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Abstract

We explore the use of certain image features, blockwisedpiams of local orien-
tations, used in many current object recognition algorghfar the task of hand-
written digit recognition. Existing approaches find thalypemial kernel SVMs
trained on raw pixels achieve state of the art performanceweder such ker-
nel SVM approaches are impractical as they have a huge critypé runtime.
We demonstrate that with improved features a low complexagsifier, in par-
ticular an additive-kernel SVM, can achieve state of theparformance. Our
approach achieves an error @79% on the MNIST dataset angl4% error on
the USPS dataset, while running at speeds comparable tadtest algorithms on
these datasets which are based on multilayer neural netvaoikare significantly
faster and easier to train.

1 Introduction

Handwritten digit recognition has been a fertile ground daploring several learning techniques
ranging from automatically learning feature represeoteti[22, 14], learning classifiers invariant
to distortions [7], matching and alignment based distafizZeand learning multilayered represen-
tations of data [16], ever since datasets like MN1%ifid USPS [13] have been introduced. Several
techniques that work well on this dataset rely on automiifisalected features or intermediate rep-
resentations learned from the data represented by rawyaikeds. The computer vision community
on the other hand has over several years constructed rapaisas that are robust to image changes
like contrast and small distortions in rotation, translatand scale. These feature often consist of
computing image gradient features and constructing lastdgrams of these over orientations.

In this paper we show that these features can be adaptedgibretiognition. By a careful choice
of the feature parameters one can obtain competitive eegolthe MNIST and the USPS datasets.
Robust features means that one can obtain better accufaicaegiven number of training examples
even with simple classifiers like a linear or additive ker88M. Our proposed pipeline is quite
straightforward to implement and takes relatively smatietito both train and test such models.
We believe that the simplicity and the competitiveness isf épproach makes it ideal for computer
vision researchers as a baseline implementation for atyarfe¢asks.

2 Previous Work

Handwritten digit recognition has received consideraltienéion from the machine learning com-
munity. Several approaches achieve competitive perfoceéor this task including those based on
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multi layer neural networks, support vector machines, estareighbor methods. LeCun et.al. [16]
contains an excellent survey of various approaches on tfeasets. One can look at the approaches
along the axis of feature rich and learning rich. Featurh dpproaches try to compute a good
distance between examples and often use nearest neighbdaésification. Simple, distance
between raw pixels [24] are at the lower end of this axis. Embglistance, which computes an
approximate manifold distance based on a local linear aqupetion of the manifold falls in the
middle [23], while distances based on alignment of localufess, for example the approach of [2],
which used shape-context features and thin plate splijes¢2he some of the most complex dis-
tances between examples. Learning rich approaches rehedadrning machinery with a relatively
simple feature representation and a significant fractiaimefliterature on digit classification is de-
voted to this. Many of these methods start from raw pixelslaach classifiers either by learning
intermediate representations using neural networks [0622] or projecting onto a higher dimen-
sion implicitly and finding a separating hyperplane usinghké SVMs [4, 7]. These approaches
work quite well on this dataset. However there are very fepraaches which are both feature rich
and learning rich. An example is the work of Hao Zhang [25]pwihoposed the SVM-KNN method
for learning a local SVM model based on kernel computed fraimyise shape context distances
which is both feature and learning rich. However they do mesent results on the full dataset,
which makes it difficult to compare with their results. Ournkds in this spirit where we use the
good feature representations and combine it with a disnétiie learning framework, in particular
Support Vector Machines.

Another set of useful dimensions to compare various algmst are training and test time. Al-
gorithms like k-NN, have zero training time but are expensive during ruetiiat least the naive
version). Neural networks have the opposite problem réguinuge amounts of training data and
time to learn good models, but the feedforward nature mdies extremely efficient during run-
time. Somewhere in the middle are support vector machinéshwise the latest developments in
convex optimization theory to train classifiers while at tes/e a complexity which is only a fraction
of a brute forcek-NN model (for a non linear kernel SVM) as the number of suppectors tend
be a small fraction of the training data. Linear SVMs areamiely efficient [9] for both training
and test, but they often require carefully designed featt@ecompetitive performance. We use the
best of both worlds using fast training algorithms from thé\Bliterature and good features from
the vision literature for digits.

