
Declarative Information Extraction in a Probabilistic

Database System

Daisy Zhe Wang
Eirinaios Chrysovalantis Michelakis
Michael Franklin
Joseph M. Hellerstein
Minos Garofalakis

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2009-120

http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-120.html

August 15, 2009

Copyright 2009, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Declarative Information Extraction in a
Probabilistic Database System

Daisy Zhe Wang∗, Eirinaios Michelakis∗,
Michael J. Franklin∗, Minos Garofalakis†, and Joseph M. Hellerstein∗

∗University of California, Berkeley and †Technical University of Crete

ABSTRACT
Full-text documents represent a large fraction of the world’s data.
Although not structured per se, they often contain snippets of struc-
tured information within them: e.g., names, addresses, and docu-
ment titles. Information Extraction (IE) techniques identify such
structured information in text. In recent years, database research
has pursued IE on two fronts: declarative languages and systems
for managing IE tasks, and IE as an uncertain data source for Proba-
bilistic Databases. It is natural to consider merging these two direc-
tions, but efforts to do so have had to compromise on the statistical
robustness of IE algorithms in order to fit with early Probabilistic
Database models.

In this paper, we bridge the gap between these ideas by imple-
menting a state-of-the-art statistical IE approach – Conditional Ran-
dom Fields (CRFs) – in the setting of Probabilistic Databases that
treat statistical models as first-class data objects. Using standard
relational tables to capture CRF parameters, and inverted-file rep-
resentations of text, we show that the Viterbi algorithm for CRF
inference can be specified declaratively in recursive SQL, in a man-
ner that can both choose likely segmentations, and provide detailed
marginal distributions for label assignment. Given this implemen-
tation, we propose query processing optimizations that effectively
combine probabilistic inference and relational operators such as se-
lections and joins. In an experimental study with two data sets, we
demonstrate the efficiency of our in-database Viterbi implemen-
tation in PostgreSQL relative to an open-source CRF library, and
show the performance benefits of our optimizations.

1 Introduction
The field of database management has traditionally focused on struc-
tured data, leaving unstructured textual data largely in the hands of
other research communities including Information Retrieval, AI,
and Web technologies. Recently, however, there has been signifi-
cant interest across all of these areas in techniques that parse text
and extract structured objects that can be integrated into traditional
databases. This task is known as Information Extraction (IE).

In the database community, work on IE has centered on two ma-
jor architectural themes. First, there has been interest in the de-

Submitted for publication. Version as of 3/20/2009. Contact author: D. Z.
Wang.

sign of declarative languages and systems for the task of IE [21,
24]. Viewing the steps of IE algorithms through the lens of query
languages and query processing, it is possible to cleanly abstract
various IE tasks and their compositions, and improve their perfor-
mance via query optimization techniques. Second, IE has been a
major motivating application for the recent groundswell of work
on Probabilistic Databases (PDBS) [7, 4, 8, 23, 2, 28], which can
model the uncertainty inherent in IE outputs, and enable users to
write declarative queries that reason about that uncertainty.

Given this background, it is natural to consider merging these
two ideas into a single architecture: a unified database system that
enables well-specified IE tasks, and provides a probabilistic frame-
work for querying the outputs of those tasks. This is especially
natural for leading IE approaches like Conditional Random Fields
(CRFs) [17] that are themselves probabilistic machine learning meth-
ods. The query language of the PDBS should be able to capture the
models and methods inherent in these probabilistic IE techniques.

Gupta and Sarawagi recently considered exactly this issue: im-
plementing CRFs in the context of a probabilistic database [14].
However, they used a PDBS model that only supported very limited
forms of tuple- and attribute-level uncertainty, and made strong
independence assumptions across tuples/values. These limitations
enabled them to capture only a coarse approximation of the CRF
distribution model inside the PDBS.

Inspired by that work, in this paper we show how to bridge the
gap between CRF-based IE and probabilistic databases, preserving
the fidelity of the CRF distribution while enabling opportunities
for query optimization. Our technique is based on the following
observations:

1. Relational Representation of Inputs: CRFs can be very nat-
urally modeled as first-class data in a relational database,
in the spirit of recent PDBS like BayesStore [28] and the
work of Sen and Deshpande [23]. Similarly, text data can
be captured relationally via the inverted file representation
commonly used in information retrieval.

2. Declarative Viterbi Inference: Given tabular representations
of CRF model parameters and input text, the central algo-
rithm for CRFs – Viterbi inference [11] – can be elegantly
expressed as a standard recursive SQL query for dynamic
programming.

3. Query Optimization: The relational representations of the
probabilistic model and inference algorithm lead to query op-
timization opportunities, and integrate naturally to populate
the uncertain attributes of a PDBS.

Together, these result in a unified and efficient approach for imple-
menting CRF in a database engine, providing a flexible, principled
foundation for subsequent probabilistic querying. Importantly, our
approach not only correctly performs CRF-based IE on input text, it

Zhe
矩形

also maintains the probability distributions inherent in CRF to en-
able a standard possible worlds semantics for the PDBS. We have
implemented these ideas in the PostgreSQL DBMS, and show per-
formance benefits relative to a standalone open-source Viterbi im-
plementation.

2 Background
This section covers the concept of a probabilistic database, the
declarative information extraction, the CRF model, and the differ-
ent types of inference operations over a CRF model, particularly in
the context of information extraction.

2.1 Probabilistic Databases
A probabilistic database DBpconsists of two key components: (1)
a collection of incomplete relations R with missing or uncertain
data, and (2) a probability distribution F on all possible database
instances, which we call possible worlds, and denote pwd(Dp).
The attributes of an incomplete relation R ∈R include a subset
that are probabilistic attributes Ap, whose values may be present,
missing or uncertain. Each possible database instance is a possible
completion of the missing and uncertain data inR.

There has been significant work recently [7, 4, 8, 23, 2, 28],
proposing different ways to represent the uncertainties in data and
the probability distribution over possible worlds. To represent the
uncertainties in data, some approaches associate the uncertainties
to tuples, while others associate them to values. To represent the
probability distribution over pwd(Dp), some systems use boolean
expressions of probabilistic events, others support statistical or ma-
chine learning models.

2.2 Declarative Information Extraction
Information extraction (IE) has been one of the key driver applica-
tions for probabilistic databases. IE is the task of automatically ex-
tracting and labeling structured entities in unstructured data sources,
such as newswire documents, emails and the Web. The databases
generated from an IE process contain uncertain data, because de-
spite the success of the techniques developed for IE, the accuracy
of the extracted data is inherently imperfect.

More recently, declarative information extraction [21, 24] has
been proposed to build database systems providing a declarative
programming interface and cost-based query optimization for build-
ing IE applications.

In addition to extracting and labeling entities in text, it is highly
desirable for an IE system to provide a probability distribution over
the extracted labels to 1) enable exploration of accuracy-coverage
trade-offs to improve data integrity in database; 2) provide confi-
dence of the extracted data for interactive information extraction;
3) improve the performance of data mining algorithms that use
databases created by IE systems.

2.3 Conditional Random Fields (CRF)
The declarative IE system we build and evaluate is based on a
linear-chain Conditional Random Field (CRF) [17, 26], which is
a state-of-the-art probabilistic model for solving IE tasks. The CRF
model, which is closely related to Hidden Markov Models (HMMs),
has performed well on IE tasks because of its ability to capture ar-
bitrary, overlapping features of the input in a Markov model.

A CRF model represents the probability distribution over sets of
random variables V = X ∪Y, where X is a set of input variables
that we assume are observed and Y is a set of output variables
that we wish to predict. In the context of information extraction,
X is a sequence of tokens in a document, and Y is a sequence of
corresponding labels. We denote an assignment to X by x and to
Y by y.

()

labels

(a)

2181 Shattuck North Berkeley CA USA

tokens

2181 Shattuck North Berkeley CA USA

docID pos token Label

1 0 2181

token prevLabel label score

DIGIT null street num 221 0 2181

1 1 Shattuck

1 2 North

DIGIT null street num 22

DIGIT null street name 5

…

1 3 Berkeley

1 4 CA

Berkeley street street name 10

Berkeley street city 25

1 5 USA

(b)

..

(c)

apt. num street num street name city state country prob

y1 null 2181 Shattuck North Berkeley CA USA 0.6

2 2181 ll Sh k N h B k l CA USA 0 1y2 2181 null Shattuck North Berkeley CA USA 0.1

(d)

Figure 1: (a) Example CRF model for a address string; (b) A
sample of the TOKENTBL table; (c) a sample of the MR table;
(d) two possible segmentations y1, y2.

We now describe a running example which we will use through-
out this paper. The example IE task is called field segmentation, in
which a document is regarded as a sequence of pertinent fields, and
the goal is to tag each token in a document with one of the field
labels. For example, field segmentation can be applied to extract
street address, city, country information from address strings, and
author, paper, journal information from bibliographic citations.

