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Abstract

Contour Detection and Image Segmentation

by

Michael Randolph Maire

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Jitendra Malik, Chair

This thesis investigates two fundamental problems in computer vision: contour

detection and image segmentation. We present new state-of-the-art algorithms for

both of these tasks. Our segmentation algorithm consists of generic machinery for

transforming the output of any contour detector into a hierarchical region tree. In this

manner, we reduce the problem of image segmentation to that of contour detection.

Extensive experimental evaluation demonstrates that both our contour detection and

segmentation methods significantly outperform competing algorithms.

Our approach to contour detection couples multiscale local brightness, color, and

texture cues to a powerful globalization framework using spectral clustering. The

local cues, computed by applying oriented gradient operators at every location in

the image, define an affinity matrix representing the similarity between pixels. From

this matrix, we derive a generalized eigenproblem and solve for a fixed number of

eigenvectors which encode contour information. Using a classifier to recombine this

signal with the local cues, we obtain a large improvement over alternative globalization

schemes built on top of similar cues.

To produce high-quality image segmentations, we link this contour detector with

a generic grouping algorithm consisting of two steps. First, we introduce a new im-
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age transformation called the Oriented Watershed Transform for constructing a set

of initial regions from an oriented contour signal. Second, using an agglomerative

clustering procedure, we form these regions into a hierarchy which can be represented

by an Ultrametric Contour Map, the real-valued image obtained by weighting each

boundary by its scale of disappearance. This approach outperforms existing image

segmentation algorithms on measures of both boundary and segment quality. These

hierarchical segmentations can optionally be further refined by user-specified annota-

tions.

While the majority of this work focuses on processing static images, we also de-

velop extensions for video. In particular, we augment the set of static cues used for

contour detection with a low-level motion cue to create an enhanced boundary detec-

tor. Using optical flow in conjunction with this detector enables the determination

of occlusion boundaries and assignment of figure/ground labels in video.

Professor Jitendra Malik, Chair Date
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Chapter 1

Introduction

1.1 Motivation

Computer vision seeks to enhance the ability of machines to understand the visual

world through the development of algorithms for tasks such as object recognition,

tracking, and 3D reconstruction from image and video data. These tasks are complex

enough that it is often not sufficient to simply regard the raw images as training ex-

amples and apply the latest machine learning algorithms. Rather, there is structure

in natural images which should be exploited in conjunction with learning techniques.

This thesis concentrates on the creation of algorithms for perceptual organization,

which extract this structure, transforming an image into an intermediate representa-

tion which in turn can provide far superior input to modules for high-level tasks such

as recognition.

In this spirit, we first focus our attention on contour detection, which has long been

a fundamental problem in computer vision. Early approaches include the Canny edge

detector, which was tuned to respond to sharp discontinuities in image brightness.

Contours convey key information about object shape and serve as the basis for a
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Chapter 1. Introduction

variety of local image descriptors, such as SIFT [Lowe, 1999], shape context [Belongie

et al., 2002], and geometric blur [Berg and Malik, 2001], used in recognition systems.

Hence, improvements at the contour detection stage can impact the quality of the

descriptors used in a wide range of vision algorithms.

However, we want to separate the development of a general contour detection

algorithm from any particular application. The recent creation of the Berkeley Seg-

mentation Dataset (BSDS) [Martin et al., 2001] has provided a much needed metric

for evaluating contour detector performance through comparison to human-drawn

ground-truth boundaries. By making use of the benchmarking methodology of [Mar-

tin et al., 2004], we can judge contour quality independently of the systems that will

eventually make use of the contours.

While contours and shape-based features have seen much success, there is a sense

that low-level machinery which produces contours alone is not enough. Often, a

partition of the image into meaningful segments is desired. Segments may reduce

the computational complexity of later stages by transforming an image consisting of

millions of pixels into hundreds of regions. Furthermore, they come with significant

structure and ideally correspond to objects, object parts, or otherwise geometrically

coherent scene elements. This advantage is likely to be increasingly important in

scaling recognition algorithms to deal with the full variety of the visual world, includ-

ing the perhaps tens of thousands of object categories [Biederman, 1987] humans are

capable of distinguishing.

Additional value exists in producing hierarchical image segmentations rather than

single-level partitions. Important information often exists in segments at multiple

scales. For example, an image of a person contains a face region nested within a

region corresponding to the entire body. Hierarchies are better suited to capturing

such object-part relationships and provide a step toward obtaining a parse of the

image.
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Chapter 1. Introduction

1.2 Thesis Outline

Chapter 2 covers our development of a contour detection algorithm which provides the

best performance to date on the Berkeley Segmentation Dataset (BSDS) benchmark

[Martin et al., 2004]. This chapter first presents a review of the local visual cues on

top of which we build this detector. As an important contribution, we show that these

cues can be computed efficiently, in time independent of the local operator scale. The

main portion of the chapter then introduces our novel globalization scheme based on

spectral clustering. We turn an affinity matrix computed from the local cues into a

“spectral” contour signal which we recombine with the local signal. We present both

images and benchmark results illustrating the improved performance of the combined

detector.

Chapter 3 describes a new algorithm for transforming the output of any contour

detector into a hierarchical segmentation. This technique allows us to leverage the

contour detector developed in Chapter 2 in order to produce high-quality image seg-

mentations. These segmentations respect the boundaries produced by the contour

detector, while guaranteeing closure and forming a region hierarchy. Benchmarks

demonstrate a large jump in performance compared to all existing segmentation al-

gorithms. Though our primary contribution in this chapter is a fully automatic

segmentation algorithm, we also show that it can be used as preprocessing step for

user-assisted image segmentation. With a minimum annotation effort, a user can ex-

tract customized regions from our hierarchy. In closing the chapter, we analyze some

initial experiments aimed at quantifying the overlap between regions in our hierarchy

and actual objects of interest in a scene.

While Chapters 2 and 3 concern only static images, Chapter 4 explores perceptual

organization for video data. It begins by introducing a new biologically motivated

local cue for motion. We argue for this cue’s use as a complement to the static
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Chapter 1. Introduction

cues exploited in the previous chapters and show that it enables successful detection

of boundaries in the absence of static cues. Using this enhanced contour detector

together with an optical flow algorithm, we address the problem of finding and labeling

occlusion boundaries from video. On these tasks, we also report favorable benchmark

results.
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Chapter 2

Contour Detection

2.1 Introduction

In this chapter, we discuss the detection of contours in natural images and report

the results of our new, high-performance algorithm for this task [Maire et al., 2008].

To compare contour detection algorithms in a quantitative manner, we rely on the

Berkeley Segmentation Dataset (BSDS) [Martin et al., 2001] and boundary-based

evaluation methodology developed by [Martin et al., 2004].

The BSDS consists of 300 natural images, each of which has been manually seg-

mented by a number of different human subjects. Figure 2.1 shows a sample of

the dataset. The ground-truth data for this large collection shows the diversity, yet

high consistency, of human segmentation. Much of the difference between subjects

can be explained in terms of the level of detail they chose to depict. The human-

drawn boundaries tend to correspond to object outlines rather than interior edges.

A program capable of producing similar output is therefore likely to prove useful for

automatic visual processing.

The benchmarking framework introduced by [Martin et al., 2004] operates by
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Chapter 2. Contour Detection

Figure 2.1: Berkeley Segmentation Dataset [Martin et al., 2001]. From left to
right: Original image, and hand-drawn ground-truth segmentations by three different
human subjects. The entire dataset consists of 200 training and 100 test images, each
with multiple ground-truth segmentations.

comparing machine generated contours to the human ground-truth data and has

become a standard, as demonstrated by its widespread use [Ren et al., 2005; Felzen-

szwalb and McAllester, 2006; Dollar et al., 2006; Arbeláez, 2006; Zhu et al., 2007;

Mairal et al., 2008; Ren, 2008; Maire et al., 2008]. This framework considers two

aspects of detection performance. Precision measures the fraction of true positives in

the contours produced by a detector. Recall measures the fraction of ground-truth

boundaries detected. For detectors that provide real-valued outputs, one obtains a

curve parameterized by detection threshold, quantifying performance across operating
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Chapter 2. Contour Detection

regimes. At each threshold, the benchmark computes a correspondence between the

contour pixels declared by the detector and the human boundaries, enforcing proxim-

ity between the matched pixels. Results are averaged across the multiple hand-drawn

boundary maps for each test image. The global F-measure, defined as the harmonic

mean of precision and recall, provides a useful summary score for the algorithm.

Figure 2.2 summarizes the significant progress made in contour detection in the

last few years [Felzenszwalb and McAllester, 2006; Ren et al., 2005; Martin et al., 2004;

Dollar et al., 2006; Zhu et al., 2007; Mairal et al., 2008; Ren, 2008] in terms of the

BSDS benchmark. Our detector [Maire et al., 2008] obtains the highest F-measure

(0.70) to date and compares favorably with these other leading techniques, providing

equal or better precision for most choices of recall.

Much of the extensive literature on contour detection predates the development

of the quantitative benchmarking framework outlined above. One family of methods

aims at quantifying the presence of a boundary at a given image location through

local measurements. Early local approaches, such as the Canny detector [Canny,

1986], model edges as sharp discontinuities in the brightness channel. A richer

description can be obtained by considering the response of the image to a fam-

ily of filters of different scales and orientations. An example is the Oriented En-

ergy approach [Morrone and Owens, 1987; Perona and Malik, 1990; Freeman and

Adelson, 1991], in which the filter bank is composed of quadrature pairs of even

and odd symmetric filters. [Lindeberg, 1998] proposes an automatic scale selection

mechanism. More recent approaches take into account color and texture informa-

tion and make use of learning techniques for cue combination [Martin et al., 2004;

Dollar et al., 2006].

