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Abstract

Communication and Third Parties: Costs, Cues, and Confidentiality

by

Krishnan Eswaran

Doctor of Philosophy in Engineering—Electrical Engineering and Computer Sciences

and the Designated Emphasis

in

Communication, Computation, and Statistics

University of California, Berkeley

Professor Michael Gastpar, Chair

This thesis tells the story of Alice and Bob, who wish to share information. How-

ever, Alice and Bob, motivated either by self-interest or simply good manners, also

wish to respect constraints imposed by Candice, Damon, or Eve, who may be lurking

in the background. This thesis takes an information-theoretic approach to determine

the rates at which Alice and Bob can communicate while satisfying the constraints

imposed by these third parties. The constraints in this thesis are inspired by wireless

communication, in which multiple users share a common medium.

Signals over a common medium can interfere with one another, so a case study

is introduced that models one aspect of this problem: Alice must send a message to

Bob such that she does not interfere with communication from Candice to Damon.

Furthermore, Candice and Damon are unaware of Alice and Bob, so there is no direct

way for Alice to learn how much interference she causes. However, by relying on cues

gained from eavesdropping on feedback signals from Damon to Candice, strategies

are introduced that enable Alice to communicate with Bob and adaptively control
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the average interference.

While the case study only accounts for the average interference, Damon may be

more annoyed by interference arriving in bursts than interference spread out over time.

To address this issue, a new model is introduced that forces Alice’s transmissions to

satisfy a cost constraint, where the cost at a given time can include memory about

the past. A strategy is introduced that enables Alice to adjust her transmissions to

communicate with Bob and satisfy the cost constraint. A converse is also proved that

characterizes when this strategy is optimal.

Wireless environments allow characters like Eve, an eavesdropper, to intercept

signals that are not intended for them. A model is considered in which Alice and Bob

wish to keep the information they share secret from Eve. Specifically, Alice, Bob, and

Eve share correlated observations, and there is a one-way noisy broadcast channel

from Alice to Bob and Eve. Do Alice and Bob want to keep specific information

secret, or is any information kept secret from Eve sufficient? It turns out that the

rates Alice and Bob can achieve depend on the answer to this question, and a strategy

is introduced that establishes a functional relationship between these two notions of

secrecy. Furthermore, this strategy is shown to be optimal over a class of models that

includes one applicable to wireless: namely, the case in which the channel noises are

additive Gaussian and the correlated observations are jointly Gaussian.

Professor Michael Gastpar, Chair Date
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Chapter 1

Introduction

The Concert

The music starts before Alice and Bob find their spot: row 4, seats A and B. The

concert has already begun, and Alice frets she may have to wait until it’s over to tell

Bob the Big News. She briefly considers shouting over the crescendo of music, but

she hesitates, looking around the audience. They’re enjoying themselves, and Alice

does not want to attract any attention.

Should I just wait? Alice thinks to herself. Or maybe I could just whisper to Bob.

“Bob,” Alice starts, “there’s something–”

Candice, seated to Bob’s right, interrupts Alice with a harsh whisper, “Shh!”

Alice stops talking, but it doesn’t end there. Candice switches seats with Damon,

and grumbling ensues in the rows behind them. As Alice is about to start talking

again, she notices that Eve is eyeing her. Will she overhear us? worries Alice. Alice

wishes she were better equipped to handle these problems.
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Chapter 1. Introduction

1.1 Problem Overview

A classical communication problem is to send the maximum number of bits reliably

from Alice to Bob. However, at the concert, third parties like Candice, Damon, and

Eve add a dimension of complexity to the vanilla problem of reliably sending bits.

This thesis develops models and strategies that enable Alice and Bob to use the

resources available to them to address these additional complexities. For instance, if

Alice and Bob have a pen and paper at the concert, they might prefer this channel

of communication over others that cause a greater disturbance.

The problems faced by Alice and Bob are not uncommon in communication net-

works. In a cellular network or the Internet, two users want to communicate over

a shared medium. The strategy they use to communicate must therefore take into

account both the performance of the two users and their behavior within the system.

For instance, strategies should mitigate system congestion and provide security for

the users. However, there are a couple key differences between these two systems.

First, in a cellular network, communication takes place over a wireless medium, but

the Internet is largely a wired medium. Second, in a cellular network, the entire

system is under the control of a single provider, and the strategies users employ can

be tailored tightly to follow these standards.

Since there is no centralized control of the Internet, devices may employ different

strategies or have different capabilities. Despite such variation, most devices follow

guidelines that ensure the Internet remains stable and functional. At the concert,

these guidelines can be thought of as the manners and etiquette that Alice and Bob

choose to respect in the presence of the rest of the audience.

The impetus for the topics studied in this thesis, however, do not come from the

wired Internet (nor our desire to help out confused concertgoers), but rather from

the wireless setting. On November 4, 2008, the Federal Communications Commission
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Chapter 1. Introduction

(FCC), which regulates the spectrum in the United States of America, announced

that it would modify its rules to allow adaptable wireless devices to find and reuse

unoccupied broadcast television bands1. Before this rule change, only the broadcaster

with the license for a particular band could use it. The problem was that not all license

holders chose to exercise this right, leading to underutilized spectrum. Some consider

the rule change a first step to allow unlicensed, adaptable wireless devices to coexist

with licensed, legacy communication systems.

Alice Bob Alice Bob

Figure 1.1: The figure on the left depicts a system successfully transmitting
the image of a smiley. This legacy system works under the assumption that
no other systems will be active. If Alice starts transmitting on the same
spectrum, however, her signal can interfere with the legacy system, as seen
in the figure on the right. Chapter 2 models and analyzes a scenario in
which Alice and Bob must simultaneously communicate while controlling
the interference for a specific type of legacy system.

Now suppose Alice and Bob correspond to the transmitter and receiver, respec-

tively, of one of these unlicensed devices, which are sometimes called cognitive radios.

Alice and Bob must coexist with a legacy system with which their transmissions can

potentially interfere, a scenario is depicted in Figure 1.1. The challenge for Alice

1“FCC Adopts Rules for Unlicensed Use of Television White Spaces”, FCC News, November 4,
2008:
http://hraunfoss.fcc.gov/edocs_public/attachmatch/DOC-286566A1.pdf
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Chapter 1. Introduction

Alice Bob Alice Bob

Figure 1.2: The figure on the left depicts Alice and Bob interfering with
a system that is trying to transmit a smiley. In the figure on the right,
this system stops transmitting in response to the interference, which adds
a layer of complexity not captured by the model in Chapter 2. Chapter 3
develops a general model to study how Alice and Bob balance communi-
cation with control under such dynamics.

and Bob is that the legacy systems were designed without the expectation that they

would be sharing the spectrum with other devices. Thus, without a redesign, the

legacy system may not even realize that Alice and Bob are responsible for the inter-

ference or indicate to them how much interference they cause. At the concert, this

would correspond to a situation in which Candice would not whisper, “Shhh!” to Al-

ice even if Alice were to talk too loudly. However, audience members could still signal

that they are unable to hear the performance, which is precisely what several wireless

communication systems already do via feedback signals. In Chapter 2, we consider a

model for a particular type of legacy system that uses such feedback for which Alice,

by overhearing this feedback, can estimate and control how much interference she

generates to the legacy system.

The setting in Chapter 2 develops a model to study a special case that may arise

in cognitive radio, but it lacks generality. At the concert, recall that Candice and

Damon switch seats in response to Alice and Bob. If Candice and Damon correspond
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Chapter 1. Introduction

to wireless devices, the model in Chapter 2 is too limited to capture any interference

generated by their dynamics. Alternatively, what if the musicians were to respond

to Alice and Bob’s interference by stopping the concert? If the musicians correspond

to the transmitter of a legacy system, which, as depicted in Figure 1.2, shuts off in

response to interference, the model in Chapter 2 is again too limited to capture the

dynamics. As a step towards addressing these issues, in Chapter 3, we generalize one

of the ideas from that case study: namely, the constraint Alice must satisfy while

communicating to Bob. This generalization allows us to consider the richer dynamics

that the model in Chapter 2 cannot.

?

Alice Bob

Eve

Figure 1.3: Chapter 4 considers how much secret information Alice and
Bob can share in the presence of Eve, an eavesdropper. It turns out the
answer depends not only the resources available at Alice, Bob, and Eve,
but also on the type of information that Alice and Bob plan to share.

The above settings draw on the fact that wireless systems by nature affect unin-

tended recipients in a surrounding area, and some of these recipients may consider

the effect to be interference. However, interference to one party may be valuable to

another, and Alice and Bob may intend the information they share to be secret from

an eavesdropper Eve. Chapter 4 explores a model in which Alice, Bob, and Eve have

access to correlated sensor observations in addition to the wireless channel and given
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Chapter 1. Introduction

these resources, considers how Alice and Bob may share secret information. It turns

out the nature of the information that Alice and Bob intend to share plays a role in

answering this question. For instance, one may take the aphorism that “a bit is a

bit” seriously, and it does not matter what bits Alice and Bob share so long as they

are secret from Eve. This scenario may arise practically when Alice and Bob want

to share a key that can later be used for encryption. On the other hand, Alice may

have a particular message to send to Bob, and thus Alice and Bob want to keep a

specific sequence of bits secret from Eve. A schematic figure of this setting is given

in Figure 1.3.

1.2 Methodology

Within the context of each problem stated above, our goal in this thesis is to answer

the following question: is it feasible for Alice to convey the Big News to Bob before the

concert ends, and if so, how can she achieve this? To make progress on this question,

we develop models that derive from information theory, a field of applied mathe-

matics for which there exists a significant body of literature on how to characterize

and achieve the fundamental limits of data transmission over noisy communication

channels.

Many of these models are generalizations of Claude Shannon’s seminal work, “A

Mathematical Theory of Communication,” which introduces the problem of sending

data reliably over a noisy communication channel [78]. For this problem, which is

depicted in Figure 1.4, Shannon proves that given any message in a finite set and

sufficient uses of a noisy channel, one can design an encoder that transforms the

given message into the channel’s inputs and a decoder that transforms the channel’s

outputs into a reconstructed message such that the reconstructed message matches the

6



Chapter 1. Introduction

M
Enc

Xk Yk
Channel Dec

M̂

Figure 1.4: Shannon’s original problem considers how to maximize the
size of the set of possible transmitted messages to transform a transmit-
ted message M into a sequence of channel inputs (X1, X2, . . . , XN) and a
sequence of channel outputs (Y1, Y2, . . . , YN) into a reconstructed message
M̂ such that the transmitted and reconstructed messages match with high
probability as N → ∞.

given message with probability arbitrarily close to one.2 Furthermore, the cardinality

of the message set can grow exponentially in the number of channel uses if and only

if the exponent is less than the capacity, a nonnegative number that depends solely

on the channel’s statistics. Motivated by scenarios of physical interest, in the same

work Shannon proves an extension of the result for an analog channel subject to a

power constraint on the channel inputs. For this setting, Shannon shows the capacity

depends on both the channel’s statistics and the power constraint.

In the original problem, the source of interest has a single point of origin and a

single destination (i.e., point-to-point), but generalizations of the problem have been

studied for networks with multiple sources, destinations, and intermediate nodes,

sometimes called multiterminal problems (see e.g. [1; 86]). The rate region of the

multiple-access channel, in which there are multiple sources and a single destination,

was characterized by Liao [54] as well as Slepian and Wolf [79]. Unlike the multiple-

access channel, the rate region is generally unknown for most networks. The relay

2While Shannon proves the existence of such encoders and decoders, the work does not give
explicit constructions for them. Indeed, an intense focus since the work has been to produce explicit
constructions that approach the capacity bound (see e.g. [6; 15; 55]).
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Alice
M

Enc
Xk Yk

Channel

Zk

Dec
M̂

Bob

C,D,E

Figure 1.5: This is a generic block diagram to characterize the problems
studied in this thesis. In these problems, Alice wants to send Bob a mes-
sage while satisfying some constraint imposed by a third-party C,D,E. The
dashed lines indicate that depending on the model, Alice or Bob may be
aware of the channel outputs at the third-party.

channel, introduced by Van Der Meulen [85], considers a single source and destination

with an intermediate helper node, and partial results for the rate region have been

given by Cover and El Gamal [19], Kramer, Gastpar, and Gupta [52], and Avestimehr,

Diggavi, and Tse [4], among others [31; 41; 94]. The broadcast channel, introduced

by Cover [17], considers a single source and multiple destinations. While the capacity

region is known for some special cases, it remains open in general [50; 59; 30], and

many of the exact results are restricted to channels with additive Gaussian noise [18;

88; 90]. Finally, the interference channel, introduced by Ahlswede [2], considers two

sources and two destinations in its simplest form. Despite a sophisticated achievable

strategy introduced by Han and Kobayashi [45], the capacity region remains open

with only an approximate result in the Gaussian case [37].

The models developed in this thesis are most closely related to the broadcast

channel. For the classical broadcast channel, Alice has messages for Bob and Betty,

who are located at separate destinations, and the three of them must devise a coding
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strategy such that Bob and Betty can decode their intended messages. The work in

this thesis replaces Betty with an unintended recipient, a third party like Candice,

Damon, or Eve, whose channel outputs introduce an additional constraint on the

communication between Alice and Bob. Figure 1.5 provides a generic block diagram

to capture the several variations of this setting.

1.3 Contributions

As stated above, this thesis focuses on a series of theoretical studies to gain insights

into a class of communication problems. Before delving into these theoretical studies,

we briefly summarize the main contributions of the thesis:

• In Chapter 2, we develop a communication model that derives from a case study

of cognitive radio. In the case study, a cognitive radio Alice must communicate

to Bob while simultaneously guaranteeing a target rate to a legacy communica-

tion system over whose spectrum she transmits. We provide coding strategies

that adapt the cognitive radio’s duty cycle3 and prove that for these strategies,

the legacy system achieves its target rate. Furthermore, under certain inter-

ference conditions, we prove these strategies are rate-optimal for the cognitive

radio, as well.

• In Chapter 3, we introduce a feedback communication model that generalizes

aspects of the cognitive radio model from Chapter 2. For this model, Alice

must communicate to Bob while simultaneously controlling a state process to

satisfy a cost constraint. For this setting, there is a tension between commu-

nication and control: namely, if communication is ignored, the setup reduces

to a classical stochastic control problem, and if satisfying the cost constraint is

3A duty cycle refers to the fraction of time a system is active.
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ignored, it reduces to a well-understood feedback communication problem. We

find an expression that characterizes the tradeoff between these two extremes

and demonstrate how to evaluate it via a series of examples.

• In Chapter 4, we provide an achievable tradeoff for sending a secret message and

secret key when there are correlated source observations at Alice, Bob, and Eve,

as well as a one-way broadcast channel from Alice to Bob and Eve. The strategy

has an interesting separation architecture that highlights the interplay between

a secret key and a secret message. Furthermore, for a class of sources and

channels, we show this strategy is optimal and establish a formal relationship

between these different notions of secret information sharing.

These contributions are stated precisely in Chapters 2, 3, and 4, which assume

the reader has some knowledge of information theory. For readers uncomfortable

with information theory, Appendix A should provide the background necessary to

understand the contents of these chapters. For everyone else, we now proceed with

the technical portion of this thesis.

10



Chapter 2

A Case Study from Cognitive

Radio

2.1 Introduction

In this chapter, we consider a problem motivated by cognitive radio to address the

case in which a cognitive radio must communicate while simultaneously satisfying a

random cost constraint to control the amount of interference it generates on a legacy

system. In this setting, we demonstrate how feedback enables the cognitive radio to

dynamically adapt its channel inputs and rate by monitoring the empirical cost.

2.1.1 Problem Motivation

Systems often need to be designed so that they do not disrupt pre-existing systems

with which they interact. This backwards compatibility problem is a central issue

in the study of cognitive radio systems. A cognitive radio is a device that can sense

and adjust its power, frequency band, etc. to peacefully coexist with other radios

with which it shares spectrum [61]. At the time of writing, the FCC and interna-
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tional regulatory bodies have started to modify their rules to allow for such systems

to occupy unlicensed bands or to share bands with licensed, predesigned communi-

cation systems. These licensed users are often called primaries, legacy systems, or

incumbents.

The aim of this chapter is to study sharing spectrum with legacy systems, in which

the backwards compatibility problem arises. One potential solution is to transmit

on a band that is currently unoccupied and to leave that band once a primary is

detected. For these “detect-and-avoid” systems, one research aim is to understand the

feasibility of detecting the presence of a primary system subject to noise uncertainty

and quantization effects [81; 72; 82].

A different approach is for the cognitive radio to occupy bands on which the pri-

mary is already active but in such a way as to mitigate the interference generated on

the primary system. Two such information-theoretic models have been introduced to

study cognitive radio and spectrum sharing systems. The first is sometimes called

the cognitive radio channel [26; 46; 56; 57; 58; 43; 27]. This channel is a variation

on the two-user interference channel [2; 74; 9; 16] with the modification that the

cognitive radio (one of the transmitters) knows the message that the primary (the

other transmitter) will send. Among these papers, Devroye, Mitran, and Tarokh

[26] as well as Jovic̆ić and Viswanath [46] consider a Gaussian scenario in which the

primary’s strategy can be thought of as a fixed, predesigned legacy system. Specif-

ically, they show that for their setup, there is an optimal achievable strategy that

enables the primary to continue using a point to point Gaussian codebook. The

result highlights the fact that in cognitive radio problems, one may not have the

flexibility to modify the primary’s design and must instead design the cognitive ra-

dio in such a way that the primary continues to meet its target performance. The

second approach is to consider the capacity of systems with a constraint on the in-

terference power generated at certain locations. The assumption is that the primary
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systems that occupy these locations will be able to handle this level of interference [39;

42].

We take inspiration from these two models in the following example, which forms

the starting point of the current investigation. It is a model of the practically most

interesting case, where the cognitive transmitter is close to the primary receiver, thus

creating substantial interference. For purposes of illustration, this example assumes

a noiseless channel for the cognitive radio. Indeed, the more general model will

consider a noisy channel, where the noise may be the result of numerous factors,

including interference from the primary system.

Example 2.1. Suppose the primary transmitter Candice sends packets across an

erasure channel to her receiver Damon, who responds with feedback to retransmit the

packet or send the next one. We call these feedback signals ARQs1. The cognitive

radio transmitter Alice, on the other hand, has a noiseless channel to her receiver

Bob with P + 1 channel inputs divided into two classes: a silent symbol xoff, for

which Damon successfully receives Candice’s transmitted packet, and the remaining P

transmit symbols, which cause Candice’s packet to be erased before reaching Damon.

Suppose Candice and Damon want a guaranteed packet rate of 1
2
; that is, Damon

should successfully receive one packet per two transmissions on average. By simply

alternating channel uses between the silent symbol and sending information with the

P transmit symbols, Alice guarantees this packet rate 1/2 to Candice and Damon.

Furthermore, Alice and Bob and achieve a rate of

1

2
log P . (2.1)

In the spirit of the previous work, Example 2.1 considers a primary that is unaware

1ARQ is an acronym for an automatic repeat request, which is feedback that asks a sender to
retransmit a packet.
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of the cognitive radio. However, Example 2.1 makes the more dubious assumption

that the cognitive radio knows what the primary’s erasure probabilities are for its

two classes of inputs. As a result, the strategy presented is not robust to deviations

from the erasure probabilities provided in the example. For instance, if the primary’s

erasure probability for a silent symbol xoff is ǫ0 > 0, the strategy outlined will not allow

the primary to meet its rate 1/2 target. The issue is that the cognitive radio will not be

able to directly estimate the interference it creates for the primary. Such estimates are

generally obtained by training via pilot symbols, but the primary receiver is unlikely

to train with the cognitive radio transmitter. However, certain kinds of 1-bit feedback

have been shown to be sufficient for beamforming [64; 63]. We adopt this insight as

we build on Example 2.1 by introducing both an uncertainty and sensing component

to the problem.

ENCAlice
Ms

ENCCandice
Mp

DEC
M̂s

Bob

DEC

ARQ

M̂p
DamonErasure

Figure 2.1: An example of the type of channel model for our cognitive
radio system (Alice and Bob) in which the primary Candice has message
Mp for Damon, and the cognitive radio Alice has message Ms for Bob.
Alice can overhear the ARQ feedback that Damon sends to Candice and
adapts her channel inputs to reduce interference to Damon.

Example 2.1, continued: Alice’s silent symbol now induces an erasure probability

ǫ0 < 1/2, and her transmit symbols induce an erasure probability of ǫ1 > 1/2, but

Alice does not know either ǫ0 or ǫ1. However, Alice can overhear the Damon’s ARQ

feedback, which we will denote with indicator random variables Ak that test whether
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Candice’s k-th transmission is received at Damon. Figure 2.1 shows a schematic block

diagram of this setup.

Alice’s strategy is as follows: if the primaries Candice and Damon exceed their

rate target at time k, then Alice sends one of the transmit symbols based on her

message. This happens if 1
k

∑k
i=1 Ak ≥ 1

2
. Otherwise, Alice sends the silent symbol.

Let τk be the indicator function that Alice sends a transmit symbol at time k. Thus,

P(Ak = 1|τk) = 1 − ǫτk
. Then at time n, Alice and Bob achieve the rate

1

n

n
∑

k=1

τk log P . (2.2)

Note that for ǫ0 = 0, ǫ1 = 1, this strategy achieves the same rates as the one outlined

in Example 2.1.

What can we say about the rate for the primary (Candice and Damon) and cog-

nitive radio (Alice and Bob) in Example 2.1? Let S0 = 0 and Sk = Sk−1 +(Ak − 1/2)

represent the difference between the number of packets the primary has received by

time k and its targeted number of packets by time k based on a target packet rate

of 1
2
. Suppose the Ak are independent in k. Then Sk is a positive recurrent Markov

chain and is nonnegative if and only if τk = 1, which can be verified by confirming

that its stationary distribution Sk, denoted πi/2 = P(Sk = i/2), is

πi/2 =







(2ǫ1−1)(1−2ǫ0)
2ǫ1(ǫ1−ǫ0)

(

1−ǫ1
ǫ1

)i

i ≥ 0

(2ǫ1−1)(1−2ǫ0)
2(1−ǫ0)(ǫ1−ǫ0)

(

ǫ0
1−ǫ0

)−i+1

i < 0
. (2.3)

We can make the following statement.
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Fact: Suppose S0 is distributed according to π. Then for all k ≥ 1,

P(τk = 1) =

∞
∑

i=0

πi/2 =
1/2 − ǫ0

ǫ1 − ǫ0
. (2.4)

The fact allows us to get a handle on the cognitive radio’s rate. Furthermore, the

primary’s expected rate is

k−1
k
∑

i=1

∑

j=0,1

P(Ai = 1|τi = j)P(τi = j) =
1

2
. (2.5)

Note that this strategy does not depend on the cognitive radio knowing the values

ǫ0 and ǫ1 a priori. However, the cognitive radio does know the primary’s rate target,

which is 1/2 in this example. In the remainder of the chapter, we assume the primary’s

rate target is known in advance to the cognitive radio, but the primary’s erasure

probabilities are unknown.

2.1.2 Bits through ARQs

In the rest of this chapter, we consider optimal coding strategies for the case in which

the primary is a packet erasure system as described in Example 2.1.2 For the channel

of the cognitive radio, we consider a more general class of (noisy) channels. As we

show, the primary can meet its rate target even if the cognitive radio is active for a

certain fraction of channel uses. This interference budget available to the cognitive

radio, while unknown a priori, can be estimated via the primary ARQs and rate

target, which are known at the cognitive radio encoder. One can determine the

capacity of the cognitive radio in terms of this interference budget, which we call the

2This formulation lends itself well to many spectrum sharing problems in which the primary is a
separately designed system and whose exact implementation is partially obscured from the cognitive
radio.
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rate-interference budget (RIB) tradeoff function. We show an achievable strategy for

the general case in which the primary’s packet erasure probabilities can fluctuate and

find a matching converse for the RIB function when they do not.

In Section 2.2, we define the problem we are considering precisely, including the

channel model for the cognitive radio and the allowable coding strategies that the

cognitive radio can adopt. These strategies force the cognitive radio to provide guar-

antees about the primary’s rate that do not depend on the time horizon that the

cognitive radio uses to measure its own rate (horzion-independence condition) and

force it to be robust to fluctuations in the primary’s packet erasure probabilities

(robustness condition).

In Section 2.3, we show how to refine the strategy from Example 2.1 to provide

such guarantees that also allow positive rate for the cognitive radio, which leads to

two new strategies: the fixed-codebook protocol and the codebook-adaptive protocol. In

Section 2.4, we present a converse when the erasure probabilities are time-invariant,

which matches the rates achievable by the codebook-adaptive protocol proposed in

Section 2.3. Section 2.5 revisits Example 2.1 in the introduction and considers new

ones. Section 2.6 concludes the chapter with a discussion of our contributions and

future work.

2.2 Problem Setup and Main Result

Capital letters X, Y, Z represent random variables and calligraphic letters X ,Y ,Z
denote finite sets. We will focus on discrete memoryless channels in this work, but

potential extensions to Gaussian channels will be discussed in Section 2.6. For con-

venience, p(x) is the probability distribution of X at x. Similarly, p(y|x) is the

conditional probability distribution of Y at y given X = x. Notation for entropy

H(X), mutual information I(X; Y ), etc. are consistent with the notation of Cover
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and Thomas [21].

M
Enc

Xk Yk

Ak−1

Delay

Channel

Ak

Dec
M̂

Figure 2.2: Equivalent channel model from the cognitive radio’s perspec-
tive. Ak is an indicator random variable: Ak = 1 means that the packet
sent by the primary at time k was successfully received. The relationship
between Xk and Ak is unknown a priori and varies in time.

2.2.1 Equivalent Channel Model

As a legacy ARQ system, the primary is assumed to have the following fixed strategy.

At time i, it sends a packet to its receiver and receives feedback Ai to indicate whether

the packet was erased or successfully received (Ai = 0 or 1, respectively). If the

packet is erased, the primary retransmits the same packet at time i+1. If the packet

is successfully received, the primary transmits a new packet at time i + 1. Thus, we

will refer to Ai as the primary’s ARQ feedback.

Since the primary’s strategy is fixed, we now have to design the cognitive ra-

dio’s strategy. Figure 2.2 illustrates this problem; the primary merely appears as a

constraint on the cognitive radio in the shape of Ai. That is, in addition to com-

municating, the cognitive radio must also control its channel inputs to guarantee the
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primary’s rate, i.e. such that to the first-order3,

k−1
k
∑

i=1

Ai ≥ Rp , (2.6)

where Rp is the desired and prespecified performance of the primary system. Further-

more, this control must be robust to fluctuations in the channel between the cognitive

radio transmitter and primary receiver. Thus, the primary’s ARQ feedback provides

a means for the cognitive radio to apply this control.

2.2.2 Channel Model and Coding

We now consider the DMC with feedback from Figure 2.2 in more detail. Let X =

{xoff, 1, . . . , P} be the channel inputs so |X | = P +1. Then at time i, the conditional

distribution of the channel output Yi and primary’s ARQ Ai given Xi = x can be

expressed as

p(yi, ai|xi = x) = p(yi|xi = x) · ǫx,i · exp

(

ai · log
1 − ǫx,i

ǫx,i

)

. (2.7)

We assume that the sequences {ǫx,i}∞i=1, for x ∈ X are unknown at the encoder and

decoder. For notational convenience, we denote

ǫxoff,i = ǫ0,i . (2.8)

Note that allowing ǫx,i to vary with i reflects uncertainty about the amount of

interference the cognitive radio is generating on the primary. We will assume that for

3Second order issues and tight delay constraints are discussed in Section 2.6.
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all x 6= xoff and i = 1, 2, . . .,

ǫx,i > ǫ0,i . (2.9)

For notational convenience, we will assume without loss of generality there exists

a channel input xrep 6= xoff and y ∈ Y such that

P(Y = y|X = xoff) 6= P(Y = y|X = xrep) . (2.10)

Note that we can assume this without loss of generality since if it were not true for any

symbol, the cognitive radio’s channel inputs Xi would be independent of the channel

outputs Yi, and the channel could not be used for communicating in the first place.

In order for the channel to be useful to the cognitive radio, i.e. in order for the

cognitive radio to achieve a positive rate, the cognitive radio should be able to choose

input symbols other than xoff and still have the primary meet its rate target. Thus,

we make the following technical assumption.

Assumption 2.1. There is a known constant ν > 0 such that for all i, Rp+ν < 1−ǫ0,i.

Assumption 2.1 enables the primary to tolerate some interference from the cogni-

tive radio while guaranteeing the cognitive radio achieves a positive rate.

The definition of the rate and capacity for the secondary are complicated by the

fact that the number of channel uses depends on the realizations of ǫx,i. Therefore, we

need to be precise on what is meant by messages. We define the set of possible mes-

sages to be the set of binary sequences {0, 1}nCmax, where Cmax = log min{|X |, |Y|}.
Let Mk be the first k bits of the message and M = MnCmax .

Definition 2.1. An (n, fn, g, ν, Rp) code (we call n the blocklength) consists of a
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sequence of encoding functions fi,ν,Rp : {0, 1}i−1×{0, 1}nCmax → X for i = 1, 2, . . . , n,

Xi = fi,ν,Rp(A
i−1, M) , (2.11)

and decoding function gν,Rp : Yn → {0, 1}nCmax

M̂ = gν,Rp(Y
n) . (2.12)

Definition 2.2. Given a rate target Rp and ν > 0, a strategy is a sequence of

(n, fn, g, ν, Rp) codes indexed by n on the positive integers n = 1, 2, . . . .

Strategies must respect the primary’s rate target, so the following definition re-

stricts the type of strategies we allow.

Definition 2.3. Given a rate target Rp and ν > 0, a strategy is valid if for all

{ǫx,i}∞i=1 satisfying Assumption 2.1, for every (n, fn, g, ν, Rp) code in the strategy and

k ≤ n,

P{ǫx,i}∞i=1

(

k−1

k
∑

i=1

Ai ≤ Rp

)

≤ K1,Rp,ν,k · e−k·K2,Rp,ν , (2.13)

where the constants K1,Rp,ν,k < ∞, 0 < K2,Rp,ν < ∞ depend only on ν and rate target

Rp, and for all r > 0, as k → ∞,

K1,Rp,ν,k · e−k·r → 0 .

Note that a valid strategy imposes two restrictions. First, the primary’s rate

should meet its rate target with a failure probability that decays exponentially in time

and with the same exponent for each code within a strategy (horizon-independence

condition). The horizon-independence condition gets its name from the fact that a
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rate guarantee to the primary should not depend on the blocklength of the cognitive

radio’s code. Second, this failure probability should not depend on the sequences

{ǫx,i}∞i=1 (robustness condition). For a given valid strategy, we will use the notation

M̂n to denote the decoded output for its code of blocklength n.

Definition 2.4. Given a rate target Rp and ν > 0, a valid strategy achieves rate R

for the sequence {ǫx,i}∞i=1 if for all δ > 0, there exists n0

(

δ, {ǫx,i}∞i=1, Rp

)

such that for

every code in the strategy with blocklength n ≥ n0,

P{ǫx,i}∞i=1
(M̂n

⌊n(R−δ)⌋ 6= M⌊n(R−δ)⌋) ≤ δ . (2.14)

Given a rate target Rp and ν > 0, if there exists a valid strategy that achieves rate

R for the sequence {ǫx,i}∞i=1, then that rate R is achievable for the sequence {ǫx,i}∞i=1.

The set of achievable R is denoted as R({ǫx,i}∞i=1, Rp).

Definition 2.5. The rate-interference budget (RIB) function RIB({ǫx,i}∞i=1, Rp) is

defined as

RIB ({ǫx,i}∞i=1, Rp) = sup
R∈R(ǫ0,{ǫx,i}∞i=1,Rp)

R. (2.15)

For the special case in which ǫx,i = ǫx for all i, it will be convenient to use the

shorthand ~ǫ, where ~ǫ is a length |X | vector, and we will use the shorthand RIB(~ǫ, Rp).

2.2.3 Contributions

We now state the main contributions of this chapter. First, we find a valid strategy

that achieves positive rates for the cognitive radio. From the definition of a valid

strategy, this implies that there exists a sequence of codes such that the primary

meets its rate target irrespective of {ǫx,i}∞i=1.
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Proposition 2.1. Given any rate target Rp and ν > 0, there exists a valid strat-

egy (i.e. a strategy that under Assumption 2.1 satisfies (2.13) for all {ǫx,i}∞i=1) that

achieves the following rates for {ǫx,i}∞i=1 and thereby provides a corresponding lower-

bound to the RIB function:

RIB ({ǫx,i}∞i=1, Rp)

≥



















C∗ , ∀ i , 1 −∑x p∗(x) · ǫx,i ≥ Rp + ν

1−Rp−ǫ̂+0
∆ǫ+

· C∗ , ∀ i , 1 − Rp < min{ǫxrep,i,
∑

x p∗(x)ǫx,i}
1−Rp−ǫ̂+0

1−ǫ−0
· C∗ , otherwise

, (2.16)

where C∗ = maxp(x) I(X; Y ), p∗ = arg maxp(x) I(X; Y ), ∆ǫ+ = supx,i ǫx,i − ǫ0,i, ǫ̂+
0 =

lim supk k−1
∑k

i=1 ǫ0,i, and ǫ−0 = inf i ǫ0,i.

Proposition 2.1 follows immediately from Theorem 2.3. Furthermore, we can

precisely characterize the capacity of the cognitive radio for the case of time-invariant

interference on the primary, in which ǫx,i = ǫx for all x ∈ X .

Proposition 2.2. Given any rate target Rp and ν > 0, there exists a valid strat-

egy (i.e. a strategy that under Assumption 2.1 satisfies (2.13) for all {ǫx,i}∞i=1) that

achieves rates equal to the RIB function on the subset of {ǫx,i}∞i=1 for which ǫx,i = ǫx

for all i:

RIB(~ǫ, Rp) = max
p(x):

P

x ǫxp(x)≤1−Rp

I(X; Y ) . (2.17)

For this setting, we will refer to the constraint
∑

x ǫxp(x) ≤ 1 − Rp as the inter-

ference budget. Note that the constraint is based on how much interference each of

the cognitive radio’s channel inputs generates on the primary compared to how much

is tolerable for the primary’s desired performance.
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Proposition 2.2 follows immediately from Theorem 2.4, which provides achiev-

ability, and Theorem 2.5, which provides the converse. These are stated in Sections

III and IV, respectively. We note that Theorem 2.4 relies on a more intricate valid

strategy than the one in the proof of Theorem 2.3.

2.3 Achievable Strategies

In this section, we present two achievable strategies and state results on the rates the

cognitive radio can achieve while guaranteeing rate to the primary under various inter-

ference conditions. The first of these– the fixed-codebook protocol– is a generalization

of the approach considered in Example 2.1, in which the cognitive radio becomes ac-

tive only when the primary is meeting its rate target. We show that this strategy is

valid, i.e. the primary meets its rate target under unknown time-varying interference

characteristics, and can give equally general rate guarantees for the cognitive radio.

The second strategy– the codebook-adaptive protocol– builds on the first strategy to

predict the amount of interference the cognitive radio will generate on the primary

and optimize its codebook to maximize its own rate. Like the first strategy, this strat-

egy is also valid, so the primary meets its rate target under unknown time-varying

interference characteristics. We provide rate guarantees for the cognitive radio under

the more limited set of unknown time-invariant interference characteristics, and in

Section 2.4, we show that the codebook-adaptive protocol provides the optimum rate

for the cognitive radio within this set.

