
A System-level Approach to Fault and Variation

Resilience in Multi-core Die

Yury Markovskiy

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2009-128

http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-128.html

September 5, 2009

Copyright © 2009, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Acknowledgement

I am indebted to my adviser John Wawrzynek, and members of my
committee Jan Rabaey, Paul Wright and Borivoje Nikolic who have inspired
and motivated the theme of this research effort.

The work was supported by the GSRC Focus Center, one of five research
centers funded under the Focus Center Research Program, a
Semiconductor Research Corporation program, and by Berkeley Wireless
Research Center (BWRC).

A System-level Approach to Fault and Variation

Resilience in Multi-core Die

by

Yury Markovskiy

B.S. (University of California, Berkeley) 2000
M.S. (University of California, Berkeley) 2004

A Dissertation submitted in partial satisfaction
of the requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

Graduate Division

of the

University of California, Berkeley

Committee in Charge:

Professor John Wawrzynek, Chair

Professor Jan M. Rabaey

Professor Paul K. Wright

Fall 2009

The Dissertation of Yury Markovskiy is approved:

Chair Date

Date

Date

University of California, Berkeley

A System-level Approach to Fault and Variation Resilience in Multi-core Die

Copyright c© 2009

by

Yury Markovskiy

Abstract

A System-level Approach to Fault and Variation Resilience in Multi-core Die

Yury Markovskiy
Doctor of Philosophy in Computer Science

University of California, Berkeley
Professor John Wawrzynek, Chair

With shrinking transistors and growth in parametric variability, statically

managing die yield is no longer possible. Design for Manufacturing (DFM) tech-

niques use increasingly bigger guard-bands that waste area, power, and perfor-

mance, impeding Moore’s Law of semiconductor device scaling. Process Voltage

Temperature (PVT) variations can turn a nominally homogeneous many-core die

into a set of cores with heterogeneous performance.

Network-on-Chip provides an effective and scalable way to integrate hundreds

of heterogeneous cores without forcing each to give up its own PVT-induced oper-

ating point for the chip-wide common worst case. As with asynchronous logic, a

NoC of regular, redundant, many-CLK/VDD cores can deliver the average rather

than the worst case system performance with greater power efficiency and fault

tolerance than its globally synchronous monolithic counterparts [41, 92]. This

work shows that the Voltage-Frequency Island (VFI) architectures are also the

key to tolerating and compensating for PVT variations.

The VFI advantages cannot be realized without run-time task-to-core map-

ping and adaptive network routing that optimally match application resource

1

requirements with heterogeneous cores and communication fabric. These system-

atic techniques are more effective at mitigating a variety of faults and variations

than layout and circuit DFM. Most importantly, the gains from these techniques

can be translated into die yield improvements and smaller DFM guard-bands.

This work investigates core sparing and network routing. The developed mod-

els demonstrate that core sparing reduces the die cost asymptotically from O(A3)

to O(A
1

2), and it is more cost efficient than larger design guard-bands of layout

and circuit redundancy. The analysis outcome favors a greater number of smaller

unreliable cores as opposed to a fewer larger reliable cores given a fixed die area.

This points to the limitations and ultimately the futility of DFM techniques in

the future semiconductor process generations.

Adaptive network routing enables core sparing. More critically, it simultane-

ously combats the two sources of network load imbalance: on-die performance het-

erogeneity from PVT variations and application communication topology. With

stochastic PVT variations, the developed Minimal Adaptive Total Congestion

(MATC) router increases the expected network saturation bandwidth by 7–23%

and reduces its variance by 2–10x as compared to the Dimension Order router.

With systematic PVT variations, the improvements are 5–35%. These gains of

the adaptive router can compensate for degradation due to performance variations

and can thus be used to reduce design guard-bands.

2

By treating cores as units of fault and variation tolerance, these systematic

techniques provide a simple and consistent way to deal with static and dynamic

performance variations and faults. These techniques are more effective than iso-

lated DFM solutions. Rather than fighting and minimizing the on-die parametric

variations, our approach takes advantage of the platform heterogeneity and man-

ages its net system performance impact.

Professor John Wawrzynek

Dissertation Committee Chair

3

Contents

Abstract 1

List of Figures iv

List of Tables vii

Acknowledgments ix

1 Introduction 1
1.1 Moore’s Law: a blessing and a curse. 3

1.1.1 End to Moore’s Law scaling? 3
1.1.2 Minimizing Variations . 6

1.2 Our Novel Approach . 10
1.3 Multi-core and Reliability . 14
1.4 Research Contributions . 20
1.5 Related Works . 22
1.6 Dissertation Organization . 32

2 Performance Variations 35
2.1 Sources and Trends . 37

2.1.1 PVT Variation Sources . 37
2.1.2 Minimizing Variations . 45
2.1.3 Problems with Current Approaches 48

2.2 Variation Modeling . 50
2.2.1 FMAX Model and Simulation Infrastructure 50
2.2.2 Variations and Multi-core 64

2.3 Summary . 67

i

3 Multi-core Architecture for Heterogeneous Performance 69
3.1 Compute and Router tile . 70
3.2 Communication Fabric . 82

3.2.1 Motivation for NoC . 82
3.2.2 NoC Organization . 85

3.3 Summary . 98

4 Sparing: Redundancy and Multicore 100
4.1 Resource Redundancy . 101
4.2 Traditional Chip Cost Model . 107
4.3 Sparing Defective Cores . 111
4.4 Yield and Over-engineering . 116
4.5 Circuit and Module Redundancy 121
4.6 Model Comparison . 124
4.7 Summary . 127

5 Network-on-Chip Simulation Infrastructure 129
5.1 Simulation Infrastructure . 130

5.1.1 Discrete Event Simulator 133
5.1.2 Implementation of Key Actors 136

5.2 NoC Router Micro-architecture 145
5.2.1 Router-specific Actors . 145
5.2.2 Router Implementation . 152
5.2.3 Router Performance Annotation 155

5.3 Flit Source and Traffic Generators 157
5.4 Task to core mapping . 162
5.5 Summary . 163

6 Adaptive Routing Algorithms 165
6.1 Network performance . 166

6.1.1 Topology Bound . 168
6.1.2 Routing Bound . 169
6.1.3 Flow Control Bound . 170

6.2 Communication Patterns . 171
6.3 Routing Algorithms . 173

6.3.1 Dimension Order Routing 176
6.3.2 Minimal Adaptive Routing 177
6.3.3 The Minimal West First Routing 184
6.3.4 Latency . 188

6.4 Summary . 192

ii

7 Adaptive Routing and PVT Variations 194
7.1 PVT Variation Bound . 195
7.2 Impact of PVT Variations . 199

7.2.1 Stochastic Variations . 201
7.2.2 Systematic Variations . 215
7.2.3 Stochastic and Systematic Results Summary 222

7.3 Reducing Design Guard-bands . 225
7.4 Benefits of Heterogeneous Architectures 231
7.5 Task-to-Core Mapping Impact . 235
7.6 Summary . 241

8 Network Performance Analysis 244
8.1 Topology Bounds . 245
8.2 Router Bounds . 255
8.3 Summary . 265

9 Conclusion 266

10 Future Directions 274
10.1 Refining Die Yield Models . 274
10.2 Task-to-Core Mapping . 276
10.3 Using Architecture Knobs . 278

Bibliography 279

Appendices 293

A Adaptive Routing and PVT Variations 294

iii

List of Figures

1.1 Ideal Moore’s Law vs the actual and projected scaling [19]. 5
1.2 Ideal Moore’s Law vs the actual Tox, Vdd, and Vt scaling [55]. . . . 5
1.3 Variations and scaling effect on transistor and gate performance [39]. 7
1.4 Decreasing device sizes result in parametric variations that degrade
maximum circuit operating frequency FMAX [22]. 7
1.5 PVT variations impact performance distribution on the current
state of the art VLSI. 11
1.6 The impact of PVT variations is reduced with multi-level tech-
niques and translated in smaller design guardbands. 12
1.7 An illustration of core performance ranges controlled by DVS/DFS. 15

2.1 A die performance profile comprises stocastic and systematic pro-
cess effects and a dynamic gradient. 39
2.2 The relationship between process, voltage and temperature varia-
tions and their impact on circuit performance. 43
2.3 Real gate delay exhibits some spatial correlation [22]. 55
2.4 Impact of Lcp and Ncp on circuit performance distribution. 57
2.5 Simple first order router model 59
2.6 NoC simulation framework forms a part of variation-aware archi-
tecture exploration environment. 62
2.7 A sampling of operating regions for different types of on-die tiles. 66

3.1 A multicore tiled architecture envisioned in this work. 71
3.2 A sampling of operating regions for different types of on-die tiles. 80
3.3 Routing algorithm determines average packet latency and satura-
tion bandwidth of the network. 87
3.4 Deadlock and livelock impede forward communication progress. . 88
3.5 Examples of mesh and torus network topologies. 90

iv

3.6 Head-of-Queue blocking. 96

4.1 The relationship between die area and its yield and cost. 109
4.2 Die cost vs the total core count for different overheads. 112
4.3 Die cost for the traditional vs core sparing dice. 114
4.4 The ratio of functional Af to the total die area Adie is sensitive to
multi-core overhead Ao. 115
4.5 Critical area parameters . 117
4.6 Device oversizing vs the number of functional cores on a Adie =
400mm2. The values of N = 11, F = 1 maximize TDC × Freq. 120
4.7 The total die area vs r and Nf . (Af = 400, Ao = 1, R = 1.5) . . . 123
4.8 Optimal (r,Nf) parameters to minimize the total die area Adie for
functional area Af = 400. 125
4.9 Die cost comparison with different schemes. Parameters: Ao =
1mm2, α = 3, R = 2. 126

5.1 NoC Simulator Components . 132
5.2 NoC simulator components that exchange discrete events. 137
5.3 Logical implementation of a Virtual Output Queue FIFO buffer. . 149
5.4 Router micro-architecture implemented in NoC simulator. 153
5.5 An example of the netlist format extracted from IPM trace. . . . 162

6.1 Queuing systems defined relationship between packet latency (wait
time) and network bandwidth consumption. 168
6.2 Allowed routing turns to avoid cyclical resource dependency . . . 177
6.3 SELECT () performance impact for two application graphs. . . . 185
6.4 Performance of West First algorithms on PMEMD-64. 188
6.5 LBMHD application: the average packet latency for deterministic vs
adaptive algotithms. 189

7.1 Performance model for normally distributed stochastic variations. 202
7.2 MATC improves saturation bandwidth for PMEMD-64 and compen-
sates for PVT variations. 203
7.3 MATC improves saturation bandwidth for PMEMD-64 and compen-
sates for PVT variations. 204
7.4 PMEMD-64 Illustration of saturation bandwidth degradation for DO
and MATC. 207
7.5 PMEMD-64 Extracting parameters A and B from curves µ(RR

σ) vs
σ, and σ(RR

σ) vs σ. 208
7.6 Results summary for Dimension Order router. 212
7.7 Results summary for Minimal Adaptive router. 213

v

7.8 Saturation bandwidth for MATC and DO on the nominal NoC. . 215
7.9 Routing algorithm variation sensitivity parameters A and B. . . . 216
7.10 An example of a Systematic Performance Gradient. 218
7.11 MATC completely compensates the bandwidth degradation. . . . 219
7.12 Results summary for a systematic performance gradient. 220
7.13 Parameter A is the slope of the degradation of the saturation in-
jection rate on a NoC with the performance gradient. 221
7.14 MATC vs DO improvements in saturation injection rate. 226
7.15 Guard-band reduction with MATC adaptive routing with stochas-
tic variations C0.21. 229
7.16 From improvements in saturation bandwidth to reduced design
margins. 230
7.17 Advantages of heterogeneous vs homogeneous architectures: 40%
gains in saturation bandwidth, and 50% in unloaded latency. 233
7.18 Network saturation injection rate comparison with Min BB and
Random task mappings. 240

8.1 Spatial communication properties of lbmhd-64 application. 248
8.2 Method to estimate rent’s parameters for 2D mesh. 251
8.3 Mismatch between network and application Rent’s parameters re-
sults in underutilized channel bandwidth. 255
8.4 V R

(u,v) and ER
(u,v) for Dimension Order and Minimal Adaptive routers. 259

9.1 The relationship between die area and yield. 270
9.2 Relationship between the mapping quality and routing results. . . 272

vi

List of Tables

1.1 Every layer of a multi-core NoC system plays a role in dealing with
permanent and dynamic variations . 17
1.2 Variation compensation techniques must be judiciously applied at
design and run time. 18

2.1 Semiconductor process steps and physical effects manifest them-
selves as functional and parametric variations on multiple levels. 44
2.2 Techniques to limit faults and PVT variations on every design level. 44
2.3 Summary of Ncp and Lcp parameters in the FMAX model [68]. . . 58

3.1 Functionality and performance dimensions of a multi-core archi-
tecture. 81
3.2 Performance bounds on (n, k)-mesh and torus 91

4.1 Parameters used in the models. Default values shown in paren-
thesis are based on ITRS 2005 [1] and used to obtain the experimental
results. 106

5.1 NoC simulator parameters . 131
5.2 MPI task communication graphs [120]. 161

6.1 A summary of HPC kernels grouped by size and sorted by commu-
nication locality. 173
6.2 Performance comparison for different SELECT () implementations. 184
6.3 Performance of West First algorithms compared to MATC and DO. 190

7.1 PMEMD-64 Summary of saturation bandwidth degradation for DO
and MATC. 206
7.2 Random placement destroys communication locality. 236

vii

7.3 Simulation result comparison for Minimal BB vs Random task
mapping. 238

8.1 Synthetic, characteristic communication patterns for routing algo-
rithm research. 246
8.2 A summary of HPC kernels and their Rent’s parameters. 248
8.3 Routing and topology bound vs simulation results. 262
8.4 The expected saturation bandwidth improvement for Minimal Adap-
tive vs Dimension Order routing algorithm. 263

viii

Acknowledgements

This work is the result of generosity and support of many colleagues and friends

who have made my experience in U.C. Berkeley a memorable one.

I would like to acknowledge the old SCORE gang, my friends Randy Huang,

Eylon Caspi, Joe Yeh, Nick Weaver who have influenced me immeasurably, showed

me what research is all about. I would like to thank André DeHon, whose drive for

the scientific truth always served as my inspiration. Enormous debt of gratitude

goes to my friends Yatish Patel, Mark Whitney, Sonesh Surana, Nemanja Isailovic

for wonderful conversations, exchange of ideas, and helping hands. I am very

grateful to my friend Michelle Bird who has helped enormously to communicate

my ideas through this manuscript.

I am indebted to my adviser John Wawrzynek for the continuing support,

encouragement and freedom to explore many interesting ideas throughout my

graduate work. My dissertation committee Jan Rabaey, Paul Wright and Borivoje

Nikolic have inspired and motivated the theme of this research effort.

MPI application traces, used in this work, were kindly provided by Shoaib

Kamil and John Shalf from Future Technologies Group at the National Energy

Research Scientific Computing Center (NERSC) at Lawrence Berkeley National

Laboratory. The data traces were collected as a part of DOE/LBNL funded re-

search. My work was supported by the GSRC Focus Center, one of five research

ix

centers funded under the Focus Center Research Program, a Semiconductor Re-

search Corporation program, and by Berkeley Wireless Research Center (BWRC).

And most importantly, none of this work would even be possible without love,

support and encouragement of my parents Mark and Irina, my brother Igor, and

my wonderful wife Carmen, to whom this is dedicated.

x

Curriculum Vitæ

Yury Markovskiy

Education

2004 Masters of Science in Computer Science, University of California, Berkeley

2000 Bachelor of Science in Computer Science and Electrical Engineering, University of

California, Berkeley

Experience

• Graduate Student Instructor, UC Berkeley (Spring and Fall 2002)

• Programmer Analyst II, UC Berkeley (2000 – 2001)

• Software Development Engineer, ProxiNet, Inc., Emeryville, CA (1999)

• Software Development Engineer, Canary Technology, Fremont, CA (1997 – 1998)

Selected Publications

• Yury Markovsky, Yatish Patel, John Wawrzynek. “Using Adaptive Routing to

Compensate for Performance Heterogeneity” in International Symposium on Networks-

on-Chip (NOC), San Diego CA, May 2009

• Yury Markovsky, John Wawrzynek. “On the opportunity to improve system yield

with multi-core architectures” in IEEE International Workshop on Design for Man-

ufacturability and Yield (DFM&Y, Santa Clara, CA, October 2007).

xi

• Jana van Greunen, Yury Markovsky, Christopher R. Baker, Jan Rabaey, John

Wawrzynek, Adam Wolisz. “A Platform for Smart Home Environments: The

Case for Infrastructure” in Proc. of the 2nd International Conf. on Intelligent

Environments (IE06, Athens, Greece, July 2006).

• Christopher R. Baker, Yury Markovsky, Jana van Greunen, Jan Rabaey, John

Wawrzynek, Adam Wolisz. “ZUMA: A Platform for Smart-Home Environments”

in Proc. of the 2nd International Conf. on Intelligent Environments (IE06, Athens,

Greece, July 2006).

• André DeHon, Yury Markovsky, Eylon Caspi, Michael Chu, Randy Huang, Stylianos

Perissakis, Laura Pozzi, Joseph Yeh, John Wawrzynek. “Stream Computations

Organized for Reconfigurable Execution” in the Journal of Microprocessors and

Microsystems 30 (2006) 334-354.

• Nicholas Weaver, Yury Markovskiy, Yatish Patel, and John Wawrzynek. “Post

Placement C-slow Retiming for the Xilinx Virtex FPGA” in Proc. of the Eleventh

ACM International Symposium on Field-Programmable Gate Arrays (FPGA 2003,

Monterey, CA, Feb. 2003).

• Yury Markovskiy, Eylon Caspi, Randy Huang, Joseph Yeh, Michael Chu, André

DeHon and John Wawrzynek. “Analysis of Quasi-Static Scheduling Techniques in

a Virtualized Reconfigurable Machine” in Proc. of the Tenth ACM International

Symposium on Field- Programmable Gate Arrays (FPGA 2002, Monterey, CA,

Feb. 2002).

xii

• Eylon Caspi, Randy Huang, Yury Markovskiy, Joseph Yeh, André DeHon and

John Wawrzynek. “A Streaming Multi-Threaded Model” in Third Workshop on

Media and Stream Processors (MSP-3, Austin, TX, Dec 2001).

xiii

Chapter 1

Introduction

With the field of semiconductor manufacturing entering its sixth decade, many

industry observers have anticipated exponential growth in chip performance to

follow the gains in transistor and interconnect miniaturization. The reality is,

however, that these gains have not yet been realized in the submicron process

nodes. To state the problem in simple terms, additional efforts in miniaturization

have resulted in disproportionately reduced die yield and increased manufacturing

costs. We have reached diminished rates of return. Both the reduced yield and

increased cost result from the fact that the smaller the transistor size, the more

susceptible it is to an array of problems. Those problems include manufacturing

faults, performance degradation and parametric variations.

The problems arising from semiconductor process scaling can be divided into

two related categories: (1) limitations of on-chip power distribution and dissipa-

tion, and (2) Process-Voltage-Temperature induced variations.

1

Chapter 1. Introduction

The power consumption problems have been addressed in circuits through

a variety of power management techniques that include Dynamic Voltage and

Frequency scaling, power shutoff to inactive circuit modules, and transistors with

different threshold voltages on a die. Reaching the power consumption ceiling has

forced a more fundamental change—a movement from high clock frequency single

core processors to lower frequency multi-core systems that exploit parallelism to

scale overall performance.

Addressing PVT variations and faults in deep sub-micron processes has proven

to be a significant challenge. Currently, attempts to minimize their impact amounts

to large design margins that effectively push the technology back to larger geome-

tries. As critical transistor sizes approach only tens of atoms and the process

engineers can no longer control their manufacturing parameters accurately, these

efforts hit the diminishing rate of returns. A solution is needed that would min-

imize over-engineering and extend performance scaling further. In other words,

the solution that would tolerate and even take advantage of PVT variations in

smaller geometry transistors.

2

Chapter 1. Introduction

1.1 Moore’s Law: a blessing and a curse.

1.1.1 End to Moore’s Law scaling?

In 1965, Gordon Moore observed the number of transistors that can be placed

cost-effectively on a die doubles approximately every two years [100]. Tradition-

ally, this decrease in on-chip transistor size was accompanied by a corresponding

reduction in circuit cycle time and power consumption. Originally, this trend was

expected to continue without a limit. In what may have become a self-fulfilling

prophesy, transistor sizes decreased over the years, and in fact, the number of

transistors on a modern die exceeds two billion [129]. Unlike transistor count,

however, scaling of many other critical transistor parameters has stalled as shown

on Figures 1.1 and 1.2 [19, 55]. As modern sub-32nm processes are pushing

against the physical manufacturing limits and properties of the silicon substrate,

transistor gate oxide thickness Tox, supply Vdd and threshold Vth voltages are most

affected. Critical device sizes are approaching tens of atoms and can no longer be

reproduced accurately on a die. The result is significant parametric variations in

saturation and static currents, and capacitances that directly impact circuit per-

formance. Small devices exacerbate the scaling problem further as they are more

susceptible to faults and performance degradation due to aging (e.g. NBTI [117]).

3

Chapter 1. Introduction

In other words, although many small transistors fit on a die, each of those tran-

sistors is now less reliable, less performant, and more power-hungry.

In the prevalent synchronous circuit design style, device parametric varia-

tions reduce performance predictability. This translates into uncertainty in the

circuit delay at the design time, which unduly inflates the clock cycle time. Grow-

ing power consumption and limits on heat dissipation present an additional con-

straints for clock frequency scaling.

Clock frequency has been the main VLSI performance scaling vehicle for more

than 30 years; but now, to overcome power and parametric variation challenges,

the industry is turning toward spatial parallelism with multi-core architectures

such as Sun Niagara [102] and Intel Merom [116]. Even if an ideal compiler could

extract all application parallelism, and a multi-core architecture could exploit and

realize it, then the uncertainty of variations would still impose limits on power

efficiency and system performance. The result would be a multi-billion transistor

die that cannot deliver on its full potential.

As semiconductor devices shrink further, the increase in variations and faults

makes it increasingly difficult to produce a reliable working system that meets

the specification target under a range of dynamic operating conditions including

different cross chip activity levels, temperature gradients and supply voltage dis-

tributions. For example, [4] demonstrated that a 35nm bulk transistor modeled

4

Chapter 1. Introduction

(a) Supply Voltage (b) Clock Frequency (c) Power Consumption

Figure 1.1: Ideal Moore’s Law vs the actual and projected scaling [19].

Figure 1.2: Ideal Moore’s Law vs the actual Tox, Vdd, and Vt scaling [55].

5

Chapter 1. Introduction

after a published Toshiba device [69], has more than 200mV of threshold voltage

variation, and 100x leak current variation solely due to random dopant fluctua-

tions at a single operating point. If you consider this transistor over the complete

range of supply voltages and temperatures, its saturation and static current would

vary widely and render some devices completely unusable due to high leakage or

high threshold voltage. These large device parametric variations adversely affect

transistor performance in a typical operating regime. As Figure 1.3 shows, supply

voltage scaling is severely limited by transistor threshold voltage variations that

are widening primarily due to random dopant fluctuations and line edge roughness

(LER). Both effects are stochastic, difficult to control, and their impact worsens in

smaller devices [39]. The transistor variations translate into asymmetric gate de-

lay variations ranging from low delay, high leakage gates to high delay, low leakage

gates. FMAX circuit performance model [22] and ITRS 2005 [1] predictions point

to the maximum operating frequency varying by more than 70% from the mean

in sub-32nm processes. Figure 1.4 illustrates the degrading effect that transistor

size scaling has on the expected maximum circuit frequency.

1.1.2 Minimizing Variations

Faced with a collection of devices with very diverse performance, the semi-

conductor industry challenges designers to produce reliable systems out of very

6

Chapter 1. Introduction

Figure 1.3: Variations and scaling effect on transistor and gate performance [39].

Future Technology

F
M

A
X

 m
ea

n
 d

ec
re

as
e

(%
)

Figure 1.4: Decreasing device sizes result in parametric variations that degrade
maximum circuit operating frequency FMAX [22].

7

Chapter 1. Introduction

unreliable and unpredictable components. Alternative post-Silicon technologies,

such as dense carbon nanotubes [40], do not solve but exacerbate this problem

further as they require stochastic assembly. Most likely all future systems must be

built out of components whose performance and fault model can best be described

as stochastic.

In an attempt to mitigate faults and variations, designers rely on Design for

Manufacturing (DFM) techniques in VLSI layout, circuit “rules of thumb,” and

other established safe design practices. Since the sources of process variations

cannot be accurately controlled due to the very small device sizes, DFM rules

take a safe approach and force design margins that grow as devices shrink, i.e.

larger device sizes, spacings, metal fills, and other layout modifications that the

original circuit designer may not be aware of.

As yield is the main concern for fabrication engineers, they impose increasingly

restrictive and complex layout design rules. In spite of their complexity, these rules

do not effectively convey the nature of underlying physical processes and cannot be

applied selectively by the circuit designers. They increase device feature sizes and

effectively push transistors back to a previous semiconductor process generation,

surrendering the expected improvements from scaling.

In addition to DFM layout rules, circuit design techniques, such as adaptive

body biasing [133] and adaptive supply voltage [29], can be applied to most circuits

8

Chapter 1. Introduction

because they simply realign device parameters from different dice to minimize

variations. Other techniques, such as error correction, can be used efficiently only

in some domains, e.g. memory arrays and communication circuits [109, 137].

As these layout and circuit techniques are applied to a specific design, their in-

dividual benefits on the parametric yield are hard to quantify. Their benefits may

overlap and thus result in wasted power and performance. Fundamentally, there

is a disconnect between the problem and the available solutions. The variations

arise at the molecular level. DFM and circuit techniques, however, attempt to

minimize the problem applying large margins and guardbands at the layout and

circuit levels. It is similar to using a sledge hammer where a scalpel is needed,

but a molecular scalpel does not exist. The result is that they reduce system

performance to the worst-case operating point that accomodates all components

including the outliers.

Due to trade secrets, very few published efforts have quantified the area, power,

and performance losses due to DFM “over-engineering.” Anecdotal evidence, how-

ever, suggests that DFM has a significant impact. One such effort has demon-

strated 12% area reduction in 90nm and 65nm standard cell designs when the

performance guard-bands are reduced (narrowed) by 40% [74]. The authors de-

veloped a die yield model containing area dependent and area agnostic components

9

Chapter 1. Introduction

to illustrate the trade-off between guard-bands and the die area, which naturally

corresponds to power consumption and performance.

If we had techniques that instead of narrowing the guardbands could dynami-

cally embrace the heterogeneity and manage system components with wider per-

formance variations, we could further reduce the area beyond these 12% and

increase the die yield.

1.2 Our Novel Approach

This work’s focus is the development and analysis of system-level techniques

for dealing with faults and variations. Instead of attempting to narrow the spread

of transistor and interconnect performance variations, is there a solution that tol-

erates a wider range of fluctuations? Can we compensate for rather than minimize

parametric variations?

Figures 1.5 and 1.6 illustrate our common understanding of system perfor-

mance variations as resilience techniques are applied. After DFM driven manu-

facturing, the dice and their components have a wide performance variance (Fig-

ure 1.5(a)). Some components may be considered faulty if they fall outside of the

specified operating bounds. Circuit adaptive techniques narrow the variance to

10

Chapter 1. Introduction

from PVT variations
system performance

Too
Slow

High
Leakage

FASTSLOW

design point

specification

>70% in 20nm process

(a) After Manufacturing

Too
Slow

High
Leakage

circuit adaptive techniques
ASV, ABB, async

from PVT variations
system performance

MARGIN

FASTSLOW
30% or >2x yield improvement

specification

(b) Compensate with circuit adaptivity

Figure 1.5: PVT variations impact performance distribution on the current state
of the art VLSI.

11

Chapter 1. Introduction

Too
Slow

High
Leakage

circuit adaptive techniques
ASV, ABB, async

from PVT variations
system performance

system−level adaptive techniques
mapping, routing, reconfiguration

FASTSLOW

specification

< 10%

(a) Run-time system techniques

REDUCE
OVERENGINEERING

MARGIN
NEW

FASTSLOW

specification

OLD MARGIN

(b) Smaller design margins

Figure 1.6: The impact of PVT variations is reduced with multi-level techniques
and translated in smaller design guardbands.

12

Chapter 1. Introduction

meet the targeted parametric yield and bring many outliers within the specifica-

tion bounds (Figure 1.5(b)).

This work demonstrates that with run-time application mapping, network

routing and reconfiguration, architects can further reduce the performance vari-

ance in multi-core systems and benefit from the proportionally smaller design

margins (Figure 1.6(a)). Theoretically, with these high level techniques, the ob-

served core-to-core variance can be reduced to 0% if the unit of resiliency manage-

ment is small [118]. In practice, the improvements are limited by reconfiguration

granularity and mapping quality. This work investigates resilience management

at the core level, and thus small simple cores with independent clock and voltage

domains that expose on-chip variations can reap the most benefit.

Traditionally, reliability has been treated as a binary problem: a component is

either functional or not due to hard faults. However, every die and its components

actually fall within a performance continuum: faulty, slow, nominal, fast, or leaky

— where the last two may exceed the acceptable static leakage bound and be

considered faulty. With respect to the execution model with core state check

pointing, a faulty core is no different from a very slow processor that makes little

forward progress, or a very fast but leaky processor. The advantage of our high-

level approach is to treat faults as a special case of Process-Voltage-Temperature

(PVT) induced performance variations, rather than as separate effect.

13

Chapter 1. Introduction

This systematic, consistent approach to resiliency simplifies high-level mapping

and routing algorithm implementation, eliminates special corner cases, and allows

designers to focus on converting the performance gains from quality mapping and

routing into smaller design margins or guard-bands. It is not possible in practice

to eliminate all DFM rules that result in over-engineering, lost performance, area,

and power. However, as we show our high level techniques can reduce the “6σ”

guard-bands, which can simplify and eliminate a number of DFM rules, improve

system power efficiency and cost as illustrated on Figure 1.6(b). The resulting

system can operate closer to its nominal performance point instead of the worst

case point dictated by the underlying semiconductor process.

1.3 Multi-core and Reliability

Clock frequency scaling is no longer a practical tool for processor performance

growth. The move to multi-core architectures and the desire to tolerate high

memory latency are pushing the industry toward simpler and smaller in-order

cores that time-multiplex multiple threads and operate on relatively low clock

frequencies, such as Sun Niagara [102]. This means that cores are becoming

cheaper. Cores are growing in numbers, and most importantly, are becoming a

viable unit of reliability, power and performance management.

14

Chapter 1. Introduction

faulty

DEAD FAST DEAD

tile

slow tile

3.9Vth2.3Vth

fast, leaky tile

3.5Vth2.0Vth

typical tile

4.5Vth2.1Vth

faulty

3.5Vth3.2Vth

SLOW

Figure 1.7: An illustration of core performance ranges controlled by DVS/DFS.

PVT variations turn a nominally homogeneous processor array into a collec-

tion of cores with heterogeneous performance [68], where the optimal power /

performance point of each core is determined by its process variations and aging

effects — discussed in detail in Chapter 2. A designer can choose to reduce clock

frequency of some cores to match it to the slowest one on chip to create uniform

on-die performance, wasting considerable resources to achieve the required system

performance. This approach forces a 3σ margin between the nominal design point

and the target specification. The alternative is to expose the PVT variations to

the run-time system by allowing each core to run at its own power/performance

operating point dictated by the process corner. In practice, the voltage and tem-

perature variations combined with the hardware controls such as Dynamic Voltage

and Frequency Scaling (DVS/DFS), turn an operating point into a range as shown

on Figure 1.7. The run-time system can use the hardware controls to select the

core’s operating point from that range to accommodate core-specific computation

and communication demands in a power efficient manner.

15

Chapter 1. Introduction

Even without PVT variations, a nominally homogeneous multi-core system is

a system where every core has different performance. First, consider that a multi-

core die is a highly complex system. Its behavior will only become more complex

as it exceeds 100 cores and moves toward a more scalable memory and com-

munication fabric organization, such as distributed memory blocks and stylized

networks. As a result of contention for resources, cores suffer from unpredictable

cache behavior, limited memory bandwidth and widely varying communication

latency. Second, every application task may have very different computation and

communication resource requirements and correspondingly affect every core. The

problem is difficult to remedy, as parallelizing compilers are still relatively imma-

ture and cannot deliver the fine-grained parallelism needed for near-optimal load

balance. Balancing and scheduling of communication traffic, memory and I/O

accesses, in addition to the traditional processor scheduling, makes the compiler

parallelization problem even more intractable.

An attempt at a performance homogeneous multi-core architecture would re-

sult in an inherently inefficient and slow implementation. Such an architecture

would contain a uniform access memory structure, no caches, and require a priori

optimally scheduled and balanced loads, which is not suitable for a system with

large number of cores. To efficiently utilize massively parallel hardware, it must

be heterogeneous to deliver on the architecture performance potential.

16

Chapter 1. Introduction

System Layers Permanent faults, variations Dynamic variations

Application Error tolerance
Mapping

Run-time Adaptive Routing and Mapping
Routing
Topology Redundancy and Scalability
Link Fault-tolerant control flow Adaptive links [137]
Circuit Self-checking circuits [146, 62] ABB, DVS [59, 132]

Table 1.1: Every layer of a multi-core NoC system plays a role in dealing with
permanent and dynamic variations

Presently, the performance of a realistic scalable system is typically best de-

scribed with stochastic predictive models [70], which accommodate a number of

factors given a probability distribution of critical events in an application. At

the same time, PVT variations result to a significant degree from the inability to

control stochastic semiconductor processes. The variations create a complex core

performance profile that itself can most effectively be described with stochastic

models. Therefore, why not combine both stochastic models together and simply

treat any multi-core system as a distributed stochastic system?

A comprehensive resilience solution has to come from a complete cross-layer

approach outlined in Table 1.1. Every layer has the potential to deliver an efficient

solution to its part of the problem. For example, power-adaptive error resilient

communication links may be most efficiently implemented at the circuit link layer.

They require a retransmission scheme that should ideally be a part of an appli-

cation or router implementation and not built into the circuit implementation

17

Chapter 1. Introduction

Design Time Run time

• circuits to detect fault/variations
and adapt
• layout to minimize impact of vari-
ations
• provide run-time knobs

• Map and route around faults and
“slow” components
• Optimize latency and B/W
• Degrade power/performance
gracefully

Table 1.2: Variation compensation techniques must be judiciously applied at
design and run time.

to avoid wasting buffer resources for a relatively infrequent event. Applications

or routers are better suited to handle retransmission because they are aware of

system-wide communication QoS requirements. The challenge is to understand

how to minimize the overlap between techniques from different system layers and

reduce “over-engineering.” The overall strategy is a combination of design time

architecture and circuit decisions with the run-time adaptive techniques, outlined

on Table 1.2.

Our answer to fault and performance variation resilience is run-time resource

management: adaptive task-to-core mapping and routing, which ultimately is a

solution to any performance heterogeneous configurable platform. If an architec-

ture also provides hardware mechanisms for core-level fault detection and compo-

nent reconfiguration, the multi-core system can also operate closer to its optimal

power / performance regime. The run-time environment, e.g. an operating sys-

tem or a hyper-visor, can manage resources using these hardware mechanisms.

18

Chapter 1. Introduction

It can reduce the impact of PVT variations better than disparate ad hoc point

solutions because it is simultaneously aware of application resource requirements

together with the hardware utilization and its on-chip performance profile. Over-

performing cores and interconnect can compensate for under-performing ones to

result in average rather than worst-case system performance.

The run-time management can be driven by analytical models or system intro-

spection or a combination of the two. The analytical models may give insight into

system behavior but lack practical applicability due to their limited accuracy, as

is the case with PVT variation modeling. With process scaling, the contribution

of hard-to-quantify and hard-to-model effects is likely to grow in comparison to

systematic, modelable ones. Additionally, the criticality of different PVT vari-

ation sources changes with applications, chip architectures, and semiconductor

process maturity. Thus, predicting and compensating for different variations with

a model is inefficient and intractable.

This work focuses on introspection. Introspection is the dynamic process in

which the run-time system observes behavior and performance of individual cores,

network routers, and the system as a whole. It then attempts to modify task map-

ping and routing to improve overall system performance. The introspective ap-

proach has scalability and flexibility advantages over modeling by encompassing

all inter-dependent factors into relatively simple observable metrics. With per-

19

Chapter 1. Introduction

formance counters and control knobs, the run-time layer can form a closed-loop

system with the architecture and thus converge toward the optimal operating

point for an implementation and its particular process corner.

1.4 Research Contributions

This work identifies implementation requirements for a multi-core architecture

with independent processor core clock and voltage domains. This architecture en-

ables core and NoC router performance to abstract PVT variations and to guide

introspective run-time adaptive mapping and routing (Chapter 3). The adap-

tive techniques thus simultaneously compensate for load imbalance resulting from

static process and dynamic voltage and temperature induced performance varia-

tions as well as the application specific load imbalance. Based on this architecture,

the following two techniques are investigated: core sparing and adaptive network

routing.

Core sparing is a strategy of implementing extra cores that are reserved

to replace cores that are defective due to manufacturing and/or dynamic faults

(Chapter 4). The work develops an analytical model to demonstrate that this

technique asymptotically reduces the die cost from the traditional “no spares”

O(A3) down to O(A
1

2), where A is die area. Additionally, the developed die

20

Chapter 1. Introduction

cost models for DFM layout margins and circuit modular redundancy compare

these established techniques with core sparing. These analytical models open

a discussion about the trade-offs between over-engineering of individual cores,

i.e. hardening and protecting circuits within a core vs relying solely on core

redundancy to achieve system fault and variation resiliency. Our analysis shows

that a die with many small unreliable cores is more cost effective than a die with

fewer larger hardened reliable cores. To use core sparing dynamically, the core

must detect faults and report them to the run-time system that can relocate tasks

with a check-point and restart mechanism.

Adaptive network routing is the key to realizing the potential of a globally

asynchronous tiled multi-core architecture to deliver average rather than worst

case network performance (Chapters 6 and 7). The architecture exposes PVT in-

duced performance variations as network router congestion, and allows an adaptive

routing algorithm to compensate for the variation by balancing communication

load across the network. A congestion-aware router simultaneously compensates

for static manufacturing faults and process variation, dynamic voltage and tem-

perature variations, aging, and application load imbalance. This simple and yet

effective approach is necessary in an environment where the system component

performance can best be described as stochastic or unpredictable. Adaptivity

to the environment and operating conditions is essential to dealing with uncer-

21

Chapter 1. Introduction

tainty in the future semiconductor processes, where detailed characterization and

modeling is intractable.

As a result of this research effort, we have developed a flexible, discrete event

Network-on-Chip simulation infrastructure targeted at investigating the impact

of PVT-induced performance variations. The configurable simulator accommo-

dates a range of routing algorithms and permits the simulation of communication

patterns from real applications (Chapter 5).

1.5 Related Works

The subject of this research spans a great number of topics including low

level PVT variations and their sources, task mapping, network routing, and de-

sign space exploration frameworks. The following discusses many relevant efforts

and their relationship to this investigation. Although several efforts discuss their

proposed architectures and systems as tolerant of PVT variability, faults and

heterogeneity, none has addressed or compensated for these on the system level,

which is the main contribution of this work.

Variability Modeling As technology moved to sub-micron dimensions, the

interest in variability modeling has dramatically increased. The published research

ranges from modeling the magnitude and range of manufacturing effects such as

22

Chapter 1. Introduction

random dopant fluctuations (RDF) [89], line edge roughness (LER) [104] that

directly affect threshold voltage and saturation current in transistors, to modeling

gate parameters affected by the process variations: static leakage current [60] and

delay [91]. The models identify that logic gate performance is most sensitive to

RDF and LER, but also is heavily dependent on the supply and threshold voltage

ratio [28].

The FMAX model [22] offers a concise and intuitive way to analyze the ex-

pected critical path delay and its variance for a general circuit comprising a large

number of logic gates and near critical paths. The FMAX model led to [68] that

identified that the impact of within die and die-to-die variations on multi-core die

is determined by the systematic on die variations, while stochastic effects are con-

tained through longer critical path delay averaging within a core. The merits of

the Globally Asynchronous architecture described in Chapter 3 are based on these

conclusions, which also shaped our thinking about variation modeling within our

simulation framework.

Adaptive circuits Although the thrust of this work is on core-level adaptivity,

low level adaptive circuits can have a dramatic impact on power savings when used

in certain appropriate domains, such as communication. [137] discusses a low

power adaptive transmission scheme for NoC that trades off power consumption

for error rate. This scheme requires a voltage controller and retransmission logic to

23

Chapter 1. Introduction

recover from sudden changes in error rates. The supply voltage controller attempts

to keep retransmissions very infrequent. This type of scheme must be tightly

integrated with the NoC router logic for maximum efficiency to accommodate

real time and QoS constraints in the minimal power envelope. For example,

consider the case where a packet should be dropped instead of retransmitted to

meet the constraints. This decision ideally must be made by the routing logic or

the application.

This work also relies on different adaptation techniques such as Adaptive Body

Biasing [133], voltage and frequency scaling [52]. Unlike adaptive communication

schemes, these techniques are orthogonal to the functionality of a core or a router,

but they dramatically impact its performance. Body biasing can realign the core

performance to reduce the variance, and voltage and frequency scaling can navi-

gate the performance operating range resulting from process variation impacts on

a particular cores.

Redundancy and Checkers The only mechanism to combat faults and im-

prove PVT variation resilience is redundancy. The examples of spatial redun-

dancy include Triple Modular Redundancy (TMR) [131], row and column spares

in DRAM [130], core spares in Sun Niagara [102] and Cell [77], and many others.

A simple example of temporal redundancy is Razor latch [53] that registers

the value from a combinational path twice: first, on the clock edge, and second,

24

Chapter 1. Introduction

on the delayed clock edge. By comparing the latched values, the Razor latch can

detect small changes in critical path delay as setup time violations and alert the

system of an error. This technique saves 20–40% of power in a manufactured Alpha

processor, that implemented dynamic voltage scaling and micro-architecture error

state recovery controlled by the error-rate reported by Razor latches. Similar to

our work, Razor is an introspective technique that smoothly adapts to changes

in voltage and temperature, as well as aging and application instruction stream,

which permits the processor to run closer to the average rather than the worst-case

power consumption regime.

GALS Architectures Multiple clock and voltage systems, similar to the

architecture described in Chapter 3 have been proposed and hailed for their po-

tential in fault and PVT variation tolerance [92]. However, application implemen-

tation and study of actual performance of these systems has been scarce. [103]

presents an application-specific partitioning scheme of the multi-core architecture

into voltage-frequency islands (VFI) comprising core clusters to optimize energy

consumption. The authors experimented with one small media application com-

prising fewer than 10 tasks, and showed approximately 35% energy reduction.

The power/performance benefits of VFIs will be more significant in systems with

greater number of processor cores. This work investigates network performance

25

Chapter 1. Introduction

for larger 64 and 256 core systems, and instead of clustering cores into VFIs,

allows each core to select its own voltage / frequency operating regime.

Task Mapping is among the two critical run-time processes necessary to

ensure computation load balance and to meet the expected performance of multi-

core system. Datta et al showed that even small scale, four and eight core systems

with Non-Uniform Memory Access (NUMA) require “location” aware task-to-core

assignment for maximum performance [38]. Mapping a communicating task graph

onto a system with a large number of cores requires even more considerations than

NUMA optimizations, which only considers data set partition and its affinity with

the computation. The mapping problem is essentially a task communication graph

embedding into the network topology graph given a set of bandwidth and latency

constraints. It has been tackled in different environments from the Blue Gene/L

super computers with 3D network topology [143] to a heterogeneous NoC [84].

Heterogeneous architectures are gaining popularity in the multi-core research

community primarily for their power-efficiency due to core specialization. Asym-

metric architectures with a single common ISA shared by all cores but different

complexity, heterogeneous core implementations seems to be preferred. This con-

figuration simplifies compilation but complicates and constrains run-time task

scheduling [121, 11, 30, 12]. What these efforts have not considered yet is net-

26

Chapter 1. Introduction

work topology and locality aware task mapping, which is among the most critical

factors for high network performance.

This work does not focus on task-to-core mapping, but offers a cursory in-

vestigation of its performance impact in Section 7.5. For the network routing

experiments, we use an existing Simulated Annealing FPGA placement algorithm

to compute locality preserving task-to-core mappings [16].

Network Topology determines the most basic bounds of application network

performance as discussed in Chapter 6. Its on-die implementation is critically

important, and thus the VLSI layout, simplicity of implementation and verification

must all play a central role in topology selection. Although many sources discuss

complex but asymptotically high-throughput and low latency topologies, such as

Leiserson’s Fat Tree or Mesh of Trees [72], this work focuses on a regular simple

mesh. Mesh and its derivative Torus have been studied extensively to identify

the optimal dimensionality given fixed on-chip interconnect resources [35]. As

on-chip interconnect throughput scales, a delay-optimal topology implementation

points to a high dimensional meshes and tori [80]. This work, however, focuses

on a low radix 2D mesh because the power consumption of a high-speed on-chip

interconnect can be prohibitive. A low dimensional mesh with slower but wider

inter-router channels should be preferred. A higher radix topology maybe more

27

Chapter 1. Introduction

appropriate for inter-chip communication, since the pin count does not scale as

fast as on-die transistor and interconnect density.

