in bold. 

 

The basic finding here is not news. Having large corpora helps. The somewhat surprising 

result is that the 5% model did as well as it did (resolution score = 0.570) using a combination of 

composition, generalization, revision, omission and decay. Figure 8.12 breaks down the difference 

in resolution scores between all the “refinement” models IV-VII and the “no refinement” baseline 

of variation III. Whereas the refinement operations did not help or even hurt when there were 

large amounts of data (possibly due to overfitting), they were generally helpful when the data was 

very sparse. Furthermore, the learning in variation VII (all learning operations) using 5% of the 

training data resulted in 45 learned concrete constructions and 3 learned abstract constructions, 

as compared to 607 learned concrete constructions and 0 learned abstract constructions in 

variation I (composition only) using 100% of the data. This is impressive considering that the 5% 

variation VII model also did better than the 100% variation I model (0.570 compared to 0.395). 

The average improvement of the refinement models is also greatest when there is the least 

amount of training data. Before we can extrapolate from these results and make conclusions 

about the difficulties in learning from real Mandarin Chinese data, however, we would like to 

look at how these operations scale with linguistic complexity of the language. For this we turn to 

another set of experiments using a modified and more complex miniature grammar. 
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 IV V VI VII Avg 

% data 
CGD +Exp CGD+Rev CGD +Oms CGD+ 

Exp+Rev+Oms 
 

100% -0.009 0.002 0.063 -0.038 0.005 
50% -0.052 -0.034 0.058 -0.096 -0.031 
25% 0.025 0.021 -0.057 0.025 0.004 

5% 0.175 0.076 -0.045 0.181 0.097 
 
Figure 8.12  The difference in resolution score of the “refinement” models from the “no 
refinement” baseline. The average improvements of the refinment models are also shown. 
The most and least improvement from the refinement models, as well as the most average 
improvement, are highlighted in bold. 

 

8.2 Experiment 4: Mandarin-like artificial language with object fronting 

Learning data 

To start getting at what effect linguistic complexity has on the learning model, here we 

make a slight modification to the miniature grammar introduced in Section 8.1. In this version a 

new particle ba3 is introduced as an object marker (just as in the Mandarin Chinese). Using this 

coverb marker an object can be moved to a preverbal position. In the transitive sentences, the 

fronted object is semantically the patient. In the ditransitive sentences, the fronted object is 

semantically the theme. As a result, disregarding argument omission, there can be two ways to 

construct a transitive sentence and two ways to construct a ditransitive sentence in this modified 

miniature language (with the corresponding semantic arguments in parenthesis): 

S -> N Vintran (agent) 

S -> N Vtran N  (agent patient) 

S -> N Vditran N N (giver recipient theme) 

 

S -> N ba3 N Vtran  (agent patient) 

S -> N ba3 N Vditran N (giver theme recipient) 

With the exception of the additional lexical construction BA3 (with empty meaning), the 

same vocabulary and semantic schemas from the original miniature language are used here and 

the same 860 situational contexts are reused here. The arguments in this miniature language 
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corpus are generated using a slightly different procedure. A sentence with all arguments present is 

generated for each situational context. For the agent/giver constituent, P(expressed) = 0.3 and 

P(local | expressed) = 1.0. For the recipient constituent, P(expressed) = 0.4 and P(local | 

expressed) = 1.0. These are unchanged from the last miniature grammar. 

The patient in the transitive frame and the theme in the ditransitive frame are the ones 

which can be fronted, and the data generation is a bit tricky. For the patient in the transitive frame, 

P(expressed) = 0.4 and P(local | expressed) = 0.65. For the theme in the ditransitive frame, 

fronting of the theme is only allowed when the recipient is also expressed, consistent with 

conventions in Mandarin Chinese42. This dependency of one constituent’s locality on another 

constituent is not well captured by the mathematical model in the current analyzer. Nonetheless, 

the theme in the ditransitive scene is generated with P(expressedtheme) = 0.6, and if the fronting 

conditions are met (i.e. the recipient is also expressed), P(localtheme | expressedtheme) = 0.35. A 

few examples of the generated sentences that have object fronting are shown in Figure 8.13. The 

rest of the generated sentences look just like those shown in Figure 8.3. 

 

A sample of sentences with fronted objects in the modified miniature 
language 
 
ba3 Aunt like 
ba3 Dad disturb 
HaoYu ba3 I disturb 

ba3 car throw 
ba3 veggies find 
you ba3 stool find 

ba3 bear give you 
Haoyu ba3 rice give I 
Dad ba3 bear give Haoyu 

 
Figure 8.13  Example of sentences in the modified miniature language.  

  

                                                           
42 Certainly, in Mandarin Chinese there are other semantic restrictions and implications of fronting. One has to do with 
a notion of affectedness / disposal associated with the direct object (Li & Thompson, 1981). Another is the information 
structure of the sentence. Neither are taken into account in this miniature grammar to keep things simple.  
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Training procedure 

The training procedure for this experiment is exactly the same as in experiment 3. The 

same two learning operation combination and training set size manipulations were used.  

Qualitative results 

Since revision is enabled only in variation V and VII, those are the only two sets of results 

where learned constructions with a BA3 constituent are expected. This was indeed the case. We 

focus on these constructions since the fronted object sentences make up the primary difference 

between this experiment and experiment 3. Figure 8.14 shows a sample of the ba3-using 

constructions learned by the variation V model using the same shorthand as in Chapter 7. 

Resulting Construction Meaning Gloss + Contextual Restriction 

BA3-CAT1262-CAT154-c1066  

CAT1262: inanimate nouns  
   (excluding pictures) 
CAT154: transitive action verbs 

<Human> - TRANSITIVE_ACTION - 

Inanimate 

AUNT-BA3-CAT2149-LIKE-c2151 

CAT2149: object nouns 
Aunt - LIKE - Object 

BA3-CAT1607-GIVE-CAT2149-c2585 

CAT1607: inanimate nouns 
CAT2149: object nouns 

<Human> - GIVE - Human - Inanimate 

BA3-DAD-CAT154 

CAT154: transitive action verbs 
<Human> - DISTURB - Dad 

 
Figure 8.14  Example s of constructions with BA3 learned by model variation V. 