Another family of methods relies on integrating global image information into the

grouping process. Spectral graph theory [Chung, 1997] has often been used for this

purpose, particularly, the Normalized Cuts criterion [Shi and Malik, 2000; Malik et
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Human                                                                 [F = 0.79]

gPb                                                                      [F = 0.70]

Multiscale − Ren (2008)                                       [F = 0.68]

BEL − Dollar, Tu, Belongie (2006)                        [F = 0.66]

Mairal, Leordeanu, Bach, Hebert, Ponce (2008)  [F = 0.66]

Min Cover − Felzenszwalb, McAllester (2006)     [F = 0.65]

Pb − Martin, Fowlkes, Malik (2004)                      [F = 0.65]

Zhu, Song, Shi (2007)                                          [F = 0.64]

CRF − Ren, Fowlkes, Malik (2005)                       [F = 0.64]
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Figure 2.2: Evaluation of contour detectors on the Berkeley Segmentation
Dataset Benchmark [Martin et al., 2004]. Leading approaches to contour detection
are ranked according to their F-measure (2 · Precision · Recall/(Precision + Recall))
with respect to human ground-truth boundaries. Iso-F curves are shown in green. The
gPb detector [Maire et al., 2008] performs significantly better than other algorithms
across almost the entire operating regime. Average agreement between human subjects
is indicated by the green dot.
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Chapter 2. Contour Detection

al., 2001]. In this framework, given an affinity matrix W whose entries encode the

similarity between pixels, one defines Dii =
∑

j Wij and solves for the generalized

eigenvectors of the linear system:

(D −W )v = λDv (2.1)

Traditionally, after this step, clustering is applied to obtain a segmentation into

regions. This approach often breaks uniform regions where the eigenvectors have

smooth gradients. One solution is to reweight the affinity matrix [Tolliver and Miller,

2006]; others have proposed alternative graph partitioning formulations [Fowlkes and

Malik, 2004; Wang et al., 2005; Yu, 2005]. Recently, [Zhu et al., 2007] proposed

detecting closed topological cycles in a directed edgel graph by considering the com-

plex eigenvectors of the normalized random walk matrix. Although contour detection

methods based on spectral partitioning have been reported to do well in the high

precision / low recall regime, their performance is generally poor in the high recall /

low precision regime [Fowlkes and Malik, 2004; Yu, 2005].

There is of course a much larger tradition in boundary detection and region seg-

mentation. Classic approaches include the variational formulation introduced by

Mumford and Shah [Mumford and Shah, 1989], level-set methods [Sethian, 1999]

and techniques based on perceptual organization of contour outputs [Mahamud et

al., 2003; Williams and Jacobs, 1995].

Several of the recent high-performance methods we benchmark against share as a

common feature their use of the local edge detection operators developed by [Martin et

al., 2004], which is a characteristic of our approach as well. Exceptions to this rule are

[Dollar et al., 2006] and [Mairal et al., 2008]. Rather than rely on a few hand-crafted

features, [Dollar et al., 2006] propose a Boosted Edge Learning (BEL) algorithm which

attempts to learn an edge classifier in the form of a probabilistic boosting tree [Tu,
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2005] from thousands of simple features computed on image patches. An advantage

of this approach is that it may be possible to handle cues such as parallelism and

completion in the initial classification stage. [Mairal et al., 2008] create both generic

and class-specific edge detectors by learning discriminative sparse representations of

local image patches. For each class, they learn a discriminative dictionary and use the

reconstruction error obtained with each dictionary as feature input to a final classifier.

The remaining methods benchmarked in Figure 2.2 are distinguished primarily by

another level of processing or globalization that utilizes the local detector output, and

secondarily by if and how they integrate multiscale information. [Ren et al., 2005] use

the Conditional Random Fields (CRF) framework as a globalization stage to enforce

curvilinear continuity of contours. After thresholding the locally detected contours,

they compute a constrained Delaunay triangulation (CDT) yielding a graph consisting

of the detected contours along with the new “completion” edges introduced by the

triangulation. The CDT is scale-invariant and tends to fill short gaps in the detected

contours. By associating a random variable with each contour and each completion

edge, they define a CRF with edge potentials in terms of detector response and vertex

potentials in terms of junction type and continuation smoothness. They use loopy

belief propagation [Weiss, 2000] to compute expectations.

In [Felzenszwalb and McAllester, 2006], the authors use a different strategy for

extracting salient smooth curves from the output of a local contour detector. They

consider the set of short oriented line segments that connect pixels in the image

to their neighboring pixels. Each such segment is either part of a curve or is a

background segment. They assume that curves are drawn from a Markov process,

that the prior distribution on curves favors few curves per scene, and that detector

responses are conditionally independent given the labeling of line segments. Finding

the optimal line segment labeling then translates into a general weighted min-cover

problem in which the elements being covered are the line segments themselves and the
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Chapter 2. Contour Detection

objects covering them are drawn from the set of all possible curves and all possible

background line segments. Since this problem is NP-hard, the authors develop a

greedy approximate solution using a “cost per pixel” heuristic.

While [Martin et al., 2004] claim not to have seen much benefit from combin-

ing multiple scales of their local operator to improve contour detection, [Ren, 2008]

achieves such a boost by defining additional localization and relative contrast cues in

terms of the multiscale detector output. For each scale, the localization cue captures

the distance from a pixel to the nearest peak response. The relative contrast cue

normalizes the response at each pixel in terms of the local neighborhood. Inclusion

of these signals contributes positively to the performance of a logistic regression clas-

sifier for boundary detection. In Section 2.2.2, we present a simpler multiscale cue

combination approach that also improves performance. Section 2.3 then presents the

new globalization method we run on top of the multiscale local detector.

2.2 Local Cues

As a starting point for contour detection, we consider the work of [Martin et al.,

2004], who define a function Pb(x, y, θ) that predicts the posterior probability of a

boundary with orientation θ at each image pixel (x, y) by measuring the difference in

local image brightness, color, and texture channels. In this section, we review these

cues, introduce our own multiscale version of the Pb detector, and show how it can

be computed efficiently.

2.2.1 Brightness, Color, Texture Gradients

The basic building block of the Pb contour detector is the computation of an oriented

gradient signal G(x, y, θ) from an intensity image I. This computation proceeds by
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0 0.5 1

Upper Half−Disc Histogram

0 0.5 1

Lower Half−Disc Histogram

Figure 2.3: Oriented gradient of histograms. Given an intensity image, consider
a circular disc centered at each pixel and split by a diameter at angle θ. We compute
histograms of intensity values in each half-disc and output the χ2 distance between them
as the gradient magnitude. The blue and red histograms shown in the middle panel are
the histograms of the pixel values in the blue and red half-disc regions, respectively, in the
left image. The rightmost panel shows an example result for a disc of radius 5 pixels at
orientation θ = π

4
after applying a second-order Savitzky-Golay smoothing filter to the raw

histogram difference output. Note that the leftmost panel displays a larger disc (radius
50 pixels) for illustrative purposes.

placing a circular disc at location (x, y) split into two half-discs by a diameter at angle

θ. For each half-disc, we histogram the intensity values of the pixels of I covered by

it. The gradient magnitude G at location (x, y) is defined by the χ2 distance between

the two half-disc histograms g and h:

χ2(g, h) =
1

2

∑
i

(g(i)− h(i))2

g(i) + h(i)
(2.2)

12
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Figure 2.4: Filters for creating textons. Our texton filter set consists of eight ori-
ented even- and odd-symmetric Gaussian derivative filters together with a center-surround
(difference of Gaussians) filter.

We then apply second-order Savitzky-Golay filtering [Savitzky and Golay, 1964] to

enhance local maxima and smooth out multiple detection peaks in the direction or-

thogonal to θ. This is equivalent to fitting a cylindrical parabola, whose axis is ori-

entated along direction θ, to a local 2D window surrounding each pixel and replacing

the response at the pixel with that estimated by the fit.

Figure 2.3 shows an example. This computation is motivated by the intuition

that contours correspond to image discontinuities and histograms provide a robust

mechanism for modeling the content of an image region. A strong oriented gradient

response means a pixel is likely to lie on the boundary between two distinct regions.

The Pb detector combines the oriented gradient signals obtained from transform-

ing an input image into four separate feature channels and processing each channel

independently. The first three correspond to the channels of the CIE Lab colorspace,

which we refer to as the brightness, color a, and color b channels. For grayscale

images, the brightness channel is the image itself and no color channels are used.

The fourth channel is a texture channel, which assigns each pixel a texton id.

We apply the same oriented gradient machinery to the image channel in which each

pixel value is its corresponding integer texton id. Equivalently, the histogram in each

half-disc is a histogram of which textons lie within that half-disc.

The pixel to texton assignments themselves are computed by another filtering

stage which occurs prior to the computation of the oriented gradient of histograms.

This stage converts the input image to grayscale and convolves it with the set of 17

13
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Gaussian derivative and center-surround filters shown in Figure 2.4. Each pixel is

associated with a (17-dimensional) vector of responses, containing one entry for each

filter. These vectors are then clustered using K-means. The cluster centers define a

set of image-specific textons and each pixel is assigned the integer id in [1, K] of the

closest cluster center. In our experiments, we found choosing K = 32 textons to be

sufficient.

We now form an image where each pixel has an integer value in [1, K], as deter-

mined by its assigned texton id. An example of such an image can be seen in the

upper right panel of Figure 2.5. On this image, we compute differences of histograms

in oriented half-discs in the same manner as for the brightness and color channels.

When computing histograms for the texture channel, one histogram bin is allocated

per texton and it counts the number of pixels in the half-disc region assigned that

texton id.

2.2.2 Multiscale Cue Combination

While the previous subsection is entirely review, this section introduces our multi-

scale extension of the Pb detector developed by [Martin et al., 2004]. As discussed in

Section 2.1, [Ren, 2008] introduces a different multiscale extension in work contempo-

raneous with that presented here. [Ren, 2008] suggests possible reasons [Martin et al.,

2004] did not see performance improvements in their original multiscale experiments,

including their use of smaller images in the experiments and their choice of scales.

In order to detect fine as well as coarse structures, we consider gradients at three

scales: [σ
2
, σ, 2σ] for each of the brightness, color, and texture channels. Figure 2.5

shows an example of the oriented gradients obtained for each channel. For the bright-

ness channel, we use σ = 5 pixels, while for color and texture we use σ = 10 pixels.
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Chapter 2. Contour Detection

Figure 2.5: Multiscale Pb. Top row, left to right: Original image, followed by
the brightness and color a and b channels of Lab color space, and the texton channel
computed using image-specific textons. Columns: Below each channel, we display the
oriented gradient of histograms (as outlined in Figure 2.3) for θ = 0 and θ = π

2
(horizontal

and vertical), and the maximum response over eight orientations in [0, π) (bottom row).
Beneath the original image, we display the combination of oriented gradients across all
four channels and across three scales. The lower left panel shows mPb, the final output
of the multiscale contour detector.
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We then linearly combine these local cues into a single multiscale oriented signal:

mPb(x, y, θ) =
∑

s

∑
i

αi,sGi,σ(i,s)(x, y, θ) (2.3)

where s indexes scales, i indexes feature channels (brightness, color a, color b, tex-

ture), and Gi,σ(i,s)(x, y, θ) measures the histogram difference in channel i between two

halves of a disc of radius σ(i, s) centered at (x, y) and divided by a diameter at angle

θ. In our experiments, we sample θ at eight equally spaced orientations in the interval

[0, π). Taking the maximum response over orientations yields a measure of boundary

strength at each pixel:

mPb(x, y) = max
θ
{mPb(x, y, θ)} (2.4)

An optional non-maximum suppression step [Canny, 1986] produces thinned, real-

valued contours.