A regular mesh topology can be augmented with special long range links and

customized for a particular application running on a multi-core system [113]. It

is not clear how to apply this technique in general. Perhaps, one can insert

regular long range links into a 2D mesh to increase its “global” reach and improve

performance for applications with non-local communication pattern as is done in

FPGA configurable interconnect [124].

Although every topology can be evaluated with performance and power met-

rics, this work is also interested in network path diversity to enable flexible com-

pensation for PVT variations and faults as discussed in Section 3.2.

Traffic Modeling Application traffic pattern ultimately determines whether

communication resource requirements match resources delivered by the network

topology and routing algorithm. A complete but costly performance analysis can

only be performed on an actual implemented multi-core system, which precludes

any efficient design space exploration. Modeling and synthesis of communication

patterns, some of which may be unknown, is critical in order to perform large

design space exploration of novel architectures. Typically, network research is

performed with a set of synthetic communication patterns ranging from easy and

28

Chapter 1. Introduction

load balanced (e.g. local, neighbor-to-neighbor) to global unbalanced patterns

(e.g. tornado).

To meet the necessity for a more complex and realistic traffic patterns, Sote-

riou et al have proposed statistical traffic model that captures both temporal and

spatial communication behavior [126]. The difficulty with that model spawns from

the fact that the actual applications contain a combination of several communi-

cation patterns. Our work analyzes communication traces of High Performance

Computing multitask kernels, and synthesizes the identical spatial traffic pat-

terns in the developed NoC simulation framework (Chapter 5). These application

traces were generated and previously analyzed by Shalf et al in the context of

large multiprocessor supercomputers [119].

Adaptive Routing Although adaptive routing is not a novel concept, this

work applies it to compensate for PVT variations across the die and deliver

average rather than worst case network performance. Two published adaptive

routing algorithms had a significant influence on this work: Dynamic Adap-

tive/Deterministic DyAD [66] and Channel Queue Routing CQR [122]. Although

they apply to different topologies, both algorithm use flit buffer utilization as

congestion metrics that drive distributed routing decisions. Additionally, both al-

gorithms dynamically switch between different modes of operation: DyAD selects

between deterministic and adaptive routing based on statically set congestion

29

Chapter 1. Introduction

threshold; CQR uses a heuristic to detect network load imbalance and adjusts

between a minimal and mis-routing path selections.

Fault Tolerant Routing This work focuses on adaptive routing as a vehi-

cle to compensate for load imbalance resulting from PVT variations, but does

not explicitly consider fault-tolerant routing. A congestion aware router behaves

correctly with faulty nodes and routes traffic away or around them because the

faulty, zero throughput nodes quickly become congested. At the same time, the

routers around the faulty router also become congested. This growing congestion

region would eventually result in a deadlock unless resolved externally because

more buffers would contain packets waiting to be routed, but no forward progress

can be made.

The way to resolve this problem is orthogonal to a routing algorithm or its

ability to adapt. Detecting a fault and recovering from a fault is similar in principle

to deadlock detection and recovery. It is an implementation specific decision that

depends on the communication fabric guarantees. For example, if a fabric does

not guarantee delivery, then simply dropping a packet on a time-out and marking

unresponsive output channel as unavailable can solve the problem. This time-out

and retransmit scheme must be supported by the run-time environment or the

application if lossless delivery is required. A routing algorithm itself cannot make

30

Chapter 1. Introduction

these decisions, but it simply has to adapt when an output router channel becomes

unavailable.

A different approach to network fault-tolerance is stochastic routing [50], where

to packets are replicated and propagated with certain probability in multiple di-

rections, thus increasing their chances of not being dropped. This very interesting

idea nonetheless requires support from the run-time system to handle arrival of

multiple copies of the same packet, out of order arrivals, and a remote chance that

no copy of a packet arrives to its destination at all.

Deterministic Routing using Safety Levels is an alternative to stochastic rout-

ing [139]. The algorithm consists of two components. The first one marks all

nodes around a faulty node as unsafe according to special rules that logically

modify network topology and guide packets away from unsafe regions. The latter

part of the routing algorithm is adaptive. A packet is always forwarded to a safe

node, if it is available, and an unsafe node otherwise.

Design Exploration Frameworks As a part of this research work, we have

a developed a highly configurable Network on Chip simulation framework. The

discrete event simulator easily incorporates the effects of PVT variations on NoC

router components. To the best of our knowledge, no other framework that ac-

commodates on-chip performance variations is currently available.

31

Chapter 1. Introduction

A cycle-stepping simulator such as ORION [136] is an effective and widely used

tool to evaluate routing algorithm performance and estimate its power consump-

tion. The value of the simulator stems from integrated tools such as Garnet [5] that

provides a detailed network model of a NoC implementation or Polaris [125] that

performs MPSoC/NoC design space exploration. Unfortunately, ORION models

globally synchronous systems and is valuable primarily for routing algorithm re-

search. In contrast, Beigne et al developed an asynchronous NOC architecture

design framework [10] that can produce GALS chip implementations, but has not

demonstrated power/performance advantages over the equivalent, globally syn-

chronous architecture. Our research effort bridges the gap, providing the infras-

tructure to study GALS network systems with real workloads, routing algorithms,

switching schemes and other architectural parameters.

1.6 Dissertation Organization

This dissertation is organized as follows.

Chapter 2 discusses the sources and modeling of on-chip performance vari-

ations and their impact on multi-core die performance. The chapter highlights

both the impact and limitations of a range of existing Design-for-Manufacturing

(DFM) and circuit techniques designed to mitigate PVT variations.

32

Chapter 1. Introduction

Chapter 3 presents the salient features of a core-level Voltage Frequency Island

(VFI) architecture and globally asynchronous Network-on-Chip motivated by the

on-die variation models.

Chapter 4 discusses the use of redundancy for fault tolerance at several system

levels and develops analytical models for die yield and cost. The models demon-

strate that core sparing is the most cost effective spatial redundancy as compared

to larger layout margins and circuit module redundancy within a core.

Chapter 5 presents our Network-on-Chip simulation infrastructure used to

investigate the network performance impact of PVT variations and the ability of

adaptive routing algorithms to compensate.

Chapter 6 discusses network performance bounds and develops several adap-

tive routing algorithms and output channel selection heuristics to identify the

overall best router for our set of High Performance Computing benchmarks.

Chapter 7 presents a new PVT variation network performance bound to pro-

vide a theoretical foundation for the network performance impact of PVT vari-

ations. It continues to demonstrate that a simple adaptive routing algorithm

effectively compensates for the performance degradation. The chapter concludes

by presenting a method to convert the performance gains of adaptive routing

into reduced design margins and evaluates the impact of task-to-core mapping on

network performance.

33

Chapter 1. Introduction

Chapter 8 presents two analytical models that enable a designer to efficiently

evaluate real application performance on 2D planar network topologies and com-

pares the analysis results to those obtained from NoC simulation.

Chapter 9 summarizes this work and highlights critical lessons and trends that

dominate the results obtained.

Chapter 10 discusses some unanswered questions and interesting research di-

rections that are based on this investigation.

34

Chapter 2

Performance Variations

Many researches have attempted to characterize parametric variations that

result from modern semiconductor processes, and suggest appropriate actions that

would reduce these variations and improve die parametric yield. These techniques

are aggregated into a set of guidelines known as Design-for-Manufacturing (DFM).

DFM rules grow in number and complexity with device scaling, but collectively

remain inadequate to compensate for the variations, since they are applied ad hoc

and solve a limited problem without any regard for other factors [79]. The impact

of parametric variations continues to increase.

Attempts to characterize the performance impact of process variations at tran-

sistor and gate level resulted in detailed performance models [26, 18]. It suffices to

say these models are inadequate because their authors out of necessity make sim-

plifying assumptions on device parametric distributions. In practice, this limits

applicability of these models to predicting trends and making design recommen-

35

Chapter 2. Performance Variations

dations. They are not able to accurately estimate system performance, which is

something that architects need.

The complete variability picture is significantly more complicated than useful

models can describe or DFM can address. No one but the experts in the semi-

conductor fabrication facilities have a good understanding of the variations in the

current and future processes. The ability to control stochastic processes such as

etching, chemical deposition or lithography is fundamentally limited by physics.

Therefore, DFM guard-bands and margins, or simply a lot of “over-engineering”

remain the method employed to produce state of the art designs today.

This chapter summarizes physical sources of Process Voltage Temperature vari-

ations, their relationships and correlations, and develops a simple approach to

modeling Network-on-Chip router performance from basic transistor parameters.

The performance variation profile of a multi-core system is developed to demon-

strate the foundation and the motivation for the tiled multi-clock architecture.

An understanding of the relationship between the variations and system perfor-

mance helps to evaluate requirements for higher-level, introspective methods such

as sparing or routing that can minimize DFM over-engineering.

36

Chapter 2. Performance Variations

2.1 Sources and Trends

2.1.1 PVT Variation Sources

The impact of semiconductor devices parameter variations on the device per-

formance is a reflection of the physical world, an environment where no two compo-

nents can be manufactured with exactly the same precision. Since their inception,

semiconductor processes have encountered problems with variations. As processes

matured, every device generation node was tuned for mass manufacturing in spite

of parameter variations. Unfortunately, the critical dimension (CD) of the current

generation of devices are comparable in size to the molecules that are manipu-

lated during the semiconductor process. For example, the channel of the smallest

size transistor contains less than 100 implanted ions; the low level metal intercon-

nect is so thin that a few missing copper atoms dramatically change its electrical

properties. The semiconductor manufacturing processes are naturally stochastic

and rely on large quantities of atomic particles for accuracy and repeatability. As

the number of particles per device decreases, the variance on device parameters

increases sharply. This is illustrated by the following relationship [22]:

σVth
∼ 1

√

WeffLeff

(2.1)

37

Chapter 2. Performance Variations

which states that the standard deviation of transistor threshold voltage, the key

parameter that determines both the saturation current and the static current, is

inversely proportional to the device size. Semiconductor process induced vari-

ations are just one source of concern on the modern die. Due to the die size

and device density combined with integration of multiple functionally heteroge-

neous components, it is no longer possible to accurately predict temperature and

voltage gradients across the chip [101]. This section discusses the complex inter-

relationship between the three sources of performance variations: Process, Voltage

and Temperature (PVT).

Aggregate PVT variations can be measured as delay or current on a large

number of nominally identical devices and structures. This has enabled many

researchers to classify and understand the correlations between various semicon-

ductor device parameters for generations of semiconductor process nodes [107].

The parametric variations can be split by scope into wafer-to-wafer (W2W), die-

to-die (D2D), and within die (WID) components [133]. Understanding of the

impact of each of these is critical to find the best method to address them. The

general approach to compensate for W2W and D2D parametric variations, such

as spread in transistor threshold voltage Vth, is to employ chip-wide techniques.

Examples of chip-wide techniques are post manufacturing or dynamic adjustments

to body bias and/or supply voltage to “align” gate delays and power consump-

38

Chapter 2. Performance Variations

 0 5 10 15 20
 0

 5

 10

 15

 20

 0 5 10 15 20
 0

 5

 10

 15

 20

x

y

 0 5 10 15 20
 0

 5

 10

 15

 20

 0 5 10 15 20
 0

 5

 10

 15

 20

Total

Systematic

Dynamic

Random

Figure 2.1: A die performance profile comprises stocastic and systematic process
effects and a dynamic gradient.

tion across multiple dice. Within die variations have to be addressed differently

depending on the source and nature of the variations: systematic, stochastic, and

dynamic that are illustrated on Figure 2.1.

Systematic variations can be traced to predictable sources and repeatable ef-

fects that theoretically can be compensated during the system design, if they can

be characterized. This characterization requires a mature semiconductor process.

Initially in the process development, a number of variables are changing simultane-

ously, which makes it difficult to isolate and identify systematic variation sources

from random and dynamic ones. The systematic sources include lens aberrations,

sub-wavelength optical lithography requiring optical proximity correction, move-

ment direction of the ion implanter and lithography steps, pattern-density [107].

All these process effects are the result of physical limitations.

39

Chapter 2. Performance Variations

Consider sub-wavelength photo-lithography that requires Optical Proximity

Correction. During each mask preparation step (initial synthesis, DFM transfor-

mations and OPC), CAD tools introduce systematic errors in layout geometries

that accumulate to a significant variation from the nominal device parameters.

This is simply a limitation of the way modern, scalable CAD flows are imple-

mented as a sequence of independent optimization algorithms. In addition to the

semiconductor process, chip architecture and its on-chip layout create a number

of systematic performance variations. For example, a chip layout may create tem-

perature and voltage hotspots, essentially guaranteeing that different parts of the

die will operate in different performance regimes.

Stochastic variations are inherently unpredictable and hard to control, al-

though their magnitude can be managed as discussed in Section 2.2. The examples

of random variations include line edge roughness (LER), ion dopant density fluc-

tuations, presence of impurities, gate length and transistor oxide thickness [104].

They typically affect key transistor parameters such as threshold voltage and sat-

uration current. These effects have the maximum impact on the smallest size

transistors as illustrated by Equation 2.1. This severely limits device scaling and

forces designers to employ bigger devices with more predictable parameters, which

pushes the technology back to larger geometries.

40

Chapter 2. Performance Variations

The random effects can and often are spatially correlated. This can be used

to match the parameters of several related devices, something that is particularly

important in analog circuits. Spatial correlation is only significant for relatively

small on-chip areas, as demonstrated in [107]. The authors studied spatial corre-

lations of ring oscillator frequencies located within a 64µm × 100µm tile. They

found measurable correlation only within eight ring oscillator radius, which pre-

dicts no significant correlations in random PVT variations between the processor

cores.

Dynamic variations stem from system architecture, layout, circuit operation

and depend on its activity, which is driven by application behavior and resource

utilization. These variations can be broken down into reversible and irreversible.

Reversible effects include temperature/voltage hotspots, self-heating, supply volt-

age (IR drops) and temperature fluctuations. For example, a multi-core system

where only a subset of processors are actively utilized has temperature and voltage

hot-spots that contribute to a performance gradient across the cores with other-

wise nominal performance. The hot-spots can accelerate uneven circuit aging and

contribute to irreversible effects. These include Negative Bias Temperature Insta-

bility (NBTI), hot carrier effects, electromigration, and dielectric breakdown, all

of which degrade transistor and interconnect performance and might eventually

result in a permanent fault.

41

Chapter 2. Performance Variations

Compensating for the dynamic effects involves a combination of design and

run-time techniques. A designer can “distribute” the computation load through

the architecture and layout techniques that minimize the performance gradients

between the highly and lightly utilized areas of the die. The run-time environ-

ment can further minimize dynamic performance variation impact through load

balancing.

Systematic and random process variations together with dynamic voltage and

temperature variations create a complex circuit performance profile. The inter-

relationships between process, voltage, temperature, leakage current and the dis-

sipated energy is illustrated on Figure 2.2. Temperature variations stem from

different activity factors among cores, functional units, from different circuit struc-

tures, and from nonuniform surface of the thermal interface material (TIM) that

bonds the chip to its package. Voltage variations stem from IR drops that result

from non-ideal voltage distribution, which in turn are exacerbated by activity-

dependent IR drops. These are exacerbated by temperature-dependent leakage-

current variations (i.e., varying the I term) or switching activity that causes

voltage drops due to circuit inductance and possibly insufficient decoupling capac-

itance. These three variation sources exhibit a number of feedback loops. Process

variations affect leakage, which affects both voltage and temperature. Voltage

affects energy dissipation and the temperature, which then affects leakage [67].

42

Chapter 2. Performance Variations

Energy
Dissipated

Dopant Fluctuations

Process Variations

Leakage Current

Voltage

ex
po

ne
nt

ia
l

IR Drop

Temperature

quadratic

quadratic
increase

increase

quadratic
linear

Vth

Leff

Figure 2.2: The relationship between process, voltage and temperature varia-
tions and their impact on circuit performance.

In the modern semiconductor process, the transistor performance is predomi-

nantly affected by variations [27], and the impact grows as feature sizes decrease.

The interconnect, however, remains largely unaffected by variations. This is par-

ticularly true for longer interconnect traces because they are several process gen-

erations behind the transistor. However, long on-chip connections and buses are

buffered at regular intervals. Since the delay of the optimally buffered intercon-

nect is not dominated by its RC delay, the overall bus delay variations will be

largely determined by the buffer variations [112].

43

Chapter 2. Performance Variations

Process Step Physical Effect Device Circuit Architecture

CMP,
Etching,
Ion Implan-
tation,
Lithogra-
phy,
Diffusion,
ALD, PVD,
Cleaning

Systematic:
Line Edge
Roughness
(LER)

Vth, Weff ,
Leff , tox

variations

Timing,
Leakage,
Noise
Margins,
Dynamic
Energy

Functional
(Bit-Error
Rate, Faults)

Stochastic:
LER, Ran-
dom Dopant
Fluctuations,
Impurities

Parametric
(latency,
through-
put, power
consumption)

Table 2.1: Semiconductor process steps and physical effects manifest themselves
as functional and parametric variations on multiple levels.

Design Level Examples of techniques

Process high-k dielectric, OPC
Layout transistor size matching, DFM rules
Circuit adaptation (AFS, AVS, ABB) combined with ECC
Architecture delay-insensitive (asynchronous) communication, module re-

dundancy, checkers
System run-time application mapping, routing, reconfiguration,

checkpointing

Table 2.2: Techniques to limit faults and PVT variations on every design level.

44

Chapter 2. Performance Variations

2.1.2 Minimizing Variations

PVT variations manifest themselves as different effects, parameters and met-

rics on every system level (Table 2.1). The methods that limit their impact must

be applied vertically throughout the design process as well (Table 2.2). As the

metrics across the levels are related, the impact of various methods often over-

laps, which creates redundancy and wastes resources due to “over-engineering.”

For example, large layout margin and asynchronous communication discipline

both compensate for PVT variations and both incur implementation overhead.

Which is more effective? If one is applied, can the designers proportionally scale

down the impact of the other? Unfortunately, there is no simple way to trade off

the impact and costs of these techniques. This work shows that the extra effort

at the system level with dynamic mapping and routing can reduce the margins

and costs at the lower implementation levels. The following are some example

techniques that compensate for PVT variations on different design levels. No one

level can entirely compensate for all PVT effects and certainly cannot do it in a

cost-effective manner.

Layout: DFM techniques provide extra margins for yield and reduce process

variations, since many of the stochastic effects such as dopant fluctuations are anti-

correlated with feature sizes. For examples of layout techniques, [106] analyzed

spatial and proximity intra-field gate CD (critical dimension) variability. The

45

Chapter 2. Performance Variations

authors demonstrated that simultaneously correcting for spatial and proximity

effects, which is a result of inadequate mask resolution, yields in 14% ideal circuit

speed improvement. This gain is comparable to what we obtained from adaptive

routing (Chapter 7). This example shows that a highly complex characterization

and correction in a particular process node (the authors used 180nm) may not even

compare with the potential improvements from a less costly technique. Note,

however, that dynamic mapping and routing compensates for a wide range of

performance variation effects, and not only gate CD variability.

Circuits: PVT variations, limits on the supply voltage scaling, and power

dissipation have mostly eliminated logic styles other than the static ones. Static

logic offers strong noise immunity with complimentary active pull up and pull

down networks. The critical path length has also been affected. Prior to 180nm

process, the main approach to improve circuit clock frequency was increasingly

deeper pipelining, which resulted in short critical paths with significant delay

variations and large design margins even in older processes. Coincidentally, [127]

showed that short critical paths were also far from the power-performance optimal

logic depth of 18 FO4 delays (15 logic + 3 latch). What initially was a power

limit trend, had a dramatic impact on PVT variations. Since longer combinational

paths tend to “average” gate delays, they result in narrower circuit performance

variations (Section 2.2).

46

Chapter 2. Performance Variations

Adaptive body biasing (ABB) and adaptive supply voltage (ASV), can be

applied to most circuits and have a potential of reducing the impact of process

variations by more than 2x [59]. These techniques are mostly orthogonal to the

circuit type because they simply realign device parameters from different dice to

compensate for die-to-die and wafer-to-wafer variations.

Techniques, such as error correction, can be used efficiently only in some do-

mains (e.g. memories and communication) to dynamically trade off power con-

sumption for error rate [109]. For example, [137] discusses a Dynamic Voltage

Swing Scaling (DVSS) for communication in Network-on-Chip. The voltage swing

is adjusted to minimize energy consumption while maintaining very low transmis-

sion error rate, which results in up to 42% energy savings. This is a good example

to demonstrate that the system implementation level where to apply ECC tech-

niques must be carefully selected to yield a better solution. In [137], DVSS oper-

ates transparently and independently with respect to the rest of the system. This

simplifies its implementation as compared to the case where upper layer firmware

or the operating system controls the voltage swing. At the same time, the DVSS

scheme implements retransmission, which consumes power and complicates the

design. A better approach might be for delivery mechanisms, including retrans-

mission, to be a part of a NoC router logic and/or the run-time QoS framework.

47

Chapter 2. Performance Variations

This allows the environment to select the optimal operating network regime given

its load, power and performance requirements.

Architecture: This research strives to demonstrate that architecture aware

mechanisms supported by the run-time system can compensate most flexibly and

efficiently for the performance impact of PVT variations (Chapter 3). The archi-

tecture provides control knobs and sensors to the run-time layer that can adjust

the system operating regimes for optimal utilization at lowest power. For example,

[95] implements small test oscillators on across the chip to monitor temperature

and voltage supply to the area and control the operating regime for the adjacent

modules. This circuit characterizes the performance profile at and around its site.

Due to spatial correlations, the test circuit experiences the same process varia-

tion effect as its neighbors, and thus it can adjust within its own operating range

(Figure 2.7) autonomously.

2.1.3 Problems with Current Approaches

Until recently, the success of VLSI CAD came from the abstractions that

separated concerns between the architects, RTL designers, circuit designers, and

layout engineers. Architects deal with functional modules, RTL designers — with

gates and registers, circuit designers — transistors and wires; and layout engi-

neers — rectangles. These clean abstractions are no longer sufficient to produce

48

Chapter 2. Performance Variations

high performance, cost effective VLSI because they limit cross-layer visibility and

preclude effective and consistent methodology to trade off reliability and yield for

power, area, performance.

The divide between electronic design and DFM rules is particularly striking.

Theoretically, the trade off between DFM yield improvement vs lost performance

and power can be quantified for individual layout rules; in practice, rule combina-

tions present a challenge. Foundries typically specify safe guidelines to produce

transistors and interconnect segments that match the properties in their SPICE

models optimized for several performance corners, e.g. low power slow transis-

tors or high performance ones. The presented guidelines are deceptively simple,

and their actual effectiveness changes with process maturity and the design type.

Since the rules apply to layout sizes and shapes, they preclude a meaningful con-

nection to and understanding by the circuit designers who think about transistors,

gates and modules rather than layout rectangles. Designers essentially apply all

rules without any quantification of their effectiveness, their criticality, and their

cost [57]. The outcome of this uncertainty is lost performance and power due to

transistor and wire sizing, spacing, and overly safe voltage supply margins.

Table 2.2 provides examples of resiliency techniques that can be applied inde-

pendently on various design levels. These point solutions range from brute force

dual modular redundancy [81] to invariant checkers in a processor core [97]. A

49

Chapter 2. Performance Variations

cross-layer optimization strategy is required for fault and variation resilience, a

strategy that spans from the lowest level of process and device engineering to the

upper level of system architecture. [28] presents components of this strategy. It

investigates simultaneous circuit yield and energy optimization, and identifies sev-

eral key parameters (W , Vdd and Vdd

Vth
) that most critically affect the yield. This can

be a part of a system-wide strategy, where designers identify critical parameters

that maximize yield (e.g. supply to threshold voltage ratio) and provide control

knobs (e.g. Adaptive Voltage Scaling) to run-time system. These knobs allow to

dynamically select the most appropriate operating point for a particular process

corner that affects the die and its sub-components.

2.2 Variation Modeling

2.2.1 FMAX Model and Simulation Infrastructure

Due to a great number and variety of physical processes and variations that

affect multi-core system performance, an analytic model has a limited practical,

usable impact. A small circuit with a same logic type (e.g. datapath, memory, or

random logic) can be modeled to gain an insight into its performance profile given a

process variation model from the fabrication facility. Modeling a complete system

comprising different logic blocks, including memories and compute elements, is

50

Chapter 2. Performance Variations

complicated and does not yield very useful analytical results particularly when

dynamic effects and specifics of the on-die layout are added to the model. A useful,

but costly method to evaluate multi-core system performance is with Monte Carlo

simulations, since the stochastic nature of this process naturally identifies both

the expected performance and its variance, as well as critical corner cases.

Transistor level Monte Carlo simulations are too costly and impractical, and

they require accurate and complete models. This work uses router level Monte

Carlo simulations, instead. The models are parametrized with router performance

metrics, such as packet transmission latency, router and channel throughput. This

high-level analytical framework models NoC router parameters using transistor

parameters and their PVT variations. This framework is based on FMAX [22]

and yields a first order router performance model. The presentation below is an

overview rather than a full usable model. Its quality of results depends on the

semiconductor device parameters and the accuracy of the abstract router model,

both of which are dependent on a concrete NoC implementation and cannot be

abstracted beyond what we have done below.

Consider a transistor process variation model characterized by four parameters:

width Weff , length Leff , threshold voltage Vth, and oxide thickness tox. These

variables are random and possibly correlated, as the case is with the threshold

voltage shown in Equation 2.1. Based on these parameters, one can compute the

51

Chapter 2. Performance Variations

expected gate delay in a chosen circuits using advanced device models [25] or very

simple first order models [112] sufficient for our qualitative model:

Idsat = k′Weff

Leff

(

(Vdd − Vth) Vdsat −
Vdsat

2

)

(2.2)

Req =
3

4

Vdd

Idsat

(

1 − 7

9
λVdd

)

(2.3)

CL = (1 + α)WeffLeff

ǫox

tox

(2.4)

Tgate = 0.69ReqCL (2.5)

Equations 2.2 and 2.3 compute transistor’s equivalent resistance in the saturation

region, which translates into gate’s pull down network. Equation 2.4 estimates the

load capacitance as gate capacitance of the subsequent gate, where α = WPMOS

WNMOS
is

the sizing width ratio between the PMOS and NMOS transistors in a gate (typi-

cally α > 2 for an inverter). The expression for gate delay in Equation 2.5 treats

gate switching as discharge through an RC network. Since the input parameters

Vth, Weff , Leff , and tox are random variables, so is the delay Tgate.

To obtain the circuit performance, a critical path delay or maximum operating

frequency, we define an abstract circuit model based on FMAX [22]. An abstract

circuit is described by two parameters: the length Lcp and the number of near-

critical circuit paths Ncp. A nominal circuit has one longest combinational path,

52

Chapter 2. Performance Variations

but with PVT variations any of the near-critical paths could potentially become

the longest and thus critical:

• Lcp is the average length of the near-critical paths that could influence the

maximum frequency. For this model, Lcp represents a path length in gates,

e.g. a fanout of 4 inverter delays. If gate delay Tgate is a random variable de-

scribed with the expected and standard deviation values [µ(Tgate), σ(Tgate)],

then the critical path delay is the sum of Lcp gate delays:

Tcp = LcpTgate = [µ(Tgate) × Lcp, f(σ(Tgate))] (2.6)

where Tcp is the probability density function (PDF), i.e. the distribution of

critical path delays. It is described with the expected value and the standard

deviation shown as a tuple. The standard deviation of Tcp, f(σ(Tgate)), is

a function of the gate delay distribution and spatial parametric correlations

between adjacent devices. In the following, we assume normally distributed

gate delays Tgate, but any symmetric distribution yields equivalent qualita-

tive results.

If Tgate variation is systematic and/or spatially correlated, the path variance

is the sum of gate variances. Lcp has no impact on the standard deviation

53

Chapter 2. Performance Variations

of the critical path [22]:

σ(Tcp)

µ(Tcp)
=

Lcp × σ(Tgate)

Lcp × µ(Tgate)
=

σ(Tgate)

µ(Tgate)
(2.7)

If systematic effects continue to have a dominant impact on process varia-

tions, then Core-to-Core performance variations are going to be determined

primarily by these effects.

In contrast, should the gate delay variations be stochastic and mostly spa-

tially uncorrelated, longer critical paths will average out σ(Tgate) and dimin-

ish its impact. Normal distribution is assumed here to show a closed form

solution [15]:

σ(Tcp)

µ(Tcp)
=

√

Lcp × σ(Tgate)

Lcp × µ(Tgate)
=

1
√

Lcp

× σ(Tgate)

µ(Tgate)
(2.8)

Larger Lcp increases averaging effect for uncorrelated variations and reduces

path delay variability. Figure 2.3 shows that the actual circuits exhibit some

degree of spatial correlation in gate delays [22].

• Ncp is the number of near-critical combinational paths in the circuit. The

longest of Ncp paths determines the maximum circuit clock frequency. Given

the distribution Tcp(x) of the critical path delays, the circuit delay distribu-

54

Chapter 2. Performance Variations

Figure 2.3: Real gate delay exhibits some spatial correlation [22].

tion is:

Tcircuit(t) = Ncp

(∫ t

0

Tcp(x)dx

)Ncp−1

Tcp(t) (2.9)

which is derived from cumulative density function (CDF) [22]. Larger Ncp

increases the expected critical path delay because the probability of an out-

lier path with a delay close to µ(Tcp) + 3σ(Tcp) is greater as shown on Fig-

ure 2.4(a). Unfortunately, even with normally distributed critical path delay,

no closed form expression for the expected circuit delay µ(Tcircuit) and its

standard deviation σ(Tcircuit) is available. Their evaluation must be per-

formed numerically.

55

Chapter 2. Performance Variations

Table 2.3 shows two important circuit types — random logic and memory array

— with a qualitative description of their parameters. Figure 2.4(b) illustrates

circuit delay probability density functions, which assumed normalized gate delay

distribution Tgate = (µ = 1, σ = 0.1). As expected, random logic benefits from

averaging effect along its few long critical paths, which lowers the expected path

delay and narrows the path delay variance. In contrast, the critical paths in a

memory array comprise mostly interconnect, which is not significantly affected

by the variations, and a few logic gates, which are affected. Low Lcp reduces

averaging. However, a high Ncp, which corresponds to the number of columns and

rows in the memory array, significantly increases the probability of an outlier and

pushes the expected critical circuit delay higher.

In a typical design, the cache array will dominate overall processor perfor-

mance, making the case for decoupling of the two subsystems with an asyn-

chronous interface. Chapter 3 argues for a multi-core GALS architecture with

synchronous core/router islands as a method to expose core-to-core PVT varia-

tions. Further decoupling of pipeline stages within a core has also been demon-

strated to yield higher system performance and power savings as compared to the

globally synchronous design even in cases without PVT variations [92].

To obtain a system performance model, FMAX can produce the critical path

delay distributions for each subsystem within a processor core and an on-chip

56

Chapter 2. Performance Variations

0

0.05

0.1

0.15

0.2

0.25

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6

C
ou

n
t/

S
am

p
le

s

Normalized Delay

Delay Distribution

Nominal
Delay

Expected
delay
grows
w/ Ncp

Ncp = 1
Ncp = 2
Ncp = 10
Ncp = 100

(a) Effect of Ncp on circuit performance.

0

0.05

0.1

0.15

0.2

0.25

0.9 1 1.1 1.2 1.3 1.4 1.5 1.6

C
ou

n
t/

S
am

p
le

s

Normalized Delay

Delay Distribution

Nominal
Delay

Random Logic
Low Ncp, High Lcp

Memory Array
High Ncp, Low Lcp

Ncp = 10, Lcp = 18
Ncp = 1000, Lcp = 5

(b) Performance Distribution for randome logic vs memory arrays.

Figure 2.4: Impact of Lcp and Ncp on circuit performance distribution.

57

Chapter 2. Performance Variations

Logic type Ncp Lcp

Random Logic Small: 10s – 100s Tens of gates
Memory array Large: SRAM bits × read ports Few (mostly interconnect)

Table 2.3: Summary of Ncp and Lcp parameters in the FMAX model [68].

network router characterized by Lcp and Ncp. This work focuses on the network.

Based on the delay distributions, the Monte Carlo method synthesizes NoC in-

stances annotated with performance parameters: router throughput and latency.

Instead of treating critical path delay as a distribution of absolute values induced

by the underlying transistor performance, we decompose the delay into the nom-

inal value with “deltas” for each variation type:

Tcp = Tcp,nom + ∆Tcp,stoch + ∆Tcp,sys + ∆Temp + ∆V (2.10)

Each “delta” mimics the variance and “shape” of a corresponding distribution,

but sets the expected value at 0. ∆Tcp,stoch represents contribution from correlated

and uncorrelated stochastic effects; ∆Tcp,sys represents the contributions from sys-

tematic effects; ∆Temp and ∆V — from dynamic on-die temperature and voltage.

Notice, that an important model component is missing: on-die circuit location.

Systematic effects and dynamic effects are location dependent, and stochastic ef-

fects are not independent of the systematic ones, as the following relationship

58

Chapter 2. Performance Variations

N−way Switch

Input Flit Buffer

Communication Channel

Figure 2.5: Simple first order router model

demonstrates:

σVth
∼ 1

√

WeffLeff

(2.11)

Although, the threshold voltage is random, a result of stochastic nature of ion

implantation, its distribution variance depends on the actual device size, which

is a result of systematic and stochastic effects. Addition of on-die locations (x, y)

creates a complete model that can be simulated at multiple levels: devices, router

components, and router performance:

Tcp(x, y) = Tcp,nom(x, y)+∆Tcp,stoch(x, y)+∆Tcp,sys(x, y)+∆Temp(x, y)+∆V (x, y)

(2.12)

In this work, an on-die location (x, y) refers to an area containing a sub-module

such as router input FIFO, rather than a transistor or an interconnect trace.

Figure 2.5 shows a simple first order router model, comprising three key com-

ponents in the router critical path: input flit buffer, a switch, and a communication

59

Chapter 2. Performance Variations

channel to the adjacent router. The simulation framework can compute Lcp and

Ncp parameters based on a NoC router implementation:

• Input Flit Buffer performance is determined by its size (B flits1), and the

system flit size (w bits). Assuming that each flit buffer is an independent

block, implemented in a single SRAM array of size B×w, the FMAX model

parameters are defined as follows. Ncp = max(B,w) and Lcp = log(B)+TSA

comprises row decoder delay and sense amplifier delay required to capture

the values from the array. Note, that we omit the array access time as it

mostly interconnect and unaffected by PVT variations relative to transistors.

For an implementation that uses registers in place of an SRAM array in order

to achieve smaller input buffer sizes and reduced power consumption [66],

the definitions of Lcp and Ncp also hold.

• The switch can be defined by its connectivity and degree, the number of

inputs and outputs. For simplicity, assume a fully connected crossbar with

N inputs, implemented as a fan-in tree of multiplexers. Lcp = log(N) is

the tree height, and Ncp = N2 represents the total number of paths in a

crossbar.

1A flit is a unit of flow control in a network, typically a word or a double-word

60

Chapter 2. Performance Variations

• The communication channel is implemented as a repeated interconnect bus

of width w and length L. An important factor differentiated this router

component from input flit buffers and the switch is that a communication

channel spans a large area defined by the source and sink router locations

(x0, y0) − −(x1, y1). The on-die distance between the routers and the un-

derlying technology determines the optimal repeater (or pipeline register)

distance and thus Lcp parameter. Ncp is defined simply as w in a basic unidi-

rectional bus. The repeater locations along the bus determine their specific

systematic “deltas.”

Based on the FMAX parameters for each router subsystem, compute router

throughput and latency, which depend on implementation details such as degree

of pipelining of the router. Assume that each of the subsystems is a separate

pipeline stage and the inter-router channel is not pipelined, then the throughput

Wrout and latency Lrout can be expressed as:

Wrout = max(Tcp,buf , Tcp,sw, Tcp,ch)
−1 (2.13)

Lrout = Tcp,buf + Tcp,sw + Tcp,ch (2.14)

where router position (x, y) have been omitted for simplicity and clarity.

61

Chapter 2. Performance Variations

x

y

 0 5 10 15 20
 0

 5

 10

 15

 20

 0 5 10 15 20
 0

 5

 10

 15

 20

 0 5 10 15 20
 0

 5

 10

 15

 20

 0 5 10 15 20
 0

 5

 10

 15

 20

 0 5 10 15 20
 0

 5

 10

 15

 20

Systematic
W, L

Random
W,L,Vt,Tox

Application
Workload

Load,Vdd,Temp
Dynamic

NoC Architecture

Synthesis

Size
Topology

Process

Semiconductor

NoC Simulator

Figure 2.6: NoC simulation framework forms a part of variation-aware architec-
ture exploration environment.

Figure 2.6 illustrates the structure of the Network on Chip simulation frame-

work. The semiconductor process provides the device models: transistor dimen-

sions W and L, the threshold voltage Vth and oxide thickness tox as spatially

dependent distributions. This level of detail is required to compute the nominal

circuit performance Tcp,nom, stochastic ∆Tcp,stoch and systematic ∆Tcp,sys. A multi-

core architecture instance defined by the number of cores, network topology, and

other parameters discussed in Chapter 3 is realized (placed) on the manufactured

die profile that includes stochastic and systematic variation contributions. This

gives each router and channel a performance profile (Figure 2.7) depending on its

on-die location.

62

Chapter 2. Performance Variations

A network on chip simulator enables dynamic performance measurements for a

collection of application workloads (Chapter 5). The simulator captures resource

utilization and activity statistics for each router and channel, which can be trans-

lated into power consumption by individual network components, uneven voltage

distribution across the die and changes in on-die temperature gradient. These dy-

namic effects ∆Temp and ∆V impact core and router throughput and affect overall

system performance, forming a cyclical dependency in the simulator framework.

This work does not directly study the effects of dynamic VT variations on the

application performance, since the details of the plausible model are heavily de-

pendent on a complete system implementation. Instead, the assumption is that

the system temperature and voltage attain a steady state, and each core/router

tile settles in its operating regime for the length of application execution.

The experimental results depend directly on the semiconductor variation model

quality and accuracy. If a sufficiently accurate model is not available as is the case

in this work, it is possible to perform simulations by modeling PVT variations as

the core/router performance directly (Chapter 7). This serves two main goals.

First, it permits to examine foreseeable scenarios in the future process genera-

tions and come up with prescriptive approaches to deal with variations. Second,

it enables simulations independent of a specific process or its maturity, which typ-

ically involves proprietary information. Instead, with NoC level variation models,

63

Chapter 2. Performance Variations

it is simpler to isolate different router components’ performance distributions and

understand their impact on the overall system performance. By analyzing the

sensitivity of overall system performance to the performance variance of individ-

ual components, one can identify the subsystems where designers should place

most effort to compensate for PVT variations vs others where the variations can

be compensated more effectively by an adaptive routing scheme.

2.2.2 Variations and Multi-core

What is the impact of PVT variations on a multi-core die? What does the

die performance landscape look like? Two multi-core architecture trends have

emerged so far. The first follows a conventional track of highly complex, super

scalar, out-of-order execution processor cores that optimize single thread per-

formance with large caches, speculation and out-of-order execution: Intel Ita-

nium [128], Merom [116], and AMD Opteron [43]. The second track is a push

toward simpler, in order, multi-threaded cores designed to tolerate high unpre-

dictable memory access latencies common on a multi-core die with limited off-chip

bandwidth: Sun Niagara 2 [102], Cisco Metro [51], and Intel Teraflop 80-core pro-

totype [135].

In both cases, power-performance optimization and increasingly heavy influ-

ence of PVT variations forced the designers to lengthen critical paths and reduce

64

Chapter 2. Performance Variations

clock frequencies. With longer combinational paths, within-core stochastic varia-

tions partially average out and reduce core performance variance (Equation 2.8).

However, within die, chip-to-chip and wafer-to-wafer systematic effects become

the dominant factors that widen the variance of core performance [68]. If each

core is a synchronous island, connected to its peers with an asynchronous interface,

the die becomes a collection of cores with heterogeneous performance as shown

in Figure 2.7. Each core has an operating region defined by its local process vari-

ations, i.e. the distributions of the critical dimension size, oxide thickness, and

threshold voltage. The dynamic supply voltage scaling and body biasing enable

the designer and the run-time system to adjust the core performance within its

functional operating region. Assuming that stochastic variations are averaged

in long critical paths, the spread of core-to-core variations (C2C) will be mostly

dictated by on-chip systematic effects.

For designers, the implementation difficulty arises from three factors. First, as

they push for parallelism rather than frequency scaling, an in-order core may have

longer critical paths (Lcp), but also a larger number of near-critical paths (Ncp).

Any one of those paths can become critical with PVT variations and affect the

clock frequency, and as the number of these paths increases, so does the chance

of an outlier pushing the clock frequency down. Second, even with gate delay

averaging in longer critical paths, the impact is limited and depends on spatial

65

Chapter 2. Performance Variations

correlation as shown in Equations 2.7 and 2.8. As transistor variations grow,

the performance impact from stochastic variations cannot be tightly controlled.

Third, although the exact breakdown is not known for the future semiconductor

processes, some sources suggest diminishing impact of systematic effects [107] and

dramatic increase in stochastic PVT variations [134]. This is consistent with our

intuition that process controllability and accuracy decreases with smaller device

geometries that lead to growing stochastic effects. To complicate the matters, in

the future processes performance variations cannot be strongly correlated with

any one device parameter but is related to all simultaneously. This results in a

truly unpredictable and uncertain system components [41].

A more scalable approach is to treat a multi-core die affected by variations

as a collection of black boxes that abstract the underlying variation sources as

observable performance. Although modeling and characterizing the impact of

variations on manufactured dice can highlight the relevant trends, it still leaves

designers with a heterogeneous platform that is best managed dynamically with

task and communication mapping.

66

Chapter 2. Performance Variations

faulty

DEAD FAST DEAD

tile

slow tile

3.9Vth2.3Vth

fast, leaky tile

3.5Vth2.0Vth

typical tile

4.5Vth2.1Vth

faulty

3.5Vth3.2Vth

SLOW

Figure 2.7: A sampling of operating regions for different types of on-die tiles.

2.3 Summary

With semiconductor devices scaling to ever smaller dimensions, a designer’s

ability to accurately control device parameters diminishes. The performance

degradation caused by inter-related Process Voltage Temperature variations is

predicted to grow further in the future processes. The current trends in the

sub-32nm process point to the increasing influence of within die, die-to-die and

wafer-to-wafer stochastic and systematic variations, which result in a complex

landscape of core-to-core performance variations.

The damaging impact of the PVT variations can and must be addressed on ev-

ery system level: from the layout to the architecture. Low level layout and circuit

techniques can be efficient and effective if variations are well characterized. How-

ever, this characterization is increasingly difficult in an environment with smaller

critical dimensions and immature semiconductor processes. More importantly,

even with accurate characterization, most low level techniques reduce to large

guard-bands and margins rather than focused approaches. The problem stems

67

Chapter 2. Performance Variations

from the fact that architects and circuit designers do not have tools to simultane-

ously optimize power and performance against parametric PVT variations. This

is because of a large abstraction gap between their system representation and the

semiconductor chemical-physical processes. Six sigma DFM guard-bands applied

on multiple system levels result in significant wasted area and performance, and

motivate us to look for a different solution.

68

Chapter 3

Multi-core Architecture for
Heterogeneous Performance

Many researchers have proposed and hailed multi-core architectures with Volt-

age Frequency Islands (VFIs) for their power efficiency [92, 30, 103]. This chapter

identifies the critical features of these architectures as they apply to fault and

PVT variation resilience.

Alain Martin has for a long time championed asynchronous circuits because of,

among other things, their natural tolerance for PVT variations [94] and soft-error

robustness [73]. These circuits incur high area overhead due to additional signal

coding as compared to their synchronous counterparts, making them prohibitively

expensive on the gate level. At a coarser level of inter-core communication, the

asynchronous handshaking overhead can be relatively small and acceptable.

As described in Chapter 2, Process Voltage Temperature variations create a

die with a complex performance profile. In the spirit of asynchronous logic that

69

Chapter 3. Multi-core Architecture for Heterogeneous Performance

delivers average rather than the worst case delay, the most natural implementa-

tion of a multi-core system on a die affected by the variations is to give every core

its own clock domain. Each core then can run it at its optimal regime within its

own operating range, dictated by the core’s on-die location, PVT variations and

the application load. With appropriate buffering, this globally asynchronous im-

plementation enables communication between these heterochronous1 cores [112].

A stylized Network-on-Chip thus evolves naturally out of such Globally Asyn-

chronous Locally Synchronous (GALS) design, as it provides the required buffer-

ing and flow control between the communicating processor cores that perform rate

matching [37]. With its point-to-point links, a NoC is a scalable alternative to

buses and crossbars, which is critical as the number of on-die cores grows.

3.1 Compute and Router tile

Multi-core systems offer a new opportunity to benefit from asynchronous de-

sign, by capitalizing on the best of both worlds of GALS architectures. Small

processor cores can be implemented efficiently in their own local clock domains,

benefiting from exiting CAD tools and implementations. Limiting the on-die

range of clock distribution network to a small core, helps with design performance

scaling because local interconnect delay scales approximately at the same rate

1Heterochornous cores have an unknown clock relationship.