 

Once both revision and omission are thrown into the mix in the variation VII model, 

the constructions learned are unexpected at best and erroneous at worst. Figure 8.15 shows 

two of these constructions from each run of the model. Often the BA3 particle is learned to be 

optional while the direct object it marks is learned to be omissible. This happens an utterance 

with just the main verb is contrasted with a specific construction with a fronted object, and the 

learner marks the non-core BA3 optional and the core object omissible. 
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Resulting Construction Meaning Gloss + Contextual Restriction 

[BA3]-[CAT087]-LIKE-c766 

CAT087: object nouns 
<Human> - LIKE - Object 

[BA3]-[CAT087]-CAT015-c766 

CAT087: object nouns 
CAT015: transitive action verbs 

<Human> - TRANSITIVE_ACTION - Object 

 

Resulting Construction Meaning Gloss + Contextual Restriction 

[HAOYU]-[BA3]-[CAT020]-CAT063-c943 

CAT020: object nouns 
CAT063: transitive action verbs 

Haoyu - TRANSITIVE_ACTION - Object 

[CAT020]-[BA3]-[CAT020]-CAT063-c976 

CAT020: object nouns 
CAT063: transitive action verbs 

Object - TRANSITIVE_ACTION - Object 

 
Figure 8.15  Examples of constructions with BA3 learned by the two runs using model 
variation VII. 

 

Quantitative results 

The quantitative results confirm the idea that this grammar is more difficult for the 

model to learn than the grammar in Experiment 3. Figure 8.16 and Figure 8.17 show the 

performance of the models over the course of 6 training iterations on the modified grammar in 

contrast with the final results obtained by the same models in Experiment 3. The current results 

are worse across the board. The difference between scores obtained by the “no refinement” 

variation II and the scores obtained by the “refinement” variations IV through VII confirms the 

suspicion that a number of unwarranted generalizations are made with respect to omissible and 

optional arguments (as demonstrated in the qualitative results). This is also reflected in the 

reduced average improvements of the “refinement” models over the “no refinement” baselines 

compared to Experiment 3, as shown in Figure 8.18.  
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These results underscore how intuitive learning principles can sometimes produce 

unexpected or even incorrect results when used on a large scale. A separate set of data analyses 

was conducted to examine the likely causes. The 4 learned grammars from the two runs each of  

variations VI (CGD + Oms) and VII (CGD + Exp + Rev + Oms) were used to analyze all 860 

sentences in this miniature grammar corpus. To gauge the amount of ambiguity in the grammars, 

the analyzer was asked to return a maximum of 15 analyses for each sentence in the corpus. If 

there is little ambiguity in the grammar, the average number of returned analysis for each 

sentence is expected to be close to 3 or 4 (1 analysis for the unambiguous single-rooted analysis 

and several much worse multi-rooted analyses). The average number of returned analyses per 

utterance using the varation VI grammars was 12.75, whereas the average number of returned 

analyses per utterance using the varation VII grammars was 13.00. This suggests that the 

combination of additional learning operations may have created constructions that are 

individually reasonable, but as a set added so much ambiguity in the grammar that they 

undermine the analyzer’s ability to pick out the correct analysis. 

 I II III IV V VI VII 

iter 
Comp Comp+Gen CG+Dec CGD +Exp CGD+Rev CGD +Oms CGD+ 

Exp+Rev+Oms 

0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
1 0.335 0.809 0.786 0.770 0.794 0.694 0.738 
2 0.333 0.821 0.795 0.780 0.807 0.765 0.753 
3 0.330 0.823 0.787 0.787 0.813 0.833 0.758 
4 0.330 0.819 0.790 0.785 0.797 0.858 0.749 
5 0.327 0.818 0.787 0.787 0.802 0.810 0.753 
6 0.330 0.821 0.795 0.781 0.790 0.867* 0.747* 

        
Exp 3 0.395 0.847 0.846 0.837 0.908 0.848 0.807 
 
Figure 8.16  The resolution score obtained over the course of 6 iterations using 100% of the 
training data. The best scores were achieved by variation VI and the worst by variation I, 
both highlighted in bold. These are contrasted by the results obtained on the simpler 
grammar in Experiment 3.  
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 I II III IV V VI VII 

iter 
Comp Comp+Gen CG+Dec CGD +Exp CGD+Rev CGD +Oms CGD+ 

Exp+Rev+Oms 

0 2.18 2.18 2.18 2.18 2.18 2.18 2.18 
1 1.63 1.31 1.32 1.22 1.22 1.45 1.13 
2 1.63 1.30 1.29 1.20 1.20 1.42 1.10 
3 1.63 1.30 1.29 1.20 1.19 1.37 1.10 
4 1.63 1.30 1.29 1.20 1.19 1.36 1.10 
5 1.63 1.30 1.29 1.20 1.19 1.36 1.10 
6 1.63 1.30 1.29 1.20 1.19 1.378* 1.14* 

        
Exp 3 1.32 1.09 1.11 1.03 1.09 1.10 1.06 
 
Figure 8.17  The average number of roots per analysis over the course of 6 iterations using 
100% of the training data. The most cohesive analyses were achieved by variation VII and the 
least by variation I, highlighted in bold. These are contrasted by the results obtained on the 
simpler grammar in Experiment 3. 

 

 IV V VI VII Avg  Exp 3 
Avg 

% data 
CGD +Exp CGD+Rev CGD +Oms CGD+ 

Exp+Rev+Oms 
   

100% 0.000 0.018 0.079 -0.041 0.014  0.005 
50% -0.002 0.004 -0.082 0.050 -0.007  -0.031 
25% -0.042 0.008 0.029 -0.026 -0.008  0.004 

5% 0.161 0.035 -0.032 0.099 0.066  0.097 
 
Figure 8.18  The difference in resolution score of the “refinement” models from the “no 
refinement” baseline  in the more complex grammar. The average improvements of the 
refinment models are also shown. The most and least improvement from the refinement 
models, as well as the most average improvement, are highlighted in bold. These are 
contrasted with results obtained on the simpler grammar in Experiment 3. 

 

The rest of the behavioral patterns of the model discussed in Section 8.1 hold in this 

experiment and the discussion of those results are therefore omitted from this dissertation. These 

two experiments represent a first step in understanding the behavior of a complex learning system. 

The final chapter discusses more approaches of combining the power of using naturalistic data 

and miniature languages in this computational framework.  
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Chapter 9.  

Discussion and Future Directions 

At the beginning of this dissertation, the following question was posed: if natural 

languages are too complex to be learned by blind associations, what is the nature of the innate 

learning biases that human learners are endowed with such that they almost always learn their 

native languages successfully? 

This dissertation explored structural learning biases in the form of  

• a child learner’s understanding that forms (words and phrases) have referential 

meaning and her desire to make sense of the utterances, 

• situational information that informs the possible interpretations of utterances, and 

• embodied semantic knowledge that establishes semantic coherence in learned 

constructions and guides the generalization of constructions 

All of these structural biases are extremely effective in reducing the hypothesis space for 

new constructions, which are created in the learning model through a combination of utterance-

dependent and utterance-independent learning operations. The utterance-dependent learning 

operations, which directly utilize the output of the best-fit constructional analyzer, include the 

basic operation composition and the refinement operations construction revision and constituent 

omission. The utterance-independent learning operations, which manipulate existing 

constructions in the grammar, include the basic generalization operation and the refinement 

operations category merge, category expansion, and decay. The result is a comprehension-driven 
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learning framework that simultaneously learns both grammatical structures and statistical 

parameters on these grammatical structures.  