2.3.1 Fixed-Codebook Protocol

Recall the approach considered in Example 2.1 over the noiseless channel. The silent

symbol xoff is used for each channel use when the primary is not meeting its rate
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target. Otherwise, one of the remaining P symbols is used to send information about

the message. As demonstrated in that example, this leads to a rate proportional to

log P . However, this strategy appears to be wasteful in that xoff is not being used to

send information about the message.

One way to overcome this limitation is to group multiple channel uses into frames.

Each frame is either silent – consisting of only silent symbols xoff – or active – consist-

ing of any combinations of all P + 1 symbols, including xoff. Clearly, over the active

frames, this increases the rate since the available channel input alphabet is larger.

The main issues are:

• To find a rule by which the cognitive transmitter decides before each frame

whether the frame will be silent or active. The cognitive transmitter then also

needs some way of indicating its choice to the cognitive receiver.

• To appropriately select the frame length. If the frame length is too short, then

no rate gain is attained. Conversely, if the frame length is too large, then the

non-interference guarantee given in (2.13) can no longer be respected.

We now illustrate the approach in the context of Example 2.1. For the sake of

concreteness, consider the case in which the frame length Kn = 3 channel uses. For

this illustration, we will assume the decision to become active is governed by the

threshold rule
∑3⌊(i−1)/3⌋

j=1 (Aj − 1
2
) > 0. Then a sample run may look as follows:

i 1 2 3 4 5 6 7 · · ·
∑i−1

j=1

(

Aj − 1
2

)

0 1
2

1 1
2

0 −1
2

−1 · · ·
Xi xoff xoff xoff xon,1 xoff xon,P xoff · · ·

Times i = 4, 5, 6 represent an active frame, where the channel input at time i = 4

is simply a beacon to indicate to the decoder that the frame is active; the message
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information is sent over i = 5, 6. Despite the fact that the primary meets the rate

target Rp = 1
2

over channel uses 2 and 3, the cognitive radio sends the silent symbol xoff

for the duration of the frame. Thus, one has to be careful to set the frame length Kn

and transmission threshold to make sure the cognitive radio can achieve a significant

rate. Likewise, the cognitive radio sends the message information (xoff, xon,P) over

channel uses 5 and 6 even though the primary no longer exceeds the rate target 1
2
.

Thus, one has to be careful to set the frame length Kn and transmission threshold so

that the primary’s rate satisfies (2.13), so the strategy is valid.

Rp+γ

k−1
∑k

j=1 Aj

Kn 2Kn 2Kn+κn 3Kn 4Kn 4Kn+κn 5Kn
k

Xk xoff b b b xoff xoff b b b xoff xrep xoff b b b xoff xrep

silent frame active frame repetition code codeword

Figure 2.3: In the fixed-codebook protocol, channel uses are grouped into
units known as frames. At the start of a frame, the cognitive radio encoder
chooses to become active if the primary’s packet rate k−1

∑k
j=1 Aj is above

a threshold Rp +γ +o(1). Otherwise, it stays silent for the frame, i.e. sends
the symbol xoff. On an active frame, the encoder uses a length κn repetition
code to signal to the decoder that it is active and sends a codeword over
the remaining channel uses to convey additional bits of the message.

We now use the intuition from the illustration above to construct the fixed-codebook

protocol, which we will then prove is a valid strategy, as defined in Section 2.2. Figure

2.3 provides an illustration of the fixed-codebook protocol. For convenience, we define
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for all k ≥ 1,

Sk = Sk−1 + (Ak − Rp) , (2.18)

S0 = s , (2.19)

where s ≤ 0. Note that for s = 0, we have that Sk =
∑k

i=1(Ai−Rp), which is positive

at time k if and only if the primary is exceeding its rate target. Thus, s < 0 will be

an initial penalty term that can effectively delay the start of an active frame.

2.3.1.1 Determining Silent Frames

As before, the cognitive radio makes a decision to be silent or active over frames of

length Kn channel uses. Specifically, the following condition specifies the frames over

which the cognitive radio is silent:

Xj = xoff if Si(j) − i(j) · γ < Kn , (2.20)

where i(j) = ⌊(j − 1)/Kn⌋ · Kn, and γ is an additional parameter for setting the

threshold along with Kn to satisfy condition (2.13).

2.3.1.2 Active Frames

It remains to define what the cognitive transmitter does over an active frame. As in

the noiseless case, we want to inform the decoder that the frame is active, but in the

noisy case, it cannot be done with a single channel use.

2.3.1.2.1 Repetition Coding The cognitive transmitter uses a length κn repeti-

tion code to inform the cognitive receiver that the frame is active. While a repetition

code may appear suboptimal, κn will be chosen to be small relative to the blocklength
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n and thus have no impact on the rate asymptotically. However, one may in practice

replace this with a more sophisticated code. Recall our assumption in (2.10). Then

the repetition code over the first κn channel uses of an active frame is specified by

the following condition:

Xj = xrep if Sij − ijγ ≥ Kn, ij < j ≤ ij + κn , (2.21)

where ij = ⌊(j − 1)/Kn⌋ · Kn.

2.3.1.2.2 Message Information For the remaining channel uses of an active

frame, the encoder sends information about the message to the decoder. It does so

with a blocklength Kn−κn codebook Cfixed of rate C∗−δ̃, where C∗ = maxp(x) I(X; Y ).

To show the existence of a valid strategy that achieves the rates claimed in Proposition

2.1, we specifically will rely on an (Kn − κn, C
∗ − δ̃, p∗) random codebook with a

maximum likelihood codebook (see Definition A.13), where p∗ is chosen to be the

input distribution that yields C∗. We will denote codeword m as X̃Kn−κn(m), where

m ∈ {1, . . . , exp{(Kn − κn)(C∗ − δ̃)}}.
The following notation will be useful for understanding the channel inputs during

the remainder of an active frame. Let V1 denote the channel index preceding the start

of the first active frame, V2 the second, V3 the third, and so on. That is,

V1 = inf{i ≥ 0 : Si − iγ ≥ Kn , i = mKn for some m ∈ Z} , (2.22)

Vk = inf{i > Vk−1 : Si − iγ ≥ Kn , i = mKn for some m ∈ Z} . (2.23)

We now characterize the remaining channel inputs. For the ℓ-th active frame and

letting mℓ be bits ℓ(Kn−κn)(C∗− δ̃) log2 e+1 through (ℓ+1)(Kn−κn)(C∗− δ̃) log2 e
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of message M ,

Xj = X̃j−Vℓ−κn(mℓ) if Vℓ + Kn ≥ j > Vℓ + κn . (2.24)

A summary of the fixed-codebook protocol is given in Table 2.1.

Table 2.1: Summary of the fixed-codebook protocol.

Equation Description

(2.20) Silent frame
(2.21) Active frame: repetition code to synchronize decoder.
(2.24) Active frame: send next unsent message fragment.

2.3.1.3 Performance of the Fixed-Codebook Protocol

For this strategy, we have the following result.

Theorem 2.3. Given rate target Rp and ν > 0, there exist choices of κn, Kn, γ, δ̃ such

that the fixed-codebook protocol is a valid strategy, i.e. primary’s packet rate satisfies

the condition in (2.13) for all {ǫx,i}∞i=1 satisfying Assumption 2.1. Furthermore, for

these parameter choices, the strategy achieves rates of at least the following:



















C∗ , ∀ i , 1 −∑x p∗(x) · ǫx,i ≥ Rp + ν

1−Rp−ǫ̂+0
∆ǫ+

· C∗ , ∀ i , 1 − Rp < min{ǫxrep,i,
∑

x p∗(x)ǫx,i}
1−Rp−ǫ̂+0

1−ǫ−0
· C∗ , otherwise

, (2.25)

where C∗ = maxp(x) I(X; Y ), p∗ = arg maxp(x) I(X; Y ), ∆ǫ+ = supx,i ǫx,i − ǫ0,i, ǫ̂+
0 =

lim supk k−1
∑k

i=1 ǫ0,i, and ǫ−0 = inf i ǫ0,i.
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Proof. While other choices will work, for the purposes of the proof, we will let

Kn = ⌊n1/8⌋ ,κn = ⌊n1/16⌋ , (2.26)

and any γ satisfying 0 < γ < min{δ̃/2, ν/2}. We will assume that δ̃ > 0, but a

detailed prescription is given in Lemma B.8 below to allow the rate loss to become

arbitrarily small.

The proof of the theorem is divided into three parts.

1. The primary’s rate satisfies condition (2.13), so the strategy is valid. (Lemma

B.3)

2. There exists a codebook such that cognitive radio decoder error probability is

small, thus satisfying (2.14) for some R. (Lemma B.4)

3. By appropriately choosing δ̃, R in (2.14) can be made arbitrarily close to (2.25).

(Lemma B.8)

These results are proved in the Appendix B.1.

2.3.2 Codebook-Adaptive Protocol

Let us return to Example 2.1, in which the erasure probability for xoff is fixed at

ǫ0 < 1−Rp for all time, all other inputs have a fixed erasure probability ǫ1 > 1−Rp,

and the channel is noiseless. Theorem 2.3 implies that when the fixed-codebook

protocol is applied to the noiseless channel, the cognitive radio is guaranteed to achieve

rates

R ≥ 1 − ǫ0 − Rp

ǫ1 − ǫ0

· log(1 + P ) . (2.27)
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Hence, the fixed-codebook protocol only adapts the duty-cycle to the actual degree

of interference. Note that the fixed codebook protocol, the strategy is chosen so

that when a frame is active, all inputs are uniform, and the rate loss comes from

the fraction of silent frames that occur. However, it may be preferable to adapt the

codebook so that the input xoff is chosen more frequently in an active frame. If this

can be done so that the fraction of silent frames has a negligible impact on the rate,

the increased duty-cycle may provide a net benefit to the rate. In this section, we

propose such a strategy, which we refer to as the codebook-adaptive protocol. The

strategy functions almost identically to the fixed-codebook protocol except that it

tries to estimate the amount of interference it causes and then chooses a codebook

that will meet this interference constraint such that if the interference characteristics

stay fixed, the fraction of silent frames becomes negligible. To achieve this, the

strategy consists of three phases:

• Phase I: estimate the amount of interference generated during the first active

frame,

• Phase II: select a codebook that satisfies the interference constraints based on

the estimates in Phase I, and notify the decoder of this choice during the second

active frame.

• Phase III: run the fixed-codebook protocol described in Section 2.3.1 with the

modification that the codebook used is the one selected in Phase II.

The codebook-adaptive protocol is summarized in Figure 2.4. As noted above, the

codebook-adaptive protocol can be thought of as an adaption of the fixed-codebook

protocol. Indeed, the codebook-adaptive protocol uses the same threshold rule and

repetition code to signify an active frame. That is, the codebook-adaptive protocol
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Rp+γ

k−1
∑k

j=1 Aj

Kn 2Kn 2Kn+κn 3Kn 4Kn 4Kn+κn 5Kn
k

Xk xoff b b b xoff xoff b b b xoff xrep xoff b b b xoff xrep

Phase I Phase II

estimate interference selected codebook

Figure 2.4: The codebook-adaptive protocol is like the fixed-codebook
protocol except the first two active frames are used to select a codebook
to use and inform the decoder about it. In Phase I, the cognitive radio
sends pilots of each of its channel inputs and uses the ARQs to create
estimates of the interference it generates on the primary. In Phase II, the
cognitive radio notifies the decoder which among a polynomial sized set of
codebooks it has selected based on its estimates from Phase I. Phase III,
which immediately follows the end of Phase II above, is almost identical
to the fixed-codebook protocol, except the codewords are now from the
codebook selected during Phase I and Phase II.

follows the rules:

Xj = xoff if Sij − ijγ < Kn , (2.28)

Xj = xrep if Sij − ijγ ≥ Kn, ij < j ≤ ij + κn , (2.29)

where ij = ⌊(j − 1)/Kn⌋ · Kn, are identical to conditions (2.20) and (2.21) in the

fixed-codebook protocol.

The difference between the two strategies is thus in what follows the repetition

code in an active frame. In particular, the encoder uses the first active frame to esti-

mate the channel, the second to inform the decoder which codebook it will use based

on those rates, and the third and greater active frames to send message information

using the selected codebook.
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As before, let V1 denote the channel index preceding the start of the first active

frame, V2 the second, V3 the third, and so on. That is, V1 = inf{i ≥ 0 : Si −
iγ ≥ Kn , i = mKn for some m ∈ Z} and Vk = inf{i > Vk−1 : Si − iγ ≥ Kn , i =

mKn for some m ∈ Z}.

2.3.2.1 Phase I

During the first active frame, the cognitive radio estimates the interference produced

by each channel input. Let µ = ⌊Kn−κn

|X | ⌋. Then for x ∈ {0, . . . , |X | − 1}, the channel

inputs for the first frame can be described as

Xj = x , if V1 + κn + (x + 1)µ ≥ j > V1 + κn + xµ . (2.30)

Using these channel inputs, the encoder can use the ARQs to estimate the primary’s

erasure probabilities.

ǫ̂x = µ−1

V1+κn+(x+1)µ
∑

i=V1+κn+xµ+1

Ai . (2.31)

With these estimates, the end of this first active frame marks the end of Phase I.

2.3.2.2 Phase II

Based on the estimates ǫ̂x, the encoder chooses a codebook among a set of codebooks;

it informs the decoder of this choice in Phase II.

Each codebook in the set has a different input distribution corresponding uniquely

to each length-Cn type pxCn of X , i.e. pxCn is a probability distribution with the

property that for all x ∈ X , pxCn (x) = nx/Cn such that nx is a nonnegative integer

and
∑

x∈X nx = Cn. Thus, there are at most (Cn + 1)|X | codebooks in the set. The

codebook CxCn of type pxCn is a random codebook with codewords generated i.i.d.
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according to
∏Kn−κn

k=1 pxCn (xk) and has

M̃xCn = exp{(Kn − κn)(RxCn − δ̃)+} , (2.32)

where RxCn is the mutual information I(X; Y ) with X having input probability dis-

tribution pxCn (x). One then selects the codebook according to the following rule:

χ = argmax
xCn :

P

x ǫ̂xp
xCn (x)≤1−Rp−2γ−δ̃

M̃xCn . (2.33)

The encoder uses the codebook from the fixed-codebook protocol in the second active

frame to inform the decoder of its codebook selected codebook. (Note: Based on the

parameter choices considered in this work, (Cn + 1)|X | is small enough so that the

fixed-codebook protocol’s codebook contains sufficiently many codewords for sending

this information. Thus, the encoder simply uses the codewords that result in the

lowest probability of error.) Suppose the selected codebook corresponds to message

mχ. Then for the second active frame,

Xj = X̃j−V2−κn(mχ) if V2 + Kn ≥ j > V2 + κn . (2.34)

With the decoder informed of which codebook has been selected, the end of this active

frame marks the end of Phase II.

2.3.2.3 Phase III

In Phase III, the active frames are now used to send message information. Thus, they

resemble the active frames in the fixed-codebook protocol, with the main difference

that the codebook χ is used.

Let mℓ be bits ℓ(Kn−κn)(Rχ− δ̃) log2 e+1 through (ℓ+1)(Kn−κn)(Rχ− δ̃) log2 e
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of message M . For the (ℓ+2)-th active frame, we can express the message information

segment of the frame as

Xj = X̃j−Vℓ+2−κn(mℓ) if Vℓ+2 + Kn ≥ j > Vℓ+2 + κn , (2.35)

where X̃Kn−κn(mℓ) ∈ Cχ.

A summary of the codebook-adaptive protocol is given in Table 2.2.

Table 2.2: Summary of the codebook-adaptive protocol.

Equation Description

(2.28) Silent frame
(2.29) Active frame: repetition code to synchronize decoder
(2.30) Active frame (Phase I): estimate interference with primary’s ARQs.
(2.34) Active frame (Phase II): notify decoder of selected codebook.
(2.35) Active frame (Phase III): send next unsent message fragment.

We now state the main result for the codebook-adaptive protocol, which confirms

that it is a valid strategy and gives a bound on the rates it achieves.

Theorem 2.4. Given a rate target Rp and ν > 0, there exists a choice of Kn, κn, Cn, γ, δ̃

such that the codebook-adaptive protocol is a valid strategy, i.e. the primary’s packet

rate satisfies the condition (2.13) for all {ǫx,i}∞i=1 satisfying Assumption 2.1. Fur-

thermore, when the interference on the primary is time-invariant, i.e. ǫx,i = ǫx, the

codebook-adaptive protocol, under these parameter settings, achieves the rate

max
p(x):

P

x ǫxp(x)≤1−Rp

I(X; Y ) . (2.36)

Proof. The parameters Kn, κn will be set as in (2.26), Cn =
√

κn, and any γ satisfying

0 < γ < min{δ̃/2, ν/2}. We will assume δ̃ > 0, but a detailed prescription is given in
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Lemma B.14 below to get arbitrarily close to the rate in the statement of the theorem.

The proof of the theorem is divided into three parts.

1. As in the fixed-codebook protocol, we can apply Lemma B.3 since (2.20) and

(2.28) are identical conditions. Thus, the primary’s rate satisfies the condition

(2.13), so the strategy is valid.

2. The cognitive radio decoder error probability is small, thus satisfying (2.14) for

some R. (Lemma B.9)

3. By appropriately choosing δ̃, the R in (2.14) can be made arbitrarily close to

RIB(~ǫ, Rp) with probability going to 1 as n → ∞. (Lemma B.14)

With the exception of Lemma B.3, these results are proved in the Appendix B.2.

2.4 Converse

To show the converse, we will relax the conditions stipulated in the problem setup,

thereby allowing a larger class of strategies. It turns out that in some cases, this

larger class does not increase the rate region.

Theorem 2.5. Given a rate target Rp and ν > 0, if ǫx,i = ǫx for all i, then

RIB(~ǫ, Rp) ≤ max
p(x):

P

x ǫxp(x)≤1−Rp

I(X; Y ) . (2.37)

36



Chapter 2. A Case Study from Cognitive Radio

Proof. From the definition of achievable rate,

nR ≤ H(M⌊n(R−δ)⌋) + nδ + 1 (2.38)

≤ I(M⌊n(R−δ)⌋; Y
n) + 2nδ + 1 (2.39)

=

n
∑

i=1

H(Yi|Y i−1) − H(Yi|Y i−1, M⌊n(R−δ)⌋) + 2nδ + 1 (2.40)

≤
n
∑

i=1

H(Yi) − H(Yi|Y i−1, M, Ai−1, X i) + 2nδ + 1 (2.41)

=

n
∑

i=1

H(Yi) − H(Yi|Xi) + 2nδ + 1 (2.42)

=
n
∑

i=1

I(Xi; Yi) + 2nδ + 1 , (2.43)

where (2.39) follows from Fano’s inequality, (2.40) from the chain rule, (2.41) since

conditioning cannot increase entropy, (2.42) by the Markov chain (M, Ai−1, Y i−1,

X i−1) − Xi − Yi, and (2.43) by definition.

We have yet to place a restriction on the strategies. Recall that valid strategies

need to satisfy the condition in (2.13). If condition (2.13) is satisfied, then the code

of blocklength n satisfies

n−1
n
∑

i=1

E [Ai] ≥ Rp − K1,Rp,ν,ne
−n·K2,Rp,ν . (2.44)

We now consider only this weaker condition on the channel inputs as opposed to

the stronger one given by (2.13). By the concavity of mutual information with respect

to its input distribution, we can combine (2.43) and (2.44) to yield that for all δ > 0,
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there exists large enough n such that

R ≤ max
p(x):

P

x ǫxp(x)≤1−Rp+δ

I(X; Y ) + 3δ (2.45)

Since δ can be made arbitrarily small, we can conclude the result.

2.5 Examples

Propositions 2.1 and 2.2 provide a lower bound and an exact result for the RIB

function under different interference conditions, respectively. In this section, we eval-

uate the RIB function given in Proposition 2.2 for cases in which the interference

characteristics on the primary are time-invariant. We then evaluate the RIB func-

tion lower bound given in Proposition 2.1 for these examples when the interference

characteristics are time-varying.

2.5.1 Evaluation of the RIB Function for Time-Invariant In-

terference Characteristics

We first explore the setting in which the interference parameters ǫx,i are time-invariant,

i.e. ǫx,i = ǫx for all i, x. In this setting, Proposition 2.2 gives an exact expression for

the RIB function RIB(~ǫ, Rp).

We first evaluate the RIB function for Example 2.1. We first rewrite the expression
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in Proposition 2.2 as

RIB(~ǫ, Rp) = max
p(x):

P

x ǫxp(x)≤1−Rp

I(X; Y ) (2.46)

= max
p(x):

p(x 6=xoff)ǫ1+p(x=xoff)ǫ0≤1−Rp

H(X)

= max
p≤ 1−Rp−ǫ0

ǫ1−ǫ0

h(p) + p log P

=







log(P + 1) , b ≥ P
P+1

h(b) + b log P , otherwise
, (2.47)

where b = 1−Rp−ǫ0
ǫ1−ǫ0

. Figure 2.5 shows (2.47) in terms of b, which we can think of as a

summary of the interference budget.

rate

1

RIB

1/2

1−Rp−ǫ0
ǫ1−ǫ0

Figure 2.5: A schematic plot of the RIB function for Example 2.1 when
P = 1.

Example 2.2. Consider a DMC with |X | = 1+P channel input symbols and |Y| = P
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output symbols with the following property:

P(Y = y|X = x) =







1, y = x, x ∈ {1, . . . , P}
1
P
, y ∈ Y , x = xoff .

. (2.48)

If ǫ0 = 0, ǫx = 1 for x ∈ {1, . . . , P}, then evaluating the RIB function from Proposition

2.2 yields

RIB(~ǫ, Rp) = (1 − Rp) log2 P , (2.49)

where the units are in bits per channel use.

We now consider a case in which the secondary has an alternative to xoff to control

interference. The channel model resembles the one in Example 2.2, except there are

now additional channel inputs.

11

6

1
2

1
2

33

xoff

22

5

1
2

1
2
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4

1
4

1
4

X Y

Figure 2.6: Illustration of transition probabilities for Example 2.3 when
P = 4.

Example 2.3. Let P be even and consider a DMC with |X | = 1 + 3P/2 channel
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input symbols and |Y| = P output symbols with the following property:

P(Y = y|X = x) =































1, y = x, x ∈ {1, . . . , P}
1
P
, y ∈ Y , x = xoff

1
2
, y = 2(x − P ) − 1, x ∈ {P + 1, . . . , P + P/2}

1
2
, y = 2(x − P ), x ∈ {P + 1, . . . , P + P/2}

. (2.50)

An illustration of these transition probabilities are given in Figure 2.6. We now

consider the case in which ǫ0 = 0, 0 < Rp < 1, ǫx = 1 for x ∈ {1, . . . , P}, and

ǫx = ǫ1/2 < 1−Rp for x ∈ {P +1, . . . , P +P/2}. Under these assumptions, evaluating

the RIB function from Proposition 2.2 yields

RIB(~ǫ, Rp) = max
p(x):

P

x ǫxp(x)≤1−Rp

I(X; Y ) (2.51)

=
1 − Rp − ǫ1/2

1 − ǫ1/2

log2 P +
Rp

1 − ǫ1/2

log2(P/2) (2.52)

= log2 P − Rp

1 − ǫ1/2

, (2.53)

where the units are in bits per channel use. Note that the rate loss due to the primary

can be at most 1 bit in this setting. Moreover, this can be arbitrarily better than the

case in Example 2.2 by making P large and Rp close to 1, for which the rate target

Rp induced a multiplicative penalty on the log2 P term in (2.49).

2.5.2 Further Considerations for Time-Varying Interference

Characteristics

The most interesting and realistic scenarios concern the case when the interference

characteristics are time-varying. The codebook-adaptive protocol introduced in Sec-

tion III can deal with this as long as it is well behaved. However, for some “maliciously
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chosen” time-varying characteristics, the proposed startegy can be fooled into choos-

ing a low rate codebook in Phase II when the interference conditions are less severe

in Phase III. The effect of such a possibility is illustrated in Figure 2.7. One option

might be to consider a strategy that periodically readapts the codebook, which, while

potentially beneficial, is outside the scope of this work. Instead, we consider the

simpler strategy given by the fixed-codebook protocol.

rate

1

RIB

1/2

1−Rp−ǫ0
ǫ1−ǫ0

Figure 2.7: A schematic plot of the RIB function for Example 2.1 when
P = 1. The dashed line suggests how maliciously chosen time-varying
characteristics can cause the encoder to select a “low rate” codebook,
which saturates well below the actual RIB function when the interference
budget is large.

For Example 2.1, Proposition 2.1 implies the fixed-codebook protocol lets the

cognitive radio achieve the rate

RIB (ǫ0, {ǫx,i}∞i=1, Rp) ≥ (1 − Rp/(1 − ǫ0)) log(1 + P ) (2.54)

for all {ǫx,i}∞i=1, x 6= xoff. For the restricted time-invariant interference setting of

Example 2.1, can use b = 1−Rp−ǫ0
ǫ1−ǫ0

to compare its performance against the RIB func-
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tion. It turns out that for b > b∗, the codebook chosen by the codebook-adaptive

protocol has the same asymptotic rate and produces the same interference on the pri-

mary as that in the fixed-codebook protocol. Thus, depending on one’s assumptions

about the interference environment, there are instances in which the fixed-codebook

protocol may be preferable to the codebook-adaptive protocol.

Despite these guarantees, there are situations in which the fixed-codebook protocol

can be arbitrarily worse. Recall Examples 2.2 and 2.3. It turns out that in both cases

when ǫ0 = 0, Proposition 2.1 implies the fixed-codebook protocol guarantees rates

given by

RIB (0, {ǫx,i}∞i=1, Rp) ≥ (1 − Rp) log2 P , (2.55)

which matches the RIB function in (2.49) for Example 2.2. However, as already

illustrated, by making P large and Rp close to 1, the RIB function in Example 2.3,

given in (2.53), can be made arbitrarily larger than the one in Example 2.2. This

implies that the loss for applying the fixed-codebook protocol can be significant. Thus,

one’s choice between these two protocols depends jointly on the cognitive radio’s

channel and the interference generated on the primary. Indeed, there may exist

strategies that can trade off the competing desires of optimality and robustness better

than the ones proposed. These are discussed further in the next section.

2.6 Discussion

In this chapter, a novel model was proposed for a cognitive radio problem. The basic

problem is that the cognitive radio must not disturb the primary user (i.e., the license

holder). The specific aspect of our model is that the cognitive radio is ignorant of

the channel characteristics according to which it interferes with the primary. To
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mitigate this uncertainty, the cognitive radio may eavesdrop on the primary system’s

ARQ feedback signal. We show how this can be exploited to design two adaptive

cognitive radio strategies, each of which provides a fixed rate guarantee to the primary

and variable rate guarantee to the cognitive radio that depends on its interference

budget, the amount of interference it is allowed to generate on the primary user. The

problem statement and results provide a starting point for new research directions

and problems, some of which we briefly outline in the sequel.

2.6.1 Gaussian Channels

In this work, the cognitive radio’s channel is a DMC with each symbol affecting

the primary’s erasure probability. An analogous model and result for the Gaussian

setting would be desirable to gain further intuitions about the design of a cognitive

radio system. For instance, if the primary employs a Gaussian codebook that assumes

a certain level of interference, the cognitive radio may use the ARQs to choose the

highest power codebook that maintains that level of interference on the primary.

2.6.2 Primary with a Fixed Delay Constraint

In our model, the cognitive radio must operate such that eventually, the primary

attains its prespecfied rate target. A more restrictive setting would be to also enforce a

delay constraint. That is, the cognitive radio must operate such as to not delay packets

by more than a certain prespecified bound. Alternatively, this can be formulated as

a “sliding window” rate constraint: over any window of a prespecified length, the

primary must attain its prespecified rate. It would be interesting to understand by

how much this lowers the “interference budget” of the cognitive radio, and thus, its

capacity.
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2.6.3 Improved Strategies

The cognitive radio’s rate guarantees for the fixed-codebook protocol are somewhat

pessimistic, and the rate guarantees for the codebook-adaptive protocol are restricted

to the smaller class of time-invariant interference parameters on the primary. The

problem is that since the codebook-adaptive protocol only selects the codebook once,

varying the interference conditions in the time can lead to suboptimal performance.

For instance, the interference conditions in Phase I can be such that the primary

selects a codebook with negligible rate in Phase II only to discover that there is no

interference to the primary in Phase III. Thus, its performance can be significantly

worse than the fixed-codebook protocol in the time-varying setting.

An obvious alternative would be a strategy that periodically readapts the code-

book, which, if done properly, may be able to provide stronger rate guarantees than

those already provided in the time-varying setting. One may also wish to restrict

the set of codebooks so that all codebooks have a rate above a certain threshold.

Then, arguments similar to those used for the fixed-codebook protocol can provide

rate guarantees for the time-varying case, and one can also exploit the advantage

afforded by adapting one’s codebook for the time-invariant case.

2.6.4 Multiple Cognitive Radios

In our model, there is only a single cognitive radio interfering with the primary.

A more interesting situation will involve multiple cognitive radios all competing for

the same interference budget. Clearly, this significantly changes the dynamics of

the problem. Are there efficient strategies that give good rates for the cognitive

radios while respecting the primary user? First of all, if all the cognitive radios have

access to Ak with different delays, then the arguments in this work would need to be

extended. The existence of multiple users also leads to the issue that any individual
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cognitive radio may not cause significant interference to the primary by itself, but

the aggregate interference from all cognitive radios can still be quite large. Another

issue to consider is how the cognitive radios might divide their rate in an equitable

way based not only on their own channels but also on how much interference each

generates on the primary.

2.6.5 Noisy feedback

In our model, the cognitive radio has a perfect observation of the ARQ signal of

the primary, i.e., of the values of Ak. However, in practice there may be noise that

corrupts the encoder’s knowledge of Ak. This may also play a crucial role for the case

of multiple cognitive radios, in which the noise may be different for different terminals

in the system.
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Chapter 3

Towards a Theory: Communication

with a Dynamic Cost

3.1 Introduction

In the previous chapter, we studied a particular situation that could arise for a cog-

nitive radio that needs to communicate in the presence of a primary and modeled

several aspects of the problem, including the nature of interference the cognitive ra-

dio generates on the primary, uncertainty at the cognitive radio about the statistics

of this interference, and the type of constraint the cognitive radio must satisfy.

In this chapter, we focus on one aspect of the model from Chapter 2 and generalize

it: the cost constraint. In Chapter 2, the cost is the number of dropped packets at

the primary. It is additive and random: namely, the cost at each time is a random

variable with a distribution that is a function of the cognitive radio’s current channel

input. However, such a cost does not capture dynamics in a real system over multiple

time steps. For instance, if the primary’s packet were dropped, it could choose to

modify its own duty cycle, and thus the cognitive radio’s input could also affect the
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long-term behavior. Furthermore, such a cost does not capture the fact that a burst

of dropped packets could be worse than the same number of dropped packets sparsely

distributed over time. Our goal in this chapter is to model such dynamics generally

and understand the structure of optimal strategies for such models.

The following tongue-in-cheek story will help illustrate the issues that arise in this

more general setting. It is the story of General Alice S. Grant (Alice) and General

Bob E. Lee (Bob), old friends whose armies have fallen into a Civil War reenactment

against each other. The reenactment is divided into a series of battles. While there

is room for improvisation in the battles, to maintain some historical accuracy, the

reenactment requires that Alice’s army win enough battles to claim victory in the

war. Alice has a dual objective with her battle tactics: the first is to win the war,

and the second is to send Bob a message. Bob, for his part, wants to decode the

message from Alice, but he must also follow military protocol and respond to Alice’s

tactics by preparing his troops for future battles. Thus, if Alice is not careful in how

she chooses her tactics, it may cost her army in battle losses.

Example 3.1 (Alice, Bob, and Fibonacci). For battle k, we model Alice’s tactics as

an input Xk over a channel, where Bob observes the output Yk. Alice can use this

channel for n battles. There are two possible inputs to the channel: attack (Xk = 1)

and retreat (Xk = 0). Bob observes these perfectly in his output (Yk = Xk) and

responds by updating the state (Sk) of his troops. If Alice attacks (Xk = 1), then

Bob prepares his troops for the next battle (Sk+1 = 1). If Alice retreats (Xk = 0),

then Bob does not prepare his troops for the next battle (Sk+1 = 0). Before choosing

a tactic for battle k, Alice can observe the state of Bob’s troops (Sk). If Alice

attacks when Bob’s troops are prepared (Xk = 1, Sk = 1), then Alice loses the battle.

Otherwise, Alice does not lose. Alice can the win the war if she loses no more than

a fraction α of the n battles, and we wish to find rates R at which Alice can send a
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message M ∈ {1, . . . , 2nR} reliably to Bob while simultaneously winning the war.

Here is a strategy for α = 0: Alice maps each possible message into a string of

bits. If Bob’s troops are prepared for battle (Sk = 1), Alice orders a retreat (Xk = 0).

However, if Bob’s troops are unprepared (Sk = 0), Alice sends the next bit in the bit

string for the selected message. To decode, Bob looks at the outputs for which his

troops are unprepared (Yk such that Sk = 0) and inverts the mapping to determine

the selected message. Thus, we can count the total number of messages simply by

counting the number of uniquely distinguishable bit strings.

This can be done inductively. Note trivially that if no battles are fought (n = 0),

there can only be N0 = 1 message. Let us assume Bob’s troops are initially unprepared

(S1 = 0). For n = 1, there are N1 = 2 messages with bit strings 0 and 1. For n = 2,

there are N2 = N1 + N0 = 3 messages, which can be seen from the following. For

messages with 0 in the first position of the bit string, Alice retreats (X1 = 0), so Bob’s

troops are unprepared for the second battle (S2 = 0), and we are back to the case of

n = 1, for which are N1 = 2 such distinguishable messages. For messages with 1 in

the first position of the bit string, Alice attacks (X1 = 1), so Bob prepares his troops

for the second battle (S2 = 1). Thus, Alice retreats in the second battle (X2 = 0), and

we are back to the case of n = 0, for which there is only N0 = 1 message. By applying

this logic to general n, Alice can send Nn = Nn−1 + Nn−2 messages at time n, which

is the Fibonacci sequence (1, 2, 3, 5, 8, . . .), and the rate for cost α = 0 converges to

limn→∞ n−1 log Nn = log φ, where φ = 1+
√

5
2

is the golden ratio.

In the remainder of this chapter, we build on Example 3.1 to study the capacity of

a channel with feedback and a cost constraint that depends on both the state of the

channel and the channel input, where the state depends on both the previous state

and channel output. The formulation is related to problems considered by Chen and

Berger [12], Yang, Kavcic, and Tatikonda [96], as well as Permuter, Weissman, and
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Goldsmith [67] and Permuter, Cuff, Van Roy, and Weissman [66]. The key difference

in the current work is that the objective is not only to communicate reliably, but also

to control the channel state to satisfy a cost constraint. As an aside, we also note an

interesting problem in the nonfeedback setting by Koch et al. [49] to model on-chip

communication.

In this and related problems [12; 96; 67; 66], ideas from stochastic control are lever-

aged to find the capacity. One should note that connections between communication

and control have also been observed in other settings. For instance, work by Sahai [70;

71; 73] has found that reliable communication plays a critical role in controlling a plant

when there is noise in the feedback loop. Similarly, work by Mitter [62], Elia [33;

32], and Tatikonda [83; 84] have considered control problems in which the control

channel has been constrained in the amount of information it can convey. Recently,

Grover and Sahai [44] have shown how one can improve on the performance of a linear

control system control problem, which is closely related to a well-known counterex-

ample proposed by Witsenhausen in stochastic optimal control [92].