We begin with experiments on the MNIST dataset in Section 8 stért with features based on raw
pixels in Section 3.1 and reproduce the results reportdttifiterature. We then show that switching
to gradient based features improves the performance of/gters significantly in Section 3.2. For
completeness we also report results on the USPS datasettiors4. We summarize our results
and present our conclusions in Section 5.

3 MNIST Dataset Experiments

Our first experiments are on the MNIST dataset introduced &ynYLeCun and Corinna Cortes.
The dataset contairt®), 000 examples of digit®) — 9 for training and10, 000 examples for testing.
Our features are based on spatial pyramids over responsasi@us channels computed from the
image. The idea is to construct features by adding the regsonithin blocks of increasing sizes.
The channel could just be the raw pixel values or responsepartcular orientation direction.
Variants of these features like the pyramid match kernd| [dgatial pyramid match kernel [15] and
histograms of oriented gradients [6] have led to impressgailts on the Caltech 101 [10], Pascal
VOC [1] datasets as well as pedestrian detection. We expetimith several choices of the feature
like the orientation filter type and scale, pooling choices domputing blocked histograms and
ways to sample blocks on the images. In general the perfarenasing orientation channels are
significantly better than raw pixels on typical images, betpgresent experiments using raw pixels
for comparison as many of previously published work use rixelp as features.



Complexity | kernel | error rate(%) kernel | error rate(%)
o) linear 15.38 linear 14.84
int 13.29 int 9.02
O(#SV) poly 7.41 poly 7.71
rbf 8.10 rbf 6.57

Table 1: Error rates on the MNIST dataset using raw pixdty@nd pyramid of raw pixels(right).
Only the first1000 examples were used for training.

3.1 Raw Pixel Features

The input image is 88 x 28 grayscale image with each pixel valae{0, ..., 255}. Various kinds
of preprocessing have been proposed in the literature tmwepccuracy. Two of the most popular
ones are :

e Deskewing - the image is aligned so that the principal corapbis along the Y-axis. This
operation vertically aligns all thés in the dataset.

¢ Ink Normalization - the image is normalized so that therorm of the pixel values i$.

In our experiments we perform ink normalization, as we fothvad it improves performance, partic-
ularly with a linear kernel, while do not perform the deskegvbperation.

The simplest feature is to use th& x 28 pixels as a feature vector and train a classifier based on a
kernel SVM. We train one-vs-all classifiers using LIBSVM [Bhe for each digit. A test example

is assigned the class with the highest posterior probglifitich is estimated based on the margin
of the test example. Table 1, shows the performance of vaketnels using raw pixels trained on
the first1000 training examples and using all thé, 000 test examples for testing. We report the
error rates using the full training set 6@, 000 only on the best performing kernels as it takes quite
a while to train SVMs using non linear kernels. Whenever atéd we will quote numbers from
the literature. Both the linear and the intersection ke8¥M perform significantly worse than a
degrees polynomial kernel or a rbf kernel SVM. The kernels are defiasdollows:

Kiin(x,y) X-y 1)
kint(x,y) = min(x,y) 2
Epoly (xy) = (x'y+ 1)5 (3
kp(x,y) = exp(—7l[x —y|*) 4)

