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Abstract
The success of MapReduce has sparked the development
of a diverse array of cluster computing frameworks. We
believe that no single framework will be optimal for all
applications, and that organizations will instead want to
run multiple frameworks in the same cluster. Further-
more, to ease development of new frameworks, it is criti-
cal to identify common abstractions and modularize their
architectures. To achieve these goals, we propose Nexus,
a low-level substrate that provides isolation and efficient
resource sharing across frameworks running on the same
cluster, while giving each framework maximum control
over the scheduling and execution of its jobs. Nexus
fosters innovation in the cloud by letting organizations
run new frameworks alongside existing ones and by let-
ting framework developers focus on specific applications
rather than building one-size-fits-all frameworks.

1 Introduction

Cluster computing has become mainstream. Industry and
academia are running applications ranging from finance
to physics on clusters of commodity servers [6], fueled
by open-source platforms like Hadoop [3] and cloud ser-
vices like EC2 [1]. Driven by this wide range of applica-
tions, researchers and practitioners have been developing
a multitude of cluster computing frameworks. MapRe-
duce [23] provided a simple, low-level programming
model. Sawzall [39] and Pig [38] developed higher-
level programming models on top of MapReduce. Dryad
[32] provided a more general execution layer – data flow
DAGs. Recently, Google announced Pregel [35], a spe-
cialized framework for graph computations.

It seems clear that frameworks providing new pro-
gramming models, or new implementations of existing
models, will continue to emerge, and that no single
framework will be optimal for all applications. Conse-
quently, organizations will want to run multiple frame-

works, choosing the best framework for each applica-
tion. Furthermore, for economic reasons, organizations
will want to run these frameworks in the same cluster.
Sharing a cluster between frameworks increases utiliza-
tion and allows the frameworks to share large data sets
that may be too expensive to replicate.

To allow frameworks to share resources, developers
have so far taken the approach of building frameworks
on top of a common execution layer that performs shar-
ing. For example, Pig turns SQL-like queries into se-
ries of Hadoop jobs. Unfortunately, this approach may
limit performance – for example, Pig cannot pipeline
data between MapReduce stages because they are sep-
arate Hadoop jobs. Other efforts have proposed more
general execution layers, such as Dryad [32], on which a
variety of frameworks can run. However, general execu-
tion layers are more complex than specialized ones, and
they still incur the risk that a new programming model
cannot be expressed over the execution layer – for ex-
ample, the Bulk Synchronous Processes model used in
Pregel, where long-lived processes exchange messages,
cannot be expressed as an acyclic data flow in Dryad.

The problem with the single execution layer approach
is that a single entity is performing two tasks: isolating
resources between jobs and managing execution within
a job. We think that a far better approach, following the
exokernel model [25], is to define a small resource isolat-
ing kernel that is independent of any framework, and let
each framework control its own internal scheduling and
execution. In this paper, we propose Nexus, an isolation
and resource sharing layer for clusters based on this de-
sign. Nexus only places a minimal set of requirements
on frameworks to enable efficient resource sharing. Be-
yond that, it aims to give frameworks maximum control
over their scheduling and execution.

Sharing clusters is not a new problem. Multiple cluster
schedulers have been developed in the High Performance
Computing (HPC) and Grid communities [42, 41, 30, 47,
19]. As a general rule, these systems ask users to submit
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jobs to a queue and to request a number of resources (ma-
chines, cores, etc) for each job. Jobs are then launched
when enough machines become free. While this model
works well for batch-oriented HPC workloads, it faces
two important challenges in the environments that frame-
works like Hadoop are used in:

1. Interactive workloads: Clusters in organizations
such as Facebook are being used for interactive ad-
hoc queries and time-sensitive production applica-
tions in addition to batch jobs [45]. The coarse-
grained, static nature of allocations in HPC sched-
ulers makes such workloads difficult to support. Hav-
ing production jobs wait in line behind a large user
job would be unacceptable, as would reserving part
of the cluster for production jobs and leaving it idle
when they are absent. Instead, schedulers for Hadoop
[45] and Dryad [33] varying jobs’ allocations dynam-
ically as new jobs are submitted. This is possible be-
cause Hadoop and Dryad jobs consist of small inde-
pendent tasks, so the number of machines a job is
running on can change during its lifetime.

2. Locality requirements: Unlike CPU-intensive HPC
jobs, MapReduce and Dryad achieve high perfor-
mance by placing computations on the nodes that
contain their input data. While some grid sched-
ulers let jobs specify locality constraints at the level
of geographic sites, most do not let jobs control their
placement at the level of nodes. Furthermore, as the
number of cluster computing frameworks grows, we
expect the complexity and diversity of frameworks’
placement requirements to increase.

Nexus addresses these challenges through two main
design principles:

1. Fine-grained sharing: Nexus asks that frameworks
split up their work into tasks, and makes scheduling
decisions at the level of tasks. This is the only major
requirement we make of frameworks. Nexus can run
tasks from multiple frameworks on the same node,
isolating them using various OS mechanisms. Tasks
can be viewed as a form of cooperative time-sharing
between frameworks.

2. Two-level scheduling: Nexus gives frameworks
choice in which resources they use through a two-
level scheduling model. At the first level, Nexus de-
cides how many resources to give each framework
based on an organizational allocation policy such
as fair sharing. At the second level, frameworks
decide which of the available resources to use and
which tasks to run on each machine. This is achieved
through a mechanism called resource offers.

Although we have architected Nexus to let organiza-
tions define their own allocation policies, we have also

defined one policy that will be widely applicable: a gen-
eralization of weighted fair sharing to multiple resources
that takes into account the fact that frameworks may need
different amounts of CPU, memory, and other resources.

Implications The model enabled by Nexus, where a
single platform allows multiple frameworks to run on a
cluster, has wide-ranging implications for cluster com-
puting. First, this model accelerates innovation by let-
ting framework developers build specialized frameworks
targeted at particular problems instead of one-size-fits-
all abstractions. For example, a researcher that develops
a new framework optimized for machine learning jobs
can give this framework to a company that primarily uses
Hadoop and have it run alongside Hadoop.

Second, the isolation that Nexus provides between
frameworks is valuable even to organizations that only
wish to run a single software package, e.g. Hadoop. First,
Nexus allows these organizations to run multiple ver-
sions of Hadoop concurrently, e.g. a stable version for
production jobs and a faster but less stable version for
experimental jobs. Second, organizations may wish to
run one separate Hadoop instance per MapReduce job
for fault isolation. The stability of the Hadoop master
is a serious concern in large multi-user Hadoop clusters
[12]; if the master crashes, it takes down all jobs. Nexus
lets each job run its own MapReduce master, limiting the
impact of crashes.1 We believe that this second benefit of
isolation could drive adoption of Nexus, facilitating the
more important first benefit of accelerating innovation.

Finally, we are also exploring using Nexus to share
resources between workloads other than data-intensive
cluster computing frameworks. For example, we have
developed an Apache web farm “framework” that runs
multiple, load-balanced Apache servers as its tasks and
changes the number of tasks it uses based on load. Shar-
ing resources between front-end and back-end workloads
is very attractive to web application providers that expe-
rience diurnal load cycles. We have also ported MPI to
run over Nexus, allowing a variety of existing scientific
applications to share resources with new frameworks.

Evaluation To evaluate Nexus, we have ported two
popular cluster computing frameworks to run over it:
Hadoop and MPI. To validate our hypothesis that special-
ized frameworks can provide value over general ones, we
have also built a new framework on top of Nexus called
Spark, optimized for iterative jobs where a data set is
reused across many short tasks. This pattern is common
in machine learning algorithms. Spark provides a simple
programming interface and can outperform Hadoop by
8x in iterative workloads. To push the boundaries of the
isolation and dynamic scheduling provided by Nexus, we

1The Nexus master is easier to make robust than the Hadoop master
because it has a simpler role and it needs to change less often.
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have implemented a load-balanced elastic Apache web
server farm. Finally, we have verified that resource offers
let Hadoop achieve comparable data locality running on
Nexus to running alone.