70

Chapter 3. Multi-core Architecture for Heterogeneous Performance

V

PE

V

PE

V

PE

V

PE

V

PE

V

PE

V

PE

V

PE

V

PE

V

I/O

V

I/O

V

I/O

R

R

R

R R

R R R

R

R

R

R

(a) Power/CLK island architecture

Aribtration
Routing

Manager
Power V

EC

EC

Network Interface
Processing Element

Switch

(b) Tile Architecture (router focus)

Figure 3.1: A multicore tiled architecture envisioned in this work.

as a transistor [65]. However, global inter-core communication should decouple

the cores, be delay insensitive, and reap the benefits of variations tolerance and

power efficiency [7]. For example, [17] showed that a globally asynchronous im-

plementation decreases communication latency by 25% relative to a synchronous

implementation. The authors so far have only considered a small scale 5-core de-

sign, but the advantages of GALS on a larger multi-core design will only increase.

The appearance of multi-core architectures was a natural response to the lim-

its in clock frequency and power dissipation scaling as semiconductor processes

moved to increasingly smaller device geometries [65]. In addition, limited Instruc-

tion Level Parallelism (ILP) in a typical sequential program makes the promise of

the continuing single core performance scaling infeasible. Multi-core architectures

hold enormous potential for massively parallel applications, but present a consid-

71

Chapter 3. Multi-core Architecture for Heterogeneous Performance

erable number of challenges for the architects because the system performance can

no longer be neatly described by a handful of execution units and average cache

performance. Instead, it now depends on a number of factors such as network per-

formance and effective throughput to off-chip memory and I/O that many cores

could simultaneously be vying for.

Fortunately, with respect to resilience to PVT variations, multi-core provides

huge opportunities. We focus on a multi-core architecture comprising regular and

redundant compute/communication tiles organized in a grid. Regularity enables

efficient and complete system abstraction: a tile represents a task that commu-

nicates with its peers. Redundancy provides a model for fault and PVT varia-

tion tolerance and core virtualization. Together, regularity and redundancy allow

the system architect to move away from point solutions toward a systematic ap-

proach to resilience, assisted and automated by VLSI CAD tools, compilers and

the run-time system. With regularity and redundancy, a tile can be abstracted

with a few relatively simple power and performance metrics such as compute or

routing throughput and response time. Tile utilization can be dynamically op-

timized without concern for its PVT corner or other factors such as distance to

off-chip memory that can affect its performance. Finally, the tile can be virtualized

through support of task check-pointing and migration, assuming a configurable

communication fabric.

72

Chapter 3. Multi-core Architecture for Heterogeneous Performance

From the hardware implementation point of view, redundancy and regularity

reduce manufacturing and verification effort because designers produce several

types of tiles (e.g. compute and I/O) and replicate them across the die. Regular

die structure simplifies global power and reference clock distribution as well.

The key tile components include a processing element (core) and an interface

to the global communication fabric implemented as a network on chip router. I/O

blocks, typically located on chip periphery, and any custom hardware accelerator

blocks require the same interface to the on-chip network (Figure 3.1(b)). Each tile

contains local voltage and clock management circuitry, that can be controlled by

firmware, hypervisor or the operating system. For implementation performance

and efficiency, it is possible to combine the router with the core to reduce commu-

nication latency. This may further simplify router implementation and improve

its performance, because handling of the special, infrequent, and corner cases (e.g.

router reconfiguration or error handling) can be conveniently implemented by the

processor core instead of a rarely utilized router circuit. For clarity, this work

focuses on the router as a separate module from the core.

The key architectural feature is tolerance of PVT variations and faults across

a set of cores, which requires electrical isolation between core/router tiles. This

allows the chip manufacturer to turn off faulty tiles after production, and the

chip user to shut down the slow or unused tiles dynamically at run-time [141]. In

73

Chapter 3. Multi-core Architecture for Heterogeneous Performance

other words, electrical isolation creates core fault containment, which is required

to ensure that a die is usable even with some faulty cores. This is the critical

feature for core sparing (Chapter 4). Earlier, tile clock domains open the doors for

Dynamic Frequency Scaling (DFS), turning tiles into Voltage-Frequency Islands.

With electrical isolation, each core/router tile may offer the following controls

(knobs) to the run-time environment: Dynamic Voltage Scaling (DVS), DFS,

Power on/off. Due to PVT variations and faults, a multi-core die is as a collec-

tion of cores, each with its own performance range shown on Figure 3.2. This

range represents all performance points where a core functions error-free without

timing violations, or excessive static current and power dissipation. The mean

value of this range at a particular temperature or voltage is determined by the

semiconductor process corner — an aggregation of process variations effects —

that impacts the core. The range width is determined by Process Voltage Tem-

perature variations, which impose VDD to Vth ratio, noise margins and thus limit

the performance range navigated by DVS/DFS.

The critical component of this strategy is for cores to expose some metrics

that characterize the application task execution performance. The metrics may

include fault detection, operating range characterization, performance counters,

and flow control.

74

Chapter 3. Multi-core Architecture for Heterogeneous Performance

Fault detectors span a large variety of mechanisms including Error Detection

on communication channels [137] and cache banks, Dual Modular redundancy on

critical core subsystems [75], and more sophisticated approaches that detect faults

as data and control flow micro-architecture invariants [97]. These are designed to

signal the presence of soft and hard faults to the run-time environment.

Handling these faults needs to be treated differently from their detection. Tra-

ditionally, the micro-architecture was responsible for error correction, such as in

the case of ECC protected caches. This work advocates fault handling at a higher

level with core sparing for permanent manufacturing or circuit aging faults, and

with check point and replay mechanisms for soft errors [53].

Operating range characterization enables the run-time system to intro-

spectively determine the core operating range size. Two implementation ap-

proaches are possible. The first one relies on characteristic circuits embedded

within the core that adaptively identifies maximum and minimum clock frequen-

cies and voltage range for a current circuit temperature and process corner. Thus,

continuously at run-time, this circuit outputs the “bounds” for operating region.

This can be used by the run-time system to evaluate the current core/router knob

settings vs the complete operating range. The run-time system is responsible

for setting the knobs such that they are within the valid operating range. The

hardware is only required for interlocking to ensure that the software does not

75

Chapter 3. Multi-core Architecture for Heterogeneous Performance

drive a core into an unsafe mode of operation. The second approach makes use of

performance counters, described below.

Performance counters can characterize run-time performance of critical

subsystems such as caches, execution units, and our case the NoC router as well.

The counters can be used for auto-tuning, a process of searching an algorithm

implementation parameter space for the maximum performance point by mea-

suring the critical events particular to the specific algorithm [38]. For example,

if a symmetric multi-threading core has a significantly higher cache miss rate

than its peers, relocating more threads onto this core may maximize its overall

throughput by better overlapping computation and communication. These tuning

optimizations are very computation specific, and a continuous auto-tuning on a

multi-core architecture requires cooperation between the applications, its custom

task scheduler (if it exists), the operating system, and the hardware. For ex-

ample, [99] investigates simultaneous design time hardware/software auto-tuning,

but this work focuses on the run-time optimization.

For Network-on-chip router performance optimization, the performance coun-

ters can capture channel utilization, average throughput, and packet waiting times

or input queues occupancy. These metrics allow the router to autonomously op-

timize its own power /performance efficiency, but the counters can have more

impact when viewed collectively by the run-time system. For example, a simple

76

Chapter 3. Multi-core Architecture for Heterogeneous Performance

approach to minimize network power consumption is to use DFS/DVS to increase

the throughput of the critical congested routers and keep the non-critical routers

at lower power levels sufficient to carry the offered traffic. Essentially, the system

introspectively maps the tasks and tunes the hardware platform by observing the

router throughput. This can be implemented in several ways:

1. Each core/router tile autonomously adjusts its own operating point, based

on local (or neighborhood) compute and traffic load measurements. This

complex option requires a very careful implementation to avoid network

performance degradation and traffic load oscillations due to poor local deci-

sion making. At the same time, our adaptive algorithms in Chapter 6 make

local autonomous decisions and achieve performance improvements through

effective communication load balancing. The role of the run-time system is

relegated to task-to-core mapping that establishes inter-core communication

flows that NoC routers attempt to accommodate. The main concern in such

a distributed dynamical system is the response time, critical for short term

bursts and changes in the application traffic pattern.

2. Each core and router provides the performance counters to the operating

system that has a global view of the platform and its resource utilization.

The OS performs task-to-core mapping and load balancing, adjusting each

77

Chapter 3. Multi-core Architecture for Heterogeneous Performance

core/router operating point to accommodate the expected load, and does

so continuously. The hardware only provides the interlocking safeguards to

ensure that the OS does not drive it into an unsafe mode of operation.

Flow control, typically associated with communication, is an indirect but

a very powerful way to expose core/router performance to the run-time envi-

ronment. Many computing processes are also designed with implicit flow control.

Consider a case where processors pull ready to execute tasks off a logically common

work queue (e.g. work-stealing) [12]. In a system with cores with heterogeneous

performance, faster cores remove more tasks from the queue than the slower cores

in the same amount of time, thus naturally balance the computational load. In

networking, flow control refers to a synchronization technique that matches the

communication rates of the producer and consumer (discussed in Section 3.2).

In the case of heterogeneous performance routers and communication channels,

inter-router link flow control exposes the performance variations and faults as

busy channels and network congestion to adjacent routers. This abstraction has a

natural affinity with adaptive routing algorithms. Congestion-aware routing can

compensate for static — process variations and faults — and dynamic effects —

voltage and temperature induced performance variations — in addition to inherent

application communication traffic imbalance.

78

Chapter 3. Multi-core Architecture for Heterogeneous Performance

What are the costs and benefits associated with the proposed multi-clock and

supply voltage architecture? Implementation of independent core-level clock and

voltage domains suffers from the overhead of interface circuitry such voltage level

shifters [61] and asynchronous FIFO buffers [114] that connect heterochronous

domains. Dynamic power management has been employed extensively inside [116,

140] and outside processor cores [141], but unfortunately its overhead has not been

quantified, but is likely not to be significant on core level. Some academic results

indicate that a NoC can reduce power consumption up to 40% with core voltage

and clock scaling at the small performance penalty of 10% on a 6 × 6 array of

processors [144]. More research and implementations are required to obtain a

definitive answer, since the reported results are not general, but tied to design

choices and assumptions.

The main complexity of mixed-clock and voltage designs actually comes addi-

tional verification and validation efforts, since the space of operating regimes grows

with each extra control knob. In spite of these difficulties, we argue that with in-

creasing impact of PVT variations and faults, reducing the granularity of power

and performance management units is the way to extract the expected rather

than the worst case performance out of multi-core architectures. For example,

according to [30], intelligent task mapping onto an architecture with independent

79

Chapter 3. Multi-core Architecture for Heterogeneous Performance

faulty

DEAD FAST DEAD

tile

slow tile

3.9Vth2.3Vth

fast, leaky tile

3.5Vth2.0Vth

typical tile

4.5Vth2.1Vth

faulty

3.5Vth3.2Vth

SLOW

Figure 3.2: A sampling of operating regions for different types of on-die tiles.

core clock domains reduces communication power consumption as much as 50%,

effectively without a loss of performance.

As multi-core architectures scale in the number of cores per die, the cores may

not remain functionally identical (Table 3.1). A die may include custom hardware

functions and domain specific accelerators (e.g. cryptography engines [98]), or

cores with heterogeneous performance with single or multiple ISAs [82, 110]. Sin-

gle ISA and multiple implementations is a particularly interesting variant, as it has

performance/power benefits over its counterpart with homogeneous performance

(single implementation). Dynamically managing homogeneous or heterogeneous

cores is fundamentally equivalent. Although mapping and scheduling problems

are potentially harder due to restricted choices, the solution is tractable [121]. A

compiler provides a single relocatable binary that must be mapped on cores with

diverse performance.

Task mapping on functionally homogeneous – performance heterogeneous cores

is not fundamentally different than mapping onto a nominally homogeneous ar-

80

Chapter 3. Multi-core Architecture for Heterogeneous Performance

h
h

h
h

h
h

h
h

h
h

h
h

h
h

h
h

hh

Implementation
Functionality Homogeneous Heterogeneous

(Single ISA) (Multiple ISAs)

Homogeneous
Niagara 2, Merom N/A

(Single Implementation)
Heterogeneous

[Future Systems] Cell, DSPs, SOCs(Multiple Implementations
and/or PVT vars)

Table 3.1: Functionality and performance dimensions of a multi-core
architecture.

ray with heterogeneous performance due to PVT variations. Although we focus

on PVT variation and fault tolerance on functionally homogeneous cores, our re-

sults would be qualitatively similar for a functionally heterogeneous system. The

fundamental difference is choice. Homogeneous cores represent the greatest de-

gree of redundancy because the entire die contains the same type of a processing

element. Functionally homogeneous systems eliminate the PVT variation bias be-

tween cores. This occurs when all cores of same type are located in one parametric

variation corner of a die, and thus there is not enough inter-core performance di-

versity.

Even functionally homogeneous systems contain several key heterogeneous

components — off-chip I/O interfaces and communication fabric — whose per-

formance is also affected by PVT variations. These components (the “uncore”)

may not be carefully considered by the architects, and typically we observe their

operation and performance through the core performance. For example, core com-

81

Chapter 3. Multi-core Architecture for Heterogeneous Performance

putational throughput often represents not simply the core’s capacity but also

application memory access pattern, computation to communication ratio, etc. In

single-core and small multi-core systems, this abstraction simplifies task mapping

and scheduling because an OS does not have to directly consider the “uncore”

performance. These simplifications are no longer effective to maximize utiliza-

tion of a modern many-core architecture because its performance is increasingly

affected by the network, the memory, and I/O subsystems, rather than predom-

inantly by the processors. For example, [38] showed that NUMA optimizations

in multi-threaded stencil kernels can easily double computational throughput on

small scale multi-core systems. The role of the communication fabric in a many

core system perhaps eclipses that of the computational elements themselves, and

thus we consider NoC architecture next.

3.2 Communication Fabric

3.2.1 Motivation for NoC

Application performance is increasingly tied to the “uncore” performance,

where the communication network architecture and performance play the most

critical role as systems scale to larger number of cores per die. A globally asyn-

chronous communication fabric combined with core-level clock/voltage domains

82

Chapter 3. Multi-core Architecture for Heterogeneous Performance

can maximally expose the PVT induced within die performance variations. A

stylized Network on Chip naturally realizes the GA paradigm because it provides

on-chip routers connected via direct links at the interface points between these

domains. The routers include data buffers that match the production and con-

sumption rates between two heterochronous components, which is a requirement

for multi-voltage/clock system. The network through its bounded node fan-out

retains communication scalability when compared to shared media such as buses

and rings, and offers opportunities for distributed mapping algorithms to improve

fault resilience. Finally, similar to asynchronous logic, GALS network connect-

ing heterogeneous performance cores can with adaptive routing deliver the mean

rather than worst case network throughput as demonstrated in Chapter 7.

The general purpose nature of the stylized network does bring some area and

power overhead to the system implementation. Power consumption is the domi-

nant concern at the moment. For example, the NoC consumed half of the power

in Intel Tera-flop 80 multi-processor [20]. The communication fabric is the place

where asynchronous logic can truly shine [94, 10]. For communication circuits

that connect distinct rate components, the overhead of traffic encoding and ex-

plicit hand-shaking is not significantly different from that in a synchronous im-

plementation but has additional resiliency benefits. For example, the dual-rail

83

Chapter 3. Multi-core Architecture for Heterogeneous Performance

signaling, which is used in some delay insensitive designs, offers a common mode

noise suppression, low swing and power consumption [145].

The envisioned multi-core architecture creates a dynamic, globally asynchronous

environment because of the impact of PVT variations and the dynamic applica-

tion behavior. This environment naturally creates rate-mismatched boundaries

between the core/router tiles, and thus rate matching is the key architectural

feature to ensure that heterogeneous cores can co-operate efficiently. Continu-

ous rate-matching requires flow control and buffering on the inter-tile boundaries,

making a packet switched implementation the most convenient choice. A circuit

switched would be more appropriate in a predictable static environment with glob-

ally scheduled communication resources. Packet switched networks can emulate

circuit switching to improve transmission throughput for long data streams (e.g.

reduce packet or routing overhead), and support traffic with real time, QoS re-

quirements. This can be accomplished with a bandwidth allocation scheme, typi-

cally implemented with a run-time scout packets, or static router priorities [64, 48].

All required hardware mechanisms are already available in the packet switched

router: switch, arbitration logic, buffering, and router algorithm logic that can

handle special cases if necessary.

84

Chapter 3. Multi-core Architecture for Heterogeneous Performance

3.2.2 NoC Organization

Communication fabric organization is a non-trivial problem because a number

of simultaneous concerns must be addressed: connectivity and fault resilience,

performance, deadlock and livelock freedom.

Connectivity and Resilience are properties of a communication topology

that determine its capability to connect arbitrary processor cores to each other

and off-chip components. Ideally, a communication fabric should not have a single

point of failure that can disconnect the network. A resilient network provides for

the ability to send traffic around nodes that have failed or under performing and

ensure graceful performance degradation.

Performance is generally described by two metrics: average packet latency

and saturation bandwidth for a particular communication pattern and routing al-

gorithm. Section 6.1 offers a more detailed discussion of network performance, but

here we illustrate the performance metrics with a simple example on Figure 3.3. A

three task graph annotated with communication bandwidth requirements, shown

on Figure 3.3(a), is mapped onto a two dimensional mesh with link capacity of 6

Gb/s. Figure 3.3(b) illustrates the communication traffic flows between the pro-

cessing tiles running Dimension Order routing algorithm, which moves the traffic

in the X direction first and then in the Y direction. The flow A → C, which de-

mands 10 Gb/s, saturates the network link at 6 Gb/s. Here, the Dimension Order

85

Chapter 3. Multi-core Architecture for Heterogeneous Performance

router only supports the total cross-section bandwidth of 7 Gb/s. The average

packet latency, lDO, measured in network hops can be computed as the weighted

sum:

lDO =
6 Gb/s × 1 hop + 1 Gb/s × 2 hops

7 Gb/s
= 1.14 hops (3.1)

In contrast, when an adaptive routing algorithm is used for the same task-to-core

mapping, the network can carry the complete 11 Gb/s of bandwidth demanded

by the application (Figure 3.3(c)). Notice, that the adaptive algorithm is non-

minimal, in the sense that it pushes 4 Gb/s of A-C traffic through a longer path,

which results in a higher average packet latency, lA:

lA =
6 Gb/s × 1 hop + 4 Gb/s × 3 hops + 1 Gb/s × 2 hops

11 Gb/s
= 1.82 hops

(3.2)

Communication performance depends on the network topology, the routing algo-

rithm, and the match between application communication requirements and the

network capacity. The issues of performance are further complicated in systems

that support communication traffic priorities and QoS guarantees.

Deadlock and livelock are two conditions that drive network performance

outside the expected bounds. A deadlock results from a cyclical resource depen-

dency that prevents several traffic packets from making any further progress [48].

A deadlock occurs when packets form a cyclical dependency by simultaneously

86

Chapter 3. Multi-core Architecture for Heterogeneous Performance

A
10 Gb/s

1 Gb/s
B

C

(a) Communicating
task graph

A

B

C

1 Gb/s

6 Gb/s

6 Gb/s

(b) Dim Order Routing

A

B

C

1 Gb/s

6 Gb/s

6 Gb/s

4 Gb/s

(c) Adaptive Routing

Figure 3.3: Routing algorithm determines average packet latency and saturation
bandwidth of the network.

requesting the flit buffer space from a downstream router, but none can release

the occupied space until the downstream packet does so (Figure 3.4(a)). This

cyclical dependency cannot be resolved by the routers autonomously unless one

of them gives up the request and drops its packet. Typically, a global deadlock

detect and recovery mechanism is required to resolve the situation. If deadlocks

are extremely rare, then “detect and recover” approach may be appropriate to

allow for maximum routing adaptivity and flexibility. However, in a typical situ-

ation where the network is loaded close to its bandwidth saturation point, i.e. a

number of in-flight packets in the network is large, it is best to employ deadlock

avoidance schemes that include deadlock free routing.

A fully-adaptive routing algorithm that permits all possible turns in a packet’s

path can easily create a cyclical dependency between resources in adjacent routers.

87

Chapter 3. Multi-core Architecture for Heterogeneous Performance

(a) Deadlock: cyclical flit buffer space
requests.

��
��
��
��1 3

4

7 9

Congested Routers

DST

PACKET

6

(b) Livelock: a router chooses the least con-
gested path, and the packet does not make for-
ward progress toward destination DST.

Figure 3.4: Deadlock and livelock impede forward communication progress.

As shown on Figure 6.2, prohibiting some turns to guarantee that a cycle can never

be formed creates deadlock freedom. For a more detailed discussion of deadlock-

free adaptive routing algorithm design, the reader is referred to [36, 46]. Many

implementations use Virtual Channels or structured input flit buffers instead of

prohibited turns. Every time a packet has to take a prohibited turn, it switches

from its current virtual channel k to channel k +1 [58]. The virtual channels have

the equivalent effect to prohibited turns, because they split monolithic physical

resources into virtual resources and ensure that packets can never form a request

dependency cycle with virtual resources.

A livelock, a special case of starvation, is a condition where a packet travels

around the network, but makes no progress toward its destination [48]. Fig-

88

Chapter 3. Multi-core Architecture for Heterogeneous Performance

ure 3.4(b) illustrates the typical livelock. The packet in node 2 cannot get to

its destination node DST because in the search for the path towards the des-

tination, the distributed adaptive routing algorithm selects the least congested

nodes 1 or 3. This continues and results in the packet circling around nodes 1,

2, and 3 as long as nodes 4, 5, and 6 remain congested. The packet may never

reach its its destination. In addition to failing to deliver the packet, with livelock

a packet consumes routing resources, increases congestion and degrades network

performance. A minimal adaptive routing algorithms is the simplest approach to

livelock-freedom. It only forwards a packet along topologically shortest paths and

thus ensures that every router hop brings a packet closer to its destination. How-

ever, minimal algorithms have restricted adaptivity choices. For example, with a

minimal router on a two dimensional mesh, a packet has at most two choices at

every hop. A more complex approach is required to accommodate non-minimal

(mis-routing) algorithms that guarantee livelock-freedom, such as switching from

non-minimal to minimal routing as the packet ages.

The issues of connectivity, resilience, performance, deadlock and livelock can

be addressed with several interrelated communication system features: topol-

ogy, routing algorithm, flow control and buffer management. Topology and rout-

ing algorithms define the network properties and performance. Routing algo-

rithm, buffer management, and switching dictate the NoC router architecture

89

Chapter 3. Multi-core Architecture for Heterogeneous Performance

(a) (2, 3)-mesh (b) (2, 3)-torus (c) (3, 2)-mesh

Figure 3.5: Examples of mesh and torus network topologies.

(Figure 3.1(b)). A router comprises input flit buffers, switch and routing/arbitration

logic. Flit buffers receives packet flits2 from the adjacent routers. The switch con-

nects router inputs to the outputs directed by the routing/arbitration logic that

makes decisions consistent with the routing algorithm and arbitration objectives

(e.g. Round-robin or Maximum Weight Matching). The flit buffers play a critical

role in the Voltage Frequency Island architecture by matching the rates between

the adjacent routers and providing in-flight packet storage that optimizes commu-

nication channel and switch utilization. Typically as buffer sizes increase, fewer

network resources are simultaneously committed to a single in-flight packet, when

it is stalled waiting on an output channel [78]. Larger buffers reduce network

congestion and improve its performance, but they also consume area and power,

and their implementation requires a careful cost benefit analysis [47].

2Network packets are broken into flits, flow control units, for transmission.

90

Chapter 3. Multi-core Architecture for Heterogeneous Performance

Topology Average Distance Bisection B/W

Mesh 2
3
nk kn−1

Torus 1
2
nk 2kn−1

Table 3.2: Performance bounds on (n, k)-mesh and torus

Topology is the key tool in the designer’s arsenal to ensure that the network

provides the required saturation bandwidth and average unloaded packet latency

to satisfy application demands. The examples on Figure 3.3 illustrate the way

the topology cross-section bandwidth and the routing algorithm together affect

the network saturation bandwidth and average latency. The topology defines

performance bounds on these critical metrics. Table 3.2 summarizes them for two

popular, regular topologies — mesh and torus — shown on Figure 3.5. From

the resiliency point of view, the network topology must provide sufficient path

diversity to ensure that a routing algorithm can find a high capacity path around

faulty or under-performing tiles. For a thorough discussion of different network

topologies, we refer the reader to [34].

This work considers regular topologies for ease of implementation and testing

of a two-dimensional die, comprising replicated compute/communication tiles.

More exotic topologies, such as fat trees are complex to implement and provide

a non-regular layout. We focus on a 2D mesh topology, which has a direct Man-

hattan layout for a collection of processing elements. Mesh routing algorithms

91

Chapter 3. Multi-core Architecture for Heterogeneous Performance

are generally simple and require fewer virtual channels for deadlock-free adaptive

routing. Meshes have peripheral nodes that, depending on the communication

topology of the application, may result in uneven channel and router utilization.

For example, a uniformly distributed communication traffic tends to create more

congestion toward the center of the mesh than its edges.

The main difference between a mesh and a torus is additional “wrap-around”

channels that eliminate the mesh edges. A two-dimensional torus would be an

alternative topology alternative for a tiled multi-core architecture, but it is not

studied in this work. [147] has shown that a torus can outperform a mesh on

synthetic communication patterns due to its greater path diversity. However, the

author did not consider additional challenges for VLSI layout or extra virtual

channels required for deadlock free adaptive routing. For this work, the mesh is

sufficient to demonstrate the way to translate the advantages of adaptive routing

algorithms into smaller design margins that compensate for PVT variations. We

argue that the mesh topology contains a subset of torus paths, and thus our mesh

results represent the lower bound on the potential gains in a torus. At the same

time, the additional implementation complexity of torus routing, an extra virtual

channel for deadlock freedom, and a more complex VLSI layout, can negate the

gains from adaptive routing.

92

Chapter 3. Multi-core Architecture for Heterogeneous Performance

A Routing Algorithm provides the mechanisms to deliver the performance

potential of the topology by taking advantage of the network path diversity. Rout-

ing algorithms range in complexity and in the type and currency of the information

that they use. In theory, with a resource unlimited implementation, a global, cen-

tralized routing algorithm can deliver the best performance: the lowest average

packet latency and the highest saturation bandwidth. In practice, the networks

are highly dynamic, and any attempt to globally schedule all communication flows

in space and time for every packet transmission, switch and router setting step by

step, is intractable. A heuristic approximation of a global schedule typically leads

to results that are no better than significantly simpler distributed algorithms.

Distributed routing algorithms are organized in such a way that each router

runs an independent instance of the algorithm and makes local decisions. We

focus on these algorithms for two reasons: relative implementation simplicity and

avoiding a single point of failure in the system. [34] offers a complete and de-

tailed discussion of different routing algorithms. The following presents some key

algorithm categories and their operating principles. The algorithms range from

oblivious to fully-adaptive, which describes the degree to which an algorithm takes

advantage of the path diversity in the topology. Another classification separates

them in two categories: (1) the number of choices that an algorithm considers at

93

Chapter 3. Multi-core Architecture for Heterogeneous Performance

each router step, and (2) outside information that is used to compute the next

hop direction for a packet.

An oblivious algorithm considers a single output port for each packet based

only on the packet’s destination address. The algorithm does not react to changes

in the surrounding traffic conditions. However, one can envision an implementa-

tion where an oblivious router attempts to balance the network load by randomly

selecting the output channel along the packet’s minimal path. This produces a

livelock-free oblivious algorithm, but requires virtual channels for deadlock avoid-

ance. In contrast, an adaptive algorithm considers a number of output paths at

every NoC router and decides between possible paths based on various metrics.

These may include any information obtained from the adjacent routers, such as

traffic congestion [66], or local routing decision history. For deadlock freedom, an

adaptive algorithm may limit its adaptivity with prohibiting certain packet turns

or use virtual channels.

Naturally, oblivious algorithms are the simplest to implement and are the most

scalable, since there is no sharing of information between the neighbor routers. A

deterministic implementation such as Dimension Order router requires minimal

hardware resources to achieve deadlock and livelock freedom, since all possible

turns are known a priori, and the router algorithm can be proven to create no

cyclical dependencies (Figure 6.2(a)). The adaptive algorithm implementation

94

Chapter 3. Multi-core Architecture for Heterogeneous Performance

requires additional buffer and virtual channel management to avoid deadlocks,

storage for router state and any information obtained from the neighbor routers,

and, of course, a more complex algorithm logic. Chapter 7 discusses specific

requirements for the algorithms explored in this work, and shows that even a

relatively simple low overhead algorithm such as Minimal Adaptive Total Con-

gestion (MATC) offers an impressive network performance improvement over the

oblivious Dimension Order routing.

Buffer Management, Flow Control, and Switching implement deadlock

avoidance and improve router switch utilization and network performance. The

virtual channels complicate input flit buffer management and the inter-router flow

control. A valid buffer management scheme separates the buffer space of each

physical input into virtual channel partitions, such that no virtual channel can

consume all memory resources and deadlock another VC. To ensure deadlock free

operation under Virtual Cut Through (wormhole) switching, it is sufficient that

every router input guarantees at least one flit buffer slot to each virtual channel.

Virtual channels also complicate the inter-router flow control. With a single

channel, a simple handshake protocol (e.g. four phase [112]) would be sufficient for

correct operation, albeit an inefficient choice if communication link is pipelined.

A better option might be a credit based scheme that can maximize the channel

transmission throughput [83]. However, with virtual channels, each VC requires

95

Chapter 3. Multi-core Architecture for Heterogeneous Performance

out 1 out 0

out 0 0
1

00

1
XBAR

Figure 3.6: Head-of-Queue blocking.

an independent flow control to notify the sender of the downstream buffer space

availability.

Input flit buffer management is also related to switching, which is the algo-

rithm by which router input buffers are dynamically connected to the outputs. A

switch is a passive router component controlled by the arbiter, which resolves the

contention between multiple input channels vying for the same output, through a

priority-based selection scheme. This “reduce” operation, which must fairly select

a virtual input channel buffer from a set and usually involves an NP-hard match-

ing problem, is complex to implement in hardware. An increase in the number of

virtual channels usually corresponds to a significant increase in arbitration logic

complexity [80].

Independent of the details of the arbitration scheme, all input queued routers

suffer from Head-of-Queue blocking as a result of crossbar arbiter being able to

only consider a single packet at the head of a FIFO. For example, consider Fig-

96

Chapter 3. Multi-core Architecture for Heterogeneous Performance

ure 3.6. The input buffer 0 contains two packets destined for output channels 0

and 1. Unfortunately, the output 0, which is requested by the packet at the head

of the FIFO, is not available. The packet destined to output 1 is queued behind

and cannot be accessed, although output 1 is available. The router switch is un-

derutilized. Virtual Output Queues (VOQs) eliminate Head-of-Queue blocking,

but complicate the arbiter implementation [93]. VOQs split the input buffers into

a set of virtual buffers, one for each router output. An arbiter can simultane-

ously consider all output requests from all packets stored anywhere in the input

buffers. VOQs preserve FIFO order between the packets destined for the same

output channel. The arbiter implementation is more complex because it must now

consider up n2 possible connection requests, one for each virtual output.

Maximum Weighted Match (MWM) arbiter is guaranteed to deliver 100%

switch bandwidth utilization although it is too complex for a practical hardware

implementation [96]. Many heuristics that can be efficiently implemented in hard-

ware achieve very comparable results to the MWM algorithm [45]. We have

observed an improvement of up to 10% in network saturation bandwidth from

routers with VOQ input buffers relative to those with simple FIFO input buffers.

This improvement typically justifies the added implementation complexity, and

that is the reason we used VOQ-enabled router implementation in this work (Sec-

tion 5.2.1). The fundamental results that we obtained, i.e. the performance gains

97

Chapter 3. Multi-core Architecture for Heterogeneous Performance

from the adaptive routing, would be qualitatively the same with or without VOQ

input buffers.

3.3 Summary

Limitations in process scaling have forced the semiconductor industry to move

toward parallel multi-core architectures. With respect to fault and PVT variation

resilience, these architectures provide huge opportunities with core redundancy

and regularity. A globally asynchronous NoC design connecting independent volt-

age and clock core/router tile domains, combined with architecture controls enable

the run-time task mapping and routing to deliver the average rather than the worst

case performance.

This chapter discussed core/router tile micro-architecture and identified its

salient features that enable introspective run-time mapping and allow the run-

time system to navigate through tile’s PVT induced operating range. These fea-

tures may include simple distributed run-time indicators such as fault detectors

and checkers, tile operating range characterization circuits, performance counters,

and flow control. The chapter focused the critical features of a Network-on-Chip

architecture, including: connectivity and resilience, performance, deadlock and

livelock freedom. Further, it demonstrated the way designers can address these

98

Chapter 3. Multi-core Architecture for Heterogeneous Performance

concerns through careful selection of network topology, routing algorithm and

buffer management strategies. These related network properties determine the

NoC implementation complexity, performance, and the quality of service guaran-

tees that the network delivers to the run-time system.

99

Chapter 4

Sparing: Redundancy and
Multicore

The architecture discussed in Chapter 3 isolates cores from one another via

distinct clock, voltage domains, and an asynchronous network. Each core runs at

its own rate and contains faults and performance variations within. This architec-

ture results in an inherently redundant fault and performance variation isolation

model that can dramatically improve manufacturing functional and parametric

yield. After manufacturing, during power up or dynamically, the system can test

and disable faulty and under-performing cores, and select a subset of cores to run

an application. To ensure that a die contains the required number of functional

cores, spare cores can be designed into a multi-core architecture.

This is not a novel idea. Fine-grain sparing of rows and columns is used in

DRAM [130]. Currently, coarse-grain sparing is employed in Cisco Metro that has

4 redundant processor cores per die; the STI Cell processor has 8 cores, but only 6

100

Chapter 4. Sparing: Redundancy and Multicore

are enabled in its mainstream consumer application in the Sony Playstation 3 [51,

110]. Die level sparing was also investigated with block redundancy for wafer scale

integration [63].

The question now becomes one of how to best utilize chip resources and intro-

duce redundancy to improve chip yield. We develop a model for a multi-core die

yield and cost with core sparing, and examine several questions:

• What are the bounds of core sparing?

• How does core redundancy compare to module redundancy and semiconductor

device over-engineering?

• With the trends in semiconductor technology, what is the optimal core area

that minimizes the number of faulty on-chip cores and maximizes the yield?

• What is the relationship between the the area overhead of multi-core architec-

tures and the yield?

4.1 Resource Redundancy

As the semiconductor device size shrinks, system yield and reliability become

increasingly difficult to manage due to a combination of defects and parametric

variations. Although process and manufacturing engineers are constantly finding

new ways to optimize yield through improved accuracy and precision of semicon-

101

Chapter 4. Sparing: Redundancy and Multicore

ductor processing steps, the quantities of substances used approach tens of atoms,

and are impossible to control reliably. When dealing with a stochastic processes

and such small sample size, redundancy must be used effectively to manage perfor-

mance and yield. We examine two critical questions: (1) where to use redundancy

and (2) how to manage it? The following classifies different schemes and analyzes

them based on cost, implementation, and the impact on PVT variations and yield.

Device Over-engineering and DFM rules. To improve yield and resilience

to process variation, engineers employ device and interconnect widths and inter-

device spacings larger than required by the design rules. Although this technique

has a significant permanent impact on area and performance, it reduces variance

on such parameters as transistor threshold voltage and line edge roughness [22].

Increased feature sizes reduce the critical area affected by defects and thus can

significantly improve the yield, assuming the equivalent defect density and size dis-

tribution. This is consistent with ITRS predictions that show that defect density

has saturated and remained constant as the semiconductor process nodes shrink

in size [1].

This technique must be used sparingly due to its high cost. Depending on

implementation details and specific DFM rules, the impact on the area can vary

from linear to quadratic. The technique is also accompanied by a linear increase

in delay and power consumption with respect to the design margin. Due to its

102

Chapter 4. Sparing: Redundancy and Multicore

static nature, decisions about chip area allocation must be made at design time

and for the worst case. This renders device over-engineering less effective in future

semiconductor generations when tiny physical dimensions preclude our ability to

carefully control the manufacturing process and force the safety margins to grow.

Fine grain circuit redundancy With greater uncertainty in the manufac-

turing process, circuit techniques such as error-correcting codes (ECC) or double

module redundancy (DMR) can detect and correct both manufacturing and tran-

sient faults. With redundant circuits, the designer can contain the problem to

avoid its propagation through the system. With appropriate coding the area over-

head of these techniques can be smaller than that of device over-engineering. Still,

they incur a permanent cost on circuit performance, even if they do not lengthen

the critical path. Redundant circuits increases the number of near critical paths,

which due to process variations increase the probability of a long outlier path

that determines the system performance. At the circuit level, the combination of

overclocking and error correction code to compensate for variations and defects

can sometimes optimize overall power/performance and yield [13]. As with device

over-engineering, decisions about where to add redundancy or which codes to use

must be made early at design time and for the worst case.

Module redundancy There are two principle differences between fine grain

circuit redundancy and module redundancy. First, in larger modules, one typ-

103

Chapter 4. Sparing: Redundancy and Multicore

ically encounters resource replication (e.g. DMR) rather than code-based error

correction because it is a more natural and general solution. Coding works well

on small arithmetic and communication circuits, but it is non-trivial for complex

modules. Second, the larger module size allows for more flexible run-time resource

management controlled in hardware or even in software.

For example, consider the following fault management scenarios on a super-

scalar processor with several redundant ALUs. Scenario 1: every instruction runs

through three distinct ALUs and the majority result is used [131]. Scenario 2:

only some instructions (perhaps in the “reliable” section of a program) run in

this TMR mode. Scenario 3: temporal redundancy (running instructions several

times through the same ALU) used on some or all instructions [8]. Scenario 4:

normal mode, all instructions run once through an ALU to maximize instruction

throughput and processor performance. Hardware or software can select a scenario

at run time and flexibly utilize these redundant ALUs for fault-resilience or raw

computation.

Device over-engineering, fine grain circuit and module redundancy share two

common problems: (1) interdependence and (2) spatial correlation. First, since

the redundant devices, circuits and modules form a part of a larger design, their

faults and performance variations can propagate through the entire system. Sec-

ond, since redundant components (e.g. ALUs) are typically located in the same

104

Chapter 4. Sparing: Redundancy and Multicore

part of the die, they are identically influenced by spatially correlated performance

variations and defect clustering. For example, all redundant components might

be under-performing according to a specification, rendering the entire die non-

functional. These problems combine to reduce die performance and yield. An

ideal solution would maximally isolate the redundant components from each other

and distribute them across the chip. Although this does not necessarily imply a

multi-core architecture, multiple cores per die is the most natural and manageable

solution.

Core-level redundancy We focus on processor cores, although different cores

would not qualitatively affect our discussion. Globally Asynchronous Locally Syn-

chronous (GALS) implementation results in both functional and performance iso-

lation between the cores. With redundant cores, the system can be fault-tolerant.

Two aforementioned problems are solved. First, there is no core interdependence,

the faults and variations within a die area occupied by a core only affect it but

not its peers. Second, the cores are distributed all over the die and operate in-

dependently at different performance points dictated by the intra-die variations.

In fact, the performance spectrum of cores covers the spectrum of on-die PVT

variations.

After manufacturing the chip is tested, and faulty cores can be disabled with

fuses. An inter-core communication protocol must ensure that disabled cores

105

Chapter 4. Sparing: Redundancy and Multicore

Parameter Description (default/typical value)

Cdie die cost
Cwafer processing cost for a wafer ($12501)
Ydie die yield
Y0 gross wafer yield (1)
Ycore core yield (a function of core area)
Adie die area
Dwafer wafer diameter (300mm)
D0 avg defect density (0.0002/mm2)
α defect clustering factor (3)
Ao per core infrastructure overhead (1mm2)
Af total fault-free, functional die area
Nf total number of fault-free cores

Table 4.1: Parameters used in the models. Default values shown in parenthesis
are based on ITRS 2005 [1] and used to obtain the experimental results.

simply appear unavailable and are not used by their neighbors. Unlike module

redundancy, an OS can manage a multi-core essentially with existing scheduling

techniques. For example, a task scheduling algorithm (e.g. task stealing) can

automatically adopt to a system with cores with heterogeneous performance, since

each core processes tasks at its own rate. The defective cores do not run at all,

and since they do not remove tasks off a common queue, they appear busy or

unavailable. The core performance, processing throughput, is exposed to the run-

time environment as flow control as discussed in Section 3.1.

1Although the wafer cost shown maybe out-of-date, its actual value does not affect the
qualitative results and conclusions of our analysis.

106

Chapter 4. Sparing: Redundancy and Multicore

4.2 Traditional Chip Cost Model

Th following is a short review of the traditional defect-free die cost model,

based on the yield model with negative binomial defect distribution [108, 111].

Table 4.1 summarizes all model parameters in this chapter. The die yield can be

described as the probability that n defects hit the critical area A given an average

defect distribution D0:

p(n,A,D0) =
Γ(α + n)

n!Γ(α)

(AD0/α)n

(1 + AD0/α)n+α
(4.1)

We are interested in defect-free area, n = 0:

p(0, A,D0) = (1 + AD0/α)−α (4.2)

Our die cost model ignores test and packaging costs because they are not relevant

to the discussion:

Cdie =
Cwafer

Dies/Wafer × Ydie

(4.3)

107

Chapter 4. Sparing: Redundancy and Multicore

The wafer cost is fixed and outside of our control, but the die area determines

both Dies/Wafer and die yield Ydie:

Dies/Wafer =
π × Dwafer√

2Adie

(4.4)

Ydie = Y0 × p(0, Adie, D0) (4.5)

This assumes that the the entire die Adie is the critical area, which gives a pes-

simistic yield prediction but does not affect the trends discussed in the work.

Figure 4.1(a) illustrates the expected inversely correlated relationship between

the die yield Ydie and the die area Adie for sample parameter values from ITRS

2005 [1]. Intuitively, as the die area increases, the probability of one or more

defects occupying that area grows and reduces the die yield (Equation 4.2). We

combine Adie and Cdie and obtain the die cost:

Cdie =
Cwafer

√
2Adie

(

1 + D0×Adie

α

)α

π × Dwafer × Y0

(4.6)

Cdie ∼ O
(

A
α+ 1

2

die

)

(4.7)

Figure 4.1(b) illustrates the relationship between the die cost and area. The cost

grows as a high-degree polynomial function of the die area. With a typical value

of the defect clustering factor α = 3, Cdie = f(A3.5
die).

108

Chapter 4. Sparing: Redundancy and Multicore

0.75

0.80

0.85

0.90

0.95

1.00

50 100 150 200 250 300 350 400

Die Area (mm2)

Die Yield

D0 = 0.02/cm2

D0 = 0.06/cm2

(a) Die Yield

0

5

10

15

20

25

30

35

40

45

50

50 100 150 200 250 300 350 400

Die Area (mm2)

Die Cost ($$)

D0 = 0.02/cm2

D0 = 0.06/cm2

(b) Die Cost

Figure 4.1: The relationship between die area and its yield and cost.

109

Chapter 4. Sparing: Redundancy and Multicore

It is important to note that Equation 4.5 in practice represents the yield of

a single die layer, e.g. a metal layer or a mask, as it is impacted by defects and

impurities during its semiconductor processing step. This expression is sufficient

for our analysis, since we strive to demonstrate that the reduction in core size sig-

nificantly improves core yield and thus reduces the overall die cost. Accounting for

multiple semiconductor processing layers, the die yield is a product of individual

layer yields:

Ymultilayer die = Y0 ×
∏

i∈DieLayers

p(0, Ac
i , D0) (4.8)

where Y0 is gross wafer yield, and Ac
i is the critical area for layer i. The critical

area is defined as the area of the die (typically, a fraction of total die area), where

a defect can produce a fault, such as a short. Section 4.4 presents a more detailed

discussion on the critical area, but intuitively, on the same die the critical area of

an upper metal layer (e.g. M9) is smaller than that of a bottom metal layer (e.g.

M1) for the same defect size distribution.

For our analysis of multi-core sparing, we continue to use Equation 4.5 for die

yield as it is simpler and die independent, but accurately captures the relevant

trend.

110

Chapter 4. Sparing: Redundancy and Multicore

4.3 Sparing Defective Cores

Architectures with redundant cores can disable faulty cores and operate a sub-

set of a die. The area overhead of such an architecture stems from independent

core-level power delivery and clock networks, and inter-core communication in-

frastructure that includes synchronization, arbitration for shared resources (e.g.

buses, links), etc. Let us designate Ao to be per core overhead in this architec-

ture. If a designer requires total functional, fault-free die area Af , how should

the chip be partitioned into cores to minimize the die cost? If Nf is the number

of functional equally sized cores, and each core incurs a fixed area overhead Ao,

then:

Acore =
Af

Nf

+ Ao (4.9)

Adie = Acore ×
Nf

Ycore

= Acore ×
Nf

p(0, Acore, D0)
(4.10)

The total die area Adie, which determines the cost, comprises N =
Nf

Ycore
cores:

Nf functional and (N − Nf) defective ones. When defective cores are disabled,

the die contains Nf defect-free cores with the aggregate area Af . Substituting

Equation 4.5 for core yield into the expression for the total die area, we obtain:

Adie = Nf

(

Af

Nf

+ Ao

)(

1 +
D0

α

(

Af

Nf

+ Ao

))α

111

Chapter 4. Sparing: Redundancy and Multicore

37.5

38

38.5

39

39.5

40

5 10 15 20 25 30 35 40

Number of Functional Cores (Nf)

Die Cost (Adie = 400mm2)

Ao = 1.0mm2

Ao = 0.5mm2

Ao = 0

Figure 4.2: Die cost vs the total core count for different overheads.