We also investigated hierarchical features where the insgeerlaid with a grid of cell size x ¢
and pixels withins each cell are added up. This is same asskbowpling the image and using the raw
pixels in the downsampled image as features. In our expetsnge choose grid sizes)(ranging
from1,2,3,4,5,6,7 and14. Herec = 1, is the original image and = 14 is the coarsest image
where the origina28 x 28 image is downsampled tx 2 pixels. We found that overlapping grids
offset by half the cell size improves the performance overaeerlapping grids. All the features are
assigned equal weights apriori. Table 1, shows the accufaylinear and an intersection kernel
SVM trained on these features. The linear SVM does not gajrpawer using the hierarchy as the
higher levels of the hierarchy are just linear combinatisumgs) of the features in the lower levels.
This is reflected by a very small increase in accuracy ovebé#seline linear SVM on raw pixels,
while there is more than4x increase in the feature dimension. The intersection k&%él being
non linear however exhibits an improved accuracy, but isvebirse than a polynomial or rbf kernel
SVM.



3.2 Gradient Histogram Features

We experiment with features constructed using histogrdrmadented gradients which have become
popular in the vision literature for representing obje@d, 11, 15, 17] and scenes [21]. Each pixel
in the image is assigned an orientation and magnitude basta:docal gradient and histograms are
constructed by aggregating the pixel responses withis oéllarious sizes. We construct histograms
with cell sizesl4 x 14, 7 x 7 and4 x 4 with overlap of half the cell size. The histograms at eackllev
are multiplied by weightg, 2 and4 and concatenated together to form a single histogram wheh a
then used to train kernel SVMs. This is very similar to thetisppgoyramid matching [15] when
used with the intersection kernel (we differ in the overlagpgrids). The various choices for the
descriptor are as follows :

1. Oriented Derivative Filter The input grayscale image is convolved with filters which re-
spond to horizontal and vertical gradients from which thegni@de and orientation is
computed. Leth(p) andrv(p) be the response in the horizontal and vertical direction at a
pixel p respectively, then the magnitude(p) and the angle(p) of the pixel is given by :

m(p) = /rh(p)*+rv(p)? (5)
a(p) = atare(rh(p),rv(p)) € [0, 360) (6)

We experiment with tap filters, Sobel and oriented Gausstanative (OGF) filters.

2. Signed vs. Unsigned he orientation could be signed- 360) or unsigned({— 180). The
signed gradient distinguishes between black to white arnitevit black transitions which
might be useful for digits.

3. Number of Orientation Bins The orientation at each pixel is binned into a discrete set of
orientations by linear interpolation between bin centeravoid aliasing.

Table 3 shows the performance of the classifier for variowscels of the descriptor. There is a
significant reduction in the error rates compared to rawlfeatures. We obtain an error 8f64%
using just1000 training examples with the intersection kernel SVM. Thef@enance of the linear
kernel is also quite good dt54%, which is significantly better than both the polynomial abfl r
kernel SVM trained on the raw pixel features. As expectedsifeed gradients perform better than
the unsigned gradient2.64% vs. 2.97%). Among the oriented derivative filters for the signed
gradients the Gaussian filters perform the best. We fourttbtika 2 with 12 orientation bins gave
us the lowest error rate as seen in Table 2. We trained a éuiva kernel SVM on the features
obtained usind 2 bins, signed gradients and the three choices of the filtetth@mntire training
set and obtain an error rate @79% using the oriented Gaussian derivative filtér83% using the
Sobel filter and).86% using the tap filter.

Table 4 shows the number of misclassifications for each.digiese numbers are quite close to the
state of the art using SVMs. For example the best numberstezbasing SVMs i€).56% using
degree9 polynomial kernel on the raw pixel features using the VSV2huod [7]. However the
authors perform deskewing and jittering on the trainingnepies to improve the performance. This
leads to significantly slower training times as well as anagye of about 6, 000 support vectors per
class leading to very slow test times. The best performaiittedgskewing but no jittering using an
SVM is 1.0% using degreé polynomial kernels and.1% using rbf kernels [16]. We outperform
both these, while at the same time by using additive kernelsweid the runtime and overhead of
storing and comparing a test example with all the supportiove¢18]. This makes the intersection
kernel SVMs at least three orders of magnitude faster thartv8V2 method. Training a degrée
polynomial kernel SVM on the same features improves theoperdnce even further t©56% error

at the cost of increased runtime. This is still faster thav2 &s we have only about 200 support
vectors on average and our features are @iy x larger than the raw pixel features used in VSV2.
Burges et.al. [4] has proposed the reduced set methods tieedtle humber of support vectors



o 1 2 3
Error Rate(%)| 2.74 | 2.64 | 2.67

Table 2: Effect of the bandwidth) of the oriented Gaussian derivative filters usiriggorientation
bins, signed responses a0 training examples.

