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Abstract

This report describes the usage and semantics of finite-state machines (FSMs) and modal
models in Ptolemy II. FSMs are actors whose behavior is described using a finite set of states
and transitions between the states. The transitions between the states are enabled by guards,
which are boolean-valued expressions that can reference inputs to the actor and parameters in
scope. The transitions can produce outputs and can update the value of parameters in scope.
Modal models extend FSMs by allowing states to have refinements, which are hierarchical
Ptolemy II models. The refinements may themselves be FSMs, modal models, or any composite
actor containing a director compatible with the domain in which the modal model is being used.
This report describes the operational semantics, the practical usage, and the semantics of time
in modal models.

1 Introduction

The behavior of actors in Ptolemy II can be defined in a number of ways. In this report, we explain
how to give the behavior of an actor as a finite-state machine or a modal model. Intuitively, the state
of a system or subsystem is its condition at a particular point in time. In general, the state affects
how the (sub)system reacts to inputs. Formally, we define the state to be an encoding of everything
about the past that has an effect on the system’s reaction to current or future inputs.

∗NOTE: If you are reading this document on screen (vs. on paper) and you have a network connection, then you
can click on the figures showing Ptolemy II models to execute and experiment with those models on line. There
is no need to pre-install Ptolemy II or any other software. The models that are provided online are summarized at
http://ptolemy.eecs.berkeley.edu/ptolemyII/ptII8.0/jnlp-books/doc/books/design/modal/index.htm.

1

http://ptolemy.eecs.berkeley.edu/ptolemyII/ptII8.0/jnlp-books/doc/books/design/modal/index.htm


2. FINITE STATE MACHINES

For example, the Ramp actor, which produces a counting sequence, has state. Its reaction to a
trigger input depends on how many times it has perviously fired. It uses a local variable to keep
track of where in its counting sequence it is. This local variable is called a state variable, and in
this case, the state variable has (typically) a numerical value.

In the case of the Ramp actor, the number of possible states depends on the data type of the counting
sequence. If it is int, then there are 232 possible states. If it is double, then there are 264. The
number of possible states is very large. If the data type is String, then the number of possible
states is infinite. Although the number of states is very large, the logic for changing from one state
to the next is rather simple. So reasoning about the behavior of the actor is not difficult. The actor
begins in a state given by its init parameter, and on each firing, increments its state by adding to it
the value of the step parameter. (If the data type is String, then “adding” means concatenating.)

In contrast, it is common to have actors that have a relatively small number of possible states, but
relatively complex logic for moving from one state to the next. The mechanisms described here
support design, visualization, and analysis of such actors. We first explain the Ptolemy II infrastruc-
ture supporting finite state machines (FSMs), and then explain the use of FSMs to construct modal
models.

The next section below explains FSMs in Ptolemy II and gives some examples of their usage. The
section after that explains modal models, which extend FSMs with the ability to have hierarchical
refinements of the states.

2 Finite State Machines

A state machine is a system whose outputs depend not only on the current inputs, but also on the
current state of the system. The state of a system is a summary of everything the system needs to
know about previous inputs in order to produce outputs. The state of a system may be represented
by a state variable s ∈ Σ, where Σ is the set of all possible states that the system can be in. A finite
state machine (FSM) is a state machine where Σ is a finite set.

Example 1: Consider a thermostat controlling a heater that is a state machine with states
Σ = {heating,cooling}. If the state is s = heating, then the heater is on. If s = cooling, then
the heater is off. Suppose the target temperature is 20 degrees Celsius. If the heater is on,
then the thermostat allows the temperature to rise past the target to, say, 22 degrees. If the
heater is off, then it allows the temperature to drop past the target to, say, 18 degrees. Thus,
the behavior depends on the state, which summarizes the history by remembering whether
the heater is on off. This strategy avoids chattering, where the heater would turn on and
off rapidly when the temperature is close to the target temperature.

2 E. A. Lee, FSMs and Modal Models



2. FINITE STATE MACHINES 2.1 FSMActor

2.1 FSMActor

FSMActor is a composite actor where refinement consists of states and transitions rather than other
actors. Ptolemy II provides a visual notation for these states and transitions as shown in Figure 1.
In that figure, the FSMActor has two input and two output ports, created by the model builder. In
general, and FSMActor can have any number of input and output ports. The actor reacts to inputs
and produces outputs as specified by an FSM, shown visually at the bottom of the figure. The FSM
contains a finite number of states (three in the figure). One of these states is an initial state (labeled
initialState in the figure), which is the state of the actor at the beginning of execution of the
model. The initial state is indicated by a bold outline. Some of the states may also be final states,
indicated visually with a double outline (more about final states later). States are connected by
transitions, the annotations on which determine what happens when the actor fires. Before diving

Foundations: Model of State Machines

State machines are often described in the literature as a five tuple (Σ, I,O,T,σ). Σ is the
set of states, and σ is the initial state. Nondeterminate state machines may have more than
one initial state, in which case σ⊂ Σ is itself a set, although this particular capability is not
supported in Ptolemy II FSMs. I is a set of possible valuations of the inputs. In Ptolemy
II FSMs, I is a set of functions of the form i : Pi → D∪ ε, where Pi is the set of input
ports (or input port names), D is the set of values that may be present on the input ports
at a particular firing, and ε represents “absent” inputs (i.e., i(p) = ε when p isPresent
evaluates to false). O is similarly the set of all possible valuations for the output ports at a
particular firing.

For a deterministic state machine, T is a function of the form T : Σ× I→ Σ×O, repre-
senting the transition relations in the FSM. The guards and output actions are, in fact, just
encodings of this function. For a nondeterministic state machine (which is supported by
Ptolemy II), the codomain of T is the powerset of Σ×O, allowing there to be more than
one destination state and output valuation.

The classical theory of state machines (Hopcroft and Ullman, 1979) makes a distinction
between a Mealy machine and a Moore machine. A Mealy machine associates outputs
with transitions. A Moore machine associates outputs with states. Ptolemy II supports both,
using output actions for Mealy machines and state refinements in modal models for Moore
machines.

Ptolemy II state machines are actually extended FSMs, which require a richer model
than that given above. Extended state machines add to the model above a set V of variable
valuations, which are functions of the form v : N→ D, where N is a set of variable names
and D is the set of values that variables can take on. An extended state machine is a six-tuple
(Σ, I,O,T,σ,V ) where the transition function now has the form T : Σ× I×V → Σ×O×V
(for deterministic state machines). This function is encoded by the transitions, guards,
output actions, and set of actions of the FSM.