Each manufactured N -core die contains the desired Nf fault-free cores, and there-

fore Ydie = 1. The trade off is that core sparing scheme produces larger but perfect

yielding die, but fewer of them per wafer. Let us designate Y0 as gross yield to

capture external factors such as wafer and facility yield. The total die cost is

constant for a given total die area:

Cdie =
Cwafer

Dies/Wafer × Y0

=
Cwafer ×

√
2Adie

π × Dwafer × Y0

(4.11)

=

Cwafer

√

2Nf

(

Af

Nf
+ Ao

) (

1 + D0

α

(

Af

Nf
+ Ao

))α

π × Dwafer × Y0

112

Chapter 4. Sparing: Redundancy and Multicore

Figure 4.2 illustrates the equation above for three example values of per core

area overhead Ao. With a few but large functional cores, the die cost is high due

to low core yield pushing the total die area up. In an ideal system without any

overhead (Ao = 0), the die cost decreases as the number of cores per die grows

because the cores become smaller and yield well. But considering the overhead

of Voltage Frequency Islands and the communication fabric, as the number of

cores grows, the overhead of many small cores dominates the die area. For each

overhead value of Ao 6= 0, a unique Nf minimizes the total die area and thus the

die cost by balancing the competing improvements in core yield with the increased

overhead. We solve ∂Adie

∂Nf
= 0 to determine the optimal Nf,opt:

Nf,opt = Af ×
D0

(

α−1
α

)

+
√

D2
0

(

α+1
α

)2
+ 4D0

Ao

2
(

1 + D0×Ao

α

)

The optimal core size is then:

Aopt =
Af

Nf,opt

=
2
(

1 + D0×Ao

α

)

D0

(

α−1
α

)

+
√

D2
0

(

α+1
α

)2
+ 4D0

Ao

The optimal core size that minimizes total die area — both functional and faulty

cores — depends only on the defect density D0, semiconductor process defect

clustering parameter α, and multi-core architecture implementation overhead Ao.

113

Chapter 4. Sparing: Redundancy and Multicore

15

20

25

30

35

40

45

50

100 150 200 250 300 350 400

Functional Die Area (mm2)

Die Cost

Traditional
Core Sparing (Ao = 1mm2)

Figure 4.3: Die cost for the traditional vs core sparing dice.

Substitute Nf,opt =
Af

Aopt
into Equation 4.11 to obtain the total die cost with

optimally sized cores:

Cdie =
Cwafer

πDwaferY0

×
√

2Af

Aopt

(Aopt + Ao)

(

1 +
D0

α
(Aopt + Ao)

)α

(4.12)

Cdie ∼ O
(

√

Af

)

(4.13)

Multi-core architectures that enable core sparing asymptotically reduce chip

cost and provide flexibility for yield management at manufacturing, deployment

and run time. Figure 4.3 illustrates the relationship between die cost Cdie and

the functional area Af for the traditional and core sparing architectures, where

114

Chapter 4. Sparing: Redundancy and Multicore

0.8

0.85

0.9

0.95

1

0 0.5 1 1.5 2
10

20

30

40

50

60

A
f
/A

d
ie

A
o
p
t

Ao

Multi-core Overhead and Optimal Core Size Aopt

Figure 4.4: The ratio of functional Af to the total die area Adie is sensitive to
multi-core overhead Ao.

the latter uses the cores of the optimal size Aopt. One can observe the clear

difference in the asymptotic behavior. Figure 4.4 illustrates the overhead of multi-

core architecture with sparing as the ratio
Af

Adie
of functional area to the total die

area, which comprises defective cores, Ao × N area overhead and the functional

die area. The figure also shows that the optimal core size Aopt increases with the

overhead Ao, as expected to balance the cost of the core isolation and decoupling.

115

Chapter 4. Sparing: Redundancy and Multicore

4.4 Yield and Over-engineering

Core sparing results in an asymptotic cost improvement, but how does it com-

pare with redundancy from over-engineered semiconductor devices? An accurate

general yield model that relates the transistor and interconnect sizes and the chip

yield is difficult to create without circuit structure and layout details. The model

below captures the trends sufficient for our analysis. The yield depends on the

defect-sensitive critical die area AC [23]:

AC = Adie

∫ ∞

0

K(x)S(x)dx

where x is defect diameter, K(x) is the fault probability kernel, and S(x) is defect

size distribution. Assume that defects have a circular shape. K(x) and S(x)

depend on the process feature size as illustrated in Figure 4.5(a). The actual values

of these parameters are not critical to our discussion, but the overall monotonicity

is. Defect size distribution S(x) can be defined as [54]:

S(x) =

{

0, if x < x0

k
x3 , otherwise

where x0 is the minimum defect size, i.e. the defects smaller than x0 do not result

in faults and have no impact on yield. Fault probability kernel usually has the

116

Chapter 4. Sparing: Redundancy and Multicore

P
ro

ba
bi

lit
y

S(x)
K(x)

Defect Size (x)

(a) Functions S(x) and K(X).

�������������������
�������������������
�������������������
�������������������
�������������������

�������������������
�������������������
�������������������
�������������������
�������������������

�������������������
�������������������
�������������������
�������������������
�������������������

�������������������
�������������������
�������������������
�������������������
�������������������

w

w

s

defect interconnect trace

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

critical area

(b) The critical area for a “short” fault is
between the dashed lines.

Figure 4.5: Critical area parameters

following definition:

K(x) =











0, if x < λ0

f(x), if λ0 ≤ x < wmax

1, otherwise

(4.14)

where 0 ≤ f(x) ≤ 1 is a monotonically increasing function with respect to x that

represents the probability that a defect of size x creates a fault. A defect larger

than the maximum size wmax will result in a fault independent of its location

on a die. Figure 4.5(b) illustrates a circuit “short” fault in the interconnect

structure, where all interconnect segments are parallel to one another. For this

fault f(x) = x − s and wmax = w + s.

Consider die area Adie with feature size of 2λ. A crude estimate of the total

device count (TDC) that basically includes transistors and interconnect traces on

117

Chapter 4. Sparing: Redundancy and Multicore

the die is:

TDC =
Adie

s0λ2

where s0 is the actual device size in terms of λ2 squares (e.g. a minimum size

transistor could be 6–8 λ2). When a designer increases device feature sizes by a

factor of F to improve resilience to faults and variations, the total device count

drops quadratically for the same die area while the expected operating frequency

decreases linearly [112]:

TDC =
Adie

s0(Fλ)2

Freq =
f0

F

How does F affect the yield? As F increases, defect size distribution S(x) does

not change for a given process. However, the fault probability K(x) decreases

because λ0 is replaced with Fλ0 in Equation 4.14. Since f(x) is monotonically

increasing, we can approximate KF (x) with unit step function to get the worst

case fault probability:

KF (x) = u(x − Fλ0) =

{

0, if x < Fλ0

1, otherwise
(4.15)

118

Chapter 4. Sparing: Redundancy and Multicore

The critical area AC affected by defects:

AC = Adie

∫ ∞

0

KF (x)S(x)dx (4.16)

= Adie

∫ ∞

0

u(x − Fλ0)S(x)dx (4.17)

= Adie

∫ ∞

Fλ0

k

x3
dx (4.18)

= Adie

k

2F 2λ2
0

(4.19)

For defect size distribution S(x) to be a valid probability density function, it

requires that
∫ ∞

−∞
S(x)dx = 1 and thus k = 2x2

0. Assume, for example, that

minimum defect size x0 = 1
2
λ0, to obtain:

AC = Adie

21
4
λ2

0

2F 2λ2
0

= Adie

1

4F 2
(4.20)

which suffices to illustrate our point that the critical area decreases as device

features grow by a factor of F .

The reduced critical area, however, comes at the expense of a lower on-die

device count and lower clock frequency. To make a fair metric, instead of focusing

on the die cost, we maximize the product of the total device count (TDC) and

clock frequency. In effect, this maximizes the number of functional devices and

their speed in a fixed die area, i.e. the total chip functionality or features. Let N

119

Chapter 4. Sparing: Redundancy and Multicore

TDC × Freq

1 1.1 1.2

Oversize factor (F)

10

20

30

40

50

F
u
n
ct

io
n
al

co
re

s
(N

f
)

200
220
240
260
280
300
320
340
360
380
400

Figure 4.6: Device oversizing vs the number of functional cores on a Adie =
400mm2. The values of N = 11, F = 1 maximize TDC × Freq.

be the total number of on-chip cores, both faulty and functional. Setting s0 = 1

and f0 = 1 for simplicity (they do not affect the qualitative result), we obtain:

Acore =
Adie

N
− Ao (4.21)

Ycore = Y0p ×
(

0,
Acore

4F 2
, D0

)

(4.22)

TDC = N × Ycore ×
Acore

4F 2
(4.23)

Freq =
1

F
(4.24)

maximize TDC × Freq (4.25)

120

Chapter 4. Sparing: Redundancy and Multicore

Figure 4.6 illustrates TDC × Freq for Adie = 400mm2. The graph shows that

to maximize the number of fault-free transistors running at the highest possible

clock frequency, the parameter values should be F = 1 and N = 11, which

assumes the process D0 = 0.0002/mm2, α = 3 and the overhead Ao = 1mm2.

This demonstrates over-engineering to be ineffective to improve die yield. There

is no closed form expression for F that demonstrate that F = 1.0 (no device

oversizing) always maximizes the on-die device count and frequency product, it

is the case on a range of parameters we analyzed. Although over-engineering can

improve the yield for a fixed die area, the reduction in the device count and the

frequency undermines the gains. Core spares are more effective to maximize chip

functionality.

4.5 Circuit and Module Redundancy

Although redundant circuits and modules do not offer the same resource man-

agement flexibility to the OS as the redundant cores, there are situations where

redundant circuits are very effective (e.g. DRAM columns).

Our yield model for cores with redundant resources (e.g. ALUs) depends on

two parameters: r ∈ [0, 1] – the fraction of the area fortified by redundancy, R ∈

[1,∞) – area replication factor that describes the overhead. For example, if 20%

121

Chapter 4. Sparing: Redundancy and Multicore

of the area is consumed by ALUs, implemented with Dual Modular Redundancy

(DMR), then r = 0.2 and R ≈ 2, which ignores the overhead of the comparator.

If a designer requests the fault-free area A, then the total core area including

the redundant modules is:

Atotal = A(1 − r) + ArR = A(1 − r + rR) (4.26)

Area A(1 − r) is not affected by redundancy, but area ArR is reinforced. The

yield for die area Atotal with the redundant modules tolerant of up to N faults, is:

Y = p (0, A (1 − r) , D0) ×
N

∑

n=0

p (n,ArR,D0) (4.27)

Combining with the multi-core yield model, we obtain the total die area for a sys-

tem with core sparing and within core module redundancy. If the design requires

total functional area Af that is partitioned into Nf cores, then

Acore =
Af

Nf

(1 − r + rR) + Ao

Ycore = p(0, Acore(1 − r), D0) ×
N

∑

n=0

p(n,AcorerR,D0)

Adie =
Nf

Ycore

× Acore

122

Chapter 4. Sparing: Redundancy and Multicore

Die Area

0 0.2 0.4 0.6 0.8 1

Fortified Fraction of the Die (r)

10
20
30
40
50
60
70
80
90

100

F
u
n
ct

io
n
al

C
or

es
(N

f
)

420

440

460

480

500

520

540

560

580

600

Figure 4.7: The total die area vs r and Nf . (Af = 400, Ao = 1, R = 1.5)

Figure 4.7 illustrates the relationship between the total die area and the choices

for r and Nf . The total die area includes the fault-free cores and the spared faulty

cores. Each functional core provides Af/Nf of fault-free area, but occupies larger

area Acore due to redundant modules (ArR) and multi-core overhead (Ao).

Figure 4.8 shows that the dominant factors — redundancy overhead R and

defect density D0 — that determine the optimal combination of r and Nf to

minimize total die area Adie. There are two regions shown in the graphs.

1. When the redundancy overhead R is very low, it suggests that the modular

redundancy should be used on the entire core (r = 1). The modular re-

123

Chapter 4. Sparing: Redundancy and Multicore

dundancy is a more effective to improve the die yield as compared to core

sparing, as evidenced by the low value of Nf .

2. In contrast, if the overhead of modular redundancy is high (exceeding 2–4%),

core sparing is a superior solution.

Notice that the boundary between two regions changes as expected when aver-

age defect density increases. The analysis decisions must be made based on the

intrinsic process yield parameters.

4.6 Model Comparison

Figure 4.9 compares the die cost for different redundancy levels: semiconductor

device over-engineering, redundant modules within a core, and core sparing. Each

curve represents the die cost assuming the optimal parameters: core size Aopt,

reinforced fraction of the core area r, and over-engineering factor F . The x-axis

shows the functional, defect-free area as would be requested by a designer. Core

sparing consistently results in the minimum die cost compared to other schemes.

Based on our models, the best use of the die area is as set of independent cores,

some of which can be left as spares. Other forms of redundancy do not provide

sufficient yield boost to compensate for their area overhead.

124

Chapter 4. Sparing: Redundancy and Multicore

 0.0005 0.001 0.0015 0.002

 1

 1.02

 1.04

 1.06

 1.08

 1.1

 0

 0.2

 0.4

 0.6

 0.8

 1

Optimal Fortified Fraction of the Die (r)

R
ep

li
ca

ti
on

F
ac

to
r

(R
)

Avg Defect Density (D0)

2

1

(a) Optimal r vs replication factor R and average defect density D0.

 0.0005 0.001 0.0015 0.002

 1

 1.02

 1.04

 1.06

 1.08

 1.1

 2

 4

 6

 8

 10

 12

 14

Optimal Number of Functional Cores (Nf)

R
ep

li
ca

ti
on

F
ac

to
r

(R
)

Avg Defect Density (D0)

2

1

(b) Optimal Nf vs replication factor R and average defect density D0.

Figure 4.8: Optimal (r,Nf) parameters to minimize the total die area Adie for
functional area Af = 400.

125

Chapter 4. Sparing: Redundancy and Multicore

0

15

30

45

60

100 200 300 400

Functional Area

Die Cost

Module Redundancy
Overengineering
Core Sparing

Figure 4.9: Die cost comparison with different schemes. Parameters: Ao =
1mm2, α = 3, R = 2.

Section 4.3 demonstrates that core sparing results in Cdie ∼ O(
√

A) if the

optimal core area is used. The optimal core area depends only on the process

parameters: defect density (D0), process complexity α, performance variations

(σ), and the area overhead (Ao). Ao is the result of independent clock and voltage

domains, and the asynchronous communication fabric. Without this overhead,

simply selecting the smallest possible core size would minimize the die cost, since

the probability of a defective or slow core decreases with its size.

Even ignoring the overhead, one cannot select an arbitrarily small core, since

we require a core with a minimum functionality and compute power. Modern CAD

tools and compilers cannot partition or parallelize applications into arbitrary sized

126

Chapter 4. Sparing: Redundancy and Multicore

communicating components. However, these tools cannot be blamed entirely, since

many classes of applications do not partition arbitrarily, but naturally divide into

coarse-grain tasks or very fine-grain logical functions, but nothing in between.

This limitation places application specific restrictions on useful processor core

sizes, which in turns affects the attainable die yield with core sparing technique.

What is the typical processor core area today? Existing commercial and aca-

demic multi-core architectures show that a super-scalar processor core ranges from

27–51Gλ2, while a simple, in-order core requires 0.5–11Gλ2 of silicon area [56, 135,

142, 44, 115, 102]. The rest of the die typically contains caches, which are pro-

tected by ECC. Architects striving to optimize the die yield have a range of options

for core areas. They can select a core close to the optimal Aopt that meets their ap-

plication requirements and also minimizes the impact of defects and performance

variations.

4.7 Summary

Redundancy in some form is and will increasingly be necessary to combat

manufacturing defects and performance variations. The presented models help to

answer several critical questions. Where and how to use redundancy in circuit and

architecture design? Should we strive toward fewer reliable cores with redundant

127

Chapter 4. Sparing: Redundancy and Multicore

modules and circuits, or make a greater number of smaller but possibly faulty and

unreliable cores? The core reliability in the first option incurs the performance,

power and area overhead as compared to the alternative, but as we have shown it

does not reduce the die cost.

Our simple model of device over-engineering and module redundancy suggests

the latter: many unreliable, smaller high-performance cores. However, to answer

this question completely, one must investigate the relationship between delay,

area, power, error correction and compensation techniques enabled by each type

of redundancy further in specific implementations. Multi-core architectures with

Voltage Frequency Islands enable core sparing to optimize manufacturing chip

yield, which asymptotically improves the die yield and cost from the traditional

O(A3) to O(
√

A) with optimally sized cores.

128

Chapter 5

Network-on-Chip Simulation
Infrastructure

One of the key efforts of this work is to demonstrate the way performance gains

of adaptive network routing can be used to compensate for on-chip PVT variations.

This issue can be studied with analytical modeling to determine the opportunities

available from various routing algorithms and methods. However, analysis can

only define the bounds for very structured and easy to model cases, such as a

uniformly distributed fixed rate traffic pattern. In practice, both spatial and

temporal communication patterns of real applications are non-trivial to model,

and a simulation provides a more useful mechanism to study the performance of

these communication topologies. Additionally, a simulation framework can easily

incorporate PVT variations, while the composition of analytical variation models

with the network performance models would create a complex, intractable problem

that would result in little or no intuitive understanding of the key trends.

129

Chapter 5. Network-on-Chip Simulation Infrastructure

This chapter describes the NoC simulation infrastructure that we developed.

Although several network simulators were available, such as NS-2 [3] and CMU’s

cycle stepping NoC simulator [50], none provided the flexibility and configurability

to simulate the impact of performance variations. A NoC router comprises several

different components such as buffers, crossbars, links, arbiters and router logic.

PVT variations affect each component differently depending on its circuit struc-

ture, and thus each component must be modeled as an independent asynchronous

router module with its appropriate variation profile. To gain the flexibility to

model a range of implementation and PVT variations scenarios, our own discrete

event simulator with performance parametrizable simulation actors that represent

NoC router components. Our NoC simulator opened the opportunity to model

the router at the micro-architecture level and enabled experiments with routing

algorithms—the main focus of this work—as well as with flow control, channel

allocation, and switching.

5.1 Simulation Infrastructure

The developed Network-on-Chip simulation infrastructure comprises four prin-

cipal components illustrated on Figure 5.1: network architecture and communica-

tion traffic synthesis, performance space synthesis, discrete event simulator, trace

130

Chapter 5. Network-on-Chip Simulation Infrastructure

Network Architecture Dynamic Processes Communication Traffic

Topology Routing Algorithm Spatial Pattern (app. graph)
Total Node Count Arbiter Type Intended Injection Rate
Input Buffer Size Performance Model Avg. Packet Length

Virtual Channel Count (nominal, stochastic,
Dimension Count systematic)

Table 5.1: NoC simulator parameters

and measurement reporting. The simulation parameters outlined in Table 5.1

define its operation.

Network Architecture and Communication Traffic Synthesis instanti-

ates a graph of core/router tiles that represents an on-chip network of the speci-

fied topology and size. Each tile is realized as a parametrizable router, flit source

and flit sink. The flit source and sink emulate the communication behavior of

a processor core adjacent to a router. Section 5.2 describes the details of router

micro-architecture, which are defined by the network topology and its dimension,

the number of virtual channels, and the flit buffer depth. Section 5.3 details the

flit source and flit sink components, which generate the spatial communication

traffic patterns based on the application task graph and its mapping onto the set

of cores.

Performance Space Synthesis is the process of assigning simulated perfor-

mance parameters to the simulated components (the actors). The performance

model defines the latency and throughput of router components, such as input

131

Chapter 5. Network-on-Chip Simulation Infrastructure

 0 5 10 15 20
 0

 5

 10

 15

 20

 0 5 10 15 20
 0

 5

 10

 15

 20

 0 5 10 15 20
 0

 5

 10

 15

 20

Reporting

NoC Simulator

Perf. Space Synthesis

Performance
PVT Model

Monte Carlo
Iterations

Params
Network

Processes
Dynamic

Params
Traffic

Net Arch. and Comm. Synth

Event Queue
RTS
ACK
RTS
RTS
CTL
ACK
........

Events Produced

Actor Firing

C
R
M
R
G

VOQ FIFO

VC 0

D
E
M
U
X

VC

C
R
M
R
G

VOQ FIFO

VC 0

D
E
M
U
X

VC
OF

OF

0

1

0

1

Credit Flow Control

VOQ FIFO

VC 1

Ch 1

Ch 1

SRC
FLT

RATE
CTRL

TRAF
GEN

VOQ FIFO FLT
SNK

F
M
E
R
G
E

F
M
E
R
G
E

OF

OF

0

1

0

1

Credit Flow Control

VOQ FIFO

VC 1

Ch 0

Ch 0
XBAR0 0

local local

1

2

3

1

2

3

ARBITER

ROUTING LOGIC

D
E
M
U
X

VC

D
E
M
U
X

Ch 0

Credit Flow Control

VC

Ch 0

Credit Flow Control

Ch 1

Ch 1

Figure 5.1: NoC Simulator Components

buffers, multiplexers, connection cross bars, inter-router communication channels.

Together these components determine the router packet transmission (single hop)

latency and throughput. The infrastructure allows for dynamic and simulation

time dependent changes to the performance model parameters that affect indi-

vidual router operation. For example, as the task execution activity changes so

does the die temperature, which impacts latency and throughput at the tile’s op-

erating region. Performance Space Synthesis is implemented as an event-driven

actor in the simulation framework, and this permits simulating dynamic voltage

and temperature variations as well as run-time system driven DVS/DFS changes.

132

Chapter 5. Network-on-Chip Simulation Infrastructure

Figure 5.1 illustrates the NoC simulation flow for a stochastic performance or

PVT variation model. To evaluate NoC performance the infrastructure uses a

Monte Carlo approach with large number of repeated simulations. The Network-

on-Chip topology is synthesized only once per set of architectural parameters.

However, the router components and inter-router channels must be re-annotated

with generated sample performance parameters for each Monte Carlo iteration.

Discrete Event Simulator is the core of the infrastructure. The simulator

is essentially an event dispatch loop, and the event-handling logic particular to

simulated router components is the key to its implementation. Sections 5.1.1

and 5.1.2 describe the implementation of the simulator and the key actors.

Trace and Measurement Reporting provides mechanisms to collect, ag-

gregate and visualize network performance statistics that include average packet

latency vs offered bandwidth, and channel and router utilization.

5.1.1 Discrete Event Simulator

The simulator contains an event queue and an actor graph that represents a

graph of NoC routers (more accurately, of the router components), traffic sources

and sinks. The actors communicate by exchanging events. An event contains a

source and a destination actor in addition to the time-stamp, which orders events

in a queue. The simulator iteratively removes an event with the smallest (earliest)

133

Chapter 5. Network-on-Chip Simulation Infrastructure

time-stamp from the top of the event queue, and activates its destination actor,

i.e. invokes the actor’s event handling code. As a result of an activation, the actor

may produce new events and post them on the queue.

More formally, an event e ∈ E contains a time-stamp tuple (t, s), where t ∈ R

represents simulated time and s ∈ I represent a “delta step” at the simulated time

t. The tuple rather than a single value t is required for causality in the simulated

components, which is particularly critical to establish an event evaluation order

for zero-delay components and feedback cycles between actors. An actor can be

thought of as a function f that maps an input event e onto a set of output events

Eo, while mutating the component’s internal state:

f : (e, Sf) 7→ (Eo, S
n
f) s.t. ∀e0∈Eo

(e < e0) (5.1)

where Sf and Sn
f are the current and next actor states. The events form a partial

order in the event queue. Given two events e0 = (t0, s0) and e1 = (t1, s1), we

define a simple lexicographical partial order in the event queue:

(e0 < e1) ⇒ [(t0 < t1) ∨ ((t0 = t1) ∧ (s0 < s1))] (5.2)

If the simulator removes events from the queue in order and fires the respective

destination actors, the system would accurately simulate the actors’ execution se-

134

Chapter 5. Network-on-Chip Simulation Infrastructure

mantics and interactions. This does not imply that it would exhibit deterministic

simulation behavior, since the determinism depends on the actors’ firing logic.

For example, the execution semantics of an event merge actor dictate whether it

behaves deterministically under all combinations and orderings of input events.

This actor can be implemented as a deterministic “round-robin” merge, or the

input events may be merged according to their partial time order. The partial

order can be the source of non-deterministic behavior. The actor’s interactions

and dependencies with adjacent actors in the communication topology dictates

whether the simulated system is free of deadlock.

The NoC simulator supports three key events, that help to establish commu-

nication flow control between the actors.

• RTS (request to send) An actor posts an RTS event to another actor to in-

dicate that it has a data token that is ready to be transmitted. In theory, an

actor can post an infinite number of RTS events with the same time stamp,

which of course would not accurately represent any physical implementation.

Section 5.1.2 describes examples of actors with a limited finite throughput

T . Such an actor can send at most T RTS events from a particular output

port per unit of time, constrained only by the throughput of its downstream

components.

135

Chapter 5. Network-on-Chip Simulation Infrastructure

• ACK (acknowledgment) An actor responds to a RTS with an ACK event

to indicate the time when it is ready to consume a data token. The response

can be instantaneous limited only by actor’s throughput, or can be delayed

indefinitely until appropriate resources are available or an expectant down-

stream ACK arrives. For example, if an actor is a fixed size FIFO buffer,

it can only reply with an ACK if it has a buffer space or when a buffer

space becomes available to accommodate the token. This simple handshake

matches the production and consumption rates between components and

mimics GALS timing.

• CTL (control) represents the events that modify actor state out of band or

by the simulation environment. For example, a simulation director sends a

CTL event to an actor to its throughput in response to on-die temperature

change.

5.1.2 Implementation of Key Actors

Actor event handling logic defines simulation functionality and its correct-

ness. An improperly implemented actor can create a deadlock in the simulation,

impeding any simulated time progress. An actor can be thought of as an inde-

pendent thread of execution, an infinite loop that blocks waiting for events and

136

Chapter 5. Network-on-Chip Simulation Infrastructure

local

ARBITER

local

3 3

2

1 1

2

00 XBAR

F
M
E
R
G
E

FLT
SNK

SRC
FLT

RATE
CTRL

TRAF
GEN

VOQ FIFO

FIFO
D
E
M
U
X

OF

0

1

C
R
M
R
G

FLIT SOURCE
(RATE CONTROL,
 TRAFFIC GEN)

FLIT SINK

FIFO BUFFER

Virtual Output Queue
FIFO BUFFER

COUNT PASSGATE

FAIR MERGE

FLIT CROSSBAR

DEMULTIPLEXOR

ORDERED FANOUT

CREDIT MERGE

FLOW CONTROLLED
WIRE

Figure 5.2: NoC simulator components that exchange discrete events.

137

Chapter 5. Network-on-Chip Simulation Infrastructure

handles them one at a time. Below we describe the details of the key actors in the

simulator, which demonstrate the implementation principles on which the router

components are constructed. For simplicity, the description of the CTL event han-

dling is omitted as its implementation typically involves only simple mutation

of actor’s timing or other parameters but not the actor’s simulated state. Our

graphical symbols for the actors below are shown on Figure 5.2.

Rate Controlled Source Actor

Rate Controlled Source sends a data token to a downstream actor at a maxi-

mum rate of 1/ttok, where ttok is the token transmission time. This actor maintains

state variable Tnext to indicate when it is legal to send the subsequent data token

as to not to exceed the maximum throughput.

1: Rate Controlled Source Actor(ttok)
2:

3: {generate next data token to be transmitted}
4: data ⇐ GenerateDataToken()
5: {start by posting the RTS event with simulated time (t = 0, s = 0)}
6: PostEvent(RTS, data, (0, 0))
7: Tnext ⇐ ttok {time when next token can be transmitted}
8: loop
9: {wait for an event e = (t, s) destined for this actor}

10: (t, s) ⇐ WaitForEvent()
11: if event type(t, s) = ACK then
12: {generate next data token to be transmitted}
13: data ⇐ GenerateDataToken()
14: {the earliest time that the next RTS can be posted}
15: Trts ⇐ max(t, Tnext)
16: {post the event with simulated time (Trts, s + 1) to the queue}
17: PostEvent(RTS, data, (Trts, s + 1))

138

Chapter 5. Network-on-Chip Simulation Infrastructure

18: {update the earliest time the next token can be sent out}
19: Tnext ⇐ Trts + ttok

20: end if
21: end loop

Algorithm line 15 ensures that the actor does not exceed the specified maxi-

mum token rate independent of the rate of downstream actors. The source actor

does not handle RTS events. Notice, that each time that an event is posted, delta

step is incremented by one to guarantee total ordering between dependent events,

which is required in a causal system (line 17).

Rate Controlled Sink Actor

Rate Controlled Sink receives a data token from an upstream actor at a max-

imum rate of 1/ttok, where ttok is token transmission time. Its operation is quite

similar to the Rate Controlled Source.

1: Rate Controlled Sink Actor(ttok)
2:

3: Tnext ⇐ 0 {time when next token can be ack’d}
4: loop
5: {wait for an event e = (t, s) destined for this actor}
6: (data, t, s) ⇐ WaitForEvent()
7: if event type(t, s) = RTS then
8: ProcessDataToken(data)
9: {the earliest time that this token can be acknowledged}

10: Tack ⇐ max(t + ttok, Tnext)
11: {post the event with simulated time (Tack, s + 1) to the queue}
12: PostEvent(ACK, (Tack, s + 1))
13: {update the earliest time the next token can be sent out}
14: Tnext ⇐ Tack + ttok

15: end if

139

Chapter 5. Network-on-Chip Simulation Infrastructure

16: end loop

Flow Control Wire Actor

The Wire Actor simulates a latency insensitive communication channel with a

simple 4-step handshake protocol. Its simulated performance is defined by trans-

mission latency l and the token (symbol) time ttok. The Wire Actor receives a

RTS from upstream and forwards it to a downstream actor with a simulated time

shift of l. Its implementation also sets the maximum token transmission at 1/ttok.

Since this actor has no token buffering, latency and token time are related, i.e.

the larger of the two values defines its performance.

1: Flow Controlled Wire Actor(l, ttok)
2:

3: Tnext ⇐ 0 {time when next token can be ack’d}
4: loop
5: {wait for an event e = (t, s) destined for this actor}
6: (data, t, s) ⇐ WaitForEvent()
7:

8: if event type(t, s) = RTS then
9: {handle RTS from the upstream actor}

10:

11: {compute the time to send downstream RTS}
12: Trts = max(t + l, Tnext)
13: {post the event to the downstream actor w/ simulated time (Tack, s+1)}
14: PostEvent(RTS, data, (Trts, s + 1))
15: {enforce maximum transmission rate}
16: Tnext = Trts + ttok

17:

18: else if event type(t, s) = ACK then
19: {handle ACK from the downstream actor}
20:

21: {ACK to the upstream actor w/ simulated time (t, s + 1)}

140

Chapter 5. Network-on-Chip Simulation Infrastructure

22: PostEvent(ACK, (t, s + 1))
23: end if
24: end loop

FIFO Buffer Actor

FIFO buffer enables efficient communication between two heterochronous ac-

tors by providing buffering that decouples instanteneous rates of the producer

and consumer. This actor can also be used to simulate a wave-pipelined trans-

mission on a wire with multiple values in flight. This actor has three parameters:

transmission latency l, token time ttok, buffer capacity S. The latency defines

the minimum amount of time between the enquing a token from the input and

its dequeuing. The token time parameter defines the maximum input and output

token rates.

Since this actor decouples its upstream from its downstream actor, the imple-

mentation is significantly more complex than that of the Flow Controlled Wire.

This actor has an additional state variable pending RTS that stores the last unac-

knowledged RTS event from the producer. Typically, when an RTS event arrives,

it may not be immediately acknowledged if buffer space is not available. The RTS

is stored in pending RTS until it can be ACK’d when the buffer space becomes

available to store the transmitted token. The actor stores a token data and its

ready time tr in a fixed size queue, represented as a tuple (data, tr). Token ready

141

Chapter 5. Network-on-Chip Simulation Infrastructure

time tr is defined as token arrival time plus actor’s transmission latency l. The

actor contains a fixed size token queue that supports the following operations:

• head(Q) returns the token at the head of the queue

• tail(Q) returns the token at the tail

• enque(Q, d) appends token d to the tail

• deque(Q) removes a token from the head of the queue

• capacity(Q) returns the maximum queue capacity defined at actor’s con-

struction time

• size(Q) returns the number of tokens in the queue

• free space(Q) returns the free space, capacity(Q) − size(Q)

The actor operation is described with the following algorithm:

1: FIFO Buffer Actor(l, ttok, S)
2:

3: Q[S] : queue data structure with max capacity S
4: pending RTS ⇐ ∅
5: Tnext ⇐ 0 {time when next token can be ack’d}
6: loop
7: {wait for an event e = (t, s) destined for this actor}
8: (data, t, s) ⇐ WaitForEvent()
9:

10: if event type(t, s) = RTS then
11: {handle RTS from the upstream actor}
12:

13: if free space(Q) > 0 then

142

Chapter 5. Network-on-Chip Simulation Infrastructure

14: Tack = max(t + ttok, Tnext)
15: {ACK to the upstream actor w/ simulated time (Tack, s + 1)}
16: PostEvent(ACK, (Tack, s + 1))
17: {add the data to the buffer}
18: enque(Q, (data, Tack + l))
19: {update the earliest time the next token can be sent out}
20: Tnext ⇐ Tack + ttok

21:

22: {if this RTS added a token to an empty buffer}
23: { send an RTS downstream accounting for transmission latency}
24: if size(Q) = 1 then
25: PostEvent(RTS, (data, Tack + l, s + 2))
26: end if
27: else
28: {the buffer is full; save RTS request until it can be ACK’d}
29: pending RTS ⇐ (data, t, s)
30: end if
31:

32: else if event type(t, s) = ACK then
33: {handle ACK from the downstream actor}
34:

35: {remove the token that has been acknowledged}
36: deque(Q)
37:

38: {if there is a pending request from upstream, handle it first}
39: if pending RTS 6= ∅ then
40: (datap, tp, sp) ⇐ pending RTS
41: Tack = max(t, tp + ttok, Tnext)
42: {ACK to the upstream actor w/ simulated time (Tack, s + 1)}
43: PostEvent(ACK, (Tack, sp + 1))
44: {add the data to the buffer}
45: enque(Q, (data, Tack + l))
46: {update the earliest time the next token can be sent out}
47: Tnext ⇐ Tack + ttok

48: pending RTS ⇐ ∅
49: end if
50: {if the queue contains any data, send an RTS downstream accounting for

transmission latency}
51: if size(Q) > 0 then

143

Chapter 5. Network-on-Chip Simulation Infrastructure

52: {get next data and its “ready time”}
53: (dataq, tq) ⇐ head(Q)
54: {send an RTS downstream}
55: PostEvent(RTS, (dataq,max(tq, t), s + 1))
56: end if
57: end if
58: end loop

Fair Merge Actor

Fair Merge is a starvation-free, nondeterministic merge of input data tokens

into a single stream. The tokens are merged in the chronological order by round-

robin input acknowledgement scheme. This actor has N input connections to

upstream actors and a single output downstream connection. It has infinite

throughput and zero token transmission latency. Other rate controlled actors,

such as FIFO buffer or Wire, are responsible for accurate performance simulation,

but Merge is only responsible for correct control functionality. Since all actors

are composable, this separation between timing and control actors dramatically

simplifies system implementation.

1: Fair Merge Actor(N)
2:

3: pending RTS[N] ⇐ {∅, ∅, . . . , ∅}
4: currInput ⇐ (−1)
5: loop
6: {wait for an event e = (t, s) destined for this actor}
7: {here, the event contains the Merge input on which this event arrived}
8: (input, data, t, s) ⇐ WaitForEvent()
9:

10: if event type(t, s) = RTS then
11: {handle RTS from an upstream actor}

144

Chapter 5. Network-on-Chip Simulation Infrastructure

12:

13: pending RTS[input] ⇐ (data, t, s)
14: {determine that there are no other forwarded RTS’s}
15: if (currInput = input)

∨

(

∧

i6=input (pending RTS[i] = ∅)
)

then

16: currInput ⇐ input
17: {forward this RTS to downstream actor}
18: PostEvent(RTS, (data, t, s + 1))
19: end if
20: else if event type(t, s) = ACK then
21: {handle ACK from the downstream actor}
22:

23: {send the acknowledgment back to the currentInput}
24: PostEvent(ACK, (t, s + 1)) ⇒ SRC[currInput]
25: pending RTS[currInput] ⇐ ∅
26: {find next input with a pending RTS with round-robin}
27: for j ∈ [1, N − 1] do
28: if pending RTS[(currInput + j) mod N] 6= ∅ then
29: currInput ⇐ (currInput + j) mod N
30: {forward this RTS to downstream actor}
31: (data0, t0, s0) ⇐ pending RTS[currInput]
32: PostEvent(RTS, (data0,max(t, t0),max(s, s0) + 1))
33: RETURN
34: end if
35: end for
36: {if no input with pending RTS was found, do not post any events}
37: end if
38: end loop

5.2 NoC Router Micro-architecture

5.2.1 Router-specific Actors

Figure 5.2 shows discrete event actors implemented to construct our NoC

router simulation model. The previously described basic actors can be composed

145

Chapter 5. Network-on-Chip Simulation Infrastructure

to construct any required router component. However, we have chosen to im-

plement more complex actors directly in C++ to improve simulator efficiency,

flexibility and observability, instead of building them by composition. The com-

plex actors are customized for routing and operate directly on network flits1. Due

to their complexity, below we highlight the salient features and operation details

of these actors rather than presenting their detailed event handling code.

Credit Merge

Credit Merge is a specialization of the Fair Merge actor designed to operate

on value-less tokens, i.e. “token presence” indicator only. This actor is a part

of the credit based inter-router flow control. It merges the credits that represent

the available input flit buffer slots from different virtual channels and sends the

credits back to the source router.

Ordered Fanout

This actor logically simulates a simple, no delay event fanout. The RTS event

on the input is replicated to all actor’s outputs. The fanout semantics in a data-

flow environment require that all output actors acknowledge the RTS events before

the fanout actor can acknowledge the RTS on its input. In other words, the

1Flit is a term for network transmission flow control unit.

146

Chapter 5. Network-on-Chip Simulation Infrastructure

actor on the input of the fanout cannot proceed until all fanout destinations have

acknowledged the receipt of the token.

The ordered fanout is a variant of the fanout actor that communicates with

its outputs in order. When an RTS event is received on the input, the actor first

sends an RTS to output 0 and waits for an acknowledgment. Only after the output

0 returns an ACK, will the actor send an RTS to output 1 and wait for ACK, and

so on for all remaining outputs. Only when the last output has acknowledged the

receipt of the token, will the ordered fanout actor send ACK to its input. This

scheme guarantees that the output i consumes the data before output j, if i < j.

The Ordered Fanout actor is a part of the credit based flow control mechanism,

where it ensures that the crossbar has consumed a flit and thus released input

buffer space before flow control credit is generated.

Count Passgate

This actor is a zero-delay passgate the has one data input, one data output,

and a special input that controls a counter. A counter can be initialized to an

arbitrary non-negative value. The actor passes tokens from the data input to the

output as long as the value of the counter is greater than zero. As the token is

transmitted through the passgate, the value of the counter is decremented by one.

Only an event directed to the special control input increments the counter.

147

Chapter 5. Network-on-Chip Simulation Infrastructure

Count Passgate is the key source-side component of the credit based control

flow scheme. It is initialized to the input buffer capacity of a downstream router.

As flits are transmitted onto a wire, the counter is decremented limiting the num-

ber of flits in flight. As the downstream router empties its buffer, it sends credits

to allow more flits to be transmitted and increments the value of the counter.

Demultiplexer

This actor has one data input and up to N data outputs in addition to a special

control input that specifies the output direction. It forwards the input event to

the output specified by the token value on the control input. The primary use

for this actor is to forward flits to the appropriate buffer based on their virtual

channel association. The actor simulates no delay.

Virtual Output Queue FIFO Buffer

Section 3.2 discusses the need for Virtual Output Queues (VOQs) to solve

Head-of-Queue blocking problem in the input queue routers. Figure 5.3 shows the

functionality and logical implementation of our VOQ FIFO buffer actor. From

the inter-router channel, the flits arrive into an ordinary FIFO buffer, where they

are considered by the routing algorithm in order. For each packet header flit, the

router computes the output channel, with which the header and the rest of the

148

Chapter 5. Network-on-Chip Simulation Infrastructure

D
E
M
U
X

channel(s)
output

ArbitrationRouting Algorithm

header

FIFO

FIFO (0)

FIFO (1)

FIFO (N)

M
U
X

Arb Reqs

XBAR

Virtual

Channel

Demux

Figure 5.3: Logical implementation of a Virtual Output Queue FIFO buffer.

packet flits are demultiplexed to an appropriate output channel FIFO(i) buffer.

The cross-bar arbiter considers all the packets at the head of each virtual out-

put channel FIFO simultaneously and determines which output channels can be

granted. The sum of all FIFO capacities is the total capacity of the VOQ FIFO

buffer actor. This is only a logical implementation, as in practice, all FIFOs are

implemented with a single multi-port circular buffer with complex control. The

arbiter may not be able to consider all output channel requests simultaneously,

which requires a hierarchical, multistage approach to make the arbiter implemen-

tation efficient [80].

In our implementation, an adaptive routing algorithm computes a set of output

channels for each packet, instead of a single channel. This allows the arbiter to

select the output channel after the packet arbitration request and to adapt to

the most current congestion conditions by considering several potential VOQs for

149

Chapter 5. Network-on-Chip Simulation Infrastructure

each packet. An alternative implementation would require the routing algorithm

to compute only a single output channel based on the traffic conditions during

the routing stage — a long time before the packet makes its crossbar arbitration

request. In practice, both approaches are equivalent as long as the input flit buffers

are relatively small, and changes in network load balance occur slower than the

average packet queue waiting time.

Flit Crossbar and Arbiter

This is the most complex actor in the NoC router simulation, which consists of

a passive fully-connected crossbar and an arbiter module that controls when the

connections are setup and dismantled. The crossbar operation is simple. Once

the arbiter sets up the connection between an input and an output, the crossbar

allows a sequence of flits to flow starting from the packet header flit and ending

with a packet tail flit. Once the tail flit leaves the crossbar, the connection is

severed, and the arbiter is notified.

Since the efficient arbiter implementation was not the subject of this research,

our algorithm considers all VOQ output channel requests simultaneously, rather

than hierarchically. The arbiter attempts to maximally match the VOQs with

the output channel by solving a Maximum Weighted Matching (MWM) Problem,

which ensures full crossbar utilization. The arbiter is activated by one of the

150

Chapter 5. Network-on-Chip Simulation Infrastructure

following events. (1) A routing algorithm computed a set of output channels for a

packet header flit at the head of the VOQ, and the packet is ready for arbitration.

(2) A packet tail flit has exited the crossbar switch, and the corresponding crossbar

output is now available.

Routing Algorithm

This actor offers a simple event-driven interface. It receives an event with a

routing request from the VOQ FIFO buffer when a packet header flit arrives, and

responds with an event with a set of output channels. The set of output channels

is later considered by the crossbar arbiter and a single output channel is selected

and granted for the packet.

The actor contains the routing logic, such as Dimension Order or Minimal

Adaptive dual virtual channel algorithms. They determine the output of the

actor and, of course, the network performance. The routing algorithms are the

subject of Chapters 6 and 7.

Flit Source Actor

This actor is a specialization of the Rate Controlled Source Actor, customized

to operate on sequences of flits. The actor simulates the traffic produced by the

processor core that accompanies the router. The Flit Source contains injection rate

151

Chapter 5. Network-on-Chip Simulation Infrastructure

control that defines the upper bound r ∈ [0, 1] of the injection rate, the fraction

of the total ingress2 bandwidth that the actor may utilize. The Flit Source also

contains the configurable traffic generation module that synthesizes packets given

a spatial and temporal network communication properties. Section 5.3 discusses

traffic generation in detail.

Flit Sink Actor

The Flit Sink actor is a simple specialization of the Rate Controlled Sink

Actor, customized to operate on sequences of flits. The actor’s primary purpose

is to remove flits from the network once they reach their destination. The actor

plays a critical role in reporting and statistics gathering infrastructure.