To evaluate a cognitive modeling framework for grammar learning such as this, four 

criteria must be met. First, the model must display the same general learning tendencies as a child 

learner. Second, the model must be able to learn correctly under a variety of circumstances. Third, 

the model must have clear assumptions and systematic model parameters. Forth, the model 

should be well-motivated in implementation such that it is extendible beyond its initial modeling 

goals.  

The rest of this chapter will address each of these criteria in turn. Section 9.1 answers to 

the first two criteria by looking across the results from the four learning experiments with 

naturalistic data as well as artificial languages. Section 9.2 takes up the issue of modeling 

assumptions and model parameters by looking at constructional generalization as a case study. 

Section 9.3 looks at two additional kinds of constructions that have not been the primary focus of 

the model — constructions with non-compositional meaning and function morphemes — and 

discusses how the model can be reasonably extended to model the learning thereof.  

Finally, as any good thesis should, Section 9.4 offers some wild speculations about what 

this dissertation might have to do with a host of related issues, such as word learning, concept 

learning, morphosyntactic development, and the general problem of using situational context for 

language understanding and learning.  
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9.1 General discussion of the natural language and artificial language 

experiments  

Learning sequences performed by the model discussed in Section 7.3 give assurance that 

the model is making reasonable learning choices given a corpus of real parent-child interaction. 

Among the learned constructions are: 

• a proto NP-VP construction with a meaning of an INTRANSITIVE_STATE, where 

the NP-like constituent is a category of words that refer to @Solids and has a 

probability of 0.46 of being expressed, and the VP-like constituent is a category of 

INTRANSITIVE_STATE words. 

• a proto VP-NP construction with a meaning of FORCE_APPLICATION, where the 

VP-like constituent is a category of FORCE_APPLICATION words and the NP-like 

constituent is the same category of words that refer to @Solids as the above. 

• another proto VP-NP construction denoting a TWO_PARTICIPANT_STATE, where 

the VP-like constituent is a category of stative relation verbs and the NP-like 

constituent is a category of human-referring words and has a probability of 0.37 

of being expressed. There are also other more lexically-specific constructions 

with a meaning of TWO_PARTICIPANT_STATE that have 3 constituents. 

• a proto NEG-VP construction with a central scene of INGESTION, where the 

negation word is optionally expressed with a probability of 0.27 and the VP-like 

constituent is a category of INGESTION words.  

Additionally, the model also learned subcategorization preferences for each of these 

constructions. For example, in the intransitive NP-VP-like construction, the word huai4 (broken) 

was used 63.6% of the time (14 out of 22). The less frequently used verbs are hao3 (good), xiao3 
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(small), and hao3wanr2 (amusing). This is consistent with the work of Wonnacott et al.(2008) 

which suggests that adult learners learn probabilistic subcategorization constraints. 

These relatively general constructions along with more specific ones give the learner 

tremendous leverage in understanding new utterances, drawing out not only their phrasal 

structures but also their semantic bindings. In terms of the macro behavior, the comprehension-

driven grammar learning model does what it sets out to do: to understand each piece of learning 

input as best it can based on its current grammar and the situational context, and compose a new 

construction if there are form-meaning mappings not captured by any constructions in the 

current grammar. As such we expect the number of composition operations to decrease over time 

as the learner’s grammar gains coverage, and this is exactly what we see in the experiments. Figure 

9.1 shows the number of composition and generalization operations performed per 50 episode 

intervals over the course of 6 iterations over the miniature language data from Experiments 3 and 

4 with all learning operations enabled. As expected, there is a dramatic decline in the frequencies 

of these operations within the first iteration, and they slowly taper off in the remaining iterations 

as the learner settles on a grammar. 

Figure 9.2 shows the same statistics for the Mandarin Chinese corpus from the “no decay” 

model in Experiment 1 and the “with decay” model in Experiment 2. Since neither experiment 

was able to run to the completion of the first iteration43, the graphs show as many operations as 

the learner was able to perform. The number of composition operations shows a slight downward 

trend over time but the number of generalization operations is uncorrelated with the number of 

learning episodes, which is reasonable given that the Mandarin Chinese language is complex, the 

training data is sparse, the learner is conservative and is only on the first iteration of the data. 

                                                           
43  due to an out-of-memory error during parsing, the “without decay” model only got halfway through the first 
iteration and the “with decay” model got through to about 80%.  
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Figure 9.1  The number of composition and generalization operations performed by the 
learner decreases over time as the learner’s grammar gets better and better at analyzing the 
learning input. Both graphs show the number of composition and generalization operations 
performed per 50 episode intervals over the course of 6 iterations over the training data with 
all learning operations enabled. The left shows data from one of the runs on the original 
artificial language; the right shows data from one of the runs on the modified (more complex) 
artificial language. 

 

   
 
Figure 9.2  Both graphs show the number of composition and generalization operations 
taken per 50 episode intervals within the first iteration on the Mandarin Chinese corpus. The 
left shows data from the basic model without decay; the right shows data from the variation 1 
model with decay. There is a slight downward trend for the number of composition 
operations but the number of generalization operations is uncorrelated with the number 
learning episodes (at least within the first iteration).  
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The quantitative results, on the other hand, are mixed: All variations of the model that 

had generalization capacity obtained satisfactory results on the unseen data in the miniature 

artificial languages in Experiments 3 and 4. In particular, Experiment 3 showed differentiation 

between combinations of learning operations on varying amounts of learning input. In 

Experiment 3, the refinement operations contributed more to the learner’s ability to cope with 

unseen data when the amount of training data is limited, but the size of their effects seem to 

diminish when the miniature language gets more complicated in Experiment 4. On the other 

hand, in Experiments 1 and 2 the learned grammars from the naturalistic Mandarin Chinese data 

generalized somewhat to the unseen data but not particularly well.  

The most  likely reason why the model’s success with miniature languages does not 

translate well to real languages is the scarcity of training data in comparison to the linguistic 

complexity of the corpus. By design, at 100% of the training data, one iteration of learning in 

Experiments 3 and 4 covered 80% of the 860 possible sentences allowed by the grammar. The 

ability of the learner to rapidly generalize based on experiencing many instances of the same 

construction is reflected in the steep drop-off in number of composition operations within the 

first iteration in Figure 9.1. (Do recall, however, that the performance of the learner degraded 

when the more complex miniature language in Experiment 4 was tested on the learner.) 

By contrast, this kind of steep drop-off within the first iteration was not observed in 

Experiments 3 and 4, suggesting that the learner encounters data from different corners of the 

grammar throughout the first iteration. The refinement operations also inject into the grammar 

noise which normally goes away when the learner encounters more data. To be clear, some of the 

constructions proposed by these operations are correct, as evidenced by the learner’s ability to 
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achieve comparable quantitative results with far fewer constructions. However, sorting out the 

good refinements from the bad refinements is no easy task, and in the case of Experiments 1 and 2, 

there was not enough data to prune a sizable portion of the bad constructions and they ended up 

stealing probability mass away from the good constructions, causing the analyzer to return 

incorrect analyses. 