E. A. Lee, FSMs and Modal Models 3



2.2 Execution Policy for an FSMActor 2. FINITE STATE MACHINES

into the details, however, the thermostat example may help make the notation intuitive.

Example 2: A model of a thermostat and a heater is shown in Figure 2. The reader
should be able to read that figure without much help. In that figure, the FSMActor has a
temperature input and a heat output. Its behavior is given by the FSM shown in the grey
box. There are two states, Σ = {heating,cooling}. There are four transitions. The guard
on each transition gives the conditions under which the transition is taken. The output
actions on each transition give the values produced on the output ports when the transition
is taken. Reading the diagram, we see that while in the heating state, if the temperature
input is less than heatOffThreshold (22.0), then the output value is heatingRate (0.1). When
the temperature input becomes greater than or equal to heatOffThreshold, then the FSM
changes to the cooling state and produces output value given by coolingRate (-0.05). An
example execution is plotted in Figure 4.

2.2 Execution Policy for an FSMActor

An FSMActor contains a set of states and transitions. One of the states is an initial state, and any
number of states may be final states. Each transition has a guard expression, any number of output
actions, and any number of set actions. At the start of execution, the state of the actor is set to the
initial state. Subsequently, each firing of the actor is a sequence of steps as follows. In the fire()
method, the actor

1. reads inputs;
2. evaluates guards on outgoing transitions of the current state;
3. chooses a transition whose guard evaluates to true; and

Figure 1: Visual notation for state machines in Ptolemy II.

4 E. A. Lee, FSMs and Modal Models
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2. FINITE STATE MACHINES 2.2 Execution Policy for an FSMActor

4. executes the output actions on the chosen transition, if any.

In the postfire() method, the actor

5. executes the set actions of the chosen transition; and
6. changes the current state to the destination of the chosen transition.

Figure 2: A model of a thermostat with hysteresis. The Temperature
Model actor is shown in Figure 3.

Figure 3: The Temperature Model composite actor of Figure 2.

E. A. Lee, FSMs and Modal Models 5
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2.2 Execution Policy for an FSMActor 2. FINITE STATE MACHINES

These are separated into two distinct methods to support the use of this actor in domains that do a
fixed-point iteration (such as SR and Continuous), as explained below in Section 2.9. In domains
that do not do that (such as PN, SDF, and DDF), steps 1 through 6 can execute in sequence in each
iteration, and the distinction between fire() and postfire() is not important.
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Figure 4: Two plots generated by Figure 2, showing the temperature
(above) and whether the heater is on or off (below), both as a function of
time.

Probing Further: Hysteresis

The thermostat in example 2 exhibits a particular form of state-dependent behavior called
hysteresis. A system with hysteresis has the property that the absolute time scale is irrel-
evant. Suppose the input is a function of time, x : R→ R (for the thermostat, x(t) is the
temperature at time t). Suppose that input x causes output y : R→ R, also a function of
time. E.g., in Figure 4, x is upper signal and y is the lower one. For this system, if instead
of x is the input is x′ given by

x′(t) = x(α · t)

for a non-negative constant α, then the output is y′ given by

y′(t) = y(α · t) .

Scaling the time axis at the input results in scaling the time axis at the output, so the absolute
time scale is irrelevant.

An alternative implementation to for the thermostat would use a single temperature
threshold, but instead would require that the heater remain on or off for at least a minimum
amount of time, regardless of the temperature. This design would not have the hysteresis
property.

6 E. A. Lee, FSMs and Modal Models
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2. FINITE STATE MACHINES 2.2 Execution Policy for an FSMActor

Probing Further: Internal Structure of FSMActor

FSMActor is a subclass of CompositeEntity, just like CompositeActor. Inter-
nally, it contains some number number of instances of State and Transition, which
are subclasses of Entity and Relation respectively. The simple structure shown below:

is represented in MoML as follows:

1 <entity name="FSMActor" class="...FSMActor">
2 <entity name="State1" class="...State">
3 <property name="isInitialState" class="...Parameter"
4 value="true"/>
5 </entity>
6 <entity name="State2" class="...State"/>
7 <relation name="relation" class="...Transition"/>
8 <relation name="relation2" class="...Transition"/>
9 <link port="State1.incomingPort" relation="relation2"/>

10 <link port="State1.outgoingPort" relation="relation"/>
11 <link port="State2.incomingPort" relation="relation"/>
12 <link port="State2.outgoingPort" relation="relation2"/>
13 </entity>

The same structure can be specified in Java as follows:

1 import ptolemy.domains.modal.kernel.FSMActor;
2 import ptolemy.domains.modal.kernel.State;
3 import ptolemy.domains.modal.kernel.Transition;
4

5 FSMActor actor = new FSMActor();
6 State state1 = new State(actor, "State1");
7 State state2 = new State(actor, "State2");
8 Transition relation = new Transition(actor, "relation");
9 Transition relation2 = new Transition(actor, "relation2");

10 state1.incomingPort.link(relation2);
11 state1.outgoingPort.link(relation);
12 state2.incomingPort.link(relation);
13 state2.outgoingPort.link(relation2);

Thus, above, we see three distinct concrete syntaxes for the same structure.

E. A. Lee, FSMs and Modal Models 7



2.2 Execution Policy for an FSMActor 2. FINITE STATE MACHINES

After reading the inputs, this actor examines the outgoing transitions of the current state, evaluating
their guard expressions. A transition is enabled if its guard expression evaluates to true. A blank
guard expression is interpreted to be always true. The guard expression may refer to any input port
and any variable in scope.

panning
pane

library
pane

editing
pane

suggestive
comment
(delete this)

input
ports

output
ports

Figure 5: Editor for FSMs in Vergil, showing two input and two output ports,
before being populated with an FSM.

Figure 6: Dialog box for configuring a transition in an FSM.

8 E. A. Lee, FSMs and Modal Models
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2. FINITE STATE MACHINES 2.3 Referencing Input Values of an FSMActor

2.3 Referencing Input Values of an FSMActor

If an input port name portName is used in a guard expression, it refers to the current input on
that port on channel zero. For example, in Figure 2, in the guard expression “temperature <
heatOffThreshold” the variable temperature refers to the current value in the input port
temperature input port, and heatOffThreshold refers to the parameter named heatOffThresh-
old.

In many models of computation, an input may be absent. If a port p is absent, then an ex-
pression like “p < 10” evaluates to false. However, an expression like “p < 10 || true”
evaluates to true. A clearer technique that leads to more readable state machine models is to use the
symbol portName isPresent in guard expressions. This is a boolean that is true if an input on
port portName is present.