In contrast to [Martin et al., 2004] and [Ren, 2008] which use a logistic regression

classifier to combine cues, we learn the weights αi,s by gradient ascent on the F-

measure using the 200 training images of the BSDS and their corresponding ground-

truth.

2.2.3 Efficient Computation

Computing the oriented gradient of histograms (Figure 2.3) directly as outlined in

the previous section is expensive. In particular, for an N pixel image and a disc of

radius r it takes O(Nr2) time to compute as a region of size equal to the area of

the disc is examined at every pixel. This entire procedure is repeated 32 times (4

channels with 8 orientations) for each of 3 choices of r, with the cost of the largest

scale dominating. [Martin et al., 2004] suggest ways to speed up this computation,
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including incremental updating of the histograms as the disc is swept across the image.

However, this strategy still requires O(Nr) time. We present an algorithm for the

oriented gradient of histograms computation that runs in O(N) time, independent of

the radius r.

Following Figure 2.6, we can approximate each half-disc by a series of rectangles. It

turns out that a single rectangle is a sufficiently good approximation for our purposes.

Now, instead of rotating our rectangular regions, we pre-rotate the image so that we

are concerned with computing a histogram of the values within axis-aligned rectangles.

This can be done in time independent of the size of the rectangle using integral images.

We process each histogram bin separately. Let I denote the rotated intensity

image and let Ib(x, y) be 1 if I(x, y) falls in histogram bin b and 0 otherwise. Compute

the integral image J b as the cumulative sum across rows of the cumulative sum across

columns of Ib. The total energy in an axis-aligned rectangle with points P , Q, R,

and S as its upper-left, upper-right, lower-left, and lower-right corners, respectively,

falling in histogram bin b is:

h(b) = J b(P ) + J b(S)− J b(Q)− J b(R) (2.5)

It takes O(N) time to pre-rotate the image, and O(N) to compute each of the

O(B) integral images, where B is the number of bins in the histogram. Once these

are computed, there is O(B) work per rectangle, of which there are O(N). Rotating

the output back to the original coordinate frame takes an additional O(N) work. The

total complexity is thus O(NB) instead of O(Nr2) (actually instead of O(Nr2 +NB)

since we always had to compute χ2 distances between N histograms). Since B is a

fixed constant, the computation time no longer grows as we increase the scale r.

This algorithm runs in time O(NB) as long as we use at most a constant number

of rectangular boxes to approximate each half-disc. For an intuition as to why a
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Figure 2.6: Efficient computation of the oriented gradient of histograms. Left:
The two half-discs of interest can be approximated arbitrarily well by a series of rectangular
boxes. We found a single box of equal area to the half-disc to be a sufficient approximation.
Middle: Replacing the circular disc of Figure 2.3 with the approximation reduces the
problem to computing the histograms within rectangular regions. Right: Instead of
rotating the rectangles, rotate the image and use the integral image trick to compute the
histograms efficiently. Rotate the final result to map it back to the original coordinate
frame.

single rectangle turns out to be sufficient, look again at the overlap of the rectangle

with the half disc in the lower left of Figure 2.6. The majority of the pixels used in

forming the histogram lie within both the rectangle and the disc, and those pixels

that differ are far from the center of the disc (the pixel at which we are computing

the gradient). Thus, we are only slightly changing the shape of the region we use for

context around each pixel. Figure 2.7 shows that the result using the single rectangle

approximation is visually indistinguishable from that using the original half-disc.

Results reported in this chapter use the exact half-discs because they were ob-
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Figure 2.7: Comparison of half-disc and rectangular regions for computing the
oriented gradient of histograms. Top row: Results of using the O(Nr2) time algo-
rithm to compute the difference of histograms in oriented half-discs at each pixel. Shown
is the output for processing the brightness channel displayed in Figure 2.6 using a disc of
radius r = 10 pixels at four distinct orientations (one per column). N is the total number
of pixels. Bottom row: Approximating each half-disc with a single rectangle (of height
9 pixels so that the rectangle area best matches the disc area), as shown in Figure 2.6,
and using integral histograms allows us to compute nearly identical results in only O(N)
time. In both cases, we show the raw histogram difference output before application of a
smoothing filter in order to clearly demonstrate the similarity of the results.
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tained prior to our implementation of the faster rectangular approximation. As

Chapter 3 builds upon these results, we also use the exact version for consistency.

The motion gradient channel introduced in Chapter 4 is computed using the fast

approximation.

Note that the same image rotation technique can be used for computing convolu-

tions with any oriented separable filter, such as the oriented Gaussian derivative filters

used for textons or the second-order Savitzky-Golay filters used for spatial smoothing

of our oriented gradient output. Rotating the image, convolving with two 1D filters,

and inverting the rotation is more efficient than convolving with a rotated 2D filter.

Moreover, in this case, no approximation is required as these operations are equiva-

lent up to the numerical accuracy of the interpolation done when rotating the image.

This means that all of the filtering performed as part of the local cue computation

can be done in O(Nr) time instead of O(Nr2) time where here r = max(w, h) and w

and h are the width and height of the 2D filter matrix. For large r, the computation

time can be further reduced by using the Fast Fourier Transform to calculate the

convolution.

The entire local cue computation is also easily parallelized and there are a number

of choices for doing so. The image can be partitioned into overlapping subimages,

each of which is processed in parallel. In addition, the 96 intermediate results (3

scales of 4 channels with 8 orientations) can all be computed in parallel as they are

independent subproblems. [Catanzaro et al., 2009] have created parallel GPU imple-

mentations of the multiscale contour detector we discussed here and the globalization

stage we introduce in the next section. They also exploit the integral histogram trick

introduced here, with the single rectangle approximation, while replicating the same

precision-recall curve on the BSDS benchmark. The speed improvements due to both

the reduction in computational complexity outlined above and parallelization make

our contour detector into a practical tool.
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2.3 Globalization

Spectral clustering lies at the heart of our globalization machinery. The key element

differentiating the algorithm described in this section from other approaches [Shi

and Malik, 2000; Tolliver and Miller, 2006] is the soft manner in which we use the

eigenvectors obtained from spectral partitioning.

As input to the spectral clustering stage, we construct a sparse symmetric affinity

matrix W using the intervening contour cue [Fowlkes et al., 2003; Fowlkes and Malik,

2004; Leung and Malik, 1998], the maximal value of mPb along a line connecting two

pixels. We connect all pixels i and j within a fixed radius r with affinity:

Wij = exp

(
−max

p∈ij
{mPb(p)}/σ

)
(2.6)

where ij is the line segment connecting i and j and σ is a constant. In experiments,

we set r = 5 pixels and σ = 0.1.

In order to introduce global information, we define Dii =
∑

j Wij and solve for the

generalized eigenvectors {v0,v1, ...,vn} of the system (D −W )v = λDv (Equation

2.1), corresponding to the n + 1 smallest eigenvalues 0 = λ0 ≤ λ1 ≤ ... ≤ λn.

Figure 2.8 displays an example with eigenvectors v1 through v4. In practice, we use

n = 16.

At this point, the standard Normalized Cuts approach associates with each pixel

a length n descriptor formed from entries of the n eigenvectors and uses a clustering

algorithm such as K-means to create a hard partition of the image. Unfortunately,

this can lead to an incorrect segmentation as large uniform regions in which the

eigenvectors vary smoothly are broken up. Figure 2.8 shows an example for which

such gradual variation in the eigenvectors across the sky region results in an incorrect

partition.
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Figure 2.8: Spectral Pb. Left: Original image. Middle Left: The thinned non-max
suppressed multiscale Pb signal defines a sparse affinity matrix, connecting each pixel i
to all others within a fixed radius. Pixels i and j have a low affinity as a strong boundary
separates them, whereas i and k have high affinity. Middle: First four generalized
eigenvectors resulting from spectral clustering. Middle Right: Partitioning the image
by running K-means clustering on the eigenvectors erroneously breaks smooth regions.
Right: Instead, we compute gradients of the eigenvectors, transforming them back into
a contour signal.

To circumvent this difficulty, we observe that the eigenvectors themselves carry

contour information. Treating each eigenvector vk as an image, we convolve with

Gaussian directional derivative filters at multiple orientations θ, obtaining an oriented

signal sPbvk
(x, y, θ). Taking derivatives in this manner ignores the smooth variations

that previously lead to errors. The information from different eigenvectors is then

combined to provide the “spectral” component of our boundary detector:

sPb(x, y, θ) =
n∑

k=1

1√
λk

· sPbvk
(x, y, θ) (2.7)

where the choice of the weights is motivated by the physical interpretation of gener-

alized eigensystems as mass-spring systems [Belongie and Malik, 1998]. Figures 2.8

and 2.9 present examples.

The signals mPb and sPb convey different information, as the former fires at all

the edges while the latter extracts only the most salient curves in the image. We
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Figure 2.9: Eigenvectors carry contour information. Top: Original image and maxi-
mum response of spectral Pb over orientations, sPb(x, y) = maxθ sPb(x, y, θ). Middle:
First four generalized eigenvectors used in creating spectral Pb. Bottom: Maximum
response over orientations θ of sPbvk

(x, y, θ) for each eigenvector vk shown above.

found that a simple linear combination is enough to benefit from both behaviors.

Our final globalized probability of boundary is then written as a weighted sum

of local and spectral signals, which is subsequently rescaled using a sigmoid:

gPb(x, y, θ) =
∑

s

∑
i

βi,sGi,σ(i,s)(x, y, θ) + γ · sPb(x, y, θ) (2.8)

As with mPb (Equation 2.3), the weights βi,s and γ are learned by gradient ascent

on the F-measure using the BSDS training images.
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2.4 Results

Figure 2.10 breaks down the contributions of the multiscale and spectral signals to

the performance of gPb. These precision-recall curves show that the reduction of

false positives due to the use of global information in sPb is concentrated in the

high thresholds, while gPb takes the best of both worlds, relying on sPb in the high

precision regime and on mPb in the high recall regime.

