
Power Optimization – a Reality Check

Stephen Dawson-Haggerty
Andrew Krioukov
David E. Culler

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2009-140

http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-140.html

October 19, 2009



Copyright © 2009, by the author(s).
All rights reserved.

 
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.



Power Optimization – a Reality Check

Stephen Dawson-Haggerty, Andrew Krioukov, David Culler

Computer Science Division

University of California, Berkeley

{stevedh,krioukov,culler}@cs.berkeley.edu

Abstract

A flurry of recent work has examined the interac-
tion between system design and power optimization,
with the promise of energy savings. We find that the
power consumed by current commodity hardware can
be well-approximated by a model with two compo-
nents: a large always-present constant power and a
linear power-performance tradeoff. As a result, many
proposed optimizations currently have limited value
and the best possible approach is the so-called “race
to sleep” model of computation. We survey several
recently-released computer systems in support of this
conclusion and briefly examine the most important
targets for future work.

1 Introduction

Power has become the critical resource in computer
systems, whether we look at lifetime for portable de-
vices or heat generation and data center efficiency
at the high end. Leading microprocessor vendors are
making huge investments to improve the power profile
of their products, numerous operating system and ap-
plication software enhancements are being announced
and a veritable cottage industry of academic papers
on power optimizations has emerged, addressing con-
cerns at every level of the system stack. But all too
often the results presented are not in terms of ac-
tual power saved or energy consumed, but in terms of
proxies for power consumption [6], power consumed
by specific subsystems [9, 10], or simulations based on
idealized power models [4, 14]. There is good reason
for this situation. Reducing the energy and power
consumption of whole systems in reality is hard. A
form of Amdahl’s law is at work; if any portion of the
system consumes power without optimization, it will
come to dominate as the rest of the system improves.
However, a reality check is healthy because it can

cause us to focus on approaches and optimizations
that really matter.

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

Performance (%)

S
y
st

e
m

 P
o

w
e

r 
(%

 o
f 

p
e

a
k
)

 

 

Typical

Proportional

Hypothetical

Figure 1: Potential power models

For example, if we assume an ideal scenario where
the power consumed by the system is strictly propor-
tional to performance delivered, zero power is con-
sumed when idle and the transition from idle to ac-
tive is instantaneous (illustrated in Figure 1) then
almost none of the sophisticated power optimizations
in the literature matter. For a given amount of work
performed over a given amount of time, the total en-
ergy consumed, the average power consumed, even
the total heat generated is the same whether we run
as fast as possible and sleep for the rest, run as slow
as possible and never sleep, or anything in between.
We might as well just optimize for performance, run
as fast as possible and then sleep as long as we can.
Most power optimization proposals assume a super-
idealized scenario where the power-per-performance
curve is concave upward. Then there is a sweet
spot where we run “just fast enough.” In reality
the picture is simpler and grimmer. The power-vs-

1



performance curve is nearly linear and it has a huge
constant component.

With a constant power penalty at any level of per-
formance, hurry-up-and-sleep is the best available op-
timization. But unfortunately the time to go to deep
sleep and wake up is non-trivial. The whole sys-
tem is hugely power sub-proportional. The attention
paid to the microprocessor power optimization has
yielded tremendous improvement in processors, but
the power is being spent elsewhere. Until we attend
to non-processing parts – the hardware and software
“glue”, the transition time, and the idle power – few
of the HotPower optimizations will matter.

An indication of this reality check for the previ-
ous generation of servers that are currently deployed
on the field is shown in Figure 3. The figure shows,
for a variety of models, the power consumed when
the machine was as idle as we could make it versus
the power consumed when it is totally pegged. The
gap is small: 10-25%. This fact is well understood
by industry and substantial improvements have been
made. Thus, we illustrate the reality check through
study of two highly optimized complete systems re-
cently introduced on the market. At one extreme, op-
timized for low power while maximizing performance
to the extent possible, is the Atom 330 microproces-
sor and 945CG chipset introduced in June 2008. At
the other, optimized for high performance while min-
imizing power consumption to the extent possible, is
the Core i7 introduced in November 2008. Details of
these two platforms are shown in Tables 1 and 2. The
goal of this study is to understand where the power
actually goes in modern, highly optimized but com-
plete solutions and thereby to understand what sys-
tem level optimizations hold real promise and which
are purely academic. We develop a software suite that
produces a relatively fine grained empirical power
model of the underlying platform by subjecting it to a
variety of workloads, observing the power consumed,
and then computing a fit of the power model to the
observations. This works surprisingly well and gives
a clear and intuitive breakdown. The bottom line in
the analysis is in fact indicated in Tables 1 and 2: the
chipset is a dominant constant term. Until we can ap-
ply substantial power management to the glue, all we
can do is hurry-up-and-sleep.