5.2.2 Router Implementation

Due to its modularity, our NoC simulation infrastructure supports a variety

of network topologies and router implementations. However, each topology re-

quires specific routing algorithms and deadlock avoidance measures. This work

focuses on the two-dimensional mesh of processor cores. Figure 5.4 illustrates

a NoC router micro-architecture composed from the discrete event actors. For

presentation simplicity, the router as shown supports a one-dimensional network

2Ingress is the port from the core to the router. Outgress is the router to core port.

152

Chapter 5. Network-on-Chip Simulation Infrastructure

C
R
M
R
G

VOQ FIFO

VC 0

D
E
M
U
X

VC

C
R
M
R
G

VOQ FIFO

VC 0

D
E
M
U
X

VC
OF

OF

0

1

0

1

Credit Flow Control

VOQ FIFO

VC 1

Ch 1

Ch 1

SRC
FLT

RATE
CTRL

TRAF
GEN

VOQ FIFO FLT
SNK

F
M
E
R
G
E

F
M
E
R
G
E

OF

OF

0

1

0

1

Credit Flow Control

VOQ FIFO

VC 1

Ch 0

Ch 0
XBAR0 0

local local

1

2

3

1

2

3

ARBITER

ROUTING LOGIC

D
E
M
U
X

VC

D
E
M
U
X

Ch 0

Credit Flow Control

VC

Ch 0

Credit Flow Control

Ch 1

Ch 1

Figure 5.4: Router micro-architecture implemented in NoC simulator.

topology with two duplex channels for positive and negative routing directions.

The router contains two virtual channels with credit based flow control. The pre-

sented micro-architecture naturally expands to higher dimensional topologies, e.g.

our 2D mesh, or a greater number of virtual channels, which would be required

to implement deadlock-free routing in a torus. The Flit Source and Sink actors

simulate the communication behavior of the accompanying processor core.

Consider the following packet routing scenario. A packet header flit arrives

on the physical channel input 0, and it is demultiplexed into VOQ FIFO buffer

corresponding to its virtual channel 1. As soon as the header flit is stored in the

153

Chapter 5. Network-on-Chip Simulation Infrastructure

buffer, the VOQ FIFO buffer sends a routing request to the Routing Logic and

waits. The Routing Logic responds with a set of valid output channels to the

VOQ FIFO actor, which assigns the set to the header flit. Notice that while the

router is computing the output channels, some of the subsequent flits belonging

to our packet may have arrived and were stored together in VOQ FIFO buffer,

available buffer space permitting. The header flit with the valid output channel

set is marked “ready for arbitration,” and an arbitration request is posted. The

arbiter responds when one of the requested outputs is available and sets up the

cross-bar connection between the VOQ FIFO (technically, the Ordered Fanout

Actor) and the output. Once the connection is established, it will persist until all

packet flits travel through the crossbar and are sent through the router output.

As the flits are removed one by one from the VOQ FIFO buffer, the Ordered

Fanout actor ensures that the crossbar consumes the flit and frees a VOQ FIFO

buffer slot before the flow control credit is generated and sent to the Credit Merge

actor. The Credit Merge actor aggregates the available buffer slots from all virtual

channels in the physical channel 0, and notifies the source router.

The crossbar output is connected to Count Passgates that implement inter-

router credit based flow control for each virtual channel. The Count Passgates are

initialized to the input VOQ FIFO buffer capacity, and they restrict the number of

flits transmitted to ensure that they can be safely buffered downstream without

154

Chapter 5. Network-on-Chip Simulation Infrastructure

a deadlock. As credits arrive from the downstream router, they increment the

Count Passgate, which resumes transmission. A Fair Merge actor combines the

flits from two virtual channels and sends them out to the adjacent router. Notice

that the Fair Merge actor guarantees starvation freedom and fairness between the

virtual channels, i.e. assuming both channels have enough credits to transmit,

they both receive equal output bandwidth. At the same time, shall one of the

virtual channels stall waiting for a credit, the Fair Merge will allow the other

channel to consume the entire output bandwidth.

5.2.3 Router Performance Annotation

Figure 5.4 presents the router micro-architecture that comprises communicat-

ing discrete event actors. Each actor is a router component whose performance can

be parametrized independently in our NoC simulator. For actor implementation

simplicity and to ensure its correct operation, each control actor is implemented

to simulate the ideal performance, in other words, infinite throughput and zero

transmission latency. The router micro-architecture contains the following control

actors: Credit Merge, Ordered Fanout, Count Passgate, Demultiplexer, Crossbar

and Arbiter, which were described in the earlier sections. The control actor im-

plementation does not have to consider the simulated time. The sole function

155

Chapter 5. Network-on-Chip Simulation Infrastructure

of a control actor is to ensure the ordered exchange of events with the adjacent

components.

The simulation time aware actors determine the router performance, its through-

put and latency. These actors include Virtual Output Queue FIFO Buffer, Rout-

ing Algorithm Actor, Flit Source Actor, Flit Sink Actor, and Flow Control Wire

Actor that implements inter-router communication channels. These actors are

parametrized with throughput as token transmission time ttok and transmission

latency l as described in Section 5.1.2. Section 5.1 describes one of the key compo-

nents of our NoC simulation infrastructure: Performance Space Synthesis, which

forms a part of the Monte Carlo simulation loop. Given a PVT variation model,

which is a combination of stochastic location independent performance distribu-

tion and systematic die location aware effects, Performance Space Synthesis anno-

tates each of the router components (e.g. FIFO buffer) with a token transmission

time and latency.

In our router micro-architecture, the minimum simulated throughput of the

Virtual Output Queue FIFO Buffer and Flow Control Wire actors determines

the maximum router flit throughput. The sum of the latencies of these actors

determines the minimal flit transmission time through the router. These bounds,

of course, assume no contention or back-pressure from the downstream router.

The router throughput and latency are affected by Routing Algorithm Actor pa-

156

Chapter 5. Network-on-Chip Simulation Infrastructure

rameters, which determine the rate at which the set of output channels can be

computed for each packet head flit. If the packet stream comes from or to the

local processor core, then the throughput parameters of Flit Source and Flit Sink

actors determine the maximum flit throughput.

The router parametrization scheme described here is simple, but it allows us

to combine the performance profiles of multiple router components into input

buffer and inter-router channel throughput only. This reduction in the number

of parameters and focus only on the simulation time aware actors simplifies the

PVT variation modeling modeling and helps to identify the critical correlations

between router and overall network performance.

5.3 Flit Source and Traffic Generators

To keep our software NoC simulator tractable and efficient, the framework

does not simulate the processor execution — all produced traffic is synthetic. Flit

Source and Sink Actors attached to the local crossbar ports simulate the network

communication behavior of the processor core that accompanies the NoC router.

The operation of the Flit Sink Actor is trivial, as its name suggests the actor

simply consumes flits at the maximum rate specified by the system performance

model and reports the average packet latency and other statistics.

157

Chapter 5. Network-on-Chip Simulation Infrastructure

The operation of the Flit Source Actor is defined by the Injection Rate Con-

trol and Traffic Generator sub-modules. The Injection Rate Control specifies the

upper bound r ∈ [0, 1] on the fraction of the total ingress bandwidth that the Flit

Source can consume. This upper bound rate may not be reached in practice if

it exceeds the network saturation rate. For example, assume a uniform random

destination traffic pattern and equal packet production rates for all N network

nodes. Then the node ingress saturation rate cannot exceed 2/N of the total

network saturation rate, independent of the specified upper bound. The network

topology cross-section bandwidth determines the saturation bandwidth. In uni-

form random traffic, only half of the nodes communicate to their peers on the

other side of the cross-section, which explains the factor of 2 in the bound.

This section focuses on the Traffic Generator sub-module, which is a config-

urable entity that synthesizes spatial traffic patterns with arbitrary properties.

For every network node, the module needs spatial and temporal characteristics of

the simulated communication pattern. The spatial characteristics include a set

of destination cores and the communication frequencies to each destination. In

other words, if the communication pattern is a graph of tasks with fixed on-chip

locations, then the traffic generator needs to know the outgoing communication

edges.

158

Chapter 5. Network-on-Chip Simulation Infrastructure

Temporal communication characteristics, such as burstness, can be captured

with detailed packet production times for different cores. They depend on the

application implementation, inter-dependencies and mutual synchronization of the

tasks. To accurately recreate temporal profiles, the framework must simulate

execution of all scheduled tasks and communication flows. Even a seemingly minor

change in the task schedule and mapping can significantly impact the temporal

communication profile. This is not feasible with a software simulator for more

than a few simulated cores.

The inter-task communication dependencies can be replicated with a help of

static and/or dynamic code analysis and tracing, and as long as imprecise timing

is permitted, they can be simulated without processor execution. The effects of

caching and network congestion on the traced platform may not be repeatable,

however. Our framework only simulates the network operation without the details

of processor execution. It does not reconstruct the temporal task dependencies

but only focuses on spatial communication patterns and steady state temporal

behavior. The simulated network routers contain flit buffers, which to a large

degree eliminate the effects of burstness.

The Traffic Generator sub-module can produce artificial spatial communica-

tion patterns described in Table 8.1, such as the nearest-neighbor or tornado,

or can produce the patterns that closely mimic communication topology of real

159

Chapter 5. Network-on-Chip Simulation Infrastructure

multi-tasking applications. Artificial communication patterns typically capture a

single type of load (im)balance and communication locality. However, real appli-

cations have communication patterns that are significantly more complex both

spatially and temporary. Real applications have communication behavior that

combines several simpler artificial communication patterns, and simulating these

patterns has an added advantage that it exercises a range of corner cases. For

example, consider two High Performance Computing (HPC) kernels used in this

work: GTC and SuperLU (Table 5.2). They are dominated by local communi-

cation between the tasks, but also contain all-to-one and one-to-all patterns that

create a congested region around the gather sink and scatter source nodes in the

network. There is no simple and reliable way to measure the way a particular

routing algorithm performs without a complete simulation of the real application

communication pattern.

The Traffic Generator sub-module synthesizes traffic based on Message Passing

Interface (MPI) application execution traces. Our traces were obtained with the

Integrated Performance Modeling (IPM) [2] application profiling layer that non-

invasively gathers the communication characteristics of parallel codes as they run

in a multi-processor environment. The IPM output does not contain the internal

task dependencies that are required to reconstruct or emulate exact timing, but

they capture the spatial communication patterns and relative frequencies accu-

160

Chapter 5. Network-on-Chip Simulation Infrastructure

Name Discipline Problem and Method Structure

Cactus [6] Astrophysics Einstein’s Theory of GR via
Finite Differencing

Grid

LBMHD [90] Plasma Physics Magneto-Hydrodynamics
via Lattice Boltzmann

Lattice/Grid

GTC [88] Magnetic Fusion Vlasov-Poisson Equation via
Particle in Cell

Particle/Grid

SuperLU [87] Linear Algebra Sparse Solve via LU Decom-
position

Sparse Matrix

PMEMD [32] Life Sciences Molecular Dynamics via
Particle Mesh Ewald

Particle

PARATEC [24] Material Science Density Functional Theory
via FFT

Fourier/Grid

FVCAM [105] Climate Modeling Atmospheric Circulation via
Finite Volume

Grid

MADbench [21] Cosmology Cosmic Microwave Back-
ground Analysis via
Newton-Raphson

Dense Matrix

Table 5.2: MPI task communication graphs [120].

rately. As Chapter 6 shows, these traces are sufficient to learn a great deal about

the application network behavior and performance.

Figure 5.5 shows a task netlist format extracted from the IPM trace. The

netlist contains a set of communication destinations and relative communication

frequencies for every task. For example, node 0 sends 30% of output traffic to node

1, and 70% of traffic to node 2. The Traffic Generator sub-module can simulate the

specified traffic distribution with the following procedure. Each source-destination

flow is assigned a number of tokens proportional to its fraction of consumed output

bandwidth. The traffic generator randomly selects a token out of the common

161

Chapter 5. Network-on-Chip Simulation Infrastructure

0: (1) @ 0.3, (2) @ 0.7

1: (3) @ 1

2: (3) @ 1

(a) Netlist description

0 1

2 3

0.3

0.7

1

1

(b) Corresponding graph

Figure 5.5: An example of the netlist format extracted from IPM trace.

pool and generates a packet to the destination that owns the selected token. The

destinations with greater number of tokens have a higher probability of being

selected and receive a greater fraction of network packets.

5.4 Task to core mapping

Task-to-core mapping does not qualitatively affect the network performance

results in our routing algorithm experiments with application driven spatial traffic

generators. Yet in practice, mapping quality has a tremendous quantitative impact

on the results. Section 7.5 presents a detailed analysis of the way this mapping

affects the network performance improvements from adaptive vs oblivious routing

algorithms. Our NoC simulation infrastructure uses VPR FPGA placement tool

to map the tasks onto the processor cores [16]. The VPR was designed to map

a netlist of look-up tables on the Manhattan array of configurable logic blocks

162

Chapter 5. Network-on-Chip Simulation Infrastructure

(CLBs) in an FPGA. We represent each task in an HPC kernel graph as a look-up

table, and each core/router tile — as a CLB. The VPR computes a “placement”

using a simulated annealing algorithm with the bounding box cost function, which

attempts to minimize average communication distance between the tasks and

preserves locality. After mapping, each core contains a single task.

5.5 Summary

This chapter presents the organization and implementation details of our

Network-on-Chip simulation infrastructure that consists of four key components:

architecture and communication traffic synthesis, performance space synthesis,

discrete event simulator, trace and measurement reporting. The infrastructure

is configurable with NoC topology parameters, packet routing and switching al-

gorithms, and PVT variation performance profiles. The actors in discrete event

simulator implement various NoC router components and allow realistic modeling

of the impact of PVT variations on different types of circuits that comprise the

router implementation: memory buffers, interconnect and random logic. A micro-

architecture of a configurable mesh/torus multi-virtual channel router is presented

to illustrate salient implementation features.

163

Chapter 5. Network-on-Chip Simulation Infrastructure

The NoC simulation infrastructure does not simulate task execution in a multi-

core system. Instead, it generates a network packet traffic that closely mimics

the spatial communication pattern and temporal steady state behavior of real

applications. The traffic is generated based on the MPI traces collected from the

execution of HPC multi-tasking applications on a super-computer. The ability to

perform experiments with realistic in addition to the synthetic and regular traffic

patterns strengthens the results discussed in the subsequent chapters by exposing

various corner cases.

164

Chapter 6

Adaptive Routing Algorithms

The heterogeneous performance multi-core architecture described in Chapter 3

offers a great degree of flexibility for run-time application mapping. An ideal map-

ping would ensure that each computational core and its accompanying network

segment are maximally utilized. This chapter focuses on the key resource man-

agement task for Network-on-Chip: routing. The application and router perfor-

mance has traditionally been described with network topology, routing algorithm

and switching algorithm bounds. Although these bounds seem to only capture

the network properties, in practice application performance depends on the match

between the application communication pattern and the underlying network.

Although the analytical topology and routing bounds can be used to esti-

mate network performance opportunities, only an algorithm implementation can

identify the realizable gains and demonstrate conclusively the value of various

heuristics and communication patterns. This chapter develops several adaptive

165

Chapter 6. Adaptive Routing Algorithms

routing algorithms and evaluates them with our NoC simulation framework. We

investigate Dimension Order, Minimal Adaptive, and West First Minimal routing

algorithms. The first one serves as a reference performance point, because Dimen-

sion Order is trivial to implement in a fixed topology but provides no adaptability

to dynamic network conditions. The other two algorithms provide different de-

grees of adaptability. The simulations identify our Minimal Adaptive Total Con-

gestion (MATC) algorithm as the overall performance winner that we use in the

experiments presented in Chapter 7 to evaluate the network performance impact

of PVT variations.

6.1 Network performance

The performance of a communication traffic pattern mapped on a network

topology can be described by the classic average packet latency vs consumed

bandwidth curve shown on Figure 6.1. Packet latency is the amount of time for

a packet to traverse a path from its source to its destination node. Analytical

modeling of such a system is non-trivial, typically requiring a number of impor-

tant simplifying assumptions about packet arrival rates and a symmetric, regular

communication pattern [14, 71]. One of the standard network modeling tech-

niques treats a router input buffer as M/D/1 queuing system. Such a system

166

Chapter 6. Adaptive Routing Algorithms

comprises Markov arrival process (i.e. Poisson) of rate λ, Deterministic service

process defined by fixed input buffer throughput and one server. By simplifying

the packet arrival as Poisson process, the M/D/1 packet queuing delay can be

expressed as [123]:

Q(λ) =
1

2(1 − λ)
(6.1)

Assume the packet makes on average m router hops from its source to its desti-

nation, then the total packet latency can be approximated as

Lm(λ) = mQ(λ) + m (6.2)

The packet latency comprises two components: queue wait time and transmis-

sion latency. A way to think about packet arrival rate is as traffic injection rate

r ∈ [0, 1] — the fraction of the total network bandwidth that is utilized by the

application(s). When all network nodes collectively consume very small fraction

of the network bandwidth, the expression Lm(λ ≈ 0) is dominated by term m,

which is the unloaded packet transmission latency proportional to the average

on-chip communication distance. However, as injection rate increases, the queue

delay begins to dominate the total packet latency, eventually reaching the band-

width saturation point where Lm(λ) grows to infinity. This simple model clearly

identifies the sources and bounds of network performance.

167

Chapter 6. Adaptive Routing Algorithms

A
vg

 P
ac

ke
t

L
at

en
cy

Consumed Network Bandwidth

Top
olo

gy

Rou
ter

Flow
 C

on
tro

l

PVT V
ar

iat
ion

s

Bounds
Saturation B/W

Bounds
Unloaded Latency

Figure 6.1: Queuing systems defined relationship between packet latency (wait
time) and network bandwidth consumption.

Traditionally, researchers identify three types of bounds that constrain the re-

lationship between average packet latency and the consumed network bandwidth

(injection rate, from now on): network topology, routing algorithm and flow con-

trol (Figure 6.1) [34]. We introduce a new bound imposed by PVT performance

variations that represents the network performance degradation that variations

create and discuss it in Section 7.1.

6.1.1 Topology Bound

The topology bound on saturation bandwidth is defined as the maximum

throughput a network topology can support for a given application communi-

cation pattern. This typically depends on the network bi-section bandwidth. For

168

Chapter 6. Adaptive Routing Algorithms

example, consider the uniform random network traffic pattern in a 8x8 2D mesh

network, UR(8) in Table 8.1. Due to symmetries in the traffic and the network

topology, computing saturation bandwidth bound is simple. Cross-section band-

width comprises 16 channels, 8 in one direction and 8 in the other. The uniform

random traffic implies that half of the traffic from 32 tasks on one side of the NoC

bi-section crosses to the other side. Assume for simplicity that the router ingress

bandwidth matches that of an inter-router channel. Thus, we obtain that 8 chan-

nels are carrying traffic from 32/2 = 16 tasks, i.e. each network node occupies

8/16 = 0.5 of the critical channel’s bandwidth. This corresponds to the network

saturation injection rate bound of 0.5, i.e. only half of the total network ingress

bandwidth can be utilized for the uniform random destination traffic pattern.

Similarly, for a regular symmetrical traffic, topology latency bound can also be

computed based on the average number of hops that a packet travels. Section 8.1

extends these principles and demonstrates a way to efficiently estimate topology

bounds for an arbitrary, non-symmetrical application traffic pattern.

6.1.2 Routing Bound

The routing bound is an improvement on the topology bound. A topology

bound assumes that all channels are available to carry the application traffic. In

contrast, a routing algorithm defines a set of valid paths and the corresponding

169

Chapter 6. Adaptive Routing Algorithms

NoC routers and channels that a packet can traverse for each communicating

source and destination. For a simple algorithm, such as Dimension Order routing

(Section 6.3), each source and destination pair has a unique routing path. How-

ever, adaptive algorithms may offer larger path diversity to the application traffic

and thus their bound can approach closer to the topology bound. Computing a

routing bound is only simple with load-balanced symmetric traffic patterns, such

as uniform random destination. Section 8.2 describes a method to efficiently com-

pute a routing bound on the saturation bandwidth for an arbitrary communication

traffic pattern and a routing algorithm.

6.1.3 Flow Control Bound

The flow control bound reflects the router switch bandwidth utilization, which

is mostly determined by the switch, arbiter, and router implementation overheads,

the flow control granularity, flit and packet sizes. For example, consider a simple

switch that suffers from bandwidth degradation due to Head-of-Queue blocking vs

a more complex switch with Virtual Output Queues [93]. The latter can achieve

100% switch utilization with the ideal Maximum Weighted Matching (MWM) ar-

bitration scheme [96, 33]. In practice, the switch efficiency is limited by a heuristic

that can be efficiently implemented in hardware to approximate MWM [45].

170

Chapter 6. Adaptive Routing Algorithms

6.2 Communication Patterns

A routing algorithm delivers packets from sources to destinations and attempts

to balance the packet load across all available network communication channels.

To understand its performance, one must understand spatial and temporal com-

munication characteristics of an application. The spatial pattern refers to the

network routers and channels that carry the load for each communicating ap-

plication task pair. The spatial pattern can be characterized by communication

locality and load balance. Locality is a measure of the average distance that a

packet travels. Intuitively, a task graph with more local communication reduces

overall physical resource requirement on the network, and thus may yield lower

packet latency and higher network saturation throughput. The load balance is a

measure of the variance of utilization across all network routers or channels. Appli-

cation task-to-core assignment critically affects the network performance because

a good assignment maximizes communication locality and balances packet load

across available network resources (Section 7.5).

Temporal communication pattern refers to the steady state behavior, such

as the rate at which a processing element injects packets into the network, as

well as the transient behavior that includes bursts and oscillations in network

traffic volume. An accurate modeling of temporal patterns requires application

171

Chapter 6. Adaptive Routing Algorithms

execution on the multi-core system to capture computation to communication

ratios of individual tasks, the inter-task synchronization and partial temporal

ordering between packets.

This work focuses on spatial communication characteristics and reduces tem-

poral steady state behavior to an average injection rate as is typical in the routing

algorithm research. Capturing the exact spatial communication pattern is non-

trivial as well, since it is a product of a NP-hard task-to-core assignment algorithm,

which often has erratic and non-monotonic results. Thus, we abstract the com-

munication pattern by communication locality and investigate the correlations

between the locality and application performance on a given network topology.

Table 5.2 presented the application communication patterns studied in this

work. They were extracted from from MPI multi-tasking High Performance Com-

puting kernels. These task communication graphs form a collection of commu-

nication patterns from local to global, and their properties are summarized in

Table 6.1 with the application size N and the average number of edges per node

(degree) davg. The VPR simulated annealing algorithm was used to map the ap-

plication tasks to processor cores on a 2D mesh network topology (Section 5.4).

Given an application task graph, the mapping algorithm strives to minimize the

average communication distance. Table 6.1 partitions our set of benchmarks by

size into groups of 64 and 256 nodes, and within their group the applications are

172

Chapter 6. Adaptive Routing Algorithms

Name Davg N davg

gtc3-64 1.09 64 2.2
cactus-64 1.73 64 4.5
fvcam 2d 2.62 64 14.4
lbmhd-64 3.37 64 6
pmemd-64 5.24 64 63
gtc2 1.12 256 3.1
mdh2d 2.02 256 4
cactus-256 2.12 256 5
madbench1 3.31 256 13.3
slu-256 5.72 256 30.9
lbmhd 5.81 256 6
madbench2 5.83 256 39.1
paratec-256 10.6 256 255

Table 6.1: A summary of HPC kernels grouped by size and sorted by communi-
cation locality.

sorted by the average communication distance (Davg) — the number of router

hops that a packet travels. Notice, that our benchmarks represents a range of

localities from a nearest neighbor communication pattern (e.g. gtc3-64) to a

global communication pattern (e.g. paratec-256). This and the following chap-

ters investigate the correlation between application communication locality and

its network performance.

6.3 Routing Algorithms

The topology and router bounds can be used to estimate the network per-

formance for relatively simple and symmetric communication patterns. However,

173

Chapter 6. Adaptive Routing Algorithms

only a routing algorithm implementation can identify the realizable gains and

demonstrate conclusively the value of various heuristics. We discuss several rout-

ing algorithms: Dimension Order, Minimal Adaptive, and West First Minimal

Router. The first serves as a reference performance point, because Dimension

Order is trivial to implement in a fixed topology but provides no adaptability to

dynamic network conditions. The other two algorithms provide different degrees

of adaptability, and they are minimal, which guarantees live-lock free operation.

We evaluate the variants of these adaptive algorithms to identify the overall winner

across our set of HPC benchmarks. We use the best algorithm to study the impact

of PVT router and channel parametric variations on the network performance.

This work considers several output channel selection heuristics that use conges-

tion metrics to make adaptive decisions. While they vary in the implementation

complexity, no single heuristic consistently delivers maximum performance gains.

Instead, a routing algorithm with the most adaptive choices consistently performs

the best.

To describe a routing algorithm, we define a common nomenclature. The

algorithms below apply to operate in a (n, k)-mesh, where n is the dimensionality

and k is the dimension cardinality. They are distributed, i.e. each NoC router

executes an instance of the algorithm and maintains its own local state, and use

the following two special data types Address and Channel:

174

Chapter 6. Adaptive Routing Algorithms

• Address represents a uniquely identifiable position on the mesh as a vector

A with n elements: A = (a0, a1, . . . , an−1), where ∀i ∈ [0, n)ai ∈ [0, k).

• Channel represents an input or output router channel, identifiable as a tuple

(m, d, v), where m ∈ [0, n) is the dimension and d ∈ {+,−} is the direction,

v ∈ N is the virtual channel. Channel may also take on a special value

“local” to refer to the channel to/from the adjacent processor core. For

example, on a 2D mesh (1,−, 3) refers to the channel along the Y dimension

in the negative direction assigned to virtual channel 3. In other words, if

this router’s address is A = (a0, a1), then channel “Y-” connects it to the

router at (a0, a1 − 1).

A routing algorithm can be thought of as a function with the following three

arguments, which is invoked when a packet header arrives into an input queue:

• InCh refers to the channel on which the packet has arrived. This is re-

quired to disallow appropriate turns in the packet’s paths for deadlock-free

operation.

• MyAddr is the address of the router executing the algorithm.

• DestAddr is the packet’s destination address.

Upon completion the routing algorithm returns a set of valid output channels and

makes the packet ready for crossbar arbitration.

175

Chapter 6. Adaptive Routing Algorithms

6.3.1 Dimension Order Routing

In spite of its oblivious routing approach, Dimension Order (DO) routing is a

simple and popular choice for NoC implementations [135]. The algorithm is natu-

rally deadlock-free, as demonstrated by the valid traffic turns on Figure 6.2(a) that

cannot form a cyclical resource dependency. As all minimal routing algorithms,

DO is live-lock free as long as the crossbar switch scheduling and arbitration are

free of starvation because after every routing decision, a packet is one network

hop closer to its destination. Dimension Order routing serves as a reference point

to evaluate our adaptive algorithms. It does not adapt to changing network con-

gestion nor does it affect the existing communication load balance. When the

traffic is mostly balanced, DO routing works well and delivers the performance

that is close to the topology bound. It is popular with system designers due to

its low implementation complexity and cost, and because the designers often ap-

proximate the expected network traffic as balanced uniform random traffic. The

pseudo-code for the algorithm is shown below.

1: DO ROUTE (InCh : Channel; MyAddr, DestAddr : Address) : Channel
2:

3: # iterate through all dimensions to find the first difference
4: for all i ∈ 0..(n − 1) do
5: ∆ ⇐ DestAddr[i] − MyAddr[i]
6: if ∆ > 0 then
7: return (i, +, InCh[v])
8: end if
9: if ∆ < 0 then

10: return (i,−, InCh[v])

176

Chapter 6. Adaptive Routing Algorithms

(a) Dimension Order

VC1
VC0VC1

VC0

(b) Minimal Adaptive (c) West First

Figure 6.2: Allowed routing turns to avoid cyclical resource dependency

11: end if
12: end for
13: return local

6.3.2 Minimal Adaptive Routing

An adaptive routing algorithm can be broken down into two components. The

first one computes a set of valid output channels that are consistent with the al-

gorithm’s objectives. The second selects from this set to compute a single output

channel for the packet. As Section 5.2 describes, we developed a router architec-

ture that splits these two functions, allowing the first component to compute a

set of valid outputs as soon as the packet arrives in the input flit queue even if

it is not up for output channel arbitration. Then, when the packet is ready for

arbitration, the arbiter can select an output channel for each pending packet from

its set of valid output channels.

This approach complicates arbiter implementation in that it must now consider

requests for multiple rather than single output channel in each Virtual Output

177

Chapter 6. Adaptive Routing Algorithms

Queue [93]. In practice, this is not a significant complication or an impediment to

arbiter scalability. Modern arbitration logic already has to compute on multiple

simultaneous conflicting requests from different input channels, and a hierarchical

implementation would ensure high performance and scalability for 2–3 rather a

single candidate as well [80].

A minimal adaptive routing algorithm computes a set of output channels that

enable forward progress to a packet’s destination node. Therefore, the algorithm

is live-lock free. Deadlock-freedom is achieved with virtual channels. Figure 6.2(b)

shows the two prohibited turns that eliminate cyclical resource dependency in a

2D mesh. Instead of taking a prohibited turn, a packet switches from virtual

channel 0 to 1. In a minimal routing algorithm, traffic travels from its source to

destination and never takes a mis-routing hop outside of the shortest topological

path to its destination (in terms of the number of router hops). Therefore, only

Eastbound traffic direction can ever switch the virtual channels. There cannot

form a cyclical resource dependency between Eastbound traffic and the traffic

in other directions within the same virtual channel, which assures deadlock-free

operation.

Procedure TWODIM ASSIGN V C performs the virtual channel assignment

consistent with Figure 6.2(b):

1: TWODIM ASSIGN V C (InCh : Channel; dest dim: [0, n)) : integer
2:

178

Chapter 6. Adaptive Routing Algorithms

3: # compute an output virtual channel
4: if InCh = local then
5: return 0
6: else if InCh[v] = 1 then
7: return 1 # if it is already in VC=1, then stay there
8: else if (dest dim = 1) ∧ (InCh[m] = 0) ∧ (InCh[d] =′ −′) then
9: return 1 # switch EN and ES turns to VC=1

10: else
11: return 0
12: end if

Using the virtual channel assignment function, we construct the Minimal

Adaptive algorithm:

1: MA ROUTE (InCh : Channel; MyAddr, DestAddr : Address) : Channel
2:

3: P ⇐ ∅
4: # iterate through all dimensions to find all differences
5: for all i ∈ 0..(n − 1) do
6: ∆ ⇐ DestAddr[i] − MyAddr[i]
7: if ∆ > 0 then
8: P ⇐ P ∪ {(i, +, TWODIM ASSIGN V C(InCh, i))}
9: end if

10: if ∆ < 0 then
11: P ⇐ P ∪ {(i,−, TWODIM ASSIGN V C(InCh, i))}
12: end if
13: end for
14: if P = ∅ then
15: return local
16: else
17: return SELECT (P)
18: end if

The algorithm computes all possible output channels along the minimal path,

but the key to its adaptivity is SELECT () function that uses a range of “en-

vironmental” factors to reduce the set of valid channels into the best one at the

179

Chapter 6. Adaptive Routing Algorithms

moment. We considered several selection functions that can be implemented in

a distributed router. The selection function operates within the output channel

switch arbitration logic, and thus this function handles simultaneous requests from

multiple input buffers.

SELECT OCF Oldest Channel First is a simple starvation free switching

heuristic with low hardware implementation complexity. The algorithm iteratively

selects the oldest arbitration request and attempts to assign it to an available

output channel until all pending requests have been considered. This greedy

approach shows the most benefit when a Virtual Output Queue request contains a

large set of output channels (|P | > 1 in line 17 of the algorithm above). Intuitively,

OCF attempts to keep input channel occupation low by preferring the longer

waiting requests. This heuristic is a good comparison point to demonstrate the

inherent advantages of the greater network path diversity that is exploited by an

adaptive router over the oblivious algorithm without a more sophisticated output

channel selection criteria.

SELECT BHTA This heuristic attempts to select the output channel based

on a combination of parameters that can be measured locally by the router, in-

cluding:

• B = backlog length, the total number of flits in the input buffer that are

waiting to be transmitted to the specified output channel.

180

Chapter 6. Adaptive Routing Algorithms

• H = backlog length of the packet currently in transit to the specified output

channel

• T = observed output channel throughput. Averaged over a small window,

this metric indirectly captures performance and congestion level of the ad-

jacent router.

• A = request age, or the total queue waiting time

• W = weight assigned by a routing algorithm. This can be used by the router

to “favor” certain output channels within a computed output channel set

P . For example, an adaptive router may favor X direction over Y , and

allow the traffic conditions to dictate when to switch between oblivious and

adaptive operating modes.

The arbiter with the SELECT BHTA function assigns a set of input channels

(set N) that request connections to a set of output channels (set M) in the cross-

bar. This problem can be formulated as Maximum Weighted Matching (MWM)

on a bipartite graph G = (N ∪ M,E), where the edges span the two node sets:

∀(n,m) ∈ E n ∈ N∧m ∈ M [31]. Each edge (n,m) represents a pending request

from an input buffer n to an output channel m and has the weight of:

w =
WA(B + H)

Tα
(6.3)

181

Chapter 6. Adaptive Routing Algorithms

This expression loosely was derived from the length of time that would be required

to completely drain the backlog destined to an output channel: (B+H)
T

. The age

A ensures that the Maximum Weighted Match-based algorithm does not starve

an input channel. The age A increases with time and makes the corresponding

pending request more prominent. The experiments have shown that weighting the

observed channel throughput more heavily with α > 1 may sometimes improve

the overall algorithm performance.

These channel weights are computed for each output channel request, and

the solution is obtained with Integer Linear Program MWM solver. The solution

provides a valid assignment of input channels to the outputs, which favors draining

the flit backlogs with longer queue waiting times.

SELECT TC The Total Congestion heuristic uses the measurements re-

ported by the adjacent routers to select the minimally congested output channel.

Our experiments found the total flit buffer occupancy to be a very effective con-

gestion metric. The variants, such as “Direction Congestion” that counts only

those flits on the adjacent router that are headed in the same direction as the

packet being routed, are equally effective on average. Intuitively, since an adap-

tive algorithm attempts to balance the load in the entire network in every mesh

direction, a direction-specific congestion metric carries the same information as

the total router congestion if the routing algorithm is successful. Thus, an adja-

182

Chapter 6. Adaptive Routing Algorithms

cent router is either congested or not, and if it is congested, the backlog for all its

outputs should be approximately the same. However, Direction Congestion does

incur additional implementation complexity. This makes the Total Congestion a

better and simpler selection heuristic that we use in this work.

The routers can exchange congestion measurements with dedicated special

connections or by overloading the flow control credits to carry this additional

information. A similar scheme in [66] suggests that either implementation should

not result in a more than 7% area overhead even for routers with very small

input buffer sizes. In our implementation, the routers update their neighbors

continuously when their input buffer occupancy changes in the similar manner to

the way flow control credits are exchanged.

Figure 6.3 illustrates the simulation results for the PMEMD-64 and FVCAM 2D

applications for Dimension Order and Minimal Adaptive routing with different

SELECT () functions. Table 6.2 contains the network saturation injection rates

for all applications examined. For ease of comparison, for each application the

table also contains the saturation injection rates normalized to those from the Di-

mension Order routing, i.e. the ratio RMA/RDO. With the exception of FVCAM 2D,

MA OCF shows the least improvement over the DO algorithm as compared to

other SELECT () heuristics. Nonetheless, OCF does highlight the saturation

injection rate gains from greater network path diversity, which are particularly

183

Chapter 6. Adaptive Routing Algorithms

Name Davg
Saturation Inject Rate (R) RMA/RDO

DO OCF TC BHTA OCF TC BHTA
gtc3-64 1.10 0.96 0.95 0.95 0.95 1.00 1.00 0.99
cactus-64 1.70 0.91 0.89 0.90 0.91 0.98 1.00 1.00
fvcam 2d 2.60 0.53 0.65 0.60 0.63 1.23 1.12 1.18
lbmhd-64 3.40 0.53 0.60 0.61 0.62 1.13 1.16 1.18
pmemd-64 5.20 0.31 0.34 0.36 0.37 1.08 1.15 1.19
gtc2 1.10 0.98 0.98 0.98 0.99 1.00 1.00 1.00
mdh2d 2.00 0.83 0.89 0.89 0.90 1.06 1.07 1.07
cactus-256 2.10 0.79 0.84 0.85 0.85 1.06 1.09 1.08
madbench1 3.30 0.34 0.41 0.41 0.37 1.19 1.20 1.08
slu-256 5.70 0.22 0.24 0.25 0.25 1.12 1.13 1.13
lbmhd 5.80 0.28 0.30 0.34 0.35 1.07 1.21 1.23
madbench2 5.80 0.25 0.25 0.25 0.25 1.00 1.00 1.00

Table 6.2: Performance comparison for different SELECT () implementations.

pronounced in the application with mid-range locality, 2 < Davg < 5. The Total

Congestion (TC) and BHTA algorithms improve the output channel selection

further. In spite of the complexity of BHTA that takes into account the back-

log length, the output channel performance and the packet input buffer waiting

time, it only marginally outperforms the Total Congestion (TC) heuristic. TC

is significantly simpler to implement and can be approximated with a local flow

control credit counter to further reduce its area overhead.

6.3.3 The Minimal West First Routing

Minimal Adaptive routing discussed in the previous section requires virtual

channels to ensure deadlock freedom. Virtual channels complicate input flit buffer

184

Chapter 6. Adaptive Routing Algorithms

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

L
a

te
n

c
y

Inject Rate (r)

DO MA

Increase Sat B/W

DO
MA OCF
MA TC
MA BHTA

(a) PMEMD-64

 5

 10

 15

 20

 25

 30

 35

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

L
a

te
n

c
y

Inject Rate (r)

DO MA

Increase Sat B/W

DO
MA OCF
MA TC
MA BHTA

(b) FVCAM 2D

Figure 6.3: SELECT () performance impact for two application graphs.

185

Chapter 6. Adaptive Routing Algorithms

management and flow control, and result in additional area overhead. To evaluate

the advantages of our Minimal Adaptive routing with unrestricted path diversity

over a simpler deadlock free algorithm that requires no virtual channels, we in-

vestigate Minimal West First (MWF) Routing.

A West First algorithm prohibits S→W and N→W turns to eliminate the pos-

sibility of a cyclical resource dependency as shown on Figure 6.2(c) [49]. With

the restricted turns, the algorithm does not require virtual channels or structured

buffer pools, and it might be a preferred option for the resource constrained imple-

mentations. On a two-dimensional mesh, the algorithm has a limited adaptivity

for west-bound traffic, which first travels only along the west-bound output chan-

nels to reach the destination’s X column before the router decides on North or

South. In effect, depending on an application, MWF may behave very similarly

to a Dimension Order router.

Figure 6.4 compares the performance of the Dimension Order (DO), Minimal

West First (MWF) and Minimal Adaptive (MA) routing algorithms for PMEMD-64.

For this application graph, MWF only slightly outperforms the oblivious DO,

and its saturation bandwidth does not even compare with the Minimal Adaptive

router from the previous section. To further demonstrate the limited adaptivity

of MWF router, we designed its two virtual channel version: Dual Minimal West

First (DMWF). With DMWF, the east-bound traffic is placed on virtual channel

186

Chapter 6. Adaptive Routing Algorithms

0 to be routed using the Minimal West First algorithm. However, the west-bound

traffic is placed on VC 1 and routed using the mirror Minimal East First algorithm.

The packets never switch between the virtual channels, and thus overall network

routing remains deadlock free, while each VC provides maximum adaptivity in

both directions. MWF and DMWF algorithms use the SELECT TC function

to select an output channel from a set of adaptive choices. Notice that DMWF

performs essentially the same as the Minimal Adaptive algorithm for PMEMD-64

application.

Table 6.3 summarizes application performance with the absolute saturation

injection rates, and the normalized saturation rates of the adaptive algorithms

to those of the Dimension Order router (R∗/RDO). The main trend observed in

the previous sections can be seen in the table: the application graphs with non-

local communication patterns reap the most benefit from adaptive routing. The

performance gains from the MWF algorithm are significantly smaller than those

from the dual virtual channel variant DMWF and the Minimal Adaptive algo-

rithms, primarily due to lack of routing adaptivity for west-bound traffic. DMWF

and MA have essentially the same performance in terms of saturation bandwidth,

since they offer maximum adaptivity along every minimal packet routing path.

DMWF and MA have the same hardware implementation complexity — two VCs

in a two-dimensional mesh — but equivalent performance. This work focuses on

187

Chapter 6. Adaptive Routing Algorithms

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

L
a

te
n

c
y

Inject Rate (r)

DO MA/DMWF

Increase Sat B/W

DO
MWF
MA
DMWF

Figure 6.4: Performance of West First algorithms on PMEMD-64.

the Minimal Adaptive Total Congestion (MATC) routing algorithm in the exper-

iments.

6.3.4 Latency

So far we have focused only on the network saturation bandwidth and have

not considered the average packet latency in the unloaded network. The example

on Figure 6.5(a) shows a significant reduction in the saturation bandwidth from

the adaptive routing. However, a closer examination of the results reveals that

the Minimal Adaptive router also degrades the average packet latency in the low

bandwidth utilization region as compared to the oblivious Dimension Order router

188

Chapter 6. Adaptive Routing Algorithms

 10

 15

 20

 25

 30

 35

 40

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

L
a

te
n

c
y

Inject Rate (r)

Crossover Point

Latency(DO) <
Latency(MATC)

Latency(DO) >
Latency(MATC)

DO
MATC

(a) Complete curve

 12

 14

 16

 18

 20

 22

 24

 0 0.05 0.1 0.15 0.2 0.25

L
a

te
n

c
y

Inject Rate (r)

Crossover Point

Latency(DO) < Latency(MATC)

DO
MATC

(b) Focus on low injection rates

Figure 6.5: LBMHD application: the average packet latency for deterministic vs
adaptive algotithms.

189

Chapter 6. Adaptive Routing Algorithms

Name Davg
Saturation Inject Rate (R) R∗/RDO

DO MWF DMWF MA MWF DMWF MA
gtc3-64 1.10 0.96 0.96 0.95 0.95 1.00 0.99 1.00
cactus-64 1.70 0.91 0.91 0.90 0.90 1.00 0.99 1.00
fvcam 2d r1 2.60 0.53 0.56 0.60 0.60 1.04 1.13 1.12
lbmhd-64 3.40 0.53 0.56 0.60 0.61 1.05 1.14 1.16
pmemd-64 5.20 0.31 0.32 0.36 0.36 1.02 1.15 1.15
gtc2 1.10 0.98 0.99 0.98 0.98 1.00 1.00 1.00
mdh2d 2.00 0.83 0.87 0.89 0.89 1.04 1.07 1.07
cactus-256 2.10 0.79 0.84 0.84 0.85 1.06 1.06 1.09
madbench1 3.30 0.34 0.36 0.40 0.41 1.06 1.18 1.20
slu-256 5.70 0.22 0.24 0.24 0.25 1.09 1.13 1.13
lbmhd 5.80 0.28 0.30 0.33 0.34 1.04 1.17 1.21
madbench2 5.80 0.25 0.25 0.30 0.25 1.00 1.20 1.00
paratec-256 10.70 0.19 0.17 0.18 0.19 0.90 0.95 0.99

Table 6.3: Performance of West First algorithms compared to MATC and DO.

(Figure 6.5(b)). This is an example of a very typical behavior of adaptive rout-

ing algorithms. When the network is lightly utilized, a routing algorithm should

simply send packets along the shortest path and not try to load balance. Unfor-

tunately, the adaptive router selects the least congested output channel based on

the buffer utilization of the adjacent routers. At the low traffic injection rates,

the buffer utilization is also low, and the congestion metrics are noisy and do

not accurately reflect load imbalance. If the Minimal Adaptive algorithm uses

noisy metrics in an attempt to balance the communication load across the net-

work, it ends up making bad local routing decisions that degrade packet latency.

However, once the injection rate reaches the critical crossover point, the total flit

190

Chapter 6. Adaptive Routing Algorithms

buffer occupancy — our congestion metric — begins to reflect the load imbalance.

The adaptive algorithm can most effectively route the packet flows to increase the

network saturation bandwidth.

A hybrid approach can deliver the best of worlds: the low packet latency of

deterministic algorithms in lightly loaded network conditions, and the high satu-

ration bandwidth of adaptive routing [66, 122]. Such an algorithm operates in the

deterministic mode, similar to Dimension Order, when the network bandwidth

utilization is low, and switches to an adaptive mode when the utilization is high.

The crossover point can be defined with a static threshold or be adjusted adap-

tively, although the latter has not been extensively studied. The implementation

of a hybrid router is not significantly more complex than the implementation of

our adaptive algorithms, however, we do not investigate the hybrid routers in this

work.

Although the unloaded network packet latency should not be ignored, a num-

ber of other factors affect the system response latency to a greater degree than

the routing algorithm. The packet transmission latency forms a part of the over-

all system response time that also comprises cache access latency, congestion and

arbitration for off-chip memory access and other system factors. In this work, a

2–4% latency variation induced by the choice of a routing algorithm does not play

a significant role.