In Section 3.2, we provide an explicit problem setup and useful definitions for

characterizing the capacity. In Section 3.3, we provide the achievable strategy, which

generalizes the achievable strategy considered in Example 3.1. Section 3.4 provides

the converse, which relies on the solution to the Bellman equation for an infinite-

horizon dynamic programming problem. In Section 3.5, we revisit Example 3.1 to

find its capacity and consider other examples, including one that demonstrates that

the gap between the feedback and non-feedback capacity can be unbounded. Section

3.6 concludes the chapter with a discussion about the results and directions for future

research.
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3.2 Problem Setup

Before proceeding, we explain the notation used in this chapter. Let capital letters

X, Y, Z denote random variables, lower-case letters x, y, z real-valued numbers, and

calligraphic letters X ,Y ,Z sets. Two forms of vector notation are used in this chapter:

~x and xn. The first notation ~x specifies a vector without directly referencing its di-

mension while the second notation xn uses the superscript to denote an n-dimensional

vector. The subscripts xk denotes the k-th component of xn. Subscript are also used

to denote time.

3.2.1 Channel Model and Coding Strategies

M
Enc

Xk Yk

State

Sk

Channel

Sk+1

Delay

Dec
M̂

Figure 3.1: At time k, the channel assesses a cost as a function of the
channel input Xk and the state Sk. The next state Sk+1 depends on the
current state Sk and the channel output Yk.

We assume that at time k, the channel takes the channel input Xk ∈ X and a

state Sk ∈ S to generate the output Yk ∈ Y and the next channel state Sk+1 ∈ S.

We make the following two assumptions about the channel behavior: (i) given the

channel input Xk and state Sk at time k, the channel output Yk and state Sk+1 are

conditionally independent of message M ∈ M, channel inputs Xk, states Sk, and

channel outputs Y k−1; and (ii) given the channel output Yk and state Sk, the next
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state Sk+1 is conditionally independent of the channel input Xk. Mathematically, we

can express these assumptions as follows:

P(Sk+1 = sk+1, Yk = yk|M = m, Xk = xk, Y k−1 = yk−1, Sk = sk)

= P(Sk+1 = sk+1|Yk = yk, Sk = sk) · P(Yk = yk|Xk = xk, Sk = sk) (3.1)

= q(sk+1|yk, sk) · w(yk|xk, sk) , (3.2)

where q and w are convenient shorthand to denote P(Sk+1 = sk+1|Yk = yk, Sk = sk)

and P(Yk = yk|Xk = xk, Sk = sk), respectively. We note a correspondence between

this channel and finite state channels (see e.g. [67; 97]).

The cost function Γ : S × X → ℜ+ depends on both the channel input and the

state. Given the cost function, the total cost at time n is

n
∑

k=1

E[Γ(Sk, Xk)] . (3.3)

We are now in a position to define what we mean by a coding strategy and

achievable rate. Our definitions factor the need for the encoder to both communicate

over the channel and satisfy the cost constraint.

Definition 3.1. An (n, R) coding strategy with blocklength n and rate R consists of

a sequence of encoding functions µk : M×Sk → X for k = 1, . . . , n, and a decoding

function ν : Yn × Sn → M, where M = {1, 2, . . . , 2nR}. Given an (n, R) coding

strategy and a message M ∈ M, the channel input is given by Xk = µk(M, Sk).

Definition 3.2. Given a function Γ : S × X → ℜ+, a rate R is achievable with cost

constraint α if for all δ > 0, there exists for n sufficiently large an (n, R − δ) coding
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strategy such that for all messages m ∈ M and for all initial states s ∈ S,

P(ν(Y n, Sn) 6= m|M = m) ≤ η(δ) , (3.4)

n−1
n
∑

k=1

E[Γ(Sk, Xk)|M = m, S1 = s] ≤ α + γ(δ) , (3.5)

where γ(δ) → 0 and η(δ) → 0 as δ → 0. The set of achievable rates is denoted R(α),

and the capacity is written as C(α) = supR(α).

Remark : The cost function Γ : S × X → ℜ+ is a bounded function that depends

both on the channel input and the state. Note that if one’s only concern is minimizing

the cost function and not communication (i.e. communicating at rate R = 0), the

problem reduces to an infinite-horizon stochastic control problem (see, e.g. [53, Ch.

8]). If Sk = Yk and Γ depends only on the state Sk and not Xk, the constraint mirrors

the output cost constraint considered in [40].

3.2.2 Properties of the State Process

We can characterize the capacity when the state process {Sk}k≥1 satisfies an irre-

ducibility condition that we now define formally. The definition is based on one given

in [53, Definition (8.5.14), p. 159].

Definition 3.3. Consider a state process {Sk}k≥1 defined according to (3.2). For a

transition probability function p on X given S, let [P p
u,v] be a transition probability

matrix, where row u ∈ S and column v ∈ S in the matrix are defined as follows:

P p
u,v =

∑

x∈X
y∈Y

q(v|y, u) · w(y|x, u) · p(x|u) .

Then {Sk}k≥1 is irreducible if for all transition probability functions p on X given S,

the Markov chain with transition probability matrix [P p
u,v] is irreducible.
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The following notion of a stationary distribution for {Sk}k≥1 will also be conve-

nient to characterize the capacity.

Definition 3.4. Consider a state process {Sk}k≥1 defined according to (3.2). For a

transition probability function p on X given S, let [P p
u,v] be a transition probability

matrix, where row u ∈ S and column v ∈ S in the matrix are defined as follows:

P p
u,v =

∑

x∈X
y∈Y

q(v|y, u) · w(y|x, u) · p(x|u) .

If a probability distribution π(·) satisfies, for all v ∈ S,

π(v) =
∑

u∈S
P p

u,v · π(u) ,

then π(·) is a stationary distribution of {Sk}k≥1 induced by p.

Remark : Note that if the state process {Sk}k≥1 is irreducible, then given any

transition probability function p on X given S, there exists a unique stationary dis-

tribution of {Sk}k≥1 induced by p.

3.3 Achievable Strategy

We consider a simple coding strategy that works as follows: for each state s ∈ S, we

construct a random codebook according to the distribution p(x|s), where the length

of each codebook corresponds to the number of times we expect to see that particular

state over the course of the blocklength. That is, the length of each of these codebooks

is roughly proportional to the probability of being in the corresponding state. The

encoder then splits the message by state to select a codeword from each codebook.

If at time k, the state Sk = s, the encoder chooses the next unsent symbol for the
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Figure 3.2: The coding strategy in Section 3.3 for a channel with state
space S = {1, 2, 3, 4}. For each state, there is a codebook, possibly of
different lengths. The encoder splits the message to choose codewords
by state; it chooses the channel input to be the next unsent symbol from
the codeword of the current state. The decoder unscrambles the channel
outputs by state, determines each codeword, and thereby reconstructs the
message.

codeword corresponding to state s. The decoder, which has access to the state vector

Sn, separates the channel outputs by state and for each state, decodes the correspond

codeword. From these codewords, the decoder reconstructs the original message. A

schematic description of this strategy is provided in Figure 3.2. We are now in a

position to state the rates achieved by this strategy.

Theorem 3.1. Suppose π(s) is the stationary distribution of the state process {Sk}k≥1

induced by some p(x|s) and
∑

x,s Γ(s, x) · p(x|s) · π(s) ≤ α. Then the following rate

is achievable:

∑

s

I(X; Y |S = s)π(s) , (3.6)

where the random variables X, Y, S have joint distribution w(y|x, s) · p(x|s) · π(s).
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Furthermore, if the state process {Sk}k≥1 is irreducible, then the capacity is at least

C(α) ≥ max
p(x|s):

E[Γ(S,X)]≤α

∑

s

I(X; Y |S = s)π(s) , (3.7)

where π(s) is the stationary distribution of the state process {Sk}k≥1, defined in (3.2),

induced by p(x|s), and the distribution of Y given (X, S) is w(y|x, s).

Remark : One may note that this is reminiscent of the achievable strategy given

in [89], which considers a channel model in which the channel state is also available

at both the encoder and decoder. The key difference in the current setting is that

channel inputs may also affect future states.

The proof of Theorem 3.1 is given in Appendix C.1. While we consider a different

coding strategy, one could attain the same result by extending the feedback strategy

considered in [67].

3.4 Converse

In this section, we present a partial converse. We start by defining the key quantity

that will permit us to characterize the class for which our converse applies. In par-

ticular, our converse hinges on a solution to Bellman’s equation (see, e.g. [53, Ch.

8]) for an infinite-horizon dynamic programing problem that we derive in its proof.

Specifically, it requires the existence of |S| + 1 real numbers

(J∗
λ,α, ℓ(1), . . . , ℓ(|S|))
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such that for all i ∈ S,

J∗
λ,α + ℓ(i) = max

p(x|i)

{

I(X; Y |S = i) + λ(α − E [Γ(S, X)|S = i]) +
∑

j∈S
P p

i,j · ℓ(j)
}

.

(3.8)

Let p∗λ,α(x|i) be the maximizing distribution for each i ∈ S. Then define

α∗
λ =

∑

s,x

Γ(s, x) · p∗λ,α(x|s) · π∗
λ,α(s) , (3.9)

where π∗
λ,α(s) is the stationary distribution induced by p∗λ,α(x|s) on the state process.

Theorem 3.2. The statement of the result is divided into two parts:

(i), If, for some λ ≥ 0, there exist |S| + 1 real numbers

(J∗
λ,α, ℓ(1), . . . , ℓ(|S|))

that satisfy (3.8) for all i ∈ S, then

C(α) ≤ J∗
λ,α , (3.10)

and the existence is guaranteed for all λ ≥ 0 if the state process {Sk}k≥1 is

irreducible.

(ii), Suppose the state process {Sk}k≥1 is irreducible. If for some λ′ ≥ 0, either

(λ′ ≥ 0, α = α∗
λ′) or (λ′ = 0, α ≥ α∗

λ′), then

C(α) = J∗
λ′,α

= max
p(x|s):

E[Γ(S,X)]≤α

∑

s

I(X; Y |S = s)π(s) , (3.11)
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where π(s) is the stationary distribution of the state process {Sk}k≥1, defined in

(3.2), induced by p(x|s), and the distribution of Y given (X, S) is w(y|x, s).

Remark : The technical conditions in Part (ii) of this theorem are related to

a concept in convex optimization known as Slater’s condition, which, under suitable

regularity conditions, can be used to establish that a convex problem and its Lagrange

dual are equal [8, pp. 226-227].

The proof of Theorem 3.2 is given in Appendix C.2.

3.5 Examples

While the technical conditions in Theorem 3.2 might seem daunting at first, the

following examples provide insights into when these conditions hold and how they

can be used to find the capacity. Let us start by revisiting Example 3.1. Note that

the problem can be modeled as follows:

Γ(sk, xk) =







1, sk = 1, xk = 1

0, otherwise
(3.12)

w(yk|xk, sk) =







1, yk = xk

0, otherwise
(3.13)

q(sk+1 = 1|yk, sk) =







0, yk = 0

1, yk = 1
. (3.14)

It turns out the state process is not irreducible, which can be seen if for the choice

p(xk = 1|sk) =







0, sk = 0

1, sk = 1
, (3.15)
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for which there is no path from state 0 to state 1 or vice versa, and the Markov

chain is not irreducible, so neither is the state process is not irreducible. However,

irreducibility is not necessary for either Theorem 3.1 or Theorem 3.2, and indeed, we

can apply both to determine the capacity for α = 0.

Proposition 3.3. The capacity in Example 3.1 with cost constraint α = 0 is

log φ , (3.16)

where φ = 1+
√

5
2

is the golden ratio, which is the solution to the equation 1
φ

= φ − 1.

Indeed, the achievable strategy presented in the introduction is consistent with

the strategy presented in Theorem 3.1, so proving the result simply verifies trying to

find an upper bound by solving the Bellman equation in Theorem 3.2. The proof of

this is given in Appendix C.3.1.

The examples considered in the sequel all assume an irreducible state process.

3.5.1 Cost function depends only on the state

Our next example considers the case in which the cost depends only on the current

channel state.

Example 3.2. Let X = {0, 1}, S = {0, 1}, and Y = {0, 1}. Finally, for 0 < ǫ0 <
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ǫ1 < 1 and 0 < β < 1, we let

Γ(sk, xk) =







1, sk = 1

0, otherwise
(3.17)

w(yk|xk, sk) =







1, yk = xk

0, otherwise
(3.18)

q(sk+1 = 1|yk, sk) =



















ǫ0, yk = 0, sk = 0

ǫ1, yk = 1, sk = 0

1 − β, sk = 1

. (3.19)

Proposition 3.4. The capacity in Example 3.2 with cost constraint α is given by the

following expression:

C (α) =







α · log 2 + (1 − α) · hb(pα), ǫ0
ǫ0+β

< α ≤ ǫ0+ǫ1
ǫ0+ǫ1+2β

log 2, α > ǫ0+ǫ1
ǫ0+ǫ1+2β

, (3.20)

where pα = (ǫ0+β)α−ǫ0
(1−α)·(ǫ1−ǫ0)

.

Remark : Alice’s achievable strategy here is quite simple: for the state 1, Alice’s

codebook consists of codewords with roughly half of their inputs as 1 and the other

half to 0. For the state 0, Alice’s codebook consists of codewords with roughly pα of

their inputs as 1 and the rest as 0, where pα increases to 1
2

as α increases to ǫ0+ǫ1
ǫ0+ǫ1+2β

.

The proof of Proposition 3.4 is given in Appendix C.3.2. A plot of these rates is

given in Example 3.2 under the parameters ǫ0 = 0, ǫ1 = 3
4
, β = 1

2
.

3.5.2 Cost function depends only on the state and the input

Our next example, an extension of the previous one, examines a case in which the

cost function Γ depends upon both the state and the channel input.
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Figure 3.3: The capacity in Example 3.2 is a concave function of the cost,
suggesting that without using the state feedback, a naive timesharing of
codebooks optimal for the extreme is suboptimal.

Example 3.3. Let X = {0, 1, . . . , L}, S = {0, 1}, and Y = X . Furthermore, we let

Γ(sk, xk) =







1 xk 6= 0, sk = 1

0 otherwise
(3.21)

w(yk|xk, sk) =







1 yk = xk

0 otherwise
(3.22)

q(sk+1 = 0|yk, sk) =







1 yk = 0, sk = 1

1
2

otherwise
. (3.23)

Proposition 3.5. The capacity in Example 3.3 with cost constraint α is given by the
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following expression:

C (α) =







2−α
3

· log(L + 1) + α · log L + 1+α
3

· hb

(

1−2α
1+α

)

, 0 ≤ α ≤ L
2L+3

log(L + 1), α > L
2L+3

, (3.24)

where hb(·) is the binary entropy function.

Remark : Note that at α = 0, C (0) = 2
3
log(L + 1). By contrast, it can be shown

by a type counting argument that the capacity without feedback for this case is 0.

Since L can be arbitrary large, the gap between feedback and nonfeedback capacity

can be arbitrarily large for an appropriately chosen example. The interested reader

is referred to [34] for further discussion on such examples.

The proof of Proposition 3.5 is given in C.3.3.

3.5.3 Noisy channel

Note that above, we have considered Alice’s actions to have deterministic conse-

quences with respect to victory. However, the victories of Alice’s army may not be

so predictable, which the next example explores.

Example 3.4. Let X = {0, 1, . . . , L}, S = {e, c}, and Y = {e, 0, 1, . . . , L}. Further-

more, we let

Γ(sk, xk) =







1 xk 6= 0, sk = e

0 otherwise
(3.25)

w(yk|xk, sk) =







1 − ǫ yk = xk

ǫ yk = e
(3.26)

q(sk+1 = e|yk, sk) =







1 yk = e

0 otherwise
. (3.27)

62



Chapter 3. Towards a Theory: Communication with a Dynamic Cost

Proposition 3.6. The capacity in Example 3.4 with cost constraint α is given by the

following expression:

C (α) =







(1 − ǫ) ·
(

(1 − ǫ) log(L + 1) + ǫ · hb

(

ǫ−α
ǫ

)

+ α log L
)

, 0 ≤ α ≤ ǫL
L+1

(1 − ǫ) · log(L + 1), α > ǫL
L+1

,

(3.28)

where hb(·) is the binary entropy function.

The proof of Proposition 3.6 is given in Appendix C.3.4.

3.6 Discussion

In this chapter, we have explored a tradeoff between communicating over a channel

and simultaneously controlling a channel state to satisfy a cost constraint. We have

presented an achievable strategy and provided a partial converse under which it yields

the optimal tradeoff between communication and control. Using these results, we

presented a series of examples in which we could evaluate the capacity expression.

As a by-product of one example, we found that the gap between non-feedback and

feedback capacity can be arbitrarily large within our framework.

This study was inspired by the problem of a cognitive radio sharing spectrum with

other users, and in such a setting, the cost represents both the physical limitations of

the cognitive radio, which is reflected in the channel input, and how much interference

it inflicts on other users, which is reflected in the channel state. This state was known

causally at both the encoder and decoder, which resulted in an achievable strategy

whereby the encoder and decoder synchronize over parallel codebooks that depend on

their knowledge of the current channel state. As noted in [12], because the channel

state is available at the decoder, an equivalent model is to collapse the state into the
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channel output, where the cost is then a function of the channel input and output.

However, if the state actually reflects the interference to a third-party user, there

could be uncertainty about the current channel state at both the encoder and decoder,

which could be introduced either by a delay in receiving this information or noise in

the state observations. If there were a delay, using the approach in [89], the encoder

and decoder could still synchronize across parallel codebooks based on a common

channel state estimate constructed from the states available to both. On the other

hand, if there were noise in the state observations, such synchronization might not

be possible, and tree-structured codes as in [96; 67] would have to be adapted.

The current study was limited to discrete channels, and within this class, it was

shown by an example that the gap between feedback and non-feedback capacity can

be unbounded. While this observation may not be too surprising, one should perhaps

recall that for a class of Gaussian channels with memory, feedback can increase the

capacity by at most the smaller of 1
2

a bit and twice the non-feedback capacity [20].

This class, however, does not assume that the cost function can depend on the state

of the channel. If the current study were extended to the Gaussian setting, it could

give further insights into the gap between the feedback and non-feedback capacity.

Our problem was point-to-point, consisting of a single encoder and decoder.

Again, inspired by spectrum sharing, one could consider what would happen if mul-

tiple users needed to satisfy a common cost constraint, as in [40]. In such a setting,

feedback could serve two roles. First, the encoders could control the state and thus

satisfy the cost constraint. Second, the encoders could correlate their channel in-

puts, thereby increasing their rate region. Indeed, this latter approach has been

leveraged in other problems with multiple transmitters or receivers [65; 75; 76; 51;

91]. Such studies could shed further light on the role of feedback in communication.
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Chapter 4

Secrecy via Sources and Channels

4.1 Introduction

4.1.1 Secrecy Constraints and Private Key Cryptography

On October 21, 2007 the canton of Geneva used quantum cryptography to secure the

wired link used to count ballots during the Swiss national election.1 The codes used

were dubbed “unbreakable” because of the secrecy constraint it must satisfy [14, p.

584]. The constraints are based on a classical problem considered by Shannon [77]

for private key cryptosystems. Shannon’s results gave a pessimistic requirement that

the entropy of a private key should be at least as large as the entropy of the message

to be sent, a result that motivated the development of public key cryptography [28;

69]. This chapter focuses on a variation of the private key cryptography problem.

1“Geneva is counting on Quantum Cryptography as it counts its votes,” Press release of Geneva
State Chancellery:
http://www.idquantique.com/news/files/com_swissquantum_ang.pdf
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4.1.2 Secrecy via Sources and Channels

Alice has a secret message she wants to send Bob, but unfortunately, she must do

so in the presence of Eve, an eavesdropper. This chapter explores a new dimension

of this familiar problem: how can Alice efficiently utilize two disparate resources in

order to keep this message secret from Eve? The first resource is a one-way noisy

broadcast channel from Alice to Bob and Eve, and the second resource is the presence

of correlated source observations at Alice, Bob, and Eve. Specifically, we are interested

in understanding how to design achievable strategies that combine these resources

optimally in order to support secure communication between Alice and Bob.

There already exists a body of literature for cases in which only one of these

resources is available. Wyner’s seminal work, “The Wire-tap Channel” [93] considered

secure communication over degraded broadcast channels [17] and was later generalized

by Csiszár and Körner [22] to cover all broadcast channels. Consider the following

example, which highlights one of the key principles presented in these works. This

will be the first in a sequence of three examples, the third of which builds on the first

two to illustrate the main ideas in this chapter.

Example 4.1. Suppose Alice has a three-bit noiseless channel to Bob with each bit

denoted as 0 or 1. Eve can observe only two of the three bits sent by Alice, but not

all of them. Alice can use this advantage Bob has over Eve to send a one-bit secret

message M ∈ {a, b} to Bob such that Eve will consider both outcomes to be equally

likely. In order to do this, Alice may make use of two fair coin tosses, for which T

or H are equiprobable. Specifically, Alice chooses her channel input according to the
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following table:

coin toss

TT TH HT HH

M = a 000 011 101 110

M = b 001 010 100 111

Note that in the top row, 1 occurs an even number of times (even parity) whereas

in the bottom row, 1 occurs an odd number of times (odd parity). Since Bob can

observe Alice’s channel input noiselessly, Bob can calculate its parity to determine

the row and thus the message M . Eve, on the other hand, will see only two of the bits

and because of the fair coin toss, the remaining bit from Eve’s perspective is equally

likely to be 0 or 1. Thus, from Eve’s perspective, it is equally likely that the output

came from either row of the table, and thus each message is equally likely.

Analogously, Ahlswede and Csiszár [3] and Maurer [60] recognized that dependent

source observations available at the terminals can be used as a resource for generat-

ing a secret-key (a uniform random variable shared by Alice and Bob which Eve is

oblivious to) if the terminals can communicate over a noiseless public channel (which

delivers all its input faithfully to all the terminals including the eavesdropper). In [3],

the secret-key capacity of dependent sources was characterized if a one-way noiseless

public channel from Alice to Bob and Eve of unconstrained capacity is available. The

characterization for the case when there is a constraint on the capacity of the public

channel was later found by Csiszár and Narayan [24] as a special case of their results

on a class of common randomness generation problems using a helper. As in the

channel setting, one can also exploit distributed sources for sending a secret message.

The next example highlights this principle in the source setting.

Example 4.2. (a) Consider the setting in which Alice is allowed to transmit one
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bit across a noiseless public channel to Bob and Eve. Furthermore, Alice observes a

two-bit string uniformly distributed over all of these strings. Bob observes either the

first or the second bit of Alice’s string, but not both, and Alice does not learn which

of the two bits Bob observed. Thus, Bob can narrow down Alice’s two-bit string to

one of two possible strings. Then Alice and Bob can agree on a common random bit,

a secret key, as follows. Let the secret key be the first bit of Alice’s two-bit string.

Alice simply transmits the XOR of her two-bit string:

Alice’s 2-bit sequence

key=0

{

00 01

key=1

{

11 10

bit-pipe input: 0 1

.

Given the XOR bit, Bob can recover Alice’s two-bit string and thus determine the

first bit. Furthermore, regardless of what the first bit of Alice’s string is, Eve is

equally likely to see a 0 or 1 from the public channel. Thus, Alice and Bob share a

secret bit that is hidden from Eve.

(b) Suppose that Alice is allowed to transmit an additional bit across the noiseless

public channel. Note given a secret message M ∈ {a, b}, Alice can simply transmit

the XOR of the message (a = 0, b = 1) and the key, so Bob can decode the message.

To see that Eve will be confused about which message is sent, consider Alice’s overall
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strategy for selecting the public channel input:

Alice’s 2-bit string

key = 0 key = 1

00 01 11 10

M = a 00 10 01 11

M = b 01 11 00 10

Note that regardless of which message is selected, Eve is equally likely to see all four

possible public channel outputs, and thus for her, both messages appear equally likely.

We now provide an example to illustrate the key features that occur when both

resources are available as in this chapter.

Example 4.3. Suppose Alice has a three-bit noiseless channel to Bob, and Eve can

observe only two of the three bits as in Example 4.1. Additionally, Alice and Bob

have source observations as in Example 4.2. The key idea is to combine the strategies

used above, except to replace Alice’s coin tosses in Example 4.1 with the input to the

public channel from Example 4.2(b). With this combined strategy, Alice can send a

two-bit secret message M ∈ {ca, cb, da, db} to Bob. To make this explicit, Alice sends

the first bit of the message over the channel using a strategy analogous to Example

4.1, swapping only the coin tosses with the public channel input from Example 4.2(b),

which encodes the second bit of the message:

public channel input from Example 4.2(b)

00 01 10 11

M = c∗ 000 011 101 110

M = d∗ 001 010 100 111

Because Bob can see the channel output noiselessly, he can determine both the first
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bit of Alice’s two-bit string and the corresponding input to the public channel input

from Example 4.2(b) which is encoded as before:

Alice’s 2-bit string

key = 0 key = 1

00 01 11 10

M = ∗a 00 10 01 11

M = ∗b 01 11 00 10

Again, as in Example 4.2(b), Bob can decode. Since the public channel input in

Example 4.2(b) is uniform, the channel advantage enables the first bit of the message

to be kept secret from Eve as in Example 4.1. Note that even if Eve were given the

first bit of the message, and thereby were able to determine the 2-bit input to the

public channel, by Example 4.2(b), this alone is insufficient for Eve to determine the

second bit of the message. Thus, with this joint strategy, Alice can keep both bits of

the message secret from Eve.

A more realistic scenario than Example 4.3 arises in wireless sensor networks,

in which sensors have access to both a wireless channel and their correlated sensor

readings. Note that in such situations, fading can cause the channel characteristics to

be more or less favorable to secrecy at different points in time. Thus, when the channel

characteristics are favorable, it can be advantageous for Alice and Bob, instead of (or

in addition to) sending a specific secret message, to simply agree on a sequence of

private common random bits (a secret key) to be used later when the characteristics

are unfavorable. See Khalil et al. [47], for an example of how this can enable a form of

secure communication with delay constraints under such conditions. Not surprisingly,

it turns out that in some settings, one can achieve higher rates for the secret key than

the more restrictive secret message. The general problem we consider abstracts this
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issue into considering a tradeoff between transmitting a uniform source privately (a

secret message) and generating private common randomness (a secret key). Another

related recent work is [48] which independently investigates secret key generation in

a similar setting.

Section 4.2 gives a formal description of the problem setup, and Section 4.3 de-

scribes the main results presented in this chapter. Section 4.4 considers examples to

illustrate the essence of our scheme. Here we show how the scheme can be interpreted

as one which separates the source and channel as resources for aquiring secrecy. Sec-

tion 4.5 gives a formal proof of the coding scheme. The chapter concludes with a

discussion and directions for future work in Section 4.6.

M
K Alice

Sn
A

Xn

P (Z, Y |X)

Y n

Zn

Bob

Sn
B

Eve

Sn
E

M̂, K̂

Figure 4.1: Problem setup: Alice and Bob want to share a key K and
independent message M , both of which they want to be kept secret from
Eve. Alice has a memoryless broadcast to Bob and Eve. Additionally,
Alice, Bob, and Eve have three have correlated memoryless sources.

4.2 Problem Setup

Notation: We denote random variables by upper-case letters (e.g., X), their realiza-

tions by lower-case letters (e.g., x), and the alphabets over which they take values

by calligraphic letters (e.g., X ). A vector (Xk, Xk+1, . . . , Xn) will be denoted by Xn
k .

When k = 1, the subscript will be dropped as in Xn = (X1, X2, . . . , X
n).
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We make the following assumptions on the channel and sources:

• The channel and the sources are memoryless.

• The channel is independent of the sources.

• The number of source observations is the same as the number of channel uses

available. Note that we allow all the sources to be observed ahead of time in

the sense that the input to the channel may depend on the block of source

observations.

The assumption on the number of source observations and channel uses can be easily

relaxed and is made here only for reducing the notation. However, the independence

assumption is critical to the results we present here. The memoryless assumption is

useful for getting simple closed-form single-letter expressions.

We consider the following model. Alice, Bob and Eve observe, respectively, the

dependent memoryless processes (sources) SA,k, SB,k, SE,k, where k = 1, 2, . . . is the

time index. They have a joint distribution pSA,SB,SE
over the alphabet SA ×SB ×SE .

Independent of these sources, there is a memoryless broadcast channel from Alice

to Bob and Eve given by pY,Z|X, where Xk is the input to the channel, Yk is Bob’s

output, and Zk Eve’s. We will also allow Alice to have access to a private random

variable ΦA uniformly distributed over the unit interval [0, 1], which is not available to

Bob and Eve and which is independent of all other random variables. Alice may use

this private random variable for purposes of randomization. Finally, there is a secret

message M , which is uniformly distributed over its alphabet M and independent of

the sources and channel

Definition 4.1. An (n, RSK, RSM) secrecy codebook with blocklength n, secret key

rate RSK and secret message rate RSM, consists of an encoding function µ : M×Sn
A ×

[0, 1] → X n, key function g : Sn
A × [0, 1] → K, and a decoding function ν : Yn ×Sn

B →
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M×K, where RSK = 1
n

log |K| and RSM = 1
n

log |M|. Given an (n, RSK, RSM) secrecy

codebook, the channel inputs are given by Xn = µ(M, Sn
A, ΦA), and the secret key is

given by K = g(Sn
A, ΦA).

From Definition 4.1, the following distinction between secret key and message is

apparent: the secret key is constructed by the secrecy codebook, but the message is

prespecified.

Definition 4.2. A secret key and secret message rate pair (RSK, RSM) is ǫ-achievable

with blocklength n if there exists an (n, RSK − ǫ, RSM − ǫ) secrecy codebook such that

the following conditions hold:

P (ν(Y n, Sn
B) 6= (K, M)) ≤ ǫ (4.1)

1

n
log |K| − 1

n
H(K) ≤ ǫ (4.2)

1

n
I(M, K; Zn, Sn

E) ≤ ǫ . (4.3)

Definition 4.3. A secret key and secret message rate pair (RSK, RSM) is achievable

if for all ǫ > 0 and sufficiently large n, (RSK, RSM) is ǫ-achievable with blocklength n.

Definition 4.4. We define the rate region R to be the set of all achievable rate pairs.

4.3 Results

Let P be the set of all joint distributions p of random variables U1, V1, V2, X, Y, Z,

SA, SB, SE such that U1 and (V1, V2) are independent, the following two Markov chains

holds:

U1 − SA − (SB, SE),

V2 − V1−X − (Y, Z),
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the joint distribution of (SA, SB, SE) and the joint conditional distribution of (Y, Z)

given X are consistent with the given source and channel respectively, and

I(V1; Y ) ≥ I(U1; SA|SB).

For p ∈ P, let R(p) be the set of all non-negative pairs (RSK, RSM) which satisfy the

following two inequalities

RSM ≤ I(V1; Y ) + I(U1; SB) − I(U1; SA), (4.4)

RSK + RSM ≤ [I(V1; Y |V2) − I(V1; Z|V2)]+ + [I(U1; SB) − I(U1; SE)]+, (4.5)

where [x]+
def
= max(0, x). The next theorem states that all pairs of rates belonging to

R(p) are achievable. The complete proof is provided in Section 4.5.

Theorem 4.1.

R ⊇
⋃

p∈P
R(p).

Remark: It can be shown that in taking the union above, it suffices to consider

auxiliary random variables with a sufficiently large, but finite cardinality. This can

be shown using Carathéodery’s theorem (see [22], for instance).

The next theorem states that the above inner bound to the trade-off region can

be used to derive a tight innerbound for the parallel channels and sources case when

each sub-channel and source component satisfies a degradation order (either in favor

of the legitimate receiver or the eavesdropper). Figure 4.2 depicts this scenario.

Theorem 4.2. Consider the following:

(i) The channel has two independent components2 denoted by F and R: X =

(XF , XR), Y = (YF , YR), and Z = (ZF , ZR) such that pYF ,YR,ZF ,ZR|XF ,XR
=

2We denote the channel input, outputs, and the sources using bold letters to make this explicit.
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Xn
R

Alice

P (ZR|XR)
Zn

R

Eve

P (YR|ZR)
Y n

R

Bob

Xn
F

Alice

P (YF |XF )
Y n

F

Bob

P (ZF |YF )
Zn

F

Eve

Sn
A

Alice

P (SB |SA)
Sn

B

Bob

P (SE |SB)
Sn

E

Eve

Sn
A

Alice

P (SE |SA)
Sn

E

Eve

P (SB |SE)
Sn

B

Bob

Figure 4.2: Theorem 4.2 states that the separation strategies used to es-
tablish Theorem 4.1 are optimal if the sources and channels can be de-
composed to satisfy a degradation order, either in favor of Bob or Eve.

pYF ,ZF |XF
pYR,ZR|XR

. Moreover, the first sub-channel F is degraded in favor of

Bob, which we call forwardly degraded, and the second sub-channel R is de-

graded in favor of Eve, which we call reversely degraded; i.e., XF −YF −ZF and

XR − ZR − YR are Markov chains.

(ii) The sources also have two independent components, again denoted by F and R:

SA = (SA,F , SA,R), SB = (SB,F , SB,R), and SE = (SE,F , SE,R) with pSA,SB ,SE
=

pSA,F ,SB,F ,SE,F
pSA,R,SB,RSE,R

. The first component is degraded in favor of Bob and

the second in favor of Eve; i.e., SA,F − SB,F − SE,F and SA,R − SE,R − SB,R are

Markov chains.

In this case,

R =
⋃

p∈P̃

R̃(p),

where P̃ is the set of joint distributions of the form

pV2,F ,XF
· pYF ,ZF |XF

· pXR
· pYR,ZR|XR

· pU1,F |SA,F
· pSA,F ,SB,R,SE,R

· pSA,R,SB,R,SE,R
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and R̃(p) is the set of non-negative pairs of (RSK, RSM) satisfying

RSM ≤ I(XF ; YF ) + I(XR; YR) − I(U1,F ; SA,F |SB,F ), and (4.6)

RSK + RSM ≤ I(XF ; YF |V2,F ) − I(XF ; ZF |V2,F ) + I(U1,F ; SB,F |SE,F ). (4.7)

We prove this theorem in Appendix D.2. It turns out the result is more general

than the form presented above, but these extensions are omitted to be able to state

the result cleanly. These extensions are discussed in greater detail in Section 4.6.

4.4 Achievability as a Separation Strategy

In this section we will sketch informally the achievable scheme behind Theorem 4.1.

The sketch of strategy follows the spirit of Examples 4.1, 4.2, and 4.3 from the

introduction to this chapter and provide an interpretation of the result as a separation

strategy. A formal proof is provided in Section 4.5. The section concludes with a

Gaussian example.