EXAMPLE 1. Figure 1(a) shows a CRF model over an address
string x’2181 Shattuck North Berkeley CA USA’. The possible la-
bels are Y = {apt. num, street num, street name, city, state,
country}. A segmentation y = {y1, ..., yT } is one possible way
to tag each tokens in x into one of the field labels in Y .

The following definition defines the conditional probabilistic dis-
tribution of y given a specific assignment x by the CRF model.

DEFINITION 2.1. Let X, Y be random vectors, Λ = {λk} ∈
RK be a parameter vector, and {fk(yt, yt−1, xt)}Kk=1 be a set of
real-valued feature functions. Then a linear-chain conditional ran-
dom field is a distribution p(y | x) that takes the form:

p(y | x) =
1

Z(x)
exp{

TX
t=1

KX
k=1

λkfk(yt, yt−1, xt)}, (1)

where Z(x) is an instance-specific normalization function

Z(x) =
X
y

exp{
TX
t=1

KX
k=1

λkfk(yt, yt−1, xt)}. (2)

Correlations in the CRF model exist only between neighboring la-
bels (e.g., between yt and yt−1 and between the token xt and its
label yt). Such correlations are represented by the feature functions
{fk(yt, yt−1, xt)}Kk=1. In the context of Example 1, here are two
possible feature functions:

f1(yt, yt−1, xt) = [xt appears in a city list] · [yt = city]

f2(yt, yt−1, xt) = [xt is an integer] · [yt = apt. num]

·[yt−1 = street name]

A CRF model represents the probability distribution over all pos-
sible segmentations Y of a document d. Figure 1(d) shows two

possible segmentations of d and their probabilities, where the prob-
abilities of all possible segmentations should sum up to 1:

P
Y p(y|x) =

1. These possible segmentations are the ”possible worlds” for a
particular document d.

2.4 Inference Queries on CRF Model

There are three main types of inference queries over the CRF model [26]:
(1) top-k inference; (2) constrained top-k inference; and (3) marginal
inference.

2.4.1 Top-k Inference

Top-k inference is the most frequently used type of inference query
over the CRF model. It determines the segmentations with the top-
k highest probabilities given a token sequence x from a document
d.

The Viterbi dynamic programming algorithm [11] is a key im-
plementation technique for top-k inference in IE applications. For
simplicity, we provide the equations to compute the top-1 segmen-
tation. These can be easily extended to compute the top-k. The
dynamic programming algorithm computes a two dimensional V
matrix, where each cell V (i, y) stores the top-1 partial segmenta-
tions ending at position i with label y.

V (i, y) =

8<:
maxy′(V (i− 1, y′)

+
PK
k=1 λkfk(y, y′, xi)), if i > 0

0, if i = −1.
(3)

We can backtrack through the V matrix to recover the top-1 seg-
mentation sequence y∗. The complexity of the Viterbi algorithm is
O(T · |Y |2) where T is the length of the document and |Y | is the
number of labels.

2.4.2 Constrained Top-k Inference

Constrained top-k inference [16] is a special case of top-k infer-
ence. It is used when a subset of the token labels has been provided,
for example via a user interface, or application specific meta-data
(e.g., an email header that deterministically labels tokens). Let s be
the evidence vector s = {s1, ..., sT }, where si stores the label evi-
dence for position i. si = ∅ when there is no evidence for position
i, and si ∈ Y when evidence exists. The constrained top-k infer-
ence can be computed by the Constrained Viterbi algorithm using
the following equation:

V (i, y) =

8<:
maxy′(V (i− 1, y′)

+
PT
t=1

PK
k=1 λkfk(y, y′, xi)), if si = ∅ | y = si

0, if si 6= ∅&y 6= si
(4)

2.4.3 Marginal Inference

A third inference task that is useful in some applications is to com-
pute a marginal probability p(yt, yt+1, ..., yt+k|x) over a single
label or a sub-sequence of labels in a document d. This type of in-
ference is useful for estimating the confidence of one or a set of ex-
tracted fields, so that, for example, the low-confidence extractions
can be highlighted to solicit user feedback [16], to enable users to
explore accuracy-coverage trade-off based on confidence, or to en-
able data mining tools to query over the probability distributions
over data [6].

Queries on the marginals form the strongest motivation for hav-
ing a probabilistic database maintain the full distribution over the
extracted data, rather than just the top-k inference results. In Sec-
tion 4.3, we briefly discuss how to extend the SQL implementa-
tion for the Viterbi algorithm to compute the marginal inference
queries.

3 CRF Models in a Probabilistic Databases
Although IE has been cited as a key driving application for prob-
abilistic database research, to date there has been a gap between
probabilistic IE and PDBSs.

In this section, we describe the design of a probabilistic database
DBp=<R, F> that can support rich probabilistic IE models, such
as CRF by (1) storing documents in an incomplete relation R as
an inverted file with a probabilistic labelp attribute; and (2) storing
the exact probability distribution F over the extraction possibilities
from CRF through a factor table.

3.1 Token Table: The Incomplete Relation
The token table TOKENTBL is an incomplete relation R in DBp,
which stores documents as relations in a database, in a manner akin
to the inverted files commonly used in information retrieval. As
shown in Figure 1(b), each tuple in TOKENTBL records a unique
occurrence of a token, which is identified by the document ID (do-
cID) and the position (pos) the token is taken from. A TOKENTBL
has the following schema:

TOKENTBL (docID, pos, token, labelp)

The TOKENTBL contains one probabilistic attribute – labelp,
which can contain missing values, whose probability distribution
will be computed from the CRF model. The deterministic attributes
of the TOKENTBL are populated by parsing the input documentsD,
with label values marked as missing by default. However, the token
table can also be updated by users, who can provide deterministic
label values for some of the records.

3.2 MR Matrix: A Materialization of the CRF Model
The probability distribution F over all possible extractions is stored
in the MR matrix 1, which is a materialization of the factor tables
in the CRF model for all the tokens in D. More specifically, each
token xt in D is associated with a factor table φ[yt, yt−1 | xt]
in the CRF model, which represents the correlations between the
token xt, the label yt and the previous label yt−1. The factor table
φ[yt, yt−1 | xt] is computed using the weighted sum of the features
activated by the token xt in the CRF model:

φ[yt, yt−1 | xt] =
PK
k=1 λkfk(yt, yt−1, xt).

where the features are real-valued functions, as described in Sec-
tion 2.3. There are two ways to store the MR matrix. The first is
to use the following schema, where {token,label,prevLabel} is the
primary key:

MR (token, label, prevLabel, score)

An example of MR matrix with the above schema is shown in
Figure 1(c) 2. The second way is to store the factor table φ[yt, yt−1 |
xt] for each token xt as an array data type, where the array contains
a set of scores sorted by {prevLabel, label}. This is a more compact
representation, and can lead to better memory locality characteris-
tics. In addition, with the array data type, we do not have to explic-
itly store the values of prevLabel and label, we can simply look up
the score by index. For example, if we want to fetch the score for
prevLabel=5 and label=3, then we look up the (5× |Y |+ 3)th cell
in the array. The MR matrix schema with the array data type is the
following:

MR (token, score ARRAY[])

1The name MR matrix is borrowed from the CRF Java implementa-
tion [22].
2’DIGIT’ in the MR matrix is a generalization of numbers.

3.3 Possible World Semantics
A possible world of this probabilistic database is an assignment
to all the missing values in the probabilistic labelp attribute in the
TOKENTBL. Each possible world also maps to a unique set of seg-
mentations, one for each document in D. The distribution F over
the possible worlds is quantified by the MR matrix, representing
the CRF model. With the TOKENTBL and the MR matrix, we can
fill in the missing labelp values by computing the top-k inference
using Viterbi dynamic programming algorithm. As we discuss in
the next section, Dynamic programming algorithms can be imple-
mented using recursive SQL queries. Moreover, the marginal distri-
bution over the missing values can also be computed by a dynamic
programming algorithm through recursive SQL queries.

4 CRF Inference Queries
Having described the design of a probabilistic database DBp sup-
porting the CRF model, this section describes the recursive SQL
implementation of the Viterbi algorithm over DBp. We compare
the merits of a declarative SQL implementation vs. an imperative
Java implementation of the Viterbi algorithm, and decide on a mid-
dle ground that retains a good deal of the declarativeness of SQL,
but embeds imperative UDF functions for issues where relational
is not a good representation, such as vectors and arrays.

We also describe the SQL implementation of ConstrainedViterbi
for constrained top-k inference queries. Finally, we describe briefly
how to extend the Viterbi SQL implementation to compute marginal
distribution inference.

4.1 Viterbi SQL Implementations
The Viterbi dynamic programming algorithm can be implemented
using recursive SQL queries over the incomplete relation TOKENTBL
and the model representation in the MR matrix. We compare dif-
ferent Viterbi implementations including (1) an existing Java im-
plementation (2) the SQL implementations ViterbiPerDoc, Viter-
biAllDoc with recursive queries and (3) the SQL implementation
ViterbiArray with recursive queries and UDF functions over arrays.