Outline This paper is organized as follows. Section 2
explains the environment that we have designed Nexus
to run in and details its assumptions and goals. Section
3 presents the Nexus architecture. Section 4 presents our
current scheduling policy – a generalization of weighted
fair sharing for multiple resources. Section 5 describes
our implementation of Nexus and of the frameworks we
run over it. Section 6 presents experimental results. We
include a discussion in Section 7, survey related work in
Section 8, and conclude in Section 9.

2 Assumptions and Goals

In this section, we explain the data center environment
and workload that Nexus is targeted for, the assumptions
it makes, and the goals it seeks to achieve.

2.1 Workload

Our target environment for Nexus is clusters of commod-
ity machines shared by multiple users for analytics work-
loads. Examples include the back-end clusters at large
web companies that MapReduce was developed for, re-
search clusters at universities, and scientific clusters such
as the Google/IBM/NSF Cluster Exploratory [11].

As an example of a workload we aim to support, con-
sider the data warehouse at Facebook [4, 8]. Facebook
loads logs from its production applications into a 600-
node Hadoop cluster, where they are used for applica-
tions such as ad targeting, spam detection, and ad-hoc
business intelligence queries. The workload includes
“production” jobs that directly impact customers, such as
identifying spam, long-running “experimental” jobs such
as tests for new spam detection algorithms, and “interac-
tive” jobs where an analyst submits a query (e.g. “what
fraction of Spanish users post videos”) and expects an
answer within minutes. If, at some point in time, only a
single job is running in the cluster, this job should be al-
located all of the resources. However, if a production job,
or a job from another user, is then submitted, resources
need to be given to the new job within tens of seconds.

To implement dynamic resource sharing, Facebook
uses a fair scheduler within Hadoop that works at the
granularity of map and reduce tasks [45]. Unfortunately,
this means that the scheduler can only handle Hadoop
jobs. If a user wishes to write a new spam detection al-
gorithm in MPI instead of MapReduce, perhaps because
MPI is more efficient for this job’s communication pat-
tern, then the user must set up a separate MPI cluster and
import data into it. The goal of Nexus is to enable dy-

namic resource sharing, including policies such as fair
sharing, between distinct cluster computing frameworks.

2.2 Allocation Policies

Nexus decides how many resources to allocate to each
framework using a pluggable allocation module. Orga-
nizations may write their own allocation modules, or use
the ones we have built. Because of its use in Hadoop and
Dryad schedulers [45, 5, 33], the policy we have focused
on most is weighted fair sharing. One of our contribu-
tions over these Hadoop and Dryad schedulers is that
we allow tasks to have heterogeneous resource require-
ments. We have developed a generalization of weighted
fair sharing for multiple resources that we present in Sec-
tion 4. No matter which allocation policy is used, our
goal is to be able to reallocate resources rapidly across
frameworks when new jobs are submitted, so that jobs
can start within tens of seconds of being submitted. This
is necessary to support interactive and production jobs in
environments like the data warehouse discussed above.

2.3 Frameworks

Organizations will use Nexus to run cluster computing
frameworks such as Hadoop, Dryad and MPI. As ex-
plained in the Introduction, we expect that multiple, iso-
lated instances of each framework will be running.

Nexus aims to give frameworks maximum flexibility,
and only imposes a small set of requirements on them to
support resource sharing. Most importantly, Nexus asks
frameworks to divide their work into units called tasks.
Nexus makes scheduling decisions at task boundaries –
when a task from one framework finishes, its resources
can be given to another framework. However, it leaves
it up to the frameworks to choose which task to run on
which node and which resources to use, through a mech-
anism called resource offers described in Section 3.2.

To allow resources to be reallocated quickly when new
frameworks join the system, Nexus expects frameworks
to make their tasks short (tens of seconds to minutes in
length) when possible. This is sufficiently short that in
a large cluster, there will be tens of tasks finishing per
second. For example, in a 600-node cluster with 4 tasks
per node and an average task length of one minute, there
will be 40 tasks finishing per second, and a new frame-
work could achieve a share of 10% of the cluster (i.e. 240
tasks) in 6 seconds. To encourage frameworks to use
short tasks, we make tasks cheap to launch by reusing
“executor” processes from the same framework between
tasks, as explained in Section 3.1. Interestingly, frame-
works such as Hadoop already use short tasks for fault-
tolerance: First, having short tasks reduces the time it
takes to recover from a failed task. Second, if a node that
contains outputs from multiple tasks fails, these tasks can
be re-run in parallel on the other nodes in the cluster [23].
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If a new framework is not being allocated resources
quickly enough because there are too many long tasks
running, we also reserve the right to kill tasks from run-
ning frameworks after an administrator-specified time-
out. Cluster computing frameworks already need to tol-
erate losing tasks due to hardware failures, so requiring
them to tolerate task killing is not onerous. Frameworks
with long-lived tasks, such as MPI jobs, may use check-
pointing [29] to recover and scale down after tasks are
killed. Alternatively, their users can ask the framework
to use a smaller share of the cluster than the user’s allo-
cation so that it never needs to be killed.

2.4 Summary

We detail the assumptions and goals of Nexus below.

Assumptions:

1. Frameworks decompose work into tasks. If rapid
reallocation of resources in response to workload
changes is desired, then frameworks should either
make their tasks short (seconds to minutes) or avoid
exceeding their share of the cluster.

2. Frameworks tolerate losing tasks. Nexus may kill
tasks to enforce scheduling policies.

3. Single administrative domain. Our current imple-
mentation does not attempt to make security and pri-
vacy guarantees in the case of adversarial users.

4. Allocation policies are at the level of frameworks.
In order to have frameworks map onto organiza-
tional entities such as users, separate users are ex-
pected to use separate framework instances.

Goals:

1. Maximum flexibility for frameworks. Frame-
works should be given maximum flexibility in how
they schedule and execute their tasks. Scheduling
concerns that are common in data-intensive frame-
works, such as data locality, should be supported.

2. Dynamic, responsive scheduling. Frameworks’ al-
locations should change as new jobs are submitted,
through policies such as fair sharing, priority, etc.

3. Performance isolation for processes from different
frameworks running on the same node.

4. Support for pluggable allocation policies.
5. Support for heterogeneous resource demands.

Different tasks, even within a framework, may need
different amounts of resources (CPU, memory, etc).

6. Support for heterogeneous nodes. Cluster nodes
may have different amounts of CPU, memory, etc.

App 

Hadoop 
master 

Hadoop 
slave 

task task 

Hadoop 
slave 

task task 

Hadoop 
slave 

task task 

Nexus slave 

Dryad 
executor 

task task 

Nexus slave 

Dryad 
executor 

task 

Hadoop 
executor 

task 

Nexus slave 

Hadoop 
executor 

task task 

App 1 

Nexus 
master 

Hadoop 
scheduler 

App 2 

Dryad 
scheduler 

Hadoop Nexus 

Figure 1: Comparing the architectures of Hadoop and Nexus.
The shaded regions make up Nexus. Hadoop can run on top of
Nexus, alongside Dryad.

3 Nexus Architecture

3.1 System Components

Nexus consists of a master process managing a num-
ber of slave daemons, one on each node in a cluster.
Frameworks wishing to use Nexus each register a sched-
uler process with the Nexus master in order to be as-
signed resources (registration also associates a user with
the framework, for use by allocation policies). Resource
allocation is performed through a mechanism called re-
source offers that we describe in Section 3.2, which lets
frameworks pick which available resources to use. When
a framework accepts resources on a particular slave, it
can launch tasks to use the resources by giving Nexus
an opaque task descriptor for each task. Each descriptor
is passed to a framework-specific executor process that
Nexus starts on the slave,2 which runs the task. The ex-
ecutor is shared by all of a framework’s tasks on a given
slave, allowing the framework to amortize initialization
costs and to keep data cached in memory between tasks.3

An executor is free to run each task in its own thread, or
to spawn any number of separate processes for each task,
depending on the level of isolation it desires between its
tasks. Executors from different frameworks are isolated
from one another, as described in Section 3.3. Finally, as
executors finish tasks, they send status updates to inform
the master that resources can be re-allocated.

Nexus reports failures to frameworks but expects them
to implement their own recovery mechanisms. In the
event of a task failure, an executor can send a status up-
date signaling the loss of the task. In the event of an
executor failure, the executor and its child processes are
killed and the framework’s scheduler is informed of the

2The executor is fetched from a shared file system such as HDFS.
3If a slave accrues idle executors from too many frameworks, how-

ever, Nexus may kill some of them when the slave is low on memory.
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lost executor. Finally, in the event of a node failure, the
framework’s scheduler is informed of a lost slave.