4.4.1 Case of no sources: secrecy via the channel

Consider the case in which there is a noisy broadcast channel from Alice to Bob

and Eve but no sources. Note that this resembles the cases studied in Example 4.1

with the added wrinkle that the channel to Bob may also be noisy. Recall that

in Example 4.1, given sufficiently many fair coin tosses, Alice uses the channel to

send a message secretly to Bob. The work of Csiszár and Körner [22] generalizes

this approach as a means of providing secrecy for all noisy broadcast channels. The

following proposition can be proved (adapted from [95]) if we assume the messages

and coin tosses and independent and uniform over their alphabets.
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Proposition 4.3. For any given joint distribution of random variables V1, V2, X, Y, Z

such that V2−V1−X−(Y, Z) is a Markov chain and the joint conditional distribution

of (Y, Z) given X is consistent with the given channel, then using the channel and

Rpublic tosses of a fair coin, the secret message rate of Rprivate is achievable, where

Rprivate = [I(V1; Y |V2) − I(V1; Z|V2)]+

Rpublic = I(V1; Y ) − Rprivate .

Furthermore, Bob can determine the outcome of the Rpublic coin tosses with high prob-

ability.

4.4.2 Case of two noiseless bit pipes: private and public

Now consider the setting in which the channel is deterministic. In particular, the

channel is made up of two bit-pipes: (1) a private bit-pipe of rate Rprivate which

delivers its input bits from Alice faithfully and only to Bob, and (2) a public bit-pipe

of rate Rpublic which delivers faithfully its input bits from Alice to both Bob and Eve.

AliceM Enc

Rprivate

Rpublic

Dec

sources
Sn

A Sn
B

Eve

M̂ Bob

Figure 4.3: Consider the case in which Alice and Bob share correlated
source observations, and there is both a private bit-pipe from Alice to
Bob and a public bit-pipe from Alice to Bob and Eve. This generalizes
the problem considered in Example 4.2, and the strategy considered in
that setting generalizes naturally, as well.

77



Chapter 4. Secrecy via Sources and Channels

4.4.2.1 Secret-key only; no source observation at Eve

Consider the goal of generating the largest secret-key rate possible when there is

no source observation at Eve.3 This is reminiscent of Example 4.2(a) but with two

added dimensions not present in that setting. First, there may not be enough rate

on the public bit-pipe for Bob to determine Alice’s source observation perfectly to

generate a secret key. A modified form of Wyner-Ziv’s source coding strategy can be

employed to handle this, which simply involves quantizing Alice’s source and using

that to generate the secret key. Second, in addition to the public bit-pipe, there

is also a private bit-pipe. Note that any component sent on the private bit-pipe is

automatically a secret key, as well. Thus, if part of the bin index is sent on the private

bit-pipe, it is also secret from Eve.

Then, given an auxiliary random variable U which satisfies the Markov chain

U − SA − SB, a secret-key rate of (I(U ; SB) + R) + Rprivate − R if

I(U ; SA) − I(U ; SB) ≤ Rpublic + R, and

R ≤ Rprivate.

Again, the work of Ahlswede-Csiszár [3] can be used to show that this has the required

secrecy and uniformity properties, and thus, the resulting secret-key rate is

RSK = (I(U ; SB) + R) + (Rprivate − R) = I(U ; SB) + Rprivate,

3When Eve has a dependent source observation SE , a further binning of the codebook described
in this section can be used to get a secret-key rate of

RSK = I(U ; SB) − I(U ; SE) + Rprivate,

where we restrict U to those which satisfy

I(U ; SA) − I(U ; SB) < Rpublic + Rprivate,

and the Markov chain U − SA − (SB, SE).

78



Chapter 4. Secrecy via Sources and Channels

where we restrict U to those which satisfy

I(U ; SA) − I(U ; SB) < Rpublic + Rprivate,

and the Markov chain U − SA − SB.

4.4.2.2 Secret message only; no source observation at Eve

Consider the case in which Alice desires to communicate a message secretly at the

largest possible rate when there is no source observation at Eve.4 This scenario,

depicted in Figure 4.3, is a straightforward generalization of Example 4.2(b) from

the introduction. In that example, Alice achieves secrecy across a public bit-pipe by

binning her source observation based on Bob’s side information to generate a shared

secret key. On the rest of the public bit-pipe, Alice uses this key as a one-time pad

to send the secret message.

As earlier, there are two added dimensions in the current setting that are not

present in Example 4.2(b). First, there may not be enough rate on the public bit-pipe

for Bob to determine Alice’s source observation perfectly and thus generate a secret

key. Again, Alice simply quantizes the source observation and applies the binning

strategy as before, which corresponds to Wyner-Ziv’s source coding scheme. Second,

in addition to the public bit-pipe, there is also a private bit-pipe. Because there is

now a secret message, we split the message into two parts: the private bit-pipe is used

4When Eve has a correlated source observation, a further binning of the codebook described in
this section can be used to get a secret message rate of

RSM = Rprivate + [I(U : SB) − I(U ; SE)]+,

where U satisfies the Markov chain U − SA − (SB , SE) and the condition

Rpublic > I(U ; SA).
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fully to send part of the secret message (at rate Rprivate), and the public bit-pipe is

used as before to communicate the remaining bits secretly with the correlated sources

being exploited to provide the secrecy. However, since we now have to agree on specific

random bits instead of any common random bits, we have two additional restrictions,

which can cause the rate of the secret message to be lower than the secret key case

above. First, we have to reserve part of the public bit-pipe for sending the one-

time padded secret message, which constrains part of the public bit-pipe rate Rpublic

for generating the secret key from the sources. Second, sending part of the Wyner-

Ziv bin index on the private bit-pipe will cost rate that can be used for sending a

private message. Thus, it is better to reserve the private bit-pipe for sending a secret

message, which costs R ≤ Rprivate bits that could have been used for generating the

secret key, which means the rate of the secret key used as a one-time pad, and thus

the effectiveness of the public bit-pipe, is significantly limited compared with the case

of the secret key.

The work of Ahlswede-Csiszár [3] can be adapted to show that this approach

satisfies the required secrecy and uniformity properties. The secret-key is then used

as a one-time pad to encrypt some extra messages bits. Using this approach, given

any joint distribution of U − SA − SB, a secret key of I(U ; SB) can be generated by

consuming I(U ; SA) − I(U ; SB) bits from the public bit-pipe. This secret key can

then be used as a one-time pad on another I(U ; SB) bits of the public bit-pipe to

send a secret message of that rate. Hence, we must choose auxiliary random variable

U such that

Rpublic > (I(U ; SA) − I(U ; SB)) + I(U ; SB) = I(U ; SA),
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and the total secret message rate obtained is

RSM = Rprivate + I(U : SB).

Unlike in the work of Csiszar-Narayan [24], in which Alice and Bob only need to agree

on any common random bits to construct a secret key, for a secret message, we have

the added constraint that they must agree on specific random bits. Thus, the rates

achievable for secret message are less than those achievable for secret key.

4.4.2.3 Secret message – secret-key tradeoff; no source observation at Eve

A secret-message – secret-key tradeoff optimal strategy here5 turns out to be a natural

combination of the above two: If (1) RSM ≤ Rprivate, the secret-message is sent entirely

over the private bit-pipe, and the left-over rate (Rprivate − RSM) of the private bit-

pipe rate along with the public bit-pipe is used for agreeing on a secret-key from

the correlated sources. This secret-key step is essentially the secret-key only case

discussed above. Otherwise, i.e., if (2) RSM ≥ Rprivate, all of the private bit-pipe

is used to carry a part of the secret message. For communicating the rest of the

secret message, at a rate of RSM −Rprivate, and for agreeing on a secret-key, the public

bit-pipe and the sources are made use of. The way the public bit-pipe is used is

essentially the same as in the secret message only case above. The only difference is

that instead of utilizing all of the secret-key generated from the sources as a one-time

5When Eve has a correlated source observation SE , the tradeoff becomes

RSM ≤ Rpublic + Rprivate − (I(U ; SA) − I(U ; SB)), and

RSM + RSK ≤ [I(U ; SB) − I(U ; SE)]+ + Rprivate,

where U satisfies the Markov chain U − SA − SB and the condition

I(U ; SA) − I(U ; SB) ≤ Rpublic + Rprivate.

81



Chapter 4. Secrecy via Sources and Channels

pad to secure communication of a message over the public bit-pipe, here, only a part

of the secret-key is used for this purpose. The rate of the unused part of the secret-key

is RSK.

The resulting tradeoff is given by

RSM ≤ Rpublic + Rprivate − (I(U ; SA) − I(U ; SB)), and

RSM + RSK ≤ I(U ; SB) + Rprivate,

where U satisfies the Markov chain U − SA − SB and the condition

I(U ; SA) − I(U ; SB) ≤ Rpublic + Rprivate.

channel

distill

distributed sources
binning

Alice

Sn
A

Bob

Sn
B

Eve

Sn
E

Xn

P (Z, Y |X)

Y n

Zn

key K

insecure bit pipe

secure bit pipe

secure
bit pipe

Figure 4.4: In the separation strategy, the channel is distilled into a public
and private bit pipe. The sources take advantage of part of the rate from
each bit pipe to generate a secret key. This key is divided into the final
secret key and a one-time pad that is used to secure the remainder of the
public bit pipe for sending part of the secret message. The remainder of
the private bit pipe is used to send the remainder of the secret message.
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4.4.3 The General case

Now let us turn to the general case with sources in which the channel is not neces-

sarily deterministic. This resembles Example 4.3, and as in that case, we can apply

a combination of the strategies in Section 4.4.1 and 4.4.2. Indeed, by treating the

random coin tosses Alice uses in Proposition 4.3 as a public bit-pipe, we can con-

struct a public and private bit-pipe from the channel and can leverage the source

strategy from Section 4.4.2. This approach enables us to obtain the rates in (4.4) and

(4.5). However, we should note that neither the independence requirement nor the

uniformity requirement in Proposition 4.3 hold for the messages sent over the bit-

pipes in 4.4.2, though they may hold approximately. Hence, this discussion does not

constitute a proof of Theorem 4.1. We prove rigorously in Section 4.5. A schematic

interpretation of the discussion in this section is shown in Figure 4.4.

4.4.4 A Gaussian example

Let us consider a scalar Gaussian example. Suppose the observations of Alice and

Bob are jointly Gaussian. Then, without loss of generality, we can model them as

SB = SA + Nsource,

where SA and Nsource are zero mean Gaussian. Let Nsource be unit variance, and let

the variance of SA be SNRsrc. Let Eve have no source observation. Suppose that

the broadcast channel has additive Gaussian noise with a power constraint on X of

SNRBob. Let

Y = X + NBob, and

Z = X + NEve,
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Figure 4.5: The tradeoff between key and message in the Gaussian setting.
Note that this tradeoff is not simply linear.

where NBob and NEve are Gaussians independent of X, and such that NBob has unit

variance and NEve has a variance SNRBob/SNREve. We have the following proposition

which is proved in Appendix D.3.

Proposition 4.4. The rate region R for this problem is set of all non-negative

(RSK, RSM) pairs satisfying

RSM ≤ 1

2
log

(1 + SNRsrc)(1 + SNRBob)

1 + SNRsrc + min(SNRBob, SNREve)
,

RSK ≤ 1

2
log

(1 + SNRsrc)(1 + SNRBob) exp(−2RSM) − SNRsrc

1 + min(SNRBob, SNREve)

Remark: When Eve also has a source observation jointly Gaussian with the observa-
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Figure 4.6: When the noises are additive Gaussian, and the sources are
jointly Gaussian, Theorem 4.2 applies, and the rate region can achieved
by a separation strategy.

tions of Alice and Bob, the problem is covered by the cases in Theorem 4.2. However,

unlike in the proposition above, we were unable to show that a Gaussian choice of

the auxiliary random variables is optimal.

4.5 General Achievable Strategy

Note that in the previous section, we outlined how the rate region in Theorem 4.1 can

be achieved by a separation strategy: i.e. one that considers sources and channels

separately. The strategy assumed sources and channels were independent and involved

Wyner-Ziv encoding of the sources and Gelfand-Pinsker type of the channel to ensure

secrecy. In this section, we construct an achievable strategy for the more general case

in which the sources and channel are correlated from an insight based on the duality

between Wyner-Ziv and Gelfand-Pinsker. We then show that the region achieved by

this general strategy reduces to the separation region when the sources and channel

are independent.

Before proceeding, we will create a notational change that will greatly simplify the

arguments and intuition about the proof. Let Sk = SA,k, Yk = (Yk, SB,k), and Zk =
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(Zk, SE,k). Then we have a memoryless broadcast channel pY,Z|X,S with non-causal

state information Sn at the encoder Alice. This state sequence Sn is independent and

identically distributed with a probability mass function pS(s). Note that the source

observations at Bob and Eve (which have been absorbed into the channel outputs)

may depend on the channel.

Let Pjoint be the set of all joint distributions p of random variables V,U, X, S,Y,Z

such that (i) the following Markov chain holds:

V −U − (X, S) − (Y,Z) ,

(ii) V is independent of S, and (iii) the joint conditional distribution of (Y,Z) given

(X, S) as well as the marginal distribution of S are consistent with the given source

and channel respectively.

For p ∈ Pjoint, let Rjoint(p) be the set of all non-negative pairs (RSK, RSM) which

satisfy the following two inequalities:

RSM ≤ I(U;Y) − I(U; S) (4.8)

RSK + RSM ≤ I(U;Y|V)− I(U;Z|V) . (4.9)

Theorem 4.5.

R ⊇
⋃

p∈Pjoint

Rjoint(p) . (4.10)

We defer the proof of Theorem 4.5 to Appendix D.1. Note that Theorem 4.1 is a

special case of Theorem 4.5.
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Corollary 4.6.

⋃

p∈Pjoint

Rjoint(p) ⊇
⋃

p∈P
R(p) (4.11)

Proof. For (V2, V1, U1) as defined in Theorem 4.1, set V = V2 and U = (U1, V1). Then

we have the following:

I(U;Y) − I(U; S) = I(V1; Y ) + I(U1; SB) − I(U1; SA)

I(U;Y|V)− I(U;Z|V) = I(V1; Y |V2) − I(V1; Z|V2) + I(U1; SB) − I(U1; SE)

Note that if I(U1; SB) − I(U1; SE) ≤ 0, we can increase the achievable region by

making U1 independent of SA. Likewise, if I(V1; Y |V2) − I(V1; Z|V2) < 0, we can

increase the region by making V1 = V2. Thus, we have established the rate region in

Theorem 4.1 as a special case.

4.6 Discussion

In this chapter, we have considered a setting in which Alice and Bob must agree

on both a secret message and a secret key when there are two resources available for

generating secrecy: a one-way noisy broadcast channel from Alice to Bob and Eve and

dependent sources observed at Alice, Bob, and Eve. In our analysis, we presented

an achievable region that trades off between communicating a secret message and

generating a secret key, showed this region is optimal when Eve’s source and channel

are degraded versions of Bob’s, as well as for cases in which either Bob’s source or

channel is by itself useless in generating a secret key. Finally, we evaluated this

optimal trade-off in the Gaussian setting and established an achievable rate region in

terms of the signal-to-noise ratio of channel at Bob and Eve, as well as the correlation
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of the sources.

4.6.1 Extensions

There are several straightforward extensions of the results presented in this chapter

that have been established. For instance, it turns out that the result presented in The-

orem 4.2 holds more generally than the degradedness conditions outlined. First, the

degradedness conditions can be relaxed to stochastically degraded conditions for both

the source and channels. This simply involves a slightly more cumbersome argument

in our converse proof, but no changes to the achievable strategy are necessary.

Two other extensions of the results in Theorem 4.2 were shown in [68]. In order

to state the first, note that given only the sources and a public bit-pipe from Alice

to Bob and Eve, the condition under which Alice and Bob cannot generate a positive

rate secret-key is in fact weaker than the case where the sources are degraded in favor

of Eve6. Under this weaker condition, it was shown in [68] that the optimal strategy

involves ignoring the sources, and utilizing only the channel. In particular, R(p) is

now the set of all non-negative rate pairs satisfying the condition

RSK + RSM = [I(V1; Y ) − I(V1; Z)]+,

where V1 − X − (Y, Z) is a Markov chain. Thus the optimal strategy in this case

reduces to that of Csiszár and Körner [22], and there is essentially no distinction

between sending a secret message and generating a secret-key.

To state the second, note that a channel degraded in favor of Eve is a condition

6This condition which can be inferred from [3] is that for every Ũ1, Ũ2 satisfying the Markov
chain Ũ2 − Ũ1 − SA − (SB , SE),

I(Ũ1; SB|Ũ2) ≤ I(Ũ1; SE|Ũ2).
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under which the channel resource by itself cannot provide any secrecy, but the condi-

tion under which the channel resource cannot provide any secrecy is looser than this

type of degradation. This condition is when the channel to Eve is ‘less noisy’ than

the channel to Bob [22, Corollary 3, pg. 341]. Under this looser condition, but when

the source component degraded in favor of Eve is absent, the optimality of turning

the channel into a public bit-pipe was shown in [68] for secret-key generation. In

the special case where Eve has no source observation, this optimality was shown for

secret communication as well.

Note that sending a secret message is equivalent to the case in which Alice must

send a discrete uniform source losslessly to Bob that must be kept secret from Eve.

A straightforward extension of our result for the secret message case, shown in [36],

demonstrates that optimality continues to hold if one is interested in reconstructing

any discrete memoryless source, both for the lossless and lossy cases. In this situation,

an additional layer of separation between the private bit pipes and the compression

of the source can be used to establish the result.

4.6.2 Open problems

The above extensions do not close the door on this problem, and there are several

considerations that currently warrant further research. Indeed, the general rate region

and structure of optimal strategies are still open problems. One avenue is to consider

extensions of the result beyond the degraded case and beyond some of the extensions

discussed above.

Another avenue to consider is the setting in which the sources and channel are

correlated. Note that in such a setting, there may not be a clean distinction between

a source observation and a channel output at either Bob or Eve, which resembles the

setup for Theorem 4.5 in Section 4.5. Indeed, the strategy and proof presented for
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Theorem 4.5 continues to hold if the sources and channels are correlated.

Such a setting bears a resemblance to a problem studied by Chen and Vinck

[13] in which Alice must send Bob a secret message, where Alice has non-causal

state information about the channel, and Eve observes degraded versions of Bob’s

channel outputs. If one considers the non-causal state information to be the source

observations at Alice, and the channel outputs at Bob and Eve to be a mixture of

their source and channel outputs, then their setting considers sending secret message

when sources and channels are correlated and degraded favors Bob, and the rate

region and strategy in Theorem 4.5 is equivalent to theirs for this setting.

While Chen and Vinck present an upper bound on the secret message rate, their

bound is not tight for their achievable strategy nor Theorem 4.5 in this chapter.

The work in [35] provides a marginal improvement to the upper bound presented

by Chen and Vinck, but the problems of characterizing the rate region and optimal

strategies remain open. Indeed, this region may also be tightened by improving upon

the achievable strategy in Theorem 4.5.

Even if one were to characterize the rate region, lingering issues still prevent the

private key cryptography promised by these strategies from being adopted. Namely,

the channel to the eavesdropper would likely be unknown. The problem is then to find

ways to characterize the statistics of an eavesdropper or applications in which such

knowledge might be available. Another potential avenue is to consider places in which

such a secrecy constraint might be useful. One should note that a variation on the

secrecy condition has been used to study anonymous routing protocols in networks

[87], such as Chaum mixing [11].

Progress on any of these fronts could lead to new insights on designing strategies to

optimally combine source and channel resources for secrecy, as well as understanding

the interplay between secret keys and messages.
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Conclusions

Back at the concert, Alice turns to Bob, takes a deep breath, and tells him the Big

News: “Bob, I want to take things to the next level, so I’m taking you to meet my

family: the March Hare and the Mad Hatter. We’ll follow the White Rabbit into

Wonderland tomorrow morning. The Cheshire Cat will pick us up on the other side

of the looking glass ...”

This thesis has developed new models for communication between Alice and Bob

in the presence of various third parties. In Chapter 2, Alice and Bob represented

the transmitter and receiver of an adaptable, unlicensed wireless device, and the

third party represented the rigid, licensed legacy system with which Alice and Bob

must share spectrum. While the legacy system’s strategy was fixed, given a target

rate for that system, we presented adaptive strategies for Alice and Bob whereby

Alice could reliably send a message to Bob such that the legacy system could also

meet its target rate. In Chapter 3, we introduced a new model to handle more

dynamic third parties. In this model, Alice’s inputs to the channel also control a state

process, and we considered a problem in which Alice must send a message to Bob and

simultaneously control the state process to satisfy a cost constraint. Our analysis
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led to an interesting achievable strategy, and under some technical conditions, we

showed that this strategy achieves the optimal tradeoff between communication and

control. In Chapter 4, we showed how Alice and Bob can keep a secret from Eve by

efficiently utilizing two resources: a noisy channel and correlated source observations.

Furthermore, we showed a relationship between two different notions of secrecy: in

the first, Alice and Bob can agree on any common sequence of bits, and in the second,

Alice and Bob must agree on a specific sequence of bits.

While the concert may be over, Alice and Bob have left us with unanswered

questions. We now state some of these questions and suggest their relevance to the

communication problem:

• Why did Alice choose to tell Bob the Big News at a crowded concert? Could

Alice have been wiser about where to tell Bob? In the wireless setting, this

corresponds to the case in which the wireless devices can switch among different

frequency bands.

• Alice shared the Big News with Bob, but what if she also had Other News for

Betty, who was also at the concert? What if Andrew, seated one row behind

Alice, had a message for Bob? In the communication context, one may consider

how the strategies developed in this thesis can be adapted to scale in multi-

terminal settings, in which information can have multiple sources intended for

multiple destinations.

• How would Alice have broached the Big News at a restaurant? What about

a library? In these environments, there might be different rules of etiquette

than at a concert. How do these rules of etiquette affect the strategies used to

communicate and the rates they can achieve?

There are likely several other questions one can ask. If there are ways to address any
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of them, the answers could provide further insights and enable the development of

new communication technology.
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Appendix A

Technical Preliminaries

This appendix contains technical definitions and preliminary results that will be useful

in understanding the technical results of this thesis. We begin by describing our

notation. Unless stated otherwise, all random variables are represented by capital

letters X, Y, Z, their realizations by lowercase letters x, y, z, and sets by calligraphic

letters X ,Y ,Z. The cardinality of a set X is denoted |X |. The symbol P denotes the

probability of an event, and E denotes the expectation of a random variable.

A.1 Entropy, Mutual Information, and Divergence

We start by defining the notion of entropy, which will be useful in the sequel.

Definition A.1. Let X, Y be discrete random variables with joint distribution p(x, y).

Then the entropy of X H(X) is a real number given by the expression

H(X) = −E[log p(X)] = −
∑

x

p(x) log p(x) ,
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the joint entropy of X and Y H(X, Y ) is a real number given by the expression

H(X, Y ) = −E[log p(X, Y )] = −
∑

x,y

p(x, y) log p(x, y) ,

and the conditional entropy of X given Y H(X|Y ) is a real number given by the

expression

H(X|Y ) = −E[log p(X|Y )] = H(X, Y ) − H(Y ) .

The binary entropy function hb(p) is

hb(p) = −p log p − (1 − p) log(1 − p) .

With a definition for entropy, we can now define mutual information.

Definition A.2. Let X, Y be discrete random variables with joint distribution p(x, y).

Then the mutual information I(X; Y ) between X and Y is a real number given by

the expression

I(X; Y ) = H(X) − H(X|Y ) = H(Y ) − H(Y |X) .

Another useful definition is the Kullback-Leibler (KL) divergence.

Definition A.3. Given distributions p(·) and q(·) on the alphabet X , the Kullback-

Leibler (KL) divergence, denoted D(p(·)‖q(·)), is

D(p(·)‖q(·)) =
∑

x∈X
p(x) log

p(x)

q(x)
.
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The binary KL divergence D(p‖q) is

D(p‖q) = p log
p

q
+ (1 − p) log

1 − p

1 − q
.

Similar definitions exist in the continuous setting.

Definition A.4. Let X, Y be continuous random variables with joint density f(x, y).

Then we define the differential entropy

h(X) = −E[log f(X)],

joint differential entropy

h(X, Y ) = −E[log f(X, Y )],

conditional differential entropy

h(X|Y ) = −E[log f(X|Y )],

and mutual information

I(X; Y ) = h(X) − h(X|Y ) = h(Y ) − h(Y |X).

Definition A.5. Let X be a continuous random variable with density f(x, y). Then

its entropy power QX is given by

QX =
1

2πe
exp{2h(X)} . (A.1)
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Theorem A.1 (Entropy Power Inequality [7; 80]). Let X and Y be two independent

random variables. Then

QX+Y ≥ QX + QY .

The central concept is that of an information source, which is merely a discrete-

time random process {Sk}k>0. For the purposes of this chapter, we assume that all

information sources are stationary and ergodic. When the random variables {Sk}k>0

take values in a discrete set, we will refer to the source as a discrete information source.

For simplicity, we will refer to a source {Sk}k>0 with the abbreviated notation S.

Definition A.6. The entropy rate of a stationary and ergodic discrete information

source S is

H∞(S) = lim
n→∞

1

n
H(S1, S2, . . . , Sn) = lim

k→∞
H(Sk|Sk−1, Sk−2, . . . , S1) . (A.2)

In many of the concrete examples discussed in this chapter, S will be assumed to be

a sequence of independent and identically distributed (i.i.d.) random variables. This

is usually referred to as a memoryless source, and one can show that H∞(S) = H (S1) .

For notational convenience, we will denote this simply as H(S).

A.2 Typical Sequences

For x ∈ X and a random vector Xn, N(x; Xn) refers to the number of times the

symbol x appears in the sequence. That is N(x; Xn) =
∑

i 1{Xi=x}.
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Definition A.7. Consider a distribution pX(·) on the alphabet X . A sequence xn is

δ-typical with respect to pX (denoted xn ∈ T ∗(n)
δ (pX)) if for all a ∈ X ,

∣

∣

∣

∣

1

n
N(a; xn) − pX(a)

∣

∣

∣

∣

<
δ

|X | . (A.3)

This is often called strong typicality in the literature [5].

Definition A.8. Consider a transition probability function pY |X . A sequence yn

is conditionally δ-typical on a sequence xn with respect to pY |X (denoted yn ∈
T ∗(n)

δ (pY |X(·|xn))) if for all (a, b) ∈ X × Y , they satisfy

∣

∣

∣

∣

1

n
N(a, b; xn, yn) − 1

n
N(a; xn) · pY |X(b|a)

∣

∣

∣

∣

<
δ

|X | · |Y| . (A.4)

This is often called strong typicality in the literature [5].

Definition A.9. Consider a joint distribution pX,Y (·, ·) on the product alphabet

X ×Y . A pair of sequences (xn, yn) are jointly δ-typical with respect to pX,Y (denoted

(xn, yn) ∈ T ∗(n)
δ (pX,Y )) if for all (a, b) ∈ X × Y , they satisfy

∣

∣

∣

∣

1

n
N(a, b; xn, yn) − pX,Y (a, b)

∣

∣

∣

∣

<
δ

|X | · |Y| . (A.5)

Remark : We will suppress the dependence on pX,Y and denote the set of jointly

typical sequences as T ∗(n)
δ when it is clear from context.

The following properties about jointly δ-typical sequences, taken from the text of

Csiszar and Korner [23, pp. 34– 35], are included here for completeness.

Lemma A.2. [23, p. 34, Lemma 1.2.10] If xn ∈ T ∗(n)
δ/|Y|(pX), yn ∈ T ∗(n)

δ′ (pY |X(·|xn)),

then (xn, yn) ∈ T ∗(n)
δ+δ′ (pX,Y ), and consequently, yn ∈ T ∗(n)

δ+δ′ (pY ).

Lemma A.3 (Asymptotic Equipartition Property (AEP)). [23, p. 34, Lemma 1.2.12]

Let (Xk, Yk)k≥1 be a sequence drawn i.i.d. from the joint distribution pX,Y . Then, for
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all δ, ǫ > 0, there exists n0(δ, ǫ) such that for all n ≥ n0,

P

(

Xn ∈ T ∗(n)
δ (pX)

)

≥ 1 − ǫ , (A.6)

P

(

Y n ∈ T ∗(n)
δ (pY |X(·|xn))

∣

∣Xn = xn
)

≥ 1 − ǫ . (A.7)

The final two results in this section are proved for completeness using techniques

that can be found in Berger’s lecture notes [5].

Lemma A.4 (Typical Sequences Almost Equiprobable). Let X, Y be random vari-

ables with joint distribution pX,Y , which has the property that for all (a, b) ∈ X × Y,

pX,Y (a, b) > 0. If xn ∈ T ∗(n)
δ (pX) and yn ∈ T ∗(n)

δ (pY |X(·|xn)), then for the product

distributions pXn(xn) =
∏

pX(xk) and pY n|Xn(yn|xn) =
∏

pY |X(yk|xk),

2−n(H(X)+δ′) ≤ pXn(xn) ≤ 2−n(H(X)−δ′)

2−n(H(Y |X)+δ′′) ≤ pY n|Xn(yn|xn) ≤ 2−n(H(Y |X)−δ′′)
,

where δ′ = δ maxa log 1
pX(a)

and δ′′ = 2δ maxa,b log 1
pY |X(b|a)

.

Proof. If xn ∈ T ∗(n)
δ (pX), the definition of a typical sequence implies that

n
∏

k=1

pX(xk) =
∏

a∈X
pX(a)N(a;xn)

≤
∏

a∈X
pX(a)n(pX(a)−δ/|X |)

= 2n
P

a∈X (pX(a)−δ/|X |) log pX(a)

= 2−nH(X)−n
P

a∈X δ/|X | log pX(a)

≤ 2
−nH(X)+nδ maxa log 1

pX (a) .
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By a symmetric argument,

n
∏

k=1

pX(xk) =
∏

a∈X
pX(a)N(a;xn)

≥
∏

a∈X
pX(a)n(pX(a)+δ·|X |−1)

= 2n
P

a∈X (pX(a)+δ·|X |−1) log pX(a)

= 2−nH(X)+n
P

a∈X δ/|X | log pX(a)

≥ 2
−nH(X)−nδ maxa log 1

pX (a)

Similarly,

n
∏

k=1

pY |X(yk|xk) =
∏

(a,b)∈X×Y
pY |X(b|a)N(a,b;xn,yn)

≤
∏

(a,b)∈X×Y
pY |X(b|a)N(a;xn)·pY |X(b|a)−nδ·|X |−1·|Y|−1

= 2n
P

(a,b)∈X×Y(n(pX(a)−δ·|X |−1)·pY |X(b|a)−δ·|X |−1·|Y|−1) log pY |X(b|a)

= 2−nH(Y |X)−n
P

(a,b)∈X×Y δ·|X |−1·(pY |X(b|a)+|Y|−1) log pY |X(b|a)

≤ 2
−nH(Y |X)+2nδ maxa,b log 1

pY |X (b|a)

By a symmetric argument, one can show that

n
∏

k=1

pY |X(yk|xk) ≥ 2
−nH(Y |X)−2nδ maxa,b log 1

pY |X(b|a)

Lemma A.5 (Number of Typical Sequences). Suppose there exist two random vari-

ables X, Y with joint distribution pY |X · pX. Then for all δ > 0, there exists n0(δ)
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such that for all n ≥ n0,

∣

∣

∣

∣

1

n
log |T ∗(n)

δ (pX)| − H(X)

∣

∣

∣

∣

≤ 2δ′ (A.8)

∣

∣

∣

∣

1

n
log |T ∗(n)

δ (pY |X(·|xn))| − H(Y |X)

∣

∣

∣

∣

≤ 2δ′′ , (A.9)

where δ′ = δ maxa log 1
pX(a)

and δ′′ = 2δ maxa,b log 1
pY |X(b|a)

.

Remark : A variation of this result exists in the text of Csiszar and Korner [23, p.

34, Lemma 1.2.13].

Proof. Since the probability of all typical sequences can be no more 1, we have the

following bound:

1 ≥
∑

xn∈T ∗(n)
δ (pX)

yn∈T ∗(n)
δ (pY |X(·|xn))

pY n|Xn(yn|xn)

≥ |T ∗(n)
δ (pY |X(·|xn))|2−n(H(Y |X)+δ′′) ,

where the last line follows from Lemma A.4. Rearranging terms, we have that

|T ∗(n)
δ (pY |X(·|xn))| ≥ 2n(H(Y |X)+δ′′)

Similarly, for all ǫ > 0 and n sufficiently large, the AEP (Lemma A.3) implies that

1 − ǫ ≤
∑

xn∈T ∗(n)
δ (pX)

yn∈T ∗(n)
δ (pY |X(·|xn))

pY n|Xn(yn|xn)

≤ |T ∗(n)
δ (pY |X(·|xn))|2−n(H(Y |X)−δ′′) ,

where the last line follows from Lemma A.4. Rearranging terms and a judicious choice
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of ǫ gives that for sufficiently large n,

|T ∗(n)
δ (pY |X(·|xn))| ≥ 2n(H(Y |X)−2δ′′) .

A similar argument gives the bounds for |T ∗(n)
δ (pX)|.

A.3 Codebooks and Hypothesis Testing

Definition A.10 (Codebook). Given an input alphabet X and output alphabet Y ,

an (n, R) codebook consists of an encoding function f : M → X n and a decoding

function g : Yn → M, where the set M is referred to as the message set and has

cardinality |M| = 2nR. For each message m ∈ M, we say f(m) is the m-th codeword

of the codebook, n is called the blocklength, and R is called the rate of the codebook.

Definition A.11 (Discrete Memoryless Channel). Given an input alphabet X , out-

put alphabet Y , a discrete memoryless channel (DMC) pY |X is a transition probability

function from X to Y such that

P(Yk = yk|Y k−1 = yk−1, Xk = xk) = pY |X(yk|xk), k = 1, 2, . . . , n .

Definition A.12 (Random Codebook with Jointly Typical Decoding). Given an

input alphabet X , output alphabet Y , and a discrete memoryless channel pY |X , an

(n, R, pX) random codebook with a jointly δ-typical decoder is the distribution of (n, R)

codebooks for which each codeword is drawn independently at random according to

the distribution

pXn(xn) =
n
∏

k=1

pX(xk) , (A.10)
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and the decoder, given Y n, performs jointly typical decoding for the message, i.e.

determines the codeword such that are jointly δ-typical with respect to the joint

distribution pY |X · pX . If no such codeword exists or is not unique, the decoder can

select an arbitrary message.

Lemma A.6 (Performance of a Random Codebook with Jointly Typical Decoding

[5]). Suppose there exist two random variables X, Y with joint distribution pY |X ·
pX. Then given an input alphabet X , output alphabet Y, and a discrete memoryless

channel pY |X, for all R < I(X; Y ), δ > 0, there exists a δ′ and n sufficiently large

such that an (n, R, pX) random codebook with a jointly δ′-typical decoder (encoder-

decoder pair f, g)such that for all messages m ∈ M, if Xn = f(m), then the decoding

error probability is

P(g(Y n) 6= m) ≤ δ . (A.11)

Remark : Similar results are contained in the textbooks of Csiszar and Korner [23,

Corollary 2.1.5, p. 102] as well as Cover and Thomas [21].

Sometimes a tighter bound on the error probability of a codebook may be required.

In these instances, we perform maximum likelihood decoding instead and rely on

known results bounding the error probability.

Definition A.13 (Random Codebook with Maximum Likelihood Decoding). Given

an input alphabet X , output alphabet Y , and a discrete memoryless channel pY |X , an

(n, R, pX) random codebook with a maximum likelihood (ML) decoder is the distribu-

tion of (n, R) codebooks for which each codeword is drawn independently at random

according to the distribution

pXn(xn) =
n
∏

k=1

pX(xk) , (A.12)
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and the decoder, given Y n, performs maximum likelihood decoding for the message,

i.e. select g(Y n) = arg maxm P(Y n = yn|Xn = f(m)).