4.1.1 ViterbiPerDoc and ViterbiAllDoc
As stated in Section 2.4.1, the Viterbi algorithm computes the top-k
segmentation using a dynamic programming data structure – the V
matrix. Let us assume that we are computing top-1 segmentation
for simplicity. Each cell in V (i, y) stores the score and the path of
the top-1 partial segmentation up until position i ending with label
y. The V matrix at position 0 is initialized from the MR matrix:
V (0, y) = φ[y,−1|x0], where −1 denotes that the previous la-
bel is NULL. The V matrix at position i > 0 is recursively defined
from the V matrix at position i − 1, by picking the partial seg-
mentation with maximum score: V (i, y) = maxy′{V (i− 1, y′) +
φ[y, y′|xi]}. The next example illustrates the score and the path of
the top-1 segmentations stored in the V matrix.

EXAMPLE 2. We use the address of ”Jupiter”, a popular jazz
bar in downtown Berkeley, ”2181 Shattuck Ave. Berkeley CA USA”
as an example. Figure 3(a) shows the V matrix computed by the
Viterbi algorithm. The first row contains the possible labels and the
first column contains the string positions from 0 to 5. The scores
are shown in the cells of the V matrix; the path of the top-1 partial
segmentations are shown as the edges. For example, the partial
segmentation in V(3,’city’) consists of three edges V(0,’street num’)
→ V(1,’street name’), V(1,’street name’)→ V(2,’street name’), and
V(2,’street name’)→ V(3,’city’).

The top-1 segmentation of the document can be computed by
following the path from the cell in the V matrix with the maxi-
mum score. In this example the path is high-lighted: {V(0,’street

1 CREATE FUNCTION ViterbiPerDoc (int) RETURN VOID AS
2 $$

3 -- compute the top-1 path from V
4 INSERT INTO Ptop1
5 WITH RECURSIVE P(pos,segID,label,prevLabel,score) AS (
6 SELECT * FROM Vtop1 ORDER BY score DESC LIMIT 1
7 UNION ALL
8 SELECT V.* FROM Vtop1 V, P
9 WHERE V.pos = P.pos-1 AND V.label = P.prevLabel
10),

11 -- compute the V matrix from mr and tokenTbl
12 Vtop1 AS(
13 WITH RECURSIVE V(pos,segID,label,prevLabel,score) AS (

14 -- compute V(0,y) from mr and tokenTbl
15 SELECT st.pos, st.segID, mr.label, mr.prevLabel, mr.score
16 FROM tokenTbl st, mr
17 WHERE st.docID=$1 AND st.pos=0 AND mr.segID=st.segID
18 AND mr.prevLabel=-1
19 UNION ALL

20 -- compute V(i,y) from V(i-1,y), mr and tokenTbl
21 SELECT start_pos, seg_id, label, prev_label, score
22 FROM (
23 SELECT pos, segID, label, prevLabel, score, RANK()
24 OVER (PARTITION BY pos,label ORDER BY score DESC) AS r
25 FROM (
26 SELECT st.pos, st.segID, mr.label, mr.prev_label,
27 (mr.score+v.score) as score
28 FROM tokenTbl st, V, mr
29 WHERE st.docID=$1 AND st.pos = v.pos+1
30 AND mr.segID=st.segID AND mr.prevLabel=v.label
31) as A
32) as B WHERE r=1
33)SELECT * FROM V)

34 SELECT $1 as docID, pos, segID, label FROM Ptop1
35 $$
36 LANGUAGE SQL;

Figure 2: ViterbiPerDoc UDF function takes in one docID at a
time and computes the top-1 segmentation.

num’)→ V(1,’street name’)→ V(2,’street name’)→ V(3,’city’)→
V(4,’state’)→ V(5,’country’)}.

The basic SQL implementation of any dynamic programming
algorithm involves recursion and window aggregation. In the Vi-
terbi algorithm, the window aggregation is the group by followed
by sort and top-1. In Figure 2, we show the SQL implementation
for the ViterbiPerDoc algorithm in a UDF function. This algorithm
processes one docID at a time.

Lines 11 – 33 compute the V matrix in the Viterbi algorithm.
Lines 14 – 18 initialize the V matrix at position 0 for all labels.
Lines 26 – 30 compute all possible partial segmentations up until
position i by joining the portion of the V matrix at position i − 1:
V (i − 1) and the portion of MR table for the token at position i:
MR(xi) on condition V (i−1).label = MR(xi).prevLabel. The
rest of the logic in lines 20 – 33 computes the top-1 partial segmen-
tation V (i, yi) among all the partial segmentations up until position
i with the same yi value, using the rank() (for computing top-1)
function with partition by (group by) and order by (sort).

After the V matrix is computed, lines 3 – 10 reconstruct the top-1
segmentation for a document, by backtracking from the maximum
score in the V matrix. Line 6 picks the cell in the V matrix with
the maximum score, and lines 8,9 recursively trace back the top-1
segmentation.

The mode of computation for ViterbiPerDoc is to execute the in-
ference for one document at a time. An alternative is to compute
the top-k inference for all documents inD at the same time. We call
this the ViterbiAllDoc algorithm. ViterbiPerDoc might incur more

pos street
num

street
name

city state country pos street
num

street
name

city state country

0 5 1 0 1 1

1 2 15 7 8 7

0 5 1 0 1 1

1 2 15 7 8 7

2 12 24 21 18 17

3 21 32 32 30 26

4 29 40 38 42 35

2 XXX XXX XXX XXX

3 21 32 32 28 26

4 XXX XXX XXX XXX4 29 40 38 42 35

5 39 47 46 46 50

4 XXX XXX XXX XXX

5 36 42 40 43 50

(a) (b)(a) (b)

Figure 3: Illustration of the computation of V matrix in the fol-
lowing algorithms: (a) ViterbiPerDoc; (b) ConstrainedViterbi

1 SELECT st.pos, st.segID,
2 top1_array(v.score, mr.score) as score
3 FROM tokenTbl st, V, mr
4 WHERE st.docID=$1 AND st.pos = v.pos+1
5 AND mr.segID=st.segID

TOP1-ARRAY (int[2][]arrayV, int[]arrayMR)
1 size1 = length of dimension 2 of arrayV;
2 size2 = length of dimension 1 of arrayMR;
3 result = new int[2][size1];
4
5 // compute the top1 for each label over the join result
6 // of arrayV and arrayMR on V.label=MR.prevLabel
7 // arrayMR is ordered by (prevLabel,label)
8 for i = 0; i < size2; i++ do
9 // prevLabel and label in arrayMR
10 k = i/size1; kr = i%size1;
11 newscore = arrayV [0][k] + arrayMR[i];
12
13 if k == 0 ‖ newscore > result[0][kr] then
14 result[0][kr] = newscore;
15 // record the prevLabel for the top1 for label kr
16 result[1][kr] = k;
17 endif endfor
18 return result

Figure 4: ViterbiArray modification in ViterbiPerDoc and the
algorithm for UDF function top1-array.

overhead for initializing and tearing down the queries for each doc-
ument inference; while ViterbiAllDoc might suffer from generating
large intermediate table, which cannot be indexed.

The most important change for ViterbiAllDoc from ViterbiPer-
Doc is omitting the docID= $1 predicate on Lines 17 and 29. In
this case, the V matrix becomes three dimensional with docID, po-
sition and label.

4.1.2 ViterbiArray

The ViterbiArray algorithm is an optimization of the ViterbiPer-
Doc algorithm, which uses the second schema of the MR matrix
from Section 3.2, and takes advantage of the array data type. As
described in Section 3.2, each token xt in the MR matrix is asso-
ciated with a one dimensional score array of length |Y | × |Y |.
The score array for a specific token xt contains values in the fac-
tor table φ[yt, yt−1 | xt], sorted by prevLabel yt=1 and label yt.
Correspondingly, the score in the V matrix for a specific position
i is also stored as an array of 〈score, prevLabel〉 pairs with length
|Y |, where prevLabel is used for backtracking the top-1 segmenta-
tion.