9.2 Constructional generalization 

There is no doubt that the ability to abstract away from the learning input is key to the 

linguistic productivity of a child learner. This helps her to both understand and produce 

utterances that she has never encountered before. As reviewed in Chapter 1, there is still a lot that 

is unknown about when and how children generalize. This dissertation is an attempt to lay out in 

precise terms some of the sources of information and computational processes that go into the 

formation of general constructions. One particular topic worth discussing is the ongoing 

competition between specific constructions and their generalizations, and the path the model 

takes to settle on the generalizations it makes. 

Specific versus general constructions 

How early children gain access to general argument structure constructions is a highly 

debated topic and consensus has yet to be reached in the language development community 

(Abbot-Smith et al., 2004; Akhtar & Tomasello, 1996; 1997; Conwell & Demuth, 2007; Fernandes, 

Marcus, Di Nubila & Vouloumanos, 2006; Fisher, 2002; Hirsh-Pasek, Golinkoff & Naigles, 1996b; 

Tomasello, 2000). There is agreement, however, that qualitative differences exist between what 

children are able to do with novel verbs in comprehension and production tasks at a younger and 

an older age. The current work contributes to this ongoing discussion in emphasizing that 
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generalization is not an all-or-nothing process. The model presented here is constructed in such a 

way that lexically-specific constructions emerge before generalizations, but the pace and scope of 

generalization in the model is dependent on a number of factors. One such factor is demonstrated 

in variation II of the basic model (Section 7.2) where the statistic update discount factor γ was set 

to 0.2 instead of 1.0. The pace of generalization slowed down dramatically since the learner, in a 

sense, did not trust the generalizations as much and was not eager to use them, which in turned 

caused many of the generalizations to be lost to decay.  

Additionally, the scope of generalization vis-à-vis the size of constructional categories 

also grows larger over the course of learning. Of interest here is the notion of the constructional 

context of a construction α, loosely defined as the syntactic and semantic configuration of each 

construction that takes α as a constituent. For example category α may be a category of human 

nouns that has been created as a pre-verbal constituent which is connected semantically to the 

verb’s agent role. The category α is a “proto-subject”, so to speak, and we will call this 

configuration of form and meaning relations its constructional context. Another category β may 

be another category of human nouns and may even share a number of members with α, but if β is 

used as a post-verbal constituent connected to the main verb’s patient role (i.e. a “proto-object”), 

its constructional context is different from that of α’s. The constructional context of each category 

has the property of being mostly preserved through generalization. This is because constructional 

categories (i.e. abstract constructions) are by definition of ECG never instantiated on their own 

and always used by some other concrete constructions. The merging of two categories must be the 

result of their users being generalized, and the constructional context must therefore 

automatically be preserved.  
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There are only two scenarios in which a category α extends beyond its constructional 

context. The first is when more than one of its members is used in other constructions of a 

different constructional context and a generalization occurs over those constructions. That is, if, 

say, category α from above has as members WO3-N (I), NI3-N (you) and YI2-N (aunt), and there 

happens to be a generalization between GEI3-WO3 (give me) and GEI3-NI3 (give you), category α 

will be used as a constituent in the new GEI3-α construction. The resulting category α will have 

properties of both a proto-subject and a proto-object.  

The other operation that violates constructional context distinctions in the current 

implementation is the category expansion operation. It explicitly looks only for semantic 

similarity between existing categories and other non-members, including other constructional 

categories.  

The resulting generalization behavior is not incompatible with the idea of Radical 

Construction Grammar (Croft, 2001), where the notions of grammatical subjects and objects are 

not defined except with respect to the particular argument structure constructions that they are a 

part of. This kind of very conservative generalization is also compatible in spirit with children’s 

learning behavior as demonstrated by Gerken’s artificial language learning experiment where 9-

month-old infants were given stimuli that can be explained by both a conservative and an 

aggressive generalization (Gerken, 2006). Specifically, when the exposure stimuli all ended in a 

particular syllable di while also obeying a general AAB pattern, infants chose the more 

conservative, syllable-based generalization.   

Obviously, the number of possible generalizations in a real language is far greater than 

that in an artificial language and psychologists are only beginning to understand what facilitates a 

child’s extension of existing verb-argument patterns to new verbs. There is evidence both of verb-
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centric generalizations (e.g. want _object_, ) (Tomasello, 2000) and nominal /morphology-

anchored generalizations (e.g. I’m __verb__ing it) (Childers & Tomasello, 2001), putting the 

status of verb meaning as the driving force behind generalization in question (Ninio, 2005). The 

generalization mechanism in the model separates the issues of construction retrieval (i.e. which 

constructions are similar enough to the ones actively in use to perform generalization) from the 

actual act of generalization (i.e. how general should the new construction be — to put it in the 

context of Gerken’s experiment — should it be the “end in -di” hypothesis or the AAB 

hypothesis). As explained in Chapter 4, both item-based and semantics-based strategies have been 

tested as the construction retrieval mechanism and the item-based strategy seemed to lead to 

generalizations that are too broad too quickly. However, this is exactly the kind of question that 

this learning model is designed to ask and make predictions for. Figure 9.3 gives a taste of the 

factors in the model that can influence how general the grammar becomes, and how quickly.   

statistics • discount factor γ for the statistics updates for new constructions which 
reflects the level of confidence the learner has in its correctness 

generalization • retrieval of constructions from grammar 
• additional criteria for initiating a generalization (e.g. relative 

frequencies of the two specific constructions) 
• whether specific constructions are kept after generalizations  
• how many “versions” of constructions to keep around if further 

generalizations are made 

category merge • criteria for category merges (e.g. number or percentage of overlapping 
members, semantic distance) 

• whether users of the merged categories automatically have their 
contextual constraints relaxed at the same time 

category expansion • criteria for extending a category (e.g. how many of the same category 
does the learner have to see to be confident about the extent of the 
category) 

 
Figure 9.3  Examples of factors in the model that affect how quickly the learned grammar 
becomes general. 
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We have discussed how the discount factor γ and the construction retrieval strategy affect 

the shape of the grammar learning trajectory. Within the generalization operation, there are a few 

other operational details that affect learning. The first has to do with additional dimensions of 

comparison between a set of constructions for them to qualify as candidates for generalization. 

One such dimension that almost certainly matters is the relative frequencies of the constructions 

being generalized (Goldberg, Casenhiser & Sethuraman, 2004; Gomez, 2002; Hudson Kam & 

Newport, 2005; Thompson & Newport, 2007). Another operational detail that has big 

implications for the learning is closely related to the incremental nature of generalization in this 

model, and that has to do with what happens to the specific construction after it has been 

generalized over.  