Figure 1 shows the components of Nexus and com-
pares them with those of Hadoop. Many elements
of Nexus—a scheduler, executors, tasks, and status
updates—map closely to elements of Hadoop and other
cluster computing frameworks such as Dryad. Nexus
factors these elements out into a common layer, reducing
the burden on framework developers and giving frame-
works a common API for accessing resources so that they
can share clusters. The close mapping of Nexus compo-
nents to components of existing frameworks also makes
porting frameworks to Nexus fairly straightforward. For
example, our port of Hadoop reuses Hadoop’s master
as a scheduler and Hadoop’s slave as an executor, and
just changes the communication between them to pass
through Nexus.

We note that Nexus imposes no storage or communi-
cation abstractions on frameworks. We expect data to be
shared through a distributed file system such as GFS [27]
or Hadoop’s HDFS [3] running on each slave alongside
Nexus. Tasks are free to communicate using sockets.

3.2 Resource Allocation

The main challenge with Nexus’s two-level scheduling
design is ensuring that each framework gets resources
that it wishes to use. For example, a Hadoop job might
want to run tasks on the nodes that contain its input file,
an iterative job might prefer to run tasks on nodes where
it already has executors to re-use data cached in memory,
and an MPI job might need 4 GB of RAM per task.

Our solution to this problem is a decentralized two-
level scheduling mechanism called resource offers. At
the first level, an allocation module in the master de-
cides which framework to offer resources to when there
are free resources in the system, following an organiza-
tional policy such as fair sharing. At the second level,
frameworks’ schedulers may accept or reject offers. If a
framework rejects an offer, it will continue to be “below
its share,” and it will therefore be offered resources first
in the future when resources on new nodes become free.

In detail, whenever there are free resources, Nexus
performs the following steps:

1. Allocate: The allocation module determines which
framework(s) to offer the free resources to and how
much to offer to each framework.

2. Offer: Frameworks are sent a list of resource of-
fers. A resource offer is a (hostname, resources) pair,
where “resources” is a vector containing the number
of free CPU cores, GB of RAM, and potentially other
resources on a given machine.

3. Accept/Reject: Frameworks respond to offers with
a possibly empty list of (task descriptor, hostname,

resources) tuples. A framework is free to claim as
many total resources on a machine as were in the of-
fer and to divide these between several tasks.

A few more details are needed to complete the model.
First, frameworks will often always reject certain re-
source offers. To short-circuit the rejection process,
frameworks can provide filters to the master. Two types
of filters we support are “only offer machines from list
L” and “only offer machines with at least R resources
free”. A filter may last indefinitely, or get decommis-
sioned after a framework-specified timeout. A frame-
work may also choose to update its filters at any time.
By default, any resources rejected during an offer have
a temporary 1-second filter placed on them, to minimize
the programming burden on framework developers who
do not wish to constantly update their filters.

Second, to accommodate frameworks with large re-
source requirements per task, Nexus allows administra-
tors to set a minimum offer size on each slave, and it will
not offer any resources on that slave until this minimum
amount is free. Without this feature, a framework with
large resource requirements (e.g. 2 CPUs and 4 GB RAM
per task) might starve in a cluster that is filled by tasks
with small requirements (e.g. 1 CPU and 1 GB RAM),
because whenever a small task finishes and its resources
are re-offered, the framework with large requirements
cannot accept the offer but frameworks with smaller re-
quirements can. We currently ask administrators to man-
ually configure per-machine minimum offer sizes, be-
cause there is a tradeoff between the largest task sup-
ported and the amount of fragmentation incurred when
resources wait idle for a large enough offer to form. We
are investigating making this process more automatic.

3.2.1 Example

To illustrate how resource offers work, suppose that two
MapReduce frameworks, F1 and F2, each wish to run a
map function on a large data set that is distributed across
all of a cluster’s nodes. Suppose that the both frame-
works’ tasks require 1 CPU core and 1 GB of RAM each,
and that each node has 2 cores and 2 GB of RAM. Fi-
nally, suppose that the cluster’s allocation policy is fair
sharing: each framework should get an equal number of
tasks.4 Then, the allocation module might implement the
following algorithm: “whenever resources become free,
offer them to the framework with the fewest resources
whose filters do not block the offer.”

When the first framework, say F1, registers, it is of-
fered all of the resources in the cluster and starts tasks
everywhere. After F2 registers, it is offered the resources
that free up as tasks from F1 finish, until both frame-
works have an equal number of resources. At this point,

4We discuss how to define weighted fair sharing for multiple re-
sources in depth in Section 4.
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some nodes will be running one task from each frame-
work, some nodes will be running two tasks from F1, and
some nodes will be running two tasks from F2. For some
time, both frameworks will stay running in the same set
of locations, because whenever a task from a particular
framework finishes, its resources will be offered back to
the same framework (because that framework is now be-
low its fair share), and the framework will launch a new
task on the same node. If this situation continued indefi-
nitely, data locality would suffer because F1 would never
get to run on nodes that only F2 has tasks on, and vice-
versa; we call this problem sticky slots [45]. However,
once one of the frameworks, say F1, finishes reading
all the data that it wanted to read on a particular node,
it starts filtering out resources on this node. These re-
sources are offered to F2, which accepts them. F2 now
has a higher share of the cluster than F1. Therefore, when
any of F2’s tasks finishes, its resources are offered to F1.
Consequently, F1 will be able to take resources on nodes
that F2 was previously monopolizing, in effect “swap-
ping places” with F1. Both frameworks will thus get a
chance to run on all nodes and achieve high data locality.

3.2.2 Discussion

Our resource offer mechanism differs from the schedul-
ing mechanisms used in most cluster schedulers because
it is decentralized. An alternative approach would be to
have each framework give Nexus a set of preferences
about resources it wants, specified in some “preference
language”, and have Nexus match frameworks with re-
sources using a centralized algorithm.

At first, the centralized approach appears attractive
because it gives Nexus global knowledge about frame-
works’ needs. However, this approach has an important
disadvantage: preferences that cannot be expressed in
the preference language cannot be accounted for. Be-
cause Nexus aims to support a wide variety of both cur-
rent and future frameworks, it seems unlikely that a sin-
gle preference language could be designed that is expres-
sive enough for all frameworks, easy for developers to
use, and useful for making scheduling decisions.

In fact, even the preferences of a fairly simple frame-
work like MapReduce are complex: A MapReduce job
first wants to run a number of map tasks, each on one
of the nodes that has a replica of its input block. How-
ever, if nodes with local data cannot be obtained, the job
prefers running tasks in the same rack as one of the input
blocks. After some fraction of maps finish, the job also
wants to launch reduce tasks, which may have different
CPU and memory requirements than maps, to start fetch-
ing map outputs. Finally, until all the maps are finished,
the job never wants to end up with only reduces running;
if Nexus started sending the job only resource offers with
CPU and memory amounts suitable for reduces, then the

job would never finish.
Advocates of a preference language based approach

argue that scheduling decisions based on global knowl-
edge will be better than any distributed decisions made
by frameworks responding to offers. However, we have
found that for many preferences, such as data local-
ity, resource offers achieve nearly optimal performance
(e.g. 95% of tasks run on the nodes that contain their in-
put). We discuss this in Section 6.4.

Our resource offer approach has the added advantage
that it is simple and efficient to implement, allowing the
Nexus master to be scalable and reliable. We hypothesize
that the ability to run a wide variety of frameworks on
a single, stable platform will offset any small losses in
performance caused by using resource offers.

3.3 Framework Isolation

Nexus aims to provide performance isolation on slave
nodes between framework executors. Given the fine
grained nature of our tasks, an isolation mechanism
should have the following properties:

• An isolation mechanism should not impose high
overheads for executor startup and task execution.

• An isolation mechanism should allow Nexus to dy-
namically change resource allocations after the ex-
ecutors have been started, as the number of tasks an
executor is running may change during its lifetime.