The ViterbiArray algorithm has similar dynamic programming
structure to that of the ViterbiPerDoc algorithm, except that it uses
special UDF functions over arrays. Figure 4 shows the SQL state-
ments that replace Line 21 – 32 of ViterbiPerDoc. As we can see,
the UDF function TOP1-ARRAY(V (i− 1),MR(xi)) in Line 2, re-

1 startTok as (
2 -- all tokens without a label which is
3 -- preceded by a token with evidence on label
4 SELECT S1.pos, S1.segID, S1.label, S2.label as prevLabel
5 FROM tokenTbl S1,
6 (
7 SELECT * FROM tokenTbl
8 WHERE docID=$1 and label is not NULL
9) as S2
10 WHERE S1.docID=$1 and S1.pos=S2.pos+1 and S1.label is NULL
11 UNION ALL
12
13 -- unlabeled starting token of the document
14 SELECT pos, segID, label, -1 as prevLabel
15 FROM tokenTbl
16 WHERE docID=$1 and pos=0 and label is NULL
17),
18 endPos as (
19 -- all tokens with label evidence which is
20 -- preceded by a token without evidence on label
21 SELECT S2.pos
22 FROM tokenTbl S1,
23 (
24 SELECT * FROM tokenTbl
25 WHERE docID=$1 and label is not NULL
26) as S2
27 WHERE S1.docID=$1 and S1.pos=S2.pos-1 and S1.label is NULL
28 UNION ALL
29
30 -- unlabeled ending token of the document
31 SELECT pos FROM (
32 SELECT * FROM tokenTbl WHERE docID=$1
33 ORDER BY pos DESC LIMIT 1
34) as A WHERE label is NULL
35)

Figure 5: Computing sub-sequences of a document separated
by evidence in ConstrainedViterbi algorithm.
places the join between array V (i − 1) and array MR(xi) with
condition V (i− 1).label = MR(xi).prevLabel, and the window
aggregation (group-by, sort and top-1 operations) over the result of
the join.

Figure 4 also shows the algorithm for the function TOP1-ARRAY,
which takes in two arrays: the first is two dimensional arrayV
V (i − 1) and the second is one dimensional arrayMR MR(xi).
arrayV is a 2 by |Y | array, and arrayMR is a |Y | × |Y | array.
Lines 10 – 11, join arrayV and arrayMR and compute the new
scores for the join result tuples. Line 13 – 17 compute the top-1
〈score, prevLabel〉 pair for each label yi. The function returns a
new arrayV V (i).

The TOP1-ARRAY function in ViterbiArray is much faster than
the combination of the join and the window aggregation operations
in ViterbiPerDoc for the following reasons:

• the join on V (i − 1).label = MR(xi).prevLabel is re-
placed by index computation between two arrays V (i−1).score
and MR(xi).score;

• the scores in the MR matrix are compactly represented as an
array, and the label and prevLabel values are encoded as the
array index in ViterbiArray, rather than explicitly stored in
ViterbiPerDoc, which greatly improves the memory locality
characteristics;

• the computation of the top-1 partial segmentation for each la-
bel yi in ViterbiPerDoc is implemented by group by, sort and
top-1, whereas in the TOP1-ARRAY function in ViterbiArray,
the group by is replaced by index computation, the sort and
the top-1 are replaced by the maintanance of a priority queue.

4.2 Constrained Top-k Inference
A constrained Viterbi algorithm prunes the paths that cannot satisfy
the given constraints [16]. One way to do this is to check if the

constraints are satisfied for every step of the path while the path
is being generated, and if they are not, the reminder of the path is
pruned. The constraints are experessed as values (“evidence”) for
one or more labels in the CRF sequence model. As such, the label
constraints not only improve the performance (through pruning),
but also increase the accuracy of the inference. This design follows
a ”pay-as-you-go” approach [15] in which the system exploits user-
provided evidence to improve its performance and accuracy.

Evidence for a label partitions the CRF sequence model into two
conditionally independent sub-sequences: one that starts from the
beginning of the CRF sequence model up until (but not includ-
ing) the label with evidence, and the other from the label with evi-
dence until the end of the model. Similarly, multiple label evidence
partitions the CRF sequence model into multiple sub-sequences,
each separated by one or more labels with evidence. The pro-
cess of checking a constraint involves identifying the required sub-
sequence pattern (expressed as starting and ending positions for
each sub-sequence) and performing the top-k inference over them.
We can further reduce the overhead of constraint checking by ma-
terializing the sub-sequence pattern and letting the database prune
paths that do not satisfy the pattern.

Figure 5 shows the SQL to compute the start and end positions
of the sub-sequences defined by the evidence in each document.
Start tokens (startTok) of the sub-sequences include the starting
token of the document (unless the start token has label evidence)
(Lines 13 – 16), and tokens with no label evidence that are pre-
ceeded by a token which has label evidence (Lines 2 – 10). End
tokens (endPos) of the sub-sequences include the ending token of
the document (unless the end token has label evidence) (Lines 30 –
34), and the tokens with label evidence that are preceded by a token
without label evidence (Lines 19 – 27).

EXAMPLE 3. Consider the example TOKENTBL in Figure 3(b)
with label evidence for tokens at position 2 and 4. Thus, we can
cross out all the cells in V (3) where y 6= ’street name’ and in V (5)
where y 6= ’city’ as shown in Figure 3(b). The start tokens of the
sub-sequences are tokens at positions 0, 3 and 5. The end posi-
tions of the sub-sequences are positions 2, 4 and 5. As we can see
by counting the edges in Figures 3(a) and (b), we are effectively
computing far fewer paths in ConstrainedViterbi than in the Viter-
biPerDoc algorithm.

Thus, with an increasing number of evidence labels, not only
does the performance of inference improve, but so does the accu-
racy.

4.3 Marginal Inference
The marginal inference computes the marginal distribution over
missing labelp values in TOKENTBL. Suppose we want to com-
pute the marginal inference of the label yt of a single token xt in
x. We first need to compute a forward variable αt and a backward
variable βt, each of which is a vector of size |Y |. The forward and
backward variables are defined as:

αt(yt) =
X

yt−1∈Y

ft(yt, yt−1, xt) · αt−1(yt−1), (5)

βt(yt) =
X

yt+1∈Y

ft+1(yt+1, yt, xt+1) · βt+1(yt+1). (6)

with initialization α0(y0) = f1(y0,−1, x0) and βT (yT) = 1. As
we can see that the αt and βt can be computed by similar recursive
query as the SQL implementation of Viterbi. The difference is that
the scores are multiplied instead of summed and the aggregation is
summation instead of top-k.

6

8

10

12

Pe
r
D
oc
 (m

se
c)

ViterbiAllDoc

Vi biP D

0

2

4

1k 2k 5k 10k 20k 50k 100k 200k

In
fe
re
nc
e
Ti
m
e

Number of Documents

ViterbiPerDoc

Java

ViterbiArray

Figure 6: Average inference time (msec) for a single document
for different implementations of the Viterbi algorithm.

dataset ViterbiAllDoc ViterbiPerDoc ViterbiArray Javadataset ViterbiAllDoc ViterbiPerDoc ViterbiArray Java

address 10.5 msec 3.2 msec 0.8 msec 0.5 msec

bib 1760.1 msec 175.1 msec 6.2 msec 16.2 msec

token ‘dr’ ‘rd’ ‘st’ ‘usa’

selectivity 5.2% 15.1% 30.9% 93.0%

Sel+Viterbi 3999 11149 20134 60324

Sel+Java 6316 11988 10078 51785

Sel+Constr
antViterbi

2652 7355 51785 38908
a t te b

Figure 7: Average inference time per document (msec) for dif-
ferent Viterbi implementations on address and bib dataset.

With the result of the αt and βt values, the marginal distribution
of P (yt | x) can be computed as:

P (yt | x) ∝ αt(yt) · βt(yt) (7)

4.4 Experimental Results
We implemented a probabilistic database supporting the CRF model,
inference and relational queries over Postgres8.4 development ver-
sion. The reason we use the development version is that it sup-
ports recursive queries. The Java implementation of the CRF model
learning and inference is from the CRF open source project [22].
We conducted our experiments on a 2.4 GHz Intel Pentium 4 Linux
system with 1GB RAM. All experiments are run 3 times and take
the average running time.

We use two datasets in the evaluation. The first dataset is a set of
over 200, 000 address strings we extracted from the yellow book.
The average number of tokens in the address strings is 6.8, and 8
labels are used to tag this dataset. The second dataset is a set of
more than 18, 000 bibliography entries prepared by R.H. Thoma-
son [27]. The average number of tokens in the bibliography strings
is 37.8, and 27 labels are used to tag this dataset.

We ran the three top-k inference implementations in SQL: Viter-
biAllDoc, ViterbiPerDoc and ViterbiArray, and the Java implemen-
tation on the address dataset. Figure 6 shows the average inference
time per document (IPD) in msec for different Viterbi implemen-
tations with respect to the increasing number of documents on the
x-axis, from 1k to 200k.

The results show that basic SQL implementations of the Viterbi
dynamic programming algorithm (ViterbiAllDoc and ViterbiPer-
Doc) are 6 to 20 times more expensive than the hand-tuned Java
implementation. On the other hand, the use of the array data type in
ViterbiArray improves the memory characteristics of the program.
It demonstrates comparable performance to the Java implementa-
tion. The average IPD is 0.57 msec for Java, and 0.81 for Viter-
biArray. The graph also shows that the ViterbiPerDoc, ViterbiAr-
ray and Java implementations are scalable with the number of doc-
uments; while the ViterbiAllDoc implementation is not, because it
process all the documents at the same time, thus generating larger
intermediate tables as more documents are processed.