191

Chapter 6. Adaptive Routing Algorithms

In contrast, the network saturation bandwidth is the key metric that defines

the region where an application can operate productively. Exceeding the sat-

uration bandwidth is akin to page thrashing in virtual memory systems. If a

program’s working set — the memory space accessed the majority of time —

does not fit in the primary memory, the program constantly swaps memory pages

with a disk. This thrashing results in a sharp decrease in responsiveness and per-

formance. Saturation bandwidth is the communication system analogue of the

working set size. When the application communication requirements exceed the

saturation bandwidth, the network becomes unresponsive, and the packet latency

increases sharply. At that point, it is no longer possible to extract any computa-

tional capacity out of a multi-core system.

6.4 Summary

A network on a chip is a distributed system consisting of interconnected

core/router tiles. Its performance and efficient operation depends on a range

of factors: design parameters such as topology and cross-section bandwidth, as

well as the application that executes on the multi-core NoC system. Spatial and

temporal application communication properties such as locality and load balance

determine the actual network performance: the saturation bandwidth and the

192

Chapter 6. Adaptive Routing Algorithms

average packet latency. A key performance metric that defines the efficient and

practical system operating range for the network is its saturation bandwidth.

We develop several adaptive routing algorithms and output channel selec-

tion heuristics and evaluate them with NoC simulation. The experiments show

that the Minimal Adaptive Total Congestion (MATC), MA BHTA, and Minimal

West First algorithms realize the advantage of adaptive routing over the oblivious

routers by taking advantage of the network path diversity. The actual perfor-

mance results vary from one adaptive algorithm to another and also depend on

an application task graph. For example, the Minimal Adaptive algorithms which

require two virtual channel for a deadlock free implementation consistently out-

perform the West First algorithms that requires only one. The Minimal adaptive

algorithms can adaptively route the packet traffic in all directions, while West

First has a limited adaptability for the west-bound traffic.

Our experiments show that the MATC algorithm combines a simple implemen-

tation and the performance close to the router bounds. In the following chapter,

we use MATC to evaluate the network performance impact of PVT variations.

193

Chapter 7

Adaptive Routing and PVT
Variations

We present a new PVT variation bound, a theoretical foundation to describe

the impact of PVT performance variations on network performance. PVT vari-

ations degrade network saturation bandwidth particularly with oblivious rout-

ing algorithms such as Dimension Order routing. This chapter focuses on the

Minimal Adaptive Total Congestion (MATC) router and demonstrates with NoC

simulation that MATC increases the expected network saturation bandwidth and

reduces the saturation bandwidth variance as compared to DO on systems af-

fected by PVT performance variations. These gains can be turned into smaller

design margins, a boost in power efficiency and performance, in other words, less

“over-engineering.”

A heterogeneous multi-core architecture of Chapter 3 offers a great degree of

flexibility for adaptive routing that strives to ensure that network resources are

194

Chapter 7. Adaptive Routing and PVT Variations

maximally utilized. To scale with device generations, routing algorithms should

not rely on detailed on-chip performance characterization. Instead, they should

operate introspectively and adapt to the number of possibly unknown and hard to

quantify system performance variables. Our heterogeneous architecture exposes

PVT variations as core/router tile performance, which for the communication fab-

ric translates to routers and channels with diverse throughput and latencies. The

performance variations upset communication load balance and add to the network

congestion. However, an adaptive router can compensate for the variations using

only inter-router flow control, because both static and dynamic variation effects

are exposed in the same manner as application communication load imbalance

and traffic congestion.

7.1 PVT Variation Bound

In addition to the three classical performance bounds that constrain the re-

lationship between the average packet latency and the consumed network band-

width, we propose a new bound imposed by PVT variations (Figure 6.1). Al-

though the variations create a very complex on-die performance profile, we model

them using two simple communication metrics: channel bandwidth and latency.

These metrics represent the black-box, outside view of the router, which is con-

195

Chapter 7. Adaptive Routing and PVT Variations

sistent with our intro-spective approach to compensate for variations without the

detailed performance characterization.

PVT variations turn the nominal channel bandwidth w and latency l from

static to random variables. Equation 6.2 shows that the packet latency is simply

the sum of packet queue waiting time and the number of routing hops traveled.

Let us consider the effect on the packet latency in the unloaded network. Since

the inter-router channel transmission latency l can be modeled with a symmetric

distribution, the expected total packet latency ideally would remain unaffected due

to the averaging effect that occurs when individual channel latencies are added

up along the packet’s path.

Let L be a random variable that represents the average packet latency, i.e. it

is the sum of individual channel latencies L =
∑Davg

i li along the routing path. If l

is normally distributed and spatially uncorrelated, which is the case at the router

granularity, the standard deviation of L has a diminishing impact relative to the

expected value of L as the average communication distance Davg increases [15]:

µ(L) = Davg × µ(l) (7.1)

σ(L) =
√

Davg × σ(l) (7.2)

σ(L)

µ(L)
=

√

Davg × σ(l)

Davg × µ(l)
=

1
√

Davg

× σ(l)

µ(l)
(7.3)

196

Chapter 7. Adaptive Routing and PVT Variations

Thus, any latency degradation is less pronounced in non-local task communication

patterns with larger Davg. The packet latency is closer to the expected nominal

value µ(L) as more channel latencies are added together on a longer routing path.

PVT variations affect the the network saturation bandwidth more dramati-

cally. For every packet source and destination, a routing algorithm pushes the

traffic through a set of valid network paths. Let us designate this path set as

S = {Pi}. The minimal capacity channel along a path determines its net band-

width. Considering router performance variations, and assuming for presentation

simplicity that S contains non-intersecting paths, the bandwidth upper bound

w(S) through a path set S can be described as:

w(S) =
∑

P∈S

[

min
e∈P

(w[e])

]

(7.4)

∀P ∈ S. |P | = Davg (7.5)

where set P represents a single path between a source and destination, e is an edge

on that path, and w[e] is a random variable that represents the bandwidth through

e. The expression optimistically assumes that given path diversity in S, a routing

algorithm can and will select the paths with highest throughput. This may not

be true, and the limitations of a routing algorithm is the first source of network

saturation bandwidth degradation. Further, the path bandwidth mine∈p (w[e])

197

Chapter 7. Adaptive Routing and PVT Variations

is the minimum of a set of Davg random numbers w[e]. The expected value of

this minimum function approaches the lower bound of the distribution of w[e] as

the path length Davg increases. This reduction in the effective path bandwidth

degrades the overall network saturation bandwidth.

Our analysis demonstrates the advantage of adaptive routing algorithms over

the oblivious ones. Since an adaptive routing algorithm can utilize a greater

number of paths between every packet source and destination, it accomplishes

two objectives. First, it increases the available cross-section bandwidth between

a source and a destination, and therefore the router network saturation bound as

evident from the summation over a larger path set S in Equation 7.4. Second,

and most critically, if you consider all packet paths together in space and time,

an adaptive algorithm aggregates the bandwidth of each path in S between a

packet source and a destination. This summation averages the path bandwidth

closer to the nominal value. These properties of adaptive routing are the reasons

for improvements in the expected saturation bandwidth and the reduction in its

variance, which are discussed in Section 7.2.

198

Chapter 7. Adaptive Routing and PVT Variations

7.2 Impact of PVT Variations

The improvement in saturation bandwidth from adaptive routing algorithms

can be used to compensate for PVT induced process variations. PVT device

(transistor and interconnect) variations manifest themselves as core/router per-

formance. As a result of the variations, a die with nominally homogeneous per-

formance turns into a collection of tiles with heterogeneous performance. For

our experiments, we model the variations as router throughput and latency, and

measure the network saturation bandwidth for an application. As in Section 7.1,

here we assume that router performance is constrained by inter-router channels

(u, v) ∈ EN with throughput of C(u,v) and latency 1/C(u,v). The routers have

higher internal throughput than C(u,v) to ensure the full utilization of all input

and output channels when the router is not congested. This assumption is true

for every well-designed, resource balanced system and represents the optimal NoC

router implementation. Abstracting the router performance as channel perfor-

mance simplifies the analysis of the way the adaptive routing algorithms compen-

sate for the performance variations. This abstraction removes irrelevant details of

core and router implementation and enables us to focus on the trends.

199

Chapter 7. Adaptive Routing and PVT Variations

To describe the effects of inter-router channel performance variations on the

network saturation bandwidth, let us consider the channels in aggregation rather

than individually. We define the following terms and variables:

• Nominal channel throughput C0. This static variable represents the

throughput (flits per unit of time) of an inter-router channel, which is set by

the system designer. In other words, C0 is an idealized NoC, not impacted

by PVT variations. Since our experiments are not tied to a particular imple-

mentation, unless otherwise stated we use C0 = 1 in the following discussion.

• Nominal saturation injection rate RR
0 . This static variable represents

the saturation injection rate on the nominal system with a routing algorithm

R. In the following discussion, we refer to the saturation injection rates

RMATC
0 and RDO

0 for MATC and DO routing algorithms respectively.

• Realistic channel throughput C. This variable represents a channel

throughput distribution created by PVT variations. If the distribution is

stochastic, Cσ is a random variable that can parametrized with the ex-

pected value µ and the standard deviation σ. In our discussion, the implied

expected value of the channel throughput µ = C0 = 1

If the distribution is not stochastic, C is a function that maps on-die location

or other factors, such as temperature, onto a value for channel throughput.

200

Chapter 7. Adaptive Routing and PVT Variations

• Realistic saturation injection rate RR
σ . This random variable represents

a distribution of the network saturation injection rates in a system with

channel throughput Cσ and a routing algorithm R. For example, RMATC
0.14

refers to the distribution of the saturation injection rate obtained on a NoC

with channel throughput C0.14 — normally distributed as N(µ = 1, σ = 0.14)

— and running MATC routing algorithm.

The distribution of the saturation injection rates may itself be characterized

by its expected value µ(RR
0.14) and its standard deviation σ(RR

0.14).

7.2.1 Stochastic Variations

Consider stochastic intra-chip performance variations, where each core/router

tile has a different communication throughput governed by the PVT variation dis-

tribution parameters. In the following experiments, we define the router through-

put to be normally distributed across the chip as Cσ = N(µ = 1, σ). This is

illustrated on Figure 7.1 with density plots.

How do router performance variations affect our key metric, the network satu-

ration injection rate RR
σ ? How can an adaptive routing algorithm compensate

for variations? Let us illustrate the effects of performance variations on the

PMEMD-64 application and the MATC routing algorithm, which combines a sim-

ple implementation and the best performance among the adaptive algorithms we

201

Chapter 7. Adaptive Routing and PVT Variations

 0 1 2 3 4 5 6 7 8

 0

 1

 2

 3

 4

 5

 6

 7

 8

(a) N(µ = 1, σ = 0.07)

 0 1 2 3 4 5 6 7 8

 0

 1

 2

 3

 4

 5

 6

 7

 8

(b) N(µ = 1, σ = 0.14)

 0 1 2 3 4 5 6 7 8

 0

 1

 2

 3

 4

 5

 6

 7

 8

(c) N(µ = 1, σ = 0.21)

Figure 7.1: Performance model for normally distributed stochastic variations.

considered. Figure 7.2(a) shows the performance of Dimension Order (DO) and

Minimal Adaptive Total Congestion (MATC) routers on a die with the nomi-

nal performance and the channel throughput C0 = 1 flit per time unit. The

MATC delivers approximately 15% saturation bandwidth advantage vs DO, i.e.

(RMATC
0 /RDO

0 = 1.15).

Figure 7.2(b) shows latency vs injection rate curves that demonstrate the im-

pact of variations. The graph contains two curves for the nominal system with no

performance variations, MATC and DO with C0 = 1, and two curve “clouds” that

represent the Monte Carlo experiment results over a space of channel performance

C0.07 = N(1, 0.07): MATC N(1,0.07) and DO N(1,0.07). These “clouds” illustrate

the distribution of the latency vs bandwidth curves for the PMEMD-64 application

on a system with variations. Each curve cloud contains a cross, a vertical and

a horizontal line. The vertical line marks the location of the statistical expected

202

Chapter 7. Adaptive Routing and PVT Variations

RDO
0 RMATC

0

15%

(a) No PVT variations

RDO
0 RMATC

0

µ(RDO
0.07)

RMATC
0.07

RDO
0.07

6 × σ(RDO
0.07)

(b) N(µ = 1, σ = 0.07)

Figure 7.2: MATC improves saturation bandwidth for PMEMD-64 and compen-
sates for PVT variations.

203

Chapter 7. Adaptive Routing and PVT Variations

RDO
0 RMATC

0

RDO
0.14

RMATC
0.14

(a) N(µ = 1, σ = 0.14)

RDO
0 RMATC

0

RMATC
0.21

RDO
0.21

(b) N(µ = 1, σ = 0.21)

Figure 7.3: MATC improves saturation bandwidth for PMEMD-64 and compen-
sates for PVT variations. 204

Chapter 7. Adaptive Routing and PVT Variations

value for the saturation injection rate µ(RR
0.07). The horizontal line illustrates the

6 × σ(RR
0.07) span of the saturation injection rate.

Notice that the 6×σ (six standard deviations) span reaches outside of the curve

cloud. The reason is that the distribution of saturation injection rate does not

have a normal or symmetric shape. It is a result of choosing a network path with

the maximum throughput from a set of diverse paths in the topology, where the

path throughput itself is constrained by its channel with the lowest throughput.

Section 6.1 discusses of the PVT variation bounds, and Figure 2.4(b) illustrates

the shape of the max and min functions applied to a set of stochastic variables.

We use the standard deviation σ(RR
σ) simply as a measure of the distribution

“width” to compare the routing algorithms and the applications.

With router throughput varying randomly, the network saturation bandwidth

delivered by both the DO and MATC algorithms degrades relative to the re-

spective nominal numbers. The expected values µ(RMATC
0.07) and µ(RDO

0.07) for the

saturation injection rate are to the left of the nominal MATC and DO curves

(µ(RR
0.07) < RR

0). For PMEMD-64 and router performance variation C0.07, the net-

work saturation bandwidth degrades by 1%.

However, the degradation increases sharply as the standard deviation of router

throughput increases to C0.14 on Figure 7.3(a) and to C0.21 on Figure 7.3(b). Ta-

ble 7.1 summarizes the impact of router performance variations on the saturation

205

Chapter 7. Adaptive Routing and PVT Variations

For MATC vs DO, for PMEMD-64, the intrinsic improvement 15.4%.
Sat Bandwidth Improv over Improv over

Variations Degradation Nominal DO Realistic DO

Cσ
µ(RDO

σ)

RDO
0

µ(RMATC
σ)

RMATC
0

µ(RMATC
σ)

RDO
0

µ(RMATC
σ)

µ(RDO
σ)

σ = 0.07 0.99 0.99 1.13 1.15
σ = 0.10 0.98 0.99 1.14 1.16
σ = 0.14 0.96 0.99 1.13 1.18
σ = 0.18 0.94 0.97 1.11 1.18
σ = 0.21 0.92 0.97 1.11 1.20
σ = 0.25 0.91 0.97 1.11 1.22

Table 7.1: PMEMD-64 Summary of saturation bandwidth degradation for DO and
MATC.

bandwidth as µ(RDO
σ)/RDO

0 and µ(RMATC
σ)/RMATC

0 , the ratios of the expected

saturation rate for the case with performance variations to the saturation rate on

the nominal system for the same routing algorithm. As the distribution Cσ widens,

the network saturation injection rate RR
σ decreases. As expected, the saturation

bandwidth suffers significantly greater degradation for oblivious Dimension Order

algorithm. The oblivious algorithm has a single fixed path between each source

and destination pair, and does not take the advantage of network path diversity.

Since the network throughput is only as large as the slowest router in the path,

the DO algorithm is likely to encounter an outlier — an unduly slow router —

that the algorithm cannot bypass. The adaptive algorithm MATC has the clear

advantage in that it attempts to select a path with higher throughput from a

collection of legal, minimal paths.

206

Chapter 7. Adaptive Routing and PVT Variations

Figure 7.4: PMEMD-64 Illustration of saturation bandwidth degradation for DO
and MATC.

Figure 7.4 summarizes the impact of the router performance variations on the

saturation injection rate of PMEMD-64 application with DO and MATC routers.

The graph shows the expected value µ(RR
σ) with a line and the range of the

saturation bandwidth distribution with a cloud. Two trends are clear. First, the

expected saturation bandwidth µ(RR
σ) degrades slower for the adaptive algorithm.

Second, the adaptive algorithm reduces the standard deviation σ(RR
σ), which can

translate into smaller design implementation guard-bands, less over-engineering

and wasted resources. For this application, MATC has RMATC
0 /RDO

0 = 15.4%

“intrinsic” advantage on a nominal platform. Table 7.1 presents the net improve-

ment of MATC on a realistic system with variations over the DO router on a

207

Chapter 7. Adaptive Routing and PVT Variations

 0.28

 0.29

 0.3

 0.31

 0.32

 0.33

 0.34

 0.35

 0.36

 0 0.05 0.1 0.15 0.2 0.25

S
a
tu

ra
ti

o
n

 I
n

j.
 R

a
te

MATC
DO

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0.016

 0 0.05 0.1 0.15 0.2 0.25

S
td

 D
e
v
 o

f
S

a
t

In
j.

 R
a
te

MATC
DO

Std Dev of Router Performance Distribution (Cσ)

BMATC

BDO

−AMATC

−ADO

Figure 7.5: PMEMD-64 Extracting parameters A and B from curves µ(RR
σ) vs σ,

and σ(RR
σ) vs σ.

nominal system: µ(RMATC
σ)/RDO

0 . As the distribution of variations Cσ widens,

the variations reduce this “intrinsic” advantage by a few percent.

How can we characterize the relationship between the magnitude of on-chip

performance variations Cσ, and the expected value and the standard deviation of

the saturation bandwidth distribution, µ(RR
σ) and σ(RR

σ)? Let us define a simple

208

Chapter 7. Adaptive Routing and PVT Variations

linear models with three parameters RR
0 , AR and BR:

µ(RR
σ) = RR

0 − AR × σ (7.6)

σ(RR
σ) = BR × σ (7.7)

Although, the actual relationship between these quantities is more complex than

our model captures, in fact there are no closed forms, the equations above highlight

the key general trends. The parameters, which can be extracted with a curve fit

as shown on Figure 7.5, describe a routing algorithm’s ability to contain and

limit the impact of the PVT performance variations for a particular application

communication pattern:

• Parameter RR
0 is the routing algorithm’s saturation injection rate on a nom-

inal NoC system. Ideally, this quantity should be close to the network

topology bound. Any improvements in RR
0 come from the router’s ability to

compensate for communication load imbalance in an application task graph

itself.

• Parameter AR is the rate of degradation of the expected value of the satu-

ration bandwidth µ(RR
σ) relative to the standard deviation σ of the router

performance distribution. This is one of the key metrics that characterizes

the router’s ability to minimize the impact of PVT variations. The more

209

Chapter 7. Adaptive Routing and PVT Variations

capable routing algorithms have a smaller value of AR. The ideal value of

AR = 0 signifies that the algorithm completely compensates for performance

variations. A negative value AR < 0 means that the router takes advantage

of the performance heterogeneity to achieve even higher network saturation

rate than possible in the nominal system.

• Parameter BR is the rate of increase of the standard deviation of the satu-

ration bandwidth distribution σ(RR
σ) relative to the standard deviation of

the router performance distribution σ. This is another metric that describes

the routing algorithm’s ability to limit the impact of performance variations.

Smaller values of BR imply a better adaptive router. This parameter cannot

be negative.

Figures 7.6 and 7.7 summarize the µ(RR
σ) and σ(RR

σ) for the DO and MATC

routing algorithms for all our applications. The applications are partitioned into

64 task group from gtc3-64 to pmemd-64, and 256 task group from gtc-2 to

paratec-256, and sorted by the average communication distance within their

respective groups. As previously discussed, the expected network injection satu-

ration rates decrease with increasing communication distance. First, consider the

expected saturation rate graphs on Figure 7.6(a) and 7.7(a). As the magnitude

210

Chapter 7. Adaptive Routing and PVT Variations

of performance variations Cσ increases, all applications experience a degradation

in the saturation rate.

The standard deviations graphs on Figures 7.6(b) and 7.7(b) present a more

complex picture. First, there is no consistent trend between the application’s

communication locality and the standard deviation of the saturation injection

rate distribution, σ(RR
σ). The standard deviation additionally depends on the

degree to which an application communication traffic is balanced and noisy local

decisions of the distributed routing algorithm. Further investigation with more

application graphs with diverse spatial communication characteristics are required

to better understand the relationship between these factors, assuming there is a

relationship. Second, in general as the magnitude Cσ of the router performance

variations increases, so does the value of σ(RR
σ). This is expected, as the network

saturation bandwidth is the sum of the bandwidths of individual channels across

the topology bisection. An aggregation of random variables can reduce the stan-

dard deviation of the sum, but it does not eliminate it entirely. It is proportional

to the standard deviation of the router performance.

To compare the ability of the DO and MATC routing algorithms to min-

imize the impact of PVT variations, we examine Figures 7.8 and 7.9. Fig-

ure 7.8 compares the network saturation injection rates for both algorithms on the

nominal system, which highlights the “intrinsic” adaptive algorithm advantage.

211

Chapter 7. Adaptive Routing and PVT Variations

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
gt

c3
-6

4

ca
ct

u
s-

64

fv
ca

m
2d

lb
m

h
d
-6

4

p
m

em
d
-6

4

gt
c2

m
d
h
2d

ca
ct

u
s-

25
6

m
ad

b
en

ch
1

sl
u
-2

56

lb
m

h
d

m
ad

b
en

ch
2

p
ar

at
ec

-2
56

Expected Sat Inj Rate µ(RDO
σ)

No Variations
σ = 0.07
σ = 0.14
σ = 0.21

(a) Expected saturation injection rate µ(RDO
σ)

0.000

0.005

0.010

0.015

0.020

gt
c3

-6
4

ca
ct

u
s-

64

fv
ca

m
2d

lb
m

h
d
-6

4

p
m

em
d
-6

4

gt
c2

m
d
h
2d

ca
ct

u
s-

25
6

m
ad

b
en

ch
1

sl
u
-2

56

lb
m

h
d

m
ad

b
en

ch
2

p
ar

at
ec

-2
56

Std Dev of Sat Inj Rate σ(RDO
σ)

σ = 0.07
σ = 0.14
σ = 0.21

(b) Std Dev of saturation injection rate σ(RDO
σ)

Figure 7.6: Results summary for Dimension Order router.

212

Chapter 7. Adaptive Routing and PVT Variations

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
gt

c3
-6

4

ca
ct

u
s-

64

fv
ca

m
2d

lb
m

h
d
-6

4

p
m

em
d
-6

4

gt
c2

m
d
h
2d

ca
ct

u
s-

25
6

m
ad

b
en

ch
1

sl
u
-2

56

lb
m

h
d

m
ad

b
en

ch
2

p
ar

at
ec

-2
56

Expected Sat Inj Rate µ(RMATC
σ)

No Variations
σ = 0.07
σ = 0.14
σ = 0.21

(a) Expected saturation injection rate µ(RMATC
σ)

0.000

0.005

0.010

0.015

0.020

gt
c3

-6
4

ca
ct

u
s-

64

fv
ca

m
2d

lb
m

h
d
-6

4

p
m

em
d
-6

4

gt
c2

m
d
h
2d

ca
ct

u
s-

25
6

m
ad

b
en

ch
1

sl
u
-2

56

lb
m

h
d

m
ad

b
en

ch
2

p
ar

at
ec

-2
56

Std Dev of Sat Inj Rate σ(RMATC
σ)

σ = 0.07
σ = 0.14
σ = 0.21

(b) Std Dev of saturation injection rate σ(RMATC
σ)

Figure 7.7: Results summary for Minimal Adaptive router.

213

Chapter 7. Adaptive Routing and PVT Variations

With exception of two applications gtc3-64 and gtc2 with very local, essentially

nearest-neighbor, communication patterns, MATC demonstrates a higher satura-

tion bandwidth than DO algorithm. The primary reason for the improvement is

that these applications have an inherent communication load imbalance specific

to their task-to-core mapping, and the adaptive algorithm routes the traffic and

improves network channel utilization better than DO.

Figure 7.9 presents parameters A and B that compare the routers’ ability

to compensate for variations. With a few exceptions (such as gtc3-64 and

cactus-64), MATC has a lower value of A and minimizes the degradation of

the network saturation bandwidth better than DO. The same trend applies for

parameter B, whose value is generally lower for MATC algorithm. For some appli-

cations, such as slu-256, the parameter B = 0 with the adaptive router, meaning

that the standard deviation for the saturation injection rate does not grow at all

as router performance variations widen.

Application madbench2 is an exception to this trend. The results obtained

from distributed routing algorithms are ultimately specific to spatial communi-

cation patterns, and madbench2 seems to contain a particular mix of local and

global communication traffic that does not perform as well with a distributed

adaptive router as it does with DO, in terms of parameters A and B. However, as

214

Chapter 7. Adaptive Routing and PVT Variations

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

gt
c3

-6
4

ca
ct

u
s-

64

fv
ca

m
2d

lb
m

h
d
-6

4

p
m

em
d
-6

4

gt
c2

m
d
h
2d

ca
ct

u
s-

25
6

m
ad

b
en

ch
1

sl
u
-2

56

lb
m

h
d

m
ad

b
en

ch
2

p
ar

at
ec

-2
56

S
at

In
j
R

at
e

R
R 0

MATC vs DO on the Nominal System

DO
MATC

Figure 7.8: Saturation bandwidth for MATC and DO on the nominal NoC.

Figure 7.8 shows, MATC still outperforms DO for madbench2 in absolute terms

of the saturation injection rate.

7.2.2 Systematic Variations

In addition to considering purely stochastic router performance variations, let

us investigate a systematic effect. As discussed in Section 2.1, the exact systematic

on-chip performance profile depends largely on the semiconductor manufacturing

process as well as the die layout and architecture. For our experiment, we con-

sider a linear gradient variation profile illustrated on Figure 7.10, where the router

215

Chapter 7. Adaptive Routing and PVT Variations

0.00

0.10

0.20

0.30

0.40

gt
c3

-6
4

ca
ct

u
s-

64

fv
ca

m
2d

lb
m

h
d
-6

4

p
m

em
d
-6

4

gt
c2

m
d
h
2d

ca
ct

u
s-

25
6

m
ad

b
en

ch
1

sl
u
-2

56

lb
m

h
d

m
ad

b
en

ch
2

p
ar

at
ec

-2
56

A

0.00

0.02

0.04

0.06

0.08

0.10

B

DO
MATC

Figure 7.9: Routing algorithm variation sensitivity parameters A and B.

216

Chapter 7. Adaptive Routing and PVT Variations

throughput increases with its on-die position from left to right. The gradient is

designated as SP (m,n), where m and n represent minimum–maximum through-

put range. The router performance C can be described by the following mapping:

C : (x, y) 7→ K

(

m − n

w
x + m

)

(7.8)

where the tuple (x, y) is router position, w is the die size in X dimension, and

K is a scaling coefficient. Unlike stochastic performance variations that have an

unpredictable die performance profile, this particular performance gradient and

its orientation favor certain application graphs and their task-to-core assignments.

Some task-to-task communication flows may pass through the faster part of the

chip, while others may be disadvantaged. The goal of an adaptive routing al-

gorithm is to minimize any disadvantages and to reduce NoC load imbalance

independent of the variation type or source.

Figure 7.11 shows the simulation results for DO and MATC algorithms on

the systems with nominal and systematic performance gradients for PMEMD-64

application. First, consider the results of the Dimension Order routing algorithm.

The saturation bandwidth numbers for DO SP are around the nominal value.

PMEMD-64 takes advantage of this particular spatial performance gradient and its

orientation. DO SP(0.9,1.1) has a higher saturation bandwidth than the nominal

217

Chapter 7. Adaptive Routing and PVT Variations

 0 1 2 3 4 5 6 7 8

 0

 1

 2

 3

 4

 5

 6

 7

 8

Figure 7.10: An example of a Systematic Performance Gradient.

DO. DO SP(0.8,1.2) has about the same as the nominal system. Only with a

very steep gradient, DO SP(0.7,1.3) has the lower performance than the nominal

system, which is the typical and expected impact of the PVT variations.

MATC compensates for the performance gradient completely. All MATC SP

curves are essentially the same and outperform the nominal system. In this case,

the adaptive algorithm actually takes advantage of heterogeneity in the NoC router

performance and finds packet routes to deliver greater saturation bandwidth than

the system without variations would allow. Note, however, that the results of

the adaptive algorithm are very specific to the task-to-node assignment, i.e. the

orientation of the task graph on the die.

The relationship between the saturation injection rate and the gradient of

this systematic on-chip performance variation can be characterized with a simple

218

Chapter 7. Adaptive Routing and PVT Variations

10

20

30

40

50

60

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

L
at

en
cy

Inject Rate (r)

PMEMD-64

RDO
0 RMATC

0

DO SP(0.7, 1.3)
DO SP(0.8, 1.2)
DO SP(0.9, 1.1)

DO
MATC SP(0.7, 1.3)
MATC SP(0.8, 1.2)
MATC SP(0.9, 1.1)

MATC

Figure 7.11: MATC completely compensates the bandwidth degradation.

model with two parameters RR
0 and AR:

RR
m,n = RR

0 − AR × |m − n| (7.9)

Similar to the discussion in the previous section, parameter RR
0 represents the

network saturation injection rate for the routing algorithm R. Parameter AR

characterizes the algorithm’s ability to contain and minimize the impact of on-die

performance variations.

Figures 7.12(a) and 7.12(b) summarize the network performance results for

the DO and MATC routing algorithms for our applications. The same general

219

Chapter 7. Adaptive Routing and PVT Variations

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
gt

c3
-6

4

ca
ct

u
s-

64

fv
ca

m
2d

lb
m

h
d
-6

4

p
m

em
d
-6

4

gt
c2

m
d
h
2d

ca
ct

u
s-

25
6

m
ad

b
en

ch
1

sl
u
-2

56

lb
m

h
d

m
ad

b
en

ch
2

p
ar

at
ec

-2
56

S
at

u
ra

ti
on

In
je

ct
io

n
R

at
e

Dimension Order Router

No Variations
SP(0.9,1.1)
SP(0.8,1.2)
SP(0.7,1.2)

(a) Dimension Order

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

gt
c3

-6
4

ca
ct

u
s-

64

fv
ca

m
2d

lb
m

h
d
-6

4

p
m

em
d
-6

4

gt
c2

m
d
h
2d

ca
ct

u
s-

25
6

m
ad

b
en

ch
1

sl
u
-2

56

lb
m

h
d

m
ad

b
en

ch
2

p
ar

at
ec

-2
56

S
at

u
ra

ti
on

In
je

ct
io

n
R

at
e

Minimal Adaptive Router

No Variations
SP(0.9,1.1)
SP(0.8,1.2)
SP(0.7,1.2)

(b) Minimal Adaptive

Figure 7.12: Results summary for a systematic performance gradient.

220

Chapter 7. Adaptive Routing and PVT Variations

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

gt
c3

-6
4

ca
ct

u
s-

64

fv
ca

m
2d

lb
m

h
d
-6

4

p
m

em
d
-6

4

gt
c2

m
d
h
2d

ca
ct

u
s-

25
6

m
ad

b
en

ch
1

sl
u
-2

56

lb
m

h
d

m
ad

b
en

ch
2

p
ar

at
ec

-2
56

A
DO

MATC

Figure 7.13: Parameter A is the slope of the degradation of the saturation
injection rate on a NoC with the performance gradient.

trends that were observed for the stochastic PVT variations apply here. Typi-

cally, as the gradient SP (m,n) of the on-chip grows steeper, the network satura-

tion rate decreases. Several notable and significant exceptions to this trend include

madbench1, madbench2, lbmhd and paratec-256 applications with the adaptive

MATC routing algorithm. For these cases, router performance heterogeneity and

more specifically the SP (m,n) gradient are a good match for the spatial commu-

nication patterns of these applications, which results in the saturation bandwidth

improvement.

221

Chapter 7. Adaptive Routing and PVT Variations

Figure 7.13 summarizes the simulation results on the system with the system-

atic gradient. Parameter A describes the degree to which a routing algorithm can

minimize the impact of variations. The graph shows no consistent trend for the

smaller 64 task applications, but a consistent pattern of AMATC < ADO for the

large applications, which indicates that MATC minimizes the saturation band-

width degradation better than DO. Some applications, such as madbench1 and

madbench2, even have a negative value of A, in cases where the NoC with per-

formance variations outperforms the nominal system. This result of a fortunate

match between the application heterogeneous communication resource require-

ments and those of the underlying network further underscores the ability to

adaptive routing to exploit heterogeneity.

7.2.3 Stochastic and Systematic Results Summary

Figure 7.14 contains the grand summary of the results. It highlights the

improvement in the saturation injection rates with MATC vs DO as the ratio

µ(RMATC
σ)/µ(RDO

σ). The higher ratio represents the greater improvement in the

network performance, the higher saturation bandwidth and thus the lower aver-

age packet latency over a wider network bandwidth operating region. The perfor-

mance advantage of adaptive routing is a result of two factors:

222

Chapter 7. Adaptive Routing and PVT Variations

1. The adaptive algorithm compensates for application specific load imbalance

on the nominal system (Figure 7.8). In other words, RMATC
0 > RDO

0 .

2. The adaptive algorithm further reduces the degradation of the network sat-

uration bandwidth caused by the variations and minimizes their negative

impact on the system. AMATC < ADO and BMATC < BDO.

Let us first consider the summary for the stochastic performance variations on

Figure 7.14(a) and identify two trends. First, as the average communication dis-

tance increases, the applications show greater saturation bandwidth improvement

with MATC than with DO. Consider gtc3-64, cactus-64 and gtc2 applications

whose average communication distance does not exceed 2 router hops (Table 8.2).

These application simply do not offer enough path diversity to an adaptive rout-

ing algorithm and show no appreciable improvement in network saturation band-

width. Task-to-core mapping quality has the dominant impact on the network

performance of the applications with local communication patters (Section 7.5).

In contrast, the applications with more global communication pattern demon-

strate a significant 7–25% improvement in the network saturation bandwidth with

MATC vs DO. Applications madbench2 and paratec-256 deviate from this trend.

Although, their spatial communication pattern is global, a careful analysis reveals

that these applications have a communication pattern that closely resembles the

223

Chapter 7. Adaptive Routing and PVT Variations

uniform random, i.e. the communication load is basically balanced across NoC

resources. For these applications, MATC and DO deliver approximately equiv-

alent performance because the adaptive algorithm cannot improve the network

utilization further with an already balanced communication load.

The second trend can be identified by comparing the MATC/DO ratios within

each application. In general, as performance variations grow from σ = 0.07 to

σ = 0.21, so does the ratio µ(RMATC
σ)/µ(RDO

σ). Particularly good examples in-

clude fvcam 2d, lbmhd-64, pmemd-64, madbench1 and lbmhd, which show clear

improvements. They indicate that the saturation bandwidth degrades slower with

MATC algorithm as compared to the oblivious DO router.

Application paratec-256 highlights clearly the ability of an adaptive algo-

rithm to tolerate PVT variations. From the point of view of a spatial communi-

cation pattern, paratec-256 is very similar to the uniform random traffic, which

is naturally load balanced. The performance variations create NoC resource uti-

lization imbalance, which MATC restores and obtains a greater performance im-

provement than DO.

Figure 7.14(b) summarizes the simulation results for a NoC with our sim-

ple systematic gradient, which demonstrate very similar trends to the stochastic

on-chip performance profile. Particularly notable are the saturation bandwidth

improvements on applications with non-local communication traffic. The system-

224

Chapter 7. Adaptive Routing and PVT Variations

atic gradient SP (m,n) is simple and regular, and a relatively easy case for any

adaptive algorithm to manage. This explains the larger net saturation bandwidth

improvements of 5–35% than those on NoC systems with stochastic performance

variations.

The results highlight the key feature of our proposed high level approach.

Adaptive NoC routing can effectively compensate for a range of PVT variations

independent of their nature and their specific sources, as long as the architecture

exposes the variations as component performance. For routing, exposing PVT

variations as flow control and router congestion enables a simple and comprehen-

sive approach to mitigate the degrading impact of variations.

7.3 Reducing Design Guard-bands

Let us define a simple model the relates design guard-bands to the improve-

ments in the saturation bandwidth that MATC can deliver over the Dimension

Order routing algorithm. Although the following discussion focuses on stochastic

variations, a similar model applies to a systematic profile as well. Cσ describes the

router performance in an implementation of the multi-core NoC architecture, i.e.

the router throughput is described as a random variable with Normal distribution

N(µ, σ). µ represents the target (nominal) router throughput chosen by system

225

Chapter 7. Adaptive Routing and PVT Variations

0.9

1.0

1.1

1.2

1.3

gt
c3

-6
4

ca
ct

u
s-

64

fv
ca

m
2d

lb
m

h
d
-6

4

p
m

em
d
-6

4

gt
c2

m
d
h
2d

ca
ct

u
s-

25
6

m
ad

b
en

ch
1

sl
u
-2

56

lb
m

h
d

m
ad

b
en

ch
2

p
ar

at
ec

-2
56

Stochastic Variations: µ(RMATC
σ)/µ(RDO

σ)

No Variations
σ = 0.07
σ = 0.14
σ = 0.21

(a) Stochastic Variations

0.9

1.0

1.1

1.2

1.3

1.4

1.5

gt
c3

-6
4

ca
ct

u
s-

64

fv
ca

m
2d

lb
m

h
d
-6

4

p
m

em
d
-6

4

gt
c2

m
d
h
2d

ca
ct

u
s-

25
6

m
ad

b
en

ch
1

sl
u
-2

56

lb
m

h
d

m
ad

b
en

ch
2

p
ar

at
ec

-2
56

Systematic Variations: µ(RMATC
SP)/µ(RDO

SP)

No Variations
SP(0.9,1.1)
SP(0.8,1.2)
SP(0.7,1.3)

(b) Systematic Variations

Figure 7.14: MATC vs DO improvements in saturation injection rate.

226

Chapter 7. Adaptive Routing and PVT Variations

implementers1. σ describes the “width” of the router throughput distribution in

a system affected by PVT variations. Network saturation injection rate RR
σ is the

key metric that defines the upper bound on the operating region where NoC sys-

tem functions efficiently. Equations 7.6 and 7.7 modeled the relationship between

Cσ and RR
σ , and are repeated here for clarity:

µ(RR
σ) = RR

0 − AR × σ (7.10)

σ(RR
σ) = BR × σ (7.11)

The nominal network saturation injection rate RR
0 is a function of the target

router throughput µ: RR
0 = f(µ). This function is linear f(kµ) = kf(µ), because

the network saturation bandwidth is proportional to the sum of individual channel

capacities across the topology bisection. The linearity enables a simple definition

of the design guard-band g:

(1 + g) × RR
0 = f ((1 + g) × µ) (7.12)

The guard-band g represents an additional performance margin that must be built

into the design in order to meet the network saturation bandwidth specification

S. If 6×σ parametric yield is desired, then S constrains the network performance

1In the previous sections, we set µ = 1 flit per time unit for simplicity.

227

Chapter 7. Adaptive Routing and PVT Variations

as following:

µ(RR
σ) − 3σ(RR

σ) ≥ S (7.13)

Substituting the definitions for µ(RR
σ) and σ(RR

σ), we obtain:

(1 + g) × RR
0 − AR × σ − 3BR × σ ≥ S (7.14)

g ≥ S − RR
0 + (AR + 3BR) × σ

RR
0

(7.15)

This simple definition for a design guard-band allows us to evaluate the results

in the previous sections from a different angle. Unlike the results in Figure 7.14

that highlighted improvement in the expected saturation bandwidth between the

two routing algorithms, the guard-band comparison also factors in the standard

deviation of the network saturation bandwidth distribution. Figure 7.15 presents

the guard-band g for MATC with variations C0.21, where the specification S was

chosen such that the guard-band g for DO would be 0: S = RDO
0 − (ADO +

3BDO) × σ. The negative guard-band values of g show that at their nominal

throughput of µ = 1 flit per time unit, the MATC routers are over-engineered

for the specification point S, and thus the nominal router throughput µ can be

228

Chapter 7. Adaptive Routing and PVT Variations

-0.25

-0.2

-0.15

-0.1

-0.05

 0

 0.05

g
tc

3
-6

4

c
a

c
tu

s
-6

4

fv
c
a

m
_

2
d

lb
m

h
d

-6
4

p
m

e
m

d
-6

4

g
tc

2

m
d

h
2

d

c
a

c
tu

s
-2

5
6

m
a

d
b

e
n

c
h

1

s
lu

-2
5

6

lb
m

h
d

m
a

d
b

e
n

c
h

2

p
a

ra
te

c
-2

5
6

G
u

a
rd

b
a

n
d

 (
g

)

Design guardband reduction from MATC

Figure 7.15: Guard-band reduction with MATC adaptive routing with stochastic
variations C0.21.

reduced. It is not surprising that the qualitative trends in Figure 7.15 resemble

those in the previous sections.

Figure 7.16 illustrates the general strategy to convert the performance gains

from adaptive routing into smaller design guard-bands. Without adaptive routing,

a NoC would be implemented in a particular technology to deliver the router per-

formance profile Cσ. MATC reduces the degradation and the standard deviation

of the saturation bandwidth and enables a designer to select a design point Cσ

with lower performance target. The new design point Cσ corresponds to smaller

area and power dedicated to deliver the target performance.

229

Chapter 7. Adaptive Routing and PVT Variations

µ(RDO
σ [Cσ])

µ(RDO
σ [Cσ])

MATCMATC DO

Reduce Design Guard-bands
Cσ Cσ

µ(RMATC
σ [Cσ])

Network Saturation Injection Rate

spec S

Figure 7.16: From improvements in saturation bandwidth to reduced design
margins.

Adaptive routing gives implementers a performance and power advantage, but

the expected gains depend on the application and its communication properties.

The application domain can help to determine the best way to realize the gains

from adaptive routing. Assume that NoC system’s application load can be char-

acterized in advance and generally comprises applications with similar commu-

nication patterns in terms of locality and load balance. A designer can set the

target implementation point (1+g)×µ to lower the area and power consumption.

This design time decision combines with a dynamic adaptive routing algorithm to

reduce the resources required to meet the hard performance specification S.

In practice, it is unlikely that the application domain is sufficiently narrow

in terms of its members’ communication properties, requiring a combination of

230

Chapter 7. Adaptive Routing and PVT Variations

design and run time techniques. At design time, it is possible to reduce the guard-

bands just enough to accommodate the majority of the application domain. Then

at run-time, DVS/DFS techniques can extend the operating range of routers to

accommodate all applications that execute on a platform.

This combination results in the benefits of both worlds. A designer reduces

power and area by setting the nominal design point in the middle of the op-

erating range that would accommodate all applications. The run-time systems

selects operating points for each core/router based on its actual load. This can

be accomplished with an architecture that exposes PVT induced variations and

operating regime controls to the run-time system and allows a routing algorithm

to treat these complex effects as ordinary network congestion. The approach ac-

commodates a variety of static variation effects, such as process variations and

faults, dynamic effects induced by temperature and voltage fluctuations, and the

application specific load imbalance and device aging.

7.4 Benefits of Heterogeneous Architectures

This work demonstrates the advantages of adaptive vs oblivious routing on

heterogeneous multi-core architectures, where each core/router tile operates in

its own independent voltage and clock domain. These Voltage Frequency Islands

231

Chapter 7. Adaptive Routing and PVT Variations

(VFI) allow each router to run at the throughput and latency dictated by its own

local PVT variation corner. The alternative, of course, would be to force all tiles

to operate at the same chip-wide worst-case performance point, or perhaps to

select a coarser VFI granularity with core clusters.

Our preliminary investigation illustrates the advantages of the core-level Volt-

age Frequency Island architectures on Figure 7.17. The graph shows the network

performance for PMEMD-64 application on the network affected by stochastic per-

formance variations distributed as N(1, 0.21). These results were obtained with

Minimal Adaptive (MA) and Dimension Order (DO) routers. There are two sets

of curves: (1) “Homogeneous” multi-core system without VFIs — all core/router

tiles operate at the chip-wide worst case (WC) regime; and (2) “Heterogeneous”

system where every core has its own VFI, which is th focus of this work. For

this application, RMATC
V FI /RMATC

WC = 1.42 and RDO
V FI/R

DO
WC = 1.36. In other words,

the performance heterogeneity with VFIs provides approximately 40% saturation

bandwidth improvement independent of the routing algorithm.

In the “Homogeneous” architecture all tiles run at the same, worst case operat-

ing point. The PVT variations are not exposed to the routers, and the significant

network performance degradation is the result of accommodating all tiles, includ-

ing the unduly slow outliers. The graph identifies three important performance

improvement regions:

232

Chapter 7. Adaptive Routing and PVT Variations

(1) (2) (3)

RDO
0 RMATC

0

HomogeneousHeterogeneous
RDO

WC RDO
V FI RMATC

V FIRMATC
WC

Figure 7.17: Advantages of heterogeneous vs homogeneous architectures: 40%
gains in saturation bandwidth, and 50% in unloaded latency.

233

Chapter 7. Adaptive Routing and PVT Variations

• Region (1) shows the saturation bandwidth improvement from adaptive

routing that compensates for the application communication load imbal-

ance.