Signed Response Unsigned Response
Test Error(%) Test Error(%)
nori | featdim| Tap | Sobel| OGF (¢ = 2) || nori | featdim| Tap | Sobel| OGF (@ = 2)
8 1148 | 2.97| 2.93 2.85 4 724 4.06 | 4.39 4.37
9 1629 | 2.75| 2.77 2.79 6 1086 | 3.53| 3.58 3.70
12 2172 | 2.71| 2.68 2.64 8 1148 | 3.31| 3.35 3.33
16 2896 | 2.74| 2.83 2.66 12 2172 | 2.97| 3.08 3.21

Table 3: Error rates on the MNIST dataset using pyramid dbgimms of oriented gradients. Only
the first1000 examples were used for training.

to a fraction of the original at a slight loss in performandéne best number reported using that
technique isl.1%. Figure 1 shows the performance on the test data using theted energy based
features for various training sizes. We keep the learnimgrpaters fixed at = 10 in LIBSVM for

all the runs of both the linear and intersection kernel SVM.

4 USPS Dataset Experiments

For completeness we also present experiments on the USBSetlafThis dataset contaifigd1
training examples an20D07 test examples of digits — 9. This dataset is considered quite hard with
reported human error rate @f5%. We ran experiments using the following settings of feaure
oriented Gaussian derivative filters with= 1 as the images ar& x 16 pixels, block sizes of
16 x 16, 8 x 8 and4 x 4 and12 orientation bins. Table 5 shows the error rates of variouthats
on this dataset. For comparison we also include raw pixalracies using linear and intersection
kernel SVMs. Once again these features with intersectionekgperform close to the state of the
art. Using rbf kernels we outperform the state of the art othods which use the same training
data as ours.

Per Digit Errors
Kernel Gradient 0 1 2 3 4 5 6 7 8 9| Error Rate
Tap 1 5 7 4 8 10 13 11 9 18 0.86%
intersection| Sobel 1 5 9 4 4 10 14 10 13 13 0.83%
OGF(c=2)||0 4 8 7 7 8 10 8 14 13 0.79%
polyyd=5 | OGF(¢=2)||1 4 6 3 5 5 8 8 7 9 0.56%

Table 4: Errors on MNIST (10,000 test examples). The bestr eate using the intersection ker-
nel SVM is 0.79% using OGF filters. Training a polynomial kernel SVM on the safeatures
gives an error rate af.56% which is same as the previous best results using SVMs (VS\iBade
from [7]). However the polynomial kernel SVM is at least tarerders of magnitude slower than
the intersection kernel SVM during classification.



Performance on MNIST Dataset
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Figure 1: Comparison of kernel SVM for various training sizesing pyramid features onn the full
training set 60,000 examples). Using the gradient features the the error ra®8.29% using
intersection kernel andl.44% using linear kernel SVM. The performance using the raw gixel
1.41% using rbf and1.34% using the polynomial kernels. The gradient features perfbetter
using the linear and intersection kernels comprared tontfelynomial kernels significantly when
the number of training data is small suggesting that theignadeatures capture the invariances in
the digits quite well. We did not train the polynomial and Kefnel SVMs on the gradient features
as both the training and test time were very high.

