
Framework for Body Sensor Networks

Sameer Iyengar

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2009-154

http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-154.html

November 5, 2009



Copyright © 2009, by the author(s).
All rights reserved.

 
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.



Framework for
Body Sensor Networks
Sameer Iyengar





Framework for Body Sensor Networks
by Sameer Iyengar

Research Project

Submitted to the Department of Electrical Engineering and Computer Sciences, University of Cali-
fornia at Berkeley, in partial satisfaction of the requirements for the degree of Master of Science,
Plan II.

Approval for the Report and Comprehensive Examination:

Committee:

Professor Alberto Sangiovanni-Vincentelli
Research Advisor

Date

* * * * * *

Professor Ruzena Bajcsy
Second Reader

Date





Acknowledgements

It is impossible to be successful as a graduate student without a wide support network. I am
extremely grateful for mine. I must thank my advisor, Alberto Sangiovanni-Vincentelli, for giving
me the the freedom and inspiration to explore my interests and ideas, possibly the most valuable
thing a researcher could ask for. In addition, to my mentors, Professor Ruzena Bajcsy and Professor
Roozbeh Jafari, thank you for helping me focus my research and pushing me to always take that
extra step.

To my colleagues here at Berkeley and in research groups at University of Texas at Dallas,
Telecom Italia Research and Vanderbilt University, thank you for embodying the spirit of open and
altruistic academic collaboration, through which we have all produced truly interesting results.

I have had the unique pleasure of working with a number of students and researchers from
institutions around the world, notably: Philip Kuryloski, Filippo Tempia, Ville-Pekka Seppa, Po
Yan and Victor Shia. Thank you for always helping even when you didn’t need to, for being there
to bounce ideas or just to kill time and for making research less like work and more like fun.

To my friends who have always kept me in good spirits, thank you for forcing me to take a
break and for sharing the great times we’ve had.

And, most importantly, to my parents, it is impossible to enumerate in words all that you have
given me, thank you for everything.



Contents

1 Introduction 4

2 Background: Body Sensor Networks 6
2.1 Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.1 Nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.2 Gateway . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.3 Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.1 Interference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.2 MAC Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.3 Traffic Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3.1 Research Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3.2 Clinical Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3.3 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4 Interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4.1 Deployment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4.2 Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.5 Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.5.1 Communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.5.2 Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.5.3 Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.5.4 Local Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.6 Advantages of a Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 BNSM: An Application Development Framework 15
3.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Abstractions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2.1 Request/Event Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2.2 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.3 Application Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.3.1 Discovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.3.2 Requests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.3.3 Data Dissemination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.3.4 Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1



3.4 Nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.4.1 Communication Manager . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.4.2 Buffer Manager . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.4.3 Sampling Manager . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.4.4 Function Manager . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.5 Network Service Manager . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.5.1 State Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.5.2 Idle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.5.3 Requests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.5.4 Sending Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.5.5 Service Termination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.5.6 Node arrival/departure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.5.7 Assigning a Schedule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4 BNSM: Implementation 25
4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.2 Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.2.1 Device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.2.2 Sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.2.3 Code Generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.3 TinyOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.3.1 Constants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.3.2 Communication Manager . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.3.3 Buffer Manager . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.3.4 Sampling Manager . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.3.5 Function Manager . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.3.6 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.4 Packet Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.4.1 Header . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.4.2 Node Discover . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.4.3 Node Announce . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.4.4 Function Activate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.4.5 Activate Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.4.6 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.5 Java . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.5.1 Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.5.2 Network Manager . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.5.3 Application Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.5.4 Constants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5 Case Studies 35
5.1 Event Detection and Reconfiguration . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.1.2 Latency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.1.3 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.2 Real-Time Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2



5.2.1 Data Collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.2.2 Fixed Window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.3 Deployment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

6 Conclusion and Future Work 43

References 46

3



Chapter 1

Introduction

Wireless Body Sensor Networks (also known as bodynets or Body Area Networks) have the potential
to revolutionize healthcare. These networks are comprised of wearable devices with attached sensors
that can measure various physiological and environmental signals. Bodynet devices communicate
wirelessly with networked gateways (mobile phones, computers and PDAs) which store, analyze
and communicate vital information in real-time. A bodynet can be designed to immediately alert
emergency personnel to a critical situation like a heart attack or a debilitating fall. Bodynets can
also help physicians catch warning signs of a disease earlier or remotely monitor the progress of a
recovering surgery patient.

Body Sensor Networks free a patient from the confines of a laboratory but still enable monitoring
by researchers and clinicians. Researchers can study illnesses in real world settings without intrusive
video equipment. Clinicians can gain a broader view of a patient’s health without increasing office
visits.

Technology

The technology behind Body Sensor Networks is not new. Wireless Sensor Networks (WSNs) are
widely used in various applications such as industrial automation, environmental monitoring and
military surveillance. However, recent advances in sensor technology and power consumption have
made sensor networks feasible for use in wearable, real-time human monitoring. In addition, the
push toward electronic medical records has created infrastructure that allows physicians to interact
with electronic patient data.

A typical WSN consists of multiple nodes which communicate with a gateway or set of gateways.
Each node contains a small processor, sensing devices and a wireless radio. Nodes are generally
powered by batteries, but stationary nodes may also have a more reliable power source. Nodes
have the ability to buffer data from sensors and perform computations using that data. Gateway
devices generally have a more reliable power source, greater processing capability and can interact
with outside networks.

A bodynet is a WSN in which the nodes are primarily mounted on the body of a subject,
introducing an additional set of design constraints. On-body devices must be physically small and
power-efficient to allow for wearability and patient mobility. Bodynet gateways may also be mobile
devices such as a mobile phone or PDA. These characteristics limit the computation capability
of devices in the network. Despite their limited processing power, bodynet applications generally
require a high degree of reliability, creating numerous design challenges.
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Applications

Body Sensor Networks can be used in a variety of research and clinical applications. Inertial sensors
are useful when performing gait and balance analysis, especially in research on diseases which cause
mobility impairment such as Parkinson’s disease and Muscular Dystrophy. Inertial sensors can also
be used in assisted living homes for applications like fall detection and in hospitals for monitoring
patient recovery and rehabilitation. Biological sensors can monitor patient vital signs to allow
researchers to study complex biological functions like metabolism and emotion. Applications of
Body Sensor Networks are discussed in more depth in Section 2.3.

Research Challenges

Body Sensor Networks provide interesting research challenges at every level of their design. At the
hardware level, advances are being made in physical size, power consumption and processing capa-
bility. Advancements in MEMS technology are making new types of sensors possible. The network
level poses challenges for antenna designers as well as those designing scheduling algorithms and
communication protocols. At the application level, developers are trying to implement advanced,
distributed algorithms while ensuring that reliability and performance constraints are met.

This work focuses on defining abstractions that will allow researchers in each area to work at
maximum efficiency. Currently, the bodynet application design process requires that application
developers manually provision the network and create application-specific protocols. The goal of
this work is to aid developers by defining a framework that abstracts network and hardware con-
figuration out of the application development process. Such a framework also aids those working
on other areas of the network stack. If applications are developed independently of a particular
communication protocol or hardware configuration, new protocols and hardware can be deployed
with little application redesign. Much like abstractions in place for personal computers, the frame-
work proposed in this work will allow for widespread adoption of bodynets by making it easer for
developers to deploy real-world applications.

Characteristics of bodynets and bodynet applications are discussed in Chapter 2. This outlines
and motivates the design of the Body Network Service Manager (BNSM) framework presented in
Chapter 3. An implementation of the framework design is discussed in Chapter 4. Three case
studies characterizing the performance of the BNSM framework are presented in Chapter 5.
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Chapter 2

Background: Body Sensor Networks

This section outlines characteristics of Body Sensor Networks and their applications. Important
bodynet design considerations are highlighted throughout the section. These considerations lead
to the design of a framework for developing bodynet applications presented in Chapter 3.

2.1 Hardware

Body Sensor Networks are useful in many applications because they are easy to customize. Bodynet
hardware can be designed to minimize complexity and maximize generality by using readily available
commercial off-the-shelf components rather than custom ASIC designs. The main components of
the hardware are the on-body nodes and the gateway devices. Sensing devices may be built into
the node itself or attached via input ports. An overview of how bodynet hardware components
interact is shown in Figure 2.1.

2.1.1 Nodes

A sensor node, or mote, is an embedded device containing a microprocessor, local storage and
a wireless radio. Many mote platforms exist, each using different processor and radio hardware,

Figure 2.1: Structure of a Body Sensor Network
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but device specifications and capabilities are generally quite similar [1, 2, 3]. Embedded operating
systems such as TinyOS [4] and Contiki [5] have been developed for sensing devices which are
unable to run, and do not require the functionality of, full-scale operating systems.

In this work, the nodes in use are the Moteiv Tmote Sky based on the TelosB platform [1]. The
Tmote Sky has an 8MHz TI MSP430 microprocessor which has 10kB of RAM and 48kB of flash
memory available. This microcontroller is widely used in WSN devices. The nodes communicate
wirelessly using the Chipcon CC2420 radio. The CC2420 is a 250kbps, IEEE 802.15.4 compliant
radio operating at 2.4GHz.

The motes run the TinyOS operating system [4]. TinyOS allows developers to use nesC, a
variant of C, rather than a device specific language to program the nodes. NesC uses a non-
blocking split-phase programming model. To a large extent, nesC abstracts away differences in
processors and radio transceivers on different mote platforms by providing a library structure for
platform-specific code. Developers define program logic and packet abstractions which compile
correctly for the specified platform. However, TinyOS code requires considerable manual overhead
and code repetition making applications error-prone and difficult to modify. Application developers
will benefit from design tools that ease the task of device code modification.

2.1.2 Gateway

A gateway is any device that can interact with the nodes and contains either a human user-interface
or an interface to a traditional network. In most networks, a gateway contains more processing
power than the sensor nodes.