• Region (2) highlights the potential performance difference between the two

extremes: homogeneous and heterogeneous architectures with a core per

VFI. In practice, there is a continuum between these extremes that contains

architectures where each Voltage Frequency Island is a cluster of cores. De-

pending on the core size and capabilities, and whether or not a core includes

caches, clustering of the adjacent cores into a VFI may be appropriate to

create an efficient implementation. A number of other variants exist, such

a cluster of cores that share a cache block or a network-on-chip router (e.g.

concentrated network topologies [9]), which have additional area and power

advantages.

• Region (3) highlights the adaptive routing advantages that are the focus of

this work. This region is wider than region (1) because an adaptive algorithm

compensates for communication load imbalance due to PVT variations as

well as the imbalance inherent in the application communication topology

and task-to-core mapping (Section 7.2.3).

234

Chapter 7. Adaptive Routing and PVT Variations

One of the key questions to answer in the future work would be to quan-

tify the gains from heterogeneous multi-core architectures, i.e the region (2). To

properly understand this space, one must obtain the results from a set of imple-

mentations with concrete tile operating ranges and vary the VFI granularity (the

number of cores per VFI). This would highlight the trade-off between the VFI

implementation overhead and the potential gains from adaptive routing and task

mapping, and would enable architects to identify the most power/performance

efficient system implementation.

7.5 Task-to-Core Mapping Impact

The network simulation results presented in Section 7.2 relied on task-to-core

mapping performed by the simulation annealing algorithm in the VPR [16]. The

algorithm attempts to minimize the average communication distance by minimiz-

ing the bounding box size that encompasses every a pair of communicating tasks

on a 2D mesh. This Minimal Bounding Box algorithm (Min BB) maps or “places”

the communicating tasks on adjacent cores and preserves spatial locality in the

application communication pattern. Table 8.2 presents two Rent’s growth param-

eters for each application task graph: Partition(p) and Placed(p). Partition(p)

was obtained by recursive task graph bisection without any task-to-core map-

235

Chapter 7. Adaptive Routing and PVT Variations

Name Size
Avg Comm Dist Davg Rent p
Min BB Random Min BB Random

gtc3-64 64 1.09 5.44 0.26 0.63
cactus-64 64 1.73 5.28 0.30 0.67
fvcam 2d 64 2.61 5.32 0.47 0.64
lbmhd-64 64 3.36 5.52 0.51 0.69
pmemd-64 64 5.24 5.42 0.66 0.66
gtc2 256 1.12 11.02 0.26 0.68
mdh2d 256 2.02 10.84 0.31 0.70
cactus-256 256 2.12 10.40 0.32 0.66
madbench1 256 3.31 10.63 0.45 0.67
slu-256 256 5.72 10.86 0.57 0.69
lbmhd 256 5.81 10.60 0.53 0.67
madbench2 256 5.83 10.42 0.49 0.66
paratec-256 256 10.66 10.67 0.68 0.68

Table 7.2: Random placement destroys communication locality.

ping. Placed(p) was obtained by first mapping the communication graph using

VPR and then extracting the parameters by bisecting the 2D network topology.

Partition(p) ideally serves as the lower bound for the Placed(p) growth parameter,

because it captures the communication bandwidth requirements independent of

the underlying topology constraints, such the low radix mesh. The close similarity

in values between Partition(p) and Placed(p) is a strong indication of the quality

of the task-to-core mapping, i.e. the VPR preserves task communication locality.

Although this work does not study the network performance impact of task-to-

core mapping in detail, we can evaluate its contribution in the following manner.

Let us consider the Min BB mapping to be near-optimal, i.e. the best case. It is

236

Chapter 7. Adaptive Routing and PVT Variations

safe to estimate the lower bound (worst case) on the mapping quality using Ran-

dom mapping algorithm, which simply assigns each task to a distinct randomly

chosen core location. One does not expect the Random algorithm to preserve

any communication locality, which the measurements in Table 7.2 demonstrate.

The data compares average communication distance Davg on a 2D mesh for Min

BB vs Random mapping algorithms for 64 and 256 task applications. The best

case algorithm exposes inherent communication locality, while the Random al-

gorithm produces the same average communication distance independent of the

application.

The numbers produced by the Random algorithm are not accidental. The

average communication distance for the uniformly distributed traffic on a (n, k)-

mesh is 2
3
×n×k. Therefore, on a 8×8 2D mesh, the average distance is 2

3
×2×8 =

5.33, and for the 16 × 16 mesh it is 10.66. Table 7.2 also compares the Rent’s

parameter p and the average communication distance as another illustration of

locality gap between the near-optimal Min BB and worst-case Random algorithms.

Davg and p are significantly different for Min BB and Random for applications with

local communication patterns, such as gtc3-64 or cactus-64. As applications

increase their communication range, such as pmemd-64 or lbmhd, the values for

Davg and p becomes indistinguishable from the uniform random traffic.

237

Chapter 7. Adaptive Routing and PVT Variations

Name
Dimension Order MATC

Davg Min BB Random Min BB Random

M
in

B
B

R
an

d
om

n
om

in
al

N
(1

,0
.2

1)

n
om

in
al

n
om

in
al

N
(1

,0
.2

1)

n
om

in
al

gtc3-64 1.09 5.44 0.96 0.90 0.33 0.95 0.89 0.36
cactus-64 1.73 5.28 0.91 0.89 0.35 0.90 0.89 0.38
fvcam 2d 2.61 5.32 0.53 0.51 0.32 0.60 0.60 0.35
lbmhd-64 3.36 5.52 0.53 0.51 0.37 0.61 0.60 0.39
pmemd-64 5.24 5.42 0.31 0.29 0.33 0.36 0.35 0.37
gtc2 1.12 11.02 0.98 0.94 0.16 0.98 0.94 0.18
mdh2d 2.02 10.84 0.83 0.81 0.17 0.89 0.87 0.18
cactus-256 2.12 10.40 0.79 0.78 0.18 0.85 0.83 0.17
madbench1 3.31 10.63 0.34 0.31 0.17 0.41 0.38 0.18
slu-256 5.72 10.86 0.22 0.22 0.18 0.25 0.24 0.19
lbmhd 5.81 10.60 0.28 0.25 0.18 0.34 0.33 0.19
madbench2 5.83 10.42 0.25 0.25 0.18 0.25 0.25 0.19
paratec-256 10.66 10.67 0.19 0.17 0.19 0.19 0.18 0.19

Table 7.3: Simulation result comparison for Minimal BB vs Random task
mapping.

238

Chapter 7. Adaptive Routing and PVT Variations

How does the mapping quality affect the actual network performance? Ta-

ble 7.3 shows the saturation injection rate R for each application mapped by Min

BB and Random algorithms. For Min BB, the table contains the saturation injec-

tion rate for the nominal (no PVT variations) network and the one with stochas-

tic variations C0.21. This helps to compare the performance degradation due to

stochastic PVT variations with the potential degradation due to poor task-to-core

mapping. The Random mapping turns the applications with mostly local commu-

nication pattern, such as gtc3-64 or cactus-64, into the uniform random pattern

and dramatically reduces their saturation injection rate from around 0.9 down to

0.3 on 64 core applications. Similarly, on 256 core applications with local commu-

nication pattern, the saturation rate is reduced from 0.9 down to 0.17, which is a

significant performance degradation. This is the expected result. These numbers

are consistent with uniform random traffic on a mesh (Figure 7.18). 8 × 8 mesh

has the topology bound of 0.5, and 16×16 has a bound of 0.25 (Section 6.1). The

actual measurements of 0.3 and 0.17 are reasonably close to the router bounds for

their respective mesh sizes. The actual saturation rate numbers are lower than the

bounds because they reflect communication load imbalance and limits of routing

algorithms.

When the application communication pattern is global and approaches that

of a uniform random pattern, such as such as pmemd-64 or lbmhd, so does its

239

Chapter 7. Adaptive Routing and PVT Variations

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

g
tc

3
-6

4

c
a

c
tu

s
-6

4

fv
c
a

m
_

2
d

lb
m

h
d

-6
4

p
m

e
m

d
-6

4

g
tc

2

m
d

h
2

d

c
a

c
tu

s
-2

5
6

m
a

d
b

e
n

c
h

1

s
lu

-2
5

6

lb
m

h
d

m
a

d
b

e
n

c
h

2

p
a

ra
te

c
-2

5
6

S
a

tu
ra

ti
o

n
 I

n
je

c
ti
o

n
 R

a
te

Task-to-Core Mapping Impact

8x8 Mesh
UR Bound

16x16 Mesh
UR Bound

MA - MinBB
MA - Random

DO - MinBB
DO - Random

Figure 7.18: Network saturation injection rate comparison with Min BB and
Random task mappings.

240

Chapter 7. Adaptive Routing and PVT Variations

saturation injection rate. For these applications, the mapping quality is not as

critical, since the saturation rate does not degrade significantly on Min BB vs

Random. However, the impact of the mapping quality should not be underesti-

mated. With the Random mapping, the injection saturation rates obtained from

DO and MATC are essentially identical and match the performance of the uniform

random communication pattern. In contrast, with Min BB placement, the satu-

ration rate shows an improvement with MATC vs DO, particularly for larger 256

core applications. This clearly highlights the importance of a good, task-to-core

mapping that preserves application’s communication locality.

Figure 7.14 highlights the trend that the applications with higher average com-

munication distance Davg benefit the most from adaptive routing, while mostly

local applications do not show a significant benefit due to their limited path diver-

sity. In contrast, Table 7.3 demonstrates that the local applications depend mostly

on mapping quality to deliver the performance on par with the expectations.

7.6 Summary

We develop a theoretical foundation for network performance degradation due

to PVT variations by introducing a new PVT variation bound that complements

the classical topology, routing and switching bounds, which are used today to

241

Chapter 7. Adaptive Routing and PVT Variations

evaluate application performance. The chapter continues by addressing the core

subject of this work: the way to use the adaptive routing to compensate for PVT-

induced network performance variations. The NoC architecture abstracts com-

plex parametric variations as core/router tiles with heterogeneous performance

and exposes the variations to a routing algorithm as network congestion. Left un-

compensated, these variations create communication load imbalance that results

in a significant degradation of network saturation bandwidth.

We demonstrate with NoC simulation that our simple MATC router simultane-

ously compensates for load imbalance due to PVT variations and the application

communication topology, and reduces the bandwidth degradation by a factor of

2–3x and the standard deviation of saturation bandwidth distribution often by

an order of magnitude. The Minimal Adaptive Total Congestion (MATC) router

improves the saturation injection rate by 5 to 30% over Dimension Order router,

which minimizes the impact of stochastic and systematic on-chip performance

variations. These advantages can be turned into smaller design guard-bands for

a significant reductions in the implementation area and power consumption. By

combining smaller design guard-bands with dynamic DVS/DFS techniques that

widen system operating range, the adaptive routing can create the most econom-

ical system solution applicable to a wide range of applications.

242

Chapter 7. Adaptive Routing and PVT Variations

Section 7.4 illuminates the performance advantages of heterogeneous multi-

core architectures that are at the foundation of our work. We show 40% difference

in the network saturation bandwidth between homogeneous architectures, where

all core/router tiles operate at the chip-wide worst-case performance, and the

heterogeneous architectures with Voltage Frequency Islands.

Section 7.5 compares the network performance impact of task-to-core mapping

quality with that of PVT-induced variations. The analysis demonstrates that

task-to-core mapping must preserve application-specific communication locality

in order to deliver the network saturation bandwidth close to application routing

bound. The mapping quality is the most critical for the applications with local

communication pattern, but plays a relatively insignificant role in the applications

with global communications whose average packet latency resembles that of the

uniform random traffic.

243

Chapter 8

Network Performance Analysis

Simulation is an accurate but costly method of evaluating network performance

of applications with irregular, asymmetric communication topologies and complex

load balance profiles. These applications have communication patterns that do

not lend themselves to a simple paper and pen analysis. However, we need a

static analysis methodology that can help designers to estimate the potential

performance gains from adaptive vs oblivious routing algorithms for real multi-

tasking applications, not just symmetric, synthetic communication patterns.

We have developed two types of such analysis that relates the saturation band-

width, the key metric in this work, to the communication locality for arbitrary

task graphs. The first analysis method is based on Rent’s rule [85], and it en-

ables a designer to quickly and efficiently estimate network topology saturation

bandwidth for a particular application communication graph. The second analy-

sis maps a task communication graph into a Multi Commodity Flow problem and

244

Chapter 8. Network Performance Analysis

estimates routing algorithm bounds of saturation bandwidth — an improvement

on the topology bounds. With the ideal adaptive routing algorithm, one can ex-

pect 10%–60% gains in saturation bandwidth in our High Performance Computing

benchmarks.

8.1 Topology Bounds

Application communication patterns can be described with spatial and tempo-

ral characteristics as discussed in Section 6.2. Here, we focus on spatial commu-

nication characteristics and define a model that enables a designer to efficiently

estimate the application performance for a given network topology. Locality has

been investigated previously in [76] with a complex analytical model, but we strive

toward a simpler empirical model that captures performance of an arbitrary com-

munication graph.

Traditionally, the routing algorithm performance has been studied using syn-

thetic communication patterns shown in Table 8.1[34]. These patterns span the

space from router friendly to adversarial, where the latter requires greater effort

from the router to balance the packets across the network links. They are sim-

ple to analyze, since all nodes exhibit exactly the same behavior and symmetric

communication load balance across the network. In contrast, real multi-tasking

245

Chapter 8. Network Performance Analysis

Name Description
NN(i) Nearest-neighbor communication pattern exhibits locality specified

by parameter i. i ∈ [1, N) represents static communication hop dis-
tance from the packet source to its destination. For example, NN(1)
forms a mesh. This is a router friendly communication pattern with
low bandwidth requirements and near-optimal load balance across the
network. One expects high network saturation bandwidth, and only
a minimal increase in average packet latency at the saturation point.

TOR Tornado communication pattern creates a “twister-like” packet flow
on the network. For example, on 2D network, if (x, y) is the address of
the packet source, then (N−1−x,N−1−y) is its destination. This is
trivially extensible to higher dimensional symmetric network topolo-
gies. Although this pattern is symmetric, it has poor load-balance
because it creates a highly congested hot-spot in the center of the
network at coordinate (N/2, N/2). Tornado is “adversarial” commu-
nication pattern that tests router’s ability to load balance packets.

UR(i) Uniform Random Destination communication pattern creates a
naturally load balanced packet flow because every source selects a
destination at random for each packet to be transmitted. This pattern
uses uniformly distributed selection, but other “skewed” distribution
are also possible, such as those targeting destinations at a particular
topological distance i from the source. Parameter i can be also used
to set the upper bound on the communication distance to control
communication locality. Notice that randomness implies the spatial
and temporal load balance across the network, which is not present
in the corresponding NN(i) instance.

R Reduce communication pattern comprises multiple sources and a sin-
gle destination that becomes a natural bandwidth bottleneck. Even
with fair router switching, the packet sources closer to the destina-
tion node receive a greater fraction of the switch bandwidth than the
distant sources. A routing algorithm has no way of fixing the net-
work load imbalance, since it is forced by the communication topol-
ogy. However, it may be able to remedy unfair bandwidth allocation
between the packet sources with a QoS scheme [86].

Table 8.1: Synthetic, characteristic communication patterns for routing algo-
rithm research.

246

Chapter 8. Network Performance Analysis

applications present a more challenging, uneven and asymmetric landscape for

routing algorithms. Thus, it is important to study the real applications in addi-

tion to the synthetic communication patterns to uncover corner cases.

Our benchmarks represent a collection of communication patterns from local

to global, and each one typically comprises several synthetic patterns (Table 8.2).

This locality range and complexity makes the benchmark a good choice to study

analytically and through network simulation. Notice that the node degree (davg)

is insufficient to estimate the average communication distance Davg, the measure

of locality, nor the load balance. For example, Figure 8.1 shows the graph connec-

tivity matrix and communication topology on a 2D mesh network for lbmhd-64

kernel. Although the connectivity graph is sparse (davg = 6), the locality opti-

mizing task-to-core assignment algorithm creates many connections that span at

least half the mesh (Figure 8.1(b)). Communication load imbalance is clear from

a simple visual inspection.

In order to understand and interpret routing algorithm performance for these

applications, we develop a simple metric that captures the spatial nature of their

communication patterns. Borrowing from VLSI, we propose to use Rent’s rule

analysis to efficiently compute the degree of communication locality of a task

graph and also the growth rate of its communication bandwidth requirements.

247

Chapter 8. Network Performance Analysis

 0

 10

 20

 30

 40

 50

 60

 70

 0 10 20 30 40 50 60 70

T
O

FROM

(a) Connectivity Matrix

0

15

47

5159

60

62

1

1446

50

58

61

63

2

13

45

49 57

3

12

44

48

56

4

8

40 52

5

11

43

55

6

7

3954

35

19

32

34

9

31 10

27

28

30

18

1716

20

23 22

21

2933

25

24

36

26

37

38

42

41

53

(b) 2D Mesh Task Assigment

Figure 8.1: Spatial communication properties of lbmhd-64 application.

Name Davg N davg Placed
(K, p)

Partition
(K, p)

Saturat.
Rate
R

gtc3-64 1.09 64 2.2 (2.91, 0.26) 1
cactus-64 1.73 64 4.5 (3.41, 0.30) (3.31, 0.29) 1
fvcam 2d 2.62 64 14.4 (3.48, 0.47) (4.14, 0.39) 1
lbmhd-64 3.37 64 6 (3.52, 0.51) (3.33, 0.55) 1
pmemd-64 5.24 64 63 (3.45, 0.66) (3.73, 0.62) 0.64
gtc2 1.12 256 3.1 (4.38, 0.26) (1.74, 0.14) 1
mdh2d 2.02 256 4 (5.63, 0.31) (2.74, 0.43) 1
cactus-256 2.12 256 5 (5.75, 0.32) 1
madbench1 3.31 256 13.3 (5.09, 0.45) (3.90, 0.41) 0.80
slu-256 5.72 256 30.9 (4.66, 0.57) (3.54, 0.64) 0.49
lbmhd 5.81 256 6 (5.57, 0.53) (4.17, 0.60) 0.49
madbench2 5.83 256 39.1 (6.25, 0.49) (5.40, 0.58) 0.53
paratec-256 10.6 256 255 (5.08, 0.68) (4.38, 0.73) 0.27

Table 8.2: A summary of HPC kernels and their Rent’s parameters.

248

Chapter 8. Network Performance Analysis

The Rent’s rule came from an empirical observation at IBM of the relationship

between the number of pins (bandwidth W) at the boundaries of integrated circuit

designs and the number of internal components (area A), such as logic gates or

standard cells [85]. This relationship can be described by two parameters K and

p:

W = KAp (8.1)

The pin count growth rate p ∈ [0, 1] defines the number of pins connecting to

the device of area A. p < 0.5 generally implies that the growth in the number

of pins is slower than the perimeter surrounding the chip area A, and thus the

communication is mostly local, nearest neighbor. In contrast p ≥ 0.5 implies more

global, longer distance communication. [42] has formulated a relationship between

the Rent’s parameters of a VLSI circuit and expected wire lengths.

In studying spatial communication patterns of real multiprocessor applications,

we apply Rent’s rule to extract two parameters (K, p) for each task communica-

tion graph. These parameters efficiently summarize application global bandwidth

requirements. They enable us to efficiently compute the saturation bandwidth on

a particular network topology, which itself is a graph that can be analyzed with

Rent’s rule.

249

Chapter 8. Network Performance Analysis

Define Rent’s parameters (Kn, pn) for the network topology graph. Then the

bandwidth Wn that the network can support in and out of a cluster of A proces-

sor/router nodes is described by

Wn = KnA
pn (8.2)

Kn represents the duplex bandwidth of a single (A = 1) network router, and pn

represents the connectivity in a particular network topology. For example, con-

sider a 2D mesh shown on Figure 8.2(a). To compute its Rent’s parameters, one

must partition the topology into increasingly smaller sub-graphs and record the

total capacity of the channels that cross the partitions. The Rent’s parameters

can be obtained through a simple curve fit as shown on Figure 8.2(b). The ap-

proximate 2D mesh parameters are (Kn, pn) = (6, 0.37). They reflect the nearest

neighbor communication topology (pn < 0.5) and the fact that the single node

bandwidth is less than the expected Kn = 8 due to the finite size of the mesh.

The application communication topology can be described in the similar man-

ner with parameters (Ka, pa). Ka represents the maximum bandwidth that an

average task consumes and produces and must be ≤ Kn. The network topology

bound and task execution (e.g. high compute to communication ratio) reduce the

actual consumed bandwidth from its maximum Ka down to RKa, where R ∈ [0, 1]

250

Chapter 8. Network Performance Analysis

������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������

������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������

������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������

������������
������������
������������
������������
������������
������������

������������
������������
������������
������������
������������
������������

A=1, W=8

A=2, W=10

A=4, W=16

(a) Iterative partitioning

 0

 20

 40

 60

 80

 100

 120

 0 50 100 150 200 250

B
a
n

d
w

id
th

Area (tasks)

Measured
Rent’s Fit

(b) Curve fit to estimate parameters.

Figure 8.2: Method to estimate rent’s parameters for 2D mesh.

is the Saturation Injection Rate. The injection rate is the fraction of the total

network bandwidth utilized by an application. No task can exceed RKa injection

bandwidth because this bandwidth saturates the network and results in a sharp

increase in average packet latency. To determine the net saturation bandwidth

bound for an application, solve the following optimization problem:

Maximize R s.t.

∀A∈[1,N]RKaA
pa ≤ KnA

pn (8.3)

Essentially Equation 8.3 states that application will saturate the network with

the maximum injection rate R, such that the application bandwidth requirements

do not exceed the capacity of the network topology. Since Rent’s rule defines

bandwidth as monotonically increasing with graph size, which is not always true

251

Chapter 8. Network Performance Analysis

in practice, to estimate the least upper bound of the saturation injection rate

of a particular task communication graph of size A, it suffices to compute the

maximum injection rate at the graph bisection:

R =
Kn

(

A
2

)pn

Ka

(

A
2

)pa
=

Kn

Ka

(

A

2

)(pn−pa)

(8.4)

Table 8.2 shows the results of Rent’s analysis and the saturation injection rate

estimations for our set of HPC applications.

We use the following “Partition” and “Placed” methods to estimate Rent’s

parameters. (1) The simplest way to compute Rent’s parameters (K, p) involves

recursive minimal bi-partitioning of the task graph. This methods does not re-

quire application tasks to be mapped onto a network. It can provide the best case

— the theoretical lower bound — on the bandwidth growth parameter p, since

after the tasks are mapped, the 2D network topology imposes its own additional

locality constraints. (2) To obtain a more realistic estimate of Rent’s parameters

and of the saturation injection rate bound R, the task graph must first be mapped

onto a network of cores. The tasks were placed onto the 2D mesh network by the

simulated annealing algorithm in VPR tool, which minimizes the average commu-

nication distance [16]. To compute the “Placed” (K, p) parameters, we recursively

252

Chapter 8. Network Performance Analysis

bisected the network mesh itself and then measured bandwidth requirement of the

application sub-graphs residing in the corresponding network partitions.

Table 8.2 shows a strong correlation between the Rent’s parameters obtained

with “Placed” and “Partition” methods. The reason why Partition parameters are

not strictly the lower bound of the Placed parameters is that they were obtained

through a curve fit of Equation 8.1, which has inverse correlation between K and

p. Therefore, the only way to accurately compare the two estimates would be to

simultaneously fit Placed and Partitioned curves, ensuring that Partition(K) =

Placed(K). This is impractical and unnecessary, as the Rent’s growth parameter p

for Placed and Partition estimates are very close. This indicates that the simulated

annealing placement algorithm exposed locality in each communication pattern

(further details in Section 7.5).

Table 8.2 also shows the average packet latency (Davg) in router hops. As

expected, there is a direct correlation between Rent’s growth parameter p and

the average communication distance Davg. Using Equation 8.4, we estimated Sat-

uration Injection Rate R ∈ [0, 1] for each task graph on 2D mesh. Recall that

R refers to the largest fraction of the total network bandwidth that a particular

communication topology can utilize. As expected, communication locality Davg

and saturation injection rate are inversely correlated because as packets travel

253

Chapter 8. Network Performance Analysis

longer distances in the network, they consume bandwidth from more NoC com-

munication channels and routers, saturating them and increasing congestion.

Rent’s parameters provide a convenient approximation to the communication

capacity of the network and the application requirements. They allow a designer

to quickly estimate saturation bandwidth topology bound for an application spe-

cific communication pattern. Additionally, they help to estimate overall network

channel utilization U :

U =







∏

A∈[1, N
2
]

R
Ka

Kn

A(pa−pn)







2

N

(8.5)

The channel utilization is a geometric mean of bandwidth utilization for applica-

tion sub-graphs of sizes 1 through N
2

tasks. Figure 8.3 illustrates the source of

under-utilization in the network with the bandwidth growth parameter pn that

does not match that of the application pa. Since the topology bound is agnostic

to a routing algorithm in that it includes all possible paths, this Rentian commu-

nication load imbalance cannot be fixed with an adaptive routing.

254

Chapter 8. Network Performance Analysis

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 20 40 60 80 100 120 140

B
a
n

d
w

id
th

Area (tasks)

Unused
Bandwidth

Network Mesh
Application

Figure 8.3: Mismatch between network and application Rent’s parameters re-
sults in underutilized channel bandwidth.

8.2 Router Bounds

We can refine the topology bound with a tighter routing bound, which is

specific to a particular routing algorithm and application task-to-core mapping.

While the topology bound includes all network paths, the routing bound restricts

the paths to only those within a routing algorithm’s domain. With routing bounds,

we can estimate the network performance advantages of adaptive algorithms vs

the oblivious ones and determine the limits of the adaptive routing to tolerate

performance variations. These bounds also allow us to evaluate the quality of

results from NoC simulations in Chapter 7.

255

Chapter 8. Network Performance Analysis

The network routing bounds correspond to the volume of the packet flow that

saturates at least one critical channel or a router, and permits no further traf-

fic injection. To compute these bounds, we can express the routing problem as

Multi-Commodity Maximum Flow (MCMF) problem. Although network packets

are discrete entities, a continuous MCMF is a good approximation for the network

steady state behavior [34]. We model each task-to-task communication as an in-

dependent commodity flow from its source to its destination task, i.e. a flow from

the core on which the source task is mapped to the core running the destination

task. Multiple independent flows share common network resources — channels

and routers — that impose capacity constraints. For each task-to-task packet flow,

the MCMF contains only a single source and a single destination. Thus a feasible

solution to MCMF would respects all packet flows, and maximizing the objective

function, the total injected flow, would reveal the network saturation bandwidth

bound. To obtain this bound for a specific algorithm and an application, the key

to the MCMF problem formulation is to constrain every source-destination flow

to only those nodes and edges that a particular router could legitimately use to

deliver the packet.

We define the following terms and variables to formalize our MCMF problem.

A network GN = (VN , EN) is a graph comprising router/core node set VN con-

nected with communication channels in set EN . Each node u ∈ VN has ingress

256

Chapter 8. Network Performance Analysis

and outgress capacities Cs
u and Ct

u, the maximum bandwidth with which a core

can push or pull the traffic into/from the network router. Each network channel

(u, v) ∈ EN has the capacity C(u,v). To simplify the problem formulation, let

us assume that network router internal throughput exceeds that of inter-router

channels, and thus a router is never the bottleneck in the network. It is simple to

extend the problem to include router performance, but the problem will grow in

size significantly without revealing any new insight into the routing bound.

The application task graph GA = (VA, EA) includes a set of tasks VA and

unidirectional inter-task flow edges EA. Each edge (i, j) ∈ EA represents a flow

that utilizes a collection of network routers and channels along its routed path. An

edge has an application defined property, the flow frequency k(i,j) that represents

a fraction of the total output bandwidth of task i that is transmitted to task j

(Section 5.3). This implies:

∀i
∑

(i,j)∈EA

k(i,j) = 1 (8.6)

A task-to-core mapping M : VA 7→ VN is required to execute a task graph on a

multi-processor system. Given this mapping, a routing algorithm defines a valid

path or a set of valid paths that a flow can take for each source and destination

pair. Ignoring the order of nodes, a path can be specified as a set of network

257

Chapter 8. Network Performance Analysis

router nodes P ⊆ VN . A routing algorithm R can be defined as a relation that

maps a pair of source and destination nodes onto a set of valid paths:

PSETR : (VN × VN) 7→ (P1, P2, . . .) (8.7)

An oblivious algorithm such as Dimension Order defines only a single path for each

source and sink node combination, while an adaptive algorithm may produce a

larger set of paths. To formulate the Multi Commodity Max Flow problem, define

V R
(u,v) and ER

(u,v) as sets of all possible nodes and edges respectively that a traffic

from router u could traverse on the path to router v:

V R
(u,v) =

⋃

PSETR(u, v) (8.8)

ER
(u,v) = {(p, w) : p, w ∈ V R

(u,v) ∧ (p, w) ∈ EN} (8.9)

Figure 8.4 provides an example of the way these sets are defined for Dimension

Order and Minimal Adaptive routers on a 2D mesh. The adaptive algorithm has

a significantly greater path diversity.

Next, we define a set of non-negative variables to represent the utilized network

capacity. Define su to be the amount of traffic injected into the network by the

tasks mapped on core u, which is the sum of all packet flows emanating from u to

258

Chapter 8. Network Performance Analysis

2 3

4 5 6

1

Source S

Destination D

• V DO
(S,D) = {1, 2, 3, 6}

• EDO
(S,D) = {(1, 2), (2, 3), (3, 6)}

2 3

4 5 6

1

Source S

Destination D

• V MA
(S,D) = {1, 2, 3, 4, 5, 6}

• EMA
(S,D) = {(1, 2), (2, 3), (1, 4),

(2, 5), (3, 6), (4, 5), (5, 6)}

Dimension Order Minimal Adaptive

Figure 8.4: V R
(u,v) and ER

(u,v) for Dimension Order and Minimal Adaptive routers.

their appropriate destinations. The bandwidth consumed by flow (i, j) ∈ EA, is

then k(i,j) × su, where u is the router that task i is mapped to (M [i] = u). Let tv

be the amount of traffic pulled out of the network by the flow destination router v,

which is equal to the sum of all inflows,
∑

(i,j)∈EA∧M [j]=v sM [i]×k(i,j). Let f(i,j)(u, v)

be the bandwidth consumed by flow (i, j) ∈ EA through edge (u, v) ∈ EN .

With the terms and variables defined, we are ready to state the capacity and

flow preservation constraints for our MCMF problem. The following capacity

constraints apply to the sources, sinks and network edges:

∀u ∈ VN su ≤ Cs
u (8.10)

259

Chapter 8. Network Performance Analysis

∀u ∈ VN tu ≤ Ct
u (8.11)

∀(i, j) ∈ EA f(i,j)(u, v) ≤
{ ∞ if (u, v) ∈ ER

(M [i],M [j])

0 otherwise
(8.12)

∀(u, v) ∈ EN

∑

(i,j)∈EA

f(i,j)(u, v) ≤ C(u,v) (8.13)

Equations 8.10 and 8.11 represent the capacity constraints at the source and

destination nodes. Equation 8.12 states that there can be no traffic from task

i to task j through edge (u, v) unless it is a part of its routing path. Lastly,

Equation 8.13 defines edge capacity constraint.

To simplify the expression of the flow preservation constraints, we define a

special variable:

S(i,j)
u =















suk(i,j) if M [i] = u

0 otherwise

(8.14)

S
(i,j)
u specifies the amount of traffic injected into the network by network node u

for flow (i, j), which can only be nonzero if u is the source of the flow. The flow

preservation constraints are defined for each network node in VN :

∀u ∈ VN

∀(i, j) ∈ EA

M [j] 6= u

∑

(v,u)∈EN

f(i,j)(v, u) −
∑

(u,w)∈EN

f(i,j)(u,w) + S(i,j)
u = 0 (8.15)

260

Chapter 8. Network Performance Analysis

∀u ∈ VN

∑

(i,j)∈EA∧M [j]=u∧(v,u)∈EN

f(i,j)(v, u) + S(i,j)
u − tu = 0 (8.16)

The constraint in Equation 8.15 applies to each network node and packet flow, as

long as the flow does not terminate in that same node. The Equation 8.16 applies

to each network node and the flows that terminate there.

With previously stated capacity and flow preservation constraints, maximizing

the sum of injected traffic from all sources results in a traffic load that saturates the

network and delivers all the flows from their sources to the respective destinations.

The upper bound on the saturation injection rate for routing algorithm R ranges

from RR
1 to RR

2 , where each is the value of the MCMF objective function:

RR
1 = Maximize

|VN |s
∑

u∈VN
Cs

u

(8.17)

RR
2 = Maximize

∑

u∈VN
su

∑

u∈VN
Cs

u

(8.18)

The objective function in Equation 8.18 allows each task to emit traffic at its

own maximum rate si, and thus represents an overly optimistic bound on the

saturation injection rate. Internal synchronization and dependencies may force

the tasks to produce traffic at the same steady state rate. This implies that

s1 = s2 = . . . = s|VN | = s and creates a pessimistic upper bound on the saturation

injection rate shown in Equation 8.17. The actual application-specific bound is

261

Chapter 8. Network Performance Analysis

Dimension Order Minimal Adaptive Rent’s

Name Davg N Sim RDO
1 − RDO

2 Sim RMA
1 − RMA

2 Bound
gtc3-64 1.09 64 0.96 0.98 – 1.00 0.95 0.98 – 1.00 1
cactus-64 1.73 64 0.91 0.91 – 0.95 0.90 0.91 – 0.95 1
fvcam 2d 2.62 64 0.53 0.67 – 0.84 0.60 0.74 – 0.87 1
lbmhd-64 3.37 64 0.53 0.50 – 0.78 0.61 0.84 – 0.90 1
pmemd-64 5.24 64 0.31 0.41 – 0.48 0.36 0.46 – 0.52 0.64
gtc2 1.12 256 0.98 0.92 – 1.00 0.98 0.99 – 1.00 1
mdh2d 2.02 256 0.83 0.67 – 0.98 0.89 1.00 – 1.00 1
cactus-256 2.12 256 0.79 0.71 – 0.94 0.85 0.84 – 0.96 1
madbench1 3.31 256 0.34 0.40 – 0.74 0.41 0.54 – 0.81 0.8
slu-256 5.72 256 0.22 0.25 – 0.43 0.25 0.25 – 0.44 0.49
lbmhd 5.81 256 0.28 0.29 – 0.51 0.34 0.48 – 0.64 0.49
madbench2 5.83 256 0.25 0.36 – 0.49 0.25 0.49 – 0.54 0.53

Table 8.3: Routing and topology bound vs simulation results.

likely to fall somewhere in between. This range points to the expected performance

(Table 8.3), and quantifies the expected improvement in saturation bandwidth

from adaptive vs oblivious routing (Table 8.4), which will be analyzed later.

The stated MCMF optimization problem can be solved with Linear Program-

ming simplex algorithm, which performs well for most application graphs as long

as the size of the problem remains manageable. In the worst-case, the number of

variables in the problem include |VN | sources, |VN | sinks, and |EN | × |VN |2 edge

flow variables. There are at most |VN | × |VN |2 flow preservation constraints one

for each flow in each network node, and 2|VN |+ |EN | capacity constraints for each

source, sink and edge. In practice, as Equation 8.12 shows, many of the edge

flow variables can be eliminated from the problem as long as the particular flow

262

Chapter 8. Network Performance Analysis

Routing Bounds MA vs DO Improv

Name Davg N DO MA RMA
1 /RDO

1 RMA
2 /RDO

2

gtc3-64 1.09 64 0.98 – 1.00 0.98 – 1.00 1 1
cactus-64 1.73 64 0.91 – 0.95 0.91 – 0.95 1 1
fvcam 2d r1 2.62 64 0.67 – 0.84 0.74 – 0.87 1.1 1.03
lbmhd-64 3.37 64 0.50 – 0.78 0.84 – 0.90 1.68 1.15
pmemd-64 5.24 64 0.41 – 0.48 0.46 – 0.52 1.12 1.09
gtc2 1.12 256 0.92 – 1.00 0.99 – 1.00 1.08 1
mdh2d 2.02 256 0.67 – 0.98 1.00 – 1.00 1.49 1.02
cactus-256 2.12 256 0.71 – 0.94 0.84 – 0.96 1.18 1.02
madbench1 3.31 256 0.40 – 0.74 0.54 – 0.81 1.35 1.09
slu-256 5.72 256 0.25 – 0.43 0.25 – 0.44 1 1.03
lbmhd 5.81 256 0.29 – 0.51 0.48 – 0.64 1.66 1.26
madbench2 5.83 256 0.36 – 0.49 0.49 – 0.54 1.36 1.11

Table 8.4: The expected saturation bandwidth improvement for Minimal Adap-
tive vs Dimension Order routing algorithm.

does not utilize an edge. This typically brings the problem size down and en-

ables an efficient computation of routing bounds for many interesting application

communication topologies.

We evaluated the routing bounds for two important algorithms: Dimension

Order and Minimal Adaptive Routing. The construction of their V R
(u,v) and ER

(u,v)

sets is illustrated on Figure 8.4. Table 8.3 shows the routing bounds for the

application graphs sorted by their size and average communication distance for

Minimal Adaptive (MA) and Dimension Order (DO) routing algorithms. Instead

of a single bound, a pair RR
1 −RR

2 illustrates the range of saturation injection rates.

For comparison, the table also presents the simulation results from Chapter 7, and

the Rent’s rule topology bound estimates from Section 8.1. The data shows the

263

Chapter 8. Network Performance Analysis

correlation between the simulation results, and analytical routing and topology

bounds on a 2D mesh.

Two important trends can be observed. As the average communication dis-

tance increases, the saturation injection rate R — the maximum fraction of the

total network bandwidth that an application can utilize — decreases for both 64

and 256 nodes applications. Table 8.4 shows that Minimal Adaptive Routing has

higher saturation bandwidth vs the oblivious Dimension Order routing algorithm

due to its ability to better utilize network path diversity. As expected, appli-

cations with mostly local communication (e.g. gtc3-64 or gtc2) do not show

significant improvements, but as the communication distance grows so do the

gains from adaptive routing, which exploits greater network path diversity. The

improvements are not monotonic with communication distance, however, because

they depend on a number of other factors such as inherent load imbalance in the

application due to its communication properties and its task-to-core mapping. For

example, slu-256 is a large application task graph with communication pattern

that is not significantly different from uniform random destination. Therefore, the

network traffic is approximately well balanced, and an adaptive algorithm cannot

be expected to show much improvement in saturation bandwidth.

264

Chapter 8. Network Performance Analysis

8.3 Summary

Network-on-Chip is a distributed system consisting of interconnected core/router

tiles, whose performance depends on its topology and cross-section bandwidth, as

well as the application that executes on the multi-core NoC system. Spatial and

temporal application communication properties such as locality and load balance

determine the network saturation bandwidth and the average packet latency.

This chapter defines two analysis methods to quickly evaluate spatial commu-

nication patterns of an arbitrary application task graph, and predict its saturation

bandwidth bounds dictated by the underlying network topology and the routing

algorithm. The results in Tables 8.3 and 8.4 demonstrate high prediction accu-

racy of our analysis methods vs the simulation results in Chapter 6. The Multi-

Commodity Max Flow routing model predicts an average improvement of 10-60%

in the network saturation bandwidth for an ideal minimally adaptive algorithm

compared over the oblivious Dimension Order router.

265

Chapter 9

Conclusion

As semiconductor manufacturing approaches the limits on transistor dimen-

sion scaling and power dissipation, the growth in parametric variations and faults

makes it increasingly difficult to deliver the expected die yield using only de-

sign time techniques. Currently, Design for Manufacturing (DFM) is the main

instrument to manage the yield by increasing layout guard-bands. Circuit design-

ers also use techniques such as adaptive body biasing, supply voltage, and error

correction in application certain domains, together with multiple worst-case Pro-

cess Voltage Temperature corner analysis to attain the desired system parametric

yield. These methods result in over-engineered systems that waste area, power

and performance.

Due to the lack of a common language between semiconductor manufacturers,

layout engineers, circuit designers, and architects that would encompass all four

system metrics: area, delay, power and yield — the effective cross layer optimiza-

266

Chapter 9. Conclusion

tion has so far not been demonstrated. The clean abstractions between these

design layers, which are responsible for the historic success of the VLSI industry

and performance scaling, are presently its biggest impediment.

The semiconductor device sizes preclude reliable and accurate manufacturing

at their own process node, pushing the devices back to larger geometries, a process

generation or two. Every extra effort toward fault and variation reliability is costly

and perhaps impossible without a diminishing rate of return. Consider that the

latest complex, restrictive and costly DFM rules have not been followed by a

commensurate increase in performance and power efficiency that we expect from

Moore’s Law scaling.

Process-Voltage-Temperature (PVT) variations turn a nominally homogeneous

many-core die into cores with heterogeneous performance. A distributed Voltage

Frequency Island (VFI) architecture can abstract the variations and faults as

core/router tile performance (e.g. router throughput and latency), that has the

potential for a graceful rather than abrupt system performance degradation. A

Network-on-Chip is a naturally distributed asynchronous system that can inte-

grate hundreds of these cores in a scalable manner and does not force each core

to give up its own PVT-induced operating point for the chip-wide common worst

case. Similar to asynchronous logic, a NoC of regular and redundant core VFIs

can potentially deliver the average rather than the worst case system performance

267

Chapter 9. Conclusion

with power efficiency and fault tolerance [30, 73]. Before this work, VFI architec-

tures have been discussed and hailed for their power/performance, variation and

fault resilience [92]. However, those advantages and opportunities have not been

demonstrated or quantified as we have done here.

The key to realize the potential performance gains of VFI heterogeneous ar-

chitectures is run-time adaptivity: task-to-core mapping and adaptive network

routing that strives to optimally map application resource requirements onto het-

erogeneous cores and communication fabric. If observed core/router performance

abstracts the PVT variations, mapping and routing can operate introspectively

without outside performance characterization. By adapting to application-specific

behavior on a heterogeneous platform, the run-time system in the same exact man-

ner can handle a variety of effects: static Process faults and variations; dynamic

Voltage, Temperature, device aging variations; and application-specific computa-

tion and communication load imbalance.

With the gains from adaptive run-time techniques, it is no longer necessary

to strive for the maximum, the most expensive last 10–20% in the layout and

circuit design. Instead, our systematic techniques mitigate a variety of faults and

variations more effectively and comprehensively than layout and circuit DFM. We

show that the gains from adaptive routing can be translated into parametric die

yield improvements and smaller DFM guard-bands.

268

Chapter 9. Conclusion

This work investigates core sparing and network routing. Sparing is among

the most powerful static yield management techniques, particularly well suited in

a large collection of redundant components. Based on the developed yield and

die cost models, core sparing asymptotically reduces the die cost from O(A3) to

O(A
1

2), and it is more cost effective than layout and circuit redundancy. Given

a fixed total die area, our analysis outcome favors the greater number of smaller

unreliable cores to a fewer larger reliable ones. This points to the limitations, and

to some degree the futility, of growing DFM and circuit design margins in the

future process generations. Figure 9.1 illustrates the simple intuition behind this

result. As a unit of fault management and resilience shrinks in size, from a larger

die to a smaller core, its yield increases dramatically. Based on our analysis,

the smallest efficiently manageable unit of resiliency for sparing, mapping the

computation, and routing the communication traffic — the processes required to

optimize price/performance of a heterogeneous architecture — is a core/router

tile. We neither have the abstractions nor the resources to individually manage

smaller components on a system level. According to our model, making circuits

and modules within a core more resilient increases the core size and reduces its

functional density. This wastes area, power and performance but does not provide

an opportunity to manage the redundant resources flexibly, which further increases

the system cost.

269

Chapter 9. Conclusion

0.00

0.20

0.40

0.60

0.80

1.00

50 100 150 200 250 300 350 400

Die Area (mm2)

Die Yield

Figure 9.1: The relationship between die area and yield.

This work also focuses on understanding the potential of adaptive network

routing. Many researchers identify the benefits of adaptive routing on homoge-

neous on-chip networks, but we seek to illustrate that routing can additionally

minimize the performance impact of PVT variations, which has positive implica-

tions for system manufacturing yield and power consumption. Adaptive network

routing is required for core sparing because communication traffic must be routed

around the faulty and disabled cores. More critically, it combats network load

imbalance, a result of PVT on-die heterogeneity and application communication

topology. Adaptive routing compensates for all these effects simultaneously and

ideally delivers the average rather than the worst case network performance.

270

Chapter 9. Conclusion

Although this work does not focus on task-to-core mapping or location aware

task placement in detail, one cannot underestimate the impact of mapping on

network performance. Our experiments have demonstrated that mapping quality

is critical to preserve communication locality inherent in an application in order

to deliver the network performance comparable to its topology bound. Adaptive

routing can help the application performance to approach the network topology

bound itself by effectively exploiting network path diversity. Figure 9.2 illustrates

the relationship between the mapping quality, adaptive routing and network per-

formance for applications with different spatial communication patterns ranging

from mostly local to global. Applications with local communication patterns

benefit the most from high quality placement. However, they show almost no

performance improvement from adaptive vs oblivious routing due to their short

communication paths and thus limited path diversity. On applications with mostly

global communication traffic, where a packet traverses on average half of the net-

work diameter, the role of placement quality is diminished. In contrast, adaptive

routing offers significant performance gains by taking advantage of greater path

diversity in longer distance communication.