We also ran the Viterbi implementations over the bib dataset.
Figure 7 compares the IPD numbers in this case. The ViterbiAll-
Doc and ViterbiPerdoc implementations performs worse on the bib
dataset, which has longer documents and more labels. This is again
because of their poor memory locality characteristics. Note that
the ViterbiArray implementation is more efficient than the Java im-
plementation on the bib dataset. There are two main reasons for
this: (1) ViterbiArray uses the materialized MR matrix, which in
contrast, needs to be computed on the fly in Java; and (2) the Viter-
biArray implementation uses an efficient join between two arrays
and has good memory locality characteristics, which is especially
evident with a large number of labels.

5 Selection and Top-k Inference
So far we have described a probabilistic database DBp that sup-
ports CRF model storage and Viterbi inference queries, achieving
competitive performance results compared to the inference engine
in the Java CRF package. This efficient in-database CRF mod-
eling and inference opens up opportunities to multiplex inference
queries with relational operators, and opportunities for optimizing
such queries. Eventually, the database optimizer should be taught
to optimize such queries based on cost.

In this section, we explore queries that combine top-k inference
with selection. To optimize such queries, we would like to push
down the selection conditions into the top-k inference algorithm.
However, such an optimization is complicated by the fact that the
Viterbi algorithm is recursive. We discuss three types of selection
conditions: 1) condition on token text; 2) condition on token posi-
tion/text and label; 3) condition on token label.

5.1 Condition on Token Text
The first type of selection condition is one on the token text. For
example, the following query:

SELECT *

FROM (SELECT docID,pos,token,top-1(label) (I)

FROM TokenTbl)

WHERE token=’York’

returns all occurrences of the ’York’ token in D, and their labels in
the top-1 segmentation as computed by the Viterbi algorithm.

First, instead of computing the top-1 inference for all documents
in D, we only need to compute inference on the documents that
contain ’York’. In the Java implementation, such a selection can
be performed either by scanning through all the documents, or by
building an additional inverted index over D. In the SQL imple-
mentations, since all tokens in D are stored in TOKENTBL, we can
perform this selection directly over the TOKENTBL efficiently.

Second, if label evidence exists for some tokens in D, instead
of computing the top-1 segmentation for each document selected
from the first step, we can compute the top-1 inference only on
the one sub-sequence of each document that contains the desired
token (e.g., ’York’). Given label evidence, the computation of sub-
sequences in a document d is described in Section 4.2. If the de-
sired token already has label evidence, then top-k inference is not
necessary.

EXAMPLE 4. Suppose the document in Figure 3(b) contains the
word ’York’ in position 2. Because of the conditional independence
properties of the CRF model, the sub-sequence with position [1, 2]
is conditionally independent of the rest of the document given evi-
dence on position 3. Thus, in order to compute the label for ’York’
in the top-1 segmentation, we only need to compute the inference
over the sub-sequence [1, 2] conditioned on the evidence in position
3.

80000
90000

se
c)

60000
70000

Ti
m
e
(m

30000
40000
50000

nn
in
g
T

Sel+ViterbiArray

10000
20000
30000

ue
ry
 R
u

Sel+Java

Sel+ConstrainedViterbi
0Q

u Sel+ConstrainedViterbi

Figure 8: Total top-1 inference time (msec) for 100,000 ad-
dress strings with selection condition on token text with differ-
ent selectivities(x-axis).

Figure 8 compares the running time of the query (I) for the three
different implementations: Java, ViterbiArray, and Constrained-
Viterbi. The first implementation is in Java, where each document
inD is scanned and the inference is computed only on those which
contain the token x in the selection condition. For ViterbiArray, the
inference is performed over documents containing the token x after
applying the selection condition on the TOKENTBL. Neither Java
nor ViterbiArray use evidence on labelp. Finally, the Constrained-
Viterbi is performed only over the sub-sequences of the document
containing x. For ConstrainedViterbi we assume that 10% of the
labels have evidence.

The experiment is run over 100, 000 address strings in the ad-
dress dataset, with different tokens in the selection condition. Dif-
ferent token conditions have different selectivities, which are listed
next to the tokens on the x-axis. For example, the token ’wash-
ington’ occurred in 0.9% of the documents in D. As we can see
in Figure 8, with high selectivity the SQL implementations out-
perform the Java implementation, because SQL uses the index on
the tokens. Because the inference using ViterbiArray is, on aver-
age, 1.5 times slower than Java, as the selectivity becomes lower,
the benefit of indexing reduces and Java performs better than the
ViterbiArray. The ConstrainedViterbi always performs better than
the other two, because of the presence of the 10% label evidence.
The label evidence reduces the inference computation from a full
document to a sub-sequence of a document.

5.2 Condition on Position and Label
The second type of condition is one on both the position and the
label attribute. One practical application for such queries is when
different types of strings are mixed together in one corpus, and by
selecting on the label of the first token of the string, we try to pick
out all the strings belonging to one type. For example, an address
string corpus includes both residential addresses and business PO
box addresses. By selecting all the documents with ’P.O. Box’ as
the label of the first token, we can pick out all the business PO box
addresses. This is performed by the following query:

SELECT docID

FROM (SELECT docID,pos,token,top-1(label) (II)

FROM TokenTbl)

WHERE label=’P.O. Box’ and pos=0

Unlike a condition on token text, a condition on label is not se-
lective, because most label values in TOKENTBL are missing, and

we have to inference over all the missing labels. A naive way to
compute this type of query is to first compute the top-k inference
for each document, then check if the selection condition is satisfied.

One possible optimization is to push down the selection condi-
tion on a {position,label} pair (e.g. {0,’P.O. Box’}) into the Vi-
terbi algorithm, to make the computation of top-k inference with
this type of selection conditions more efficient. In this section, we
first describe such a selection-aware Viterbi algorithm – SelViterbi.
Then we describe a generalized selection-aware top-k inference al-
gorithm.

5.2.1 Selection-Aware Viterbi
Suppose that the selection condition is {pos= i,label= y′}: i.e.,
the label of token at position i is y′ in the top-1 segmentation of a
returned document. In terms of the Viterbi dynamic programming
algorithm, this condition is satisfied if and only if one of the top-1
segmentation paths traces back to cell V (i, y′) in the V matrix.

The intuition behind the selection-aware Viterbi algorithm is that,
for a document d, if none of the top-1 partial segmentations in V (j)
traces back to cell V (i, y′), then we can conclude that this docu-
ment does not satisfy the condition {i, y′}. We call position j a
pruning position for condition {i, y′} in document d. A pruning
position for condition {i, y′} in a document d is the smallest po-
sition in d, where for all possible labels y, there does not exist a
partial top-1 segmentation in V (j) that traces back to cell V (i, y′).

EXAMPLE 5. In Figure 3(a), position 1 is the pruning position
for condition (0, ’street name’), (0, ’city’), (0, ’state’), (0, ’coun-
try’), but not for (0, ’street num’). There happens to be no pruning
position for (0,’street num’) in this example because the top-1 seg-
mentation has label ’street num’ for position 0.

Given the definition of a pruning position, now we describe the
algorithm and data structure to efficiently check for a pruning posi-
tion for condition {i, y′} during the Viterbi dynamic programming
algorithm, and stop the inference early if the pruning position j is
found.

The SQL statements in Figure 9 show how the recursive part of
the Viterbi algorithm to compute the V matrix is modified in the
SelViterbi algorithm. The new array filter is a one dimensional
array with size |Y |. At a particular iteration j of the recursive query,
the cell filter[y] stores the information whether V (j, y) traces
back to V (i, y′) or not. In other words, if filter[y]=1 then the
partial top-1 segmentation in V (j, y) satisfies the condition {i, y′};
otherwise the partial segmentation does not have label y′ at position
i. The recursion stops when the filter array becomes a zero array
and pos > i, which means that none of the partial segmentations at
position j satisfy the condition {i, y′}.

The filter array is initialized and updated by the UDF function
SEL-ARRAY, shown in Figure 9. Lines 5 – 8 initialize the filter, as-
signing 1 to the y′th cell in the filter array in ith iteration. Lines
9 – 16 update the filter, assigning 1 to the yth cell of the newFilter,
if the prevLabel in arrayV[y] is marked 1 in the old filter array.
The code assigns 0 to the yth cell of the newFilter, if the prevLabel
in arrayV[y] is −1 (i.e. starting of the document) or is marked 0 in
the old filter array.