To be a part of the network, gateway devices require the ability to interface with an 802.15.4
transceiver. To validate generality, three different gateway devices have been tested through the
course of this work:

• PC: Windows, Linux and Macintosh-based PCs

• Mobile Device: Motorola E680i mobile phone [6]

• Embedded Computer: Crossbow Stargate [7]

The PC and the Stargate board communicate with the rest of the network using a node attached
via the USB port. The mobile phone uses the SD card interface to communicate with an attached
Intel PSI [8] board containing a custom 802.15.4 radio.

As Body Sensor Networks become more pervasive, network designers will be unable to dictate
the types of devices that are used as gateways. Application developers will benefit from specifying
gateway code in a way that abstracts device specific code from the application logic. In addition,
a cross-platform API for gateway code would allow applications to support many types of gateway
devices.

2.1.3 Sensors

A sensor is any device that generates a signal based on its environment. Sensors are either built
into the node or are connected via an input port. The Tmote Sky contains 16 input pins that allow
hardware designers to attach sensing devices.

The majority of this work focuses on applications of MEMS inertial sensors. A 3-axis accelerom-
eter, the ST Microelectronics LIS3LV02DQ [9], and a 2-axis gyroscope, the InvenSense IDG 300
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Figure 2.2: Inertial sensor board attached to Tmote Sky

[10], were integrated into a custom sensor board shown in Figure 2.2. Each component contains
its own analog-to-digital converter allowing its output to directly connect to the digital I/O pins
on the TmoteSky. The sensor board also contains a charging circuit and voltage regulators for the
attached Lithium Ion battery.

To validate generality and study other applications, a bio-sensing board developed at the Tam-
pere University of Technology was also tested [11]. This device uses electrodes and bioimpedance
to measure vital signs such as ECG, respiration and temperature.

Code written for the node contains logic to interact with the sensors. TinyOS provides a way
to abstract and define routines that developers use to query sensors in their applications. As new
sensor technology is continually developed, these routines must be updated and modified. To best
take advantage of the pace of hardware development, application developers must be able to easily
add and update sensors attached to devices.

2.2 Communication

2.2.1 Interference

802.15.4 devices experience interference for a variety of reasons. The 2.4GHz band is widely used
for other wireless sensor networks as well as devices like cordless phones and Wi-Fi networks [12].
Absorption of 2.4GHz waves by water and the human body, in addition to interference caused by
motion of wearable sensors, also affect network performance [13]. To create reliable applications
despite such interference, developers often construct application-specific protocols. However, if a
network is updated or needs to interact with additional devices, the corresponding protocol must
be altered. Application developers can avoid this issue by using a general protocol that is flexible
enough to accommodate many different types of data while still accounting for interference. By
writing code so that is is protocol independent, applications can take advantage of advances in
protocol design.

2.2.2 MAC Protocols

Many MAC protocols have been proposed and tested for wireless sensor networks. TinyOS based
devices use CSMA/CD by default. However, in wireless networks the hidden terminal problem [14]
affects CSMA/CD transmission reliability. Nodes may be unable to realize when it is necessary to
back off. In addition, physical constraints make it such that a node that can receive data reliably

8



may not be able to reliably transmit data via the same link.
The reliability requirements of bodynets favor protocols that use acknowledgments or time-

division to guarantee delivery, but power constraints serve to limit the amount of control messages
that can be sent to provision a protocol. TSMP offers a reliable solution that combines time division
and frequency hopping [15]. TDMA is effective for small networks and is used in this work because
of the added advantage of its simplicity to implement.

2.2.3 Traffic Patterns

WSN research is divided between two types of communication patterns: centralized networks and
ad-hoc networks. Centralized networks are those in which a central coordinator controls the opera-
tion of the nodes in the network. Ad-hoc networks are often self-organizing and designed with the
idea that node failure is commonplace. Due to wearability constraints, bodynets have fewer sensors
than traditional WSNs and each sensor is designed for a specific purpose. This architecture lends
itself well to centralized networks in which the gateway has control over the specific operation of
nodes in the network and node failure is the exception rather than the norm. Centralized networks
have traffic patterns that are primarily either one-way or two-way.

One-way communication

Networks that perform traditional data collection are characterized by traffic patterns in which
much of the traffic flows from the nodes to a gateway. This traffic can occur at regularly scheduled
intervals or irregularly when a node meets some condition to send data, such as a threshold for an
alarm. Body Sensor Networks in which large amounts of data are collected to be later analyzed
offline fit this communication model. Similarly, applications which trigger alarms when critical
events are detected are dominated by one-way communication after the initial configuration to set
up the alarm.

Two-way communication

Applications which perform real-time processing may have a traffic pattern in which data flows more
evenly in both directions. Such applications include adaptive networks in which the gateway will
request additional information from the sensors when a particular scenario is detected. In addition,
some networks work entirely based on polling, requiring the gateway to individually request data
when desired. Other networks will disseminate data to the nodes for use in processing. To allow
for applications requiring this type of traffic pattern, application developers will benefit from being
able to reconfigure the network and request additional data during runtime.

2.3 Applications

The requirements of possible applications of Body Sensor Networks range from simply collecting
raw data from a single sensor to highly complex distributed processing algorithms involving many
nodes. This section lists many of the bodynet applications and algorithms considered during the
course of this work along with design principles gathered from each.
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2.3.1 Research Applications

Gait Analysis and Motion Analysis

Considerable research has been done on human locomotion [16]. Current data collection techniques
commonly employ either video technology or wired sensing. Video-based techniques include stan-
dard video recording systems, camera systems that employ reflective markers and infrared camera
systems. In all of these cases, highly specialized laboratory equipment is required. Subject occlu-
sion is a limiting issue, especially in experiments involving multiple subjects. In addition, subjects
are constrained to a small area. Systems that use wired on-body sensors can limit movement and
cause discomfort to the subject, affecting the accuracy of data collected [17].

Body Sensor Networks can replace existing motion analysis technology allowing subjects to move
freely while still being studied. To effectively replace existing systems, a bodynet used for motion
analysis research must support a large number of nodes and high data throughput. Hardware
should be physically small to avoid impairing subject motion. However, as most of this research is
conducted via controlled experiments, data does not need to be processed in real-time.

Mobility Impairing Disease

Diseases such as Muscular Dystrophy and Parkinson’s Disease severely limit motion. Similar to
Gait Analysis research, controlled laboratory experiments are used to study patient progression
and symptoms. In addition, researchers use uncontrolled experiments to assess how the disease
affects a patient’s day-to-day activities and their social interactions. Using real-time monitoring to
assess quality of life can assist physicians in tailoring treatment to benefit a patient both mentally
and physically [18]. Assessing patient quality of life requires a bodynet that can detect a patient’s
location and environmental sensors that detect how a patient interacts with their environment.

2.3.2 Clinical Applications

Fall Detection and Prevention

Falls are a leading cause of injury among patients over the age of 65. In addition, nearly 45% of
falls occur when the patient is outside the home [19]. This suggests that on-body sensors can help
prevent twice as many falling incidents as home-based environmental sensors.

Real-time systems that can detect falls can also automatically alert emergency personnel. A
common solution is a manual alert system that allows a patient to call for help if needed. This
is inadequate because patients are often unable to asses the severity of their condition or, if the
condition is too severe, are too debilitated to use the system. Automatic detection of falls and fall
severity can solve this problem. In addition, detecting joint and muscle weakening via tracking
mis-steps and almost-falls can alert caretakers that a patient is at risk of falling.

A fall detection system requires high-frequency sampling and low-latency response time. In
addition, the system should require little maintenance and interaction on the user’s behalf. To gain
widespread adoption, fall detection systems must easily integrate with existing emergency alert
systems.
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Elderly Monitoring

Elderly monitoring goes a step beyond fall detection to detect other critical events and monitor
general physical health. This will enable early detection of illness, prevent injuries and help ensure
overall well-being.

Assisted-living homes will increasingly be equipped with environmental sensors including floor
sensors and video cameras. A bodynet should be able to interface with environmental sensors in
order to offload processing to more powerful devices, combine information from environmental and
on-body sensors and activate only those sensors that are necessary given the current situation. For
example, a video camera can be activated only when a critical event has been reported in order to
visually verify that the system has correctly detected the event. This protects patient privacy and
conserves system resources.

To create such monitoring systems, bodynets should be reconfigurable in real-time allowing
nodes to easily be added or removed as necessary.

Rehabilitation

Intensive physical therapy has been shown to assist patients recovering from injury or surgery
[20]. However, quality of rehabilitation is constrained by the time and resources of physicians and
therapists. Examples include patients requiring stroke rehabilitation, physical rehabilitation after
hip or knee surgeries, myocardial infarction rehabilitation, and traumatic brain injury rehabilitation
[17]. Wearable, electronic rehabilitation systems can improve quality of patient care while reducing
the time burden on therapists.

In order to be useful, rehabilitation applications must perform local processing to distill and
send relevant information to the physician. For example, after knee surgery the most important
information to a physician is the knee’s range of motion and knowledge about how daily activity
is affecting recovery. Rehabilitation devices should also be able to give real-time feedback to the
patient. For example, a system could guide the user through a set of rehabilitation exercises and
give feedback regarding their progress.

2.3.3 Algorithms

Centralized Classifiers

Action recognition is often performed using decision tree or kNN classifiers [21, 22]. Such classifiers
collect data from all the nodes in the network and compare it to a threshold or training set stored
on the gateway. To reduce the amount of data transmitted, features of the data can be sent rather
than the raw signal itself. To implement a centralized classifier, the gateway should be able to
easily request raw sensor signals or signal features at desired intervals.

