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Abstract

We explore the use of certain image features, blockwise histograms of local orien-
tations, used in many current object recognition algorithms, for the task of hand-
written digit recognition. Existing approaches find that polynomial kernel SVMs
trained on raw pixels achieve state of the art performance. However such ker-
nel SVM approaches are impractical as they have a huge complexity at runtime.
We demonstrate that with improved features a low complexityclassifier, in par-
ticular an additive-kernel SVM, can achieve state of the artperformance. Our
approach achieves an error of0.79% on the MNIST dataset and3.4% error on
the USPS dataset, while running at speeds comparable to the fastest algorithms on
these datasets which are based on multilayer neural networks and are significantly
faster and easier to train.

1 Introduction

Handwritten digit recognition has been a fertile ground forexploring several learning techniques
ranging from automatically learning feature representations [22, 14], learning classifiers invariant
to distortions [7], matching and alignment based distances[2] and learning multilayered represen-
tations of data [16], ever since datasets like MNIST1 and USPS [13] have been introduced. Several
techniques that work well on this dataset rely on automatically selected features or intermediate rep-
resentations learned from the data represented by raw pixelvalues. The computer vision community
on the other hand has over several years constructed representations that are robust to image changes
like contrast and small distortions in rotation, translation and scale. These feature often consist of
computing image gradient features and constructing local histograms of these over orientations.

In this paper we show that these features can be adapted for digit recognition. By a careful choice
of the feature parameters one can obtain competitive results on the MNIST and the USPS datasets.
Robust features means that one can obtain better accuraciesfor a given number of training examples
even with simple classifiers like a linear or additive kernelSVM. Our proposed pipeline is quite
straightforward to implement and takes relatively small time to both train and test such models.
We believe that the simplicity and the competitiveness of this approach makes it ideal for computer
vision researchers as a baseline implementation for a variety of tasks.

2 Previous Work

Handwritten digit recognition has received considerable attention from the machine learning com-
munity. Several approaches achieve competitive performance for this task including those based on

1http://yann.lecun.com/exdb/mnist/
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multi layer neural networks, support vector machines, nearest neighbor methods. LeCun et.al. [16]
contains an excellent survey of various approaches on thesedatasets. One can look at the approaches
along the axis of feature rich and learning rich. Feature rich approaches try to compute a good
distance between examples and often use nearest neighbor for classification. Simpleℓ2 distance
between raw pixels [24] are at the lower end of this axis. Tangent distance, which computes an
approximate manifold distance based on a local linear approximation of the manifold falls in the
middle [23], while distances based on alignment of local features, for example the approach of [2],
which used shape-context features and thin plate splines [2] are the some of the most complex dis-
tances between examples. Learning rich approaches rely on the learning machinery with a relatively
simple feature representation and a significant fraction ofthe literature on digit classification is de-
voted to this. Many of these methods start from raw pixels andlearn classifiers either by learning
intermediate representations using neural networks [16, 20, 22] or projecting onto a higher dimen-
sion implicitly and finding a separating hyperplane using kernel SVMs [4, 7]. These approaches
work quite well on this dataset. However there are very few approaches which are both feature rich
and learning rich. An example is the work of Hao Zhang [25], who proposed the SVM-kNN method
for learning a local SVM model based on kernel computed from pairwise shape context distances
which is both feature and learning rich. However they do not present results on the full dataset,
which makes it difficult to compare with their results. Our work is in this spirit where we use the
good feature representations and combine it with a discriminative learning framework, in particular
Support Vector Machines.

Another set of useful dimensions to compare various algorithms are training and test time. Al-
gorithms likek-NN, have zero training time but are expensive during runtime (at least the naive
version). Neural networks have the opposite problem requiring huge amounts of training data and
time to learn good models, but the feedforward nature makes them extremely efficient during run-
time. Somewhere in the middle are support vector machines which use the latest developments in
convex optimization theory to train classifiers while at test have a complexity which is only a fraction
of a brute forcek-NN model (for a non linear kernel SVM) as the number of support vectors tend
be a small fraction of the training data. Linear SVMs are extremely efficient [9] for both training
and test, but they often require carefully designed features for competitive performance. We use the
best of both worlds using fast training algorithms from the SVM literature and good features from
the vision literature for digits.