While isolation is a first-order concern of our architec-
ture, we believe we should be able leverage existing iso-
lation mechanisms. Unfortunately, even given the sub-
stantial amount of attention performance isolation has re-
ceived, no solution has emerged that is optimal for both
properties. Given that sites will have varying isolation
needs, Nexus is designed to be able to support multiple
isolation mechanisms through pluggable modules. We
explain the mechanism we currently use in Section 5.1.

3.4 Resource Revocation

We discuss the mechanism of resource revocation in this
section, and defer to Section 4.3 for an analysis of when
revocation is needed, and the magnitude of revocation
that might need to be done.

Revocation policies will depend greatly on site-
specific needs and desires. In general, however, the
Nexus allocation module, will initiate revocation when
it wants to ameliorate a disparity in some framework’s
fair share. This may occur (a) when a new framework
registers or (b) when an existing framework, who is be-
low its fair share, revives resource offers when there are
insufficient, or no, available resources.

Similar to previous work, Nexus uses visible resource
revocation [25]. That is, the Nexus allocation module
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informs a framework that it needs to return a specified
amount of resources to the cluster within a specified
timeout (which might be statically configured, or dynam-
ically determined). We augment this basic revocation
scheme, however, by including revocation constraints;
a revocation request will specify some subset of nodes
from which the resources must be returned, where that
subset may be one node, or the entire cluster. If a frame-
work fails to return enough resources by the timeout, the
Nexus scheduler may choose to reclaim resources itself.
It may, however, choose to reclaim only a subset of the
resources in the original request. A framework sched-
uler receives “task killed” updates for all tasks during
this process.

Using this revocation mechanism allows the Nexus
allocation module to provide maximal flexibility for a
framework when that flexibility is affordable. Often, this
will provide a framework some freedom to pick which
tasks to kill (if it needs to kill any tasks at all: a frame-
work may have been offered resources that it hasn’t yet
accepted that satisfy the revocation constraints).

4 Fair Scheduling

As described in Section 3, Nexus is a two-level scheduler
that lets users influence scheduling decisions by their se-
lection of offers. This is done when a user, which Nexus
considers to be below its fair share, is offered slots. The
user can then reject undesirable offers, and accept desir-
able ones. In this section, we try to answer the question
of what the fair share of a user should be. This is compli-
cated by that there are multiple different resources, and
users have possibly different demands and constraints on
them. We provide fairness properties, scheduling algo-
rithms, and a mechanism for killing.

Our model is that the system consists of a discretized
amount of different resources, such as 32 CPU slots, 256
GB memory, and 10 GB of disk space. Each user implic-
itly, or explicitly, defines a demand vector, specifying the
per-task resource usage, e.g. 〈2, 5, 100〉, implying tasks
should each be given 2 CPUs etc. At runtime, the above
vectors change dynamically. Thus, Nexus’ scheduler ap-
proximates this model.

We will refer to the following canonical example
throughout this section. Consider a cluster with 300
CPUs and 300 GB memory, and two users with demand
vectors 〈1, 3〉 and 〈1, 1〉, respectively.

First attempt: Asset Fairness. One intuitive schedul-
ing policy we tried is to account for all resources that a
user uses. We refer to this as asset fairness. The goal
would then be to schedule users such that every user’s
sum of all resources is the same. This might seem natu-
ral since the usage of a chunk of each resource can be

User 1 User 2 

a) Asset Fairness b) Dominant Resource Fairness 

100% 

50% 

0% 
CPU Memory 

100% 

50% 

CPU Memory 
0% 

Figure 2: Example with two frameworks with demand vectors
〈1, 3〉 and 〈1, 1〉. a) Allocation under Asset Fairness, equaliz-
ing their total resource usage. b) Allocation under Dominating
Resource Fairness, equalizing the share of their dominating re-
source.

equated with a fixed cost, which then implies that all
users would be given resources for the same amount of
budget.

Asset fairness can, however, give rise to undesirable
outcomes. In our canonical example, asset fairness will
give the first user 60 tasks and the second user 120 tasks.
The first user will use 〈60, 180〉 resources, while the sec-
ond will use 〈120, 120〉 (see Figure 2). While each user
uses a total of 240 resources, the second user has got
less than half (150) of both resources. We believe that
this could be considered unfair, making the second user’s
owner inclined to buy a separate cluster of dimension
〈150, 150〉, using it all by itself.

4.1 Dominating Resource Fairness

The last example highlights that users might not care
about the sum of their allocated resources, but instead
care about their number of tasks. In other words, users
care about the resource that they relatively demand most
of, since that is the resource they will be allocated most
of. We define a user’s dominating resource to be the
resource that it percentage-wise demands most of, e.g.
with a total 10 CPUs and 40GB memory, a user that de-
mands 1 CPU and 2 GB memory per task has CPU as
its dominating resource, as that is the resource that dom-
inates its relative demand.

It is, thus, natural to attempt to give all users equal
amounts of their dominating resource. We call this, dom-
inating resource fairness. This is achieved by assigning
to each user i a dominating share xi, which is i’s share of
its dominating resource, i.e. xi = maxj{sij}, where sij

is user i’s fractional share of resource j.5 The scheduler
allocates resources to the user with least xi.6

5Asset fairness can be achieved by instead assigning xi =
∑

j
sij .

6The Nexus schedulers actually return a list of users sorted in in-
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If we consider our canonical example, dominating re-
source fairness will allocate the two users 50 and 150
tasks, respectively. Thus, the resource usage of the two
users becomes, 〈50, 150〉, and 〈150, 150〉, respectively
(see Figure 2). Hence, both users get half of their domi-
nating resource, i.e. xi = 0.5.

Properties. Dominating resource fairness satisfies a
share guarantee property that we consider crucial: each
user receives 1

n fraction of at least one of its resources.
Informally, share guarantee can be interpreted as:

Each user will get at least as much resources
as it would get by running its own cluster.

Dominating resource fairness satisfies share guaran-
tee, modulo fractional task allocations. To see that, note
that a user which has 1

n of one of its resources surely
has 1

n of its dominating resource, and vice versa. Share
guarantee, thus, ensures that a user gets 1

n of its dominant
resource. If every user is given exactly 1

n of all resources,
every user will be able to get 1

n of their dominating re-
source.

We compare dominating resource fairness with previ-
ous work of fairness in networking. Dominating resource
fairness is an adaptation of max-min fairness to cluster
environments [20, pg 448]. An allocation according to
dominating resource fairness is max-min fair in the sense
that any increase in a user p’s tasks will be at the expense
of a decrease in another user q’s task, where p already
had more of its dominating resource than q had of its
dominating resource. To see this, note that dominating
resource fairness is an approximation of progressive fill-
ing [20, pg 450], in which all users’ usage of their dom-
inating resource is increased at the same rate, while pro-
portionally increasing its other resources, until some re-
source is exhausted, in which case those users’ allocation
is finalized, and this is repeated recursively for remaining
users.

Another way to understand dominating resource
fairness is through Jain’s Fairness Index (JFI) [34]:
(
∑

i
xi)2

n
∑

i
xi

2 , where n is the number of users in the clus-

ter, and xi is their resource share. JFI was originally
intended for sharing a single resource, but we let xi be
the dominating share of user i. Thus, a maximum JFI
of 1.0 corresponds to scheduling resources according to
dominating resource fairness, as it implies that every user
has the same amount of their dominating resource. Thus,
dominating resource fairness can be seen as a greedy al-
gorithm for maximizing JFI.

Share guarantee only ensures that each user gets a 1
n

share. After each user has got 1
n fraction of its dominat-

creasing order by xi. The reason for the list is that Nexus’ scheduler
attempts to always schedule the first user in the list for which there are
available resources.

ing resource, there might be room for more tasks. This is
especially the case with heterogeneous demand vectors,
e.g. two users with demands 〈1, 9〉, 〈9, 1〉 can both be
allocated 90% of their dominating resource. We next ex-
plain different ways to allocate the resources that remain
after the share guarantee has been satisfied.