Bybee has argued based on phonological contractions that some high-frequency, lexically 

specific forms are retained in the grammar despite the availability of more general constructions 

(Bybee & Scheibman., 1999). Currently, a construction and its generalizations (and their 

subsequent generalizations) are all kept in the grammar. The basic idea is that these constructions 

will compete in usage and the ones at an inappropriate level of generalization eventually be 

purged due to decay. This implementation is certainly too naïve, especially in consideration that 

the amount of training data is severely limited. Thus the analyzer was likely to have been 

hampered by the amount of ambiguity introduced into the learned grammars in this process. 

Bayesian learning approaches 

Amongst the first places to look for solutions to properly model the competition between  

specific and general constructions is Bayesian learning approaches, which are certainly 

compatible with the current learning framework. The goal here is to find the most probable 

grammar Ĝ given a set of utterances U situated in contexts Z, which can be expressed as the 
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product of the data likelihood and the grammar prior using Bayes rule and dropping the 

normalizing denominator, 

ˆ argmax ( | , )

argmax ( | , ) ( | )

G

G

G P G U Z

P U G Z P G Z

=

=
 

and since the grammar does not depend on context, the grammar prior term can be simplified: 

ˆ argmax P( | , )P( )
G

G U G Z G= . 

By making an independence assumption between the utterances, the data likelihood can 

be estimated as the product of the probability of each utterance given the grammar and its context. 

By introducing a variable for the analysis of utterance and realizing that the utterance is 

deterministic given an analysis, the total data likelihood can be estimated as the product of the 

probabilities of all analyses. 
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∏

 

The probability of an analysis given a grammar G and a context z is exactly the 

probability that Bryant’s best-fit analyzer estimates in its factored model (Bryant, 2008b). Given 

that, the data likelihood term is straightforward to calculate but difficult to implement in a 

cognitively plausible way — an accurate data likelihood term requires re-analysis of all previously 

encountered situated utterance, which, by its memory requirements alone is implausible for a 

child learner.  

The even trickier bit, however, is to define a proper prior probability distribution for the 

grammar, P(G). This is not at all straightforward for the desired qualities we want for a grammar, 
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which is supposed to have some amount of redundancy between specific and general 

constructions. A grammar prior based on a simplicity measure has been attempted by Perfors, 

Tenenbaum, and Regier (personal communications) in their Bayesian selection of induced 

grammars , but the prior again does not capture the desire for specific constructions to co-exist 

with generalizations. A related information-theoretic approach, Minimum Description Length 

(MDL), has been used in Chang’s model of construction grammar learning (Chang, 2008). MDL 

minimizes the total description length of the data and the grammar and is therefore designed to 

achieve the optimal level of compactness of the grammar. However, it suffers from the same 

criteria misfit as the Bayesian approach: if learning of new constructions are incremental such 

that all pieces of encountered data have been covered by some specific construction, if those 

specific constructions are not discarded after a generalization operation, and if encountered data 

(so far) is all that the learner has to go by in evaluating the description length, then there is always 

a net increase in description length after any generalization operation. Chang’s model attempts to 

alleviate the problem by assuming that specific and general constructions share representational 

substrates and reducing the length of specific constructions that have been generalized.  

At the end of the day, the ad-hoc nature of choosing a Bayesian grammar prior or a 

grammar length heuristic reflects a lack of understanding of the representations of and the 

interactions between abstract and specific grammatical knowledge in the human brain in the 

broader cognitive science and psycholinguistic communities. Until these grander challenges are 

met, more localized, limited applications  of Bayesian learning principles can be explored in the 

learning model. There are some obvious parallels between the learning of grammatical categories 

(e.g. is the constituent after the word CHI1 (eat) fillable by any word that refer to medicines, or 

food item, or physical object?) and the learning of linguistically-defined object categories (e.g. is 
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dog a label for Dalmatians only, or for furry 4-legged animals, or for living things that run 

around?) (Tenenbaum & Griffiths, 2001; Xu & Tenenbaum, 2007) and it may be a fruitful 

direction to explore both in children and computational models.  

9.3 Other kinds of constructions 

Looking past the initial stage of combining content words (e.g. nouns, verbs, and the 

occasional directional particles that have image-schematic meanings), two particular kinds of 

constructions proved to be troublesome for the current learning model: constructions that have 

non-compositional meanings and function words. This section describes what the phenomena are, 

why they are difficult for the learner, and offers a sketch of new learning operations that helps 

cope with problems. 

Constructions with non-compositional meaning 

Non-compositional meaning refers to meaning components introduced into the new 

construction that cannot be attributed to any of its constituents. A typical example in English is 

the What’s X doing Y? construction (Kay & Fillmore, 1999) whereby surprise and/or disapproval 

is expressed along with the question, as in What’s a nice girl like you doing in a place like this?  

Of course the learner model is not expected to learn a construction with pragmatics as 

complex as the WXDY construction right off the bat. However, there is a wide range of non-

compositional meanings encoded by constructions. Some are in the physical motion domain, 

such as the caused motion construction in English, e.g. he sneezed the napkin off the table, or the 

serial verb construction in Chinese that encode sequences of motions, e.g. guo4 lai2 chi1 (cross 

DIRtowards eat / come over to eat). Some are in the temporal domain, such as a slightly different 

serial verb construction in Chinese that describe concurrent event, e.g. zuo4 zhe chi1 (sit DUR eat 
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/ sit while you eat). A good number more are in the causal domain, such as the resultative 

constructions in English and Chinese such as he drank himself silly and cha1 gan1+jing4 (wipe [it] 

clean) or ditransitive constructions such as he baked her a cake and gei3 a1+yi2 chi1 (give aunt eat 

/ give it to aunt for her to eat)). There are obviously also those like WXDY whose meaning is less 

concrete, such as the implied comparison in the let alone construction (Fillmore, Kay & O'Connor, 

1988) as in he can barely walk, let alone run a marathon. 

Learning any of these constructions requires the ability to construe the current scene as 

more than the sum of its parts by attributing physical, temporal, causal, or other relations to its 

components. The current learning framework does not facilitate the learner in any way by pre-

segmenting the scenes with these relations. Instead, as described briefly in Section 4.1, the learner 

has to postulate a coherent meaning when multiple meaning roots are present in the new 

composition.  

The mechanism in the current learner for selecting these relations is very crude and 

introduces quite some amount of ambiguity into the grammar. Compounded with the noise 

already present in the context-fitting process, the non-compositional meaning option in the 

composition operation hurt the learner’s ability to analyze sentences correctly in the pilot runs.  