Figure 2.2 presents a comparison of the gPb contour detector to other algorithms

on the BSDS benchmark. The mean improvement in precision of gPb with respect to

the single scale Pb is 10% in the recall range [0.1, 0.9]. Qualitatively, this improvement

translates into the reduction of clutter edges and completion of contours in the output,

as shown in Figure 2.11.
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Figure 2.10: Globalization improves contour detection. The spectral Pb detector,
derived from the eigenvectors of a spectral partitioning algorithm, improves the precision
of the local multiscale Pb signal used as input. Global Pb, a learned combination of the
two, provides uniformly better performance.
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Figure 2.11: Benefits of globalization. When compared with the local detector Pb,
our detector gPb reduces clutter and completes contours. From left to right: Original
image, thresholded Pb, thresholded gPb, and gPb. The thresholds shown correspond to
the points of maximal F-measure on the curves in Figure 2.2.
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Segmentation

3.1 Introduction

Applications such as object recognition [Rabinovich et al., 2007; Malisiewicz and

Efros, 2007; Ahuja and Todorovic, 2008; Gu et al., 2009] and monocular inference of

3D structure [Hoiem et al., 2005; Saxena et al., 2008] have led to a renewed interest

in algorithms for automatic segmentation of an image into closed regions. Segments

come with their own scale estimates and provide natural domains for computing

features used in recognition. Many visual tasks can also benefit from the reduction

in complexity achieved by transforming an image with millions of pixels into a few

hundred or thousand “superpixels” [Ren and Malik, 2003].

A broad family of approaches to segmentation involve integrating features such

as brightness, color, or texture over local image patches and then clustering those

features based on, e.g., fitting mixture models [Belongie et al., 1998; Yang et al., 2008],

mode-finding [Comaniciu and Meer, 2002], or graph partitioning [Shi and Malik, 2000;

Malik et al., 2001; Tolliver and Miller, 2006; Felzenszwalb and Huttenlocher, 2004].

While this is by no means the only approach taken (see e.g. the vast literature inspired
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by variational formulations [Mumford and Shah, 1989; Morel and Solimini, 1995] and

level set techniques [Malladi et al., 1995]), three algorithms in this category appear

to be the most widely used as sources of image segments in recent applications, due

to a combination of reasonable performance and publicly available implementations:

• Felzenszwalb and Huttenlocher (Felz-Hutt)

The graph based region merging algorithm advocated by [Felzenszwalb and

Huttenlocher, 2004] attempts to partition image pixels into components such

that the resulting segmentation is neither too coarse nor too fine. Given a graph

in which pixels are nodes and edge weights measure the dissimilarity between

nodes (e.g. color differences), each node is initially placed in its own component.

Define the internal difference of a component Int(C) as the largest weight in

the minimum spanning tree of C. Considering edges in non-decreasing order by

weight, each step of the algorithm merges components C1 and C2 connected by

the current edge if the edge weight (equivalently difference between components)

is less than min(Int(C1) + τ(C1), Int(C2) + τ(C2)) where τ(C) = k/|C|. k is

a scale parameter that can be used to set a preference for component size.

Merging stops when the difference between components exceeds the internal

component difference.

• Mean Shift [Comaniciu and Meer, 2002]

In [Comaniciu and Meer, 2002] pixels are represented in the joint spatial-range

domain by concatenating their spatial coordinates and color values into a single

vector. Applying mean shift filtering in this domain yields a convergence point

for each pixel. Regions are formed by grouping together all pixels whose conver-

gence points are closer than hs in the spatial domain and hr in the range domain,

where hs and hr are respective bandwidth parameters. Additional merging can

also be performed to enforce a constraint on minimum region area.
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• Multiscale Normalized Cuts (NCuts) [Cour et al., 2005]

In the Normalized Cuts framework [Shi and Malik, 2000] image cues are used

to define an affinity matrix W whose entries encode pixel similarity. Image

segmentation is performed by partitioning the graph G = (V, E, W ) with pix-

els as nodes V and edge weights W using the generalized eigenvectors of the

linear system (D −W )x = λDx, where Dii =
∑

j Wij. While our algorithm

integrates eigenvector information in a soft manner as explained in Section 2.3,

the standard approach directly uses the eigenvectors for segmentation.

We compare against the latest variant of such an approach [Cour et al., 2005].

The fact that W must be sparse in order to avoid a prohibitively expensive

computation, limits the naive implementation to using only local pixel affini-

ties. [Cour et al., 2005] solve this limitation by computing sparse affinity ma-

trices at multiple scales, setting up cross-scale constraints, and deriving a new

eigenproblem for this constrained multiscale Normalized Cut.

There does not appear to be a consensus about which of these algorithms is best.

[Felzenszwalb and Huttenlocher, 2004] is typically used in high recall settings to create

a gross oversegmentation into thousands of superpixels. Mean Shift and Normalized

Cuts provide better precision, but often produce artifacts by breaking large uniform

regions (e.g. sky) into chunks.

The problem of oversegmentation is common across approaches based on feature

clustering since smooth changes in texture or brightness due to perspective or shading

can cause patches to appear dissimilar despite belonging to the same image region.

Contour detection ignores such smooth variations by directly searching for locations

in the image where brightness or other features undergo rapid local changes [Canny,

1986; Perona and Malik, 1990]. These high-gradient edge fragments can then be linked

together in order to identify extended, smooth contours [Parent and Zucker, 1989;
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Williams and Jacobs, 1995; Elder and Zucker, 1996; Ren et al., 2008].

Despite the advances in contour detection discussed in Chapter 2 and summarized

by Figure 2.2, without some mechanism for enforcing closure, a segmentation built

up from locally detected contours will often mistakenly join regions due to leaks in

the bounding contour, resulting in an under-segmentation.

In this chapter, we propose an algorithm, first reported in [Arbeláez et al., 2009],

that produces a hierarchical segmentation from the output of any contour detector,

while avoiding these difficulties. We introduce a new variant of the watershed trans-

form [Beucher and Meyer, 1992; Najman and Schmitt, 1996], the Oriented Watershed

Transform (OWT), for producing a set of initial regions from contour detector out-

put. We then construct an Ultrametric Contour Map (UCM) [Arbeláez, 2006] from

the boundaries of these initial regions. This sequence of operations (OWT-UCM)

can be seen as generic machinery for going from contours to a hierarchical region

tree. Contours encoded in the resulting hierarchical segmentation retain real-valued

weights indicating their likelihood of being a true boundary. For a given threshold,

the output is a set of closed contours that can be treated as either a segmentation or

as a boundary detector for the purposes of benchmarking.

To establish the value of the OWT-UCM algorithm, we examine a number of

different benchmark metrics and standard datasets for both boundary and region

detection. Based on this extensive testing, we report two important results, illustrated

in Figure 3.1 and Figure 3.2, respectively:

• Weighted boundary maps can be converted into hierarchical segmentations

without loss of boundary precision or recall. (Section 3.2)

• Using the gPb contour detector [Maire et al., 2008] as input, our method, gPb-

owt-ucm provides a powerful mid-level grouping mechanism which outperforms

all existing segmentation algorithms. (Section 3.4)
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Figure 3.1: The OWT-UCM algorithm preserves contour detector quality. Our
algorithm (OWT-UCM) produces a hierarchical segmentation from the output of any
contour detector. Comparing the resulting segment boundaries to the original contours
shows that this method constructs regions without losing performance on the Berkeley
Segmentation Dataset (BSDS) boundary benchmark [Martin et al., 2004]. In fact, we
obtain a boost in performance when using the gPb detector [Maire et al., 2008] as input.
The quality of the contour detector (gPb vs Canny) on which we build significantly
influences the quality of the resulting segmentation.
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Figure 3.2: Evaluation of segmentation algorithms on the Berkeley Segmenta-
tion Dataset Benchmark [Martin et al., 2004]. Paired with the gPb contour detector
as input, our hierarchical segmentation algorithm gPb-owt-ucm produces segments whose
boundaries match human ground-truth better than those produced by alternative segmen-
tation approaches such as Mean Shift, Normalized Cuts, or region-merging (Felz-Hutt).

32



Chapter 3. Segmentation

3.2 Contours to Hierarchical Regions

We consider a contour detector, whose output E(x, y, θ) predicts the probability of

an image boundary at location (x, y) and orientation θ. We build hierarchical regions

by exploiting the information in this contour signal using a sequence of two transfor-

mations, the Oriented Watershed Transform (OWT) and Ultrametric Contour Map

(UCM), detailed below.

3.2.1 Oriented Watershed Transform

Using the contour signal, we first construct a finest partition for the hierarchy, an over-

segmentation whose regions determine the highest level of detail considered. This is

done by computing E(x, y) = maxθ E(x, y, θ), the maximal response of the contour

detector over orientations. We take the regional minima of E(x, y) as seed locations

for homogeneous segments and apply the watershed transform used in mathematical

morphology [Beucher and Meyer, 1992; Najman and Schmitt, 1996] on the topo-

graphic surface defined by E(x, y). The catchment basins of the minima, denoted P0,

provide the regions of the finest partition and the corresponding watershed arcs, K0,

the possible locations of the boundaries.

Figure 3.3 shows an example of the standard watershed transform. Unfortunately,

simply weighting each arc by the mean value of E(x, y) for the pixels on the arc can

introduce artifacts. The root cause of this problem is the fact that the contour detector

produces a spatially extended response around strong boundaries. For example, a

pixel could lie near but not on a strong vertical contour. If this pixel also happens

to belong to a horizontal watershed arc, that arc would be erroneously upweighted.

Several such cases can be seen in Figure 3.3. As we flood from all local minima,

the initial watershed oversegmentation contains many arcs that should be weak, yet

intersect nearby strong boundaries.
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Figure 3.3: Watershed Transform. Left: Image. Middle Left: Boundary strength
E(x, y). We regard E(x, y) as a topographic surface and flood it from its local minima.
Middle Right: This process partitions the image into catchment basins P0 and arcs K0.
There is exactly one basin per local minimum and the arcs coincide with the locations
where the floods originating from distinct minima meet. The bottom row displays a
magnified view for the upper-right portion of the image with each local minimum marked
with a red dot. Right: Each arc weighted by the mean value of E(x, y) along it. This
weighting scheme produces artifacts, such as the strong horizontal contours in the small
gap between the two statues seen in the magnified view.
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Figure 3.4: Contour subdivision. Left: Initial arcs color-coded. Middle Left: For each
arc, we consider the straight line segment connecting its endpoints. If the distance from
any point on the arc to this line segment is greater than a fixed fraction of the segment
length, we subdivide the arc at the maximally distant point. An example is shown for one
arc, with the dashed segments indicating the new subdivision. Middle Right: The final
set of arcs resulting from recursive application of the scale-invariant subdivision procedure.
Right: Approximating straight line segments overlaid on the subdivided arcs.