Recall that a multiport may have multiple channels. To refer to a channel specificatlly, a guard ex-
pression may use the symbol portName channelIndex, where channelIndex is an integer
between 0 and n− 1, where n is the number of channels connected to the port. This symbol will
evaluate to the value received on the port on the given channel. Similarly, a guard expression may
refer to portName channelIndex isPresent.

Mechanics: Creating FSMs in Vergil

FSMActor in Vergil is in MoreLibraries/Automata. You can equivalently use
ModalModel from the Utilities library. We recommend using ModalModel since
it is a more general actor and can do everything FSMActor can do.

First, drag the actor into your model from the library. Populate the actor with input and
output ports by right clicking (or control-cliking on a Mac) and selecting [Open Actor].
The resulting window is shown in Figure 5. It is similar to other Vergil windows, but has a
customized library consisting primarily of a State, a library of parameters, and a library
of decorative elements for annotating your design. It also includes a textual annotation with
a suggestive comment that you will want to delete after reading. Drag in one or more states.
To create transitions between states, hold the control key (or the Command key on a Mac)
and click and drag from one state to the other. The grab handles on the transitions can be
used to control the curvature and positioning of the transitions. Double click (or right click
and select [Configure]) on the transition to set the guard, output actions, and set actions
by entering text into the dialog box shown in Figure 6. You can also specify an annotation
associated with the transition that has no effect on execution, and therefore functions like a
comment.

E. A. Lee, FSMs and Modal Models 9



2.4 Output Actions 2. FINITE STATE MACHINES

2.4 Output Actions

Once a transition is chosen, its output actions are executed. The output action are specified by the
outputActions parameter of the transition. The form of an output action is typically portName =
expression, where the expression may refer to input values as above or any parameter in scope. For
example, in Figure 2, the line

output: heat = coolingRate

specifies that the output port named heat should produce the value given by the parameter coolin-
gRate. This gives the behavior of a Mealy machine, which is a style of state machine where outputs
are produced by transitions rather than by states. Moore machine behavior is also achievable using
state refinements that produce outputs, as explained below in Section 3.

Multiple output actions may be given by separating them with semicolons, as in port1 = expression1;
port1 = expression1.

2.5 Set Actions and Extended Finite State Machines

The set actions on a transition can be used to set the values of parameters of the state machine. One
practical use for this is to create an extended FSM, which is a finite state machine extended with a
numerical state variable. It is called “extended” because the number of states now depends on the
number of distinct values that the variable can take. It can even be infinite.

Example 3: A simple example of an extended FSM is shown in Figure 7, which again
should be readable without much help. In this example, the FSMActor has parameter
count, shown with the small blue bullet next to it. The transition from the initial state init
to the counting state initializes count to 0 in its set action. The counting state has two
outgoing transitions, one that is a self transition, and the other that goes to final. The self
transition is taken as long as count is less than 5. That transition increments the value of
count by one. When the value of count reaches 5, the transition to final is taken. Before
taking that transition, the output is set equal to the input. Upon taking that transition, the
output is henceforth constant. Therefore, the output of this model is the sequence 0, 1, 2, 3,
4, 5, 5, 5, · · · .

2.6 Final States

An FSM may have final states, which are states that, when entered, indicate the end of execution
of the state machine.

10 E. A. Lee, FSMs and Modal Models



2. FINITE STATE MACHINES 2.7 Default Transitions

Example 4: A variant of Example 3 is shown in Figure 8. The variant has the isFinalState
parameter of the final state set to true. This is indicated by the double outline around
the state. Upon entering that state, the FSMActor indicates to the enclosing director that it
does not wish to execute any more (it does this by returning false from its postfire()
method). As a result, the output sent to the Display actor is the finite sequence 0, 1, 2, 3,
4, 5, 5.

In the iteration in which an FSMActor enters a state that is marked final, the postfire()method
of the FSMActor returns false. This indicates to the enclosing director that the FSMActor does
not wish to be fired again. Most directors will simply avoid firing that actor again, but will continue
executing the model. The SDF director, however, is different. Since it assumes regular consumption
and production rates for all actors, and since it constructs its schedule statically, it cannot tolerate
actors that refuse to fire. Hence, the SDF director will stop execution of the model altogether if any
actor returns false from postfire().

Figure 7: An extended FSM, where the count variable is part of the state
of the system.

E. A. Lee, FSMs and Modal Models 11
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2.7 Default Transitions 2. FINITE STATE MACHINES

Figure 8: A state machine with a final state, which indicates the end of
execution of the state machine.

Figure 9: An FSM equivalent to the one in Figure 2, but using default
transitions, indicated with dashed lines.

12 E. A. Lee, FSMs and Modal Models
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2. FINITE STATE MACHINES 2.7 Default Transitions

2.7 Default Transitions

An FSM may have default transitions, which are transitions that have the default parameter set to
true (see Figure 6). These transitions become enabled if no other outgoing transitions of the current
state are enabled. Default transitions are rendered as dashed arcs rather than solid arcs.

Example 5: The FSM of Figure 2 can be equivalently implemented using default transi-
tions as shown in Figure 9. Here, the default transitions simply specify that the outgoing
transition going to the other state is not enabled, then the FSM should remain in the same
state and produce an output.

If a default transition also has a guard expression, then that transition is enabled only if the guard
evaluates to true and there is no other non-default transition enabled. Note that using default transi-
tions with timed models of computation can be somewhat subtle. See Section 3.7 below.

2.8 Nondeterministic State Machines

If more than one guard evaluates to true at any time, then the FSM is a nondeterministic. The
transitions that have guards that simultaneously evaluate to true are called nondeterministic tran-
sitions. By default, transitions are not allowed to be nondeterministic, so if more than one guard
evaluates to true, you will see an exception something like this:

Nondeterministic FSM error: Multiple enabled transitions found but not
all of them are marked nondeterministic.

in ... name of a transition not so marked ...

To permit them to be nondeterministic, set the nondeterministic parameter to true on every transi-
tion that can be enabled while another another transition is enabled.

Example 6: A model of a faulty thermostat is shown in Figure 10. When the FSM is in
the heating state, both outgoing transitions are enabled (their guards are both true),
so either one can be taken. Both transitions are marked nondeterministic, a fact that is
indicated visually by rendering the transitions in red. A plot of an execution is shown in
Figure 11. Note that the heater stays on now for rather short periods of time, causing the
temperature to hover around 18 degrees, the threshold at which the heater is turned on.

In a nondeterministic FSM, if more than one transition is enabled and they are all marked nondeter-
ministic, then one is chosen at random in the fire() method of the FSM actor. If the fire() method
is invoked more than once in an iteration (see Section 2.9 below), then subsequent invocations in
the same iteration will always choose the same transition.