This is in a way unsurprising. As the examples above illustrate, there is not a whole lot of 

syntactic distinction between the constructions that express motion sequence, concurrent motion, 

and resultative meanings. All of them basically manifest themselves as serial verb constructions 

with possibly an intervening aspect marker. Simulation is often required to properly differentiate 

the relations between the two events expressed by the serial verbs. For example, in cha1 

gan1+jing4 (wipe clean / wipe [it] clean), knowledge about wiping potentially causing a change of 

state will help to determine that the wipee may become clean as a result of the wiping process, 
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otherwise the learner may pattern this after guo4 lai2 chi1 (cross DIRtowards eat / come over to eat), 

where the crosser is also the eater and the two processes are ordered temporally. This is exactly 

the kind of embodied knowledge that a learner ought to have access to; it is just that the current 

implementation of the simulation mechanism is not detailed enough to support such inference. A 

more fully developed learning model will make use of the context model and simulation 

mechanism to determine if a proposed non-compositional meaning is appropriate in context. 

Function morphemes 

Function morphemes, as the name suggests, are defined with respect to the relational 

functions they play in a construction. They are a bit more difficult to acquire because they are 

often unstressed, but the regularity in appearance of the obligatory function morphemes (such as 

the articles in English) are noted by children as young as 2 (Gerken & McIntosh, 1993). The 

closed-class nature of these function morphemes, as well as other cues that are regularly present 

in the input such as prosody, has also been argued to assist a child in the formation of phrasal 

groupings (Morgan, Meier & Newport, 1987; Morgan & Newport, 1981).  

Function morphemes are learned in the current model only in an indirect way — the 

revision operation attempts to use collocating function morphemes (as well as content 

morphemes) to differentiate two conflicting constructions. The revision operation, unsurprisingly, 

turns out to be noise-prone. This subsection gives a sketch on how bigram probabilities can be 

exploited in this model to form “proto-construction” units that may reduce the need for 

subsequent revisions. 
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construction gloss sensible? 

GE-HUAI4-c029 CLS - broken  

ZAI4-MO3-c047 again - apply yes 

RENG1-AO-SP-c065 throw - SFP ? 

YONG4-CV-PING2ZI-c131 CVinstrument - bottle yes 

GAN4MA2-WH-YA-SP-c219 how come - SFP yes 

KUAI4-CHI1-c377 quick - eat yes 

DA4GE4-DE-NOM-c379 big - NOM yes 

YI2-GE-c382 one - CLS yes 

MA1-GEI3-CV-c395 mother - CVbenefactive  

XIA4-DI4-c396 LOCdownwards - ground  

HUI4-CHI1-c616 able - eat yes 

LIANG3-GE-c625 two - CLS yes 

QI3-LAI2-c757 rise - DIRup yes 

WANR2-NE-SP-c787 play - SFP ? 

NEI3-GE-c824 that - CLS yes 

GUAI3-GUO4-c849 turn - DIRacross yes 

DIAO4-LE-c984 drop - PFV yes 

NING3-ZHER4-c1050 twist - there yes 

ZHAO4-ZHE-c1296 mimic - DUR yes 

TIAO4-BA-SP-c1368 dance - SFP yes 

FU2-ZHE-c1404 support - DUR yes 

 
Figure 9.4  Examples of proto-constructions learned in a pilot run by chunking any bigrams 
between content morphemes and function morphemes that exceed 0.35 into a new 
construction.  

 

The most simple-minded algorithm looks for bigrams between a content morpheme c 

and a function morpheme f  that exceed a threshold, i.e. P(c | f) > threshold or if P(f | c) > 

threshold). Given these correlated units, the learner can create a new construction that has the 

content morpheme and the function morpheme as constituents and use the meaning pole of the 

content morpheme as the meaning of the new construction. In a pilot run where the bigram 
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probability threshold was set to 0.35, the learner began to chunk content morphemes with 

collocated function morphemes, leading to the list of constructions learned in Figure 9.4. The 

figure shows on the leftmost column the proto-constructions, their glosses in the middle, and 

indicates whether each proto-construction forms a good unit (i.e. whether it is reasonable for the 

protoconstruction to be a constituent of some other construction). While two protoconstructions 

are questionable (in both cases the verb may be grouped prematurely with the sentence final 

particle), 16 of the 21 protoconstructions found are reasonable combinations.  

This pilot run is a small proof of concept that bigram statistics can help discover phrasal 

units that may be helpful in anchoring the analysis of an utterance in the naturalistic Mandarin 

Chinese data. The idea of using statistics in the input is certainly not new. Thompson and 

Newport (2007) have conducted experiments where adults successfully learned artificial 

languages where the difference in word class transitional probabilities provide the only cues to the 

phrasal structure. Mintz (2003; 2006) has also demonstrated with CHILDES corpus data that 

distributional cues in the form of frequent frames are powerful tools for creating word classes. 

These and more sophisticated kinds of statistics are also the bread and butter of statistical NLP, 

and one of the key insights in Klein’s constituent-context model (CCM) (2004) is the use of 

distributional cues along with a non-crossing bracketing constraint. As reviewed in Chapter 3, 

however, there is a disconnect between these kinds of statistically-derived phrase structures in 

induced grammars and the semantically-rich grammatical structures found in natural languages. 

This dissertation has focused on the formation of the latter using semantics as the primary source 

of information as well as the target for learning; it remains to be worked out how best to integrate 

statistically-derived structures such as these protoconstructions in the learning model. 
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9.4 Looking at language learning as a whole 

Taking a step back, this dissertation addresses but a very small piece of the puzzle called 

language development. Many open questions remain; this section tackles some of the more 

pressing ones related to word learning, concept learning, morphosyntactic development, and real 

situational contexts. 

Word learning 

As alluded to many times throughout this dissertation, word learning is a process that is 

very much tied up with grammar learning developmentally and this model has made the arbitrary 

choice of starting with a set of known words and no knowledge of syntax. Undoubtedly, words are 

not learned in isolation from the rest of language. Verbs, in particular, offer particular construals 

of events and experience but the meaning of verbs, by their relational nature, are necessarily 

conflated with the rest of the scene and the process of teasing out the verb meanings involves 

generalizing cross-situationally over scene types as well as other the arguments they appear with. 

Verbs are therefore difficult to learn, as Gleitman and colleagues have shown in the human 

simulation experiments (Gillette et al., 1999; Gleitman, Cassidy, Nappa, Papafragou & Trueswell, 

2005). The initial verbs in the models’ grammar can be thought of as codified associations 

between linguistic forms, motor programs, and scenes, and can certainly be wrong in the 

beginning. The pace and scope of generalization is expected to be affected by the schema 

hierarchy in the following sense: for verbs that make fine-grain distinctions such as causality (e.g. 

knock over versus fall) or agentivity e.g. (trip versus fall), the danger of attributing too much 

knowledge to the initial learner lies in precluding generalizations that may otherwise be possible 

given fuzzier semantic definitions.  
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Undoubtedly, new words are constantly being learned throughout language development 

as well. This is further supported by evidence that syntactic development aids vocabulary 

development by allowing learners to infer the meaning of new verbs through the syntactic frame 

in which they occur (Fisher, 2002; Gleitman, 1990; Naigles, 1996). Also referred to as syntactic 

bootstrapping (Landau & Gleitman, 1985), this process can be a powerful mechanism in later 

language development and is recently found to play a role in the acquisition of a “worst-case” 

scenario language like Mandarin where argument omission is the norm (Lee & Naigles, 2008).  