Lemma A.7 (Performance of a Random Codebook with ML Decoding). Suppose

there exist two random variables X, Y with joint distribution pY |X · pX. Then given

an input alphabet X , output alphabet Y, and a discrete memoryless channel pY |X. Let

C = I(X; Y ). Then for all R < I(X; Y ) and all messages m ∈ M, for an (n, R, pX)

random codebook with an ML decoder (encoder-decoder pair f, g) with Xn = f(m),

the decoding error probability is

P(g(Y n) 6= m) ≤ exp{−n · r · (C − R)2} , (A.13)

where r > 0 is some constant that does not depend on n.

Remark : The result is based on an exercise in Gallager’s book [38, p. 539, Problem

5.23], which in turn derives from a result in that text [38, p. 138, Theorem 5.6.2].

While there is a small error in the derivation outlined in that exercise, a corrected

proof is given in [10].

Lemma A.8 (Stein’s Lemma). Let p1(y) and p2(y) be two probability distributions

such that p1(y) 6= p2(y) for at least one y ∈ Y. Given ℓ samples of one of these

distributions, then there exists a (random) hypothesis test U such that

P(U(Y ℓ) 6= i|Y ℓ selected i.i.d. from pi) ≤ e−ℓ·r , (A.14)

where r > 0 is some constant that does not depend on ℓ.

Remark : Stein’s Lemma is a well-known result that can be found in several texts,

including Csiszar and Korner [23, Corollary 1.1.2, p. 19], Cover and Thomas [21],

and Dembo and Zeitouni [25].
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A.4 Dynamic Programming

In this section, we consider the problem maximizing a reward function, which is

sometimes referred to as infinite horizon dynamic programming (see e.g. [53, Ch. 8]).

We begin by setting up the problem and then stating a well known result associated

with it. Before proceeding, we define the following notation: U ⊆ ℜd is the control

space, where d is a positive integer, and S the state space.

1. Consider a state process {Sk}k≥1, with state transition probability matrix [P u
i,j],

where the entry on row i ∈ S and column j ∈ S is defined as

P u
i,j = P(Sk+1 = j|Sk = i, Uk = u) , (A.15)

where Uk is the control.

2. A control law is any sequence g = {g0, g1, . . .} with

Uk = gk(S
k) ∈ U , (A.16)

where U ⊆ ℜd for some d.

3. Given a reward function r : S × U → ℜ, a control sequence g, and an initial

state S1 = s, the average reward is defined as

Js(g) = lim inf
n

1

n

n
∑

k=1

E[r(Sk, Uk)] . (A.17)

Given items 1), 2), and 3) above, the maximum average reward is

J∗
s = max

g
Js(g) . (A.18)
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Theorem A.9 (Bellman’s Equation). [53, Lemma (8.5.8) and Theorem (8.5.21), pp.

158-160] Given items 1), 2), and 3) above, if there exists |S| + 1 real numbers

(J∗, ℓ(1), . . . , ℓ(|S|))

such that for all i ∈ S,

J∗ + ℓ(i) = max
u∈U

{

r(i, u) +
S
∑

j=1

P u
i,j · ℓ(j)

}

, (A.19)

then for all s ∈ S, J∗ is the maximum average reward:

J∗ = max
g

Js(g) . (A.20)

Furthermore, if for all u ∈ U , a Markov chain with transition probability matrix [P u
i,j]

over the state space S is irreducible, then a solution to (A.19) exists, so J∗ is the

maximum average reward.

A.5 Miscellaneous Results

A.5.1 A Markov Property

Lemma A.10 (Stopping Times and the Strong Markov Property). Let Aj be i.i.d.

Bernoulli-pj random variables such that p ∈ (0, 1). Define stopping times

Ñ2k−1 = r · inf{i > r−1Ñ2k−2 :

i
∑

j=1

Aj − i · q ≥ τ} , (A.21)

Ñ2k = r · inf{i > r−1Ñ2k−1 :

i
∑

j=1

Aj − i · q < τ} , (A.22)
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where Ñ0 = 0. Then for all real τ, q and integers r, and on the event {Ñ2k < ∞},

P(pj)j≥1
(Ñ2k+1 − Ñ2k > ℓ · r|Ñ2k < ∞)

= P(pj+Ñ2k
)j≥1

(Ñ1 ≥ ℓ · r|τ − (q + 1) · r ≤ S̃0 < τ) . (A.23)

Proof. Define S̃i =
∑i

j=1 Ai − i · q and note that it is Markov.

P(pj)j≥1
(Ñ2k+1 − Ñ2k > ℓ · r|Ñ2k < ∞)

= P(pj)j≥1
(S̃Ñ2k+1 ≥ τ |τ − (q + 1) · r ≤ S̃Ñ2k

< τ, Ñ2k < ∞)

·
ℓ·r−1
∏

m=1

P(pj)j≥1
(S̃Ñ2k+m+1 < τ |S̃Ñ2k+m < τ, Ñ2k < ∞) (A.24)

= P(pj+Ñ2k
)j≥1

(S̃1 ≥ τ |τ − (q + 1) · r ≤ S̃0 < τ, Ñ2k < ∞)

·
ℓ·r−1
∏

m=1

P(pj−Ñ2k
)j≥1

(S̃m+1 < τ |S̃m < τ) (A.25)

= P(pj+Ñ2k
)j≥1

(Ñ1 ≥ ℓ · r|τ − (q + 1) · r ≤ S̃0 < τ) (A.26)

where (A.24) follows from the definition of the stopping times and the fact that S̃i

is Markov, (A.25) from the strong Markov property [29, p. 285, Theorem 5.2.4], and

(A.26) by the definition of the stopping time.

Lemma A.11. Suppose {Sk}k>0 is an irreducible, positive recurrent Markov chain

with stationary distribution π(s). Then for all δ > 0, s, s′ ∈ S such that S1 = s′,

P

(∣

∣

∣

∣

Nn
s

n
− π(s)

∣

∣

∣

∣

> δ

)

→ 0, (A.27)

where Nn
s =

∑n
k=1 1{i:Si=s}.

Proof. This result is simply a combination of [29, p. 303, Theorem 5.4.6] and [29, p.

308, Theorem 5.5.1]. Note that said results prove the stronger result of almost sure
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convergence, whereas we only require convergence in probability.

A.5.2 Monotonicity, Concavity, and Continuity of a Cost-

Constrained Capacity

Lemma A.12. Let 0 ≤ ǫx ≤ 1 for all x and define ǫ0 = minx ǫx, which is achieved

uniquely by some x. Then

C(~ǫ, λ) = max
p(x):

P

x ǫxp(x)≤λ

I(X; Y ) , (A.28)

is nondecreasing concave in λ on the interval [ǫ0, 1].

Proof. Since increasing λ increases the set of channel input distributions over which

to maximize, it is clear that C(~ǫ, λ) is nondecreasing. As a convenient shorthand,

let Ip = I(X; Y ) denote the mutual information with the input distribution p. Let

p1 be the maximizing input distribution for C(~ǫ, λ1) and p2 the maximizing input

distribution for C(~ǫ, λ2), both of which are guaranteed to exist for λi ∈ [ǫ0, 1], i ∈
{1, 2}. Then

(1 − ρ)C(~ǫ, λ1) + ρC(~ǫ, λ2) = (1 − ρ)Ip1 + ρIp2 (A.29)

≤ I(1−ρ)p1+ρp2 , (A.30)

≤ C(~ǫ, (1 − ρ)λ1 − ρλ2) , (A.31)

where (A.30) follows from the concavity of mutual information with respect to its

input distribution and (A.31) by definition. Thus, the function is concave.

Lemma A.13. Let 0 ≤ ǫx ≤ 1 for all x and define ǫ0 = minx ǫx, which is achieved
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uniquely by some x. Consider

C(~ǫ, λ) = max
p(x):

P

x ǫxp(x)≤λ

I(X; Y ) , (A.32)

where λ ∈ [ǫ0, 1] and C(~ǫ, λ) = 0 for λ < ǫ0. Then for 0 < ∆ ≤ 1
4
,

0 ≤ C(~ǫ, λ + ∆) − C(~ǫ, λ) ≤ −6∆ log
2∆

|X | · |Y| . (A.33)

Proof. The lower bound follows immediately from Lemma A.12. For the upper bound,

note that C(~ǫ, ǫ0) = 0 since the constraint can only be met by applying all the

probability to a single choice of x. Let λ ≥ ǫ0. Let p1(x) be the maximizing input

distribution for C(~ǫ, λ+∆). If p1(x) is found in the set of valid input distributions for

C(~ǫ, λ), then C(~ǫ, λ+∆) = C(~ǫ, λ). Otherwise, we can define p2(x) =
∑

x ǫxp2(x) = λ

and observe that

λ <
∑

x

ǫxp1(x) ≤ λ + ∆ , (A.34)

which implies that

0 <
∑

x

ǫx(p1(x) − p2(x)) ≤ ∆ (A.35)

0 <
∑

x

(1 − ǫx)(p2(x) − p1(x)) ≤ ∆ . (A.36)

Thus,

∑

x

|p2(x) − p1(x)| =
∑

x

ǫx|p2(x) − p1(x)| +
∑

x

(1 − ǫx)|p2(x) − p1(x)| (A.37)

≤ 2∆ (A.38)
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Let Ip = I(X; Y ) when the input distribution for X is p. Then by the continuity of

entropy [23, Lemma 1.2.7, p. 33],

C(~ǫ, λ + ∆) = Ip1 (A.39)

= Ip2 + (Ip1 − Ip2) (A.40)

≤ C(~ǫ, λ) − 3 · 2∆ log
2∆

|X | · |Y| (A.41)

This is still valid as an upper bound for λ < ǫ0 because of the monotonicity of C(~ǫ, λ)

from Lemma A.12.

Lemma A.14. Let 0 ≤ ǫx ≤ 1 for all x and define ǫ0 = minx ǫx, which is achieved

uniquely by some x, so ǫ0 < ǫ1 = maxx ǫx. Consider

C(~ǫ, λ) = max
p(x):

P

x ǫxp(x)≤λ

I(X; Y ) , (A.42)

where λ ∈ [ǫ0, 1] and C(~ǫ, λ) = 0 for λ < ǫ0. Furthermore,

∑

x

|ǫx − ǫ̃x| ≤ ∆ ≤ 1

4
. (A.43)

Then

|C(~ǫ, λ) − C(~̃ǫ, λ)| ≤ −6∆ log
2∆

|X | · |Y| . (A.44)

Proof. The constraint on p(x) in C(~̃ǫ, λ) can be rewritten as

∑

x

ǫxp(x) ≤ λ −
∑

x

(ǫ̃x − ǫx)p(x) . (A.45)

Since
∑

x(ǫ̃x − ǫx)p(x) ≤
∑

x |ǫ̃x − ǫx|, a tighter constraint on p(x) is
∑

x ǫxp(x) ≤
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λ − ∆, and since
∑

x(ǫ̃x − ǫx)p(x) ≥ −
∑

x |ǫ̃x − ǫx|, a looser constraint on p(x) is
∑

x ǫxp(x) ≤ λ + ∆. Thus

C(~ǫ, λ − ∆) ≤ C(~̃ǫ, λ) ≤ C(~ǫ, λ + ∆) . (A.46)

Then one can write

C(~ǫ, λ) − C(~̃ǫ, λ)

= C(~ǫ, λ) − C(~ǫ, λ − ∆) + C(~ǫ, λ − ∆) − C(~̃ǫ, λ) (A.47)

≤ C(~ǫ, λ) − C(~ǫ, λ − ∆) , (A.48)

and similarly,

C(~ǫ, λ) − C(~̃ǫ, λ)

= C(~ǫ, λ) − C(~ǫ, λ + ∆) + C(~ǫ, λ + ∆) − C(~̃ǫ, λ) (A.49)

≥ C(~ǫ, λ) − C(~ǫ, λ + ∆) , (A.50)

Lemma A.13 then implies that

|C(~ǫ, λ) − C(~̃ǫ, λ)| ≤ −6∆ log
2∆

|X | · |Y| . (A.51)
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Proofs for Chapter 2

B.1 Proof of Theorem 2.3

B.1.1 Properties of the Thresholding Strategy

In this section, we consider a couple simple properties about the thresholding strategy

that will be useful in showing the strategy is valid (i.e. the primary meets its rate

target) and also analyzing the rate of the cognitive radio. The first lemma enables

the former.

Lemma B.1. Let Sk be defined as in (2.18), S0 as in (2.19), and channel inputs

satisfy the condition (2.20). Let q and r be positive integers such that q · r = Kn, and

define the stopping time

N = inf{m > 0 : ∃ i ∈ Z
+ s.t. m = i · r, Sm − m · γ − r ≥ 0} . (B.1)
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If Rp + γ < 1 − ǫ+
0 , where ǫ+

0 = supi ǫ0,i, then

P(N ≥ t|S0 = s) ≤
(

(1 − Rp − γ)(1 − ǫ+
0 )

(Rp + γ)ǫ+
0

)2r−s

e−t·D(1−Rp−γ‖ǫ+0 ) . (B.2)

Proof. The binary KL divergence D(·‖·) (see Definition A.3) is nonnegative, so we

can apply a Chernoff bound to get that

P(N ≥ t|S0 = s) ≤ E[eN ·D(1−Rp−γ‖ǫ+0 )|S0 = s] · e−t·D(1−Rp−γ‖ǫ+0 ) . (B.3)

Thus, it suffices to show that

E[eN ·D(1−Rp−γ‖ǫ+0 )|S0 = s] ≤
(

(1 − Rp − γ)(1 − ǫ+
0 )

(Rp + γ)ǫ+
0

)2r−s

.

From the definition of Sk in (2.18), it is clear that Sk − Sk−1 ≤ 1, and since the

stopping time N is a multiple of r, we have the following inequality:

SN∧k ≤ (N ∧ k) · γ + 2r , (B.4)

where we use the notation N∧k to denotes the minimum of N and k. In the remainder

of the proof, we will use (B.4) and a martingale argument to bound the expectation

in (B.3), thereby concluding the result.

Define the sequence of random variables

Mk = eλSk−
Pk

i=1(fλ(ǫ0,i)−λRp) (B.5)

= eλs+
Pk

i=1(λAi−fλ(ǫ0,i)) , (B.6)

where fλ(ǫ) = log((1 − ǫ)eλ + ǫ), and (B.6) follows from (2.18) and (2.19). First
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observe that we can express Mk in terms of the recurrence equation

Mk = Mk−1 · eλAk−fλ(ǫ0,k) , k ≥ 1 M0 = eλs .

Then conditioned on the event {N > k}, Mk is a martingale:

E[Mk|M0, . . . , Mk−1, N > k] = E[Mk|S0, . . . , Sk−1, N > k]

= Mk−1e
−fλ(ǫ0,k)

E[eλAk |S0, . . . , Sk−1, N > k]

= Mk−1 .

Thus, the optional stopping theorem [29, Thm. 4.7.4, p. 270] implies

eλs = E[MN∧m|S0 = s]

= E[eλSN∧m−
PN∧m

i=1 (fλ(ǫ0,i)−λRp)|S0 = s] .

If we select λ < 0, then fλ(ǫ) is monotonically increasing in ǫ, so for all i, fλ(ǫ0,i) ≤
fλ(ǫ

+
0 ). Thus, for λ < 0,

eλs ≥ E[eλSN∧m−(N∧m)·(fλ(ǫ+0 )−λRp)|S0 = s] . (B.7)

Let λ = log
(Rp+γ)ǫ+0

(1−Rp−γ)(1−ǫ+0 )
, where log is the natural logarithm. This λ is negative,

which can be seen by applying the inequality log x ≤ x − 1 and our assumption
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Rp + γ < 1 − ǫ+
0 :

log
(Rp + γ)ǫ+

0

(1 − Rp − γ)(1 − ǫ+
0 )

≤ (Rp + γ)ǫ+
0

(1 − Rp − γ)(1 − ǫ+
0 )

− 1

=
(Rp + γ)ǫ+

0 − (1 − Rp − γ)(1 − ǫ+
0 )

(1 − Rp − γ)(1 − ǫ+
0 )

=
(Rp + γ) − (1 − ǫ+

0 )

(1 − Rp − γ)(1 − ǫ+
0 )

< 0 .

We can substitute this λ < 0 into equation (B.7) to get that

e
s·log (Rp+γ)ǫ+0

(1−Rp−γ)(1−ǫ+
0

)

≥ E

[

e
((N∧m)·γ+2r)·log (Rp+γ)ǫ+0

(1−Rp−γ)(1−ǫ+
0

)
−(N∧m)·(log ǫ+0

(1−Rp−γ)
−Rp·log

(Rp+γ)ǫ+0

(1−Rp−γ)(1−ǫ+
0

)
)
∣

∣

∣
S0 = s

]

(B.8)

= e
2r·log (Rp+γ)ǫ+

0

(1−Rp−γ)(1−ǫ+0 ) · E[e(N∧m)D(1−Rp−γ‖ǫ+0 )|S0 = s] , (B.9)

=

(

(Rp + γ)ǫ+
0

(1 − Rp − γ)(1 − ǫ+
0 )

)2r

E
[

e(N∧m)D(1−Rp−γ‖ǫ+0 )
∣

∣S0 = s
]

, (B.10)

where (B.8) follows from (B.4), and (B.9) follows from the following:

γ · log
(Rp + γ)ǫ+

0

(1 − Rp − γ)(1 − ǫ+
0 )

− log
ǫ+
0

(1 − Rp − γ)
+ Rp · log

(Rp + γ)ǫ+
0

(1 − Rp − γ)(1 − ǫ+
0 )

= (Rp + γ) · log
Rp + γ

1 − ǫ+
0

+ (1 − Rp − γ) · log
(1 − Rp − γ)

ǫ+
0

= D(1 − Rp − γ‖ǫ+
0 ) .

By the monotone convergence [29, p. 15, Theorem 1.3.6], letting m → ∞ in (B.10)
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and rearranging terms gives

E[eN ·D(1−Rp−γ‖ǫ+0 )|S0 = s] ≤
(

(1 − Rp − γ)(1 − ǫ+
0 )

(Rp + γ)ǫ+
0

)2r−s

. (B.11)

By applying this to (B.3), we have proved the result.

Our next lemma, which holds for a special class of (ǫx, i)∞i=1, will help us provide

a guarantee about the cognitive radio’s rate over this class.

Lemma B.2. Let Sk be defined as in (2.18), and channel inputs satisfy the conditions

(2.20), (2.21), and (2.24). Let p∗ = arg maxp(x) I(X; Y ). If max{1 − ǫxrep,i, 1 −
∑

x p∗(x)ǫx,i} < Rp for all i, then

P(Sm ≥ t + m · γ + Kn) ≤
(

(Rp + γ)(1 − Rp)

(1 − Rp − γ)Rp

)2Kn

· e−t·D(Rp+γ‖Rp) . (B.12)

Proof. Define stopping times for k ≥ 1,

N2k−1 = inf{m > N2k−2 : ∃ i ∈ Z
+ s.t. m = i · Kn, Sm − m · γ ≥ Kn} , (B.13)

N2k = inf{m > N2k−1 : ∃ i ∈ Z
+ s.t. m = i · Kn, Sm − m · γ < Kn} , (B.14)

where N0 = 0. We seek an upper bound on Sm, defined in (2.18). Since |Sm−Sm−1| ≤
1, the following observation will enable a simple upper bound on Sm is the following:

Sm < m · γ + Kn, N2k < m ≤ N2k+1

Sm < m · γ + Kn + N2k − N2k−1, N2k−1 < m ≤ N2k
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Thus, a simple upper bound to for t > 0 is

P(Sm ≥ t + m · γ + Kn)

=
∞
∑

k=1

P(Sm ≥ t + m · γ + Kn|N2k−1 < m ≤ N2k) · P(N2k−1 < m ≤ N2k)

≤ max
k

P(ǫx,i)∞i=1
(N2k − N2k−1 ≥ t|N2k−1 < ∞)

≤ max
k

P(ǫx,i+N2k−1
)∞i=1

(N2 − N1 ≥ t|N1 < ∞) ,

where the last line follows from the strong Markov property (Lemma A.10). We will

provide a bound that is unaffected by the shift (ǫx,N2k−1+1)
∞
i=1, so we suppress the

dependence in the sequel. The binary KL divergence D(·‖·) (see Definition A.3) is

nonnegative, so we can apply a Chernoff bound to get that

P(N2 − N1 ≥ t|S0 = s, N1 < ∞)

≤ E[e(N2−N1)·D(Rp+γ‖Rp)|S0 = s, N1 < ∞] · e−t·D(Rp+γ‖Rp) . (B.15)

Thus, it suffices to show that

E[e(N2−N1)·D(Rp+γ‖Rp)|S0 = s, N1 < ∞] ≤
(

(Rp + γ)(1 − Rp)

(1 − Rp − γ)Rp

)2Kn

.

From the definition of Sk in (2.18), it is clear that |Sk − Sk−1| ≤ 1, and since the

stopping times N1, N2 are multiples of Kn, we have the following inequalities:

SN1∧k ≤ (N1 ∧ k) · γ + 2Kn , (B.16)

SN2∧k ≥ (N2 ∧ k) · γ , (B.17)

where we use the notation N2 ∧ k to denotes the minimum of N and k. In the
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remainder of the proof, we will use (B.16), (B.17) and a martingale argument to

bound the expectation in (B.15), thereby concluding the result.

Define ǭj = 1 − E[Aj |S0, . . . , Sj−1] and the sequence of random variables

Mk = eλSk−
Pk

i=1(fλ(ǭi)−λRp) (B.18)

= eλs+
Pk

i=1(λAi−fλ(ǭi)) , (B.19)

where fλ(ǫ) = log((1 − ǫ)eλ + ǫ), and (B.19) follows from (2.18) and (2.19). First

observe that we can express Mk in terms of the recurrence equation

Mk = Mk−1 · eλAk−fλ(ǭk) , k ≥ 1 M0 = eλs .

Then M̃k = Mk · (MN1∧k)
−1 is a martingale:

E[M̃k|M̃0, . . . , M̃k−1] = E[Mk · (MN1∧k)
−1|S0, . . . , Sk−1]

= M̃k−1 · E[eλAk−λAN1∧k · efλ(ǭN1∧k)−fλ(ǭk)|S0, . . . , Sk−1]

= M̃k−1 .

Thus, the optional stopping theorem [29, Thm. 4.7.4, p. 270] implies

1 = E[M̃N2∧m|S0 = s]

= E

[

exp

{

λSN2∧m − λSN1∧m −
N2∧m
∑

i=N1∧m+1

(fλ(ǭi) − λRp)

}

∣

∣

∣

∣

∣

S0 = s

]

.

If we select λ > 0, then fλ(ǫ) is monotonically decreasing in ǫ, so for all N1 ∧m+1 ≤
i ≤ N2 ∧ m, our assumption max{1 − ǫxrep,i, 1 −

∑

x p∗(x)ǫx,i} < Rp implies that
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fλ(ǭi) ≤ fλ(1 − Rp). Thus, for λ > 0,

1 ≥ E[eλ(SN2∧m−SN1∧m)−(N2∧m−N1∧m)·(fλ(1−Rp)−λRp)|S0 = s]

≥ E[e−2Kn·λ−(N2∧m−N1∧m)·(fλ(1−Rp)−λ(Rp+γ))|S0 = s] , (B.20)

where (B.20) follows from the bounds in (B.16) and (B.17). Let λ = log (Rp+γ)(1−Rp)

(1−Rp−γ)Rp
,

where log is the natural logarithm. This λ is positive, which can be seen by applying

the inequality log x ≤ x − 1 and our assumption γ > 0:

− log
(Rp + γ)(1 − Rp)

(1 − Rp − γ)Rp

≤ (1 − Rp − γ)Rp

(Rp + γ)(1 − Rp)
− 1

=
(1 − Rp − γ)Rp − (Rp + γ)(1 − Rp)

(Rp + γ)(1 − Rp)

=
Rp − (Rp + γ)

(Rp + γ)(1 − Rp)

< 0 .

We can substitute this λ > 0 into equation (B.20) to get that

1 ≥ E

[

e
−2Kn·log (Rp+γ)(1−Rp)

(1−Rp−γ)Rp
−(N2∧m−N1∧m)·(log 1−Rp

(1−Rp−γ)
−(Rp+γ)·log (Rp+γ)(1−Rp)

(1−Rp−γ)Rp
)
∣

∣

∣
S0 = s

]

= e
−2Kn·log (Rp+γ)(1−Rp)

(1−Rp−γ)Rp · E[e(N2∧m−N1∧m)·D(Rp+γ‖Rp)|S0 = s] , (B.21)

=

(

(Rp + γ)(1 − Rp)

(1 − Rp − γ)Rp

)−2Kn

E[e(N2∧m−N1∧m)·D(Rp+γ‖Rp)|S0 = s] , (B.22)
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where (B.21) follows from the following:

− log
1 − Rp

(1 − Rp − γ)
+ (Rp + γ) · log

(Rp + γ)(1 − Rp)

(1 − Rp − γ)Rp

= (Rp + γ) · log
Rp + γ

Rp

+ (1 − Rp − γ) · log
(1 − Rp − γ)

1 − Rp

= D(Rp + γ‖Rp) .

By the monotone convergence [29, p. 15, Theorem 1.3.6], letting m → ∞ in (B.22)

and rearranging terms gives

E[e(N2−N1)·D(Rp+γ‖Rp)|S0 = s, N1 < ∞] ≤
(

(Rp + γ)(1 − Rp)

(1 − Rp − γ)Rp

)2Kn

. (B.23)

By applying this to (B.15), we have proved the result.

B.1.2 Primary Meets Rate Target

Lemma B.3. Given a rate target Rp and ν > 0, if for every code of blocklength n sat-

isfying (2.20) on page 27, γ > 0 is chosen so that γ < ν
2
, a strategy composed of these

codes is valid. That is, such a strategy satisfies, for all {ǫx,i}∞i=1 under Assumption

2.1,

P{ǫx,i}∞i=1

(

ℓ−1
ℓ
∑

k=1

Ak < Rp

)

≤ K1,Rp,ν,ℓ · e−ℓK2,Rp,ν , (B.24)

where 0 < K2,Rp,ν < ∞, K1,Rp,ν,ℓ < ∞, and for all r > 0, K1,Rp,ν,ℓ · e−ℓ·r → 0 as

ℓ → ∞.

Proof. When Sℓ > 0 (see (2.18) for the definition), the primary is meeting its rate

target. Furthermore, if SiKn −Kn− iKnγ > 0, then the primary will be guaranteed to

meet its rate target over the next primary frame. Thus, it suffices to consider frames
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when SiKn −Kn − iKnγ ≤ 0, which correspond directly to silent frames. To consider

what happens in these settings, we define stopping times to threshold Sℓ − ℓγ.

N2k−1 = inf{ℓ > N2k−2 : Sℓ − ℓγ ≥ 1}, (B.25)

N2k = inf{ℓ > N2k−1 : Sℓ − ℓγ < 1}. (B.26)

Negative deviations occur only when N2k ≤ ℓ < N2k+1, so

P(Sℓ ≤ 0)

≤
∑

k

P(−Sℓ + ℓγ ≥ ℓγ|N2k ≤ ℓ < N2k+1)P(N2k ≤ ℓ < N2k+1) (B.27)

≤
∑

k

P(N2k+1 − N2k ≥ ℓγ|N2k ≤ ℓ < N2k+1)

· P(N2k ≤ ℓ < N2k+1) (B.28)

≤
∑

k

P(N2k+1 − N2k ≥ ℓγ|N2k < ∞)

· P(N2k ≤ ℓ < N2k+1|N2k+1 − N2k ≥ ℓγ, N2k < ∞) (B.29)

≤ ℓ

2
max

1≤2k≤ℓ
P(N2k+1 − N2k ≥ ℓγ|N2k < ∞) , (B.30)

where (B.27) follows from the law of total probability; (B.28) since the bounded

increments of Sℓ imply that −(Sℓ − ℓγ) ≤ N2k+1 −N2k given N2k ≤ ℓ < N2k+1; (B.29)

from Bayes theorem and that probabilities are bounded from above by 1; and (B.30)

since probabilities are bounded from above by 1 and for N2k ≤ ℓ, it is necessary for

2k ≤ ℓ by the definition of N2k, N2k+1. Since Sn is a Markov chain, then for all k,
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Lemma A.10 implies that we only need to consider

P(N2k+1 − N2k ≥ ℓγ|N2k < ∞) ≤ max
s∈[−1,0]

P(N1 ≥ ℓγ|S0 = s) . (B.31)

≤
(

(1 − Rp − γ)(1 − ǫ+
0 )

(Rp + γ)ǫ+
0

)3

e−ℓγ·D(1−Rp−γ‖ǫ+0 ) ,

(B.32)

where (B.32) follows from Lemma B.1. Since the above holds for all k, substituting

it into (B.30) gives

P(Sℓ ≤ 0)

≤ ℓ

2

(

(1 − Rp − γ)(1 − ǫ+
0 )

(Rp + γ)ǫ+
0

)3

e−ℓγ·D(1−Rp−γ‖ǫ+0 ) (B.33)

=
ℓ

2
· exp





3 ·
(

D(1 − Rp − γ‖ǫ+
0 ) − log Rp+γ

1−ǫ+0

)

1 − Rp − γ
− ℓγ · D(1 − Rp − γ‖ǫ+

0 )





(B.34)

=
ℓ

2
· exp



−
3 · log Rp+γ

1−ǫ+0

1 − Rp − γ
− (ℓγ − 3/(1 − Rp − γ))D(1 − Rp − γ‖ǫ+

0 )



 (B.35)

≤ ℓ

2
· exp

(

−3 · log(Rp + γ)

1 − Rp − γ
− (ℓγ − 3/(1 − Rp − γ))D(1 − Rp − γ‖ǫ+

0 )

)

,

(B.36)

where the last line follows since 1 − ǫ+
0 ≤ 1, and (B.34) follows from the following
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observation:

3 · log
(1 − Rp − γ)(1 − ǫ+

0 )

(Rp + γ)ǫ+
0

= 3 ·
(

log
1 − Rp − γ

ǫ+
0

− log
Rp + γ

1 − ǫ+
0

)

= 3 ·
(

log
1 − Rp − γ

ǫ+
0

− log
Rp + γ

1 − ǫ+
0

)

=
3 ·
(

(1 − Rp − γ) · log 1−Rp−γ

ǫ+0
− (1 − Rp − γ) · log Rp+γ

1−ǫ+0

)

1 − Rp − γ

=
3 ·
(

D(1 − Rp − γ‖ǫ+
0 ) − log Rp+γ

1−ǫ+0

)

1 − Rp − γ
.

For ℓγ > 3/(1−Rp−γ) in (B.36), we use the fact that D(1−Rp−γ‖ǫ+
0 ) ≥ (1−Rp−γ−ǫ+0 )2

2

to get that

P(Sℓ ≤ 0)

≤ ℓ

2
· exp

(

−3 · log(Rp + γ)

1 − Rp − γ
− (ℓγ − 2/(1 − Rp − γ))

(1 − Rp − γ − ǫ+
0 )2

2

)

(B.37)

≤ ℓ

2
· exp

(

−3 · log(Rp + γ)

1 − Rp − γ
− (ℓγ − 3/(1 − Rp − γ))

ν2

8

)

, (B.38)

where the last line follows by Assumption 2.1 and the assumption in this lemma that

γ < ν
2
. Note that this expression goes to 0 as ℓ → ∞. Let K2,Rp,ν = γ·ν2

8
. Then for

ℓγ > 3/(1 − Rp − γ), let K1,Rp,ν,ℓ (B.38) divided by e−ℓK2,Rp,ν and write

P(Sℓ ≤ 0) ≤ K1,Rp,ν,ℓe
−ℓK2,Rp,ν . (B.39)

For ℓγ ≤ 3/(1 − Rp − γ), we simply choose K1,Rp,ν,ℓ to make the probability upper

bound 1. Then we can conclude our result by simply recalling the definition of Sℓ in
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(2.18).

B.1.3 Decoder Error

Lemma B.4. Define error events as follows:

1. E1: ∃ frame in which the decoder misidentifies it as active or silent.

2. E2: ∃ frame in which the decoder misidentifies the codeword.

Then, for δ̃ > 0, κn = ⌊n1/16⌋, Kn = ⌊n1/8⌋ in the fixed-codebook protocol, as n → ∞,

P(E1 ∪ E2) → 0 . (B.40)

Proof. Note that we can bound the error as

P(E1 ∪ E2) ≤ P(E1) + P(E2|Ec
1) . (B.41)

First consider the event of misidentifying whether transmission is taking place over

a frame. There are n
Kn

frames, and an error occurs if misidenification happens over

any one of them. Thus, by taking a union bound over all frames and applying Stein’s

Lemma (Lemma A.8) for the error of the repetition code used to distinguish these

frames, the error probability is bounded by

P(E1) ≤
n

Kn

e−κn·r , (B.42)

where r > 0 is independent of n.

Finally, we can consider the error corresponding to misidentifying the codewords

sent in each frame. By Lemma A.7 and a union bound per frame, we also also have
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that

P(E2|Ec
1) ≤

n

Kn
· e−(Kn−κn)·r′·δ2

. (B.43)

Combining (B.42) and (B.43) with (B.41), we complete the proof.

B.1.4 Rate Analysis

The rate achievable by the cognitive radio is directly proportional to the fraction of

frames in which it is active. Thus, we consider a bound on the number of frames the

cognitive radio is guaranteed to be active. Our first bound holds quite generally for

sequences (ǫx,i)
∞
i=1.

Lemma B.5. For all δ > 0 and γ < δ · (1 − ǫ−0 )/2, there exists an n0(δ) such that

for n ≥ n0(δ),

P

(

n−1
n
∑

k=1

τk ≤ 1 − Rp − ǫ
(n)
0

1 − ǫ−0
− δ

)

≤ exp

{

−nD

(

1 + δ · (1 − ǫ−0 )/2

2
− n−1Kn

∥

∥

∥

∥

1

2

)}

, (B.44)

where ǫ
(n)
0 = n−1

∑n
k=1 ǫ0,k, ǫ−0 = infk ǫ0,k, and τk is an indicator random variable to

denote that k is in an active frame. That is,

τk = I{∃ℓ∈Z+ such that Vℓ<k≤Vℓ+Kn} ,

where Vℓ is defined in (2.23). Furthermore, if Kn = o(n), (B.44) goes to 0 as n → ∞.

Proof. Note that if the sequence ǫx,k = 1 for all k, x 6= xoff, and the transmitter does

not use the symbol xoff during active frames, all channel uses in an active frame result

in an erased packet for the primary. Thus, given ǫ0, this case provides a convenient
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albeit conservative way to lower bound the fraction of active frames. We will assume

it in the sequel.

