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Abstract  

Spline knots based on Bézier curves or B-splines can exhibit a knot type that is different from that 
exhibited by its control polygon, i.e., the spline and its control polygon are not ambient isotopic. By 
forming composite knots from suitably designed building blocks the difference in knottedness of the 
two 1-manifolds can be made arbitrarily large. 
 
 

1. Introduction 

To mathematicians, a knot is a closed, non-self-intersecting curve with a specific embedding in Euclidean 
3D-space R3. When such a knot is described as a B-spline or as a composite Bézier curve for analysis or 
for detailed geometrical manipulation, it is highly convenient and efficient, if most of the calculations and 
operations can be done using just the linear segments of the control polygon. However there may be 
substantial topological differences between the curve itself and its control polygon. We know that Bézier 
curves and B-splines are variation diminishing, i.e., any straight line in 2D, or any plane in 3D, cannot 
intersect the curve more often than it does the control polygon. But this still permits the control polygon 
to have self-intersections or loops that are not exhibited by the spline curve itself. On the other hand, as 
the control polygon is subdivided into multiple consecutive segments, it moves closer to the spline curve. 
Any non-self-intersecting Bézier curve with regular parameterization will, after sufficiently many 
subdivisions, have a control polygon that is also non-selfintersecting [5]. However, two non-self-
intersecting, closed curves can still have very different embeddings within R3. So, it is of interest to 
consider when a spline curve and its control polygon have the same embedding. This is the purview of 
knot theory, where non-self-intersecting, closed curves are classified and tabulated according to their 
embeddings [1]. The topology of the space surrounding the knot, in particular the relation of ambient 
isotopy, is used to partition knots into equivalent subclasses. Ambient isotopy is also the appropriate 
topological equivalence relation for many practical applications in geometric modeling, visualization, and 
animation [3]. 

For a rich class of composite Bézier curves, ambient isotopic equivalence with sufficiently 
subdivided control polygons has been shown by Moore et al [4]. They have shown that for non-self-
intersecting Bézier curves with a regular parametrization there exists a positive integer m such that the 
control polygons of the m-th or higher subdivision of the curve are all ambient isotopic to the Bézier 
curve. However, that work did not provide any explicit examples where a composite Bézier curve and its 
control polygon were not ambient isotopic even while they were both non-self-intersecting. This report 
constructs and analyses a few illuminating examples. 

Three basic constructions are shown: First, we build unknots with control polygons of arbitrary high 
knottedness (Section 3). Then we construct unknotted control polygons (Section 4) that generate either 
arbitrarily knotted composite splines (Fig.6), or, alternatively, two separate spline loops with an arbitrarily 
high linking number [1], even though the corresponding control polygons do not interlink at all (Fig.5). 



2. A Simple Unknot With a Knotted Control Polygon 

We first construct an example involving a composite of two simple cubic Bézier curves. Curve A 
(yellow) has the (red) control polygon P0, P1, P2, P3, and Curve B (blue) has the (green) control polygon 
P3, P4, P5, P0, with the respective coordinate values: 

P0: (-6, -6, 12),   P1: (4, 1, -1),   P2: (-4, 1, 1),   P3: (6, -6, -12),   P4: (1, 2, 4),   P5: (-1, 2, -4). 

Figure 1a shows these curves parallel projected onto the x-y-plane. 

 

          
 

Figure 1:  Two cubic Bézier curves with their control polygons. (a) The composite of the two curves 
(blue and yellow) form the unknot, while their control polygons (red and green) form a trefoil knot. 

 (b) A view of this 3D configuration rotated around the y-axis. 
 

 
We now analyze the resulting knots formed by the composite Bézier curve and their control polygons. A 
paper discussing this configuration with more mathematical rigor has been submitted [2]. In the 
projection of Figure 1a, the Bézier curves themselves (yellow and blue) form a closed loop with no 
intersections; thus this is clearly the unknot or tivial knot.  

The projection of the knot formed by the control polygon (Fig.1a) exhibits 5 crossings. But the two 
crossings formed by line segment P0,P1 can readily be eliminated with a Reidemeister move of Type II [1] 
by stretching the line P0,P1 so that it loops around the outside of vertex P3. This leaves a knot projection 
with three alternating (over-under-over…) crossings. The fact that this sequence is indeed alternating can 
be visualized by rotating the whole configuration around the y-axis (Fig.1b). It also can be proved 
rigorously by calculating the linearly interpolated x- and y-values for the three intersections, and by 
interpolating correspondingly the z-values of the line segments involved. Once we have convinced 
ourselves that the control polygon forms a closed loop with three alternating crossings, we know that this 
is a trefoil knot, listed as Knot 31 in the knot tables [1]. 