To correct this problem, we enforce consistency between the strength of the bound-

aries of K0 and the underlying E(x, y, θ) signal in a modified procedure, which we

call the Oriented Watershed Transform (OWT). As the first step in this reweighting

process, we estimate an orientation at each pixel on an arc from the local geometry of

the arc itself. These orientations are obtained by approximating the watershed arcs

with line segments as shown in Figure 3.4. We recursively subdivide any arc which is

not well fit by the line segment connecting its endpoints. By expressing the approxi-

mation criteria in terms of the maximum distance of a point on the arc from the line

segment as a fraction of the line segment length, we obtain a scale-invariant subdivi-

sion. We assign each pixel (x, y) on a subdivided arc the orientation o(x, y) ∈ [0, π)

of the corresponding line segment.

Next, we use the oriented contour detector output E(x, y, θ), to assign each arc

pixel (x, y) a boundary strength of E(x, y, o(x, y)). Here we quantize o(x, y) in the

same manner as θ, so this operation is a simple lookup. Finally, each original arc in

K0 is assigned weight equal to average boundary strength of the pixels it contains.

Figure 3.5 illustrates how this reweighting scheme removes artifacts.
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Figure 3.5: Oriented Watershed Transform. Left: Input boundary signal E(x, y) =
maxθ E(x, y, θ). Middle Left: Watershed arcs computed from E(x, y). Note that thin
regions give rise to artifacts. Middle: Watershed arcs with an approximating straight line
segment subdivision overlaid. We compute this subdivision in a scale-invariant manner by
recursively breaking an arc at the point maximally distant from the straight line segment
connecting its endpoints, as shown in Figure 3.4. Subdivision terminates when the distance
from the line segment to every point on the arc is less than a fixed fraction of the segment
length. Middle Right: Oriented boundary strength E(x, y, θ) for four orientations θ. In
practice, we sample eight orientations. Right: Watershed arcs reweighted according to
E at the orientation of their associated line segments. Artifacts, such as the horizontal
contours breaking the long skinny regions, are suppressed as their orientations do not
agree with the underlying E(x, y, θ) signal.
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3.2.2 Ultrametric Contour Map

Contours have the advantage that it is fairly straightforward to represent uncertainty

in the presence of a true underlying contour, i.e. by associating a binary random

variable to it. One can interpret the boundary strength assigned to an arc by the

Oriented Watershed Transform (OWT) of the previous section as an estimate of the

probability of that arc being a true contour.

It is not immediately obvious how to represent uncertainty about a segmentation.

One possibility, which we exploit here, is the Ultrametric Contour Map (UCM) [Ar-

beláez, 2006] which defines a duality between closed, non-self-intersecting weighted

contours and a hierarchy of regions. The base level of this hierarchy respects even

weak contours and is thus an oversegmentation of the image. Upper levels of the

hierarchy respect only strong contours, resulting in an under-segmentation. Moving

between levels offers a continuous trade-off between these extremes. Making this shift

in representation from a single segmentation to a nested collection of segmentations

frees later processing stages to use information from multiple levels or select a level

based on additional knowledge.

Our hierarchy is constructed by a greedy graph-based region merging algorithm.

We define an initial graph G = (P0,K0, W (K0)), where the nodes are the regions P0,

the links are the arcs K0 separating adjacent regions, and the weights W (K0) are a

measure of similarity between regions. The algorithm proceeds by sorting the links

by similarity and iteratively merging the most similar regions. Specifically:

1. Select minimum weight contour C∗ = argminC∈K0
W (C).

2. Let R1, R2 ∈ P0 be the regions separated by C∗.

3. Set R = R1 ∪R2, and update P0 ← P0\{R1, R2} ∪ {R}, and K0 ← K0\{C∗}.

4. Stop if K0 is empty. Otherwise, update weights W (K0) and repeat.
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This process produces a tree of regions, where the leaves are the initial elements of

P0, the root is the entire image domain, and the regions are ordered by the inclusion

relation.

We define similarity between two adjacent regions as the average strength of their

common boundary in K0, with weights W (K0) initialized by the OWT. Since at

every step of the algorithm all remaining contours must have strength greater than or

equal to those previously removed, the weight of the contour currently being removed

cannot decrease during the merging process. Hence, the constructed region tree has

the structure of an indexed hierarchy and can be described by a dendrogram, where

the height H(R) of each region R is the value of the similarity at which it first appears.

Stated equivalently, H(R) = W (C) where C is the contour whose removal formed R.

The hierarchy also yields a metric on P0×P0, with the distance between two regions

given by the height of the smallest segment containing them:

D(R1, R2) = min{H(R) : R1, R2 ⊆ R} (3.1)

This distance satisfies the ultrametric property:

D(R1, R2) ≤ max(D(R1, R), D(R,R2)) (3.2)

since if R is merged with R1 before R2, then D(R1, R2) = D(R,R2), or if R is

merged with R2 before R1, then D(R1, R2) = D(R1, R). As a consequence, the whole

hierarchy can be represented as an Ultrametric Contour Map (UCM) [Arbeláez, 2006],

the real-valued image obtained by weighting each boundary between two regions by

its scale of disappearance.

Figure 3.6 presents an example of our method. The UCM is a weighted contour

image that, by construction, has the remarkable property of producing a set of closed
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Figure 3.6: Hierarchical segmentation from contours. Top Left: Original image.
Top Middle: Maximal response of contour detector gPb over orientations. Top Right:
Weighted contours resulting from the Oriented Watershed Transform - Ultrametric Con-
tour Map (OWT-UCM) algorithm using gPb as input. This single weighted image encodes
the entire hierarchical segmentation. By construction, applying any threshold to it is guar-
anteed to yield a set of closed contours (the ones with weights above the threshold), which
in turn define a segmentation. Moreover, the segmentations are nested. Increasing the
threshold is equivalent to removing contours and merging the regions they separated.
Bottom: Contours and corresponding segmentations obtained by thresholding the UCM
at levels 0.1 (left), and 0.5 (right), with segments represented by their mean color.
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curves for any threshold. Conversely, it is a convenient representation of the region

tree since the segmentation at a scale k can be easily retrieved by thresholding the

UCM at level k. Since our notion of scale is the average contour strength, the UCM

values reflect the contrast between neighboring regions.

3.3 Results

While the OWT-UCM algorithm can use any source of contours, e.g. the Canny

edge detector before thresholding, for the input E(x, y, θ) signal, for best results, we

employ the gPb detector [Maire et al., 2008] introduced in the previous chapter.

We report experiments using both gPb as well as the baseline Canny detector, and

refer to the resulting segmentation algorithms as gPb-owt-ucm and Canny-owt-ucm,

respectively. Figures 3.7 and 3.8 illustrates results of gPb-owt-ucm on images from

the Berkeley Segmentation Dataset (BSDS) [Martin et al., 2001].

3.4 Evaluation

To provide a basis of comparison for the performance of the OWT-UCM algorithm, we

make use of the Felzenszwalb and Huttenlocher (Felz-Hutt) region merging [Felzen-

szwalb and Huttenlocher, 2004], Mean Shift [Comaniciu and Meer, 2002], and Multi-

scale Normalized Cuts (NCuts) [Cour et al., 2005] segmentation methods. We evalu-

ate each method using multiple benchmark criteria.

3.4.1 Benchmarks

Following Chapter 2, we again make use of the Berkeley Segmentation Dataset for

evaluation, as this large collection captures the diversity, yet high consistency, of

40



Chapter 3. Segmentation

Figure 3.7: Hierarchical segmentation results. From left to right: Original image,
Ultrametric Contour Map (UCM) produced by gPb-owt-ucm, and segmentations obtained
by thresholding at the optimal dataset scale (ODS) and optimal image scale (OIS). All
images are from the BSDS test set.
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Figure 3.8: Additional hierarchical segmentation results. From left to right:
Original image, gPb-owt-ucm, and segmentations obtained at the optimal dataset scale
(ODS) and optimal image scale (OIS). All images are from the BSDS test set.
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human segmentation. However, in addition to the standard metric for boundary

quality, we also examine metrics for comparing regions against human ground-truth.

3.4.1.1 Precision-Recall on Boundaries

Remember from Section 2.1, that the the boundary-based evaluation methodology de-

veloped by [Martin et al., 2004] measures detector performance in terms of precision

and recall, where precision is the fraction of true positives and recall the fraction of

ground-truth boundaries detected. The global F-measure, or harmonic mean of pre-

cision and recall at the optimal detector threshold (scale), provides a useful summary

score.

In our experiments, we report three different quantities for an algorithm: the

Optimal Dataset Scale (ODS) or best F-measure on the dataset for a fixed scale,

the Optimal Image Scale (OIS) or aggregate F-measure on the dataset for the

best scale in each image, and the Average Precision (AP) on the full recall range

(equivalently, the area under the precision-recall curve), shown in Table 3.1 for the

BSDS.

This benchmarking system possesses the appealing property that it allows the

comparison of region-based segmentation and contour detection methods in the same

framework. Any segmentation algorithm automatically provides contours in the form

of the boundaries of the regions in the segmentation. Figure 3.1 takes advantage of

this fact to compare the boundaries produced by the OWT-UCM algorithm to the

contours used as input. This comparison shows that we can transform contours to

regions while preserving boundary quality and actually obtaining a small improvement

in the case of gPb-owt-ucm.

However, for segmentation algorithms, a methodology that directly evaluates the

quality of the segments is also desirable. Some types of errors, e.g. a missing pixel

in the boundary between two regions, may not be reflected in the boundary bench-
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Method ODS OIS AP
human 0.79 0.79 −
gPb-owt-ucm 0.71 0.74 0.77
Mean Shift 0.63 0.66 0.62
NCuts 0.62 0.66 0.59
Canny-owt-ucm 0.58 0.63 0.59
Felz-Hutt 0.58 0.62 0.54
gPb 0.70 0.72 0.75
Canny 0.58 0.62 0.60

Table 3.1: Boundary benchmarks on the BSDS. We benchmark boundaries produced
by five different segmentation methods (upper table) and two contour detectors (lower
table). Shown are the F-measures when choosing an optimal scale for the entire dataset
(ODS) or per image (OIS), as well as the average precision (AP). Figures 3.1 and 3.2
show the full precision-recall curves for the boundaries produced by these algorithms.

mark, but can have substantial consequences for segmentation quality, e.g. incorrectly

merging two large regions. It can also be argued that the boundary benchmark fa-

vors contour detectors over segmentation methods, since the former are not burdened

with the constraint of producing closed curves. We therefore also consider various

region-based metrics.