Recalling the definition of Sn in (2.18) and the definition of τk in (2.20), Sn can

be no more than nγ + 2Kn during the course of a silent frame. Furthermore, it can

only decrease from this during an active frame since ǫx,k = 1, x 6= xoff. Thus, we are

guaranteed almost surely that

Sn ≤ nγ + 2Kn . (B.45)

Now, a simple upper bound on the

P

(

n−1
n
∑

k=1

τk ≤ 1 − Rp − ǫ
(n)
0

1 − ǫ−0
− δ

)

= P

(

n
∑

k=1

(

τk(1 − ǫ−0 ) − (1 − Rp − ǫ0,k)
)

≤ −nδ · (1 − ǫ−0 )

)

≤ P

(

n
∑

k=1

(

τk(1 − ǫ0,k) − (1 − Rp − ǫ0,k)
)

≤ −nδ · (1 − ǫ−0 )

)

(B.46)

Thus, it suffices to find an upper bound on (B.46). Recalling the definition of Sn in

(2.18), we can define

S̃n = Sn +
n
∑

k=1

(

τk(1 − ǫ0,k) − (1 − Rp − ǫ0,k)
)

(B.47)
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Thus, we can rewrite the upper bound in (B.46) as

P

(

n
∑

k=1

(

τk(1 − ǫ0,k) − (1 − Rp − ǫ0,k)
)

≤ −nδ · (1 − ǫ−0 )

)

= P(S̃n − Sn ≤ −nδ · (1 − ǫ−0 )) (B.48)

= P(S̃n ≤ Sn − nδ · (1 − ǫ−0 )) (B.49)

≤ P(S̃n ≤ −nδ · (1 − ǫ−0 )/2 + 2Kn) (B.50)

is small, where the last line follows from (B.45) and the assumption that γ ·(1−ǫ−0 ) <

δ/2.

Under our conservative assumption at the beginning of the proof that ǫx,k = 1,

x 6= xoff, and that xoff is unused on active frames, it is straightforward to verify that

S̃n is a martingale by checking that E[S̃n|S̃0, . . . , S̃n−1] = S̃n−1. Furthermore, it has

bounded increments. Thus, a bounded martingale concentration inequality [25, p.

57, Corollary 2.4.7] implies that for large enough n,

P(S̃n ≤ −nδ · (1 − ǫ−0 )/2 + 2Kn) ≤ exp

{

−nD

(

1 + δ · (1 − ǫ−0 )/2

2
− n−1Kn

∥

∥

∥

∥

1

2

)}

.

(B.51)

The result follows immediately.

Our next bound holds quite for a special class of sequences (ǫx,i)
∞
i=1 and will be

used to bound the rate achieved by the cognitive radio.

Lemma B.6. Let p∗ = arg maxp(x) I(X; Y ). If max{1−ǫxrep,i, 1−
∑

x p∗(x)ǫx,i} < Rp

for all i, then for all δ > 0 and γ < δ · ∆ǫ+/2, where ∆ǫ+ = supx,i ǫx,i − ǫ0,i, there
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exists an n0(δ) such that for n ≥ n0(δ),

P

(

n−1

n
∑

k=1

τk ≤ 1 − Rp − ǫ
(n)
0

∆ǫ+
− δ

)

≤ exp

{

−nD

(

1 + δ · ∆ǫ+/4

2
− n−1Kn

∥

∥

∥

∥

1

2

)}

+

(

(Rp + γ)(1 − Rp)

(1 − Rp − γ)Rp

)2Kn

· e−n δ
4
·D(Rp+γ‖Rp) , (B.52)

where ǫ
(n)
0 = n−1

∑n
k=1 ǫ0,k, and τk is an indicator random variable to denote that k

is in an active frame. That is,

τk = I{∃ℓ∈Z+ such that Vℓ<k≤Vℓ+Kn} ,

where Vℓ is defined in (2.23). Furthermore, if Kn = o(n), (B.52) goes to 0 as n → ∞.

Proof. Recalling the definition of Sn in (2.18) and the definition of τk in (2.20), Lemma

B.2 yields the following bound on the positive drift of Sn:

P(Sn ≥ t + n · γ + Kn) ≤
(

(Rp + γ)(1 − Rp)

(1 − Rp − γ)Rp

)2Kn

· e−t·D(Rp+γ‖Rp) . (B.53)

Now, a simple upper bound on the

P

(

n−1

n
∑

k=1

τk ≤ 1 − Rp − ǫ
(n)
0

∆ǫ+
− δ

)

= P

(

n
∑

k=1

(

τk · ∆ǫ+ − (1 − Rp − ǫ0,k)
)

≤ −nδ · ∆ǫ+

)

≤ P

(

n
∑

k=1

(

τk(ǭk − ǫ0,k) − (1 − Rp − ǫ0,k)
)

≤ −nδ · ∆ǫ+

)

, (B.54)

where ǭk = 1 − E[Ak|S0, . . . , Sk − 1]. Thus, it suffices to find an upper bound on
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(B.54). Recalling the definition of Sn in (2.18), we can define

S̃n = Sn +
n
∑

k=1

(

τk(ǭk − ǫ0,k) − (1 − Rp − ǫ0,k)
)

(B.55)

Thus, we can rewrite the upper bound in (B.54) as

P

(

n
∑

k=1

(

τk(1 − ǫ0,k) − (1 − Rp − ǫ0,k)
)

≤ −nδ · ∆ǫ+

)

= P(S̃n − Sn ≤ −nδ · ∆ǫ+) (B.56)

= P(S̃n ≤ Sn − nδ · ∆ǫ+) (B.57)

≤ P(S̃n ≤ −nδ · ∆ǫ+/4 + 2Kn)

+

(

(Rp + γ)(1 − Rp)

(1 − Rp − γ)Rp

)2Kn

· e−n δ·∆ǫ+

4
·D(Rp+γ‖Rp) (B.58)

is small, where the last line follows from applying (B.53) at t = nδ · ∆ǫ+/4 and the

assumption that γ < δ · ∆ǫ+/2.

It is straightforward to verify that S̃n is a martingale by checking that

E[S̃n|S̃0, . . . , S̃n−1] = S̃n−1.

Furthermore, it has bounded increments. Thus, a bounded martingale concentration

inequality [25, p. 57, Corollary 2.4.7] implies that for large enough n,

P(S̃n ≤ −nδ/4 + 2Kn) ≤ exp

{

−nD

(

1 + δ · ∆ǫ+/4

2
− n−1Kn

∥

∥

∥

∥

1

2

)}

. (B.59)

The result follows immediately.

Lemma B.7. Let p∗ = arg maxp(x) I(X; Y ). Then for all ν > 0, if 1−
∑

x p∗(x)·ǫx,i ≥
Rp + ν for all i, the fixed-codebook protocol with parameters (γ, κn, Kn, δ̃) satisfying
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0 < γ < ν/2, κn = o(Kn), Kn = o(
√

n), 1 > δ̃ > 0, has the property that as n → ∞,

P

(

∃ j >
√

n,
j

Kn
∈ Z, such that Sj − j · γ < Kn

)

→ 0 . (B.60)

Recall the condition for a silent frame in (2.20), this implies that after time
√

n, the

probability of a silent frame is negligible.

Proof. We start by defining

S̃j = S̃j−1 + Aj − E[Aj |S̃0, . . . , S̃j−1], S̃0 = 0, (B.61)

and it is easy to verify that S̃j is a bounded martingale. By our assumption about
∑

x p∗(x) · ǫx,i for all i, (2.20) and (2.24) imply that if ℓKn ≥ j > (ℓ − 1)Kn + κn for

some integer ℓ ≥ 1 ,

E[Aj |S̃0, . . . , S̃j−1] ≥ Rp + ν . (B.62)

Then for k ≥ n1/2,

P

(

k−1

k
∑

i=1

Ai < Rp + γ + k−1Kn

)

≤ P

(

k−1S̃k < Rp + γ + k−1Kn − k−1βk,n(Rp + ν)
)

(B.63)

≤ P

(

k−1S̃k < −ν/2 + o(1)
)

, (B.64)

where βk,n = (k − n1/4) · Kn−κn

Kn
, o(1) is notational convenience for limn→∞ o(1) = 0,

and (B.63) follows from (B.61), (B.62), and since for all i, Ai ≥ 0 almost surely. Since

S̃k is a zero-mean bounded martingale, for k ≥ n1/2 and large enough n, we can apply
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a bounded martingale concentration inequality [25, p. 57, Corollary 2.4.7] to yield

P

(

k−1
k
∑

i=1

Ak < Rp + γ + k−1 · Kn

)

≤ exp
(

−k(ν/2 + o(1))2/2
)

(B.65)

= exp
(

−⌈
√

n⌉(ν/2 + o(1))2/2
)

· exp
(

−(k − ⌈
√

n⌉)(ν/2 + o(1))2/2
)

(B.66)

From the above result and a union bound,

P(Ẽ)

≤ exp
(

−⌈
√

n⌉(ν/2 + o(1))2/2
)

·
n
∑

k=⌈√n⌉

exp
(

−(k − ⌈
√

n⌉)(ν/2 + o(1))2/2
)

(B.67)

≤ exp
(

−⌈
√

n⌉(ν/2 + o(1))2/2
)

·
∞
∑

m=0

exp
(

−m(ν/2 + o(1))2/2
)

(B.68)

However, the geometric series does not affect the error probability by more than a

constant asymptotically, so taking the limit above completes the result.

Lemma B.8. Given rate target Rp and ν > 0, for all δ > 0 and {ǫx,k}∞k=1 satis-

fying Assumption 2.1, consider the fixed-codebook protocol with κn = o(Kn), Kn =

o(
√

n), Kn → ∞ as n → ∞, and γ < δ̃/2. Then there exists a choice of δ̃ such that

this strategy achieves rates of at least



















C∗ − δ , ∀ i , 1 −
∑

x p∗(x) · ǫx,i ≥ Rp + ν

1−Rp−ǫ̂+0
∆ǫ+

· C∗ − δ , ∀ i , 1 − Rp < min{ǫxrep,i,
∑

x p∗(x)ǫx,i}
1−Rp−ǫ̂+0

1−ǫ−0
· C∗ − δ , otherwise

, (B.69)

where C∗ = maxp(x) I(X; Y ), p∗ = arg maxp(x) I(X; Y ), ∆ǫ+ = supx,i ǫx,i − ǫ0,i, ǫ̂+
0 =
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lim supk k−1
∑k

i=1 ǫ0,i, and ǫ−0 = inf i ǫ0,i.

Proof. By Lemma B.5, we know that with probability going to 1 as n → ∞, a fraction

of at least

lim infk
1−Rp−k−1

Pk
i=1 ǫ0,k

1−ǫ−0
− δ̃ =

1−Rp−ǫ̂+0
1−ǫ−0

− δ̃ (B.70)

of the frames will be active frames. By similar arguments with Lemmas B.6, and B.7,

we can state the summarize the fraction of frames that will be active for different

cases as follows:



















n−√
n

n
− δ̃ , ∀ i , 1 −

∑

x p∗(x) · ǫx,i ≥ Rp + ν

1−Rp−ǫ̂+0
∆ǫ+

− δ̃ , ∀ i , 1 − Rp < min{ǫxrep,i,
∑

x p∗(x)ǫx,i}
1−Rp−ǫ̂+0

1−ǫ−0
− δ̃ , otherwise

(B.71)

The rate for each active frame is

Kn − κn

Kn
(C∗ − δ̃) ≥ C∗ − κn

Kn
· C∗ − δ̃ , (B.72)

so we have that the following rates are achievable for sequences such that for all i,

1 −
∑

x p∗(x) · ǫx,i ≥ Rp + ν:

(

n −√
n

n
− δ̃

)

· (C∗ − κn

Kn
· C∗ − δ̃)

≥ C∗ − (κn/Kn +
√

n/n + δ̃) · C∗ − δ̃ , (B.73)
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the following for sequences such that for all i, 1 − Rp < min{ǫxrep,i,
∑

x p∗(x)ǫx,i}:

(

1 − Rp − ǫ̂+
0

∆ǫ+
− δ̃

)

· (C∗ − κn

Kn
· C∗ − δ̃)

≥ 1 − Rp − ǫ̂+
0

∆ǫ+
· C∗ − (κn/Kn + δ̃) · C∗ − δ̃ , (B.74)

and the following for all other sequences:

(

1 − Rp − ǫ̂+
0

1 − ǫ−0
− δ̃

)

· Kn − κn

Kn
(C∗ − δ̃)

≥
(

1 − Rp − ǫ̂+
0

1 − ǫ−0

)

C∗ − δ̃ − (κn/Kn + δ̃) · C∗ . (B.75)

For large enough n, by assumption κn/Kn +
√

n/n ≤ δ̃/C∗, so that rates of at least

the following are achievable:



















C∗ − 2δ̃ − δ̃ · C∗ , ∀ i ,
∑

x p∗(x) · ǫx,i ≥ Rp + ν

1−Rp−ǫ̂+0
∆ǫ+

· C∗ − 2δ̃ − δ̃ · C∗ , ∀ i , 1 − Rp < min{ǫxrep,i,
∑

x p∗(x)ǫx,i}
1−Rp−ǫ̂+0

1−ǫ−0
· C∗ − 2δ̃ − δ̃ · C∗ , otherwise

(B.76)

are achievable with probability going to 1 as n → ∞. By choosing δ̃ = 1
3
min{δ, δ/C∗},

we can conclude the result.

B.2 Proof of Theorem 2.4

B.2.1 Decoder Error

Lemma B.9. Define error events as follows:

1. E1: ∃ frame in which the decoder misidentifies whether a frame is active or

silent.
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2. E2: the decoder misidentifies the selected codebook.

3. E3: ∃ an active frame in which decoder misidentifies the codeword.

Then, for δ̃ > 0, Cn = ⌊n1/32⌋, κn = ⌊n1/16⌋, Kn = ⌊n1/8⌋ in the codebook-adaptive

protocol, as n → ∞,

P(E1 ∪ E2 ∪ E3) → 0 . (B.77)

Proof. Note that we can bound the error as

P(E1 ∪ E2 ∪ E3) ≤ P(E1) + P(E2|Ec
1) + P(E3|Ec

1, E
c
2) . (B.78)

First consider the event of misidentifying whether transmission is taking place over

a frame. There are n
Kn

frames, and an error occurs if misidenification happens over

any one of them. Thus, by taking a union bound over all frames and applying Stein’s

Lemma (Lemma A.8) for the error of the repetition code used to distinguish these

frames, the error probability is bounded by

P(E1) ≤
n

Kn
e−κn·r , (B.79)

where r > 0 is independent of n. Another source of error is misidentifying the

codebook. For large enough n, (Cn + 1)|X | does not exceed C − δ̃, and we can apply

Lemma A.7 to get the error probability

P(E2|Ec
1) ≤ e−(Kn−κn)·r′·δ̃2

. (B.80)

Finally, we can consider the error corresponding to misidentifying the codewords sent
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in each frame. By Lemma A.7 and a union bound per frame, we also also have that

P(E3|Ec
2, E

c
1) ≤

n

Kn
· e−(Kn−κn)·r′·δ̃2

. (B.81)

Combining (B.79), (B.80), and (B.81) with (B.78), we complete the proof.

B.2.2 Rate Analysis

The rate loss argument is the most tedious because one must account for a variety of

factors: the length of the first two phases of transmission, the gap between the rates

of quantized set of codebooks and points on the RIB function, and the number of

active frames in Phase III. We therefore subdivide the result into several lemmas.

B.2.2.1 Phase I and II are short

Because the encoder does not send message information in Phase I and II, we want

the length of these phases to be sublinear in n to guarantee negligible rate loss.

Lemma B.10. For all ν > 0, let γ < ν/2, κn = ⌊n1/16⌋, Kn = ⌊n1/8⌋ in the codebook-

adaptive protocol. Furthermore, let T be the length of Phases I and II and Ẽ1 = {T ≥
n1/4}. Then

P(Ẽ1) → 0 (B.82)

as n → ∞.

Proof. Consider the transition times from silent frames to active frames and vice
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versa. To do this, define the stopping times for k ≥ 1,

Ñ2k−1 = Kn · inf{i > K−1
n Ñ2k−2 : Si·Kn − i · Kn · γ − Kn ≥ 0} , (B.83)

Ñ2k = Kn · inf{i > K−1
n Ñ2k−1 : Si·Kn − i · Kn · γ − Kn < 0} , (B.84)

where Ñ0 = 0. Phases I and II end after the first two active frames. We can get

a bound on the start of the first active frame immediately from Lemma B.1, which

implies

P(Ñ1 ≥ t|S0 = 0) ≤
(

(1 − Rp − γ)(1 − ǫ0)

(Rp + γ)ǫ0

)2Kn

e−tD(1−Rp−γ‖ǫ0) . (B.85)

Thus, if Ñ2 > Ñ1 + Kn, then

T = Ñ1 + 2Kn. (B.86)

Together with (B.85), this implies

P(T ≥ n1/4|Ñ2 > Ñ1 + Kn) ≤
(

(1 − Rp − γ)(1 − ǫ0)

(Rp + γ)ǫ0

)2Kn

e−(n1/4−Kn)·D(1−Rp−γ‖ǫ0)

(B.87)

The remaining case to consider is if Ñ2 = Ñ1 + Kn. If this happens, then Phases I

and II end at

T = Ñ3 + Kn. (B.88)
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Then (B.88) implies

P(T ≥ n1/4|Ñ2 = Ñ1 + Kn)

= P(Ñ3 ≥ n1/4 − Kn|Ñ2 = Ñ1 + Kn) (B.89)

= P(Ñ3 − Ñ2 ≥ n1/4 − 2Kn − Ñ1|Ñ2 = Ñ1 + Kn) (B.90)

≤ P(Ñ3 − Ñ2 ≥ n1/4 − 2Kn − Ñ1 or Ñ1 ≥ n1/4/2|Ñ2 = Ñ1 + Kn) (B.91)

≤ P(Ñ1 ≥ n1/4/2|Ñ2 = Ñ1 + Kn)

+ P(Ñ3 − Ñ2 ≥ n1/4/2 − 2Kn|Ñ2 = Ñ1 + Kn, Ñ1 < n1/4/2) , (B.92)

where (B.89) follows from (B.88), (B.90) follows by our conditioning, (B.91) follows

since we are increasing the possible events over which we are taking the probability,

and (B.92) follows from P (A or B) = P (A) + P (Ac)P (B|Ac).

By Lemma A.10 and Lemma B.1,

P(Ñ3−Ñ2 ≥ n1/4/2 − 2Kn|Ñ2 = Ñ1 + Kn, Ñ1 < n1/4/2)

≤
(

(1 − Rp − γ)(1 − ǫ0)

(Rp + γ)ǫ0

)2Kn

e−(n1/4/2−2Kn)·D(1−Rp−γ‖ǫ0) . (B.93)

By combining (B.85), and (B.92), and (B.93),

P(T ≥n1/4|Ñ2 = Ñ1 + Kn)

≤
(

(1 − Rp − γ)(1 − ǫ0)

(Rp + γ)ǫ0

)2Kn

e−(n1/4/2−2Kn)·D(1−Rp−γ‖ǫ0)

+

(

(1 − Rp − γ)(1 − ǫ0)

(Rp + γ)ǫ0

)2Kn

e−
n1/4

2
D(1−Rp−γ‖ǫ0) . (B.94)

The result follows immediately from (B.87) and (B.94).
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B.2.2.2 Codebook Quantization

To account for the error in the interference estimates and that the encoder must

inform the decoder of which rate it will be targetting, we only have a limited number

of codebooks to choose from at the start of Phase II. Thus, in general there will be a

gap between the rate of a selected codebook and an actual point on the RIB function.

In this subsection, we ensure that this gap is small.

We first provide guarantees on accurate interference estimates.

Lemma B.11. Let Dℓ be the event that Phase I of the codebook-adaptive protocol

terminates at frame ℓ. Then

P(max
x

|ǫ̂x − ǫx| > δ|Dℓ) ≤ 2|X |e−µδ2/2 , (B.95)

where µ = ⌊Kn−κn

|X | ⌋.

Proof. Recall the definition of the estimates given in (2.31). Then Dℓ = {V1 =

(ℓ − 1)Kn} is an equivalent expression for the event. By Hoeffding’s inequality [25,

p. 57, Corollary 2.4.7], we have for each x ∈ X

P(|ǫ̂x − ǫx| > δ|V1 = (ℓ − 1)Kn) ≤ 2e−µδ2/2 . (B.96)

The result then follows from a union bound on P(maxx |ǫ̂x − ǫx| > δ|Dℓ).

Lemma B.12. For the selected codebook χ given in (2.33), define Ẽc
2 as the event

where the following two conditions are met:

∑

x

ǫxpχ(x) ≤ 1 − Rp − 2γ (B.97)
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6
|X |
Cn

log
2

Cn · |Y| +
3δ̃

2|X | log
δ̃

2|X |2 · |Y|
≤ Rχ − RIB(~ǫ, Rp + 2γ + δ̃) ≤ (B.98)

− 3δ̃

2|X | log
δ̃

2|X |2 · |Y| .

Then for all 1 > δ̃ > 0, Cn ≥ 4|X |, and as n → ∞,

P(Ẽ2|Ẽc
1) → 0 , (B.99)

where Ẽ1 is defined in Lemma B.10.

Proof. Given Ẽc
1, we can guarantee by setting δ = δ̃

4|X | in Lemma B.11 that

∑

x

|ǫ̂x − ǫx| ≤
δ̃

4
(B.100)

with probability going to 1 as n → ∞. Furthermore, we know that by definition

∑

x

ǫ̂xpχ(x) ≤ 1 − Rp − 2γ − δ̃ (B.101)

From (B.100) and (B.101), we have that

∑

x

ǫxpχ(x) ≤
∑

x

ǫ̂xpχ(x) + δ̃ (B.102)

≤ 1 − Rp − 2γ. (B.103)

It remains to verify the other condition. Note that for any p(x), there is a codebook

in the set with input distribution type pxCn (x) such that
∑

x |p(x) − pxCn (x)| ≤ |X |
Cn

.
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Then by the continuity of entropy [23, Lemma 2.7, p. 33], we know that

RIB(~̂ǫ, Rp + 2γ + δ̃) + 6
|X |
Cn

log
2

Cn · |Y| ≤ Rχ ≤ RIB(~̂ǫ, Rp + 2γ + δ̃) , (B.104)

where the inequality on the right follows from (B.101) and the definition of the RIB

function. Lemma A.14 and (B.100) imply that

|RIB(~ǫ, Rp + 2γ + δ̃) − RIB(~̂ǫ, Rp + 2γ + δ̃)| ≤ − 3δ̃

2|X | log
δ̃

2|X |2 · |Y| . (B.105)

Combining (B.104) and (B.105) yield the result.

B.2.2.3 Always On

Our next lemma shows that all frames are active after time
√

n with probability going

to 1 as n → ∞.

Lemma B.13. Let Ẽ1 and Ẽ2 be defined as in Lemmas B.10 and B.12, respectively.

Define Ẽ3 to be the event that for some j >
√

n, the condition in (2.28) is met,

resulting in a silent frame. Then for all ν > 0 and ǫx,i = ǫx for x 6= xoff, the codebook-

adaptive protocol with parameters (γ, Cn, κn, Kn, δ̃) satisfying 0 < γ < ν/2, Cn =

⌊n1/32⌋, κn = ⌊n1/16⌋, Kn = ⌊n1/8⌋, 1 > δ̃ > 0, has the property that as n → ∞,

P(Ẽ3|Ẽc
1, Ẽ

c
2) → 0 . (B.106)

Proof. We start by defining

S̃j = S̃j−1 + Aj − E[Aj |S̃0, . . . , S̃j−1], S̃0 = 0, (B.107)

and it is easy to verify that S̃j is a bounded martingale. From the definition of Ẽc
2

in Lemma B.12 and for ν > 0, (B.97), (2.28), and (2.24) imply that for j satisfying
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j > V2 + Kn and ℓKn ≥ j > (ℓ − 1)Kn + κn for some integer ℓ ≥ 1 ,

E[Aj |S̃0, . . . , S̃j−1] ≥ Rp + 2γ . (B.108)

Then for k ≥ n1/2 and under Ẽc
1,

P

(

k−1

k
∑

i=1

Ai < Rp + γ + k−1Kn

∣

∣

∣

∣

∣

Ẽc
1, Ẽ

c
2

)

≤ P

(

k−1S̃k < Rp + γ + k−1Kn − k−1βk,n(Rp + 2γ)

∣

∣

∣

∣

∣

Ẽc
1, Ẽ

c
2

)

(B.109)

≤ P

(

k−1S̃k < −γ + o(1)

∣

∣

∣

∣

∣

Ẽc
1, Ẽ

c
2

)

, (B.110)

where βk,n = (k − n1/4) · Kn−κn

Kn
, o(1) is notational convenience for limn→∞ o(1) = 0,

and (B.109) follows from (B.107), (B.108), and since for all i, Ai ≥ 0 almost surely.

Since S̃k is a zero-mean bounded martingale, for k ≥ n1/2 and large enough n, we can

apply a bounded martingale concentration inequality [25, p. 57, Corollary 2.4.7] to

yield

P

(

k−1

k
∑

i=1

Ak < Rp + γ + k−1 · Kn

∣

∣

∣

∣

∣

Ẽc
1, Ẽ

c
2

)

≤ exp
(

−k(γ + o(1))2/2
)

(B.111)

= exp
(

−⌈
√

n⌉(γ + o(1))2/2
)

· exp
(

−(k − ⌈
√

n⌉)(γ + o(1))2/2
)

(B.112)
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From the above result and a union bound,

P(Ẽ3|Ẽc
1, Ẽ

c
2)

≤ exp
(

−⌈
√

n⌉(γ + o(1))2/2
)

·
n
∑

k=⌈√n⌉

exp
(

−(k − ⌈
√

n⌉)(γ + o(1))2/2
)

(B.113)

≤ exp
(

−⌈
√

n⌉(γ + o(1))2/2
)

·
∞
∑

m=0

exp
(

−m(γ + o(1))2/2
)

(B.114)

However, the geometric series does not affect the error probability by more than a

constant asymptotically, so taking the limit above completes the result.

B.2.2.4 Overall Rate Loss

Lemma B.14. For all ν > 0, ǫx,i = ǫx for x 6= xoff and given any δ > 0, consider

the codebook-adaptive protocol with parameters (γ, Cn, κn, Kn) satisfying 0 < γ <

min{ν/2, δ̃/2}, Cn = ⌊n1/32⌋, κn = ⌊n1/16⌋, Kn = ⌊n1/8⌋. Then there exists a choice of

the parameter δ̃ ∈ (0, 1/8) so that with probability going to 1 as n → ∞, the cognitive

radio achieves rates

R ≥ RIB(~ǫ, Rp) − δ . (B.115)

Proof. Let Ẽ1, Ẽ2, Ẽ3 be defined as in Lemmas B.10, B.12, and B.13 respectively.

From these results, we know that

P(Ẽ1 ∪ Ẽ2 ∪ Ẽ3) → 0 (B.116)

as n → ∞ and thus with high probability,

1. Phases I and II are short, ending by n1/4 (Lemma B.10).
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2. The gap between the codebook’s rate and the RIB function is small (Lemma

B.12).

3. After time n1/2, all frames are active frames (Lemma B.13).

Furthermore, we know that by our repetition code, there is a loss of κn positions for

our repetition code over a frame Kn. Factoring in this source of rate loss along with

the fact that we are in Phase III by time n1/2 (Lemma B.10) and always in an active

frame (Lemma B.13), the rate

n −√
n

n
· Kn − κn

Kn

(Rχ − δ̃)

≥ (Rχ − δ̃) −
(

n−1/2 +
κn

Kn

)

log |X | (B.117)

is achievable for the cognitive radio with probability going to 1 as n → ∞. Finally,

we know that the gap between the codebook’s rate and the RIB function is small

(Lemma B.12), so

Rχ ≥ RIB(~ǫ, Rp + 2γ + δ̃) + 6
|X |
Cn

log
2

Cn · |Y| +
3δ̃

2|X | log
δ̃

2|X |2 · |Y| (B.118)

≥ RIB(~ǫ, Rp + 2δ̃) + 6
|X |
Cn

log
2

Cn · |Y| +
3δ̃

2|X | log
δ̃

2|X |2 · |Y| , (B.119)

≥ RIB(~ǫ, Rp) + 6
|X |
Cn

log
2

Cn · |Y| +
3δ̃

2|X | log
δ̃

2|X |2 · |Y| + 12δ̃ log
4δ̃

|X | · |Y| ,

(B.120)

where (B.119) follows by our assumption about γ and (B.120) from Lemma A.13

given our assumption about δ̃. Combining (B.117) with (B.120), our assumptions
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about (Cn, κn, Kn) imply that for large enough n, the rate

RIB(~ǫ, Rp) −
δ

2
−
(

δ̃ +
3δ̃

2|X | log
2|X |2 · |Y|

δ̃
+ 12δ̃ log

|X | · |Y|
4δ̃

)

(B.121)

is achievable for the cognitive radio with probability going to 1 as n → ∞. One

can now observe that the parenthetical term in (B.121) vanishes as δ̃ goes to 0, so

choosing δ̃ ∈ (0, 1/8) such that this parenthetical term is less than δ
2

completes the

proof.

145



Appendix C

Proofs for Chaper 3

C.1 Proof of Theorem 3.1 (Achievability)

The strategy we outline is reminiscent of an achievable strategy of Viswanathan [89].

Because the encoder and decoder both have access to the channel state process {Si},
they can synchronize their transmissions according to the state to create |S| parallel

channels. Let p(x|s) be a transition probability function for X given S and π(s)

the stationary distribution on s determined by p(x|s). If the state process {Sk}k≥1

is irreducible, then by Definition 3.3, the existence of the stationary distribution is

guaranteed for any choice of p(x|s) since irreducible finite state Markov chains are

positive recurrent. We say that p(x|s) ∈ Dach if it satisfies the following constraint:

∑

x,s

p(x|s)π(s)Γ(s, x) ≤ α . (C.1)

We can construct a random coding strategy as follows.

1. Codebook Generation: Fix mins π(s) > δ > 0 (Note: positive recurrence implies

π(s) > 0, so such a δ is guaranteed to exist). Select a p(x|s) ∈ Dach and define
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ns = n · (π(s) − δ). For each state s ∈ S, construct an (ns, Rs, p(x|s)) random

codebook with a jointly δ′-typical decoder1, where Rs = |I(X; Y |S = s) − δ|+,

where | · |+ = max{·, 0}. We will ignore integer effects and assume that 2nsRs is

an integer.

2. Encoding : Let the message m ∈ {1, . . . , 2nR}, where R is defined by the equa-

tion: nR =
∑

s nsRs. Split m into components (m1, m2, . . . , m|S|), where

ms ∈ {1, . . . , 2nsRs}. When Si = s, the input Xi is given by the next sym-

bol in codebook s for message ms that has yet to be transmitted. If all symbols

have been transmitted in codebook s, generate a random input according to the

distribution p(x|s).

3. Decoding : Divide the outputs according to the channel state. For each state s,

decode m̂s using a maximum likelihood decoder based on the first ns channel

outputs Yi for which Si = s. If there are less than ns channel outputs for state

s, declare an error. Reconstruct message m̂ from (m̂1, m̂2, . . . , m̂|S|).

We now proceed to bound the error of this coding strategy. We first use this random

coding strategy to prove the existence of a coding strategy with a low probability

of certain error events, including decoding error. We then show that such a coding

strategy satisfies the cost constraint.

Random Coding Error Analysis.

There are two sources of error that motivate our error events: a decoding error and

violating the cost constraint. A decoding error occurs if there are too few channel

outputs for a given state, or, given this does not happen, the decoder selects the

wrong message. By defining Ns = |{i : Si = s}|, we can formally characterize these

1For a clarification on the meaning of a random codebook with jointly typical decoding, see
Definition A.12 on page 104.
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events as follows:

Ea = {∃ s, Ns < ns} ,

Eb = {∃ s, ms 6= m̂s} .

Note that the cost depends directly on the channel inputs and state. Thus, we can

violate the cost constraint if a given channel state occurs either too often or rarely

relative to its expectation, or if the codewords are not typical. We can define the

error event as follows:

Ec = {∃ s, |Ns − nπ(s)| ≥ nδ}

Ed = {∃ s, XNs(s) /∈ T ∗(Ns)
δ } ,

where XNs(s) is shorthand for the subsequence Xi for which Si = s. We will now show

there exists a sequence of codebooks for which these error probabilities are small with

increasing blocklength, and then show that this is sufficient to satisfy the conditions

of achievability in Definition 3.2.

First, let us rewrite the event Ea as

Ea = {∃ s, Ns < nπ(s) − nδ}

= {∃ s, Ns − nπ(s) < −nδ} .

Thus, Ec ⊇ Ea, so it is sufficient to ignore the probability of Ea and consider only Ec.

Now consider the event of a decoding failure Eb given each state occurs sufficiently

often to guarantee that its corresponding codeword is sent. Then, a bound on the

error for the random codebook (Lemma A.6) for each state and a union bound over
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all states imply that for sufficiently large n,

P(Eb|Ec
a) ≤ |S| · δ . (C.2)

Note that for sufficiently large n, the fraction of times each state appears converges

to its stationary distribution (Lemma A.11). Thus, a union bound over all states

implies that for ǫ = δ · |X | > 0, there exists sufficiently large n such that

P(Ec) ≤ |S| · |X | · δ . (C.3)

Thus, we can show that for all δ > 0, there exists sufficiently large n such that for

the random codebook,

P(Ea ∪ Eb ∪ Ec) ≤ P(Ec) + P(Eb|Ec
a) (C.4)

≤ |S| · (|X | · δ + δ) . (C.5)

Finally, we want to establish that every sub-sequence XNs(s) is typical. By the AEP

(Lemma A.3) and a union bound over all states, we have that for sufficiently large n,

P(Ed|Ec
a) ≤ |S| · δ ,

so for sufficiently large n,

P(Ea ∪ Eb ∪ Ec ∪ Ed) ≤ |S| · (|X | · δ + 2δ) . (C.6)

Since this is true for a random coding scheme, there exists a deterministic coding

scheme with the same average error probability. Furthermore, at least half of the

codewords in such a scheme have no more than twice the error probability η(δ) =
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2|S| · (2 + |X |) · δ, which goes to 0 as δ → 0.

Coding Strategy Satisfies Cost Constraint.

For this deterministic codebook at such n, we can bound the expected cost as follows:

n−1
n
∑

k=1

E[Γ(Sk, Xk)|M = m, S1 = s′]

≤
∑

x,s

Γ(s, x)(p(x|s) +
δ

|X |)(π(s) + δ) + max
s′,x′

Γ(s′, x′) · η(δ) (C.7)

≤ α + max
s′,x′

Γ(s′, x′) · (η(δ) + |S| · |X | · δ + |S| · δ2 + δ) (C.8)

≤ α + γ(δ) , (C.9)

where γ(δ) = maxs′,x′ Γ(s′, x′) · (η(δ) + |S| · |X | · δ + |S| · δ2 + δ). Note that as δ → 0,

γ → 0. Thus, we have shown the existence of a coding strategy that achieves the

rates guaranteed in the statement of the theorem, thereby completing the proof.

C.2 Proof of Theorem 3.2 (Converse)

Key Lemmas.