E. A. Lee, FSMs and Modal Models 13



2.9 Fixed-Point Iterations 2. FINITE STATE MACHINES

If more than one default transition leaves a state, then these transitions must also be marked non-
deterministic or an exception will result. Nondeterministic default transitions are rendered as red
dashed arcs.

2.9 Fixed-Point Iterations1

In Section 2.2 above, we explain that the execution of an FSMActor is divided into two segments,
steps 1-4, which are performed in the fire() method, and steps 5-6, which are performed in the
postfire()method. This separation is important in domains that perform a fixed-point iteration,

1This section may be safely skipped on a first reading unless you are particularly focusing on fixed-point domains
such as SR and Continuous.

Figure 10: A model of a faulty thermostat that nondeterministically switches
from heating to cooling.
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Figure 11: Plot of the thermostat FSM of Figure 10 replacing that in Figure
2.
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2. FINITE STATE MACHINES 2.9 Fixed-Point Iterations

such as SR and Continuous. In domains with a fixedpoint iteration, the fire() method may be
invoked more than once in an iteration while the director searches for a solution. For such domains,
it is important that the fire() method not include any persistent state changes. Steps 1-4 read
inputs, evaluate guards, choose a transition, and produce outputs, but they do not commit to a state
transition or change the value of any local variables.

The reason for this separation can be understood by studying the example in Figure 12. Execution
of an SR model involves finding a value for each signal at each tick of a global clock. On the first
tick, each of the NonStrictDelay actors puts the value shown in its icon on its output port (the
values are 1 and 2, respectively). This defines the in1 value for FSMActor1 and the in2 value
for FSMActor2. But the other input ports remain undefined. The value of in2 of FSMActor1 is
specified by FSMActor2, and the value of in1 of FSMActor2 is specified by FSMActor1. This
seems to create a causality loop, but close examination of the state machines shows that there is no
causality loop.

Figure 12: A model that requires separation of actions between the fire()
method and the postfire() method in order to be able to converge to a
fixed point.

E. A. Lee, FSMs and Modal Models 15
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2.9 Fixed-Point Iterations 2. FINITE STATE MACHINES

In Figure 12, note for all states of the FSMActors, each input port has a guard that depends on
its value. Thus, it would seem that both inputs need to be known before any output value can be
asserted, which again suggests a causality loop. However, looking closely at the left FSM, we see
that the transition from state1 to state2 will be enabled at the first tick of the clock because in1
has value 1, given by NonStrictDelay1. If the state machine is determinate, then this must be
the only enabled transition. Since there are no nondeterministic transitions in the state machine, we
can assume this will be the chosen transition. Once we make that assumption, we can assert both
output values as shown on the transition (out1 is 2 and out2 is 1).

Once we assert those output values, then both inputs of FSMActor2 become known, and it can
fire. Its inputs are in1 = 2 and in2 = 2, so in the right state machine the transition from state1
to state2 is enabled. This transition asserts that out2 of FSMActor2 has value 1, so now both
inputs to FSMActor1 are known to have value 1. This reaffirms that FSMActor1 has exactly one
enabled transition, the one from state1 to state2.

It is easy to verify that at each tick of the clock, both inputs of each state machine have the
same value, so no state ever has more than one enabled outgoing transition. Determinism is pre-
served. Moreover, the values of these inputs alternate between 1 and 2 in subsequent ticks. For
FSMActor1, the inputs are 1, 2, 1, · · · in ticks 1, 2, 3, · · · . For FSMActor2, the inputs are 2, 1, 2,
· · · in ticks 1, 2, 3, · · · .

As explained in Section 2.2 above, in the fire() method, the actor

1. reads inputs;
2. evaluates guards on outgoing transitions of the current state;
3. chooses a transitions whose guard evaluates to true; and
4. executes the output actions on the chosen transition, if any.

In a fixed-point iteration, this may happen multiple times, and there are subtleties associate with
each step. Specifically:

1. reads inputs: Some inputs may not be known. Unknown inputs cannot be read, so the actor
simply doesn’t read them.

2. evaluates guards on outgoing transitions of the current state: Some of these guards may depend
on unknown inputs. These guards may or may not be able to be evaluated. For example, if the
guard expression is “true || in1” then it can be evaluated whether the input in1 is known or
not. If a guard cannot be evaluated, then it is not evaluated.

3. chooses a transition whose guard evaluates to true: If exactly one transition has a guard that
evaluates to true, then choose that transition. If a transition has been chosen already in a previous
invocation of the fire() method in the same iteration, then the actor checks that the same
transition is chosen this time. If not, it throws an exception and execution is halted. The FSM is
not permitted to change its mind about which transition to take partway through an iteration. If
more than one transition has a guard that evaluates to true, then the actor checks that every such
transition is identified as a nondeterministic transition. If any such transition is not so marked,
then the actor throws an exception. If all such transitions are marked nondeterministic, then
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it chooses one of the transitions. Subsequent invocations of the fire() method in the same
iteration will choose the same transition.

4. executes the output actions on the chosen transition, if any: If a transition is chosen, then the
output values can all be defined. Some of these may be specified on transition itself. If they are
not specified, then they are asserted to be absent at this tick. If all transitions are disabled (all
guards evaluate to false), then all outputs are set to absent. If no transition is chosen but at least
one transition remains whose guard cannot be evaluated, then the outputs remain unknown.

In the postfire() method, the actor

5. executes the set actions of the chosen transition; and
6. changes the current state to the destination of the chosen transition.

These actions are performed exactly once after the fixed-point iteration has determined all signal
values. If any signal values remain undefined at the end of the iteration, then an exception is thrown.
The model is defective.

Nondeterministic FSMs in a fixed-point domain have some subtleties. It is possible to construct
a model for which there is a fixed point that has two enabled transitions but where the selection
between transitions is not actually random. It could be that only one of the transitions is ever
chosen. This occurs when there are multiple invocations of the fire() method in the fixed-point
iteration, and in the first of these invocations, one of the guards cannot be evaluated because it has a
dependence on an input that is not known. If the other guard can be evaluated in the first invocation
of fire(), then the other transition will always be chosen. As a consequence, for nondeterministic
state machines, the behavior may depend on the order of firings in a fixed-point iteration.

Note that default transitions may also be marked nondeterministic. However, a default transition
will not be chosen unless all non-default transitions have guards that evaluate to false. In particular,
it will not be chosen if any non-default transition has a guard that cannot yet be evaluated because
of unknown inputs. If all non-default transitions have guards that evaluate to false and there is more
than one default transition, all marked nondeterministic, then one is chosen at random.