2 Hardware

To ground the power-vs-performance model in ac-
tual hardware, we examine available power states and

Idle states C0 (run), C1 (halt)
Cores 2 + HT

Clock speed 1.6GHz
Core voltage 0.9V-1.1625V

Spec Sheet TDP 8W
Chipset TDP 22.2W

Table 1: Properties of the Intel Atom 330 and 945CG
chipset

Idle states C0 – C4
Cores 4 + HT

Clock speed 1.6GHz - 3.2GHz
Core voltage 0.800V-1.225V

Spec Sheet TDP 130W
Chipset TDP 24.1W

Radeon 2400XT TDP 25-35W

Table 2: Properties of the Intel Core i7 Extreme Edi-
tion and X58 chipset

conduct detailed experiments on two hardware plat-
forms representing somewhat opposite ends of the
spectrum: a low-power Intel Atom netbook platform,
and an Intel Core i7 desktop.

2.1 Idle vs. Sleep

Idle states are power-saving modes that a device can
enter quickly, without losing state and often auto-
matically when idle. For example, a hard drive will
use about about 0.85W when spinning but not per-
forming I/Os, compared to 2.85W when reading se-
quentially. Similarly, the CPU has “C states” which
it enters when halted. These idle states have varying
exit latencies and power. However, transition times
are very fast, even for the deepest states. On an Intel
Core 2 processor the deepest idle can be entered in
17ns, or approximately 50 clock cycles. Thus, CPU
idle states can be used even for interactive applica-
tions.

System sleep states, on the other hand, reduce
overall power to nearly zero by disabling almost all
devices. RAM is usually kept active for fast wake-up
times. For instance, the ACPI S3 state has a transi-
tion time of 1 − 10 seconds and typically brings the
system power usage to several watts [5].

2.2 Constant Power

Although modern processors have improved efficiency
as designers coped with a constant thermal envelope,

2



processors are not the only component making up
a computer; the supporting hardware such as the
chipset controller, bus logic, and display drivers are
not nearly as visible inside operating systems, yet
have a significant impact on power.

Atom CPU

Volrage Regulators

Clock

Audio Codec

I/O Controller Hub

TV Encoder

Memory Controller Hub

Figure 2: Thermal image of an Intel Atom mother-
board while idle

Figure 2 is a thermal image of the Atom platform
when idle. The processor itself is actually passively
cooled and appears blue, while other components
such as the I/O and memory controllers are clearly
radiating much more heat then the processor.

A way of explicitly measuring how much power is
dissipated regardless of the processing state of the
computer is to record periodic wall-power measure-
ments, and compare the power when idle to the ob-
served power when heavily loaded. Figure 3 presents
representative data from a previous generation of
servers. Needless to say, the amount of dynamic
power is very small in all cases, at most 25% of the
total dissipated power.

2.3 Dynamic Power

To isolate where the power goes in our two test sys-
tems with Core i7 and Atom processors, as well as
investigate the predictability of dynamic power, we
heavily instrumented the systems by collecting peri-
odic reports of various performance counters available
on the system. In addition, we collected synchronized
wall-power measurements. We then loaded the sys-
tem with a series of workloads designed to push the
system into different operating regimes. Using the
measurements from these experiments, we construct
a linear model of power as a function of the observed
variables through linear regression. The resulting
models have root mean squared errors (RMSE) of

0

100

200

300

400

D
e

ll 
P
o

w
e

rE
d

g
e

 1
85

0

D
e

ll 
P
o

w
e

rE
d

g
e

 1
95

0
Su

n
 F

ire
 V

60
x

Su
n
 F

ire
 X

21
00

Su
n
 F

ire
 X

22
00

H
P
 C

o
m

p
a

q
 D

L3
60

H
P
 In

te
g

rit
y 

rx
26

00

P
ow

er
 (

W
at

ts
)

 

 

Idle
Active

Figure 3: Peak vs. idle power consumption for a
series of previous generation server hardware

1.16W and 2.17W for the Atom and Core i7 sys-
tem respectively for our test applications. Once the
model is constructed, it can be used to predict the
power profile of arbitrary application based only on
the counter values obtained on those applications.