EXAMPLE 6. Using the example in Figure 3, suppose we have
the condition {1,’street num’}: return all documents with ’street
number’ as the label of the second token in the top-1 segmentation.
The filter value of the first iteration is [0, 0, 0, 0, 0]. In the second
iteration, the cell in the newFilter corresponding to ’street number’,
is initialized to 1. Thus the filter value at the end of the second iter-
ation is [1, 0, 0, 0, 0]. In the third iteration, there is no label y with

1 SELECT st.pos, st.segID,
2 topk_array(v.score, mr.score) as score,
3 sel_arry(i,y’,v.filter,v.score,v.pos) as filter
4 FROM tokenTbl st, V, mr
5 WHERE st.docID=$1 AND st.pos = v.pos+1 AND
6 mr.segID=st.segID AND (pos<=i or nonzero(v.filter))

SEL-ARRAY (i, y′, int[]filter, int[2][]arrayV, pos)
1 size1 = length of filter array;
2 size2 = length of dimension 2 of arrayV;
3 newFilter = new int[size1];
4
5 //initialize the filter array
6 if pos == i then
7 newFilter[y′] = 1;
8 endif
9 // update the filter array
10 for i = 0; i < size2; i++ do
11 // get the previous label
12 prevLabel = arrayV [1][i];
13 if prevLabel == −1‖filter[prevLabel]! = 1 then
14 newFilter[i] = 0;
15 else newFilter[i] = 1;
16 endif
17 endfor
18 return newFilter

Figure 9: The SelViterbi algorithm uses the sel-array to initial-
ize and update the filter array. A pruning position j > i is
found when the filter array contains all zeros.

30000
40000
50000
60000
70000
80000
90000

ni
ng

 T
im

e
(m

se
c)

Viterbi+Sel

SelViterbi

0
10000
20000

To
ta

l R
un

n

Figure 10: Total top-1 inference time (msec) for 100,000 ad-
dress strings with selection condition on label (x-axis) at posi-
tion 0.

prevLabel ’street num’, no cell in the newFilter is assigned 1. The
value of the filter at the end of the third iteration is [0, 0, 0, 0, 0].
Thus, we can stop the dynamic programming algorithm and con-
clude that the document does not satisfy the condition.

The SelViterbi algorithm can be used for conditions on any (posi-
tion, label) pair. However, because the Viterbi algorithm computes
the top-k segmentation from the start to the end of a document, the
early stopping optimization is most effective for conditions with
small positions.

Figure 10 shows the running time to compute query (II) with
two different SQL implementations: Viterbi+Sel and SelViterbi.
Viterbi+Sel computes top-k segmentations using ViterbiArray first,
then performs the selection on top of the result. The query (II)
is first run over 100,000 address strings in address dataset, with
condition on position 0 with different labels. Each label condition
has different selectivities at position 0, which are marked on the
x-axis. As we can see, ’street num’ appears as the first label in
92.1% of the address strings. With such low selectivity, SelViterbi

80000
100000
120000
140000

m
e

(m
se

c)

20000
40000
60000
80000

al
 R

un
ni

ng
 T

im

Viterbi+Sel

SelViterbi

0
author

(92.5%)
title

(1.2%)
booktitle

(0%)
publisher

(6%)

To
ta

Figure 11: Total top-1 inference time (msec) for 18,000 bib-
liography entries with selection condition on label (x-axis) at
position 0.

still performs slightly better than Viterbi+Sel, which shows that the
overhead of checking the pruning position is quite low. For all
other label conditions, the SelViterbi performs 2 to 3 times better
than Viterbi+Sel.

We conduct the same experiment on the bib dataset with 18,000
bib entries. Figure 11 shows that with longer documents, SelViterbi
achieves better speedup because of the early stopping optimization.
For the condition of label ’title’ at position 0, SelViterbi has more
than 10 times speedup compared to Viterbi+Sel.

5.2.2 Generalized Selection Aware Top-k Inference

As we have mentioned, SelViterbi is most efficient with conditions
on one of the starting positions and its label. On the other hand, the
Viterbi algorithm can be rewritten to compute the top-k segmenta-
tion from the end to the start of a document:

V (i, y) =

8<:
maxy′(V (i+ 1, y′)

+
PK
k=1 λkfk(y′, y, xi+1)), if −1 6 i < T

0, if i = T.
(8)

where the pruning position optimization is most effective for con-
dition on one of the last few positions.

Furthermore, the dynamic programming algorithm to compute
the top-k segmentations for a document can be redefined to start
from any position p0 in the document. Unlike the Viterbi algorithm,
this variant of the dynamic programming algorithm expands the
intermediate result of the partial segmentations in two directions,
rather than just one direction: left to right in Viterbi.

To implement this algorithm, we define a new V matrix which
contains four dimensions:
V (i, y1, j, y2), where each cell contains the top-k partial segmen-
tation between position i and position j, where y1 is assigned to
position i and y2 is assigned to position j.

V (i, y1, j, y2) =

8>>>><>>>>:
maxy1′,y2′(V (i+ 1, y1′, j − 1, y2′)

+
PK
k=1 λkfk(y1, y1′, xi)

+
PK
k=1 λkfk(y2′, y2, yi+1)),

if − 1 6 i < j 6 T
0, ifi = j = p0

(9)

In order to take advantage of the constraint placed by the selection
condition, the starting position p0 of the inference algorithm should
be from the position in the selection condition. With multiple se-
lection conditions, the algorithm should start at the position where
the condition is the most restrictive.

Based on the position in the selection condition, an optimizer
should decide whether to use SelViterbi, the backward SelViterbi
in Formula 8, or the generalized selection aware top-k algorithm in

Formula 9.

5.3 Condition on Label
The last type of selection condition is one on the label only, in other
words, to pick out all the tokens with a particular label in the top-1
segmentations of the documents in D. Since the label can appear
anywhere in any document in D, in most cases, the most efficient
query plan for such queries is to compute the top-k inference first
and then apply the condition on the result.

However, for highly selective label conditions, if we have a sim-
ple classifier, which can pick out the strings with the label with high
recall and high selectivity, then we can first apply the classifier to
filter out most of the document that does not contain the label, and
then apply the CRF model to improve the precision of the inference
result. The simple classifiers can be string based (e.g. matching of
a regular expression or a small dictionary). We note that unlike the
rest of our discussion above, the idea here is a heuristic – it may be
of use in practice, but it may sacrifice fidelity with respect to a full
Viterbi computation.

For example, to perform data cleaning or data visualization, we
need to select all addresses with a certain type of road (e.g. ’rue’,
’boulevard’, ’lane’).

SELECT docID, pos, token

FROM (SELECT docID,pos,token,top-1(label) (III)

FROM TokenTbl)

WHERE label=’Boulevard’

For the above query, we can use a dictionary classifier to pick
out documents that contain ’blvd’ or ’boulevard’ or ’blvd.’. Then
we can apply the Viterbi algorithm over the resulting documents,
and finally applying the selection condition on the inference re-
sults. For example, if 5% of the address strings in the corpus D are
on a boulevard, then we can achieve 20 times speedup. However,
we may lose some strings that contain the ’boulevard’ label that do
not contain any word in the dictionary. Such a query plan is es-
pecially useful for queries that can trade-off recall for performance
improvement.

6 Join with Top-K inference
In this section, we consider how to compute and optimize queries
with both top-k inference and join operators. There are two general
techniques for optimizing such queries: pushing down join condi-
tions into top-k inference and conditional evaluation. We discuss
three types of join queries: (1) self-join over the same model, (2)
join between two models over the same document, and (3) join be-
tween two models over two different document corpus.

6.1 Self-Join over Single Model
The first type of join is a self-join over the same TOKENTBL and
CRF model, to pick out all the documents in D whose top-1 seg-
mentation y matches a particular ”follow by” pattern. Such queries
are very useful for debugging purposes. For example, in most ad-
dress strings, a street address should not be followed by a street
number, but an apartment number. Thus, for data cleaning, the
developer may want to find all the documents, whose top-1 seg-
mentation starts with a ’street name’ label and followed by a ’street
num’ label with at most 2 tokens separation.

Let us generalize this query to a join query between the token
at position i with label label1 and a token with label label2 at a
position > i, with a follow-by join condition �n, where N is the
maximum token distance between the two base tokens.

σ<i,label1>(top1(TOKENTBL, CRF1)) ./�n

σ<label2>(top1(TOKENTBL, CRF1)) (IV)

dataset ViterbiAllDoc ViterbiPerDoc ViterbiArray Javadataset ViterbiAllDoc ViterbiPerDoc ViterbiArray Java

address 10.5 msec 3.2 msec 0.8 msec 0.5 msec

bib 1760.1 msec 175.1 msec 6.2 msec 16.2 msec

label1 Y‐label2

Y‐label2

label2

state0 state1 state2 –
t t (+1)

state(2+n)
state(n+1)

(Y‐label2) and state(n+1)

Figure 12: The simple state machine for matching the follow by
join condition {i, label1, n, label2}.

The naive way of computing this query is to compute the top-1
segmentation of all the documents in D, and perform the join on
top of the inference results. One possible optimization, as in the
case of SelViterbi, is to push the ’follow by’ join condition into the
Viterbi algorithm. We call this algorithm JoinViterbi.

A ’follow by’ join condition can be described by four parame-
ters: {i, label1, n, label2}, where in the top-1 segmentation y * of
a document d, the token at position i has label1, which is followed
by maximum n tokens with labels in Y except label2, and in the
end a token with label2. The condition can be satisfied if and only
if the top-1 segmentation y * contains the following pattern starts at
position i: (label1)(Y-label2){0, n}(label2). The pattern represents
exactly the ’follow by’ condition {i, label1, n, label2}.