Maximizing Utilization. It is possible to use domi-
nating resource fairness until each user has received 1

n
of it its dominating resource, and thereafter use another
scheduler that opts for maximum utilization of the re-
sources. We found one scheduler particularly efficient
for maximizing utilization. It is a greedy scheduler
whose goal is to schedule the user that will give the most
even utilization of all resources. This is done by calculat-
ing for each user, u, what the utilization of every resource
would be if u would be allocated another task accord-
ing to its demand vector. It then calculates the the vari-
ance of utilization across the resources, and returns the
list of users sorted in increasing order of variance. We
compared this to a linear program that scheduled users
for optimal utilization, and found that it performs close
to the optimum. Nevertheless, scheduling for utilization
might not be desirable as we show next.

Gaming the Scheduler. A scheduler that optimizes for
maximum utilization can always be gamed by a user that
shapes its demand vector to be identical to the remaining
resources. For example, if the remaining resources are
〈6, 18, 24〉, a user can make its demand vector 〈1, 3, 4〉,
ensuring that an allocation for it can perfectly use all re-
maining resources.

Dominating resource fairness is, however, harder to
game. If a user demands more of some resource that
it does not need, it is likely to get hurt in scheduling. If
the surplus demand changes its dominating resource, its
dominating share will be higher as soon as it is allocated,
penalizing it during scheduling, even though it cannot
use the surplus resource. If the extra demand does not
change its dominating resource, it is still possible that it
gets hurt in scheduling because its surplus demand can-
not be satisfied. Gaming can, however, be possible in
certain specific scenarios. For instance, a user, u, might
get ahead by requesting a surplus resource, which when
allocated makes other users’ demand vectors insatiable,
allowing u to get ahead of them during scheduling.

4.2 Weighted Fair Sharing

We have so far assumed that resources are to be shared
equally among the users. In practise, it is desirable to be
able to weight the sharing. The motivation for this is that
different organizational entities might have contributed
different amount of resources to the cluster or that there
is a payment scheme in which different cluster owners
pay for parts of the cluster. In either case, sharing could
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be weighted on a users basis, as well as on a resource
basis. For example, some organization might have con-
tributed with more memory resources, and should there-
fore have a higher share of the memory resources.

Weighted fair sharing is implemented in Nexus sim-
ilarly to Lottery Scheduling [43]. Every user i has a
vector of weights of positive real numbers wij , where
1≤j≤r for r resources. The weight wij expresses that
user i’s fair proportion of resource j is wij∑

k
wkj

.

The definition of a dominating share for user i now
changes to xi = maxj{ sij

wij
}. Thus, share guarantee

says that a user i will get at least wij∑
k

wkj
fraction of its

dominating resource j. Note that dominating resource
scheduling now uses the new definition of a dominating
share, xi.

If wij = 1.0 for all users and resources, weighted fair
sharing reduces to equal fair sharing. Another use case is
to assign user-wide weights. For example, if wij = k for
all j, while wkj = 1.0 for all k 6=i and all j, then user i
will have twice the proportion of all resources compared
to every other user in the system. We have found that the
latter use often suffices, as one would like to weight on a
per-user level, and not on a per-resource level.

4.3 Resource Revocation

It is the job of the scheduler to decide which users’
tasks should be revoked, and on what machines. This
is complicated by that the granularity of tasks can
be a value below the specified minimum offer size,
min offer. If care is not taken, the revoked tasks
might not make enough room for a new task that is of
dimension min offer. In the worst case, a user above
its fair share might be running very small tasks on ev-
ery machine, such that even if all its tasks were revoked,
there might not be room for a new task.

Nexus’ avoids the above scenario by assigning to each
slave machine a fairness score indicating how fair the
allocation would be if min offer resources would be
freed on that machine through killing. It thereafter se-
lects the most fair machine for revokation, and repeats
the process to free more resources. When a user filter ex-
ists, Nexus assigns a minimum score to those machines,
ensuring that they will be selected for revokation last.

The fairness score is based on JFI and is calculated
for each slave m by sorting the users running on m in
decreasing order of their dominating share. Nexus then
traverses the list of users and marks their tasks for re-
vocation until room has been made for a min offer.
Thereafter, a cluster-wide JFI is calculated, discounting
the marked tasks against users’ shares, and assigns the
score to m.

Nexus’ will pick the slave with highest JFI for re-
source revokation. It will send notification to the marked

users and give them a grace period to kill tasks on that
machine. If only a single user’s tasks are marked for re-
vocation, Nexus offers that user the freedom to kill that
amount of its tasks on any machine it is running on. After
the grace period expires, Nexus selects the marked tasks
and kills them.

The above scheme attempts to achieve maximum fair-
ness while minimizing resource revokation. Note that in
the typical case where the user u that is most above its
fair share is running more than min offer on a single
machine, the above scheme will always always pick u
for resource revocation. This is because the slave that u
is running on will receive the highest JFI score.

5 Implementation

We have implemented Nexus in approximately 5,000
lines of C/C++. The implementation, which was de-
signed for any 32-bit and 64-bit POSIX-compliant oper-
ating system, has been tested on both Linux and Solaris.

To reduce the complexity of our implementation, we
use a library which provides an actor-based program-
ming model that uses efficient asynchronous techniques
for I/O [9]. We use the library and its built-in message se-
rialization to perform all of the communication between
the different components of Nexus.

The current implementation assumes the use of social-
ized utilities, such as HDFS and MapOutputServer, and
only supports resource offers for CPU cores and memory
(i.e., it does not provide storage and I/O isolation.)

An important benefit of using C/C++ to implement
Nexus has been our ability to easily interoperate with
other languages. In particular, we use the Simplified
Wrapper and Interface Generator (SWIG) to generate in-
terfaces and bindings in Ruby, Python, and Java. As it
turns out, none of our example frameworks are written
against the C/C++ API.

We use the rest of this section to accomplish two
things: first, we elaborate on how we provide perfor-
mance isolation between framework executors and sec-
ond we discuss in detail how frameworks can be imple-
mented to run on Nexus.

Nexus easily interoperates with other languages, in
particular, we use the Simplified Wrapper and Interface
Generator (SWIG) to generate interfaces and bindings in
Ruby, Python, and Java.

5.1 Framework Isolation

Recall from Section 3.3, that a good isolation mechanism
for Nexus should (a) have low overheads for executor
startup and task execution and (b) have the ability to let
Nexus change resource allocations dynamically.

Given those constraints, we present possible mecha-
nisms below:
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Processes and ulimit Using processes as the “con-
tainer” for isolation is appealing because processes are
a lightweight and portable mechanism. However, ulimit
and setrlimit alone are insufficient for providing aggre-
gate resource limits across process trees (e.g. a process
and all of its descendants).

Virtual Machines Virtual machines are an appeal-
ing container, however, virtualization imposes I/O over-
heads [22] that may not be acceptable for data-intensive
applications like MapReduce. In addition, VMs take a
fairly long time to start up, increasing latency for short
lived executors.

Cpusets, Containers, Zones, etc. Modern operating
systems are begining to provid mechanisms to isolate en-
tire process trees. For example, Linux supports cpusets
and cgroups for CPU isolation [16], and Linux contain-
ers [15] are aimed to provide more comprehensive isola-
tion. These mechanisms tend to be very lightweight and
are dynmically configurable while a process is running
(similar to ulimit and setrlimit).

Solaris provides a relatively advanced set of mecha-
nisms for resource isolation [14], which allows, for ex-
ample, one to set cumulative limits on CPU share, resi-
dent set size, and OS objects such as threads, on a process
tree. A nice property of the Solaris mechanisms is that
one can configure, at least for some resources, the abil-
ity to let idle resources get used by processes that have
reached their limits.

For our current implementation, we choose to use the
Solaris resource management mechanisms. This allows
Nexus to isolate CPU usage and memory usage per ex-
ecutor process tree.

We use the Solaris resource management mecha-
nisms [14] to enable Nexus to isolate CPU usage and
memory usage per executor process tree. Solaris pro-
vides a relatively advanced set of mechanisms for re-
source isolation which allows, for example, one to set
cumulative limits on CPU share, resident set size, and OS
objects such as threads, on a process tree. A nice prop-
erty of the Solaris mechanisms is that you can enable,
at least for some resources, idle resources to be used by
processes that have reached their limits.

One contributing factor in our decision to use Solaris
was our desire to run large-scale tests on Amazon EC2,
since Linux containers would have required patching the
Linux kernel, which is not allowed by EC2.

As operating system isolation mechanisms improve,
they should only strengthen the performance isolation
guarantees that Nexus can provide. We explore how well
our current isolation mechanisms work in Section 6.