Distributed Classifiers

A distributed motion classifier that uses both local and central processing to classify an action can
increase accuracy and decrease resource usage [23]. Each node locally computes and transmits a
sparse linear representation of an action to the gateway. The results from all of the nodes are then
combined to choose a result. To implement such a distributed algorithm, the developer should be
able to easily define the local processing. The protocol must also be general enough to transmit
data vectors, such as a linear representation, in an efficient manner.
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2.4 Interaction

To gain widespread adoption, Body Sensor Networks must be easy for users to interact with. Much
like consumer electronics, patients will demand products that work without requiring extensive
user intervention.

2.4.1 Deployment

Unlike other WSNs, bodynets will likely be configured by a physician rather than a technician or
the network designer. This will allow the system to meet a patient’s specific needs but require that
configuration and deployment be a straightforward task.

This change has two implications for application creation and deployment. First, application
developers must design systems such that adding, removing and updating hardware is simple.
Second, during system deployment, an application should automatically discover nodes in the
network and configure the system to operate accordingly.

2.4.2 Interfaces

User Interface

Platforms should allow for easy creation of user interfaces to allow applications to provide feedback
to both the subject and the observer. Application developers will benefit from a consistent model
of receiving network information. This allows user interfaces to be general, extensible and reusable.

Existing Infrastructure

To allow access to data, Body Sensor Networks must be able to easily connect to existing infras-
tructure. This includes both wired and wireless Internet, cellular networks and electronic medical
records databases. Using existing infrastructure aids in bodynet adoption by lowering deployment
cost and time. This will make it easier to deploy bodynet technology into existing care networks.
For example, emergency notification systems can consider the both most beneficial person to notify
and the preferred way to connect with that person.

Environmental Sensors and Actuators

As building are increasingly equipped with sensing technology, bodynets must interact with envi-
ronmental networks. For example, a bodynet can interact with environmental sensors by detecting
the presence of a floor sensor in a room and requesting additional data from it, if necessary. A
bodynet should also be able to interact with actuators. For example, a bodynet may open a door
or turn on a light for a disabled patient.

Hardware Progress

Application software should be as hardware agnostic as possible. It should be easy to integrate new
sensors as they are developed. However, a framework should not be so general that it precludes
application developers from using hardware to its full potential.
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2.5 Characteristics

2.5.1 Communication

Reliability

Data reliability is especially important for real-time applications. As many applications will reduce
data dimensionality via local processing, a lost packet will translate into a larger amount of lost
data. If enabled by the application, the network should be able to detect and automatically re-
request any missing packets.

Latency

For certain healthcare applications, the time of arrival of data is especially important. For example,
a critical alarm is only useful if it arrives in a timely fashion. Certain types of data or data coming
from certain nodes may have a particular latency constraint. An application should be able to
specify such a constraint and the network coordinator should assign communication schedules and
prioritize packets accordingly.

Frequency

Applications in which research is a primary goal require very high data sampling rates. However,
these applications may not necessarily require the data to be sent immediately, especially if the goal
is to process the data offline. An application should be able to individually specify data sampling
rates for each sensor.

Topology

Networks will likely be small but heterogeneous. Nodes will be designed and placed for specific
purposes but data from each will likely be able to reach with the gateway within a small number of
hops. As a result, complex routing is less important than ensuring the network operates seamlessly
with a variety of device hardware configurations.

2.5.2 Hardware

Power Management

Physical constraints limit chip and battery size which, in turn, limits the amount of processing power
and memory the devices have. Local processing is advantageous because thousands of instructions
can be executed for the same amount of power as sending a radio message [24]. As a result,
distributed processing is advantageous, but only if it requires minimal communication overhead
and reduces the amount of data to be communicated.

Extensibility

The wide possibilities of bodynet applications require devices to work with a variety of sensors.
Development of nodes with new types of sensors should be straightforward and not impact the
network structure and protocol. The sensors deployed will depend on the condition of the individual
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patient being monitored leading to a heterogeneous set of device types. To accommodate this,
bodynets must be easily extensible with minimal manual reconfiguration.

2.5.3 Processing

Given power constraints and communication frequency requirements, local processing that reduces
data dimensionality is incredibly advantageous. To promote reusability, local processing functions
should be defined in a modular manner. Processing functions should have access to local sensor
data and allow the application to specify additional parameters at run time. Local processing
is additionally advantageous because, in order to be useful, clinical bodynets will need to distill
information rather than overloading a physician with data.

2.5.4 Local Storage

Many nodes will have local solid-state storage available for use. This storage can hold pre-
programmed data or data sent by the network coordinator. For example, a distributed classifier
would require each node to store a local training set. Nodes can also use this storage for sensor
data. This data can be bulk transferred or used in computation.

2.6 Advantages of a Framework

It is not easy nor necessary for bodynet developers to consider all the characteristics outlined in
Section 2.5 during the design of each application. These considerations can be embodied in a
framework.

The current process of application development requires the developer to generate custom soft-
ware based on the devices and manually provision the entire network stack. Many developers work-
ing in a particular sub-class of bodynet applications create and reuse their own custom framework
code for their applications. For example, the SPINE framework was designed for those interested
in performing feature computation on inertial sensors [25]. It is possible to improve on this idea by
creating a framework that is suitable for the general class of bodynet applications.

A framework allows the developer to focus on the application logic and abstract network provi-
sioning and local processing. It also provides a structure with which new devices can be deployed
into a network with minimal reconfiguration effort. The Body Network Service Manager (BNSM)
framework outlined in Section 3 provides an API for applications to make service requests without
worrying about manually configuring the network. In addition, it provides a code generator to
make it easy to change sensing and local processing on individual nodes.
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Chapter 3

BNSM: An Application Development
Framework

3.1 Background

Given the advantages of a Body Sensor Network framework outlined in Section 2.6, the BNSM
(Body Network Service Manager) framework was developed to simplify the task of bodynet appli-
cation development. It encapsulates much of the functionality that application developers require
(and must often manually replicate) in their applications.

BNSM creates an abstraction layer, the Network Service Manager (NSM) between the applica-
tion and the nodes. An overview of BNSM is shown in Figure 3.1. An application makes service
requests to the NSM, which coordinates the the network and responds by generating events. In-
ternally, the NSM sends commands to the nodes which coordinate communication as well as local
sampling and processing.

3.2 Abstractions

3.2.1 Request/Event Model

The natural interaction pattern between an application and the network is one in which the appli-
cation makes a request and processes the network’s response upon arrival. The same request and
event model is chosen for abstracting the internals of the network provisioning required to complete
a task.

Section 3.3 outlines possible service requests that an application can make. To use these services,
the application must simply specify the relevant request parameters to the NSM via the NSM API.

The NSM responds to service requests with events. An event-based model is used because a
request may asynchronously trigger many events. as the response time of a particular service will
vary based on requirements. Example events include: arrival of data, network status updates and
notifications regarding errors. An application must define an event handler to process incoming
events.

An error notification is an event signaling that something has affected the normal service run-
time. For example, a service notification may be generated when the NSM cannot fulfill a request
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Figure 3.1: Body Network Service Manager Overview

due to node failure, network congestion or unsatisfiable latency constraints. Error notifications
behave like exceptions, if not handled, they may cause the entire application to terminate.

3.2.2 Functions

Functions allow developers to define local processing in a structured manner. The flexibility to
define all processing as a function avoids the need for special-case functionality to be included in
the framework code. This promotes code reusability and makes the framework easier to maintain.
A function may return an array of values or none at all.

Any local processing the developer desires can be defined as a function. There are three common
uses of functions: data processing, communication control and data storage. The most common
use of a function is to process data. The simplest data processing function just returns raw data.
More complex functions perform additional computation using the data. Functions can also be used
to generate alarms or specify logic to control communication. This is accomplished by returning
a value only when a particular condition is satisfied. If a function returns no value, data will
not be transmitted to the gateway. This allows developers to encapsulate communication logic in a
processing function and not modify additional code dealing with packet assembly and transmission.

16



A function can also store and retrieve data from local storage. This is useful if a function needs to
refer to existing data to generate a new result.

3.3 Application Services

This section outlines the services that the NSM makes available to the application. This includes
the ability to discover nodes in the network, make sampling and processing requests, disseminate
data and query network status.

3.3.1 Discovery

The discovery process detects which nodes are active in the network. This allows a single application
to support multiple node configurations by dynamically adjusting to the set of nodes that are
discovered. In addition, this prevents errors that arise from applications that assume certain nodes
are active, as power, network and physical constraints may render some nodes unavailable.

During the discovery process each node announces its identifier and type. The NSM returns this
information to the application. An application may also desire quality of service information, such
as an indicator of link quality and battery life of the node. This information is useful for making
adjustments to the network to account for battery failure and excessive network congestion.

BNSM uses a user-defined type system for nodes. During the hardware configuration process,
API functions are generated for each node type. Given a node type, the application knows which
sensors and processing functions are available on the node. Type-checking of application requests
avoids errors that stem from attempting to activate non-existent sensors or processing functions.

Some WSN service discovery systems allow for a more general discovery process in which the
node announces its capabilities, allowing new capabilities to be added to nodes and automatically
be discovered by an application. As BSN applications generally focus on a specific purpose, it is
reasonable to assume the application developer will know the types of sensing and processing to
be performed in the network a priori. This reduces complexity as well as transmission overhead in
the setup process.

Care must be taken to minimize packet collision during the discovery process. The NSM cannot
assign a communication schedule to the nodes until after they have all been discovered, requiring
a different communication protocol to be used during discovery. Particular implementation details
of the discovery process are discussed further in Section 4.3.2.

3.3.2 Requests

Requests are used to activate local processing. To do so, a request must specify parameters and
requirements for the desired functionality. Corresponding quality of service constraints for the
request may also be specified, if required by the application. Once a request is made, the NSM
assigns the request a unique identifier that both the application and the NSM use to reference the
request in future interaction.

To allow applications to run multiple requests simultaneously, requests are made in groups.
After a series of requests are submitted to the NSM, the application can activate the set of requests
to begin processing. At this point the NSM will assign a communication schedule that will allow
the nodes to respond to the request. Activating requests in groups also allows the NSM to wait
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until all requests have been made before creating a communication schedule, avoiding unnecessary
processing.