By exposing PVT variations as network router/channel throughput and la-

tency, adaptive routers can compensate for parametric variations using nothing

more than the flow control, which enables each router to observe and measure its

271

Chapter 9. Conclusion

Local Global

Adaptive RouterOblivious Router

Comm. Locality

Saturation B/W

Optimal Task−to−Core Mapping

Random Task−to−Core Mapping + Routing

Figure 9.2: Relationship between the mapping quality and routing results.

neighbor’s performance. With stochastic and systematic variations, the developed

MATC router improves the expected saturation bandwidth 5–30% relative to the

oblivious Dimension Order router. These results were achieved with a simple min-

imal adaptive routing algorithm with an adjacent router congestion metric. By

exploring several algorithms and adaptive channel selection functions, we found

that the actual metric is not critical. Any congestion indicator such as total or

partial buffer occupancy, or the output router channel throughput produce ap-

proximately equivalent network performance. The only critical algorithm feature

is its routing adaptivity in all network topology directions. Adaptive routing min-

imizes the network performance degradation due to PVT variations and can thus

be used to reduce over-engineering guard-bands in multi-core architectures.

272

Chapter 9. Conclusion

By treating cores as units of fault and variation tolerance, core sparing and

routing provide a simple and consistent way to compensate for static and dynamic

performance variations and faults instead of isolated ad hoc DFM and circuit

solutions. By exposing the variations and faults as observable core/router per-

formance, adaptive run-time techniques can address a wide range of problematic

effects, including those that are unknown or impossible to identify today.

273

Chapter 10

Future Directions

10.1 Refining Die Yield Models

Chapter 4 presented the analytical die yield and cost models for core spar-

ing, circuit module redundancy, and layout device over-engineering. These model

point to core sparing as the most economical redundancy option due to its flex-

ibility and improved yield as the cores shrink in size. The modeling assumes

that the improvements in core yield from Design-for-Manufacturing (DFM) lay-

out techniques scales linearly and continuously with the design margins. However,

intuitively, the impact of DFM depends on individual rules and their combina-

tions as applied to a site on a die. To fully understand the trade-off between

a system with a large number of small unreliable cores and the one with fewer

hardened cores, we need a more detailed and accurate DFM yield models. DFM

rules affects a range of semiconductor device features, and thus must be applied

274

Chapter 10. Future Directions

in a more focused manner: some rules may have a marginal impact on the defect

yield but a significant impact on process parametric variations, while others are

critical to ensure functional, defect-free operation only.

Unfortunately, a more detailed bottom up analysis of increasingly complex

DFM layout rules is outside of realm of academic research. At the same time, a

better understanding of their impact on transistor and interconnect functional and

parametric yield can result in significant reductions in wasted area, performance

and power. Chapter 7 demonstrated that high-level adaptive routing can tolerate

considerable performance variation in Network-on-Chip, and we expect similar

optimistic results from variation aware task-to-core mapping, as suggested by

some sources [103]. We call for a revised approach to DFM that can correlate the

individual rules and their parameters with the the effects on system performance

variations and fault probabilities. The architects, designers, layout engineers can

then determine the magnitude of variations that the should be tolerate in a cost-

efficient manner with their respective techniques. Ultimately, this will result in a

methodology to search for the optimal balance between power, performance and

yield across multiple system implementation levels.

275

Chapter 10. Future Directions

10.2 Task-to-Core Mapping

This work argues for a high-level system approach to tolerating and com-

pensating PVT induced performance variations and focuses on one part of this

strategy: the adaptive routing techniques. Dynamic task-to-core mapping for

multi-core architectures with heterogeneous performance is the other very critical

component of this strategy that can improve system variation tolerance. Mapping

is the process of assigning tasks to execute on the cores that maximally match

the task’s computational resource requirements. It has the potential for power

efficiency, performance improvement, and most critically reductions in manufac-

turing margins and costs by delivering the average case, closer to nominal, system

computational performance.

The mapping also has a dramatic impact on network performance as discussed

in Section 7.5. In contrast with systems with a four to eight cores, large multi-

core architectures with hundreds of cores are performance heterogeneous and are

impacted by communication locality. For these systems, task-to-core mapping

must also preserve that locality in addition to maintaining core load balance.

The network performance results in this work were obtained with a mapping that

simply strove to minimize average communication distance between the cores.

276

Chapter 10. Future Directions

Although the task-to-core assignment for the minimum average communication

distance does not guarantee the best network performance, it is likely to be close.

The mapping algorithm that only considers the distance between communicating

task attempts to reduce the number of links utilized by a typical communication

flow. It does not, however, consider communication direction or which specific

physical links are utilized, and whether the assignment can be modified to reduce

the discrepancy between saturated and unsaturated links. We call for bandwidth

oriented task-to-core assignment that would consider inter-router channel utili-

zation. This algorithm would be able to take advantage of asymmetry in the

application graph when mapping onto a symmetric communicating fabric such as

a mesh.

Independent of the details of a specific task assignment algorithm, we believe

that it must be a distributed algorithm to avoid a single point of failure in an

environment where a system comprises a large number of unreliable components.

We are inspired by [138], which presented a distributed simulated annealing algo-

rithm for FPGA placement, as an example of an algorithm that solves a complex

global mapping problem without a centralized control.

277

Chapter 10. Future Directions

10.3 Using Architecture Knobs

Chapters 2 and 3 discussed the way PVT variations can turn a functionally

homogeneous multi-core architecture into a performance heterogeneous computa-

tion fabric with core-level voltage and frequency domains. The power and per-

formance advantages of this approach have already been demonstrated for several

small scale architectures, and the advantages will only magnify with hundreds

of cores per die and a greater PVT diversity. Chapter 7 has demonstrated the

way adaptive routing can compensate for PVT induced performance variations

across the NoC. The adaptive routing algorithm, as presented, only reacts to the

dynamically changing on-chip performance profile. However, the run-time adap-

tive processes can go one step further and utilize the architecture knobs, such as

core dynamic voltage and frequency scaling, to navigate the operating range of

each core and router. By utilizing these knobs, the routing and mapping form a

closed loop system with the hardware. They can react to PVT induced dynamic

performance profile as well as modify it to optimally match the hardware perfor-

mance with the application resource requirements. This complex approach holds

a promise of further power/performance efficiency improvement, and additional

reductions in manufacturing guard-bands and margins.

278

Bibliography

[1] International Technology Roadmap for Semiconductors,
http://www.itrs.net, 2005.

[2] IPM homepage, http://www.nersc.gov/projects/ipm, 2005.

[3] The network simulator: NS-2, http://www.isi.edu/nsnam/ns/, 2008.

[4] F. Adamu-Lema, S. Roy, A. R. Brown, A. Asenov, and G. Roy. Intrin-
sic parameter fluctuations in conventional mosfets at the scaling limit: a
statistical study. In International Workshop on Computational Electronics
(IWCE), October 2004.

[5] N. Agarwal, L.-S. Peh, and N. Jha. Garnet: A detailed interconnection
network model inside a full-system simulation framework. Technical Report
CE-P08-001, Dept. of Electrical Engineering, Princeton University, 2008.

[6] M. Alcubierre, G. Allen, B. Bruegmann, E. Seidel, and W.-M. Suen. Towards
an understanding of the stability properties of the 3+1 evolution equations
in general relativity. Physical Review D, 62:124011, 2000.

[7] M. Amde, T. Felicijan, A. Efthymiou, D. Edwards, and L. Lavagno. Asyn-
chronous on-chip networks. In IEE, 2005.

[8] T. Austin, D. Blaauw, T. Mudge, and K. Flautner. Making typical silicon
matter with RAZOR. In IEEE Computer, volume 37(3), March 2004.

[9] J. Balfour and W. J. Dally. Design tradeoffs for tiled cmp on-chip net-
works. In ICS ’06: Proceedings of the 20th annual international conference
on Supercomputing, pages 187–198, New York, NY, USA, 2006. ACM.

[10] E. Beigne, F. Clermidy, P. Vivet, A. Clouard, and M. Renaudin. An asyn-
chronous noc architecture providing low latency service and its multi-level
design framework. pages 54–63, March 2005.

279

Bibliography

[11] A. Bender. Milp based task mapping for heterogeneous multiprocessor sys-
tems. In European Design Automation Conference, pages 283–288, 1996.

[12] M. A. Bender and M. O. Rabin. Scheduling Cilk multithreaded parallel
programs on processors of different speeds. In Proceedings of the twelfth
annual ACM symposium on Parallel algorithms and architectures, pages 13–
21, July 2000.

[13] D. Bertozzi, L. Benini, and G. de Micheli. Low power error resilient encoding
for on-chip data buses. In DATE ’02: Proceedings of the conference on
Design, automation and test in Europe, page 102, Washington, DC, USA,
2002. IEEE Computer Society.

[14] D. Bertsekas and R. Gallagher. Data Networks: Second Edition. Prentice-
Hall, Inc., 1992.

[15] D. P. Bertsekas and J. N. Tsitsiklis. Introduction to Probability. Athena
Scientific, 2002.

[16] V. Betz and J. Rose. VPR: A new packing, placement and routing tool
for FPGA research. In W. Luk, P. Y. Cheung, and M. Glesner, edi-
tors, Field-Programmable Logic and Applications, pages 213–222. Springer-
Verlag, Berlin, 1997.

[17] B. Biklsma. Asynchronous network-on-chip architecture performance anal-
ysis. Master’s thesis, Delft University of Technology, 2005.

[18] D. Boning and S. Nassif. Models of process variations in device and inter-
connect, 2000.

[19] S. Borkar. Thousand core chips: a technology perspective. In DAC ’07:
Proceedings of the 44th annual conference on Design automation, pages 746–
749, New York, NY, USA, 2007. ACM.

[20] S. Y. Borkar. Private communication, 2006.

[21] J. Borrill, J. Carter, L. Oliker, and D. Skinner. Integrated performance
monitoring of a cosmology application on leading hec platforms. In ICPP
’05: Proceedings of the 2005 International Conference on Parallel Process-
ing, pages 119–128, Washington, DC, USA, 2005. IEEE Computer Society.

[22] K. A. Bowman and J. D. Meindl. Impact of die-to-die and within-die param-
eter fluctuations on the maximum clock frequency distribution for gigascale
integration. In IEEE JSSC, Feb 2002.

280

Bibliography

[23] N. Campregher, P. Y. K. Cheung, G. A. Constantinides, and M. Vasilko.
Analysis of yield loss due to random photolithographic defects in the in-
terconnect structure of fpgas. In FPGA ’05: Proceedings of the 2005
ACM/SIGDA 13th international symposium on Field-programmable gate ar-
rays, pages 138–148, New York, NY, USA, 2005. ACM Press.

[24] A. Canning, L. W. Wang, A. Williamson, and A. Zunger. Parallel empirical
pseudopotential electronic structure calculations for million atom systems.
J. Comput. Phys., 160(1):29–41, 2000.

[25] K. Cao. Predictive technology model (http://www.eas.asu.edu/ ptm/).

[26] Y. Cao and L. T. Clark. Mapping statistical process variations toward
circuit performance variability: an analytical modeling approach. In DAC
’05: Proceedings of the 42nd annual conference on Design automation, pages
658–663, New York, NY, USA, 2005. ACM.

[27] Y. Cao, C. Hu, A. Kahng, and D. Sylvester. Improved estimates of process
variation impact on deep submicron circuit performance. (unpublished).

[28] Y. Cao, H. Qin, R. Wang, P. Friedberg, A. Vladimirescu, and J. Rabaey.
Yield optimization with energy-delay constraints in low power digital cir-
cuits. In International Conference Electronics Development and Solid State
Circuits, Kowloon, Hong Kong, pages 285–288, 2003.

[29] T. Chen and S. Naffziger. Comparison of adaptive body bias (abb) and
adaptive supply voltage (asv) for improving delay and leakage under the
presence of process variation. IEEE Trans. Very Large Scale Integr. Syst.,
11(5):888–899, 2003.

[30] C.-L. Chou, U. Ogras, and R. Marculescu. Energy- and performance-aware
incremental mapping for networks on chip with multiple voltage levels. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems,
27:1866–1879, October 2008.

[31] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to
Algorithms, Second Edition. The MIT Press, September 2001.

[32] M. F. Crowley, I. David W. Deerfield, T. A. Darden, and I. Thomas
E. Cheatham. Molecular dynamics simulations using particle-mesh ewald
methods. pages 355–387, 2000.

281

Bibliography

[33] J. Dai and B. Prabhakar. The throughput of data switches with and without
speedup. In IEEE Infocom, March 2000.

[34] W. Dally and B. Towles. Principles and Practices of Interconnection Net-
works. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2003.

[35] W. J. Dally. Performance analysis of k-ary n-cube interconnection networks.
IEEE Transactions on Computers, 39(6):775–785, 1990.

[36] W. J. Dally and C. L. Seitz. Deadlock-free message routing in multiprocessor
interconnection networks. IEEE Trans. Comput., 36(5):547–553, 1987.

[37] W. J. Dally and B. Towles. Route packets, not wires: on-chip inteconnec-
tion networks. In DAC ’01: Proceedings of the 38th conference on Design
automation, pages 684–689, New York, NY, USA, 2001. ACM.

[38] K. Datta, M. Murphy, V. Volkov, S. Williams, J. Carter, L. Oliker, D. Pat-
terson, J. Shalf, and K. Yelick. Stencil computation optimization and auto-
tuning on state-of-the-art multicore architectures. In SC ’08: Proceedings
of the 2008 ACM/IEEE conference on Supercomputing, pages 1–12, Piscat-
away, NJ, USA, 2008. IEEE Press.

[39] H. de Man. Bridging the gaps between gigascale integration and nano-scale
technology. Presentation at ESSCIRC/ESSDERC, 2006.

[40] A. DeHon, P. Lincoln, and J. E. Savage. Stochastic assembly of sublitho-
graphic nanoscale interfaces. 2(3):165–174, September 2003.

[41] H. DeMan. Ambient intelligence: Giga-scale dreams and nano-scale realities.
In Proc of ISSCC, Keynote Speech, February 2005.

[42] W. Donath. Placement and average interconnection lengths of computer
logic. 26:272 – 277, April 1979.

[43] J. Dorsey, S. Searles, M. Ciraula, E. Fang, S. Johnson, N. Bujanos, and
R. Kumar. An integrated quad-core opteron processor. In Solid-State Cir-
cuits Conference, 2007.

[44] J. Dorsey, S. Searles, M. Ciraula, S. Johnson, N. Bujanos, D. Wu, M. Bra-
ganza, S. Meyers, E. Fang, and R. Kumar. An integrated quad-core opteron
processor. In ISSCC, 2007.

282

Bibliography

[45] A. Dua, N. Bambos, W. Olesinski, H. Eberle, and N. Gura. Backlog aware
low complexity schedulers for input queued packet switches. In HOTI ’07:
Proceedings of the 15th Annual IEEE Symposium on High-Performance In-
terconnects, pages 39–46, Washington, DC, USA, 2007. IEEE Computer
Society.

[46] J. Duato. On the design of deadlock-free adaptive routing algorithms for
multicomputers: design methodologies. In PARLE ’91: Proceedings on Par-
allel architectures and languages Europe : volume I: parallel architectures
and algorithms, pages 390–405, New York, NY, USA, 1991. Springer-Verlag
New York, Inc.

[47] J. Duato, A. Robles, F. Silla, and R. Beivide. A comparison of router
architectures for virtual cut-through andwormhole switching in a now envi-
ronment. In Symposium on Parallel and Distributed Processing, pages 240
– 247, April 1999.

[48] J. Duato, S. Yalamanchili, and L. Ni. Interconnection Networks: an Engi-
neering Approach. IEEE Computer Society, 1997.

[49] J. Duato, S. Yalamanchili, and L. Ni. Interconnection Networks: An engi-
neering approach. Published by Morgan Kaufmann, 2002.

[50] T. Dumitras and R. Marculescu. On-chip stochastic communication, 2003.

[51] W. Eatherton. The push of network processing to the top of the pyra-
mid. In keynote addres at Symposium on Architectures for Networking and
Communication Systems, October 2005.

[52] M. Elgebaly and M. Sachdev. Efficient adaptive voltage scaling system
through on-chip critical path emulation. In ISLPED ’04: Proceedings of the
2004 international symposium on Low power electronics and design, pages
375–380, New York, NY, USA, 2004. ACM.

[53] D. Ernst, S. Das, S. Lee, T. A. David Blaauw, T. Mudge, N. S. Kim, and
K. Flautner. Razor: Circuit-level correction of timing errors for low-power
operation. IEEE Micro, 24(6):10–20, November 2004.

[54] A. V. Ferris-Prabhu. Introduction to Semiconductor Device Yield Modeling.
Artech House Publishers, August 1992.

[55] D. J. Frank, R. H. Dennard, E. Nowak, P. M. Solomon, Y. Taur, and H.-
S. P. Wong. Device Scaling Limits of Si MOSFETs and Their Application
Dependencies. In Proceedings of the IEEE, volume 89, March 2001.

283

Bibliography

[56] J. Friedrich, B. McCredie, N. James, B. Huott, B. Curran, E. Fluhr, G. Mit-
tal, E. Chan, Y. Chan, D. Plass, S. Chu, H. Le, L. Clark, J. Ripley, S. Tay-
lor, J. Dilullo, and M. Lanzerotti. Design of the power6 microprocessor. In
ISSCC, 2007.

[57] R. Goering. Do recommended dfm rules really matter? November 2007.

[58] M. Gomez, N. Nordbotten, J. Flich, P. Lopez, A.Robles, J. Duato, T. Skeie,
and O. Lysne. A routing methodology for achieving fault tolerance in direct
networks. In IEEE Trans on Computers, pages 400–415, 2006.

[59] J. Gregg and T. W. Chen. Optimization of individual well adaptive body bi-
asing (iwabb) using a multiple objective evolutionary algorithm. In ISQED
’05: Proceedings of the 6th International Symposium on Quality of Elec-
tronic Design, pages 297–302, Washington, DC, USA, 2005. IEEE Computer
Society. Colorado State.

[60] J. Gu, S. S. Sapatnekar, and C. Kim. Width-dependent statistical leakage
modeling for random dopant induced threshold voltage shift. In DAC ’07:
Proceedings of the 44th annual conference on Design automation, pages 87–
92, New York, NY, USA, 2007. ACM.

[61] A. Gupta, R. Chauhan, V. Menezes, V. Narang, and R. H.M. A robust
level-shifter design for adaptive voltage scaling. VLSI Design, International
Conference on, 0:383–388, 2008.

[62] T. Hanyu, T. Ike, and M. Kameyama. Self-checking multiple-valued circuit
based on dual-rail current-mode differential logic. In 29th IEEE Interna-
tional Symposium on Multiple-Valued Logic, pages 275–279, 1999.

[63] J. C. Harden and N. R. S. II. Architectural yield optimization for wsi. IEEE
Trans. Comput., 37(1):88–110, 1988.

[64] M. D. Harmanci, N. P. Escudero, Y. Leblebici, and P. Ienne. Providing
qos to connection-less packet-switched noc by implementing diffserv func-
tionalities. In International Symposium on System-on-Chip, pages 37 – 40,
November 2004.

[65] M. Horowitz and W. J. Dally. How scaling will change processor architecture.
In International Solid-State Circuits Conference, pages 132–133, February
2004.

284

Bibliography

[66] J. Hu and R. Marculescu. Dyad: Smart routing for networks-on-chip. In
Design Automation Conference, June 2004.

[67] W. Huang, E. Humenay, K. Skadron, and M. R. Stan. The need for a
full-chip and package thermal model for thermally optimized ic designs.
In ISLPED ’05: Proceedings of the 2005 international symposium on Low
power electronics and design, pages 245–250, New York, NY, USA, 2005.
ACM.

[68] E. Humenay, D. Tarjan, and K. Skadron. Impact of parameter variations
on multi-core chips. In Workshop on Architectural Support for Gigascale
Integration, June 2006.

[69] S. Inaba. Iedm technical digest, 2001.

[70] E. Ïpek, S. A. McKee, R. Caruana, B. R. de Supinski, and M. Schulz. Effi-
ciently exploring architectural design spaces via predictive modeling. SIG-
PLAN Not., 41(11):195–206, 2006.

[71] J. Jackson. Jobshop-like queueing systems. Management Science, 10:131 –
142, 1963.

[72] P. K. Jana. Multi-mesh of trees with its parallel algorithms. J. Syst. Archit.,
50(4):193–206, 2004.

[73] W. Jang and A. J. Martin. Soft-error robustness in qdi circuits.

[74] K. Jeong, A. Kahng, and K. Samadi. Quantified impacts of guardband re-
duction on design process outcomes. In International Symposium on Quality
Electronic Design, March 2008.

[75] J. H. Jiang, Y. H. Min, and C. L. Peng. Fault-tolerant systems with concur-
rent error-locating capability. Computer Science Technology, 18(2):190–200,
2003.

[76] K. L. Johnson. The impact of communication locality on large-scale mul-
tiprocessor performance. In Computer Architecture News, pages 392–402.
ACM, 1992.

[77] J. A. Kahle, M. N. Day, H. P. Hofstee, C. R. Johns, T. R. Maeurer, and
D. Shippy. Introduction to the cell multiprocessor. IBM J. Res. Dev.,
49(4/5):589–604, 2005.

285

Bibliography

[78] P. Kermani and L. Kleinrock. Virtual cut-through: a new computer com-
munication switching technique. Computer Networks, 3:267–286, 1979.

[79] J. Kibarian. Iccad 2007 keynote speech, November 2007.

[80] J. Kim, W. J. Dally, B. Towles, and A. K. Gupta. Microarchitecture of a
high-radix router. In ISCA ’05: Proceedings of the 32nd annual interna-
tional symposium on Computer Architecture, pages 420–431, Washington,
DC, USA, 2005. IEEE Computer Society.

[81] I. Koren and C. M. Krishna. Fault-Tolerant Systems. Morgan Kaufmann,
2007.

[82] R. Kumar, K. Farkas, N. P. Jouppi, P. Ranganathan, and D. M. Tullsen.
Processor power reduction via single-isa heterogeneous multi-core architec-
tures. IEEE Comput. Archit. Lett., 2(1):2, 2003.

[83] H. T. Kung and S. Y. Wang. Zero queueing flow control and applications.
In INFOCOM, pages 192–200, 1998.

[84] Y.-K. Kwok and I. Ahmad. Link contention-constrained scheduling and
mapping of tasks and messages to a network of heterogeneous processors.
In International Conference on Parallel Processing, pages 551–558, 1999.

[85] B. S. Landman and R. L. Russo. On a pin versus block relationship for
partitions of logic graphs. C-20:1469 – 1479, December 1971.

[86] J. W. Lee, M. C. Ng, and K. Asanovic. Globally-synchronized frames for
guaranteed quality-of-service in on-chip networks. Computer Architecture,
International Symposium on, 0:89–100, 2008.

[87] X. S. Li and J. W. Demmel. Superlu dist: A scalable distributed-memory
sparse direct solver for unsymmetric linear systems. ACM Transactions on
Mathematical Software, 29:110–140, 2003.

[88] Z. Lin, S. Ethier, T. S. Hahm, and W. M. Tang. Size scaling of turbulent
transport in magnetically confined plasmas. Phys. Rev. Lett., 88(19):195004,
Apr 2002.

[89] S.-C. Lo and Y. Li. Numerical simulation of random dopant fluctuation in
sub-65 nm metal-oxide-semiconductor field effect transistors. In MATH’05:
Proceedings of the 8th WSEAS International Conference on Applied Mathe-
matics, pages 272–280, Stevens Point, Wisconsin, USA, 2005. World Scien-
tific and Engineering Academy and Society (WSEAS).

286

Bibliography

[90] A. Macnab, G. Vahala, P. Pavlo, and L. Vahala. Lattice Boltzmann Model
for Dissipative Incompressible MHD. APS Meeting Abstracts, pages 1130P–
+, Oct. 2001.

[91] H. Mahmoodi-Meimand, S. Mukhopadhyay, and K. Roy. Estimation of delay
variations due to random-dopant fluctuations in nano-scaled cmos circuits.
In IEEE Custom Integrated Circuits Conference, 2004.

[92] R. Marculescu, D. Marculescu, and L. Pileggi. ”toward an integrated design
methodology for fault-tolerant, multiple clock/voltage integrated systems”.
In 2004 IEEE International Conference on Computer Design (ICCD’04),
pages 168–173, 2004.

[93] M. Marsan, A. Bianco, E. Filippi, P. Giaconne, and E. L. adn F Neri. On
the behavior of input queueing switch architectures. European Transactions
on Teleommunications (ETT), 10:111 – 124, March/April 1999.

[94] A. J. Martin and M. Nystrom. Asynchronous techniques for system-on-chip
design. pages 1089–1120, June 2006.

[95] R. McGowen, C. Poirier, C. Bostak, J. Ignowski, M. Millican, W. Parks,
and S. Naffziger. Power and temperature control on a 90-nm itanium family
processor. IEEE Journal of Solid-State Circuits, 41:229–237, January 2006.

[96] N. McKeown, A. Mekkittikul, V. Anantharam, and J. Walrand. Achieving
100% throughput in an input-queued switch. In IEEE Transactions on
Communication, July 2004.

[97] A. Meixner, M. E. Bauer, and D. J. Sorin. Argus: Low-cost, comprehensive
error detection in simple cores. IEEE Micro, 28(1):52–59, 2008.

[98] G. Microsystems. G2c547 product brief.

[99] M. Mohiyuddin, M. Murphy, S. Williams, L. Oliker, J. Shalf, and
J. Wawrzynek. Hardware/software co-tuning for power efficient scientific
computing, 2009.

[100] G. E. Moore. Cramming more components onto integrated circuits. 38(8),
1965.

[101] S. Nassif. Delay variability: sources, impacts and trends. In Solid-State
Circuits Conference, 2000. Digest of Technical Papers. ISSCC., pages 368
– 369, 2000.

287

Bibliography

[102] U. G. Nawathe, M. Hassan, L. Warriner, K. Yen, B. Upputuri, D. Greenhill,
A. Kumar, and H. Park. An 8-core 64-thread 64b power-efficient sparc soc.
In ISSCC, 2007.

[103] U. Y. Ogras, R. Marculescu, P. Choudhary, and D. Marculescu. Voltage-
frequency island partitioning for gals-based networks-on-chip. In Proc.
IEEE/ACM Design Automation Conf., San Diego, June 2007.

[104] P. Oldiges, Q. Lin, K. Petrillo, M. Sanchez, M. Ieong, and M. Hargrove.
Modeling line edge roughness effects in sub 100 nanometer gatelength de-
vices. International Conference on Simulation of Semiconductor Processes
and Devices, pages 131–134, 2000.

[105] L. Oliker, J. Carter, M. Wehner, A. Canning, S. Ethier, A. Mirin, D. Parks,
P. Worley, S. Kitawaki, and Y. Tsuda. Leading computational methods
on scalar and vector hec platforms. In SC ’05: Proceedings of the 2005
ACM/IEEE conference on Supercomputing, page 62, Washington, DC, USA,
2005. IEEE Computer Society.

[106] M. Orshansky, L. Milor, and C. Hu. Characterization of spatial intra-field
gate cd variability, its impact on circuit performance, and spatial mask-level
correction. IEEE Transactions on Semiconductor Manufacturing, (1):2–11,
February 2004.

[107] L. T. Pang. Measurement and Analysis of Variability in CMOS circuits. PhD
thesis, EECS Department, University of California, Berkeley, Aug 2008.

[108] D. A. Patterson and J. L. Hennessy. Computer architecture: a quantitative
approach. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,
1990.

[109] W. W. Peterson and E. J. Weldon. Error-Correcting Codes. MIT Press, 2
edition, 1972.

[110] D. Pham, S. Asano, M. Bolliger, M. N. Day, H. P. Hofstee, C. Johns,
J. Kahle, A. Kameyama, J. Keaty, Y. Masubuchi, M. Riley, D. Shippy,
D. Stasiak, M. Suzuoki, M. Wang, J. Warnock, S. Weitzel, D. Wendel,
T. Yamazaki, and K. Yazawa. The design and implementation of a first-
generation cell processor. pages 184–592 Vol. 1, 2005.

[111] Predictions Software Ltd. Yield modeling,
http://www.icyield.com/yieldmod.html, 2005.

288

Bibliography

[112] J. Rabaey, A. Chandrakasan, and B. Nikolic. Digital Integrated Circuits: A
Design Perspective; 2nd ed. Pearson Education, Upper Saddle River, NJ,
2003. Order from outside CERN via Inter Library Loan.

[113] N. H. Z. Radu Marculescu, Umit Y. Ogras. Computation and communica-
tion refinement for multiprocessor soc design: A system-level perspective.
ACM Trans. Design Autom. Elect. Syst. Special Issue on Novel Paradigms
in System-Level Design, 11(3):564–592, July 2006.

[114] V. S. P. Rapaka, E. Talpes, and D. Marculescu. Mixed-clock issue queue
design for energy aware, high-performance cores. In ASP-DAC ’04: Pro-
ceedings of the 2004 conference on Asia South Pacific design automation,
pages 380–383, Piscataway, NJ, USA, 2004. IEEE Press.

[115] N. Sakran, M. Yuffe, M. Mehalel, J. Doweck, E. Knoll, and A. Kovacs. The
implementation of the 65nm dual-core 64b merom processor. In ISSCC,
2007.

[116] N. Sarkan, M. Yuffe, J. Doweck, E. Knoll, and A. Kovacs. Implementa-
tion of the 65nm dual-core 64b merom processor. In Solid-State Circuits
Conference, 2007.

[117] D. Schroder. Negative bias temperature instability: What do we under-
stand? 47:841–852, June 2007.

[118] P. Sedcole and P. Y. K. Cheung. Parametric yield in fpgas due to within-die
delay variations: a quantitative analysis. In FPGA ’07: Proceedings of the
2007 ACM/SIGDA 15th international symposium on Field programmable
gate arrays, pages 178–187, New York, NY, USA, 2007. ACM Press.

[119] J. Shalf, S. Kamil, L. Oliker, and D. Skinner. Analyzing ultra-scale applica-
tion communication requirements for a reconfigurable hybrid interconnect.
In SC ’05: Proceedings of the 2005 ACM/IEEE conference on Supercomput-
ing, page 17, Washington, DC, USA, 2005. IEEE Computer Society.

[120] J. Shalf, S. Kamil, L. Oliker, and D. Skinner. Analyzing ultra-scale applica-
tion communication requirements for a reconfigurable hybrid interconnect.
In SC ’05: Proceedings of the 2005 ACM/IEEE conference on Supercomput-
ing, page 17, Washington, DC, USA, 2005. IEEE Computer Society.

[121] D. Shelepov and A. Fedorova. Scheduling on heterogeneous multicore pro-
cessors using architectural signatures.

289

Bibliography

[122] A. Singh, W. J. Dally, A. K. Gupta, and B. Towles. Adaptive channel queue
routing on k-ary n-cubes. In SPAA ’04: Proceedings of the sixteenth annual
ACM symposium on Parallelism in algorithms and architectures, pages 11–
19, New York, NY, USA, 2004. ACM.

[123] A. Singh, W. J. Dally, A. K. Gupta, and B. Towles. Adaptive channel queue
routing on k-ary n-cubes. In SPAA, June 2004.

[124] A. Singh and M. Marek-Sadowska. Fpga interconnect planning. In SLIP ’02:
Proceedings of the 2002 international workshop on System-level interconnect
prediction, pages 23–30, New York, NY, USA, 2002. ACM.

[125] V. Soteriou, N. Eisley, H. Wang, B. Li, and L.-S. Peh. Polaris: A system-
level roadmap for on-chip interconnection networks. In In Proceedings of the
24th International Conference on Computer Design (ICCD), October 2006.

[126] V. Soteriou, H. Wang, and L.-S. Peh. A statistical traffic model for on-chip
interconnection networks. In In Proceedings n Proceedings of the IEEE In-
ternational Symposium on Modeling, Analysis, and Simulation of Computer
and Telecommunication Systems (MASCOTS), September 2006.

[127] V. Srinivasan, D. Brooks, M. Gschwind, P. Bose, V. Zyuban, P. N. Stren-
ski, and P. G. Emma. Optimizing pipelines for power and performance. In
MICRO 35: Proceedings of the 35th annual ACM/IEEE international sym-
posium on Microarchitecture, pages 333–344, Los Alamitos, CA, USA, 2002.
IEEE Computer Society Press.

[128] B. Stackhouse, B. Cherkauer, M. Gowan, P. Gronowski, and C. Lyles. A
65nm 2-billion-transistor quad-core itanium processor. In Solid-State Cir-
cuits Conference, 2008.

[129] B. Stackhouse, B. Cherkauer, M. Gowan, P. Gronowski, and C. Lyles. A
65nm 2-billion-transistor quad-core itanium processor. In Solid-State Cir-
cuits Conference, 2008. ISSCC 2008. Digest of Technical Papers. IEEE In-
ternational, pages 92–598, 2008.

[130] C. H. Stapper. Improved yield models for fault-tolerant memory chips. IEEE
Trans. Comput., 42(7):872–881, 1993.

[131] C. E. Stroud. Yield modeling for majority voting based defect-tolerant vlsi
circuits. In IEEE Southeastcon, pages 229–236, 1999.

290

Bibliography

[132] E. Talpes and D. Marculescu. Toward a multiple clock/voltage island design
style for power-aware processors, 2005.

[133] J. W. Tschanz, J. T. Kao, S. G. Narendra, R. Nair, D. A. Antoniadis, A. P.
Ch, S. Member, and V. De. Adaptive body bias for reducing impacts of
die-to-die and within-die parameter variations on microprocessor frequency
and leakage. In IEEE Journal Of Solid-State Circuits, pages 1396–1402,
2002.

[134] H. Tuinhout. Impact of parametric fluctuations on performance and yield of
deep-submicron technologies. In 32nd European Solid-State Device Research
Conference, pages 95 – 102, 2002.

[135] S. Vangal, J. Howard, G. Ruhl, S. Dighe, H. Wilson, J. Tschanz, D. Finan,
P. Iyer, A. Singh, T. Jacob, S. Jain, and S. Venkataraman. An 80-tile
1.28tflops network-on-chip in 65nm cmos. In ISSCC, 2007.

[136] H. Wang, X. Zhu, L.-S. Peh, and S. Malik. Orion: A power-performance
simulator for interconnection networks. In In Proceedings of MICRO 35,
November 2002.

[137] F. Worm, P. Ienne, P. Thiran, and G. D. Micheli. A robust self-calibrating
transmission scheme for on-chip networks. IEEE Trans. Very Large Scale
Integr. Syst., 13(1):126–139, 2005.

[138] M. G. Wrighton and A. M. DeHon. Hardware-assisted simulated anneal-
ing with application for fast fpga placement. In FPGA ’03: Proceedings
of the 2003 ACM/SIGDA eleventh international symposium on Field pro-
grammable gate arrays, pages 33–42, New York, NY, USA, 2003. ACM Press.

[139] J. Wu. Unicasting in faulty hypercubes using safety levels. In International
Conference on Parallel Processing, 1995.

[140] J. Wuu, D. Weiss, C. Morganti, and M. Dreesen. The asynchronous 24mb
on-chip level-3 cache for a dual-core itanium-family processor. In IEEE
International Solid-State Circuits Conference, Digest of Technical Papers,
volume 1, pages 488–612, 2005.

[141] Y. Yoshida, T. Kamei, K. Hayaase, S. Shibahara, O. Nishii, T. Hatton,
A. Hasegawa, M. Takada, N. Irie, T. Odaka, K. Takada, K. Kimura, and
H. Kasahara. A 4320mips four-process core smp/amp with individually
managed clock frequency for low power consumption. In Solid-State Circuits
Conference, 2007.

291

Bibliography

[142] Y. Yoshida, T. Kamei, K. Hayase, S. Shibahara, O. Nishii, T. Hattori,
A. Hasegawa, M. Takada, N. Irie, K. Uchiyama, T. Odaka, K. Takada,
K. Kimura, and H. Kasahara. A 4320mips four-processor core smp/amp
with individually managed clock frequency for low power consumption. In
ISSCC, 2007.

[143] H. Yu, I.-H. Chung, and J. Moreira. Topology mapping for blue gene/l
supercomputer. In SC ’06: Proceedings of the 2006 ACM/IEEE conference
on Supercomputing, page 116, New York, NY, USA, 2006. ACM.

[144] Z. Yu and B. Baas. Implementing tile-based chip multiprocessors with
gals clocking styles. In IEEE International Conference of Computer De-
sign (ICCD), pages 174–179, October 2006.

[145] H. Zhang and J. Rabaey. Low-swing interconnect interface circuits. In
ISLPED ’98: Proceedings of the 1998 international symposium on Low
power electronics and design, pages 161–166, New York, NY, USA, 1998.
ACM.

[146] M. Zhang and N. R. Shanbhag. A cmos design style for logic circuit hard-
ening. In International Reliability Physics Symposium, 2005.

[147] M. Zhong. Evaluation of deflection-routed on-chip networks. Master’s thesis,
KTH, Stockholm, Sweden, 2005.

292

Appendices

293

Appendix A

Adaptive Routing and PVT
Variations

294

Appendix A. Adaptive Routing and PVT Variations

Saturation Injection Rate Degradation due to Stochastic Variations

Name Davg
DO µ DO σ DO

0 0.07 0.14 0.21 0.07 0.14 0.21 A B

gtc3-64 1.1 0.96 0.92 0.89 0.87 0.016 0.011 0.019 0.41 0.09
cactus-64 1.7 0.90 0.88 0.88 0.87 0.007 0.008 0.013 0.15 0.06
fvcam 2d 2.6 0.48 0.48 0.47 0.47 0.003 0.005 0.008 0.06 0.04
lbmhd-64 3.4 0.49 0.48 0.48 0.47 0.013 0.016 0.016 0.09 0.08
pmemd-64 5.2 0.31 0.30 0.29 0.28 0.008 0.010 0.014 0.14 0.07

gtc2 1.1 0.99 0.97 0.95 0.94 0.007 0.010 0.011 0.26 0.05
mdh2d 2.0 0.77 0.76 0.76 0.75 0.004 0.008 0.009 0.11 0.04
cactus-256 2.1 0.74 0.74 0.74 0.73 0.003 0.006 0.009 0.06 0.04
madbench1 3.3 0.34 0.34 0.32 0.31 0.007 0.013 0.016 0.16 0.08
slu-256 5.7 0.22 0.21 0.21 0.21 0.006 0.009 0.010 0.06 0.05
lbmhd 5.8 0.29 0.28 0.27 0.25 0.006 0.008 0.011 0.18 0.05
madbench2 5.8 0.24 0.24 0.23 0.23 0.002 0.004 0.005 0.05 0.02
paratec-256 10.7 0.18 0.18 0.17 0.16 0.003 0.004 0.004 0.08 0.02

MATC µ MATC σ MATC
gtc3-64 1.1 0.96 0.92 0.89 0.87 0.016 0.011 0.019 0.41 0.09
cactus-64 1.7 0.90 0.88 0.88 0.87 0.007 0.008 0.013 0.15 0.06
fvcam 2d 2.6 0.48 0.48 0.47 0.47 0.003 0.005 0.008 0.06 0.04
lbmhd-64 3.4 0.49 0.48 0.48 0.47 0.013 0.016 0.016 0.09 0.08
pmemd-64 5.2 0.31 0.30 0.29 0.28 0.008 0.010 0.014 0.14 0.07

gtc2 1.1 0.99 0.97 0.95 0.94 0.007 0.010 0.011 0.26 0.05
mdh2d 2.0 0.77 0.76 0.76 0.75 0.004 0.008 0.009 0.11 0.04
cactus-256 2.1 0.74 0.74 0.74 0.73 0.003 0.006 0.009 0.06 0.04
madbench1 3.3 0.34 0.34 0.32 0.31 0.007 0.013 0.016 0.16 0.08
slu-256 5.7 0.22 0.21 0.21 0.21 0.006 0.009 0.010 0.06 0.05
lbmhd 5.8 0.29 0.28 0.27 0.25 0.006 0.008 0.011 0.18 0.05
madbench2 5.8 0.24 0.24 0.23 0.23 0.002 0.004 0.005 0.05 0.02
paratec-256 10.7 0.18 0.18 0.17 0.16 0.003 0.004 0.004 0.08 0.02

295

A
p
p
en

d
ix

A
.

A
d
a
p
tiv

e
R

o
u
tin

g
a
n
d

P
V

T
V

a
ria

tio
n
s

Degradation and performance due to systematic variations

Name Davg
DO MATC

0 S
P

(0
.9

0,
1.

10
)

S
P

(0
.8

0,
1.

20
)

S
P

(0
.7

0,
1.

30
)

A 0 S
P

(0
.9

0,
1.

10
)

S
P

(0
.8

0,
1.

20
)

S
P

(0
.7

0,
1.

30
)

A

gtc3-64 1.1 0.96 0.97 0.94 0.93 0.05 0.95 0.97 0.94 0.93 0.03
cactus-64 1.7 0.91 0.90 0.89 0.88 0.05 0.90 0.90 0.89 0.87 0.05
fvcam 2d 2.6 0.53 0.54 0.53 0.53 -0.00 0.60 0.59 0.58 0.58 0.03
lbmhd-64 3.4 0.53 0.54 0.54 0.53 -0.00 0.61 0.60 0.60 0.59 0.03
pmemd-64 5.2 0.31 0.31 0.30 0.29 0.03 0.36 0.38 0.38 0.38 -0.03

gtc2 1.1 0.98 0.97 0.95 0.93 0.08 0.98 0.97 0.95 0.93 0.08
mdh2d 2.0 0.83 0.83 0.83 0.82 0.02 0.89 0.89 0.61 0.87 0.03
cactus-256 2.1 0.79 0.81 0.79 0.79 -0.00 0.85 0.86 0.84 0.83 0.03
madbench1 3.3 0.34 0.35 0.37 0.37 -0.05 0.41 0.51 0.50 0.50 -0.15
slu-256 5.7 0.22 0.23 0.23 0.22 -0.00 0.25 0.25 0.24 0.25 -0.00
lbmhd 5.8 0.28 0.29 0.27 0.26 0.03 0.34 0.36 0.36 0.35 -0.02
madbench2 5.8 0.25 0.29 0.28 0.28 -0.05 0.25 0.38 0.38 0.36 -0.18
paratec-256 10.7 0.19 0.19 0.18 0.16 0.05 0.19 0.20 0.20 0.20 -0.02

296

A
p
p
en

d
ix

A
.

A
d
a
p
tiv

e
R

o
u
tin

g
a
n
d

P
V

T
V

a
ria

tio
n
s

Name Davg
MATC Net Improv. vs Nominal DO MATC Net Improv. vs Var DO

st
at

ic

N
(1

,0
.0

7)

N
(1

,0
.1

4)

N
(1

,0
.2

1)

S
P

(0
.9

,0
.9

,1
.1

)

S
P

(0
.8

,0
.8

,1
.2

)

S
P

(0
.7

,0
.7

,1
.3

)

N
(1

,0
.0

7)

N
(1

,0
.1

4)

N
(1

,0
.2

1)

S
P

(0
.9

,0
.9

,1
.1

)

S
P

(0
.8

,0
.8

,1
.2

)

S
P

(0
.7

,0
.7

,1
.3

)

gtc3-64 1.09 1.00 0.97 0.94 0.93 1.01 0.99 0.96 1.00 0.99 0.99 1.00 1.00 1.00
cactus-64 1.73 1.00 0.99 0.99 0.98 0.99 0.98 0.96 1.00 1.00 0.99 0.99 0.99 0.99
fvcam 2d region1 2.61 1.12 1.12 1.12 1.12 1.10 1.09 1.09 1.12 1.14 1.17 1.09 1.11 1.10
lbmhd-64 3.36 1.16 1.16 1.15 1.13 1.15 1.14 1.12 1.15 1.18 1.18 1.11 1.11 1.13
pmemd-64 5.24 1.15 1.15 1.13 1.13 1.21 1.22 1.21 1.16 1.18 1.22 1.21 1.25 1.32
gtc2 1.12 1.00 0.98 0.97 0.96 0.98 0.96 0.94 1.00 1.00 1.00 1.00 1.00 1.00
mdh2d 2.02 1.07 1.06 1.05 1.04 1.06 0.73 1.04 1.07 1.08 1.07 1.06 0.74 1.06
cactus-256 2.12 1.09 1.08 1.07 1.06 1.09 1.07 1.06 1.09 1.07 1.07 1.06 1.06 1.06
madbench1 3.31 1.20 1.23 1.17 1.11 1.48 1.46 1.46 1.27 1.24 1.23 1.43 1.34 1.34
slu-256 5.72 1.13 1.13 1.13 1.13 1.16 1.12 1.14 1.12 1.11 1.12 1.10 1.08 1.11
lbmhd 5.81 1.21 1.19 1.17 1.15 1.26 1.25 1.23 1.22 1.25 1.29 1.22 1.32 1.33
madbench2 5.83 1.00 1.00 1.01 1.00 1.52 1.50 1.45 0.96 1.00 1.02 1.30 1.33 1.28
paratec-256 10.66 0.99 0.99 0.97 0.95 1.03 1.03 1.03 1.01 1.04 1.09 1.05 1.11 1.19

297