3 Modal Models

Most interesting systems have behavior that changes over time. The changes in behavior may be
triggered by user inputs, hardware failures, or sensor data, for example. A modal model is an
explicit representation of a finite set of behaviors and the rules that govern transitions between
behaviors. The switching between behaviors is governed by an FSM.

ModalModel is a hierarchical actor, like a composite actor, but with multiple refinements instead
of just one. Each refinement gives one behavior. A state machine determines which refinement
is active at any given time. The ModalModel actor is a more general form of the FSMActor
described in the previous section. The FSMActor does not support state refinements. You can
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always use ModalModel instead of FSMActor and just not create state refinements. Hence,
there is no real reason to use FSMActor.

Example 7: The model shown in Figure 13 has an actor labeled “Modal Model” that has
two modes, clean and noisy. This models a communication channel with two modes
of operation. In the clean mode, it passes inputs to the output unchanged. In the noisy
mode, it adds a Gaussian random number to each input token. The top-level model provides
an event signal that comes from the PoissonClock actor. That actor generates events at
random times according to a Poisson process.a A sample execution of this model where the
Signal Source actor provides a sine wave results in the plot shown in Figure 14.

aIn a Poisson process, the time between events is given by independent and identically distributed random variables
with an exponential distribution.

3.1 The Structure of Modal Models

The general pattern of a model model is shown in Figure 15. The behavior of a modal model
is governed by a state machine, where each state is called a mode. In Figure 15, each mode is
represented by a bubble, just like a state in a state machine, but filled in a light-blue color to suggest
that it is a mode rather than an ordinary state. A mode, unlike an ordinary state, has a mode
refinement, which is an opaque composite actor that defines the behavior when the mode is active.
The example in Figure 13 shows two refinements, each of which is an SDF model that transforms
input tokens to produce output tokens.

Note that it is essential that the refinement contain a director, and that the contained director be
usable with the director that governs the execution of the modal model actor. The example in Figure
13 has an SDF director inside each of the modes and a DE director outside the modal model. SDF
can generally be used inside DE, so this combination is valid.

Just like states in an ordinary state machine, modes are connected by arcs representing transitions.
Each transition has a guard, which is a predicate (a boolean-valued expression) that specifies when
the transition should be taken.

Example 8: In Figure 13, the transitions are guarded by the expression
event isPresent, which evaluates to true when the event input port has an event. Since
that input port is connected to the PoissonClock actor, the transitions will be taken at
random times, with an exponential random variable giving the time between transitions.

A variant of the pattern in Figure 15 is shown in Figure 16, where two modes share the same
refinement. This is useful when the behavior in different modes differs only by parameter values.
To construct a model where multiple modes have the same refinement, add a refinement to one of
the states, giving the refinement a name (by default, the suggested name for the refinement is the
same as the name of the state, but the user can choose any name for the refinement). Then, for
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Figure 13: Simple modal model that has a normal (clean) operating mode,
in which it passes inputs to the output unchanged, and a faulty mode, in
which it adds Gaussian noise. It switches between these modes at random
times determined by the PoissonClock actor.
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Figure 14: Plot generated by the model in figure 13.

Figure 15: General pattern of a modal model with two modes, each with its
own refinement.
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another state, instead of choosing [Add Refinement], choose [Configure] (or simply double
click on the state) and specify the refinement name as the value for the refinementName parameter.
Both modes will now have the same refinement.

Another variant of the pattern is where a mode has multiple refinements. This can be accomplished
by executing [Add Refinement] multiple times or by specifying a comma-separated list of re-
finement names for the refinementName parameter. These refinements will execute in the order that
they are added.

3.2 Hierarchical FSMs

A particularly useful form of modal model is a hierarchical FSM. This is a modal model where the
state refinements are themselves state machines.

Example 9: A hierarchical FSM that combines the normal and faulty thermostats of Exam-
ples 2 and 6 is shown in Figure 17. In this model, a Bernoulli actor is used to generate
a fault signal (which will be true with probability 0.01). When the fault signal is true,
the modal model will transition to the faulty state and remain there for 10 iterations before
returning the the normal mode. The state refinements are the same as those in Figures 9
and 10, giving normal and faulty behavior of the thermostat.

Figure 16: Variant of the pattern in Figure 15 where two modes share the
same refinement.
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To create a hierarchical FSM, when you select [Add Refinement] in the context menu of a state
in your state machine, instead of choosing [Default Refinement], you should choose [State
Machine Refinement]. The inside state machine can reference the input ports and write to the
output ports, and its states can themselves have refinements (either Default Refinements or State
Machine Refinements).

Notice that the model in Figure 17 combines a stochastic state machine with a nondeterministic
FSM. The stochastic state machine has random behavior, but an explicit probability model is pro-
vided in the form of the Bernoulli actor. The nondeterministic FSM also has random behavior,

Figure 17: A hierarchical FSM that combines the normal and faulty ther-
mostats of Examples 2 and 6.
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but no probability model is provided.

3.3 Preemptive Transitions

A preemptive transition is a transition that may prevent the execution of the current state refine-
ment. A transition is preemptive if its preemptive parameter evaluates to true. The syntax in Vergil

Further Reading: Concurrent Composition of State Machines

State machines have a long and distinguished history in the theory of computation
(Hopcroft and Ullman, 1979). Concurrent composition of state machines is a more re-
cent area of study, and continues to experience considerable flux. An early model for such
concurrent composition is Statecharts, due to David Harel (Harel, 1987). With Statecharts,
Harel introduced the notion of and states, where a state machine can be in both states A
and B at the same time. On careful examination, the Statecharts model is concurrent com-
position of hierarchical FSMs under an SR model of computation. Statecharts are therefore
(roughly) equivalent to modal models combining hierarchical FSMs and the SR director in
Ptolemy II (Eker et al., 2003). Statecharts were realized in a software tool called Statemate
(Harel et al., 1990).

Harel’s work triggered a flurry of activity, resulting in many variants of the model (Beeck,
1994). Harel’s visual syntax was subsequently adopted to become part of UML, the unified
modeling language (Booch et al., 1998). A particularly elegant version is SynchCharts
(André, 1996), which provides a visual syntax to the Esterel synchronous language (Berry
and Gonthier, 1992).

One of the key properties of synchronous composition of state machines is that it becomes
possible to model a composition of components as itself a state machine. A straightforward
mechanism for doing this results in a state machine whose state space is the cross product of
the individual ones. More sophisticated mechanisms have been developed, such as interface
automata (de Alfaro and Henzinger, 2001).