Once the network is in operation, requests may be added or removed in a similar fashion. The
application indicates a series of requests to be removed and may submit additional requests to be
activated. Upon activation, the NSM will assign an appropriate communication schedule.

Required Parameters

Local processing is abstracted by functions, which are described in Section 3.2.2. Functions allow
the node to process or store data. A request must specify the local function to execute and any
parameters to the function.

As most functions will process a vector of sensor data, the request must specify which sensors’
data to send to the function. In addition, the request should specify the sensor sampling rate as
well as a window size and window shift to select the correct segments of data. The window size
is the number of samples to pass to the function. The window shift is the number of samples by
which to shift the window for the next segment of data. For example, a window size of 10 and a
shift of 10 would create data windows containing samples 0 to 9, 10 to 19, and so on. A window
size of 10 and a shift of 5 would create data windows containing samples 0 to 9, 5 to 14, 10 to 19
and so on. The function will be executed whenever there is a window of data ready.

Optional Parameters

An application may specify a latency requirement which is used in the node scheduling process.
This is especially useful for time-critical applications where a delayed response is equivalent to no
response at all. Latency constraints may be expressed as a value range. The NSM will attempt
to assign the ideal-case schedule, but has flexibility if that is not possible. As security of data is
also important, a request may specify an encryption function to use for any data generated by that
request.

3.3.3 Data Dissemination

Applications may require the ability to push data to the nodes. This data may be used to reprogram
the nodes, be used as part of a computation, or simply be stored for access during future processing.

To send data, the application must specify the data to be pushed and the desired node desti-
nations. The developer should also define a local processing function that will store or process the
received data. This function will be executed once the data transfer is complete.

3.3.4 Status

At any given time the application may query the NSM for the status of a particular node or request.
Node status includes information regarding active requests as well as quality of service information
such as battery life and link quality. In the case of a request, the NSM will return whether or not
a request is active as well as information regarding the communication schedule assigned to the
request.
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3.4 Nodes

At the most basic level, a node can perform four tasks: send or receive packets, sample sensors,
store data and perform computation. Accordingly, the management of node tasks is controlled by
four components: a Communication Manager, Sampling Manager, Buffer Manager and Function
Manager.

3.4.1 Communication Manager

The Communication Manager (CM) receives and responds to commands from the NSM. Upon
receiving a command, the CM signals the other local components to fulfill the request. Requests
may generate values to be sent back to the gateway. These values accumulate in the Send Buffer.
During the communication slot assigned by the NSM, the CM combines pending values in the Send
Buffer into a Data Packet and sends the packet to the gateway.

Commands

There are 4 types of commands the CM must process:

Discovery The NSM issues a Node Discover command in order to find nodes in the network.
The CM responds with a Node Announcement. The Node Announcement contains a unique
identifier for the node and the node type.

Function Activation To activate processing, the NSM must relay the service request parameters
supplied by the application. This includes the processing function, sensors, sampling rate,
window size and window shift. This information is used to allocate buffers, initialize sensors
and set up timers.

Begin Processing This command assigns the communication schedule and notifies the node to
start querying the sensors. At this point data will accumulate in the Send Buffer. When it is
the current node’s turn to transmit, the CM will assemble and send a packet using data in
the buffer.

Receive Data When the network is pushing data to the nodes, adequate buffer space must be
allocated. When the transfer is complete, the correct processing function should be executed
by the Function Manager.

Missing Packet In the event that that an expected packet is not received by the NSM, it will
request that the packet be re-sent. The correct data will be retrieved from the buffer and will
be re-transmitted.

3.4.2 Buffer Manager

The Buffer Manager allocates a set of circular buffers to store sensor data. It provides the func-
tionality for other components to easily add and retrieve data while internally moving pointers
according to the specified window size and window shift.
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3.4.3 Sampling Manager

The Sampling Manager manages a set of timers to control when sensors are polled. When a
sensor has data ready, it copies the values into the correct buffer. A request may require data
from multiple sensors. Once each sensor has been sampled enough times to generate a window of
data, the Sampling Manager will signal that the request is ready for computation by the Function
Manager.

3.4.4 Function Manager

The Function Manager executes functions with the requested parameters. If the function returns
data, the Function Manager adds header information about the corresponding request before storing
the value into the Send Buffer.

3.5 Network Service Manager

3.5.1 State Variables

The NSM must maintain certain information:

Requests The NSM must keep track of all request parameters. In addition, the NSM stores
scheduling information and constraints for each request so it can detect if constraints are not
being met.

Nodes The NSM maintains information about each node in the network and continually updates
their connectivity status to ensure that each node remains connected. The NSM may also
maintain power information, if it can be provided by the nodes, to assist in determining the
feasibility of requests.

3.5.2 Idle

When there are no pending requests, the network is considered idle. Nodes should periodically
report their status to the NSM to ensure that connectivity is maintained. This makes it easier to
carry out requests when they do arrive.

3.5.3 Requests

Node Connectivity

If a request requires a connection to a set of nodes, the NSM must ensure that all the nodes are
active before proceeding. Presumably the connection to all the nodes has been kept alive during
idle time. If there are nodes for which status information is unavailable, the NSM should send a
beacon to the node as a last attempt to make a connection.

If a connection cannot be established, the application has three options: 1) cancel the service
request, 2) request a replacement for the unavailable node, or 3) request data from the remaining
nodes. The NSM must generate a service notification to determine the course of action. If the
application chooses not to cancel the request, it can additionally specify what to do if the unavailable
node rejoins the network during runtime. The application can choose whether to add the rejoined
node or to continue without it.
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Setup

The NSM is responsible for allocating transmission time slots to avoid packet collision and meet any
specified latency requirements (see Section 3.5.7). During setup, the NSM may find that the request
is invalid because the requested sensor on the node cannot return data. This may be because of
incorrect addressing or because of a malfunctioning sensor. In this case, the NSM must generate
an error notification and allow the application to decide how to proceed.

Runtime

The NSM buffers data as it arrives from the nodes. When all the data for a request has arrived,
the NSM generates a data event. This event is then processed by the application’s event handler.

The NSM is also responsible for detecting and reporting when the network is unable to meet
service requirements. For example the network may be unable to meet a latency requirement
because it may be too stringent given the amount of time it takes to execute the requested function
with the specified parameters.

Ideally, the NSM would be able to determine infeasible request parameters before initiating a
request. However, the nature of functions makes it difficult to estimate the running time that will
occur for all input possibilities. As it is unreasonable to assume that the application will always
make valid requests, the NSM should generate an error notification if a request cannot be fulfilled.
The application has two options: either cancel the service request or attempt to continue with
different parameters. To continue the request, parameters to be changed could include the number
of requests, the latency constraints or the function used, among other possibilities.

3.5.4 Sending Data

Setup and Transfer

The connection setup process to send data is similar to that of a data request. A communication
schedule must be generated, accounting for other active requests and each node must allocate
sufficient buffer space. Given the limitation of packet length in wireless radios, the data will likely
be fragmented into a number of packets. Considerable header information can be saved by sharing
a transmission schedule, removing the need to transmit addressing and length information with
every packet.

Packet errors are likely to occur when sending a large amount of data. Transfers should be
accompanied by a checksum to verify that the data was transferred correctly in addition to the
standard packet checks performed by the NSM. If the NSM is unable to confirm that the data was
successfully received by a particular node, it may retry the transmission if the latency requirement
allows. If not, it must generate an error notification. If the node is only able to receive part of the
data due to communication or storage constraints, the NSM should generate an error notification
indicating how much of the file was received. The application can decide to proceed, cancel or allow
additional time for re-transmission.

Post-transfer

Once the transfer is complete, nodes signal that data has been successfully received and wait for
confirmation before executing the specified local processing function. This is due to the fact that
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all of the nodes may not have successfully received the data. In this case, the application may not
want the processing function to be executed. Once the confirmation is received, the nodes proceed
to execute the function and confirm its success.

Runtime considerations

If the request is canceled, the nodes should be signaled to discard any data. To account for the
event that a node drops out during the data push process, the node should time out and assume
that the connection to the network has been lost if there is an excessive delay during the data
transfer or while waiting for confirmation to execute the post-transfer processing function.

Transmission cost can be saved by determining which packets are redundant among nodes.
These packets can be broadcast or multi-cast to avoid sending multiple packets with the same
information.

3.5.5 Service Termination

During service operation the application can request to terminate the service request. The NSM
must stop transmission to and from the nodes. If nodes are in the process of receiving data, they
should be instructed to discard the received information.

3.5.6 Node arrival/departure

If a node leaves the network, the NSM must trigger an error event in which the application can
choose to request a replacement or cancel the service request. The application may also specify
what to do in the event that the missing node rejoins the network. The two options are to either
continue using the replacement node or switch back to the original node.

3.5.7 Assigning a Schedule

When a set of requests is activated, the NSM must generate a TDMA communication schedule.
The schedule assigns a fixed number of consecutive slots to each node. This section formulates the
schedule generation problem.

Given a set of nodes N , each node, n ∈ N has a set of requests, Rn. A request, r, has the
following properties: a sampling period, tr, a window size wr, a window shift sr, an upper bound
on the number of values generated by the request vr and an optional latency constraint lr.

A communication slot has a fixed length of p seconds1. A single packet may be sent during a
communication slot and a packet has the capacity to send up to c values.

Let σn be the number of communication slots assigned to node n and let k be the number of
communication slots assigned in a particular frame.