Since the model is linear, we can assign power to
each subsystem (ie. the disk), by considering only the
elements of the measurement vector corresponding to
that subsystem. As a result, the model can not only
predict the total wall power in use by the system,
but also provides a breakdown between the different
components.

Results of this technique are displayed in Fig-
ure 4(b) and 4(a). Neither displays anything close
to zero watts at idle. The high-performance i7 sys-
tem is more power-proportional then the older servers
considered in Figure 3 because the processor is able
to substantially reduce its consumption when idle.
Nonetheless, the constant factor is roughly equal to
the peak processor consumption. Surprisingly, the
Atom design is less power proportional because the
processor is such a small fraction of the overall power
load. In fact, both of their chipsets appear to be
drawing nearly the full power indicated by their data
sheets; this is in notable contrast to the CPUs. The
various resources managed by the operating system,
while actually managed well, are incidental in com-
parison.

To isolate the power-performance tradeoff curve for
the processor, we examine the total system power dis-
sipation as the processor frequency is scaled. As seen

3



0

5

10

15

20

25

30

35

io bench

busy loop

idle
mem test

mysql sysbench

net

p
o

w
e

r(
W

)

 

 

constant

CPU

memory

disk

network

(a) Atom system

0

50

100

150

200

250

busy loop fork

io bench

busy loop

mem test

idle
freq scale

mysql sysbench

net

p
o

w
e

r(
W

)

 

 

constant

CPU

memory

disk

network

(b) Core i7 system

Figure 4: Power consumption per subsystem as predicted by a linear model

in Figure 5, the tradeoff is nearly linear which a large
constant term. This observation is well-documented
for modern processors because of reductions in sup-
ply voltage which eliminate the potential quadratic
gains in power that were available when dynamic fre-
quency and voltage scaling was proposed [3]. (If the
voltage is held constant performance is proportional
to frequency and energy per unit computational work
is constant.)

0 0.5 1 1.5 2 2.5

x 10
9

0

50

100

150

200

250

Instructions Retired / Second

P
ow

er
 (

W
)

Figure 5: Core i7 processor power draw at different
frequencies

We additionally tested our model of the hard disk
drive using a digital multimeter while running various
workloads. We were able to verify that the linear
model predicted the power consumption of the device
to within 10%, and that the power consumed was
linear with the request rate.

The data in this section strongly supports the
“Typical” model presented in Figure 1. The constant
power of all systems examined is at least 50% of peak,
and furthermore the performance-power tradeoff is
linear.

3 Discussion

There are two key observations about the power vs.
performance graph of modern systems. First, there
is a large constant running power. Second, power is
a linear function of performance counters; our results
generally agree with those previously reported, such
as [12, 1, 7]. We explore the implications of these two
observations.

3.1 Race to Sleep

The most immediate implication of these two obser-
vations is that they explain anecdotal evidence for
a model of computation known as “race to sleep.”
This idea holds that the most energy-efficient way of
scheduling a computation is to put all hardware into
the highest-performance state and race to completion
as quickly as possible. Once finished, the hardware
should drop to very low power modes – potentially
ACPI sleep states or even powered off. The explana-
tion for this fact draws on both the constant power
and the linear power-performance tradeoff.

Note that this result is not impacted by more ef-
ficient idle states – this model applies whenever the
constant run power and performance-power linearity
holds. Furthermore, adding additional “run” power
states which are only linear in power is of little use
when designing power-efficient systems.

The additional problem with whole-system power
optimization on current machines is that the cost of
putting the rest of the system to sleep, i.e., powering
off the chipset, is far from zero. It is so large that we
consider it only after minutes of idle and it involves
major operating system intervention.