The intuition behind the JoinViterbi algorithm is that for a doc-
ument d at position j, if none of the top-1 partial segmentations in
V (j) is either currently matching or has matched the ’follow by’
pattern, then we can conclude that this document does not satisfy
the join condition {i, label1, n, label2}. We call position j a prun-
ing position for {i, label1, n, label2}, with a similar definition to
the pruning position in SelViterbi. A pruning position for a ’follow
by’ condition {i, label1, n, label2} in a document d, is the smallest
position in d, where for all possible labels y ∈ Y , there does not
exist a partial top-1 segmentation in V (j), which either matches
the join condition pattern, or is currently matching the pattern.

EXAMPLE 7. In Figure 3(a), position 1 is the pruning position
for condition (0,’street name’,0,’street num’), because no partial
segmentation at position 1 trace back to V(0,’street name’). Position
3 is the pruning position for join condition (0,’street num’,1,’city’),
because all partial segmentations at position 3 fails the matching
of the join pattern.

Next we describe the JOIN-ARRAY function, which is used in the
JoinViterbi algorithm to detect the pruning position and to trigger
early stopping the Viterbi dynamic programming algorithm.

In the JOIN-ARRAY algorithm, we still use a filter array with
length |Y |, with each cell representing a label in Y . The value
in each cell of the filter array, stores the state in matching the
follow by pattern. For example, {i, label1, n, label2} condition is
represented by the pattern (label1)(Y-label2){0, n}(label2).

A segmentation matching this pattern can be in one of the states:
{0, ..., (2 + n)}. State 0 represents either nothing is matched yet
or the segmentation failed matching. State 1 represents that the cur-
rent partial segmentation matched (label1) pattern. State {2, ..., (1+
n)} represent the current partial segmentation is matching (label1)(Y-
label1-label2){0, n} pattern, with state 2 corresponds to 1 (Y-label2)
label and state n+ 1 corresponds to n (Y-label2) labels. And state
2 + n represent the final state where the full pattern (label1)(Y-
label2){0, n}(label2) is matched. As shown in Figure 12, the above
states form a simple state machine representing the ’follow by’ pat-
tern. The edges in the state machine show four types of transition
patterns:

70000
80000
90000

50000
60000
70000

20000
30000
40000

0
10000
20000

Viterbi+Join

JoinViterbi

Figure 13: Total inference time (msec) for 100,000 address
strings with top-1 inference with different follow by join con-
dition.

1. state0→ state1 by matching label1;

2. state1→ state2, state2→ state3,... state(n)→ state(n+1) by
matching any labels in Y that is not label2;

3. state2,...,state(n+1)→ state3 by matching label2;

4. state(n+1) → state0 by matching any label in Y that is not
label2.

Figure 14 shows the modification to the Viterbi recursion in the
JoinViterbi algorithm, and the join-array algorithm which ini-
tializes and updates the filter array to check for pruning positions.
Lines 5 – 8 are the initialization of the filter: filter[label1] is as-
signed to state 1 at positions i. Lines 9 – 26 update the filter array
at position j, based on the state of the partial segmentation up until
position j − 1 in filter[prevLabel] and the label i of the current
position j. There are five cases in the updating loop from Line 10
to 24. The first case (Lines 13 – 14) initializes the states in filter,
the rest of the four cases correspond to the four types of transition
edges in Figure 12 we described earlier.

Figure 13 shows the running time to compute query (IV) with
two different SQL implementations: Viterbi+Join and JoinViterbi.
Viterbi+Join computes the top-1 segmentation using ViterbiArray
first then performs the join on top of the result. Query (IV) is run
over 100,000 address strings in address dataset, with ’follow by’
join conditions with different label1 at start position 0, and fol-
lowed by a label with 0 − 4 token distance. label1 and label2 and
the selectivity of the join conditions are marked on the x-axis of the
figure.

As we can see, with high selectivity join conditions JoinViterbi
performs approximately 2 times better than Viterbi+Join. As the se-
lectivity becomes lower, the speed up decreases, but even a condi-
tion with 65% selectivity, JoinViterbi can still achieve a 25% speed
up over Viterbi+Join. Similar to the results with SelViterbi, the
speed up of the JoinViterbi algorithm is more a significant over
document corpus with longer documents.

6.2 Join between Two Models over Same Document
The second type of join is one between the top-1 segmentation of
two different CRF models over the same document. Suppose two
different CRF models extract different fields from the same docu-
ment, and this type of join query can be used with follow by condi-
tion to combine the related fields into one record.

σ<label1>(top1(TOKENTBL, CRF1)) ./�n

σ<label2>(top1(TOKENTBL, CRF2)) (V)

1 SELECT st.pos, st.segID,
2 topk_array(v.score, mr.score) as score,
3 join_array(i,y1,n,y2,v.filter,v.score,v.pos) as filter
4 FROM tokenTbl st, V, mr
5 WHERE st.docID=$1 AND st.pos = v.pos+1 AND
6 mr.segID=st.segID AND (pos<=i or nonzero(v.filter))

JOIN-ARRAY (i, y1, n, y2, int[]filter, int[2][]arrayV, pos)
1 size1 = length of filter array;
2 size2 = length of dimension 2 of arrayV;
3 newFilter = new int[size1];
4
5 //initialize the filter array
6 if pos == i then
7 newFilter[y1] = 1;
8 endif
9 // update the filter array
10 for i = 0; i < size2; i++ do
11 // get the previous label
12 prevLabel = arrayV [1][i];
13 if prevLabel == −1‖filter[prevLabel] == 0 then
14 newFilter[i] = 0;
15 else if filter[prevLabel] < (1 + n)&i! = y2 then
16 newFilter[i] = filter[i] + 1;
17 else if filter[prevLabel] <= (i + n)&i == y2 then
18 newFilter[i] = 2 + n;
19 else if filter[prevLabel] == 2 + n then
20 newFilter[i] = 2 + n;
21 else if filter[prevLabe] == 1 + n&i! = y2 then
22 newFilter[i] = 0;
23 endif
24 endfor
25 return newFilter

Figure 14: JoinViterbi algorithm uses JOIN-ARRAY to initialize
and update filter array. A pruning position is reached when
filter array contains all zeros.

For example, we have a email document corpus and two CRF mod-
els are trained to extract person names and telephone numbers. We
can use the above query to return person-telephone pairs that ap-
pear within 5 tokens in the same document.

The above query can be optimized by computing the top-1 infer-
ence of CRF2 on TOKENTBL conditionally, only when the top-1
inference of CRF1 on TOKENTBL generates a tuple with label1.
This technique is called ”conditional evaluation” [21, 24].

Suppose two different CRF models extract the same set of fields
from the same document, and this type of join query can be used
with an equality join condition to only return when the two models
agree with each other.

top1(TOKENTBL, CRF1) ./docID=docID,pos1=pos2,label1=label2

top1(TOKENTBL, CRF2) (VI)

This type of query can be used to build ensemble models, which
combine multiple weak (e.g. low-precision) models to construct a
strong (e.g. high-precision) model.

If the query is to ensemble the inference results of multiple mod-
els on all labels, the most efficient query plan is to compute the
top-1 segmentation for each document using both CRF1 and CRF2,
and perform the join. If the query is to ensemble the inference re-
sults of multiple models over a particular label, then we can use the
”conditional evaluation” to perform the inference with CRF2 based
on the results of the inference with CRF1.

6.3 Join between Two Models over Different Documents
So far, we have limited our discussion to extraction models over
the same set of documents. However, in real life, the same entity

can be extracted from multiple different document corpus. For ex-
ample, profiles of the same person can be extracted from multiple
social networks, such as Facebook, MySpace, and LinkedIn, etc.
Different sources have different set of extracted attributes. Sup-
pose we want to join the extracted people profiles from Facebook
and MySpace into one table, joined on the address fields.

The first step to compute this query is to create a ”pivot” view on
top of the address TOKENTBL, where each row in the view repre-
sents an address with fields ’street name’, ’city’, etc. For example,
Figure 1(d) shows the pivot view for two possible segmentations
of the address string. The second step is to compute the following
query with a ’pivot’ operator:

pivot(top1(TOKENTBL1, CRF1)) ./σ∗
pivot(top1(TOKENTBL2, CRF2)) (VII)

where the join condition σ∗ is that ’street num’, ’street name’,
’city’, ’state’, ’country’ fields in the base views being the same.
The pivot operator is not supported by Postgres8.4-Dev, however,
there are different ways to implement it and some database vendors
support it (e.g. SQL Server).

Conditional evaluation can also be used to optimize this query.

7 Related Work
Information extraction (IE) from text has received a lot of atten-
tion both the database and the Machine Learning (ML) communi-
ties [17, 6, 13, 16, 18, 25]. (See [1, 9] for recent tutorials.) The vast
majority of works in ML focus on improving extraction accuracy
using state-of-the-art probabilistic techniques, including different
variants of HMM [25] and CRF [26, 17, 16] models. Probabilistic
IE models provide high-accuracy extraction results and a principled
way to reason about the uncertainty of the IE process; still, such
tools are typically imperative and special-purpose, and are not tar-
geted at the declarative management and processing of large-scale
data sets.