Hybrid systems can also be viewed as modal models, where the concurrency model
is a continuous time model (Maler et al., 1992; Henzinger, 2000; Lynch et al., 1996). In
the usual formulation, hybrid systems couple FSMs with ordinary differential equations
(ODEs), where each state of the FSMs is associated with a particular configuration of ODEs.
A variety of software tools have been developed for specifying, simulating, and analyzing
hybrid systems (Carloni et al., 2006).

Girault et al. (1999) showed that, in fact, FSMs can be combined hierarchically with a
rich variety of concurrent models of computation. They called such compositions *charts
or starCharts, where the star represents a wildcard. Several active research projects con-
tinue to explore explore expressive variants of concurrent state machines. BIP (Basu et al.,
2006), for example, composes state machines using rendezvous interactions. Alur et al.
(1999) give a very nice study of semantic questions around concurrent FSMs, including
various complexity questions. Prochnow and von Hanxleden (2007) describe sophisticated
techniques for visual editing of concurrent state machines.
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1. Drag 2. Customize/Ports
3. Commit

5. Drag

4. Open Actor

6. Control- or Command-Drag

7. Add Re�nement

8. Look Inside

9. Populate with a director and actors

Figure 18: How to create modal models.
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Mechanics: Creating Modal Models

The creation of a modal model is illustrated in Figure 18. The process starts by drag-
ging in a ModalModel from the Utilities library and populating it with ports. Then,
open the modal model and populate it with one or more states and transitions. To create
the transitions, hold the Control key (or the Command key on a Mac) and click and drag
from one state to the other. To add a refinement, right click on a state and select [Add
Refinement]. You can choose a [Default Refinement] or a [State Machine
Refinement]. The former will require a director and actors that process input data to
produce outputs. The latter will enable creation of a hierarchical FSM.

Probing Further: Internal Structure of a Modal Model

In Ptolemy II, every object (actor, state, transition, port, parameter, etc.) can have at most
one container. In a modal model, two states can share the same refinement. This seems to
violate the principle of “at most one container.”

The implementation in Ptolemy II, however, does not violate this principle. A
ModalModel actor is actually a specialized composite actor that contains an instance
FSMDirector, an FSMActor, and any number of composite actors. Each composite
actor is a candidate to be a refinement for any state of the FSMActor. The FSMActor is
the controller, in that it determines which mode is active at any time. The FSMDirector
ensures that input data is delivered to the FSMActor and all active modes.

The Vergil user interface, however, hides this structure. When you execute an [Open
Actor] command on a ModalModel, the user interface actually skips a level of the hi-
erarchy and takes you directly the FSMActor controller. It does not show the layer of the
hierarchy that contains the FSMActor, the FSMDirector, and the refinements. More-
over, when you [Look Inside] a state, the user interface goes up one level of the hier-
archy and opens all refinements of the selected state. This somewhat intricate architecture
balances expressiveness with user convenience.

Figure 19: A preemptive transition, if chosen, results in the refinement not
being executed. It is indicated by the red circle at the start of the transition.
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is as shown in Figure 19, which shows a red circle at the origin of the transition. In that figure,
if the current state is state1 and the expression guard1 evaluates to true, then the refinement
of state1 will not be executed. Moreover, if guard1 evaluates to true, then guard2 will not be
evaluated at all.

3.4 Reset Transitions

A reset transition, if chosen, results in the refinement of the destination state being reset to its initial
condition. It is indicated by the open arrowhead at the end of the transition, as shown in Figure 20.
Specifically, after the transition has been taken, the initialize() method of the refinements
of the destination state will be called. If, for example, the destination state has an FSM as its
refinement, then the state of that refinement FSM will be set to the initial state.

A reset transition may be used to restart an FSM after it has reached a final state, as illustrated in
the following example.

Example 10: We can use a final state to temporarily stop execution of a submodel, and
a reset transition to restart it. In Figure 21, the ModalModel has only a single state and
a reset transition that is taken whenever the input is a multiple of 10. When this transition
is taken, the refinement will be initialized. The refinement is an extended FSM that counts
5 inputs, copying them unchanged to the output each time. When 5 inputs have arrived,
the refinement transitions to the final state and stops executing. Subsequent iterations will
produce no output (the output of the ModalModel will be absent). When the refinement
is re-initialized, then it will begin again, copying the next five inputs to the output, and then
stopping again. For this model, assuming the Ramp actor produces the sequence 1, 2, 3, · · · ,
then the output will be 1, 2, 3, 4, 5, followed by five absents, followed by 11, 12, 13, 14, 15,
followed by another five absents, etc. The SR director is used here to make the iterations
and absent values explicit.

This use of final states is sometimes referred to in the literature as normal termination. The
submodel stops executing when it enters a final state and can be restarted by a reset.

Figure 20: A reset transition, if chosen, results in the refinement of the
destination state being reset to its initial condition. It is indicated by the
open arrowhead at the end of the transition.
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3.5 Transition Refinements

A transition may also have refinements. To create a transition refinement, right click on the tran-
sition and select [Add Refinement]. The syntax is shown in Figure 22. Specifically, a transition
with a refinement is shown with a bolder line than a transition without a refinement. The transition
refinement fires when the transition is chosen and postfires when the transition is committed. When
it fires, it can produce outputs.

Interestingly, a transition refinement can also take as inputs the outputs of the state refinement from
which the transition originated. The way this works is that an output port (named, say out, as in
the figure) has a sister port with “ in” appended to the name (out in in the figure). That sister port
provides whatever data the state refinements produced on that output port prior to the transition
being chosen.

Figure 21: A reset transition may be used to restart an FSM after it has
reached a final state.
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3.6 Execution Policy for Modal Models

Execution of a ModalModel is similar to the execution of an FSMActor as described in Section
2.2. In outline, in the fire() method, the ModalModel actor

1. reads inputs;
2. evaluates the guards of preemptive transitions out of the current state;
3. if no preemptive transition is enabled, the actor

1. fires the refinements of the current state (if any); and
2. evaluates guards on non-preemptive transitions out of the current state;

3. chooses a transition whose guard evaluates to true, giving preference to preemptive transitions;
4. executes the output actions of the chosen transition; and
5. fires the transition refinements of the chosen transition.

In postfire(), the ModalModel actor

1. postfires the refinements of the current state if they were fired;
2. executes the set actions of the chosen transition;

Figure 22: A transition refinement is a sub-model that fires when the transi-
tion is chosen and postfires when the transition is actually committed in the
postfire() method of the container.
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3. postfires the transition refinements of the chosen transition;
4. changes the current state to the destination of the chosen transition; and
5. initializes the refinements of the destination state if the transition is a reset transition.