Ongoing word learning is theoretically compatible with the current framework. In 

addition to manual experiments with a gradually expanding vocabulary, new verbs are in theory 

learnable using the current model with a slight modification to the mechanism that learns non-

compositional meaning. Specifically, if a novel action involving two entities is demonstrated in a 

sentence using a novel verb, say blick, the learner is left with multiple meaning components in the 

analysis (i.e. the mentioned entities) that it needs to relate with each other. Instead of trying to 

find some contextually-appropriate temporal or causal relations to explain the relations between 

events like in the non-compositional meaning case, here the learner can look to the situational 

context for events that involve the mentioned entities. Recognizing that the novel action not only 

relates the mentioned entities but also has an associated (novel) motor program, the learner can 

posit the motor program as the meaning poles of new compositions, leading to concrete 

constructions such as YOU-BLICK-IT, I-BLICK-THIS. Overtime, the learner will have a number of 

these contextually bound, lexically specific constructions, at which point the learner may 

generalize over them. The resulting general construction will have as constituents the novel verb 

and placeholders for its verb arguments and the associated motor program as its meaning. In the 

example, the resulting general construction, CAT001-BLICK-CAT002, contains all the lexical 
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semantics of the novel verb blick plus semantic restrictions on its arguments, such as Human for 

the word preceding blick and Physical_Object for the word following blick. At this point the 

learner will have essentially learned the meaning of the new verb, though it will take another new 

operation to sub-analyze the CAT001-BLICK-CAT002 construction in order to attribute lexical 

meaning to the verb directly. 

Concept learning 

Concepts are another domain that rapidly changes throughout development. Conceptual 

development is an issue that at first glance seems orthogonal to grammar development, but is 

upon closer examination intricately linked. There is a wealth of foundational work in the area of 

linguistic relativity that examines how language structures concepts, in particular in the domains 

of spatial concepts  (Bowerman, 1996; Choi & Bowerman, 1991; Landau & Gleitman, 1985; 

Munnich, Landau & Dosher, 2001; Tversky & Lee, 1998) and color (Kay, Berlin, Maffi & 

Merrifield, 1997; Kay & Regier, 2006). This leads to another field of research on the Whorfian 

hypothesis (Whorf, 1956) which looks at how language influence thought. Specifically, 

linguistically structured concepts are found to influence thoughts even in non-linguistic tasks in 

various domains (Boroditsky, 2001; Drivonikou, Kay, Regier, Ivry, Gilbert, Franklin & Davies, 

2007; Gilbert, Regier, Kay & Ivry, 2006; Winawer, Witthoft, Frank, Wu, Wade & Boroditsky, 

2007).  

Whorfian effects notwithstanding, a language learner must still learn the conceptual 

category distinctions dictated by the language. Luc Steels and colleagues have a series of models 

based on Fluid Construction Grammar (FCG) that model how language and concepts develop 

from a communication system and language evolution point of view (Steels, 2003; Steels, 2006; 

Steels & Version, 2004), but there is little computational work that focuses directly on how 



214 
 

language and concepts co-develop in ontogeny. This is a challenging area of research, not least 

because the co-learning of the two domains is non-monotonic: changes in the conceptual system 

may inform the grammar that render existing constructions incorrect, and all the grammatical 

knowledge derived from those incorrect constructions now need to be revised.  

Morphosyntactic development 

This dissertation has focused primarily on the use word order and free function 

morphemes as indicators of semantic relations, ignoring inflectional morphology as a syntactic 

element. This was done partly out of convenience since Mandarin Chinese does not use 

inflectional morphology but also largely out of necessity since the available constructional 

analyzer system has no provision for morphology. However, current work is being done in the 

research group to interface the constructional analyzer with a morphological analyzer (see Section 

9.1.6 of (Bryant, 2008a)). This has the added benefit of turning the current lexicalized analyzer 

into an unlexicalized one, which will greatly reduce the memory requirements of the analyzer and 

may even lead to some amounts of speed up.  

Once the morphological capability of the analyzer is in place, the learner can be extended 

to use morphology as a form cue in the following way. The morphological analyzer decomposes 

the morphology into a constructional schema 44  containing features representing the 

morphological structure of each word, which in the beginning of learning may be as rudimentary 

as the form of the morpheme. With some amount of hand waving, we can imagine that these 

morphological features are stored as constructional features in concrete constructions created 

through the composition operation and are generalized just like meaning schemas through the 

                                                           
44 It has not been mentioned in earlier chapters since it was not necessary, but the constructional pole as well as the 
form pole of a construction can be typed just in the same way as the meaning pole. Form schemas and constructional 
schemas can be defined and they are treated with the same exact unification semantics as meaning schemas.  
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generalization operation. At this point, the same sort of sub-analyzing operation as mentioned in 

the word learning section will be able to split the general construction and attribute functions to 

individual morphemes. 

Real situational contexts 

This section is titled “real situational contexts” because the situational context that the 

current model relies on is not only symbolically represented but also drastically simplified. The 

problem of scaling a language learning model to the real kind of messy situational contexts that a 

child learns in is essentially AI-complete and requires computational sophistications with vision 

systems, speech recognition systems. Roy and colleagues are tackling some of these challenges 

with vision-enabled robots with some success on word learning and very elementary syntax 

(Gorniak & Roy, 2007; Roy, 2002; Roy, 2003).  

Vision and speech recognition systems not withstanding, there are still some grand 

challenges in modeling contexts in any real sense. Here are some observations about the difficulty 

of the task from working on this particular learning model and child language data:  

• Metonymy and construal is everywhere in child language interaction. Consider 

scenarios where parent and child are engaged in story time. Picture books 

showing pictures of cars are present in the same scene as toy cars and real cars. 

The same words can refer to the pictures of the cars, the toy cars in the room, the 

real cars sitting in the driveway, or even in some cases, the physical sheet of paper 

on which the pictures are printed. It is no easy task for a computational system to 

see a word car and try to resolve its intended referent.  

• Scenes are always perspectivized and so is the language describing the scenes. 

Verbs like give and receive impose perspectives on the scene, but so do locative 
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words with a reference object such as inside, outside, here, or there. Properly 

representing the meaning of these locative words requires even richer semantics 

and a context model that is capable of representing the physical properties of 

entities.  