While the approaches presented so far are an indicative sample of
the basic building blocks of a real-world IE system, a lot of effort
has recently been devoted on exploring frameworks that manage
the state of the IE process, and provide support to easily specify,
optimize and execute IE applications. Most promising approaches
in this category are those which are based on declarative specifi-
cations of the IE tasks at hand. SYSTEMT [21], is an algebraic,
rule-based IE system, developed by IBM Research. Through the
use of an SQL variant, IE programs (rules) can be declaratively ex-
pressed. The system uses database-inspired cost-based optimiza-
tion techniques to execute the resulting workflows efficiently. Shen
et al. [24] also consider optimizing declarative IE programs. Their
work extends DataLog with an embedded IE predicate, ans also
proposes specialized pattern indexing schemes. These earlier ef-
forts in declarative IE did not consider supporting a declarative
interface over state-of-the-art probablistic models for IE; further-
more, they did not address the inherent uncertainty of the IE pro-
cess.

At the same time, the ML community has also been moving in
the direction of declarative IE. Eisner et. al. [10] adopts a pure first-
order logic perspective by extending Prolog to provide support for
dynamic programming. No database style cost-based optimization
is considered, but machine-learning optimizations are developed,
which the user can opt to include in her applications. Markov
Logic [19] represent a very powerful graphical model that mar-
ries the declarativeness of first-order logic with the popular Markov
Network model. Although no large-scale IE system has been built
to date based on this mechanism, [19, 20] successfully exemplify
how their model can handle the task of citation matching, through

the use of a handful of intuitive first-order logic rules. In contrast
to the above systems, this framework natively supports uncertainty
modeling, as it is based on a sophisticated machine learning model,
similar to our own approach.

Since the early 80’s, a number of PDBSs have been proposed
in an effort to offer a declarative, SQL-like interface for manag-
ing large uncertain-data repositories [3, 5, 7, 4, 8, 23, 2, 28]. This
work extends the relational model with probabilistic information
captured at the level of individual tuple existence (i.e., a tuple may
or may not exist in the DB) [5, 7, 12, 23] or individual tuple-value
uncertainty (i.e., an attribute value in a tuple follows a probabilistic
distribution) [3, 4, 2]. The Trio [4] and MayBMS [2] efforts, try to
adopt both types of uncertainty, with Trio focusing on promoting
data lineage as a first-class citizen in PDBSs and MayBMS aiming
at more efficient tuple-level uncertainty representations through ef-
fective relational table decompositions. Recent PDBS efforts like
BAYESSTORE [28] and the work of Sen and Deshpande [23] rep-
resent probabilistic models (based on Bayesian networks) as first-
class citizens in relational database, and support in-database queries
and reasoning over the the model. The issue of offering database
support for managing IE through state-of-the-art probabilistic mod-
els has not been addressed in existing PDBSs. Closer to our work
Gupta and Sarawagi [14] give tools for storing coarse approxima-
tions of a CRF model inside a simple PDBS supporting limited
forms of tuple- and attribute-level uncertainty. Instead, our work
aims to support the full expressive power of CRF models and infer-
ence operations as a first-class PDBS citizen.

8 Conclusion
In this work we develop a probabilistic database approach to CRF-
based IE models. This includes implementing Viterbi inference as
SQL queries, as well as integrating and optimizing top-k inference
queries with relational operators. Our work here incorporates a spe-
cific family of probabilistic models – linear-chain CRF models – as
a first-class citizen in a probabilistic database. The algorithms and
optimizations in this paper take advantage of this specific model’s
structure to improve the efficiency of inference and relational oper-
ations.

Our previous work on BAYESSTORE [28] provides a much more
general approach to capturing first-order Bayesian networks as first-
class citizens in a probabilistic database. Given the broad class
of models support by BAYESSTORE, it did not focus on model-
specific techniques like Viterbi. In future work we hope to address
this shortcoming in the large, by enriching BAYESSTORE with an
extensible framework that can support and optimize itself to a wide
variety of graphical models: general or specialized, directed or
undirected, generative or discriminative. This entails a number of
challenges, including extending the query processor to support in-
ference and relational queries over different models, extending the
query optimizer to perform cost-based optimization based on the
query and the model structure, and designing an extensible API for
specifying new models.

9 Acknowledgements
Thanks for Rahul Gupta from IIT Bombay, who provided help with
using the Java CRF package [22].

10 References

[1] E. Agichtein and S. Sarawagi. Scalable Information Extraction and
Integration (tutorial). In KDD, 2006.

[2] L. Antova, T. Jansen, C. Koch, and D. Olteanu. Fast and Simple
Relational Processing of Uncertain Data. In ICDE, 2008.

[3] D. Barbará, H. Garcia-Molina, and D. Porter. The Management of
Probabilistic Data. IEEE Trans. on Knowl. and Data Eng.,
4(5):487–502, 1992.

[4] O. Benjelloun, A. Sarma, A. Halevy, and J. Widom. ULDB:
Databases with Uncertainty and Lineage. In VLDB, 2006.

[5] R. Cavallo and M. Pittarelli. The Theory of Probabilistic Databases.
In VLDB, 1987.

[6] A. Culotta and A. McCallum. Confidence Estimation for Information
Extraction. In HLT-NAACL, 2004.

[7] N. Dalvi and D. Suciu. Efficient Query Evaluation on Probabilistic
Databases. In VLDB, 2004.

[8] A. Deshpande and S. Madden. MauveDB: Supporting Model-based
User Views in Database Systems. In SIGMOD, 2006.

[9] A. Doan, R. Ramakrishnan, and S. Vaithyanathan. Managing
Information Extraction: State of the Art and Research Directions
(tutorial). In SIGMOD, 2006.

[10] J. Eisner, E. Goldlust, and N. Smith. Compiling Comp Ling:
Practical Weighted Dynamic Programming and the Dyna Language.
In HLT/EMNLP, 2005.

[11] G. D. Forney. The Viterbi Algorithm. IEEE, 61(3):268–278, March
1973.

[12] N. Fuhr and T. Rolleke. A Probabilistic Relational Algebra for the
Integration of Information Retrieval and Database Systems. ACM
Transactions on Information Systems, 15:32–66, 1997.

[13] T. Grenager, D. Klein, and C. D. Manning. Unsupervised Learning of
Field Segmentation Models for Information Extraction. In ACL,
2005.

[14] R. Gupta and S. Sarawagi. Curating Probabilistic Databases from
Information Extraction Models. In VLDB, 2006.

[15] S. Jeffery, M. Franklin, and A. Halevy. Pay-as-you-go User Feedback
for Dataspace Systems. In SIGMOD, 2008.

[16] T. Kristjansson, A. Culotta, P. Viola, and A. McCallum. Interactive
Information Extraction with Constrained Conditional Random
Fields. In AAAI’04: Proceedings of the 19th National Conference on
Artificial Intelligence, 2004.

[17] J. Lafferty, A. McCallum, and F. Pereira. Conditional Random
Fields: Probabilistic Models for Segmenting and Labeling Sequence
Data. In ICML, 2001.

[18] L. Peshkin and A. Pfeffer. Bayesian Information Extraction Network.
In Proceedings of the IJCAI, 2003.

[19] H. Poon and P. Domingos. Joint Inference in Information Extraction.
In Proc. of AAAI, 2007.

[20] H. Poon and P. Domingos. Joint Unsupervised Coreference
Resolution with Markov Logic. In Proc. of ACL, 2008.

[21] F. Reiss, S. Raghavan, R. Krishnamurthy, H. Zhu, and
S. Vaithyanathan. An Algebraic Approach to Rule-Based
Information Extraction. In ICDE, 2008.

[22] S. Sarawagi. CRF Open Source
Project.http://crf.sourceforge.net/.

[23] P. Sen and A. Deshpande. Representing and Querying Correlated
Tuples in Probabilistic Databases. In ICDE, 2007.

[24] W. Shen, A. Doan, J. Naughton, and R. Ramakrishnan. Declarative
Information Extraction Using Datalog with Embedded Extraction
Predicates. In VLDB, 2007.

[25] M. Skounakis, M. Craven, and S. Ray. Hierarchical Hidden Markov
Models for Information Extraction. In Proc. of IJCAI, 2003.

[26] C. Sutton and A. McCallum. Introduction to Conditional Random
Fields for Relational Learning. In Introduction to Statistical
Relational Learning, 2008.

[27] R. Thomason.
http://www.eecs.umich.edu/~rthomaso/bibs/bigbibs.html.

[28] D. Wang, E. Michelakis, M. Garofalakis, and J. Hellerstein.
BayesStore: Managing Large, Uncertain Data Repositories with
Probabilistic Graphical Models. In VLDB’08: Proceedings of the
34th International Conference on Very Large Data Bases, 2008.