We begin with experiments on the MNIST dataset in Section 3. We start with features based on raw
pixels in Section 3.1 and reproduce the results reported in the literature. We then show that switching
to gradient based features improves the performance of the system significantly in Section 3.2. For
completeness we also report results on the USPS dataset in Section 4. We summarize our results
and present our conclusions in Section 5.

3 MNIST Dataset Experiments

Our first experiments are on the MNIST dataset introduced by Yann LeCun and Corinna Cortes.
The dataset contains60, 000 examples of digits0 − 9 for training and10, 000 examples for testing.
Our features are based on spatial pyramids over responses invarious channels computed from the
image. The idea is to construct features by adding the responses within blocks of increasing sizes.
The channel could just be the raw pixel values or response in aparticular orientation direction.
Variants of these features like the pyramid match kernel [12], spatial pyramid match kernel [15] and
histograms of oriented gradients [6] have led to impressiveresults on the Caltech 101 [10], Pascal
VOC [1] datasets as well as pedestrian detection. We experiment with several choices of the feature
like the orientation filter type and scale, pooling choices for computing blocked histograms and
ways to sample blocks on the images. In general the performance using orientation channels are
significantly better than raw pixels on typical images, but we present experiments using raw pixels
for comparison as many of previously published work use raw pixels as features.
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Complexity kernel error rate(%)
O(1) linear 15.38

int 13.29

O(#SV ) poly 7.41
rbf 8.10

kernel error rate(%)
linear 14.84

int 9.02

poly 7.71
rbf 6.57

Table 1: Error rates on the MNIST dataset using raw pixels(left) and pyramid of raw pixels(right).
Only the first1000 examples were used for training.

3.1 Raw Pixel Features

The input image is a28 × 28 grayscale image with each pixel value∈ {0, . . . , 255}. Various kinds
of preprocessing have been proposed in the literature to improve accuracy. Two of the most popular
ones are :

• Deskewing - the image is aligned so that the principal component is along the Y-axis. This
operation vertically aligns all the1s in the dataset.

• Ink Normalization - the image is normalized so that theℓ2-norm of the pixel values is1.

In our experiments we perform ink normalization, as we foundthat it improves performance, partic-
ularly with a linear kernel, while do not perform the deskewing operation.

The simplest feature is to use the28 × 28 pixels as a feature vector and train a classifier based on a
kernel SVM. We train one-vs-all classifiers using LIBSVM [5], one for each digit. A test example
is assigned the class with the highest posterior probability which is estimated based on the margin
of the test example. Table 1, shows the performance of various kernels using raw pixels trained on
the first1000 training examples and using all the10, 000 test examples for testing. We report the
error rates using the full training set of60, 000 only on the best performing kernels as it takes quite
a while to train SVMs using non linear kernels. Whenever available we will quote numbers from
the literature. Both the linear and the intersection kernelSVM perform significantly worse than a
degree5 polynomial kernel or a rbf kernel SVM. The kernels are definedas follows:

klin(x,y) = x · y (1)

kint(x,y) = min(x,y) (2)

kpoly(x,y) = (x · y + 1)5 (3)

krbf (x,y) = exp(−γ||x − y||2) (4)

We also investigated hierarchical features where the imageis overlaid with a grid of cell sizec × c

and pixels withins each cell are added up. This is same as downsampling the image and using the raw
pixels in the downsampled image as features. In our experiments we choose grid sizes (c) ranging
from 1, 2, 3, 4, 5, 6, 7 and14. Herec = 1, is the original image andc = 14 is the coarsest image
where the original28 × 28 image is downsampled to2 × 2 pixels. We found that overlapping grids
offset by half the cell size improves the performance over non overlapping grids. All the features are
assigned equal weights apriori. Table 1, shows the accuracyof a linear and an intersection kernel
SVM trained on these features. The linear SVM does not gain any power using the hierarchy as the
higher levels of the hierarchy are just linear combination (sums) of the features in the lower levels.
This is reflected by a very small increase in accuracy over thebaseline linear SVM on raw pixels,
while there is more than a4× increase in the feature dimension. The intersection kernelSVM being
non linear however exhibits an improved accuracy, but is still worse than a polynomial or rbf kernel
SVM.