The value generation rate of request r is:

Vr =
vr

trsr
(3.1)

The value generate rate, Vn (values/second) of node n is the sum of the value generation rate
of all requests to that node:

1In practice, communication slot length is measured on the order of milliseconds rather than seconds.
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Vn =
∑

r∈Rn

Vr (3.2)

For a request to be feasible, the rate at which values are generated must be less than or equal
to the rate at which values can be sent:

Vn ≤
σnc

kp
(3.3)

Define the fraction of slots assigned to node n, fn:

fn =
σn

k
= Vn

p

c
(3.4)

For a request to be feasible, the sum of all fn must be less than 1 or, equivalently, that the sum
of each node’s value generation rate must be less than the transmission capacity per second:∑

n∈N

fn ≤ 1 =⇒
∑
n∈N

Vn ≤
c

p
(3.5)

As a result, given the value generation rate for each node it is possible to determine if a feasible
schedule can be generated. However, this only determines whether there is enough capacity to send
all the data. This capacity must be allocated in an efficient manner by deriving integers σn and
k from fn. These values must not be unreasonably large such that there is not enough storage
space for a waiting node to buffer data while another node transmits data. In addition, the latency
constraints of each request must be met.

If each node, n has a maximum buffer size of bn values, a feasible schedule can be assigned,
ignoring latency constraints, if there is enough buffer space for n to store values while the other
nodes are sending. The following condition must be satisfied for each n ∈ N :

kp ≤ bn (3.6)

A slot assignment algorithm is shown in Algorithm 1. k is chosen based on the capacity of the
node with the smallest buffer capacity. Slots are assigned to a node by taking the ceiling of fn ∗ k.
If the total number of slots assigned is still less than k, the assigned schedule is valid and fulfills
buffering constraints.

Input: Set of nodes, N , set of node buffer sizes, b, slot length, p
Output: Number of slots, σ, to assign to each node or false if no schedule possible
k = minn∈N bn;
foreach n ∈ N do

σn = dfn * ke;
end
if

∑
n∈N

σn ≤ k then

return σ;
else

return false;
end

Algorithm 1: Slot assignment algorithm
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Including latency constraints in schedule assignment is slightly more complex but follows a
similar pattern. This method is effective but leaves room for optimization, as this algorithm may
not be able to find all valid slot assignments.

Function Return Values

While a function may return a variable number of values depending on the parameters, an upper
bound on the number of values returned, vr, must be determinable by the request parameters.
This allows the NSM to provision enough communication bandwidth for the function data. One
downside of this method is that enough communication bandwidth will be assigned to the function
to handle the case when the function does transmit data, however, if the specified communication
conditions are not satisfied, this bandwidth will go unused.

There are a few potential solutions to this: One solution involves having the developer specify a
probability of condition satisfaction. Another solution has the node signal the NSM that the condi-
tion has been satisfied and that a new communication schedule should be allocated to account for
the additional bandwidth. However these solutions introduce additional overhead and complexity
with marginal benefit.
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Chapter 4

BNSM: Implementation

4.1 Overview

The implementation of BNSM is split into two parts: the device code and the gateway code. The
device level implementation uses TinyOS nesC code and a Java API is provided on the gateway
for the creation of applications. Developers specify hardware configuration in a set configuration
files and use a code generator to generate files that enumerate the necessary constants to access
individual nodes, sensors and processing functions.

4.2 Configuration

Setup of the network is performed via a set of configuration files which specify the types of devices,
sensors and local processing functions to be used. The configuration files are specified using YAML,
a data serialization language [26], because of its readability and low overhead.

4.2.1 Device

The properties of each device in the network are specified in an individual configuration file. A
sample configuration file for an inertial sensor is shown in Listing 4.1. The file has three parts:

Name A unique name for the device. This name is used as the node type by the NSM and the
application.

Sensors A list of each sensor on the device. The configuration of a particular sensor is specified
through an additional configuration file described in Section 4.2.2. The entry for each sensor
should correspond to the sensor configuration file name. For example the configuration for
the voltage sensor would be found in voltage.yaml.

Functions A list of the local processing functions to be pre-programmed on the device. The code
generator will look for a TinyOS component with the same name. For example the entry
for the Mean function will look for a TinyOS component MeanC. Function implementation is
discussed further in Section 4.3.6.
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Listing 4.1: Configuration for an inertial sensing device

name : i n e r t i a l
s e n s o r s :
− acc e l e r omete r x
− acc e l e r omete r y
− a c c e l e r o m e t e r z
− gyroscope x
− gyroscope y
− vo l tage

f u n c t i o n s :
− RawData
− Mean
− SVD

4.2.2 Sensor

Each individual sensor also contains its own configuration file. This information is not included
in the device configuration file because multiple devices may contain the same sensor. Specifying
the information in separate files reduces code duplication and promotes the ease of use of standard
sensor components in device creation. The filename should correspond to the name listed in the
device configuration file (see Section 4.2.1). An example configuration file for a battery voltage
sensor is shown in Listing 4.2.

The configuration file has five parts:

Component The nesC file containing the device-level implementation of the code that polls the
sensor.

Instance A name for the instance of the component. If two sensors belong to the same component
and are given the same instance name, the code generator will avoid generating redundant
code. For example, this is useful for a biaxial gyroscope which specifies a single instance of
the gyroscope component for both the X- and Y-axis.

Interface The TinyOS interface through which to access the component. In order to avoid re-
stricting sensors to use a particular interface (such as the Read interface) any interface is
supported. This allows existing sensor code to be easily ported to BNSM without rewriting
the interface through which sensor data is accessed.

Initiate Read A block of code that initiates the asynchronous reading of the sensor. This code
may call methods specified in the sensor component by referencing the instance name.

Read Done A block of code that is called when the sensor reading is complete in order to perform
any necessary post-processing of the sensor reading. When post-processing is complete, the
code should specify the @putvalue directive with a pointer to the data and the number of
data values as parameters. The code generator will replace the directive with a function call
that puts the sensor value in the appropriate buffer. In this manner, sensor code is not tied
to a particular buffer.
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Listing 4.2: Configuration for a battery voltage sensor

tos component : VoltageC
t o s i n s t a n c e : Voltage
t o s i n t e r f a c e : Read<u int16 t>

i n i t i a t e : |
c a l l Voltage . read ( ) ;

done : |
event void Voltage . readDone ( e r r o r t r e s u l t ,

u i n t 1 6 t data ) {
i f ( r e s u l t == SUCCESS) {

@putvalue(&data , 1 ) ;
}

}

4.2.3 Code Generator

The code generator uses the configuration files to generate device specific Java and TinyOS code.
This prevents errors that may arise if the developer had to manually sync the Java and TinyOS
code each time new capabilities are added to the network. The code generator is executed with
the filenames of the configuration file for each device to be included in the network. It generates
a global set of TinyOS constants described in 4.3.1. For each device, a specific Buffer Manager,
Function Manager, Sampling Manager and header file is generated. In addition, the code generator
creates a Java class for each node type that enumerates device-specific constants (see Section 4.5.4).

4.3 TinyOS

The TinyOS implementation is broken into two parts, the specific code for each type of device and
the generic codebase that implements the protocol and allows developers to define local processing
functions. An overview of how the various TinyOS components connect is shown in Figure 4.1

4.3.1 Constants

Three sets of constants are generated: Node Constants, Sensor Constants and Function Constants.
Each enumerate unique identifiers for the types of nodes, sensors and functions, respectively, that
are found in the system. Corresponding constants are also generated for the Java API and are
described in Section 4.5.4.

4.3.2 Communication Manager

The Communication Manager (CM) is a static component. It includes a generated header file that
defines the sensor type as one of the types specified by the Node Constants described in Section
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Figure 4.1: BNSM TinyOS component structure

4.3.1. The CM coordinates the other components, calling the appropriate functions in the Buffer
Manager, Function Manager and Sampling Manager when required.

Internally, a request is called a job and is assigned an identifier which corresponds to the
order in which the request was received. Data structures in the CM map the job identifier to the
corresponding Request identifier and Function identifier.

Discovery

When the CM receives a Node Discover packet, it waits for a period proportional to the Node
identifier before responding with a Node Announce Packet. This period defaults to 5 milliseconds
and is specified in the Node Constants file. As all the nodes in the system receive the Node Discover
packet at approximately the same time, if each responded immediately, considerable packet collision
would occur.

4.3.3 Buffer Manager

The Buffer Manager is automatically generated. As TinyOS does not support dynamic memory
allocation, a circular buffer is allocated for each sensor. The size of the buffer is specified in the
generated header file for the device and defaults to 100 samples per buffer.
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4.3.4 Sampling Manager

The Sampling Manager (SM) is generated from the sensor configuration files specified in Section
4.2.2. Enough timers are allocated such that each sensor may be sampled at a different frequency.
However, sensors are assigned to a timer based on the sampling period. When a timer fires, it calls
the function to initiate processing for each of the sensors assigned to it. This minimizes interrupt
overhead as opposed to if the system were to activate multiple timers at the same frequency.

The Sampling Manager maintains the window size and window shift for each job. When enough
data has been sampled to allow the corresponding function to process the data, the SM signals the
CM to activate processing.

4.3.5 Function Manager

The Function Manager (FM) is a generated component that links in and directly calls the func-
tions required by the device. This avoids requiring local processing functions to be included
from any other component. To allow functions to be called, the Function Manager defines the
execute_function command. Given the identifier of a function to execute, the Function Manager
passes the necessary parameters to the function. This is used by the Communication Manager to
activate local processing.

4.3.6 Functions

To implement a function, the developer must create a component that provides the Function
interface. The Function interface requires the developer to specify the execute function. This
function takes four parameters:

data pointers A handle that points to an array of pointers, each pointing to an array of sensor
data.

num elements The number of elements in each array of sensor data. Each sensor will supply the
same number of samples to the function

parameters A pointer to the array of parameters passed to the function.

return buffer A pointer to the buffer in which the function should store its return values.