The ModalModel actor makes no persistent state changes in its fire() method, so as long as the
same is true of the refinement directors and actors, a modal model may be used in any domain. How
it behaves in each domain, however, can be somewhat subtle, particularly with domains that have
fixed-point semantics and when nondeterministic transitions are used. The behavior is exactly as
described above for FSMActor, with the only exception being that state and transition refinements
are fired and postfired at appropriate times in the execution. One subtlety is that if a preemptive
transition is enabled, then the guards of non-preemptive transitions will not be evaluated. Thus,
nondeterminism never results from guards of a preemptive and a non-preemptive transition both
becoming true in an iteration.

Note that state refinements are fired before any non-preemptive guard is evaluated. One consequence
of this is that the outputs resulting from firing the refinement can be referenced in the guards of non-
preemptive transitions! Thus, whether a transition is taken can depend on how the current refinement
reacts to the inputs. In fact, the astute reader may have already noticed in the figures here that the
when the controller FSMActor of a ModalModel is shown, that the icon for output ports does
not look like a normal output port (see for example the heat port in the middle diagram of Figure
17). This icon, in fact, is the icon for a port that is both an input and an output. In fact, it serves both
of these roles for the modal model controller, since it can influence the evaluation of guards and it
can provide outputs to the environment.

In a firing, it is possible that the current state refinement produces an output, and a transition that
is taken also produces an output on the same port. In this case, only the second of these outputs
will appear on the output of the ModalModel. However, the first of these output values, the one
produced by the refinement, may affect whether the transition is taken. That is, it can affect the
guard. If in addition a transition refinement writes to the output, then that value will be produced,
overwriting the value produced either by the state refinement or the output action on the transition.

3.7 Time and Modal Models

Many Ptolemy II directors implement a timed model of computation. The ModalModel and
FSMActor are themselves untimed, but they have certain features to support their use in timed
domains.

The FSMs we have described so far are reactive, meaning that they only produce outputs in reaction
to inputs. In a timed domain, the inputs have time stamps. For a reactive FSM, the time stamps of
the outputs are the same as the time stamps of the inputs. Thus, the FSM appears to be reacting in
zero time. It is instantaneous, from the perspective of the timed domain.

However, in a timed domain, it is also possible to define spontaneous FSMs. A spontaneous FSM
or spontaneous modal model is one that produces outputs even when inputs are absent.
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Example 11: The model in Figure 23 switches between two modes every 2.5 time units.
In the regular mode it generates a regularly-spaced clock signal with period 1.0 (and
with value 1, the default output value for DiscreteClock). In the irregular mode,
it generates randomly spaced events using a PoissonClock actor with a mean time be-
tween events set to 1.0 and value set to 2. The result of a typical run is plotted in Figure 24,
with a shaded background showing the times over which it is in the two modes. The output
events from the ModalModel are spontaneous in that they are not necessarily produced in
reaction to input events.

This example illustrates a number of subtle points about time. Examining the plot in Figure 24, we
see that an event with value 1 and another with value 2 is produced at time 0. Why? The initial
state is regular, and the execution policy described in section 3.6 explains that the refinement
of that initial state is fired before guards are evaluated. That firing produces the first output of the

Figure 23: A spontaneous modal model, which produces output events that
are not triggered by input events.
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DiscreteClock. If we had instead used a preemptive transition, as shown in Figure 25, then that
first output event would not appear.

The second event in Figure 24 (with value 2) at time zero is produced because the PoissonClock,
by default, produces an event at the time the execution starts, time zero. This event is produced in
the second iteration of the ModalModel, after entering the irregular state. Although the
event has the same time stamp as the first event (both occur at time zero), they have a well-defined
ordering. The event with value 1 appears before the event with value 2. In Ptolemy II, the value of
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Figure 24: A plot of the output from one run of the model in Figure 23.
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Figure 25: A variant of Figure 23 where a preemptive transition prevents
the initial firing of the DiscreteClock.
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time is actually represented by a pair of numbers called a tag, (t,n) ∈ R×N, rather than a single
number. The first of these numbers, t, is called the time stamp. It approximates a real number (it is
a quantized real number with a specified precision). We interpret the time stamp t to represent the
number of seconds (or any other time unit) since the start of execution of the model. The second
of these numbers, n, is called the time index or microstep, and it represents a sequence number for
events that occur at the same time stamp. In our example, the first event (with value 1) has tag
(0,0), and the second event (with value 2) has tag (0,1). If we had set the fireAtStart parameter of
the PoissonClock actor to false, then the second event would not occur.

Notice further that the DiscreteClock actor in the regular mode refinement has period 1.0,
but produces events at times 0.0, 3.5, and 4.5, 8.0, 9.0, etc.. These are not multiples of 1.0 from the
start time of the execution. Why?

The modal begins in the regular mode, but spends zero time there. It immediately transitions
to the irregular mode. Hence, at time 0.0, the regular mode becomes inactive. While it is
inactive, its local notion of time does not advance. It becomes active again at global time 2.5, but
its local notion of time is still 0.0. Therefore, it has to wait one more time unit, until time 3.5, to
produce the next output.

This notion of local time is important to understanding timed modal models. Very simply, local
time stands still while a mode is inactive. Actors that refer to time, such as TimedPlotter and
CurrentTime, have a parameter useLocalTime, which defaults to false. Thus, by default, a
plotter will always plot events on the global time line. If no actor accesses global time, however,
then a mode refinement will be completely unaware that it was ever suspended. It does not appear
as if time has elapsed.

Another interesting property of the output of this model is that no event is produced at time 5.0,
when the irregular mode becomes active again. This follows from the same principle. The
irregular mode became inactive at time 2.5, and hence, from time 2.5 to 5.0, its local notion of
time has not advanced. When it becomes active again at time 5.0, it resumes waiting for the right
time (local time) to produce the next output from the PoissonClock actor.2

If an event is desired at time 5.0, then a reset transition can be used, as shown in Figure 26. The
initialize() method of the PoissonClock causes an output event to be produced at the
time of the initialization.

3.8 Time Delays in Modal Models

Time delays interact with modal models in interesting ways, as illustrated by the next example.

2Interestingly, because of the memoryless property of a Poisson process, the time to the next event after becoming
active is statistically identical to the time between events of the Poisson process. But this fact has little to do with the
semantics of modal models.
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Example 12: Figure 27 shows a model that produces a counting sequence of events spaced
one time unit apart, and then alternately delays the events by one time unit and does not
delay them. In the delay mode, a TimeDelay actor imposes a time delay of one time
unit. In the noDelay mode, the input is sent directly to the output without delay. The
result of executing this model is shown in Figure 28. Notice that the value 0 emerges at
time 2. Why?