5.2 Frameworks

We have ported Hadoop and the MPICH [21] implemen-
tation of MPI to run on Nexus. Neither of these ports
required changing the existing interfaces, so existing run
unmodified. In addition, we built a new framework from
scratch for writing machine learning applications as well
as a framework that elastically scales Apache [2] web
servers. We describe the implementation details of each
framework below.

5.2.1 Hadoop

Porting Hadoop to run on Nexus required minimal mod-
ification of Hadoop internals because Hadoop’s concepts
such as tasks map cleanly onto Nexus abstractions. We
used Hadoop’s existing master, the JobTracker, as our
Nexus scheduler, and we used Hadoop’s slave daemon,
the TaskTracker, as our executor. We needed to imple-
ment two major changes:
• Factoring out the map output server from the Task-

Tracker. Normally, Hadoop has each TaskTracker
serve local map outputs to reduces, but if the Task-
Tracker runs as an executor, it may occasionally be
killed. We made the map output server a separate
daemon shared across Hadoop instances.

• Changing scheduling to use Nexus’s resource offer
mechanism, as we describe below.

In normal operation, Hadoop schedules tasks on its
slaves in response to heartbeat messages that slaves send
every 3 seconds to report their status. Each slave has a
number of “map slots” and “reduce slots” in which it can
run map and reduce tasks respectively. In each heartbeat,
the slave reports its total number of slots of each type
and the number of slots it has free. The JobTracker gives
the slave new tasks if there are free slots, preferentially
choosing tasks with data local to the slave.

The heartbeat mechanism provides a good opportunity
to add support for Nexus because it presents a simple
interface to “pull” tasks for a particular slave from the
JobTracker. In our port, we take advantage of this inter-
face to maximize the amount of Hadoop code we reuse.
Whenever Nexus makes a resource offer on a particular
slave to our Nexus scheduler (which is located in the Job-
Tracker), we check whether there are any runnable map
or reduce tasks. If there are, we accept the offer (modulo
a detail on data locality which we get to later), and we
send a message to the slave that the offer was on to have
it increase its number of map or reduce slots. Whether
we choose to add a map slot or a reduce slot depends on
which tasks are available; if both are available, we keep a
configurable ratio of map and reduce slots on each slave
(by default 1:1). After the slave receives the Nexus-level
task and increases its slot count, the next time it sends a
heartbeat to the master, Hadoop’s standard scheduling al-
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gorithm is invoked to pick a Hadoop-level map or reduce
task to run. Then, whenever the slave sends a heartbeat to
the master saying that a task is done, our shim layer also
decrements the slave’s slot count and reports the task as
finished to Nexus. Finally, if we create a slot but the slave
is not assigned a task within two heartbeats (perhaps be-
cause jobs finished), it removes the slot and also sends a
task-done report to Nexus.

A final detail deals with data locality. When consid-
ering which slaves to launch map tasks on, we take a
policy of waiting up to t seconds to find a slave that con-
tains local data for one of the yet-unlaunched map tasks
in the system. If no such slave is found, we accept a
non-local task. The wait time is reset only if we ever get
a local task again. This simple mechanism, called de-
lay scheduling, is explained in our previous work [45],
where it was found to provide near-perfect data locality
in a fair scheduler for Hadoop.

In total, our changes to Hadoop were 1100 lines of
code, of which 1000 are new files adding the shim layer
and the map output server.

5.2.2 MPICH

MPI is a language-independent message-passing API
used to implement parallel programs that run primar-
ily on supercomputers and clusters. MPI works by
launching daemons on machines that will participate in
the computation. A user then executes the standard
mpiexec to run a program on each of the machines run-
ning daemons.

Rather than make invasive changes in the implemen-
tation of MPICH, we created a framework “wrapper”
around mpiexec that registers with the Nexus master,
launches a local MPI “master” daemon, accepts resource
offers large enough to run instances of the specified pro-
gram, and then has the executor launch an MPI daemon
that connects back to the “master” daemon. Once the
wrapper has acquired enough resources to run the pro-
gram, it invokes mpiexec which uses the local MPI
daemon to begin the distributed MPI computation. Note
that because MPI uses the MPI daemon’s to launch more
processes, nothing extra needs to be done to ensure sub-
sequently launched processes on the slaves will be prop-
erly isolated.

The simplicity of this approach is a direct consequence
of how a majority of MPI jobs are executed. Since few
MPI jobs actually fork and launch computation dynami-
cally, we choose not to provide any mechanism for doing
so, and we implemented a very simple scheduling policy
– accept any offered resources that are large enough to
launch the program.

Currently, the wrapper launches MPI jobs conserva-
tively. That is, it never attempts to use more than
its fair share of the resources to avoid resource re-

vocation. Mechanisms such as Berkeley Lab Check-
point/Restart [29] could be used to support revocation.

The entire wrapper was written using our Python inter-
face and bindings for Nexus in about 200 lines of code.

5.2.3 Spark

Nexus enables the creation of specialized frameworks
optimized for workloads for which more general exe-
cution layers may not be optimal. To test the hypoth-
esis that simple specialized frameworks provide value,
we identified one class of jobs that machine learning re-
searchers at our institution ran on Hadoop and found per-
formed poorly – iterative jobs, where a data set is reused
across a number of iterations. We built a framework
called Spark optimized for these workloads.

Example Job A simple example of an iterative al-
gorithm used in machine learning is logistic regression
[10]. This algorithm seeks to find the line that best sep-
arates two clusters of labeled data points. The algorithm
starts with a random separating line, w. Then, on each it-
eration, it computes the gradient of an objective function
that measures how well the line is separating the points,
and shifts w in the direction of this gradient. The gradient
computation amounts to evaluating a function f(x,w) on
each data point x and summing these results.

An implementation of logistic regression in Hadoop
must run each iteration as a separate MapReduce job,
because each iteration depends on the w computed at the
previous one. This imposes overhead because every it-
eration must re-read the input file into memory. Dryad
could express the whole job as a data flow DAG as shown
in Figure 3 a). However, it still has the problem that each
iteration must reload the data file from disk; there is no
way in Dryad to ask one vertex to evaluate f(x,w) for
multiple values of w, as this requires cyclic data flow.
Spark’s execution is shown in Figure 3 b). Spark uses
the long-lived nature of Nexus executors to cache a slice
of the data set in memory at each executor, and then run
multiple iterations on this same cached data.

Spark Details Spark is implemented in Scala [13], a
high-level object-oriented/functional programming lan-
guage that runs over the JVM. Users write jobs in Scala,
and invoke Spark through a language-integrated syntax
similar to DryadLINQ [44]: users write a for loop over a
special “distributed data set” object, and the body of the
for loop is passed as closure to run as a Nexus task on
the appropriate node for each slice of the data.7 Spark
allows users to ask for a parallel data set to be read from
the Hadoop Distributed File System, transformed, and
cached in memory at executors. It then schedules tasks
to run on executors that already have the appropriate data

7This for-loop syntax integration has previously been used by a
Scala API for Hadoop [28].
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Figure 3: Comparison of execution of the logistic regression
job in Dryad and Spark. Solid lines represent data flow within
the cluster computing framework. Dashed lines represent reads
from a distributed file system. In Spark, the same worker pro-
cesses are reused across iterations and reads only happen once.

val	  data	  =	  spark.hdfsTextFile(...).map(readPoint	  _).cache()	  
var	  w	  =	  Vector.random(D)	  
for	  (i	  <-‐	  1	  to	  ITERATIONS)	  {	  
	  	  val	  gradient	  =	  spark.accumulator(Vector.zeros(D))	  
	  	  val	  W	  =	  w	  
	  	  for	  (p	  <-‐	  data)	  {	  
	  	  	  	  val	  scale	  =	  (1/(1+Math.exp(-‐p.y*(W	  dot	  p.x)))-‐1)*p.y	  
	  	  	  	  gradient	  +=	  scale	  *	  p.x	  
	  	  }	  
	  	  w	  -‐=	  gradient.value	  
}	  
println("Result:	  "	  +	  w)	  

Figure 4: Implementation of logistic regression in Spark. The
body of the inner loop (highlighted) runs in parallel on Nexus.

cached, using a delay scheduling algorithm similar to our
Hadoop port. Figure 4 shows how the logistic regression
algorithm is expressed in Spark.