To implement a function, the developer manipulates the data, stores any number of values in
return_buffer and then returns the number of values that were stored. The implementation of a
function to calculate the mean value of a data buffer is shown in Listing 4.3

4.4 Packet Protocol

The BNSM packet protocol outlines the format of packets sent between a node’s Communication
Manager and the Network Service Manager.
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Listing 4.3: Function to calculate mean value of a data buffer

module MeanC {
prov ide s i n t e r f a c e Function ;

}

implementation {
/∗
∗ C a l c u l a t e s the Mean o f the g iven data array
∗
∗ @param d a t a p o i n t e r s : Pointer to an array o f data p o i n t e r s
∗ @param num elements : Number o f e lements
∗ @param parameters : A d d i t i o n a l parameters to the f u n c t i o n
∗ @param r e t u r n b u f f e r : Locat ion to copy re turn v a l u e
∗
∗ @return ’ i n t 1 6 t ’ : 1 ( number o f v a l u e s re turned )
∗/
command i n t 1 6 t Function . execute (

i n t 1 6 t ∗∗ data po in t e r s , u i n t 1 6 t num elements ,
i n t 1 6 t ∗ parameters , i n t 1 6 t ∗ r e t u r n b u f f e r ) {

i n t 1 6 t ∗ data = d a t a p o i n t e r s [ 0 ] ;

u i n t 1 6 t i ;
i n t 3 2 t sum = 0 ;

for ( i = 0 ; i < num elements ; i++) {
sum += data [ i ] ;

}

r e t u r n b u f f e r [ 0 ] = sum / num elements ;
return 1 ;

}

}
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8 16 24 32
Protocol Version Packet Type Source Destination Packet Number

Protocol Version 4 bits To accommodate for future versions of the protocol.
Packet Type 4 bits Indicates what kind of packet follows.
Source 8 bits ID of the source node.
Destination 8 bits ID of the destination node.
Packet Number 8 bits Current packet number.

Table 4.1: Packet Header

4.4.1 Header

Each packet includes common header information, described in Table 4.1. Including the version
number allows for revisions to this protocol to be implemented gracefully. The current version
number is 1. The packet type specifies what kind of payload follows the header. Constants for
packet types are specified in the PacketConstants header file in TinyOS and the PacketConstants
class in Java. The source and destination are the identifiers of the sending and receiving nodes
respectively. The destination may also be a reserved broadcast address, indicating that the packet
is meant to be received by all nodes. Though the standard TinyOS header also specifies source
and destination information, it is included in the BNSM header to make it possible to implement
additional routing at the application level, if necessary. The packet number can be used to detect
when a packet is dropped. As it is only 8 bits, and a node is likely to send more than 256 during
the course of its runtime, this cannot be used as a unique packet identifier.

4.4.2 Node Discover

The Node Discover packet has a single 8-bit field that enables the NSM to send a command to the
nodes. There are two possible commands: discovery and reset. The discovery command requests
that nodes respond with a Node Announce Packet (see Section 4.4.3). The reset command cancels
all active requests and resets the buffers.

4.4.3 Node Announce

The Node Announce packet shares the same format as the Node Discover packet. It allows a node
to specify its type via a single 8-bit field. The node identifier is automatically specified by the
header.

4.4.4 Function Activate

The Function Activate packet, described in Table 4.2, specifies information necessary to activate a
local processing function and corresponding sensing, if any. The request identifier, function iden-
tifier, sampling period, window size and window shift are specified in a straightforward manner.
After this, the number of sensors, N , to be associated with the function is specified. The first N
parameters are then assumed to be sensor identifiers, each to be polled at the sampling period spec-
ified. The rest of the parameters are treated as data parameters. If a function requires additional
parameters, it can specify the number of parameters to follow in an additional packet.
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8 16 24 32
Request Id Function Id Sampling Period Window

Shift Num Sensors Param 1 Param 2
Param 3 Param 4 Param 5 Additional Params

Request ID 8 bits The ID of the function activation request.
Function ID 8 bits The ID of the function to activate.
Sampling Period 8 bits Interval in milliseconds that each sensor should be polled.
Window Size 8 bits Number of samples to use as an input array for the function.
Window Shift 8 bits Number of samples to offset when generating the next win-

dow.
Num Sensors 8 bits Number of sensors included in the parameter list.
Param 1...5 8 bits each If the parameter refers to a sensor, Sensor ID. Otherwise,

the parameter value.
Additional Params 8 bits If 5 parameters are not sufficient, the number of parameters

that will follow in another packet.

Table 4.2: Function Activate Packet Format

4.4.5 Activate Processing

The Activate Processing packet, described in Table 4.3, assigns a communication schedule and
signals that a node should begin processing all pending Function Activate requests. The first field
specifies the total number of nodes. The following fields specify the number of slots assigned to
each node ordered by node identifier. If only the number of nodes is specified, it is assumed that a
single slot is assigned to each node.

4.4.6 Data

A data packet combines up to five Data Values into a single packet and sends them. The format
of a Data Value is shown in Table 4.4. The first 16 bits are used for information about the data

8 16 24 32
Num Nodes Slots 1 Slots 2 Slots 3
Slots 4 Slots 5 Slots 6 Slots 7
Slots 8 Slots 9 Slots 10 Slots 11
Slots 12 Slots 13 Slots 14 Additional Nodes

Num Nodes 8 bits Number of nodes in the network.
Slots 1...14 8 bits each Indicates the number of communication slots assigned to

the corresponding node.
Additional Nodes 8 bits If the network contains more than 14 nodes, the number

of nodes for which slot information will follow in another
packet.

Table 4.3: Activate Processing Packet Format
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8 16 32
Request Id isFirst Fragment Data Value

Request Id 8 bits The ID of the request this Data Value corresponds to.
isFirst 1 bit Boolean indicating whether or not this is the first fragment

pertaining to the request.
Fragment 7 bits For the first fragment, this section indicates the total num-

ber of fragments. For all subsequent fragments, this con-
tains the fragment number.

Data Value 16 bits Contains the actual data that was requested.

Table 4.4: Data Value Format

and the last 16 bits contain the actual data. The corresponding request identifier is specified with
each Data Value. Since a function can generate more than one value, the first Data Value contains
the total number of values to follow for the specified request. Subsequent Data Values specify their
fragment number. This allows the NSM to verify that the information for an entire request has
been received.

4.5 Java

The Java API provides methods for developers to create applications that interact with the network.

4.5.1 Elements

Node A Node object encapsulates a node’s identifier and its type. It also includes methods to
request quality of service information, if available.

BaseStation The Basestation object is created by the application to specify connection param-
eters for the Network Manager (see Section 4.5.2) to communicate with the 802.15.4 radio
attached to the gateway.

Request A Request object encapsulates the parameters of a request outlined in Section 3.3.2.
The Request class generates a unique request identifier for each request created.

Event The Event object returns data associated with a particular request. It references the
corresponding request identifier.

4.5.2 Network Manager

The Network Manager is the core of the gateway code. The application can use the following
Network Manager methods to interact with the network.

discoverNodes This method allows the application to discover the nodes in the network. The
Network Manager sends a Node Discover packet and then waits for a specified amount of
time for all the nodes to respond. This delay defaults to 2 seconds but can be modified in
the Constants class.
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activateRequest An application constructs a Request object and then passes it to this function.
The Network Manager sends a Function Activate packet to the corresponding node and stores
the request information locally to use when validating the schedule.

beginProcessing When this method is called, the NSM to validates and generates a communica-
tion schedule and activates the nodes via an Activate Processing packet.

4.5.3 Application Interface

An application must implement the BNSMApplication interface which allows the Network Manager
to communicate with the application.

discoveryComplete This method gives the application a map of node identifiers to their corre-
sponding Node objects. The application can use this information to activate requests.

eventReceived When the NSM has received all fragments of a particular request, it creates an
Event object to return to the application.

4.5.4 Constants

Each node type has a corresponding generated class that encapsulates the local processing functions
and sensors that are possible to activate on that node. These constants are specified through a
Sensor enumeration and a Function enumeration. By using these enumerations when constructing
Request objects, a developer can avoid attempting to activate invalid sensors on a particular node.
In addition, the generated Nodes class encapsulates constants that refer to each available node type.
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Chapter 5

Case Studies

5.1 Event Detection and Reconfiguration

5.1.1 Overview

Bodynet resources can be conserved by activating processing only when necessary, such as when
a particular event is detected. This case study considers a fall detection application. Threshold
based fall detection algorithms are prone to false alarms from daily activities [27]. Once a patient
has fallen, it is useful to analyze additional signals, such as vital sign data, to detect the severity of
the fall. However, constantly collecting vital sign data is likely unnecessary and wastes resources.
The BNSM function abstraction provides the ability to construct systems that can be quickly
reconfigured based on detected events.

A simple fall detector was constructed by polling the Z-axis of the accelerometer at 20 Hertz. If
the maximum value over a 20-sample window exceeds 2g, an event is sent to the gateway indicating
that a second sensor should be activated to return additional information about the situation.

Listing 5.1 shows how a local processing function can return a value only if it exceeds a certain
threshold. In this example, the threshold value is hard coded at 2000 (to represent 2g) but a
parameter could be used to allow the threshold to be dynamically specified.

Listing 5.1: Function that returns a value only if it exceeds a threshold

command i n t 1 6 t Function . execute (
i n t 1 6 t ∗∗ data po in t e r s , u i n t 1 6 t num elements ,
i n t 1 6 t ∗ parameters , i n t 1 6 t ∗ r e t u r n b u f f e r ) {

i n t 1 6 t th r e sho ld = 2000 ;

c a l l Max . c a l c u l a t e ( data po in t e r s , num elements , r e t u r n b u f f e r ) ;

i f ( returnValues [ 0 ] > th r e sho ld ) {
return 1 ;

} else {
return 0 ;

}
}
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Figure 5.1: Event detection and reconfiguration timeline

Mean Std. Dev.
d1 13.5 5.5
d2 15.6 5.9
d3 117.8 13.1
d1 + d2 + d3 146.9 9.9

Table 5.1: Network reconfiguration latency (see Figure 5.1)

The Max function is called to calculate the maximum value over the data window and this
value is copied into return_buffer. The Function Manager uses the return value of the function
to indicate the number of values that the Communication Manager should read from the buffer.
If the value exceeds the threshold, the Function Manager will return 1 signaling that the function
has generated a value and that Communication Manager should add the value to the buffer of
values to be sent. However, if the threshold is not met, the Function Manager will return 0 and
the Communication Manager will know that the function did not generate any values that need to
be sent to the gateway.