Feature Classifier Error Rate
Raw Pixels| SVM (linear) 11.3%
Raw Pixels| SVM (intersection) 8.7%
Raw Pixels| SVM (poly, d = 3) [7] 4.0%
Raw Pixels| VSV (poly, d = 3) [7] 3.2%
PHOG SVM (linear) 3.4%
PHOG SVM (intersection) 3.4%
PHOG SVM (poly,d = 5) 3.2%
PHOG SVM (rbf, v = 0.1) 2.7%
Raw Pixels| Tangent Distance [23]* 2.6%
Raw Pixels| Boosted Neural Nets [8]* 2.6%

Human Error Rate [3] 2.5%

Table 5: Summary of various results on the USPS dataset.tBetimear and the intersection kernel
SVMs outperform the existing numbers using SVMs which i$%t The VSV method which jitters
the Support Vectors to create additional training exampaled retrains a SVM, leads to an improved
accuracy 08.2%. Using polynomial and rbf kernel SVMs on PHOG features redube error rate
even further t3.2% and2.7% respectively. Some of the results shown in * use a diffenexining
dataset which has been enhanced by adding machine-primaeaoters. Note that our numbers are
the best in the unmodified version of the dataset.
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Figure 2: All the79 misclassifications using pyramid HOG features with therssgetion kernel
SVM, on the MNIST dataset. X~ Y on the top right corner of each example denotes that X is
misclassified as Y. The number in the bottom left corner isridex of the example in the test set.



5 Conclusions
There are several interesting aspects of our approach. ¢fagdi each of them briefly:

Learning Rate The oriented histogram based features significantly ofgparraw pixel features
when the number of training examples are small. In fact theréection kernel SVM has similar
performance using just, 000 training examples compared 69, 000 examples for the raw pixel
based features as seen in Figure 1. This shows that theaatigradients histogram features capture
the invariance in the digits quite well.

Number of Support Vectors The number of support vectors for the full classifier for thetdgram
based features are much smaller than those for polynomia¢le We have on avera@g04 support
vectors compared %8242 support vectors for the polynomial kernel usiriy 000 training examples.
This suggests that our features makes the learning easiethe data is much more separable. This
is reflected in the good performance of a linear SVM on theogistm feature<.64% compared to
15.38% using linear SVM on the raw pixels.

Classification Complexity Both the linear and the intersection kernel SVMs are fastlassifica-
tion, i.e. run time is independent of the number of suppoctaes. The feature computation step
is quite fast, as it involves convolution with separableftfollowed by computation of block his-
tograms. All this can be done in time linear in the number @kfs using integral histograms. In
the end we have 2172 dimensional feature vector and the classification usineplir5VM requires
2172 multiplications per class while the intersection kernelNbYequires aboub times as many
using the piecewise linear approximation to the classificaunction [18]. The estimated number
of multiply-add operations required by the linear SVM is ab¢0 K while the intersection kernel
requires about25K operations. Note that this includes the time to compute ¢la¢ufes. This is
significantly less than aboutt million operations required by a polynomial kernel SVM. Titee
duced set methods [4] requires approximatflg /K operations, while the neural network methods
like LeNet5 (0.9% error) requires350K and the boosted LeNetd.(% error) requirest50K op-
erations. For a small cost for computing features we are able to aehiempetitive performance
while at the same time are faster.

Training Time One significant advantage of kernel SVMs over neural netseisdlative ease and
speed during training. Our intersection/linear SVM clfsss has just one hyperparametérwhich
trades off the regularization and misclassification pégglt We set that td0 for all digits. We
found that the performance was fairly robust to the valu€'af that range. With fast linear SVM
training algorithms like LIBLINEAR [9], one can train theséassifiers in a few minutes total. For
the intersection kernel we train using LIBSVM which usesgbgquential minimization optimization
algorithm (SMO). This takes abo@ihours on average per class. However one may try to use variant
of stochastic gradient descent algorithms (e.g. [19])amtan approximate additive classifiers even
faster.

Thus using variants of histograms of oriented gradienttifea and the intersection kernel SVM
we get an approach which is the best in terms of all threer@itaccuracy, computation time at
training andcomputation time at testing.
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