Spark is implemented in 800 lines of code, but can
outperform a Hadoop implementation of logistic regres-
sion by 8x, as shown in Section 6.3. Due to lack of
space, we limit our discussion of Spark in this paper and
refer the reader to http://www.cs.berkeley.edu/

˜matei/spark for more details.

5.2.4 Elastic Web Farm

To explore how to implement a more interactive frame-
work, we built an elastic web farm. Sharing resources
between web servers and other frameworks is a natural
desire; when the web load is low the machines can be
used for launching tasks from other frameworks and as
the web load increases more instances of the web server
can be launched.

We used the load balancer haproxy [7] as our front-end
and Apache as our back-end, however any web server
would have been sufficient. Similar to the MPI wrap-

Average time (s)
MPI 50.85
MPI on Nexus 51.79

Table 1: Overhead of running the MPI LINPACK benchmark
on Nexus

Average time (s)
Hadoop 159.87
Hadoop on Nexus 166.19

Table 2: Overhead of running the WordCount Hadoop work-
load on Nexus

per framework, we created a framework which wraps
the launching and killing of web servers on nodes. The
wrapper queries the front-end for load statistics, and uses
that to decide whether or not to launch, or teardown,
servers. The wrapper’s only scheduling constraint is that
it only launches one Apache instance per machine, and it
uses filters to assist the Nexus master in this respect.

One unfortunate aspect of using haproxy as the front-
end was that it does not provide good mechanisms to do
hot-swapping of its configuration files. Instead, haproxy
needs to be restarted for each reconfigure, which can of-
ten cause certain connections to be terminated.

Like the MPI wrapper, this wrapper was written using
our Python interface and bindings for Nexus and is about
250 lines of Python.

6 Evaluation

We evaluated Nexus by performing a series of ex-
periements using Amazon’s EC2.

6.1 Overhead

To measure the overhead Nexus imposes on frameworks
we ran two benchmarks using Hadoop and MPI. These
experiments were performed on EC2 using 50 nodes,
each with 2 CPU cores and 6.5 GB of memory. We used
the WordCount workload for Hadoop and we used the
High-Performance LINPACK [18] benchmark for MPI.
Tables 2 and 1 show the average running time across
three runs of Hadoop and MPI both with and without
Nexus, respectively. As these results show, the overhead
of Nexus is statistically insignificant, when it exists at all.

6.2 Dynamic Resource Sharing

We wanted to evaluate how well Nexus performs with
multiple different frameworks running simultaneously.
This experiment was performed on EC2 with 70 nodes,
each with 2 CPU cores and 6.5 GB of memory.

For this experiement we decided to run Hadoop,
Spark, and MPI and allocate resources according to dom-
inating resource fairness (where each framework has an
equal weight). Similar to above, we used the WordCount
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Figure 5: Timeline showing the shares of the cluster given to
MPI, Hadoop and Spark in the dynamic resource sharing ex-
periment.

workload for Hadoop and the LINPACK benchmark for
MPI. The Spark framework was running a job perform-
ing logistic regression. The logistic regression job per-
forms a series of iterations, in between each of which it
does not use any resources in the cluster.

The results of this experiement are shown in 5. In
this experiement, CPU was the bottleneck resource in the
cluster. In this experiement we first launched the Spark
framework, which was offered the entire cluster and ac-
cepted it. After about 15 seconds we launched Hadoop,
which received its fair share (50% of the CPUS) within a
few seconds. After about 50 seconds we launched MPI.
Within a few seconds MPI was offered its fair share of
the CPUS (approximately 1

3 ), which it accepted and be-
gan running its tasks. At roughly this same point the
Spark job completed its first iteration and released all
of its resources, which Hadoop utilized almost instantly.
Each time the Spark job began a new iteration, it was of-
fered roughly 1

3 of the CPU resources within a few tens
of seconds. Finally, around 330 seconds the Hadoop job
completed, and the Spark framework was offered, and
accepted, the extra resources. Because of the nature of
the MPI job, it was not able to benefit from any of the
extra resources.

This experiment helps to illuminate how the share of
the cluster can be shared dynamically between different
frameworks. In this case, we show how quickly frame-
works like Spark and Hadoop can utilize extra resources
when they aren’t being used while the MPI framework
can continue executing below its fair share unharmed.

6.3 Benefit of Specialized Frameworks

In this experiment, we evaluate whether the specialized
Spark framework described in Section 5, which is op-
timized for iterative jobs, provides a benefit over the
general-purpose Hadoop framework. We use a logistic
regression job implemented on top of Hadoop by ma-
chine learning researchers in our department to evaluate
Spark. We implemented a second version of the job in
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Figure 6: Comparing the running time of logistic regression
when implemented using Spark vs. using Hadoop.

Spark ourselves. We ran the job on a 11 GB data file
on 43 EC2 machines with 8 cores each. The data file
contained each point as plain text, which according to
the machine learning researchers that wrote the job is a
standard format in which machine learning data sets are
provided. We varied the number of iterations of logis-
tic regression from 1 to 20, and ran each job on a stan-
dalone Hadoop cluster, a Hadoop framework running on
Nexus, and a Spark framework running on Nexus. Figure
6 shows the results, which averages values from 3 runs.

We see that each iteration of the job takes 41s on av-
erage on both Hadoop and Hadoop on Nexus. Some
variation happens because the jobs are so short, and
Hadoop’s heartbeat intervals are 3 seconds so any varia-
tion in scheduling opportunities might result in a 3 sec-
ond delay. In contrast, Spark takes 60s to run the first
iteration (because it uses slower text-parsing routines),
but each subsequent iteration is on average 2 seconds.
This is because in the logistic regression job, the func-
tion f(x,w) evaluated at each iteration is so inexpensive
that the cost to read the input data from HDFS and parse
the text into floating point numbers dominates the com-
putation. Hadoop must incur this cost on each iteration,
while Spark reuses blocks of parsed data cached in mem-
ory and only incurs the cost once. This leads to a 8.5x
speedup on 20 iterations.

6.4 Resource Offers and Data Locality

In this experiment, we wanted to verify whether the re-
source offer mechanism in Nexus allows frameworks
to achieve control over their tasks’ placement, and in
particular high data locality. We ran 16 instances of
Hadoop on a 93-node EC2 cluster with 4 cores per node.
All of the instances were running a map-only filter job
that read a 100 GB file striped throughout the cluster
on a shared HDFS file system and outputted 1% of the
records. We tested four scenarios: Separate Hadoop
MapReduce clusters of 5-6 nodes each, to emulate orga-
nizations that use coarse-grained resource managers, and
all instances on Nexus using either no delay scheduling,
1s delay scheduling or 5s delay scheduling.

The results are shown in Figure 7, which averages
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Figure 7: Results from data locality experiment. The top graph
shows the percentage of local map tasks in each setting, while
the bottom graph shows the average job running time in each
setting.

numbers from 3 runs of each scenario. We see that
data locality is very low (18%) on the separate clus-
ters. Running the Hadoop frameworks on Nexus im-
proves locality even with no delay scheduling because
each node is running tasks from 4 random Hadoop in-
stances, so each Hadoop instance has tasks on more
than 5-6 nodes. Adding delay scheduling brings locality
above 90%, even with a 1-second delay. Five-second de-
lay scheduling achieves 95% locality, which is similar to
Hadoop running alone (for comparison, a single instance
of Hadoop running on the whole cluster achieves 93%
locality for the job we used). Finally, performance im-
proves with locality, with the 5s delay scenario running
jobs 1.7x faster than separate Hadoop instances.

6.5 Elastic Web Farm

Finally, we wanted to evaluate how well interactive
frameworks can co-exist with other frameworks. This
included investigating how quickly these frameworks
would be offered resources and how well the isolation
mechanism we choose to use works. To do this we ran
two experiements, one where the only framework run-
ning in the cluster was the elastic web farm and the other
where we run both the elastic web farm and a “hog”
framework. The hog framework is designed to consume
available resources by launching tasks that use one or
more threads to read and write a specified amount of data
for a specified period of time. In this case, the hog frame-
work launched tasks that created ten threads that each
spent approximately two minutes continuously cycling
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Figure 8: The average session load on the load balancer over
time, as well as the average number of sessions across web
servers.

through 64 MB of data. We ran our experiment using 4
EC2 nodes each with 8 CPU cores and 6.5 GB of mem-
ory. Note that to apply pressure to the isolation mecha-
nism each each hog task would request only 1 CPU core
and 512 MB of memory.