Lemmas C.1, C.2, and C.3, the three lemmas proved in this subsection, will enable us

to prove the main theorem. Lemma C.1 uses Fano’s inequality and the Lagrange dual

to give an upper bound on the capacity. Lemmas C.2 and C.3 then recast this upper

bound as a control problem (see Section A.4), where Lemma C.2 converts the upper

bound into one of maximizing the average reward, and Lemma C.3 gives a simpler

characterization of the maximum average reward via Bellman’s equation (Theorem

A.9).
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Lemma C.1. For all λ ≥ 0, the capacity can be bounded as follows:

C(α) ≤ sup
n

max
Qn

i=1 p(Xi|Si,Xi−1)
min

s
Rn(α, λ, s) , (C.10)

where

n · Rn(α, λ, s) = I(X1; Y1|S1 = s) +

n
∑

i=2

I(Xi; Yi|Si)

+ λ

(

nα −
n
∑

i=1

E [Γ(Si, Xi)|S1 = s]

)

. (C.11)

Proof. Suppose a rate R is achievable and M is uniformly distributed over the set of

messages. By the definition of achievable rate, for all ǫ > 0 and sufficiently large n,

Fano’s inequality implies the following:

nR = H(M)

≤ I(Y n, Sn; M) + nǫ . (C.12)
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We now isolate I(Y n, Sn; M) in (C.12) to get the following, for S1 = s:

I(Y n, Sn; M) ≤ I(Y n, Sn+1; M)

≤
n
∑

i=1

I(Yi, Si+1; M |Y i−1, Si) (C.13)

=

n
∑

i=1

H(Yi, Si+1|Y i−1, Si) − H(Yi, Si+1|M, Y i−1, Si)

≤
n
∑

i=1

H(Yi, Si+1|Si) − H(Yi, Si+1|M, Y i−1, Si, Xi(M, Si)) (C.14)

=

n
∑

i=1

H(Yi, Si+1|Si) − H(Yi, Si+1|Si, Xi) (C.15)

=
n
∑

i=1

I(Xi; Yi, Si+1|Si)

=
n
∑

i=1

I(Xi; Yi|Si) + I(Xi; Si+1|Yi, Si)

=

n
∑

i=1

I(Xi; Yi|Si) , (C.16)

where (C.13) follows from the chain rule and since S1 and M are independent; (C.14)

since conditioning cannot increase entropy; (C.15) from the Markov chain (Yi, Si+1)−
(Xi, Si)−Xi, M, Y i−1, Si; and (C.16) from the Markov chain Si+1−(Yi, Si)−Xi. Note

that this bound holds for all s ∈ S such that S1 = s, so minimizing over all initial

states gives the following:

nR ≤ min
s

{

I(X1; Y1|S1 = s) +
n
∑

i=2

I(Xi; Yi|Si)

}

+ nǫ , (C.17)

Furthermore, by the definition of an achievable rate, we have an additional cost

constraint, so for all ǫ > 0, s ∈ S, and sufficiently large n, the constraint can be
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expressed as follows:

n
∑

i=1

E [Γ(Si, Xi)|S1 = s] ≤ n(α + ǫ) . (C.18)

Thus, by combining (C.17), and (C.18) we can formulate the problem as follows:

nR ≤ max
Qn

i=1 p(Xi|Si,Xi−1)∈Dǫ

{

min
s

{

I(X1; Y1|S1 = s) +

n
∑

i=2

I(Xi; Yi|Si)

}}

+ nǫ ,

(C.19)

where Dǫ is the set of transition probabilities satisfying (C.18) for all s ∈ S. We can

replace this constraint by a Lagrange multiplier, which gives an upper bound on the

value on the right side (c.f. the Lagrange dual in [8, p. 216]), so for all λ ≥ 0:

nR ≤ max
Qn

i=1 p(Xi|Si,Xi−1)

{

min
s

{n · Rn(α + ǫ, λ, s)}
}

+ nǫ , (C.20)

and since this holds for all ǫ > 0 and sufficiently large n, we can conclude the following:

R ≤ sup
n

max
Qn

i=1 p(Xi|Si,Xi−1)
min

s
Rn(α, λ, s) . (C.21)

Lemma C.2. Let Rn(α, λ, s) be defined as in Lemma C.1. Then the following in-

equality holds:

sup
n

max
Qn

i=1 p(Xi|Si,Xi−1)
min

s
Rn(α, λ, s) ≤ max

Q∞
i=1 p(Xi|Si)

lim inf
n

min
s

Rn(α, λ, s) . (C.22)

Proof. The proof is divided into two parts. In the first part, we will use Fekete’s
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lemma to show that

sup
n

max
Qn

i=1 p(Xi|Si,Xi−1)
min

s
Rn(α, λ, s) ≤ max

Q∞
i=1 p(Xi|Si,Xi−1)

lim inf
n

min
s

Rn(α, λ, s) (C.23)

and in the second part, we will use an induction argument to show that

max
Q∞

i=1 p(Xi|Si,Xi−1)
lim inf

n
min

s
Rn(α, λ, s) = max

Q∞
i=1 p(Xi|Si)

lim inf
n

min
s

Rn(α, λ, s) , (C.24)

thereby concluding the result. To begin the first part of the proof, we define Cn(α, λ)

as

Cn(α, λ) = max
Qn

i=1 p(Xi|Si,Xi−1)
min

s
Rn(α, λ, s). (C.25)

Let k + ℓ = n for nonnegative integers k, ℓ. Suppose we consider distributions

k
∏

i=1

p(Xi|Si, X i−1)

and
∏ℓ

i=1 p(Xk+i|Sk+i
k+1, X

k+i−1
k+1 ) that achieve Ck(α, λ) and Cℓ(α, λ), respectively. Then
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for Rn(α, λ) with these choices of distribution,

n·Cn(α, λ)

≥ min
s

Rn(α, λ, s)

= k · Ck(α, λ) + min
s

ℓ
∑

i=1

I(Xk+i; Yk+i|Sk+i) + λ (ℓα−
Pℓ

i=1 E[Γ(Sk+i,Xk+i)|S1=s])

≥ k · Ck(α, λ) + min
s̃

I(Xk+1; Yk+1|Sk+1 = s̃)

+

ℓ
∑

i=2

I(Xk+i; Yk+i|Sk+i) + λ (ℓα−
Pℓ

i=1 E[Γ(Sk+i,Xk+i)|Sk+1=s̃])

= k · Ck(α, λ) + ℓ · Cℓ(α, λ) . (C.26)

Thus, the sequence n · Cn(α, λ) is superadditive, and we can conclude by Fekete’s

Lemma (see e.g. [38, p. 112, Lemma 4A.2]) that limn→∞ Cn(α, λ) exists and, a

fortiori, limn→∞ Cn(α, λ) = supn Cn(α, λ). Thus,

lim
n→∞

Cn(α, λ)

= sup
n

Cn(α, λ)

= sup
n

max
Qn

i=1 p(Xi|Si,Xi−1)
min

s
Rn(α, λ, s)

= max
Q∞

i=1 p(Xi|Si,Xi−1)
sup

n
min

s
Rn(α, λ, s)

≥ max
Q∞

i=1 p(Xi|Si,Xi−1)
lim inf

n
min

s
Rn(α, λ, s) . (C.27)

From the definition of limit and the above, for all ǫ > 0, there exists N(ǫ) such that for

n ≥ N(ǫ), Cn(α, λ) ≥ supn Cn(α, λ)− ǫ. Let p∗ be the maximizing input distribution
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for CN(ǫ)(α, λ), and for all nonnegative integers k, choose the input distribution to be

N(ǫ)
∏

i=1

p(Xk·N(ǫ)+i|Sk·N(ǫ)+i
k·N(ǫ)+1, X

k·N(ǫ)+i−1
k·N(ǫ)+1 ) = p∗.

Then for this choice of we get that

max
Q∞

i=1 p(Xi|Si,Xi−1)
lim inf

n
min

s
Rn(α, λ, s)

≥ CN(ǫ)(α, λ)

≥ sup
n

Cn(α, λ) − ǫ . (C.28)

Thus, for all ǫ > 0 and n sufficiently large,

sup
n

Cn(α, λ) ≤ max
Q∞

i=1 p(Xi|Si,Xi−1)
lim inf

n
min

s
Rn(α, λ, s) + ǫ . (C.29)

Since we can make ǫ arbitrarily small, we get the following:

sup
n

Cn(α, λ) ≤ max
Q∞

i=1 p(Xi|Si,Xi−1)
lim inf

n
min

s
Rn(α, λ, s) , (C.30)

which completes the first part of the proof.

To show the second part of the proof, let us define the following quantities:

Jk = max
Qk

i=1 p(Xi|Si)
Q∞

ℓ=k+1 p(Xℓ|Sℓ,Xℓ−1)
lim inf

n
min

s
Rn(α, λ, s)

J∞ = max
Q∞

i=1 p(Xi|Si)
lim inf

n
min

s
Rn(α, λ, s)

Note that from the first part of the proof, we have shown that

sup
n

max
Qn

i=1 p(Xi|Si,Xi−1)
min

s
Rn(α, λ, s) ≤ J1.
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Furthermore, for all k ≥ 1, Jk ≥ Jk+1. Thus, to show the second part of the proof, is

equivalent to proving that

J∞ = J1 . (C.31)

We proceed by induction and argue that Jk = J1 for all k ≥ 1. The base case is

trivially satisfied for k = 1. Suppose that Jk = J1 for some k ≥ 1. We will now show

that Jk = Jk+1. Since Jk ≥ Jk+1, it suffices to show that Jk ≤ Jk+1. First observe

that

I(Xk+1; Yk+1|Sk+1) − λE[Γ(Sk+1, Xk+1)]

= E

[

E

[

log
w(Yk+1|Xk+1, Sk+1)

E[w(Yk+1|Xk+1, Sk+1)|Yk+1]
− λΓ(Sk+1, Xk+1)

∣

∣

∣

∣

Xk+1, S
k+1

]]

(C.32)

Thus, under the optimizing distribution p∗ for Jk, if we replace p∗(Xk+1 = xk+1|Sk+1 =

sk+1, Xk = xk) with E[p∗(Xk+1|Sk+1, Xk)|Xk+1 = xk+1, Sk+1 = sk+1], which is in the

set of valid distributions for Jk+1, the quantity

I(Xk+1; Yk+1|Sk+1) + λ (α−E[Γ(Sk+1,Xk+1)|S1=s]) (C.33)

remains the same. Furthermore,

k
∑

i=1

I(Xi; Yi|Si) + λ (nα−Pk
i=1 E[Γ(Si,Xi)|S1=s]) (C.34)

remains the same because we kept the previous p∗ unchanged. Finally, the distribution
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of P(Sk+2) remains the same by linearity of expectation, so for ℓ ≥ k + 1,

I(Xℓ; Yℓ|Sℓ) + λ (α−E[Γ(Sℓ,Xℓ)|S1=s]) (C.35)

remains the same because we have not changed future p∗, and we can conclude that

under this modification to p∗,

Jk = lim inf
n

min
s

Rn(α, λ, s) . (C.36)

However, since this is a valid distribution for Jk+1, we have that Jk ≤ Jk+1 and thus

Jk = Jk+1. The result follows immediately.

Lemma C.3. If there exist |S| + 1 real numbers

(J∗
λ,α, ℓ(1), . . . , ℓ(|S|))

such that for all i ∈ S,

J∗
λ,α + ℓ(i) = max

p(x|i)

{

I(X; Y |S = i) + λ(α − E [Γ(S, X)|S = i]) +

S
∑

j=1

P p
i,j · ℓ(j)

}

,

(C.37)

then

C(α) ≤ J∗
λ,α . (C.38)

Furthermore, if the state process {Sk}k≥1 is irreducible, then there exists a solution

to (C.37), and (C.38) holds.
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Proof. From Lemmas C.1 and C.2, we have the following upper bound to capacity:

C(α) ≤ max
Q∞

i=1 p(Xi|Si)
lim inf

n
min

s
Rn(α, λ, s) , (C.39)

where the definition of Rn(α, λ) is given in Lemma C.1. We want to apply Theorem

A.9 to simplify the upper bound, which first requires that we provide an explicit

connection to the control problem on page 106, specifically to items 1), 2), and 3).

Item 1) is given in Definition 3.3 on page 3.3. That is, the transition probability

matrix [P u
i,j], where the entry on row i ∈ S and column j ∈ S is defined as

P u
i,j =

∑

x∈X
y∈Y

q(j|y, i) · w(y|x, i) · u(x) ,

where the control u ∈ U , and the control space U is the probability simplex of ℜ|X |.

Now, for item 2), the control law is

Uk = gk(S
k) =

[

p(Xk = ·|Sk)
]

∈ U . (C.40)

For item 3), the reward function r : S × U → ℜ is

r(s, u) =
∑

x,y

w(y|x, s) · u(x) · log
w(y|x, s)

∑

x̃ w(y|x̃, s) · u(x̃)
+ λ

(

α −
∑

x

Γ(s, x) · u(x)

)

,

(C.41)

and thus given a control sequence and an initial state,

Js(g) = lim inf
n

1

n

n
∑

k=1

E[r(Sk, Uk)]

= lim inf
n

Rn(α, λ, s) .
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We have now established the necessary connection to the control problem to apply

Theorem A.9, which states that if there exist |S| + 1 real numbers

(J∗
λ,α, ℓ(1), . . . , ℓ(|S|))

such that, for all i ∈ S,

J∗
λ,α + ℓ(i) = max

u∈U

{

r(i, u) +
S
∑

j=1

P u
i,j · ℓ(j)

}

, (C.42)

then

J∗
λ,α = max

Q∞
i=1 p(Xi|Si)

lim inf
n

Rn(α, λ, s) ,

and it further states that such a solution exists if the state process {Sk}k≥1 is irre-

ducible (see Definition 3.3). Since J∗
λ,α = max Js(g) for all s,

J∗
λ,α = max

Q∞
i=1 p(Xi|Si)

lim inf
n

min
s

Rn(α, λ, s) .

Thus, by (C.39), we have that

C(α) ≤ J∗
λ,α , (C.43)

thereby completing the proof.

Proof of Main Theorem.

We are now in a position to prove Theorem 3.2. Observe that Lemma C.3 already

gives the upper bound to capacity, which comprises the first part of the result. To

show equality, we start with the upper bound in Lemma C.3 and show it matches the

in achievable rates from Theorem 3.1 under our assumptions.
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Let π∗(·) be the stationary distribution of the maximizing p∗(x|·) in the right side

of (C.37) over all i ∈ {1, . . . , |S|}. By Lemma C.3, (C.37) implies the following:

J∗
λ,α +

∑

s

ℓ(s) · π∗(s) =
∑

s

I(X; Y |S = s)π∗(s)

+ λ(α −
∑

s

E [Γ(S, X)|S = s] π(s))

+
∑

j

ℓ(j) · π∗(j) , (C.44)

which follows since under p∗,
∑S

i=1 P p
i,j · π∗(i) = π∗(j). This simplifies under our

assumptions that either (λ ≥ 0, α = α∗
λ) or (λ = 0, α ≥ α∗

λ), where α∗
λ is defined in

(3.9):

J∗
λ,α +

∑

s

ℓ(s) · π∗(s) =
∑

s

I(X; Y |S = s)π∗(s) +
∑

j

ℓ(j) · π∗(j) ,

so we can solve for J∗
λ,α to get the following:

J∗
λ,α =

∑

s

I(X; Y |S = s)π∗(s) , (C.45)

where our assumptions further imply that

∑

s

E [Γ(S, X)|S = s] π(s) ≤ α.
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Thus, by Theorem 3.1 and Lemma C.3, our assumptions imply the following:

max
p(x|s):

E[Γ(S,X)]≤α

∑

s

I(X; Y |S = s)π(s)

≤ C(α) (C.46)

≤ J∗
λ,α (C.47)

=
∑

s

I(X; Y |S = s)π∗(s) (C.48)

≤ max
p(x|s):

E[Γ(S,X)]≤α

∑

s

I(X; Y |S = s)π(s) , (C.49)

thereby proving the result.

C.3 Proof of Examples

C.3.1 Proof of Proposition 3.3

Since the achievable strategy shows the rate log φ is achievable, where φ = 1+
√

5
2

is

the golden ratio and satisfies φ−1 = φ − 1. it remains to show the converse. To do

this, we will find solutions for the Bellman equation in Theorem 3.2 for λ ≥ 0, and

show that as λ → ∞, these bounds converge to log φ.

Thus, we must find (J∗
λ,0, ℓ(0), ℓ(1)) that satisfy the following equations:

J∗
λ,0 + ℓ(0) = max

p0

{hb(p0) − λ · 0 + p0 · (ℓ(1) − ℓ(0)) + ℓ(0)} (C.50)

J∗
λ,0 + ℓ(1) = max

p1

{hb(p1) − λ · p1 + p1 · (ℓ(1) − ℓ(0)) + ℓ(0)} . (C.51)

Since the functions to be maximized are concave, by setting the derivative of each of

the right sides above with respect to pi to 0 and solving for pi, the optimal choices
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are the following:

p∗0 =
exp{ℓ(1) − ℓ(0)}

1 + exp{ℓ(1) − ℓ(0)} (C.52)

p∗1 =
exp{ℓ(0) − ℓ(1) − λ}

1 + exp{ℓ(0) − ℓ(1) − λ} , (C.53)

and the two expressions for J∗
λ,0 simplify as follows:

J∗
λ,0 = log(1 + exp{ℓ(1) − ℓ(0)}) (C.54)

J∗
λ,0 = ℓ(0) − ℓ(1) + log(1 + exp{ℓ(1) − ℓ(0) − λ}) . (C.55)

For simplicity, we will define ϕ = exp{ℓ(0) − ℓ(1)} to get the following:

J∗
λ,0 = log(1 + ϕ−1) (C.56)

J∗
λ,0 = log ϕ + log(1 + ϕ−1 · exp{−λ}) (C.57)

= log(ϕ + exp{−λ}) . (C.58)

Note that if we can find (ϕ, J∗
λ,0), then we can find (J∗

λ,0, ℓ(0), ℓ(1)) that satisfy the

Bellman equation, thereby giving us the upper bound J∗
λ,0 to the capacity via Theorem

3.2. By setting the two equations above to be equal and exponentiating both sides,

we get that

ϕ + exp{−λ} = 1 + ϕ−1. (C.59)

Note that for ϕ ∈ [1, φ), 1 + ϕ−1 − ϕ is a continuous function and ranges over (0, 1].

Thus, for every ϕ ∈ [1, φ), there exists a λ ≥ 0 such that it is a solution, and thus for

163



Appendix C. Proofs for Chaper 3

all ǫ > 0, there exists a λ′ ≥ 0 such that φ − ǫ is a solution, and thus

C(0) ≤ J∗
λ′,0 (C.60)

= log

(

1 +
1

φ − ǫ

)

(C.61)

= log φ + log
1 + 1

φ−ǫ

φ
(C.62)

= log φ + log
1 + 1

φ−ǫ

1 + 1
φ

. (C.63)

Since ǫ can be made arbitrarily small, we have our converse.

C.3.2 Proof of Proposition 3.4

By Theorem 3.2, we know that C(α) = J∗
λ,α if λ satisfies either (λ ≥ 0, α = α∗

λ) or

(λ = 0, α ≥ α∗
λ), where α∗

λ is defined in (3.9). J∗
λ,α satisfies the following:

J∗
λ,α = max

0≤p1≤1
{hb(p1) + λα + ǭ(ℓ(1) − ℓ(0))} (C.64)

J∗
λ,α = max

0≤p2≤1
{hb(p2) + λ(α − 1) + β(ℓ(0) − ℓ(1))}

= log 2 + λ(α − 1) + β(ℓ(0) − ℓ(1)) , (C.65)

where ǭ = ǭ(p1) = (1− p1) · ǫ0 + p1 · ǫ1. Since the right side of (C.64) is convex-∩ and

continuous in p1, by taking the derivative with respect to p1, it is straightforward to

show that the optimizing p∗1 satisfies the following condition:

ℓ(1) − ℓ(0) =
1

ǫ1 − ǫ0
· log

p∗1
1 − p∗1

. (C.66)
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Note that by scaling (C.64) and (C.65) by β
ǭ∗+β

and ǭ∗

ǭ∗+β
and adding them, we get

the following:

J∗
λ,α =

ǭ∗

ǭ∗ + β
· log 2 +

β

ǭ∗ + β
· hb(p

∗
1) + λ

(

α − ǭ∗

ǭ∗ + β

)

, (C.67)

where ǭ∗ = ǭ(p∗1). If ǭ∗

ǭ∗+β
= α, then we can solve for λ in (C.64) by substituting J∗

for the right side of (C.67) to get that

λ = log 2 − hb(p
∗
1) −

ǭ∗ + β

ǫ1 − ǫ0
· log

p∗1
1 − p∗1

, (C.68)

Note that λ ≥ 0 and monotonically increasing over p∗1 ∈ (0, 1/2). Thus, for 0 < p∗1 <

1
2
, we have the following:

C

(

ǭ∗

ǭ∗ + β

)

=
ǭ∗

ǭ∗ + β
· log 2 +

β

ǭ∗ + β
· hb(p

∗
1) . (C.69)

C.3.3 Proof of Proposition 3.5

By Theorem 3.2, we know that C(α) = J∗
λ,α if λ satisfies either (λ ≥ 0, α = α∗

λ) or

(λ = 0, α ≥ α∗
λ), where α∗

λ is defined in (3.9). J∗
λ,α satisfies the following:

J∗
λ,α + ℓ(1) = max

p(x|1)

{

H(X|S = 1) + λα +
1

2
(ℓ(1) + ℓ(2))

}

= log(L + 1) + λα +
1

2
(ℓ(1) + ℓ(2)) (C.70)

J∗
λ,α + ℓ(2) = max

p(x|2)

{

H(X|S = 2) + λ(α − (1 − p0)) +
1 + p0

2
· ℓ(1) +

1 − p0

2
· ℓ(2)

}

= hb(p
∗
0) + (1 − p∗0) · log L + λ(α − 1 + p∗0) +

1 + p∗0
2

· ℓ(1) +
1 − p∗0

2
· ℓ(2) ,

(C.71)
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where p0 = p(x = 0|s = 2), and p∗0 =
exp{λ+ 1

2
(ℓ(1)−ℓ(2))}

L+exp{λ+ 1
2
(ℓ(1)−ℓ(2))} is the corresponding optimal

choice. By adding (C.70) and (C.71) scaled by
1+p∗0
2+p∗0

and 1
2+p∗0

, respectively, we get the

following expression after solving for J∗
λ,α:

J∗
λ,α =

1 + p∗0
2 + p∗0

· log(L + 1) +
1

2 + p∗0
· (hb(p

∗
0) + (1 − p∗0) · log L) + λ

(

α − 1 − p∗0
2 + p∗0

)

.

(C.72)

For λ = 0, p∗0 = 1
L+1

, ℓ(1) − ℓ(2) = 0, then α∗
λ = L

2L+3
in (3.9), thereby giving for

α ≥ L
2L+3

,

C(α) = log(L + 1) . (C.73)

For α = α∗
λ =

1−p∗0
2+p∗0

(i.e., p∗0 = 1−2α
1+α

), we simply have to verify that for 0 ≤ α ≤
L

2L+3
, λ ≥ 0. Since p∗0 =

exp{λ+ 1
2
(ℓ(1)−ℓ(2))}

L+exp{λ+ 1
2
(ℓ(1)−ℓ(2))} ,

1

2
(ℓ(1) − ℓ(2)) = −λ + log

Lp∗0
1 − p∗0

. (C.74)

Thus, by (C.70) and (C.72),

J∗
λ,α = log(L + 1) − log L + λ(α + 1) + log

1 − p∗0
p∗0

(C.75)

J∗
λ,α =

1 + p∗0
2 + p∗0

· log(L + 1) +
1

2 + p∗0
· (hb(p

∗
0) + (1 − p∗0) · log L) . (C.76)
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Combining these gives the following for 0 ≤ α ≤ L
2L+3

, p∗0 = 1−2α
1+α

:

λ · (1 + α) · (2 + p∗0) = log
L3

L + 1
+ hb(p

∗
0) + (2 + p∗0) log

p∗0
1 − p∗0

(C.77)

= log
L3

L + 1
+ 2 log p∗0 + 3 log

1

1 − p∗0
(C.78)

≥ log
L3

L + 1
+ 2 log

1

L + 1
+ 3 log

L + 1

L
(C.79)

= 0 . (C.80)

Thus, from (C.72), and 0 ≤ α ≤ L
2L+3

,

C(α) =
2 − α

3
· log(L + 1) +

1 + α

3
· hb

(

1 − 2α

1 + α

)

+ α · log L . (C.81)

C.3.4 Proof of Proposition 3.6

Note that I(X; Y |S) = (1 − ǫ)H(X|S). By Theorem 3.2, we know that C(α) = J∗
λ,α

if λ satisfies either (λ ≥ 0, α = α∗
λ) or (λ = 0, α ≥ α∗

λ), where α∗
λ is defined in (3.9).

J∗
λ,α satisfies the following:

J∗
λ,α + ℓ(c) = max

p(x|c)
{(1 − ǫ) · H(X|S = c) + λα + ǫ · ℓ(e) + (1 − ǫ) · ℓ(c)}

= (1 − ǫ) · log(L + 1) + λα + ǫ · ℓ(e) + (1 − ǫ) · ℓ(c) (C.82)

J∗
λ,α + ℓ(e) = max

p(x|e)
{(1 − ǫ) · H(X|S = e) + λ (α − (1 − p0)) + ǫ · ℓ(e) + (1 − ǫ) · ℓ(c)}

= (1 − ǫ) · (hb(p
∗
0) + (1 − p∗0) · log L)

+ λ (α − (1 − p∗0)) + ǫ · ℓ(e) + (1 − ǫ) · ℓ(c) , (C.83)

where p0 = p(x = 0|s = e), and p∗0 = exp{λ/(1−ǫ)}
L+exp{λ/(1−ǫ)} is the corresponding optimal

choice. By adding (C.82) and (C.83) scaled by 1 − ǫ and ǫ, respectively, we get the
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following expression after solving for J∗
λ,α:

J∗
λ,α = (1 − ǫ) · ((1 − ǫ) · log(L + 1) + ǫ · hb(p

∗
0) + ǫ · (1 − p∗0) · log L)

+ λ(α − ǫ · (1 − p∗0)) . (C.84)

For λ = 0, then p∗0 = 1
L+1

and α∗
λ = ǫL

L+1
in (3.9), thereby giving for α ≥ L

L+1
,

C(α) = (1 − ǫ) log(L + 1) . (C.85)

For α = α∗
λ = ǫ(1 − p∗0) (i.e., p∗0 = ǫ−α

ǫ
), we simply have to verify that for

0 ≤ α ≤ ǫL
L+1

, λ ≥ 0. This is straightforward to verify since over 0 ≤ α ≤ ǫL
L+1

,

p∗0 ≥ 1
L+1

, and since p∗0 = exp{λ/(1−ǫ)}
L+exp{λ/(1−ǫ)} , λ ≥ 0. Thus, 0 ≤ α ≤ ǫL

L+1
,

C(α) = (1 − ǫ) ·
(

(1 − ǫ) · log(L + 1) + ǫ · hb

(

ǫ − α

ǫ

)

+ α · log L

)

. (C.86)
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Proofs for Chaper 4

D.1 Proof of Theorem 4.5 (Achievable Strategy)

In this section, we give a rigorous proof of the achievable strategy for the general case

in which the sources can depend on the channel, and for notational convenience, we

have the following: Sk = SA,k, Yk = (Yk, SB,k), and Zk = (Zk, SE,k).

Recall that Pjoint is the set of all joint distributions p of random variables V, U,

X, S, Y, Z such that (i) the following Markov chain holds:

V −U − (X, S) − (Y,Z) ,

(ii) V is independent of S, and (iii) the joint conditional distribution of (Y,Z) given

(X, S) as well as the marginal distribution of S are consistent with the given source

and channel respectively.

For p ∈ Pjoint, recall that Rjoint(p) is the set of all non-negative pairs (RSK, RSM)
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which satisfy the following two inequalities:

RSM ≤ I(U;Y) − I(U; S) (D.1)

RSK + RSM ≤ I(U;Y|V)− I(U;Z|V) . (D.2)

Proving the theorem is equivalent to showing that this rate region is achievable.

Proof of Theorem 4.5.

Since a secret message automatically satisfies the constraints of a secret key, it is

enough to prove that the following (RSK, RSM) pair is achievable.

RSM = min{I(U;Y) − I(U;S), I(U;Y|V)− I(U;Z|V)}, and

RSK = [I(U;Y|V)− I(U;Z|V) − (I(U;Y) − I(U;S))]+

= [I(U;S) − I(V;Y)− I(U;Z|V)]+

We divide the proof into two cases. In each case, we use a random coding argument

to show the existence of a codebook for which the probability of an encoding error

at Alice, decoding error at Bob, and decoding error at Eve given additional side

information are all small. We then show that such a code satisfies the secrecy and

uniformity conditions.

Case 1: I(U; S) < I(V;Y) + I(U;Z|V)

In this case, we need only prove that the pair

RSM = I(U;Y|V)− I(U;Z|V), and

RSK = 0

is achievable.

1. Codebook Generation: Draw an (n, I(U;Y) − 3δ) codebook from the follow-
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V-codebook

2n(I(U;Z|V)−δ)

2n(I(V;Y)−δ) b

b

b

2n(RSM−δ) bins

conditional codebooks

bin

b

b

b

Figure D.1: The codebook used for Case 1 of the achievable strategy
consists of a V-codebook, each codeword of which indexes a conditional
codebook. The bins in each conditional codebook correspond directly to
the private bit-pipe, and the V-codebook and codewords in each bin to the
public bit-pipe. Analogously, the codewords in each conditional codebook
correspond to quantization points for the source Sn.

ing distribution, which will be composed of two parts. The first part is an

(n, I(V;Y)−δ) codebook with codewords drawn uniformly from the set T ∗(n)
ǫ (pV)

of ǫ-typical sequences with respect to pV (see Definition A.7). We call this the V-

codebook and index its codewords using i ∈ {1, . . . , 2n(I(V;Y)−δ)}. For each such

codeword vn(i), we construct an (n, I(U;Y|V)−2δ) codebook with codewords

drawn uniformly from the set T ∗(n)
ǫ (pU|V(·|vn(i))) of conditionally ǫ-typical se-

quences on vn(i) with respect to pU|V (see Definition A.8). These conditional

codebooks form the second part of the codebook, and we refer to the entire

codebook as a U-codebook. For each conditional codebook, we distribute these

sequences into 2n(RSM−δ) bins such that each bin contains 2n(I(U;Z|V)−δ) code-

words, indexing each bin by m ∈ {1, . . . , 2n(RSM−δ)}. Let the codewords in each
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bin be indexed by j ∈ {1, . . . , 2n(I(U;Z|V)−δ)}.

Note that there is a direct correspondence between the bins, and the private

bit-pipe, with the codewords in each bin and the V-codebook corresponding to

the public bit-pipe of the separation strategy. Furthermore, as will be seen in

encoding, the U-codewords are simply quantization points for the source Sn. A

schematic of this codebook is depicted in Figure D.1.

In this separation context, Case 1 refers to the scenario in which there is

insufficient randomness from the source Sn alone to determine the input to

the public bit-pipe. Thus, we further divide the set of all U-codewords into

2n(I(V;Y)+I(U;Z|V)−I(U;S)−3δ) buckets1 as follows: if (i) I(U; S) ≥ I(V;Y), that

is, there is sufficient randomness in the source to determine the V-codeword

completely, we divide up codewords in each bin of every conditional codebook

into buckets such that each bucket has the same number of codewords. Thus,

given a bin, for each conditional codebook there are

2n(I(U;Z|V)+2δ−I(V;Y)−I(U;Z|V)+I(U;S)) = 2n(I(U;S)−I(V;Y)+2δ)

codewords in each bucket, for a total of 2n(I(U;S)+δ) codewords in each bucket

over all conditional codebooks.

If (ii) I(U; S) < I(V;Y), then, the U-codewords are divided up among the

buckets such that every bucket has no more than one codeword which belongs

to the same bin of a conditional codebook. In this case, for a given bucket,

there are

2n(I(U;Y)−3δ−(RSM−δ)−(I(V;Y)+I(U;Z|V)−I(U;S)−3δ)) = 2n(I(U;S)+δ)

1For there to be at least one bucket, we require that 3δ < I(V;Y) + I(U;Z|V) − I(U; S).
However, this is not an issue since we will take δ → 0.
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codewords each belonging to a different conditional codebook and holding the

same bin index.

The buckets are indexed by k ∈ {1, . . . , 2n(I(V;Y)+I(U;Z|V)−I(U;S)−3δ) }. For a

U-codeword, we will explicity indicate its bucket index along with the condi-

tional codebook it belongs to, its bin-index and its index within the bin as

un(i, m, j, k).

2. Encoding : Let m ∈ {1, . . . , 2n(RSM−δ)} index the secret message. To send

m, Alice selects a Φbucket ∈ {1, . . . , 2n(I(V;Y)+I(U;Z|V)−I(U;S)−3δ)}, which is uni-

formly distributed over its alphabet, and assigns k = Φbucket, and looks in

bin m (of all the conditional codebooks) for a Vn(i),Un(i, m, j, k) such that

(Vn(i),Un(i, m, j, k), Sn) are jointly typical. Thus, the U codeword is selected

such that it belongs to bin m and bucket k = Φbucket and such that it is jointly

typical with the source observation Sn. If more than one choice is found, Alice

chooses randomly among them. If none are found, Alice declares an error. A

test channel pX|U,S stochastically generates the channel input Xn.

The probability of encoding failure can be bounded as follows. In case (i),

Pe ≤ P(Sn /∈ T ∗(n)
ǫ ) +

∑

sn∈T ∗(n)
ǫ

pSn(sn)
∑

k

pΦbucket
(k)

{

[

∑

vn∈T ∗(n)
ǫ

P(Vn = vn)

·
[

1 − P((vn,Un, sn) ∈ T ∗(n)
ǫ |Vn = vn)

]2n(I(U;S)−I(V;Y)+2δ)
]2n(I(V;Y)−δ)

}

.

where the term P((vn,Un, sn) ∈ T ∗(n)
ǫ |Vn = vn) is evaluated with the distribu-

tion for Un being given by the uniform distribution over all sequences un that

are conditionally ǫ-typical on vn. Since V and S are independent, for sn ∈ T ∗(n)
ǫ
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and vn ∈ T ∗(n)
ǫ , this probability is

P((vn,Un, sn) ∈ T ∗(n)
ǫ |Vn = vn) ≥ 2−n(I(U;S|V)+ǫ1), (D.3)

where ǫ1 → 0 as ǫ → 0. This will also be the case for any future subscripted ǫ#

in the future. Applying (D.3) to the term within the braces in the upperbound

for Pe and simplifying gives





∑

vn∈T ∗(n)
ǫ

P(Vn = vn) ·
[

1 − 2−n(I(U;S|V)+ǫ1)
]2n(I(U;S)−I(V;Y)+2δ)





2n(I(V;Y)−δ)

(a)

≤ e−2n(I(U;S)+δ)2−n(I(U;S|V)+ǫ1)

(b)
= e−2n(δ−ǫ1)

,

where (a) follows from (1 − x)n ≤ e−nx and (b) from the fact that I(U; S) =

I(V,U; S) = I(U; S|V) which in turn is a consequence of the Markov chain V−
U−S and the independence of V and S. Substituiting this in the upperbound

for Pe,

Pe ≤ P(Sn /∈ T ∗(n)
ǫ ) +

∑

sn∈T ∗(n)
ǫ

pSn(sn)
∑

k

pΦbucket
(k) · e−2n(δ−ǫ1)

= P(Sn /∈ T ∗(n)
ǫ ) + (1 − P(Sn /∈ T ∗(n)

ǫ )) · e−2n(δ−ǫ1)

.

Thus, we can make Pe as small as desired by choosing δ appropriately small, ǫ

small enough such that ǫ1 < δ, and n sufficiently large (see Lemma A.3).