The chain of events is shown in Figure 5.1. d1, d2 and d3 represent the duration between the
start of each event in the timeline. The Java application waits for an event from the fall detection
request. Once the request is received, the application creates a request for data from a second node.
The request is then activated in order to generate a new schedule. Once the nodes receive the new
schedule, data from the second node begins to arrive at the gateway.

5.1.2 Latency

Table 5.1 outlines the amount of time elapsed for each action. The mean total time to detect an
event, reconfigure the network and begin receiving data is 146.9 milliseconds. There are two degrees
of variability: schedule generation and sensor initialization time. In this case, schedule generation
is very simple as there are only two nodes at the network each sending data a relatively low data
rate with no latency constraints. A sensor may take some amount of time before its values stabilize,
the latency for receiving data shows when the first packet will arrive at the gateway but the time
to receive useful values will vary by sensor.
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5.1.3 Comparison

Other query processing systems, such as TinyDB, offer the capability to reconfigure networks in
real-time with similar performance [28]. However, the main advantage in BNSM is the ease with
which custom processing can be defined. TinyDB allows developers to define “aggregates”, similar
to functions in BNSM, which perform computation on a series of data. However, the process of
defining new aggregates is far more cumbersome [29]. The BNSM function interface allows local
processing functions to perform complex computation and return multiple values by defining a
TinyOS component and adding it to the appropriate configuration file (see Section 4.3.6). TinyDB
requires the developer to modify multiple parts of the TinyDB framework code. In addition, the
developer must create a custom reader on the gateway to parse any data from any aggregate that
returns more than one value.

5.2 Real-Time Classification

Many classification algorithms have been developed to perform real-time action recognition [30,
22, 31]. Some have been implemented only in simulation, others have been implemented in wired
networks and others have been tested in actual bodynets. This case-study investigates the compar-
ison of simulated and real-time performance of a simple motion classifier. The goal is to show how
BNSM simplifies real-time implementation, allowing algorithm developers to verify that their algo-
rithms are feasible for real-time performance. In a real-time classifier, it is harder to segment data
and ensure consistency of inputs. This example shows that classification accuracy can be severely
impacted by inaccurate segmentation. In addition, processing should produce a result without
excessive delay, as inputs are continuously entering the system. This example shows that, given
a correct segmentation algorithm, a simple classifier can quickly produce accurate classification
results.

5.2.1 Data Collection

A set of actions were designed to mimic dumbbell exercises. The actions are: 1) Curl Up, 2) Curl
Down, 3) Lateral Raise Up, 4) Lateral Raise Down, 5) Front Raise Up, 6) Front Raise Down as well
as four static positions: 7) Side, 8) Raised Lateral, 9) Raised Front and 10) Curled Up. Fifty trials
of each of each action were performed with the accelerometer node placed in the palm of the hand
and held like a dumbbell. Data was sampled from accelerometer X-, Y- and Z-axes at 40 Hertz.

A data collection application was built using BNSM. It provides a GUI interface to start and
stop trials and save data to a file. The core of the application are the three requests specified to
activate the triaxial accelerometer. For example, the request for the accelerometer X-axis is shown
in Listing 5.2.

5.2.2 Fixed Window

Simulation

The average number of samples collected in each trial ranged from 81 to 169, with 122.8 being the
average. Given this information, the first 120 samples (3 seconds) of data are used to represent
the morphology of the signal. For trials that are shorter, the last sample is repeated to create 120

37



Listing 5.2: Request for raw data from X-axis of accelerometer

int window = 1 ;
int s h i f t = 1 ;
int sampl ingPer iod = 25 ; //40 Hz
Request x = new Request ( node ,

AccelNode . Function .RAWDATA. intValue ( ) ,
AccelNode . Sensor .ACCEL X. intValue ( ) ,
samplingPeriod , window , s h i f t ) ;

1 2 3 4 5 6 7 8 9 10
1 732.57 1538.1 2545.8 1722.6 2586.1 1756.1 2838.5 2716.6 2542.6 2820.3
2 1468.7 539.77 1610.9 2521.6 1649.9 2627.9 2948.3 2655.5 2492.2 2881
3 2456.4 1565.7 358.96 2812.9 819.65 3006.5 2580.1 3198.9 3034.4 2477.3
4 1599.8 2502.5 2826.4 419.08 3012 793.44 2158.7 3434.1 3251.1 2083.4
5 2514.6 1634.3 845.16 3007.3 421.71 3068 2775.9 2910.4 2729 2893.9
6 1628.5 2593.6 3005.7 776.24 3057.8 367.65 2288.9 3243.4 3040.8 2466.1
7 2725.7 2897.8 2564.1 2124 2752.4 2260.4 63.517 4515.2 4306.8 983.36
8 2626.7 2619.1 3197.1 3428.5 2896.4 3243.7 4525.3 137.57 336.79 4635.8
9 2408.3 2416.1 2998.5 3209.7 2685.9 3011.2 4291.2 308.48 108.54 4425.5
10 2698.2 2823 2453.7 2040.6 2864.6 2432.1 968.23 4616 4437 52.513

Table 5.2: Mean distance of trial to the center of each class

samples. This is representative of if the person had held the movement for the remaining samples.
If the trial is longer, the remaining samples are simply not used.

Each trial is split into 12 windows of 10 samples each. A window is characterized by the mean
value of the data in the window. The center of each action class is represented by a 12-point
morphology vector, created by using the mean value of all trials.

For each class, the Euclidean distance of each trial to the center of every class was calculated
to yield the distance matrix shown in Table 5.2. The mean distance from a trial to the center of its
own class is 320.2. The mean distance from a trial to all other classes is 2337.4. The mean distance
from a trial to the next closest class is 883.8. This suggests that the using Euclidean distance is a
reasonable method to classify an action assuming the start and end of the trial are known.

The classification algorithm calculates the distance from a trial to each class and selects the
class with the minimum distance. If this distance is greater than 1000, the trial is rejected as
unable to classify. To simulate the performance of the classifier in a real-time environment, where
the start and end of an action is not known, trials are created where the data was offset. To create
a trial with a positive offset t, the first t of 12 morphology points are discarded and the last point
is replicated t times and added to the end of the vector. This simulates beginning the classification
on a data frame that begins t windows after the action start. A negative offset is constructed in
a similar fashion: points from the end of the vector are discarded and points at the beginning
of the vector are replicated. The results for classification accuracy for various offsets is shown in
Figure 5.2. From this, we can see that classification accuracy drops sharply for an offset of more
than 2 in either direction. This makes sense because the morphology is designed to represent the
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Figure 5.2: Simulated Classification Accuracy

shape of the signal from start to finish.

Real-Time

The real-time classifier was made by modifying the data collector, as shown in Listing 5.3. The
new request reflects the window size of 10 samples and the processing function that calculates the
mean value of the window.

Listing 5.3: Request for mean value from X-axis of accelerometer

int window = 10 ;
int s h i f t = 10 ;
int sampl ingPer iod = 25 ; //40 Hz
Request x = new Request ( node ,

AccelNode . Function .MEAN. intValue ( ) ,
AccelNode . Sensor .ACCEL X. intValue ( ) ,
samplingPeriod , window , s h i f t ) ;

The classifier GUI allows the user to indicate the starting and ending points of the movement.
The real-time results are shown in Figure 5.3. Determining the end of a movement via user input
introduces a non-negligible source of error. Accuracy does not drop as sharply for an offset of 1
as it does in the simulated graph, possibly caused by a time lag of the user indicating that the
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Figure 5.3: Real-Time Classification Accuracy

movement is finished. A good segmentation algorithm may be able to overcome this, but this graph
shows that a poor segmentation algorithm will greatly affect classification accuracy.

Analysis

In general, the real-time classifier is slightly less accurate than the simulated results. Table 5.3
compares the simulated and real-time accuracy for the most accurate offset of each movement. For
some movements, the most accurate offset is consistently one window prior or later to the end of the
movement indicated by the user. This confirms human error introduced by having the user specify
the movement duration. These classification results show that accurate motion classification can
be achieved with a relatively simple algorithm given accurate action segmentation. Implementing
the classifier in real-time also shows that simulation-only classification results can be misleading as
they do not necessarily consider all factors involved in real-time implementation.

5.3 Deployment

Integrating and deploying Body Sensor Networks is a largely unexplored area as many applications
are still in their infancy. This section outlines a case study in integrating a bodynet with a Wi-Fi
based routing network for deployment in the home.

The CareNet system (see Figure 5.4) is a two-tier routing system developed by Vanderbilt and
UC Berkeley [32]. It is designed to easily deploy Body Sensor Networks in a home or building. Each
instrumented room contains a Stargate board with an attached 802.15.4 receiver and an optional
video camera. The Stargate boards communicate with the central home computer using an ad-hoc
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Action Simulated Real Time
Curl Up 78 73.3
Curl Down 90 78.6
Lateral Raise Up 98 90
Lateral Raise Down 94 100
Front Raise Up 94 83.3
Front Raise Down 100 100
Side 100 100
Raised Lateral 100 100
Raised Front 96 100
Curled Up 100 100

Table 5.3: Simulated vs. Real-Time Accuracy

Figure 5.4: CareNet Architecture

802.11 network. During operation, when an individual is near a particular Stargate, the CareNet
system activates the attached video camera. The system timestamps and sends the packets from
the individual bodynet as well as corresponding video data to the central computer. An individual
is free to move around the house and data will arrive the central PC as if the communication
happened directly. The sensor and video data collected can be played back using a viewer shown
in Figure 5.5.