The model begins in the delay mode, so it is that mode that receives the first input, which
has value 0. However, the modal model transitions immediately out of that mode to the
noDelay mode. So no time elapses. The delay mode becomes active again at time 1,
but at that time, its local time has not advanced. Local time is still 0. Therefore, it still has
to delay the input with value 0 by one time unit, It produces that output therefore at time 2,
just before transitioning out again to the noDelay mode.

3.9 Time in Transition Refinements

A transition refinement can also make reference to current time, but it makes little sense to have
transition refinements that are not reactive. Local time in a transition refinement will always be
the same as local time in the environment in which the modal model containing the transition is
executing. Hence, any access to local time via, for example, the CurrentTime actor will yield
the time at which the transition is taken.
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Figure 26: A variant of Figure 23 where a reset transition causes the Pois-
sonClock to produce events when the irregular mode is reactivated.
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Conceptually, a transition refinement is always active for exactly zero time. It takes no time to take
a transition. As a consequence, it would not make much sense to include in a transition refinement
spontaneous event generators like DiscreteClock or PoissonClock. Neither does it make
much sense to include time delay actors.

3.10 Time and FSMs

It is possible also to create a simple FSM (not a modal model) that is spontaneous in a sense, though
it will not be able to produce outputs at arbitrary times. It can produce outputs at initialization time
and can produce outputs with the same time stamp but higher indexes than input events.

Figure 27: A modal model that switches between delaying the input by one
time unit and not delaying it.
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Example 13: The model shown in Figure 29 includes an FSMActor that is both reactive
and spontaneous. It produces an output at time zero (with value 0) despite the fact that it
receives no input at time zero (the fireAtStart parameter of the PoissonClock actor is
false). This output is produced because the transition out of the init state has guard
true, and hence is taken immediately on initialization of the state machine. That transition
has an output action, out = 0.

After initialization, when the first input event arrives (near time 0.7, with value 1), the input
enables the transition from the wait to the duplicate state. That transition copies the
value of the input to the output and also records the value of the input in a local variable
recordedInput. Once the state machine has entered the duplicate state, the transition
back to wait is immediately enabled, so it is taken in the next microstep. Thus, the state
machine produces a second output at the same time (around 0.7), as shown in the plot. The
second output has twice the value of the first, making both outputs visible in the plot.

A state in which the state machine spends zero time is called a transient state. In the previous
example, both the init and the duplicate states are transient. Note that any state that has
default transitions (without guards or with guards that evaluate to true immediately) is a transient
state, since exiting the state is always immediately enabled after entering the state.

3.11 Modal Model Principles

Modal models are clearly subtle and expressive, particularly for timed models. It is useful to step
back and ponder the principles that govern the design choices in the Ptolemy II implementation

0
2

4

6

8

10

0 1 2 3 4 5 6 7 8 9 10

Undelayed Ramp

0
2

4

6

8

10

0 1 2 3 4 5 6 7 8 9 10

Ramp delayed by 1, then by 0, alternating

time

Figure 28: The result of executing the model in Figure 27.
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3.11 Modal Model Principles 3. MODAL MODELS

of modal models. The key idea behind a mode is that it specifies a portion of the system that is
active only part of the time. When it is inactive, does it cease to exist? Does time pass? Can its
state evolve? These are not easy questions because the desired behavior depends very much on the
application.

In Ptolemy II, the guiding principle is that when a mode is inactive, local time stands still, but global
time passes. An inactive mode is therefore in a state of suspended animation. Local time within
a mode will lag the time in its environment. The amount of lag begins at zero, and increases each
time the mode becomes inactive. When an event crosses a hierarchical boundary into or out of
the mode, its time stamp is adjusted by the amount of the lag. Thus, within the mode, time seems
uninterrupted.
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Figure 29: An FSM that spontaneously produces events at the start time
and at the times of input events.
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4. CONCLUSION

A key point is that being inactive is not necessarily the same as not getting inputs and not be-
ing observed. This point is illustrated in the model of Figure 30, which shows two instances of
DiscreteClock, labeled DiscreteClock1 and DiscreteClock2, which have the same
parameter values. DiscreteClock2 is inside a modal modal model labeled ModalClock, and
DiscreteClock1 is outside of any modal model. The output of DiscreteClock1 is filtered
by a modal model labeled ModalFilter that selectively passes the input to the output. The two
modal models are controlled by the same ControlClock, which determines when they switch be-
tween the active and inactive states. Three plots are shown. The top plot is simply the output
of DiscreteClock1 unmodified in any way. The middle plot is the result of switching between
observing and not observing the output of DiscreteClock1. The bottom plot is the result of acti-
vating and deactivating DiscreteClock2, which is otherwise identical to DiscreteClock1.

The DiscreteClock actors in this example are set to produce a sequence of values, 1, 2, 3, 4,
cyclically. Consequently, in addition to being timed, these actors have state, since they need to recall
which was the last output value in order to produce the next output value. When DiscreteClock2
is inactive, its state does not change, and time does not advance. Thus, when it becomes active again,
it simply resumes where it left off.

4 Conclusion

FSMs and modal models in Ptolemy II provide a very expressive way to build up complex model
behaviors. As a consequence of this expressiveness, it takes some practice to learn to use them
well. This report is intended to provide a reasonable starting point. Readers who wish to probe
further are encouraged to examine the documentation for the Java classes that implement these
mechanisms. Many of these are accessible when running Vergil by right clicking and selecting
[Documentation]. Please send comments to eal@eecs.berkeley.edu.

Probing Further: Implementation of Transient States

When a transition is taken in an FSM, the FSMActor or ModalModel calls
fireAtCurrentTime() on its enclosing director. This method requests a new firing
in the next microstep regardless of whether any additional inputs become available. If the
director respects this request (normally timed directors do), then the actor will be fired again
at the current time, one microstep later. This ensures that if the destination state has a tran-
sition that is immediately enabled (in the next microstep), then that transition will be taken
immediately. Note also that in a modal model, if the destination state has a refinement,
then that refinement will be fired at the current time in the next microstep. This is particu-
larly useful for continuous-time models, since the transition may represent a discontinuity
in otherwise continuous signals. The discontinuity translates into two distinct events with
the same time stamp.
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Figure 30: A model that illustrates that putting a stateful timed actor such
as DiscreteClock inside a modal model is not the same switching between
observing and not observing its output.
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