In both experiments we generated workload using
HTTPerf [36]. Figure 8 shows the measured average
number of sessions on the load balancer, as well as the
average measured sessions across web servers when both
the hog framework and the elastic web framework were
running simultaneously. The vertical lines of the fig-
ure indicate when the number of web servers is alterned.
The effect of this is seen on the average web server load,
which stays low relative to the generated load.

Running the same workload without the hog frame-
work showed no statistically significant differences. As
mentioned in Section 5.2.4, connection errors occured
during the hot-swapping of configuration files, however,
both of the experiements suffered equally from this issue.

7 Discussion

7.1 Philosophy

Nexus is analogous to a cluster operating system, offer-
ing frameworks (1) a clean abstraction of computations
(tasks), (2) performance and fault isolation, and (3) mul-
tiplexing of CPU, memory, and other resources on slave
nodes. In particular, our approach shares much in com-
mon with the exokernel [25], microkernels [17], and hy-
pervisors [31]. Like an exokernel, Nexus aims to give
frameworks as much control over their execution as pos-
sible, to efficiently support a variety of frameworks. Like
a microkernel or hypervisor, Nexus is a stable, mini-
mal core that provides performance and fault isolation
to frameworks sharing a cluster.

7.2 Limitations and Future Work

I/O isolation As mentioned in sections 3.3 and 5.1,
while a primary goal of Nexus is resource isolation, in
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order to limit the scope of our research we chose to lever-
age existing work to achieve this goal. Similarly, in fu-
ture work, we aim to leverage existing mechanisms to
provide isolation and fair sharing of disk I/O and net-
work bandwidth. Sharing network bandwidth is partic-
ularly challenging; the use of existing quality of service
mechanisms in the operating systems on slaves is not suf-
ficient because fair bandwidth sharing must also be im-
plemented at the aggregation switch level.

Fairness of individual resources Nexus does not pro-
vide any fairness guarantees on the level of individual
slave nodes. Therefore, frameworks should not make as-
sumptions about the provisioning of individual nodes. In
particular, a “locality deadlock” may occur if two dif-
ferent frameworks each accept a slot offer and there-
after wait for the other framework’s slot to become free.
Framework schedulers can implement a timeout after
which they accept resource offers on non-preferred nodes
to ameliorate this problem.

Socialized services Some cluster services, similar to
those provided by Amazon Web Services (SQS, S3,
etc.), might be useful to many frameworks and might
be designed to run distributed throughout the cluster. A
concrete example we have already encountered is the
Hadoop Distributed File System, which Hadoop uses for
MapReduce input and output. As future work we in-
tend to allow Nexus to support socialized services, which
are services that require resources but are accessible by
all frameworks. Such services are necessary in order to
leverage sharing data sets and also to amortize the over-
head of running such services. Much research remains to
be done to fairly share access to socialized resources.

Utility libraries In addition to building and porting
standalone frameworks (such as Hadoop and Spark), we
also intend to develop utility libraries, i.e. implementa-
tions of common distributed system services. Our goal
is to make creating new frameworks as painless as pos-
sible by factoring out as many common functionalities
as possible. For example, existing libraries that encapsu-
late communication or message passing models for ex-
ecutors to use for communicating with each other (much
as we used existing MPI implementation to create a new
framework). Another example might be entire imple-
mentations of common framework schedulers, or build-
ing blocks for constructing such schedulers (e.g. a library
that provides logic to do speculative execution [46]).

8 Related Work

8.1 Cluster Computing Frameworks

We have discussed and described a number of existing
cluster computing frameworks. These include MapRe-

duce [23], as well as Sawzall [39] and Pig [38], which
were built on top of MapReduce. Also Dryad [32] and
Clustera [24], which provide more general execution
models. Nexus does not compete with any single cluster
framework, but instead aims to provide a common sub-
strate that a wide array of existing and future frameworks
can build upon.

8.2 Infrastructure as a Service

Cloud infrastructures such as Amazon EC2 [1] and Eu-
calyptus [37] allow for sharing between users by allow-
ing virtual machines in a shared cloud to be rented by
the hour. In such an environment, it would be possi-
ble for separate frameworks to run concurrently on the
same physical cluster by creating separate virtual clus-
ters (i.e., EC2 allocations). However, VMs can take min-
utes to start and sharing data between separate virtual
clusters is difficult to accomplish and can result in poor
data locality. Nexus provides abstractions (i.e., tasks and
slots) that eradicate the need for many applications to
use heavyweight VMs. In addition, Nexus allows frame-
works to select where to run tasks via the resource offer
mechanism, allowing multiple frameworks to share data
while achieving good data locality.

8.3 HPC and Grid Schedulers

Many resource managers and job schedulers for the clus-
ter exist, such as Torque [41], Portable Batch System
(PBS) [30], Sun’s GridEngine [26], and Cobalt [19].
Nexus differs from these existing cluster resource man-
agers and schedulers in the fine-grained nature of tasks
and also in its two level scheduling of tasks in which
frameworks play an interactive role via resource offers.
In contrast, most of these systems give each job a fixed
block of machines at once, rather than letting a job’s al-
location scale up and down in a fine-grained manner, and
do not give jobs much control over data locality.

Some systems, such as Condor and Clustera [42, 24]
go to great lengths to match users and jobs to available
resources. Clustera provides multi-user support, and uses
a heuristic incorporating user priorities, data locality and
starvation to match work to idle nodes. However, Clus-
tera requires each job to explicitly list its locality needs
(e.g. by listing its input files). Similarly, Condor uses
the “ClassAd” mechanism [40] to match node properties
to job needs. In these two systems, and more generally
any system that provides a language for jobs to express
preferences about resources they want to use, there will
be job needs that cannot be expressed in the language.
In contrast, The two level scheduling and resource offer
architecture in Nexus gives jobs arbitrary flexibility in
deciding where and when they run tasks.
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8.4 Fair Scheduling for Clusters

Quincy [33] is a fair scheduler for Dryad that gives each
framework an equal number of task slots on a cluster. It
uses a centralized scheduling algorithm based on min-
cost flow that treats scheduling as an optimization prob-
lem and takes into account both fairness and locality con-
straints. It reassigns resources by killing tasks (similar
to Nexus resource revocation) when the output of the
min-cost flow algorithm changes. Quincy assumes that
tasks have identical resource requirements, and the au-
thors note that Quincy’s min-cost flow formulation of
the scheduling problem is difficult to extend to tasks
with multi-dimensional resource demands. In contrast
to Quincy, Nexus uses a simple decentralized two-level
scheduling algorithm (resource offers) that lets frame-
works decide where they run, and supports heteroge-
neous task resource requirements. We show that frame-
works can still achieve high data locality by waiting a
short time for a node that they wish to run on.

9 Conclusion

We have described Nexus, a common substrate for
cluster computing that provides isolation and efficient
resource multiplexing across frameworks running on
the same cluster. Nexus uses an interactive two-level
scheduling architecture to give each framework maxi-
mum control over the scheduling and execution of its
jobs via tasks and resource offers. Tasks in Nexus are
fine-grained, allowing for efficient, dynamic sharing of
resources between frameworks, which leads to high clus-
ter utilization and data locality.

By remaining pluggable, Nexus provides organiza-
tions flexibility in choosing a first level resource schedul-
ing policy, but also provides a default module that im-
plements a novel weighted fair scheduler generalized for
multiple resources.

We have decribed an implementation of Nexus and of
a varied set of frameworks such as MPI, Hadoop, and
an elastic web server farm using Apache, that can run
over it. We presented experiments demonstrating frame-
works sharing a single cluster, with high cluster utiliza-
tion, good data locality and fair sharing. Finally, To vali-
date our hypothesis that specialized frameworks can pro-
vide value over general ones, we built a new machine
learning framework on top of Nexus which outperforms
Hadoop by 8 times on iterative workloads.
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