3.4.1.2 Variation of Information

This metric was introduced for the purpose of clustering comparison. It measures

the distance between two segmentations in terms of their average conditional entropy

given by:

V I(C, C ′) = H(C) + H(C ′)− 2I(C, C ′) (3.3)

where H and I represent respectively the entropies and mutual information between

two clusterings of data C and C ′. In our case, the two clusterings are test and ground-

truth segmentations. Although V I possesses some interesting theoretical properties

[Meila, 2005], its perceptual meaning and applicability in the presence of several
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Figure 3.9: Evaluating regions on the BSDS. Contour detector influence on seg-
mentation quality is evident when benchmarking the regions of the resulting hierarchical
segmentation. Left: Probabilistic Rand Index. Right: Variation of Information.

ground-truth segmentations remains unclear.

3.4.1.3 Rand Index

Originally, the Rand Index [Rand, 1971] was introduced for general clustering eval-

uation. It operates by comparing the compatibility of assignments between pairs of

elements in the clusters. In our case, the Rand Index between test and ground-truth

segmentations S and G is given by the sum of the number of pairs of pixels that have

the same label in S and G and those that have different labels in both segmentations,

divided by the total number of pairs of pixels. Variants of the Rand Index have

been proposed [Unnikrishnan et al., 2007; Yang et al., 2008] for dealing with the case

of multiple ground-truth segmentations. Given a set of ground-truth segmentations

{Gk}, the Probabilistic Rand Index is defined as:

PRI(S, {Gk}) =
1

T

∑
i<j

[cijpij + (1− cij)(1− pij)] (3.4)
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Method ODS OIS Best PRI VI
human 0.73 0.73 − 0.87 1.16
gPb-owt-ucm 0.58 0.64 0.74 0.81 1.68
Mean Shift 0.54 0.58 0.64 0.78 1.83
Felz-Hutt 0.51 0.58 0.68 0.77 2.15
Canny-owt-ucm 0.48 0.56 0.67 0.77 2.11
NCuts 0.44 0.53 0.66 0.75 2.18

Table 3.2: Region benchmarks on the BSDS. For each segmentation method, the
leftmost three columns report the score of the covering of ground-truth segments according
to optimal dataset scale (ODS), optimal image scale (OIS), or Best covering criteria. The
rightmost two columns compare the segmentation methods against ground-truth using the
probabilistic Rand Index (PRI) and Variation of Information (VI) benchmarks, respectively.

where cij is the event that pixels i and j have the same label and pij its probability. T is

the total number of pixel pairs considered. When the sample mean is used to estimate

pij, Equation 3.4 amounts to averaging the Rand Index among different ground-truth

segmentations. However, the PRI has been reported to suffer from a small dynamic

range [Unnikrishnan et al., 2007; Yang et al., 2008], and its values across images and

algorithms are often very similar. In [Unnikrishnan et al., 2007], this drawback is

addressed by normalization with an empirical estimation of its expected value.

3.4.1.4 Segmentation Covering

The overlap between two regions R and R′, defined as:

O(R,R′) =
|R ∩R′|
|R ∪R′|

(3.5)

has been used for the evaluation of the pixel-wise classification task in recognition

[Malisiewicz and Efros, 2007; Everingham et al., 2008].
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We define the covering of a segmentation S by a segmentation S ′ as:

C(S ′ → S) =
1

N

∑
R∈S

|R| · max
R′∈S′

O(R,R′) (3.6)

where N denotes the total number of pixels in the image.

Similarly, the covering of a machine segmentation S by a family of ground truth

segmentations {Gi} is defined by, first covering S separately with each human map

{Gi} in turn, and then averaging over the different humans, so that to achieve perfect

covering the machine segmentation must explain all of the human data.

We can then define two quality descriptors for regions: the covering of S by {Gi}

and the covering of {Gi} by S. We include results for the latter. For a family of

machine segmentations {Si}, corresponding to different scales of a hierarchical algo-

rithm or different sets of parameters, we report the Optimal Dataset Scale (ODS),

Optimal Image Scale (OIS), and the Best possible covering of the ground-truth

by segments in {Si}.

Figure 3.9 and Table 3.2 present region benchmarks on the BSDS. While the

relative ranking of segmentation algorithms remains fairly consistent across different

benchmark criteria, the boundary benchmark (Table 3.1) appears most capable of

discriminating performance.

3.4.2 Additional Datasets

We concentrated experiments on the BSDS because it is the most complete dataset

available for our purposes, has been used in several publications, and has the advan-

tage of providing several human-labeled segmentations per image. Table 3.3 reports

the comparison between Canny-owt-ucm and gPb-owt-ucm on two other publicly

available datasets:
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MSRC ODS OIS Best
gPb-owt-ucm 0.66 0.75 0.78
Canny-owt-ucm 0.57 0.68 0.72

PASCAL 2008 ODS OIS Best
gPb-owt-ucm 0.45 0.58 0.61
Canny-owt-ucm 0.40 0.53 0.55

Table 3.3: Region benchmarks on MSRC and PASCAL 2008. Shown are scores for
the segment covering criteria used in Table 3.2.

• MSRC [Shotton et al., 2006]

The MSRC object recognition database is composed of 591 natural images with

objects belonging to 21 classes. We evaluate performance using the ground-

truth object instance labeling of [Malisiewicz and Efros, 2007], which is cleaner

and more precise than the original data.

• PASCAL 2008 [Everingham et al., 2008]

We use the train and validation sets of the segmentation task on the PASCAL

challenge 2008, composed of 1023 images. This is one of the most difficult and

varied datasets for recognition. We evaluate performance with respect to the

object instance labels provided. Note that only objects belonging to the 20

categories of the challenge are labeled, and 76% of all pixels are unlabeled.

The gPb-owt-ucm segmentation algorithm offers the best performance on every

dataset and for every benchmark criterion we tested. In addition, it is straight-

forward, fast, has no parameters to tune, and, as discussed in the next section, sup-

ports interactive user refinement. Our generic segmentation machinery has found use

in optical flow [Brox et al., 2009] and object recognition [Gu et al., 2009] applications.
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3.5 Interactive Segmentation

Until now, we have only discussed fully automatic image segmentation. Human as-

sisted segmentation is relevant for many applications, and recent approaches rely

on the graph-cuts formalism [Boykov and Jolly, 2001; Rother et al., 2004; Li et al.,

2004] or other energy minimization procedure [Bagon et al., 2008] to extract single

foreground regions.

For example, [Boykov and Jolly, 2001] cast the task of determining binary fore-

ground/background pixel assignments in terms of a cost function with both unary

and pairwise potentials. The unary potentials encode agreement with estimated fore-

ground or background region models and the pairwise potentials bias neighboring

pixels not separated by a strong boundary to have the same label. They transform

this system into an equivalent minimum cut/maximum flow graph partitioning prob-

lem through the addition of a source node representing the foreground and a sink

node representing the background. Edge weights between pixel nodes are defined by

the pairwise potentials, while the weights between pixel nodes and the source and

sink nodes are determined by the unary potentials. User-specified hard labeling con-

straints are enforced by connecting a pixel to the source or sink with sufficiently large

weight. The minimum cut of the resulting graph can be computed efficiently and

produces a cost-optimizing assignment.

It turns out that the segmentation trees generated by the OWT-UCM algorithm

provide a natural starting point for user-assisted refinement. Following the procedure

of [Arbeláez and Cohen, 2008], we can extend a partial labeling of regions to a full

one by assigning to each unlabeled region the label of its closest labeled region, as

determined by the ultrametric distance (Equation 3.1). Computing the full labeling

is simply a matter of propagating information in a single pass along the segmentation

tree. Each unlabeled region receives the label of the first labeled region merged with
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Figure 3.10: Interactive segmentation. Left: Original image. Middle: UCM pro-
duced by gPb-owt-ucm (grayscale) with additional user annotations (color dots and lines).
Right: The region hierarchy defined by the UCM allows us to automatically propagate
annotations to unlabeled segments, resulting in the desired labeling of the image with
minimal user effort.
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it. This procedure, illustrated in Figure 3.10, allows a user to obtain high quality

results with minimal annotation.

3.6 Regions vs Bounding Boxes

Scanning approaches, which exhaustively sample image windows over a large range of

positions, scales, and aspect ratios, feeding each to a classifier, have been a dominant

strategy in many object recognition settings. This includes face [Viola and Jones,

2004] and pedestrian [Dalal and Triggs, 2005] detection, and the PASCAL challenge

[Felzenszwalb et al., 2008]. As the number of categories a recognition system is

expected to handle increases, it is unclear whether such a brute force approach is

capable of scaling well. Classifier cascades [Viola and Jones, 2004] or branch and

bound search strategies [Lampert et al., 2008] may help, but it seems unnecessary to

place the entire burden on the classification machinery without taking advantage of

perceptual cues.

Here, we conduct some initial experiments in an attempt to determine whether

automatically generated regions can serve as a replacement for the scanning window

approach. In particular, do regions provide sufficient coverage of objects in a scene so

that one could feed the regions to a classifier instead of sampling windows? Further-

more, can this be accomplished with relatively few (as compared to sliding windows)

regions per scene?

As a test, we consider the segmentation subset of the PASCAL 2008 dataset [Ev-

eringham et al., 2008] and ask what is the best overlap, as defined by the intersection

over union criterion (Equation 3.5), of a region with the human-marked ground-truth

segmentation? We ask the same question for bounding boxes. The answer should

yield an idea of the maximum recall one can expect when using either regions or

sliding windows, respectively, as interest operators for an object detector.
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Region Selection Method Mean Overlap Average # Regions per Image
Bounding Box (oracle) 0.62 −
Best Box (oracle) 0.66 −
gPb-owt-ucm tree (all scales) 0.67 2138
gPb-owt-ucm tree (scale 1) 0.60 1552
gPb-owt-ucm tree (scale 0.5) 0.61 452
gPb-owt-ucm tree (scale 0.25) 0.61 134

Table 3.4: Regions provide recall comparable to sliding windows on PASCAL
2008. Selecting the region best overlapping with the ground-truth segmentation achieves
about the same degree of overlap as the optimal box chosen by an oracle. This is true when
one is given the freedom to select the region from any of three hierarchical segmentation
trees, constructed from resized versions of the original image.