This system was deployed in the homes of four elderly patients to collect data about their daily
activities. The subject was instructed to do a set of controlled movements and then allowed to
continue about their daily movements in a normal fashion. The signal data was then correlated
with video data to aid researchers in developing unsupervised motion recognition systems.

This case study demonstrates the design considerations involved in deploying an end-to-end
body sensor network. The CareNet deployment increases lifetime of the on-body nodes as packets
are routed to the gateway over Wi-Fi rather than through an 802.15.4 mesh network, saving on
communication and power consumption. Bandwidth limitations and 802.15.4 interference issues
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Figure 5.5: CareNet Data Viewer

are avoided by using the more-reliable 802.11 network to forward both data and video packets.
Deployment of the system is easy because it can connect to any computer with an 802.11 connection
without requiring additional hardware to be attached to the machine.
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Chapter 6

Conclusion and Future Work

This project has successfully shown the design, implementation and effectiveness of a framework for
Body Sensor Networks. This framework significantly improves the development process of bodynet
applications.

BNSM has been released as an open-source project to allow its development to continue and
its userbase to grow1. Future work includes further development and refinement of the framework
functionality. In particular, functionality allowing the gateway to disseminate data and request node
status has yet to be fully implemented. However, more important than additional functionality, the
major future task lies in validation via implementation of real applications. Body Sensor Network
research projects at the University of California at Berkeley, University of Texas at Dallas, Cornell
University, Vanderbilt University and Telecom Italia Research plan to use elements of the BNSM
framework to create real-time applications.

With this project and numerous others across the world, the futuristic vision of real-time wear-
able healthcare monitoring is quickly becoming a reality.

1Available online at http://bnsm.sourceforge.net

43



References

[1] Tmote Sky Data Sheet, Moteiv Corporation, 2006. [Online]. Available:
http://www.sentilla.com/pdf/eol/tmote-sky-datasheet.pdf

[2] MICAz Data Sheet, Crossbow. [Online]. Available:
http://www.xbow.com/Products/Product pdf files/Wireless pdf/MICAz Datasheet.pdf

[3] SmartMesh M2510 Data Sheet, Dust Networks. [Online]. Available:
http://www.dustnetworks.com/docs/M2510.pdf

[4] P. Levis, S. Madden, J. Polastre, R. Szewczyk, K. Whitehouse, A. Woo, D. Gay,
J. Hill, M. Welsh, E. Brewer, and D. Culler, “Tinyos: An operating system for
sensor networks,” in Ambient Intelligence, 2005, pp. 115–148. [Online]. Available:
http://dx.doi.org/10.1007/3-540-27139-2 7

[5] A. Dunkels, “Programming Memory-Constrained Networked Embedded Systems,” Ph.D.
dissertation, Swedish Institute of Computer Science, Feb. 2007. [Online]. Available:
http://www.sics.se/ adam/dunkels07programming.pdf

[6] E680i Manual, Motorola.

[7] Stargate Data Sheet, Crossbow Technology. [Online]. Available:
http://www.xbow.com/Products/Product pdf files/Wireless pdf/Stargate Datasheet.pdf

[8] T. Pering, P. Zhang, R. Chaudhri, Y. Anokwa, and R. Want, “The PSI
board: Realizing a phone-centric body sensor network,” in 4th International
Workshop on Wearable and Implantable Body Sensor Networks (BSN 2007), vol.
Volume 13. Springer Berlin Heidelberg, 2007, pp. 53–58. [Online]. Available:
http://www.springerlink.com/content/g26742734141r167/

[9] LIS3LV02DQ Data Sheet, ST Microelectronics. [Online]. Available:
http://www.st.com/stonline/products/literature/ds/11115.pdf

[10] IDG 300 Data Sheet, InvenSense. [Online]. Available:
http://www.invensense.com/shared/pdf/IDG 300 Datasheet.pdf

[11] V.-P. Sepp, J. Visnen, P. Kauppinen, J. Malmivuo, and J. Hyttinen, “Measuring respirational
parameters with a wearable bioimpedance device,” in 13th International Conference on
Electrical Bioimpedance and the 8th Conference on Electrical Impedance Tomography,
vol. Volume 17. Springer Berlin Heidelberg, 2007, pp. 663–666. [Online]. Available:
http://www.springerlink.com/content/h0k54844264264v1/

44



[12] M. S. Hansen and S. Sta, “Practical evaluation of ieee 802.15.4/zigbee medical sensor net-
works,” Master’s thesis, Norwegian University of Science and Technology, 2006.

[13] R. C. Shah, L. Nachman, and C. yih Wan, “On the performance of bluetooth and ieee 802.15.4
radios in a body area network,” in BodyNets ’08: Proceedings of the Third International
Conference on Body Area Networks, 2008.

[14] J. Shin, U. Ramachandran, and M. Ammar, “On improving the reliability of packet delivery
in dense wireless sensor networks,” Computer Communications and Networks, 2007. ICCCN
2007. Proceedings of 16th International Conference on, pp. 718–723, 13-16 Aug. 2007.

[15] Technical Overview of Time Synchronized Mesh Protocol (TSMP), Dust Networks. [Online].
Available: http://www.dustnetworks.com/docs/TSMP Whitepaper.pdf

[16] J. Perry, Gait Analysis : Normal and Pathological Function. Delmar Learning, January 1992.

[17] E. Jovanov, A. Milenkovic, C. Otto, and P. de Groen, “A wireless
body area network of intelligent motion sensors for computer assisted physi-
cal rehabilitation,” J Neuroeng Rehabil, vol. 2, Mar 2005. [Online]. Available:
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=552302

[18] G. T. Carter, J. J. Han, R. T. Abresch, and M. P. Jensen, “The Importance of
Assessing Quality of Life in Patients with Neuromuscular Disorders,” American Journal
of Hospice and Palliative Medicine, vol. 23, no. 6, pp. 493–497, 2007. [Online]. Available:
http://ajh.sagepub.com/cgi/reprint/23/6/493.pdf

[19] A. Kochera, “Falls among older persons and the role of the home: An analysis
of cost, incidence, and potential savings from home modification,” March 2002.
[Online]. Available: http://www.aarp.org/research/housing-mobility/accessibility/aresearch-
import-788-IB56.html

[20] E. Taub, G. Uswatte, and R. Pidikiti, “Constraint-Induced Movement Therapy: a new family
of techniques with broad application to physical rehabilitation–a clinical review.”

[21] R. Jafari, R. Bajcsy, S. Glaser, B. Gnade, M. Sgroi, and S. Sastry, “Platform design for health-
care monitoring applications,” High Confidence Medical Devices, Software, and Systems and
Medical Device Plug-and-Play Interoperability, 2007. HCMDSS-MDPnP. Joint Workshop on,
pp. 88–94, 25-27 June 2007.

[22] D. Karantonis, M. Narayanan, M. Mathie, N. Lovell, and B. Celler, “Implementation of a real-
time human movement classifier using a triaxial accelerometer for ambulatory monitoring,”
Information Technology in Biomedicine, IEEE Transactions on, vol. 10, no. 1, pp. 156–167,
Jan. 2006.

[23] A. Yang, R. Jafari, P. Kuryloski, S. Iyengar, S. S. Sastry, and R. Bajcsy, “Distributed
segmentation and classification of human actions using a wearable motion sensor network,”
EECS Department, University of California, Berkeley, Tech. Rep. UCB/EECS-2007-143, Dec
2007. [Online]. Available: http://www.eecs.berkeley.edu/Pubs/TechRpts/2007/EECS-2007-
143.html

45



[24] V. Shnayder, M. Hempstead, B. rong Chen, G. W. Allen, and M. Welsh, “Simulating the
power consumption of large-scale sensor network applications,” in SenSys ’04: Proceedings of
the 2nd international conference on Embedded networked sensor systems. New York, NY,
USA: ACM, 2004, pp. 188–200.

[25] Spine White Paper, Telecom Italia. [Online]. Available:
http://spine.tilab.com/papers/2007/WhitePaper.pdf

[26] O. Ben-Kiki, C. Evans, and I. Net, YAML Aint Markup Language (YAML) Version 1.1, 2008.
[Online]. Available: http://yaml.org/spec/cvs/current.html

[27] J. Chen, K. Kwong, D. Chang, J. Luk, and R. Bajcsy, “Wearable sensors for reliable
fall detection,” Engineering in Medicine and Biology Society, 2005. IEEE-EMBS 2005.
27th Annual International Conference of the, pp. 3551–3554, 2005. [Online]. Available:
http://ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=1617246

[28] S. R. Madden, “The design and evaluation of a query processing architecture for sensor
networks,” Ph.D. dissertation, UNIVERSITY OF CALIFORNIA, BERKELEY, 2003.
[Online]. Available: http://portal.acm.org/citation.cfm?id=1123678

[29] E. Shvets, Extending TinyDB: Creating Custom Aggregates, 2003. [Online]. Available:
http://www.sabanciuniv.edu/mdbf/comnet/eng/SensorWeb/pdfler/tinyos/tinydbagg.pdf

[30] M. Mathie, B. Celler, N. Lovell, and A. Coster, “Classification of basic daily movements using
a triaxial accelerometer,” Med Biol Eng Comput, vol. 42, pp. 679–687, Sep 2004.

[31] J. Lee and I. Ha, “Real-time motion capture for a human body using accelerometers,” Robotica,
vol. 19, no. 6, pp. 601–610, 2001.

[32] S. Jiang, Y. Xue, Y. Cao, S. Iyengar, R. Bajcsy, P. Kuryloski, S. Wicker, and R. Jafari,
“Carenet: An integrated wireless sensor networking environment for remote healthcare,” in
BodyNets ’08: Proceedings of the Third International Conference on Body Area Networks,
2008.

46