 



Some readers may be bothered by the lack of smooth C2-continuity at the joints of the two Bézier curves. 
Of course, topological analysis only cares about connectivity (C0-continuity) and not about smoothness of 
the curves. But we can readily use the combined 6-stick control polygon to define a cubic B-spline. The 
result is shown in Figure 2. The geometry of the control polygon has not changed at all, thus it still forms 
a trefoil. The B-spline curve exhibits a single crossing in the projection onto the x-y-plane shown in 
Figure 2a. The small loop associated with it can be removed with a Type I Reidemeister move [1], which 
un-twists the small loop next to this crossing. Thus we now have a perfectly smooth realization of the 
unknot with a control polygon that still forms a 3-crossing knot. 
 

 

         
 

Figure 2:  A C2-continuous B-spline curve with its 6-segment control polygon.  
(a) A projection into the x-y-plane.  (b) A rotated view of this 3D configuration. 

 

 

 



3. Control Polygons of Arbitrary Knottedness 

We can now use this configuration to form an unknot with a control polygon of arbitrary knottedness [2]. 
For that purpose we split and separate the two Bézier curves and their control polygons from Figure 1 at 
point P0 by a small amount that does not change the orientation of any of the crossings in this figure. Now 
we can connect n instances of this construct into a pin-wheel configuration as shown in Figure 3 for the 
case of n = 6. The concatenation of the Bézier curves is still a crossing-free loop and thus forms the 
unknot. At the same time, the concatenation of the control polygons forms a composite knot with a 
crossing number of 3n. Thus we can construct a knot with an unlimited degree of knottedness by simply 
increasing n. 
 

       
 

Figure 3:  Composite of six building blocks from Figure 1. 
 

 

 



4. Un-knotted Control Polygons 

The above construction and analysis raises an intriguing complementary question: Can an un-knotted 
control polygon form a knotted spline curve? Our first intuitive reaction might be to answer this question 
in the negative. We know that B-splines and Bézier curves obey the convex hull property: The spline 
curve segments lie always within the convex hull of the associated control polygon. These splines are also 
variation diminishing, which means that the spline curve can never have more “wiggles” than the 
corresponding control polygon; or, stated more formally, any plane that cuts through the control polygon 
q times, can cut the spline at most q times. – However the interlinking of two curves is a more subtle 
property! 

Figure 4a shows a simple cubic Bézier segment. Of course it lies totally inside the convex hull (thin 
green lines) of its control polygon. However, the two pink-colored areas denote regions where the spline 
curve is lying “outside” some of the control segments. This gives us the opportunity to entangle two curve 
segments without also entangling the two control polygons (Fig.4b). While the spline segments and their 
control polygons are nearly planar, the assembly of the two segments is made “very 3-dimensional” by 
placing two instances of Figure 4a in planes that are perpendicular to one another. With proper affine 
scaling we can arrange it that the four end-points of the curves fall onto the corners of a square. This 
yields a nice modular building block that allows us an easy construction of composite knots or links: We 
can place several such units around a regular n-sided prism with n square faces (Fig.5 and 6). 

 

 

                      
 

Figure 4:  Cubic Bézier curves with their control polygons. (a) The (blue) Bezier curve is entirely inside 
the convex hull, but there are two regions where the curve is “outside” its control polygon. 
 (b) Two such curve pieces can be “entangled” without having entangled control polygons. 

 



In a first construction (Fig.5a) we place three building blocks as shown in Figure 4b around a 3-sided 
prism by simply rotating the three instances around the z-axis in increments of 120° and then fusing the 
ends of the curves (Fig.5b). Both the green and the red control polygon form separate unknots, and so do 
the yellow and blue spline curves. But while the two control polygon loops are not linked at all – the 
green-green junctions lie all above the red-red junctions (Fig.5c) – the spline loops form a linked 
configuration with 6 alternating crossings (Fig.5d). 
 

 

      
 

Figure 5:  (a) Three of the constructs shown in Figure 4b are arranged around a 3-sided prism, 
 (b) The same construction shown with the ends of the curves merged. 

 

    
 

Figure 5 (cont.):  (c) The three pairs of control polygons shown by themselves. 
 (d) The resulting Link 62

1 composed of two interlinked unknots. 
 



As a second example we build a non-trivial spline knot with an un-knotted control polygon. With this 
aim, we place four of the constructs of Figure 4b around a 4-sided prism (cube). But this time we rotate 
the bottom unit 90° around the y-axis, so that the partial loops formed by three red and three green control 
polygons are connected into a single loop. However, this loop is still the unknot. On the other hand, the 
spline segments, which are now also connected into a single loop, form the 8-crossing knot of type 81. 

  
 

         
 

Figure 6:  (a) Four of the constructs shown in Figure 4b are arranged around a 4-sided prism, with the 
bottom unit rotated by 90° around the y-axis.  (b) Same arrangement with fused curve ends. 

 
 

             
 

Figure 6 (cont.):  (c) The four pairs of control polygons shown by themselves.   
(d) The resulting knot of type 81. 
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