Now, let’s bias this benchmark in favor of sliding windows by assuming we have

an oracle that tells us the true bounding box (location, size, and aspect ratio) for each

ground-truth region. We compare this oracle to our actual algorithm (gPb-owt-ucm)

for generating regions. The only penalty the bounding box oracle pays is for inclusion

of background pixels. Let’s also consider a “best box” oracle that is allowed to shrink

the bounding box inward, maintaining the same aspect, to improve the ratio of object

to background pixels.

Since objects may appear at different scales, we pick the best overlapping region

appearing anywhere in the hierarchical segmentation tree output of the gPb-owt-ucm

algorithm. Moreover, since the PASCAL dataset contains a larger range of object

scale than BSDS, we compute three different segmentation trees, one each on the

original image and images downsampled by factors of 0.5 and 0.25 in each dimension.

The cost of examining more regions in this manner will have to be justified by better

coverage.

Table 3.4 presents the results of this experiment. In computing the mean overlap

scores, we weight each ground-truth object by its total area, so that detecting large

objects is more important than detecting small ones. Selecting the best region over
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the three segmentation trees on average performs slightly better than the best box

oracle and significantly better than the bounding box oracle. Figures 3.11 and 3.12

provide a visual comparison.

Furthermore, to achieve the performance of the oracle in practice, one would have

to sample bounding boxes over location, scale, and aspect ratio, producing far more

candidates than the number of regions considered. Also note that of the on average

2138 regions examined per image across all scales, some are similar to one another.

Thus, the list of candidate regions could likely be further pruned without much of a

decrease in overlap score.
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Ground-truth gPb-owt-ucm tree
Segmentation Bounding Box scale 1 scale 0.5 scale 0.25

0.31 0.34 0.25 0.40

0.42 0.80 0.62 0.50

0.31 0.46 0.53 0.50

0.44 0.47 0.84 0.71

0.43 0.53 0.56 0.48

0.57 0.94 0.92 0.85

Figure 3.11: Region selection results on PASCAL 2008. From each of three dif-
ferent hierarchical segmentation trees, created by running the gPb-owt-ucm algorithm on
rescaled versions of the original image, we select the region best overlapping the ground-
truth segmentation. Overlap (intersection divided by union) scores are displayed below
each region. The best region tends to score better than the ground-truth bounding box.
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Ground-truth gPb-owt-ucm tree
Segmentation Bounding Box scale 1 scale 0.5 scale 0.25

0.70 0.83 0.77 0.85

0.62 0.56 0.54 0.46

0.51 0.86 0.84 0.65

0.44 0.51 0.53 0.51

0.39 0.55 0.48 0.60

0.34 0.41 0.48 0.76

0.61 0.38 0.57 0.59

0.58 0.67 0.68 0.78

Figure 3.12: Additional region selection results on PASCAL 2008.
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Extensions to Video

4.1 Introduction

Biological vision systems make use of optical flow for a number of purposes, such as

egomotion estimation and scene structure recovery, the latter including both metric

depth estimates and ordinal relationships like figure/ground. In this chapter, we

focus particularly on the role of motion for grouping and figure/ground assignment.

The importance of motion cues in these tasks is a classic point in the psychophysical

literature. Koffka stated the Gestalt principle of “common fate” where similarly

moving points are perceived as coherent entities [Koffka, 1935], and grouping based

on motion was emphasized by numerous other works including Gibson, who also

pointed out occlusion/disocclusion phenomena. In contrast to color and stereopsis,

which also help to separate different objects, motion is a cue shared by all visual

species - a fact that emphasizes its importance in biological systems.

In the computational vision literature, much work has dealt with the problem of

optical flow estimation over the past three decades, and there have been numerous ap-

proaches to make use of the optical flow field for grouping [Darrell and Pentland, 1991;
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Shi and Malik, 1998; Smith et al., 2004; Xiao and Shah, 2005; Cremers and Soatto,

2005]. Most of them are similar to the work of [Wang and Adelson, 1994], which

proposes to partition the image into motion layers by clustering similar optical flow

vectors according to a parametric motion model. While this approach is attractive in

the sense that it directly provides object regions, there are many cases that are not

properly captured by parametric models. To deal with this shortcoming, [Weiss, 1997]

suggested a nonparametric version of layered motion, where each layer is described

by a smooth flow field. Similar techniques based on level sets have been presented in

[Amiaz and Kiryati, 2006; Brox et al., 2006]. The problem with these nonparametric

layer models is the susceptibility of the EM procedure to local minima, particularly

in areas of the image with little structure.

An alternative strategy is to detect occlusion edges and to infer layers from these

edges afterwards, if needed. As demonstrated in the previous chapter, such a strategy

works well for segmentation of static images [Arbeláez et al., 2009], and it makes even

more sense for grouping based on motion cues, where additional difficulties due to

the aperture problem limit the reliability of typical EM style procedures.

Only a few papers have dealt with explicitly detecting occlusion boundaries based

on motion cues and assigning figure/ground labels to both sides of these boundaries.

In [Black and Fleet, 2000], initial motion boundaries are obtained from a motion

estimator and then serve a probabilistic state model that can finally distinguish oc-

clusion boundaries from internal boundaries and can assign figure/ground labels to

the regions on both sides of the edge. A particle filter approach is employed to deal

with the complex, multi-modal distributions in the high-dimensional state space. In

[Gaucher and Medioni, 1999], tensor voting yields optical flow estimates together with

an uncertainty measure based on the homogeneity of the votes. Occlusion boundaries

are assumed to be maxima in the uncertainty measure. Both [Black and Fleet, 2000]

and [Gaucher and Medioni, 1999] do not make use of static cues. Since the optical
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flow as a secondary feature requires integration over a spatial domain to deal with

the aperture problem, edges based only on motion estimates are usually inaccurate

and dislocated in the normal direction of the occluding edge.

In contrast, [Smith et al., 2004] present a method that relies only on static edges

and their motion. Edges are computed by the Canny edge detector and an affine

motion model for edge fragments is computed via block matching. The authors also

provide a depth ordering of both sides of an edge by reasoning at t-junctions. The

work of [Stein and Hebert, 2009] also makes use of a static edge detector from [Martin

et al., 2004] to obtain an initial set of potential occlusion boundaries. They then learn

a classifier that distinguishes occlusion boundaries from internal edges based on both

static and motion features.

We make three distinct contributions. First, we extend the gPb boundary detec-

tor [Maire et al., 2008] of Chapter 2 to exploit motion cues in video. Only low-level

motion cues are taken into account at this stage, as the goal is simply to augment the

static cues and provide a more robust set of boundaries to our module for occlusion

reasoning. Second, we propose a technique for distinguishing occlusion boundaries

from internal boundaries based only on optical flow that clearly outperforms the

most recent work by [Stein and Hebert, 2009] on their data set. Finally, we assign

figure/ground labels to both sides of each occlusion boundary and we provide a new

labeled dataset for evaluating performance on this task. This dataset can be regarded

as a video counterpart to the Berkeley Segmentation data set on static images [Mar-

tin et al., 2001]. Given the importance of occlusion boundaries and figure/ground

assignments for visual perception, we believe this data will be helpful in comparing

alternative algorithms and advancing research in the field.
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4.2 Motion Gradient

Edge detection was one of the earliest problems addressed in computer vision, yet

current contour detectors, discussed in Chapter 2, are designed for analyzing single

images and rely only on static cues such as brightness, color, and texture. When

working with video, we have the additional cue of motion and would like to take

advantage of it at all levels of processing involved in figure/ground labeling, starting

with the boundary detection task itself.

We find biological motivation for this strategy as there is evidence that motion

serves as an important low-level cue for human vision. For example, Figure 4.1 illus-

trates the extreme case of a uniformly textured object moving in front of a background

with the same uniform texture. Here, there are no static cues, yet humans easily per-

ceive the motion of the foreground object when viewing the video sequence. We

compute a new cue, which we refer to as the motion gradient, that correctly detects

the boundary of this moving object in each frame.

Our motion gradient signal can be thought of as a temporal analog to the bright-

ness, color, and texture gradients introduced in Section 2.2.1. To compute the motion

gradient for grayscale video frame It, we first compute temporal derivatives with re-

spect to the previous and subsequent frames:

D− = It − It−1 (4.1)

D+ = It − It+1 (4.2)

Then, we consider the oriented gradient operator from Section 2.2.1, Gr(x, y, θ), which

measures the χ2 difference of the histograms of values in the two halves of a radius

r disc centered at (x, y) and divided by a diameter at angle θ. We sample θ for 8

orientations in the interval [0, π) and apply this gradient operator to D− and D+ to
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Figure 4.1: Boundary detection in the absence of static cues. Consider a textured
background (left) and an identically textured foreground object (middle-left) moving in
front of it. Three frames of this motion sequence are shown (middle to right). Humans
easily detect the moving square from the video sequence despite the uniform appearance
of any single frame. Our motion gradient cue (shown in blue) successfully detects the
object boundary. Ground-truth locations of the object center are marked in green.

produce motion gradients MG−(x, y, θ) and MG+(x, y, θ), respectively.

Gradients MG− and MG+ both contain double responses to moving boundaries

as there is a large temporal difference between any two consecutive frames at both

the old and new locations of a boundary. However, these double responses occur at

different spatial locations in MG− and MG+. Each moving edge is detected at three

spatial locations, two of which appear in MG− and two of which appear in MG+. The

detection common to both MG− and MG+ is the true location of the edge at time t.

By taking the geometric mean of these signals we suppress the spurious responses

while preserving the correct one, resulting in the motion gradient:

MG(x, y, θ) =
√

MG−(x, y, θ) ·MG+(x, y, θ) (4.3)

Figure 4.2 shows an example of the motion gradient applied to a real video se-

quence. Note that it is not our intention to detect occlusion boundaries at this stage.

Rather, the motion gradient is designed to respond strongly at any edge which moves

relative to the camera. For this reason, MG picks up the surface markings on the

tennis court. At the same time, it serves to enhance the actual occlusion boundaries
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Figure 4.2: Motion gradient. Top: Three consecutive frames from video of a tennis
player. The large frame to frame displacement of the tennis ball, tennis racket, and
person’s arms and legs make this a challenging sequence. Bottom Left and Right
(red): Gradient operator applied to the temporal differences between the center frame
and those immediately before and after. We show MG−(x, y) = maxθ{MG−(x, y, θ)}
and MG+(x, y) = maxθ{MG+(x, y, θ)}, respectively. Both MG− and MG+ contain
double images of the moving boundaries. Bottom Center (blue): A motion boundary
in the current frame should be detected as differing from both the previous frame and
subsequent frame. We compute MG using the geometric mean of MG− and MG+ as
a soft “and” operation and display MG(x, y) = maxθ{MG(x, y, θ)}. Double boundaries
are eliminated and those surviving in MG are correctly aligned with the current frame.

on the person and provides robustness against cases in which static cues are weak

or nonexistent (Figure 4.1). The main concern is to utilize the motion gradient to

improve the quality and reliability of the boundary map upon which our occlusion

reasoning machinery will depend.