Under case (ii), the probability of encoding failure can be similarly bounded.
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Now, we have

Pe ≤ P(Sn /∈ T ∗(n)
ǫ ) +

∑

sn∈T ∗(n)
ǫ

pSn(sn)
∑

k

pΦbucket
(k)

·















∑

vn∈T ∗(n)
ǫ

P(Vn = vn)
[

1 − 2−n(I(U;S|V)+ǫ1)
]





2n(I(U;S)+δ)










.

where the term P((vn,Un, sn) ∈ T ∗(n)
ǫ |Vn = vn) is evaluated as in (D.3). Fol-

lowing similar steps to those above, by choosing δ sufficiently small, ǫ small

enough such that ǫ1 < δ, and n sufficiently large, we can make Pe as small as

desired.

3. Decoding at Bob: Bob receives Yn and searches for the unique (Vn,Un) pair

such that (Vn,Un,Yn) that are jointly ǫ-typical or declares an error. Bob

identifies the corresponding bin-index m̂, and declares this the secret message.

Hence, conditioned on encoding being successful, a decoding error results only if

there is a m̂ 6= m such that, there are î, ĵ, k̂ such that (vn(̂i),un(̂i, m̂, ĵ, k̂),yn)

are jointly ǫ-typical. We can upperbound the probability of this by

∑

î

∑

m̂6=m

∑

ĵ

P

(

(Vn(̂i),Un(̂i, m̂, ĵ),Yn) ∈ T ∗(n)
ǫ

)

=
∑

î6=i

∑

m̂6=m

∑

ĵ

P

(

(Vn(̂i),Un(̂i, m̂, ĵ),Yn) ∈ T ∗(n)
ǫ

)

+
∑

m̂6=m

∑

ĵ

P

(

(Vn(i),Un(i, m̂, ĵ),Yn) ∈ T ∗(n)
ǫ

)

≤ 2n(I(U;Y)−3δ)−n(I(U;Y)−ǫ2)

+ 2n(RSM−δ)+n(I(U;Z|V)−δ)−n(I(U;Y|V)−ǫ3) ,

which can be made as small as desired by choosing δ sufficiently small, ǫ small
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enough such that ǫ2, ǫ3 < δ, and making n sufficiently large.

4. Decoding at Eve with side information: Consider Eve who has access to M,Vn.

Then, the bin in which a potential Un exists is known to be at most 2n(I(U;Z|V)−δ).

We may upperbound the probability of decoding error as we did above. Con-

sider the jointly typical decoder for Un given Zn in this bin. There are two

error events: E1 is the event no sequence in the bin is jointly typical with Zn,

and E2 is the event a false sequence in the subbin is jointly typical with Zn.

We have that P(E1) → 0 as n → ∞, and the probability a false sequence is

jointly typical with Zn is 2−n(I(U;Z|V)−ǫ4). By a union bound, we can make the

probability of error as small as desired by choosing δ sufficiently small,ǫ small

enough such that ǫ4 < δ, and taking n sufficiently large.

By the usual random coding arguments, as in Case 1, we may now conclude that

for any δ > 0, for sufficiently large n, there exists a codebook such that Bob

can recover the secret message with probability of error not larger than δ and

Eve when provided with the message M and the V-codeword can recover the

U-codeword with probability of error not larger than δ. We now simply have

to verify that for this codebook, the secrecy condition holds: namely, Eve’s

information about the message (given Zn) is small.

Proof of Secrecy Condition.
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First observe that

H(M |Zn) ≥ H(M |Zn,Vn)

= H(M,Zn|Vn) − H(Zn|Vn)

= H(M,Un,Zn|Vn) − H(Un|M,Zn,Vn) − H(Zn|Vn)

(a)

≥ H(Un,Zn|Vn) − H(Un|M,Zn,Vn) − H(Zn|Vn)

= H(Un|Vn) + H(Zn|Un,Vn) − H(Un|M,Zn,Vn) − H(Zn|Vn). (D.4)

where (a) follows from non-negativity of conditional entropy. We now bound each of

these terms.

Let us define, for every un(i, m, j, k) codeword

E = {sn : ∃(i, m, j, k) such that (vn(i),un(i, m, j, k), sn) ∈ T ∗(n)
ǫ } (D.5)

Recall that for all α > 0, there exists n sufficiently large such that decoding (and

hence encoding) succeeds with probability greater than 1 − α, i.e.,

P(Sn ∈ E) ≥ 1 − α . (D.6)
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Furthermore, the probability

P((Vn,Un) = (vn(i),un(i, m, j, k)), Sn ∈ E)

= P(M = m, Φbucket = k, (Vn,Un) = (vn(i),un(i, m, j, k)), Sn ∈ E)

≤ P(M = m) · 2−n(I(V;Y)+I(U;Z|V)−I(U;S)−3δ) ·
∑

sn:(vn(i),un(i,m,j,k),sn)∈T ∗(n)
ǫ

P(Sn = sn)

(D.7)

≤ 2−n(RSM−δ) · 2−n(I(V;Y)+I(U;Z|V)−I(U;S)−3δ) · 2nH(S|U)+nǫ · 2−nH(S)+nǫ (D.8)

= 2−n(RSM−δ) · 2−n(I(V;Y)+I(U;Z|V)−I(U;S)−3δ) · 2−nI(S;U)+2nǫ (D.9)

= 2−n(RSM−δ) · 2−n(I(V;Y)+I(U;Z|V)−3δ)+2nǫ , (D.10)

which along with the lowerbound on P(Sn ∈ E) above implies that

P((Vn,Un) = (vn(i),un(i, m, j, k))|Sn ∈ E) (D.11)

≤ 2−nRSM · 2−n(I(V;Y)+I(U;Z|V))+nǫ5 (D.12)

= 2−nI(U;Y)+nǫ5. (D.13)

Also, we know that the size of the codebook in which (Vn,Un) take values is less

than 2nI(U;Y) which implies that

H(Un,Vn|Sn ∈ E) ≥ nI(U;Y) − nǫ5.
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Using this we can bound the first term in (D.4).

H(Un|Vn) = H(Un,Vn) − H(Vn) (D.14)

(a)

≥ H(Un,Vn) − nI(V;Y) (D.15)

(b)

≥ H(Un,Vn|Sn ∈ E) · P(Sn ∈ E) − nI(V;Y) (D.16)

= nI(U;Y) − nI(V;Y) − nǫ6 (D.17)

= nI(U;Y|V)− nǫ6, (D.18)

where (a) follows from the fact that Vn takes values in a codebook whose size is smaller

than 2nI(V;Y), and (b) follows from the fact that conditioning reduces entropy.

We bound the second term in (D.4) as follows

H(Zn|Un,Vn) = H(Zn|Un)

=
∑

un

P(Un = un)H(Zn|Un = un)

(a)
=
∑

un

P(Un = un)
∑

µ∈U
N(µ|un)H(Z|U = µ)

(b)

≥
∑

un

P(Un = un)
∑

µ∈U
n(P(U = µ) − ǫ)H(Z|U = µ)

=
∑

un

P(Un = un)(nH(Z|U) − nǫ7)

= nH(Z|U) − nǫ7,

where (a) follows from the memoryless nature of the virtual channel from U to Z and

N(µ|un) counts the number of times µ appears in the codeword un, and (b) follows

from the fact that all the U-codewords belong to T ∗(n)
ǫ .

The third terms can be bounded by using Fano’s inequality and the fact that Eve

can recover the U-codeword with a probability of error ǫ when she has access to M
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and Vn in addition to her observation Zn.

H(Un|M, K,Zn,Vn) ≤ 1 + n · ǫ · I(U;Z|V) = nǫ8.

Finally, to bound the fourth term, let T be an indicator random variable which

takes on the value 1 when (Vn,Zn) ∈ T ∗(n)
ǫ and 0 otherwise.

H(Zn|Vn) ≤ H(Zn, T |Vn)

≤ 1 + H(Zn|Vn, T = 1) · P(T = 1) + n log |Z| · P(T = 0). (D.19)

But

P(T = 0) = P((Vn,Zn) /∈ T ∗(n)
ǫ ) ≤ ǫ9.

Furthermore, we have

H(Zn|Vn, T = 1) =
∑

vn

P(Vn = vn|T = 1)H(Zn|Vn = vn, T = 1)

(a)

≤
∑

vn

P(Vn = vn|T = 1) log |T ∗(n)
ǫ (pZ|V|vn)|

≤
∑

vn

P(Vn = vn|T = 1)(nH(Z|V) + nǫ)

= nH(Z|V) + nǫ,

where in (a) we used |T ∗(n)
ǫ (pZ|V|vn)| to denote the size of the set of all zn such that

(zn,vn) ∈ T ∗(n)
ǫ . Thus, (D.19) becomes

H(Zn|Vn) ≤ nH(Z|V) + nǫ10.
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Hence, we may conclude from (D.4) that

1

n
H(M |Zn) ≥ I(U;Y|V) + H(Z|U) − H(Z|V) + ǫ11

= I(U;Y|V)− I(U;Z|V) + ǫ11

= RSM + ǫ11.

Thus we have shown the secrecy condition.

Case 2: I(U; S) ≥ I(V;Y) + I(U;Z|V)

In this case, we only need to show the achievability of

RSM = I(U;Y) − I(U;S), and

RSK = I(U;S) − I(V;Y)− I(U;Z|V).

1. Codebook Generation: Draw an (n, I(U;Y) − 2δ) codebook from the follow-

ing distribution, which will be composed of two parts. The first part is an

(n, I(V;Y)−δ) codebook with codewords drawn uniformly from the set T ∗(n)
ǫ (pV)

of ǫ-typical sequences with respect to pV, which we again call the V-codebook

and index each codeword by i ∈ {1, . . . , 2n(I(V;Y)−δ)}. For each such codeword

vn(i), we construct an (n, I(U;Y|V)−δ) codebook with codewords drawn uni-

formly from the set T ∗(n)
ǫ (pU|V(·|vn(i))) of conditionally ǫ-typical sequences on

vn(i) with respect to pU|V, which forms the second part of the codebook. We

call the entire codebook a U-codebook.

For each conditional codebook, distribute these sequences among 2n(RSM−3δ) bins

such that each bin contains 2n(I(U;S)−I(V;Y)+2δ) codewords. We index each bin

by m, where m ∈ {1, . . . , 2n(RSM−3δ)}. Then assign the sequences in each bin
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V-codebook

2n(RSK+3δ) subbins

2n(I(U;Z|V)−δ)

2n(I(V;Y)−δ) b

b

b

2n(RSM−3δ) bins

conditional codebooks

subbin

bin

b

b

b

Figure D.2: The codebook used for Case 2 of the achievable strategy
consists of a V-codebook, each codeword of which indexes a conditional
codebook. The bins in each conditional codebook correspond directly to
the private bit-pipe, and the V-codebook and codewords in each bin to the
public bit-pipe. Analogously, the codewords in each conditional codebook
correspond to quantization points for the source Sn.

into 2n(RSK+3δ) subbins so that each subbin contains 2n(I(U;Z|V)−δ) codewords, in-

dexing each subbin by k ∈ {1, . . . , 2n(RSK+3δ)}. Index each of the elements in the

subbin by ℓ ∈ {1, . . . , 2n(I(U;Z|V)−δ)}, and denote the specific index as Φsub−index.

For a U-codeword, we will explicitly indicate its index as un(i, m, k, ℓ).

2. Encoding : Let m ∈ {1, . . . , 2n(RSM−3δ)} index the secret message. For this

fixed m, Alice selects a Vn(i),Un(i, m, k, ℓ) such that (Vn,Un(i, m, k, ℓ), Sn)

are jointly typical. If none are found, Alice declares an error. A test channel

pX|U,S stochastically encodes the channel input Xn. The subbin k is set as

the secret key. Note that the secret key is determined automatically by the

Un(i, m, k, ℓ) selected.
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Note that for fixed m, there are 2n(I(U;S)+δ) sequences among (i, k, ℓ), and the

probability of an encoding failure is given by

Pe ≤ P(Sn /∈ T ∗(n)
ǫ ) +

∑

sn∈T ∗(n)
ǫ

pSn(sn)

{

[

∑

vn∈T ∗(n)
ǫ

P(Vn = vn) ·
[

1

− P((vn,Un, sn) ∈ T ∗(n)
ǫ |Vn = vn)

]2n(I(U;S)−I(V;Y)+2δ)
]2n(I(V;Y)−δ)

}

.

where the term P(Vn = vn) is uniform over the set T ∗(n)
ǫ (pV) of ǫ-typical

sequences with respect to pV, P((vn,Un, sn) ∈ T ∗(n)
ǫ |Vn = vn) is evaluated with

Un uniformly distributed over the set T ∗(n)
ǫ (pU|V|Vn = vn) of all un sequences

which are conditionally ǫ-typical on vn. Since V and S are independent, for

sn ∈ T ∗(n)
ǫ and vn ∈ T ∗(n)

ǫ ,

P((vn,Un, sn) ∈ T ∗(n)
ǫ |Vn = vn) ≥ 2−n(I(U;S|V)+ǫ1)

= 2−n(I(U;S)+ǫ1). (D.20)

By applying (D.20) to the term within the braces in the upperbound for Pe and

simplifying, we have





∑

vn∈T ∗(n)
ǫ

|T ∗(n)
ǫ (pV)|−1 ·

[

1 − 2−n(I(U;S)+ǫ1)
]2n(I(U;S)−I(V;Y)+2δ)





2n(I(V;Y)−δ)

=

[

[

1 − 2−n(I(U;S|V)+ǫ1)
]2n(I(U;S)−I(V;Y)+2δ)

]2n(I(V;Y)−δ)

(a)

≤ e−2n(δ−ǫ1)

,

where (a) follows from the inequality 1 − x ≤ e−x. Substituting this in the

upper bound for Pe, as in Case 1, we can Pe as small as desired by choosing δ
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sufficiently small, ǫ small enough that ǫ1 < δ, and n sufficiently large.

3. Decoding at Bob: Bob receives Yn and searches for a unique

(Vn(̂i),Un(̂i, m̂, k̂, ℓ̂))

pair such that (Vn(̂i),Un(̂i, m̂, k̂, ℓ̂),Yn) ∈ T ∗(n)
ǫ . If not such pair exists, Bob

declares an error. Otherwise Bob declares m̂ to be the secret message and k̂ to

be the secret key. Conditioned on encoding being successful, by the AEP, the

true sequence will be jointly typical with high probability. Hence, we only need

to consider the decoding error resulting from a (m̂, k̂) 6= (m, k) such that there

are î and ℓ̂ and
(

Vn(̂i),Un(̂i, m̂, k̂1, ℓ̂),Y
n
)

∈ T ∗(n)
ǫ . We can upperbound the

probability of this by

∑

î

∑

(m̂,k̂)6=(m,k)

∑

ℓ̂

P

(

(Vn(̂i),Un(̂i, m̂, k̂, ℓ̂),Yn) ∈ T ∗(n)
ǫ

)

=
∑

î6=i

∑

(m̂,k̂)6=(m,k)

∑

ℓ̂

P

(

(Vn(̂i),Un(̂i, m̂, k̂, ℓ̂),Yn) ∈ T ∗(n)
ǫ

)

+
∑

(m̂,k̂)6=(m,k)

∑

ℓ̂

P

(

(Vn(i),Un(i, m̂, k̂, ℓ̂),Yn) ∈ T ∗(n)
ǫ

)

≤ 2n(I(U;Y)−2δ)2−n(I(U;Y)−ǫ2) + 2n(I(U;Y|V)−δ)2−n(I(U;Y|V)−ǫ3) ,

which can be made as small as desired by choosing δ sufficiently small, ǫ small

enough such that ǫ2, ǫ3 < δ, and taking n sufficiently large.

4. Decoding at Eve with side information: Consider Eve who has access to M, K,Vn.

Then, the subbin in which a potential Un exists is known to be at most

2n(I(U;Z|V)−δ). The probability of error of the jointly typical decoder for Un

in this bin given Zn can be bounded as above. There are two error events:
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E1 is the event no sequence in the bin is jointly typical with Zn, and E2 is

the event a false sequence in the subbin is jointly typical with Zn. We have,

P(E1) → 0 as n → ∞, and the probability a false sequence is jointly typical

with Zn is 2−n(I(U;Z|V)−ǫ4). By a union bound, we can make the probability of

error as small as desired by choosing δ sufficiently small,ǫ small enough such

that ǫ4 < δ, and taking n sufficiently large.

By the usual random coding arguments, we may now conclude that for any

δ > 0, for sufficiently large n, there exists a codebook such that Bob can recover

the secret message with probability of error not larger than δ and Eve when

provided with the message and the V-codeword can recover the U-codeword

with probability of error not larger than δ. We now have to verify that this

implies that (1) Eve’s information about the message (given Zn) is small (secrecy

condition) and (2) the secret key is approximately uniformly distributed over

its alphabet (uniformity condition).

Proof of Secrecy Condition.

First observe that

H(M, K|Zn) ≥ H(M, K|Zn,Vn)

= H(M, K,Zn|Vn) − H(Zn|Vn)

= H(M, K,Un,Zn|Vn) − H(Un|M, K,Zn,Vn) − H(Zn|Vn)

(a)
= H(Un,Zn|Vn) − H(Un|M, K,Zn,Vn) − H(Zn|Vn)

= H(Un|Vn) + H(Zn|Un,Vn) − H(Un|M, K,Zn,Vn) − H(Zn|Vn) ,

(D.21)

where (a) follows from H(M, K|Un,Zn,Vn) ≥ 0. We now bound each of these terms.
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Let us define, for every un(i, m, k, ℓ) codeword

E = {sn : ∃(i, m, k, ℓ) such that (vn(i),un(i, m, k, ℓ), sn) ∈ T ∗(n)
ǫ } (D.22)

Recall that for all α > 0, there exists n sufficiently large such that decoding (and

hence encoding) succeeds with probability greater than 1 − α, i.e.,

P(Sn ∈ E) ≥ 1 − α . (D.23)

Furthermore, the probability

P ((Vn,Un) = (vn,un(i, m, k, ℓ)), Sn ∈ E)

= P (M = m, K = k, (Vn,Un) = (vn,un(i, m, k, ℓ)), Sn ∈ E) (D.24)

= P (M = m) ·
∑

sn:(vn(i),un(i,m,j,k),sn)∈T ∗(n)
ǫ

P (Sn = sn) (D.25)

≤ 2−n(I(U;Y)−I(U;S)−3δ) · 2n(H(S|U)+nǫ2−nH(S)+nǫ (D.26)

= 2−nI(U;Y)+3nδ+2nǫ , (D.27)

which, along with the lower bound on P(Sn ∈ E) above implies that

P ((Vn,Un) = (vn,un(i, m, k, ℓ))|Sn ∈ E)

≤ 2−nI(U;Y)+nǫ12 . (D.28)

Also, we know that the size of the codebook in which (Vn,Un) take values is less

than 2nI(U;Y), which implies that

H(Un,Vn|Sn ∈ E) ≥ nI(U;Y) − nǫ12 .
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Using this, we can bound the first term in (D.21):

H(Un|Vn) = H(Un,Vn) − H(Vn) (D.29)

(a)

≥ H(Un,Vn) − nI(V;Y) (D.30)

(b)

≥ H(Un,Vn|Sn ∈ E) · P(Sn ∈ E) − nI(V;Y) (D.31)

= nI(U;Y) − nI(V;Y) − nǫ13 , (D.32)

where (a) follows from the fact that Vn takes values in a codebook whose size is

smaller than 2nI(V;Y), and (b) follows from the fact that conditioning cannot increase

entropy.

We bound the second term in (D.21) as follows:

H(Zn|Un,Vn) = H(Zn|Un)

=
∑

un

Pr(Un = un)H(Zn|Un = un)

(a)
=
∑

un

P(Un = un)
∑

µ∈U
N(µ|un)H(Z|U = µ)

(b)

≥
∑

un

P(Un = un)
∑

µ∈U
n(P(U = µ) − ǫ)H(Z|U = µ)

=
∑

un

P(Un = un)(nH(Z|U) − nǫ14)

= nH(Z|U) − nǫ14,

where (a) follows from the memoryless nature of the virtual channel from U to Z and

N(µ|un) counts the number of times µ appears in the codeword un, and (b) follows

from the fact that all the un codewords belong to T ∗(n)
ǫ .

The third term can be bounded by using Fano’s inequality and the fact that Eve

can recover the Un codeword with a probability of error ǫ when she has access to M
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and Vn in addition to her observation Zn.

H(Un|M, K,Zn,Vn) ≤ 1 + n · ǫ · I(U;Z|V) = nǫ15.

Finally, to bound the fourth term, let T be an indicator random variable which

takes on the value 1 when (Vn,Zn) ∈ T ∗(n)
ǫ and 0 otherwise.

H(Zn|Vn) ≤ H(Zn, T |Vn)

≤ 1 + H(Zn|Vn, T = 1)P(T = 1) + n log |Z|P(T = 0). (D.33)

But

P(T = 0) = P((Vn,Zn) /∈ T ∗(n)
ǫ ) ≤ ǫ16.

Furthermore, we have

H(Zn|Vn, T = 1) =
∑

vn

P(Vn = vn|T = 1)H(Zn|Vn = vn, T = 1)

(a)

≤
∑

vn

P(Vn = vn|T = 1) log |T ∗(n)
ǫ (pZ|V|vn)|

≤
∑

vn

P(Vn = vn|T = 1)(nH(Z|V) + nǫ)

= nH(Z|V) + nǫ,

where in (a) we used |T ∗(n)
ǫ (pZ|V|vn)| to denote the size of the set of all zn such that

(zn,vn) ∈ T ∗(n)
ǫ . Thus, (D.33) becomes

H(Zn|Vn) ≤ nH(Z|V) + nǫ17.
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Hence, we may conclude from (D.21) that

1

n
H(M, K|Zn) ≥ I(U;Y|V) + H(Z|U) − H(Z|V) + ǫ18

= I(U;Y|V)− I(U;Z|V) + ǫ18

= RSM + RSK + ǫ18.

Thus we have shown the secrecy condition.

Proof of Uniformity Condition.

Note that from (D.28), we have that

H(K) = H(Vn, M, K, Φsub−index) − H(Vn, M, Φsub−index|K)

(a)

≥ H(Vn, M, K, Φsub−index) − (I(V;Y) + nRSM + I(U;Z|V))

(b)

≥ H(Vn, M, K, Φsub−index|Sn ∈ E) · P(Sn ∈ E)

− (I(V;Y) + nRSM + I(U;Z|V))

(c)

≥ nI(U;Y) − (I(V;Y) + nRSM + I(U;Z|V)) − nǫ13

= RSK − nǫ13 .

where (a) follows since Vn is drawn from a codebook with no more than 2nI(V;Y)

elements, M has 2nRSM elements, and Φsub−index has no more than 2nI(U;Z|V) elements;

(b) since conditional entropy is less than or equal to entropy; and (c) from the lower

bound in (D.28). Since ǫ13 → 0 as ǫ → 0, by appropriate choice of ǫ and sufficiently

large n, we can satisfy the uniformity condition.
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D.2 Proof of Theorem 4.2 (Optimality of Separa-

tion)

The achievability follows directly from Theorem 4.1 by setting the auxiliary random

variables as follows.

V1 = (XF , XR),

V2 = (V2,F , XR),

U1 = U1,F .

It is easy to see that this satisfies the Markov conditions on the auxiliary random

variables. Subsituting these in the expression in Theorem 4.1 shows the achievability.

The interpretation is that, we have ignored the reversely degraded source component,

and the reversely degraded channel is used purely as a channel for public communi-

cation.

To show the converse, let J and J ′ be independent random variables both uni-

formly distributed over {1, 2, . . . , n} and independent of all other random variables.
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To get the first condition (ignoring o(n) terms)

n
(

I(XF,J ;YF,J) + I(XR,J ; YR,J)
)

≥ nI(XJ ;YJ)

≥ nI(XJ ;YJ |J)

≥ I(Xn;Yn)

(a)
= I(Xn;Yn, Zn

F )

= I(M, K,Sn
A,Xn;Yn, Zn

F )

≥ I(M, K,Sn
A;Yn, Zn

F )

≥ I(M, K,Sn
A;Yn, Zn

F ) − I(Sn
B,Sn

E;Yn, Zn
F )

(b)
= I(M, K,Sn

A;Yn, Zn
F |Sn

B,Sn
E)

= I(M ;Yn, Zn
F |Sn

B,Sn
E) + I(K,Sn

A;Yn, Zn
F |Sn

B,Sn
E , M)

(c)
= H(M |Sn

B,Sn
E) + I(K,Sn

A;Yn, Zn
F |Sn

B,Sn
E , M)

= H(M) + I(K,Sn
A;Yn, Zn

F |Sn
B,Sn

E , M)

= nRSM + I(K,Sn
A;Yn, Zn

F |Sn
B,Sn

E, M)

where (a) is due to the sub-channel F to Eve being degraded w.r.t. the channel to

Bob, (b) is because (Sn
B,Sn

E)−Sn
A−(M, K,Yn, Zn

F ) is a Markov chain, and (c) follows

from Fano’s inequality which gives H(M |Yn,Sn
B) = o(n). Now, to bound the second
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term, we write

I(K,Sn
A;Yn, Zn

F |Sn
B,Sn

E, M)

= H(Yn, Zn
F |Sn

B,Sn
E , M) − H(Yn, ZFsn|K, M,Sn

A,Sn
B,Sn

E)

≥ H(Yn, Zn
F |Sn

B,Sn
E, M) − H(K,Yn, Zn

F |Sn
A,Sn

B,Sn
E, M)

(a)
= H(K,Yn, Zn

F |Sn
B,Sn

E , M) − H(K,Yn, Zn
F |Sn

A,Sn
B,Sn

E, M)

= I(K,Yn, Zn
F ;Sn

A|Sn
B,Sn

E , M)

(b)
= I(M, K,Yn, Zn

F ;Sn
A|Sn

B,Sn
E)

≥ I(M, K,Yn, Zn
F ; Sn

A,F |Sn
A,R,Sn

B,Sn
E)

= I(M, K,Yn, Zn
F ; Sn

A,F |Sn
A,R, Sn

B,F , Sn
E,F )

=

n
∑

i=1

I(M, K,Yn, Zn
F ; SA,F,i|Si−1

A,F , Sn
A,R, Sn

B,F , Sn
E,F )

(c)
=

n
∑

i=1

I(M, K,Yn, Zn
F , Si−1

A,F ; SA,F,i|Sn
A,R, Sn

B,F , Sn
E,F )

≥
n
∑

i=1

I(M, K,Yn, Zn
F ; SA,F,i|Sn

A,R, Sn
B,F , Sn

E,F )

=
n
∑

i=1

I(M, K,Yn, Zn
F , SB,F,̃i, SE,F,̃i, S

n
A,R; SA,F,i|SB,F,i, SE,F,i)

= nI(U1,F ; SA,F,J ′|SB,F,J ′, SE,F,J ′),

where (a) follows from Fano’s inequality which implies that H(K|Yn,Sn
B) = o(n), (b)

follows the independence of M from (Sn
A,Sn

B,Sn
C), (c) follows by the property that

Sn
A,F is memoryless, and we define SB,F,̃i

def
= (Si−1

B,F , Sn
B,F,i+1), SE,F,̃i

def
= (Si−1

E,F , Sn
E,F,i+1),

and U1,F
def
= (M, K,Yn, Zn

F , SB,F,J̃ ′, SE,F,J̃ ′, Sn
A,R, J ′). Note that this U1,F does indeed
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satisfy the condition U1,F − SA,J ′ − (SB,J ′ ,SE,J ′). To get condition 2,

n(RSK + RSM) ≤ I(M, K;Yn, Zn
F ,Sn

B,Sn
E)

(a)
= I(M, K;Yn, Zn

F ,Sn
B,Sn

E) − I(M, K;Zn,Sn
E)

(b)
= I(M, K;Yn, Zn

F ,Sn
B,Sn

E) − I(M, K;Zn, Y n
R ,Sn

E)

≤ I(M, K;Yn, Zn
F ,Sn

B,Sn
E) − I(M, K; Zn

F , Y n
R ,Sn

E)

(c)
= I(M, K; Y n

F , Sn
B,F |Y n

R , Zn
F ,Sn

E)

= I(M, K; Y n
F |Y n

R , Zn
F ,Sn

E) + I(M, K; Sn
B,F |Yn, Zn

F ,Sn
E)

≤ I(M, K,Sn
E, Y n

R , Xn
F ; Y n

F |Zn
F ) + I(M, K; Sn

B,F |Yn, Zn
F ,Sn

E)

= I(Xn
F ; Y n

F |Zn
F ) +

n
∑

i=1

I(M, K; SB,F,i|Yn, Zn
F , Si−1

B,F ,Sn
E)

= H(Y n
F |Zn

F ) −
n
∑

i=1

H(YF,i|XF,i, ZF,i)

+
n
∑

i=1

I(M, K; SB,F,i|Yn, Zn
F , Si−1

B,F ,Sn
E)

≤
n
∑

i=1

H(YF,i|ZF,i) −
n
∑

i=1

H(YF,i|XF,i, ZF,i)

+
n
∑

i=1

I(M, K,Yn, Zn
F , SB,F,̃i, SE,F,̃iS

n
A,R; SB,F,i|SE,i)

≤ nI(XF,J ; YF,J |ZF,J , J) + nI(U1,F ; SB,F,J ′|SE,F,J ′)

= n(I(XF,J ; YF,J |V2,F ) − I(XF,J ; ZF,J |V2,F )) + nI(U1,F ; SB,F,J ′|SE,F,J ′)

where V2,F
def
= J , (a) follows from the hypothesis I(M, K;Zn,Sn

E) = o(n), (b) from the

fact that I(M, K; Y n
R |Sn

E,Zn) = 0, which we show below, and (c) from the Markov

chain (M, K,Yn, Zn
F ,Sn

A) − Sn
E,R − Sn

B,R.

0 = I(Sn
A, M, K; Y n

R |Zn)
(a)
= I(Sn

E ,Sn
A, M, K; Y n

R |Zn) ≥ I(M, K; Y n
R |Sn

E ,Zn) ,
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where (a) follows from the Markov chain Sn
E−(Sn

A, M, K)−Zn−Y n
R . By non-negativity

of mutual information, I(M, K; Y n
R |Sn

E,Zn) = 0 as claimed above.

Thus, we have shown that if (R1, R2) ∈ R, then there must exist independent

random variables U1,F and V2,F such that U1,F −SA − (SB,SE) and V2,F −X− (Y,Z)

are Markov chains and

RSM ≤ I(XF , YF ) + I(XR; YR) − I(U1,F ; SA,F |SB,F ),

RSK + RSM ≤ I(XF ; YF |V2,F ) − I(XF ; ZF |V2,F ) + I(U1,F ; SB,F |SE,F ).

The form of the right hand sides above further allow us to assert that the U1,F above

may be independent of SA,R. This completes the proof.

D.3 Proof of Proposition 4.4 (Gaussian Example)

While we stated the Theorems 4.1 and 4.2 only for finite alphabets, the results can be

extended to continuous alphabets. We note that the scalar Gaussian problem satisfies

the conditions of Theorem 4.2 (along with Remark 1 following it).

Observe that in the notation of Theorem 2, SA,F = SA and SB,F = SB. Further,

SA,R, SB,R, SE,F , and SE,R are absent (assumed to be constants). When, SNREve ≥
SNRBob, we have XR = X, YR = Y , and ZR = Z, and the forwardly degraded sub-

channel is absent (again, we may take the random variables of this sub-channel to be

constants). When SNRBob ≥ SNREve, we have XF = X, YF = Y , and ZF = Z and

the reversely degraded sub-channel is absent. Hence, from theorem 2, R is given by
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the union of R̃(p) over all joint distributions p. Also, R̃(p) is described by

RSM ≤ I(XF ; YF ) + I(XR; YR) − I(U1; SA|SB), (D.34)

RSK + RSM ≤ I(XF ; YF |V2) − I(XF ; ZF |V2) + I(U1; SB). (D.35)

When specialized to the Gaussian case above, it is easy to see that

I(XF ; YF ) + I(XR; YR) ≤ CY , and

I(XF ; YF |V2) − I(XF ; ZF |V2) ≤ [CY − CZ ]+,

where CY = 1
2
log(1 + SNRBob) and CZ = 1

2
log(1 + SNREve). These bounds are

simultaneously achieved when p is such that V2 is a constant and X is Gaussian of

variance SNRBob. Hence, we may rewrite, the conditions above as

RSM ≤ CY − I(U1; SA) + I(U1; SB), (D.36)

RSK + RSM ≤ [CY − CZ ]+ + I(U1; SB). (D.37)

Now we show outerbounds to the above R̃(p) which match the two conditions in

proposition 4.4. It will also become clear that a jointly Gaussian choice for p in fact

achieves these outerbound thus completing the proof. We first derive an upperbound

on RSM which matches the first condition in proposition 4.4. From the two inequalities

(D.36) and (D.37) above, we have

RSM ≤ CY − I(U1; SA) + I(U1; SB), (D.38)

RSM ≤ [CY − CZ ]+ + I(U1; SB). (D.39)
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Using the entropy power inequality (Theorem A.1),

exp(2h(SB|U)) ≥ exp(2h(SA|U)) + exp(2h(Nsource))

Using this in (D.38), we may write

e2RSM ≤ e2(CY +I(U1;SB)−h(SA)) ·
(

e2(h(SB)−I(U1;SB)) − e2h(Nsource)
)

= e2(CY −h(SA)+h(SB)) − e2(CY −h(SA)+h(Nsource)) · e2I(U1;SB)

(a)

≤ e2(CY −h(SA)+h(SB)) − e2RSM · e2(CY −[CY −CZ ]+−h(SA)+h(Nsource)),

where (a) results from (D.39). Rearranging, we have

RSM ≤ 1

2
log

exp
{

2(CY − h(SA) + h(SB))
}

1 + exp
{

2(CY − [CY − CZ ]+ − h(SA) + h(Nsource))
}

=
1

2
log

(1 + SNRBob)(1 + SNRsrc)

1 + SNRsrc + min(SNRBob, SNREve)
,

which is the first condition in proposition 4.4. Now let us fix RSM such that it satisfies

this condition. Let us rewrite (D.36) as follows

h(SA|U) ≥ (RSM − CY + h(SA) − h(SB)) + h(SB|U).

The entropy power inequality (Theorem A.1) implies that

exp(2h(SB|U)) ≥ exp(2h(SA|U)) + exp(2h(Nsource))

≥ exp(2(RSM − CY + h(SA) − h(SB))) exp(2h(SB|U)) + 1.

196



Appendix D. Proofs for Chaper 4

Since

RSM ≤ 1

2
log

(1 + SNRBob)(1 + SNRsrc)

1 + SNRsrc + min(SNRBob, SNREve)

≤ 1

2
log

(1 + SNRBob)(1 + SNRsrc)

SNRsrc

= CY − h(SA) + h(SB),

we have

exp(2h(SB|U)) ≥ 1

1 − exp(2(RSM − CY + h(SA) − h(SB)))
.

From (D.37),

exp
{

2RSK

}

≤ exp
{

2
(

[CY − CZ ]+ + h(SB) − h(SB|U) − RSM

)

}

≤ e2([CY −CZ ]++h(SB)−RSM) ·
(

1 − exp
{

2(RSM − CY + h(SA) − h(SB))
}

)

≤ e2([CY −CZ ]+−CY ) ·
(

e2(CY +h(SB)−RSM) − e2h(SA)
)

,

which evaluates to the second condition required. The inequalities used above are

tight under a Gaussian choice for the auxiliary random variable, which thereby com-

pletes the proof of the proposition.
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