• As it turned out, figuring out whether an utterance describes a past, future or 

irrealis event without having any knowledge of tense aspect marking was very 

difficult for the learning model. The annotated speech-acts, which were inferred 

from intonation, were not an entirely reliable indicator of when (if at all) in the 

situational context a mentioned event takes place: A requesting-action utterance 

can be a pre-emptive request for a child to not do something, or for the child to 

stop doing something she’s doing. An explaining utterance can be a declaration of 

an intention to do something or a description of what the speaker has just done. 

Even in an admonishment, parents often threaten the child with some future 

action if the child continues to do something she has been doing. This difficulty 

with resolving events to context led to a sizable amount of noise in the current 

model and is a difficulty that a truly situated model of language learning and use 

must overcome. 

9.5 Summary 

The model of early grammar learning presented in this dissertation benefits from 

bootstrapping from situational context as well as the richness of semantic knowledge available to 

the learner. It represents a first step in setting up a precise computational experiment framework 

with explicit operational definitions of learning processes and clearly defined sources of 
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knowledge. Model parameters are easily adjustable for computational experiments, as 

demonstrated, and we believe that a combination of learning experiments with real and artificial 

language will prove fruitful for understanding the process of language learning. 
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Appendix A.  

A context-free representation of the ECG syntax 

(reproduced from Bryant (2008)) 
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Appendix B.  

An annotated CHILDES transcript sample in XML 

<?xml version="1.0" encoding="UTF-8"?> 
<CHAT xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
xmlns="http://www.talkbank.org/ns/talkbank" 
xsi:schemaLocation="http://www.talkbank.org/ns/talkbank talkbank.xsd" 
Version="1.1.3" Lang="zh" Corpus="beijing" Id="cx2" Date="1984-01-01"> 
  
 <Participants> 
  <participant id="MOT" role="Mother" language="zh" /> 
  <participant id="CHI" role="Target_Child" language="zh" /> 
  <participant id="FAT" role="Father" language="zh" /> 
  <participant id="INV" role="Investigator" language="zh" /> 
  <participant id="UNC" name="Unclear" role="Unidentified" language="zh" /> 
 </Participants> 
  
 <Setting> 
  <entity cat="Livingroom" id="livingroom"/> 
  <entity cat="Peach" id="peach"/> 
 </Setting> 
  
 <Setup> 
  <binding field="location" source_ref="MOT" ref="livingroom"/> 
  <binding field="location" source_ref="CHI" ref="livingroom"/> 
  <binding field="location" source_ref="INV" ref="livingroom"/> 
  <binding field="location" source_ref="peach" ref="coffeetable(livingroom)"/> 
 </Setup> 
  
 <event cat="Fetch" id="fetch01"> 
  <binding field="fetcher" ref="CHI"/> 
  <binding field="fetched" ref="peach"/> 
 </event> 
 
 <u who="MOT" id="149"> 
  <clause> 
   <w>ni3</w><w>rang4</w><wn><w>a1</w><wk type="cmp" /><w>yi2</w></wn>  
   <w>chi1</w><t type="p" /> 
   <a type="speech act"> 
    <sa cat="requesting-action" id="u149sa1"> 
     <binding field="speaker" ref="MOT"/> 
     <binding field="addressee" ref="CHI"/> 
     <binding field="forcefulness" value="Normal"/> 
    </sa> 
   </a> 
   <a type="vernacular">你讓阿姨吃</a> 
   <a type="gold standard"> 
    <semantic> 
     <temporal_element left="1" right="2" cat="Permit" id="u149te1"> 
      <binding field="permiter" left="0" right="1" ref="CHI"/> 
      <binding field="permitee" left="2" right="4" ref="INV"/> 
      <binding field="permitted" left="4" right="5" ref="u149ts2"/> 
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     </temporal_element> 
     <temporal_structure left="0" right="5" cat="Ditransitive_Action"  
     profiled="u149te1" id="u149ts1"> 
      <binding field="giver" left="0" right="1" ref="CHI"/> 
      <binding field="recipient" left="2" right="4" ref="INV"/> 
      <binding field="theme" left="4" right="5" ref="u149ts2"/> 
     </temporal_structure> 
      
     <temporal_element left="4" right="5" cat="Eat" id="u149te2"> 
      <binding field="eater" left="2" right="4" ref="INV"/> 
      <binding field="food" ref="peach"/> 
     </temporal_element> 
     <temporal_structure left="2" right="5" cat="Transitive_Action"  
     profiled="u149te2" id="u149ts2"> 
      <binding field="agent" left="2" right="4" ref="INV"/> 
      <binding field="patient" ref="peach"/> 
     </temporal_structure> 
    </semantic> 
   </a> 
  </clause> 
 </u> 
 
 <event cat="Offer" id="offer02"> 
  <binding field="offerer" ref="CHI"/> 
  <binding field="offeree" ref="INV"/> 
  <binding field="offered" ref="peach"/> 
 </event> 
 
 <u who="MOT" id="150"> 
  <clause> 
   <w>ni3</w><w>gei3</w><w>yi2</w><t type="p" /> 
   <a type="vernacular">你給姨</a> 
   <a type="speech act"> 
    <sa cat="requesting-action" id="u150sa1"> 
     <binding field="speaker" ref="MOT"/> 
     <binding field="addressee" ref="CHI"/> 
     <binding field="forcefulness" value="Normal"/> 
    </sa> 
   </a> 
   <a type="gold standard"> 
    <semantic> 
     <temporal_element left="1" right="2" cat="Give" id="u150te1"> 
      <binding field="giver" left="0" right="1" ref="CHI"/> 
      <binding field="recipient" left="2" right="3" ref="INV"/> 
      <binding field="theme" ref="peach"/> 
     </temporal_element> 
     <temporal_structure left="0" right="3"  cat="Ditransitive_Action"  
     profiled="u150te1"> 
      <binding field="giver" left="0" right="1" ref="CHI"/> 
      <binding field="recipient" left="2" right="3" ref="INV"/> 
      <binding field="theme" ref="peach"/> 
     </temporal_structure> 
    </semantic> 
   </a> 
  </clause> 
 </u> 
 
 <event cat="Give" id="give03"> 
  <binding field="giver" ref="CHI"/> 
  <binding field="recipient" ref="INV"/> 
  <binding field="theme" ref="peach"/> 
 </event> 
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 <u who="INV" id="153"> 
  <clause> 
   <wn><w>xie4</w><wk type="cmp" /><w>xie4</w></wn><t type="p" /> 
   <a type="speech act"> 
    <sa cat="answering" id="u153sa1"> 
     <binding field="speaker" ref="INV"/> 
     <binding field="addressee" ref="CHI"/> 
     <binding field="forcefulness" value="Normal"/> 
    </sa> 
   </a> 
   <a type="vernacular">謝謝</a> 
   <a type="gold standard"> 
    <semantic>     
     <temporal_structure cat="None"/> 
    </semantic> 
   </a> 
  </clause> 
 </u> 
 
 
</CHAT> 
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