Following the framework of Chapter 2, we add the motion gradient as an additional

channel alongside the static brightness, color, and texture cues, and pass these local

cues through the same sequence of steps for combining them with the result of a

spectral partitioning process. We use gPb+mg to refer to contours created using
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both the static cues and motion gradient. We then utilize the OWT-UCM machinery

of Chapter 3 to transform the output of the gPb+mg boundary detector into an

Ultrametric Contour Map (UCM) defining a hierarchical segmentation. This data

structure determines the edge fragments and associated regions that we classify in

the occlusion reasoning and figure/ground stages.

4.3 Occlusion Boundary Detection

In contrast to other recent work [Stein and Hebert, 2009], our occlusion reasoning

stage utilizes a straightforward classification technique whose power lies in its ability

to exploit two key components: the boundary detector discussed in the previous

section, and the variational optical flow method of [Brox et al., 2004]. Given both

reliable prior boundaries gPb+mg and a reliable, dense optical flow field (u, v)> :=

w : (Ω ⊂ R2) → R2, we are able to judge whether an edge is an occlusion boundary

by looking at the difference between the flows in the regions on either side of that

edge.

We begin by estimating the neighboring region motions at each point on every

edge fragment from w. We need to ensure that the estimate not be polluted by the

motion of the edge itself, or by the motion of the opposing region. In order to do

this, we define a weighted filter wi(x, y) for each edge point pi = (xi, yi) and region

R neighboring pi as follows:

wR
i (x, y) =

1

Z
exp

(
−(x− xi)

2 + (y − yi)
2

2σ2
w

)
δ(r(x, y), R)id(x, y) (4.4)

where δ is the Kronecker delta function, r(x, y) is the region assignment for pixel

location (x, y), and id(x, y) is 1 for pixels internal to any region, defined as being at

least d pixels away from any region boundary, and 0 otherwise. In this work, we use
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d = 2. While it is reasonable to vary σw, combining windowing functions of different

scales, in our experiments we did not observe a significant change when doing so.

This is most likely due to the optical flow method from [Brox et al., 2004] already

considering multiple scales. Experiments reported here all use σw = 4.

Given the weights wi, we use weighted least squares to fit a plane to the u and v

flow components as functions of x and y, minimizing:

eR
u =

∑
(x,y)

wR
i (x, y)(AR

u x + BR
u y + CR

u − u(x, y))2 (4.5)

eR
v =

∑
(x,y)

wR
i (x, y)(AR

v x + BR
v y + CR

v − v(x, y))2 (4.6)

and finally describe the flow of a region R by this affine model:

(uR
i , vR

i ) = (AR
u xi + BR

u yi + CR
u , AR

v xi + BR
v yi + CR

v ) (4.7)

This step is critical, since we do not measure the region flow at any points closer

than d pixels away from the boundary, and many common camera and object motions

lead to flow vectors which vary spatially. In addition, the resulting error terms eR
u

and eR
v serve as measures of the certainty of the flow estimate.

For each edge point indexed by i, we compute the two flow vectors wr1
i := (ur1

i , vr1
i )

and wr2
i := (ur2

i , vr2
i ) on the edge point from the affine coefficients from above. Given

these vectors and their associated errors, we can test the hypothesis that the vectors

are the same. Here we assume that the flow vectors are drawn from a Gaussian

distribution, and use a t-test to compare them. The test statistic is:

t2 =
1

2
d>S−1d (4.8)

where d = wr1
i −wr2

i is the difference between the flow vectors and S is the pooled
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Figure 4.3: Occlusion boundary detection benchmark. Left: Precision-recall curves
for the occlusion boundary detection task reported by [Stein and Hebert, 2009]. On the
same dataset, our occlusion boundary detection algorithm significantly outperforms the
state-of-the-art results reported by Stein and Hebert. It is important to note here that
while we include the curve reported by [Stein and Hebert, 2009], neither the exact bench-
marking code nor the output of Stein and Hebert’s algorithm was publicly available. To
obtain their curve, they map ground-truth labels to edge fragments in an oversegmenta-
tion and plot the classification accuracy on the fragments. We present results using the
BSDS [Martin et al., 2004] benchmark code, which requires pixel-to-pixel correspondence.
We believe it is fair to say that our benchmarking technique is stricter than that of [Stein
and Hebert, 2009] and that the performance gap is at least as large as illustrated here.
Right: Results on our own dataset. Both our motion gradient cue mg and occlusion
classifier contribute to improving performance.

covariance matrix, in which we have included the error terms from above:

S =
2∑

k=1

(wrk − w̄)(wrk − w̄)> +

er1
u + er2

u 0

0 er1
v + er2

v

 (4.9)

where w̄ denotes the average of the two vectors wr1 and wr2 .

Given t2, we can compute the probability p(motion) = Pr(x ≥ t2) by looking up

the cdf of the T 2 distribution. This value measures the probability that we would

have observed values at least as different as the ones we did, and we use this one-sided
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test to identify boundaries which we have strong reason to believe are moving. Note

that a low value of p(motion) does not mean that the edge is not moving, it simply

means we have no evidence that it is moving. Finally, we use the strength of the

edge as measured by the boundary detector (either gPb or gPb+mg) as a prior p0,

resulting in the following per-pixel measurement of whether this edge is a moving

occlusion edge:

p(occlusion) =
p(motion)p0

p(motion)p0 + (1− p(motion))(1− p0)
(4.10)

where the denominator is a normalization term to account for the fact that the t-test

produces a one-sided probability.

It should be noted that this method not only suppresses internal edges, but non-

moving true occlusion edges as well. Despite this, as Figure 4.3 shows, it clearly

outperforms both the original boundary detector and [Stein and Hebert, 2009] on

their occlusion benchmark. It is also worth noting that while [Stein and Hebert,

2009] used video sequences of a dozen frames or more, we get our result using only

two frames (three frames if using gPb+mg). Figure 4.4 displays the results of our

occlusion classifier on some frames from the dataset of [Stein and Hebert, 2009] as

well as our own dataset.

If desired, we can use these occlusion edges to improve the optical flow field by

reducing smoothing across these edges. As Figure 4.5 shows, this increases the perfor-

mance of the variational optical flow method on the standard Middlebury benchmark

[Baker et al., 2007]. In contrast, reducing smoothing across all gPb edges, including

internal edges, is actually inferior to the original method from [Brox et al., 2004].
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Figure 4.4: Occlusion boundary detection results. From left to right: Two consec-
utive video frames, Ultrametric Contour Map for the first frame created from the gPb+mg
contour detector, and boundaries reweighted according to our occlusion classifier.
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Figure 4.5: Middlebury flow benchmark results. Reducing spatial integration at the
detected occlusion boundaries improves the accuracy of the optical flow field (occedge),
whereas an edge detector that does not distinguish between occlusion edges and internal
edges (pb) yields inferior results than the baseline method from [Brox et al., 2004].

4.4 Figure/Ground Labeling

Once we know that a moving edge is an occlusion edge, we can determine which side

of the edge is the occluding foreground object and which side belongs to the back-

ground, thereby obtaining a depth ordering of the attached regions. There have been

previous attempts on assigning figure/ground labels to both sides of an edge based

on static cues [Ren et al., 2006; Hoiem et al., 2007], which is a difficult task with

many ambiguities. The task becomes trivial in a stereo setting with estimated dis-

parities. In a monocular setting, motion cues provide rich information to decide upon

figure/ground. Obviously, an occluding edge moves the same way as the occluding

region next to it. Thus, a decision can be inferred from the motion of the two regions

as well as the motion of the occluding edge.

In the previous section, we already discussed how the motion of a region can be

obtained from an optical flow field without too much interference from edge motion.

Thus, all we need here for the figure/ground assignment is the motion directly on

the edge. [Smith et al., 2004] and [Liu et al., 2006] both show how to compute the
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Figure 4.6: Figure/ground classification performance. We show figure/ground per-
formance as a function of occlusion edge recall. In our framework, occlusion edge detection
and figure/ground classification both depend on motion. The edges which are most eas-
ily detected are also the ones where figure/ground is most easily assigned. As a result,
classification performance decreases along with occlusion edge detection confidence.

motion of an edge. In particular [Liu et al., 2006] takes some effort to estimate the

edge motion from edge cues only. Moreover, they deal with special cases such as

illusory boundaries. Here, we are interested in a methodology that is most consistent

with the way we estimated the motion of the regions, in order to compare them.

Thus, it is natural to simply consider the optical flow on the edge in order to obtain

the edge motion (ue
i , v

e
i ) at each edge pixel i. Actually, this makes sense because the

flow estimates obtained by the variational technique are most reliable on edges.

For each edge fragment we compute two distances, each between the motion of
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Figure 4.7: Figure/ground classification results. We show figure/ground classification
results for detected occlusion boundaries with strength above 0.2 for a subset of frames
from Figure 4.4. Green and red markings indicate the figure and ground sides of each
boundary, respectively.

the edge and the respective region:

d2(e, rk) =
1

n

n∑
i=1

[
(ue

i − urk
i )2 + (ve

i − vrk
i )2

]
(4.11)

where n is the number of edge pixels on this edge fragment. Finally, we assign the

edge to the region with the smaller distance.

As there is no dataset yet for a quantitative evaluation of this task, we created
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one consisting of 20 images with labeled occlusion boundaries as well as non-occlusion

boundaries, and figure/ground assignments associated to occlusion edges. Figure 4.6

shows a plot of the performance on this dataset. The results are far above chance level,

which is at 0.5. Some sample figure/ground assignments are shown in Figure 4.7.

Occlusion boundaries and figure/ground knowledge may prove to be a promising

way to extract objects from video in an unsupervised fashion. Fully unsupervised

segmentation from static images is difficult, yet motion is a reliable cue for this task.

Further development of an automated video segmentation engine could provide a

boost to object recognition, enabling the discovery and learning of object categories

from vast archives of video data.
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[Arbeláez et al., 2009] Pablo Arbeláez, Michael Maire, Charless Fowlkes, and Jiten-
dra Malik. From contours to regions: An empirical evaluation. CVPR, 2009.
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