4



3.2 Operating Systems

As shown in Figure 5, CPU power can be accurately
modeled as a linear function of performance. The
good fit of the linear regression in Figure 4 further
suggests that this linearity holds for other devices,
such as network access and disk IO. This simple rela-
tionship indicates that elaborate new operating sys-
tem structures may not be necessary to account for
and throttle power consumption. Existing commod-
ity operating systems already contain extensive sup-
port for performance accounting and throttling such
as ulimit and io-throttle. If power and perfor-
mance in these devices are truly linear, the difference
between the functionality of these tools and tools de-
signed for account for and limit power is merely one of
units! Given a system profile, these existing account-
ing and enforcement mechanisms can be used to both
set budgets and limit rates. This model explains to
some extent the limited power impact of optimiza-
tions like the Tickless kernel [13, 8]. It also says that
the focus needs to be on the time to transition to and
from sleep.

Furthermore, this means that applications wishing
to reduce their energy usage must reduce utilization.
This can be done through more efficient algorithms
or by helping the OS race to sleep.

4 Limitations

There are two key traits that make current model
so simple: linearity and low transition costs. If these
traits change with future hardware designs then more
complex optimizations and power accounting will be
useful.

We have shown that currently the performance-
power tradeoff for commodity systems is linear. How-
ever, this has not always been the case in CPUs, and
it is not the case in all systems today. For instance,
in certain systems such as sensor networks it may re-
quire significantly less power to send a certain number
of bytes over a low-power, slow radio then it would
to power on and transmit the same bytes over a high
power radio. When the relationship is no longer lin-
ear, it becomes possible to reduce energy consump-
tion by running more slowly and exploiting certain
scheduling optimizations.

Finally, this result does not diminish the potential
for reducing power consumption through treating a
number of systems as a single unit for the purposes of
power management – indeed, this approach is being

successfully explored [2, 11] for exactly the reasons
we have noted.

5 Conclusion

In this paper, we have investigated the complexity
of the tradeoff space for power design. The result is
a negative one: using current commodity hardware,
there is a limited opportunity to pursue single-system
optimizations which reduce energy usage without re-
ducing performance. To save power in the broad-
est possible setting, we must examine optimizations
which reduce the constant power or reduce the tran-
sition latency into extremly low-power sleep states.

References
[1] F. Bellosa, A. Weissel, M. Waitz, and S. Kellner. Event-

driven energy accounting for dynamic thermal management.
In COLP, New Orleans, LA, Sept. 27 2003.

[2] A. M. Caulfield, L. M. Grupp, and S. Swanson. Gordon:
using flash memory to build fast, power-efficient clusters for
data-intensive applications. In ASPLOS, pages 217–228, New
York, NY, USA, 2009. ACM.

[3] A. Chandrakasan, S. Sheng, and R. Brodersen. Low-power
cmos digital design. Solid-State Circuits, IEEE Journal of,
27(4):473–484, Apr 1992.

[4] Y. Chen, A. Das, W. Qin, A. Sivasubramaniam, Q. Wang, and
N. Gautam. Managing server energy and operational costs in
hosting centers. In SIGMETRICS, pages 303–314, 2005.

[5] I. Corporation. Advanced configuration and power interface
specification. 2006.

[6] Intel Open Source Technology Center. Getting maximum

mileage out of tickless, June 2007.

[7] A. Kansal and F. Zhao. Fine-grained energy profiling for
power-aware application design. SIGMETRICS Perform.
Eval. Rev., 36(2):26–31, 2008.

[8] M. Larabel. The impact of a tickless kernel. http://www.
phoronix.com/scan.php?page=article&item=651&num=1.

[9] A. R. Lebeck, X. Fan, H. Zeng, and C. S. Ellis. Power aware
page allocation. In ASPLOS, pages 105–116, 2000.

[10] Y.-H. Lu and G. D. Micheli. Adaptive hard disk power man-
agement on personal computers. In Great Lakes Symposium

on VLSI, pages 50–, 1999.

[11] R. Nathuji and K. Schwan. Virtualpower: coordinated power
management in virtualized enterprise systems. In SOSP,
pages 265–278, New York, NY, USA, 2007. ACM Press.

[12] S. Rivoire, P. Ranganathan, and C. Kozyrakis. A comparison
of high-level full-system power models. In F. Zhao, editor,
HotPower. USENIX Association, 2008.

[13] S. Siddha, V. Pallipadi, and A. V. D. Ven. Getting maximum
mileage out of tickless. In Proceedings of the Linux Sympo-
sium. Intel Open Source Technology Center, June 2007.

[14] M. Weiser, B. B. Welch, A. J. Demers, and S. Shenker.
Scheduling for reduced cpu energy. In OSDI, pages 13–23,
1994.

5