3



3.2 Gradient Histogram Features

We experiment with features constructed using histograms of oriented gradients which have become
popular in the vision literature for representing objects [2, 6, 11, 15, 17] and scenes [21]. Each pixel
in the image is assigned an orientation and magnitude based on the local gradient and histograms are
constructed by aggregating the pixel responses within cells of various sizes. We construct histograms
with cell sizes14×14, 7×7 and4×4 with overlap of half the cell size. The histograms at each level
are multiplied by weights1, 2 and4 and concatenated together to form a single histogram which are
then used to train kernel SVMs. This is very similar to the spatial pyramid matching [15] when
used with the intersection kernel (we differ in the overlapping grids). The various choices for the
descriptor are as follows :

1. Oriented Derivative Filter The input grayscale image is convolved with filters which re-
spond to horizontal and vertical gradients from which the magnitude and orientation is
computed. Letrh(p) andrv(p) be the response in the horizontal and vertical direction at a
pixel p respectively, then the magnitudem(p) and the anglea(p) of the pixel is given by :

m(p) =
√

rh(p)2 + rv(p)2 (5)

a(p) = atan2 (rh(p), rv(p)) ∈ [0, 360) (6)

We experiment with tap filters, Sobel and oriented Gaussian derivative (OGF) filters.

2. Signed vs. UnsignedThe orientation could be signed (0−360) or unsigned (0−180). The
signed gradient distinguishes between black to white and white to black transitions which
might be useful for digits.

3. Number of Orientation Bins The orientation at each pixel is binned into a discrete set of
orientations by linear interpolation between bin centers to avoid aliasing.

Table 3 shows the performance of the classifier for various choices of the descriptor. There is a
significant reduction in the error rates compared to raw pixel features. We obtain an error of2.64%
using just1000 training examples with the intersection kernel SVM. The performance of the linear
kernel is also quite good at4.54%, which is significantly better than both the polynomial and rbf
kernel SVM trained on the raw pixel features. As expected thesigned gradients perform better than
the unsigned gradients (2.64% vs. 2.97%). Among the oriented derivative filters for the signed
gradients the Gaussian filters perform the best. We found that σ = 2 with 12 orientation bins gave
us the lowest error rate as seen in Table 2. We trained a intersection kernel SVM on the features
obtained using12 bins, signed gradients and the three choices of the filters onthe entire training
set and obtain an error rate of0.79% using the oriented Gaussian derivative filters,0.83% using the
Sobel filter and0.86% using the tap filter.

Table 4 shows the number of misclassifications for each digit. These numbers are quite close to the
state of the art using SVMs. For example the best numbers reported using SVMs is0.56% using
degree9 polynomial kernel on the raw pixel features using the VSV2 method [7]. However the
authors perform deskewing and jittering on the training examples to improve the performance. This
leads to significantly slower training times as well as an average of about16, 000 support vectors per
class leading to very slow test times. The best performance with deskewing but no jittering using an
SVM is 1.0% using degree5 polynomial kernels and1.1% using rbf kernels [16]. We outperform
both these, while at the same time by using additive kernels we avoid the runtime and overhead of
storing and comparing a test example with all the support vectors [18]. This makes the intersection
kernel SVMs at least three orders of magnitude faster than the VSV2 method. Training a degree5
polynomial kernel SVM on the same features improves the performance even further to0.56% error
at the cost of increased runtime. This is still faster than VSV2 as we have only about1, 200 support
vectors on average and our features are only2.77× larger than the raw pixel features used in VSV2.
Burges et.al. [4] has proposed the reduced set methods to reduce the number of support vectors
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σ 1 2 3
Error Rate(%) 2.74 2.64 2.67

Table 2: Effect of the bandwidth(σ) of the oriented Gaussian derivative filters using12 orientation
bins, signed responses and1000 training examples.

Signed Response Unsigned Response
Test Error(%) Test Error(%)

nori feat dim Tap Sobel OGF (σ = 2) nori feat dim Tap Sobel OGF (σ = 2)
8 1148 2.97 2.93 2.85 4 724 4.06 4.39 4.37
9 1629 2.75 2.77 2.79 6 1086 3.53 3.58 3.70
12 2172 2.71 2.68 2.64 8 1148 3.31 3.35 3.33
16 2896 2.74 2.83 2.66 12 2172 2.97 3.08 3.21

Table 3: Error rates on the MNIST dataset using pyramid of histograms of oriented gradients. Only
the first1000 examples were used for training.

to a fraction of the original at a slight loss in performance.The best number reported using that
technique is1.1%. Figure 1 shows the performance on the test data using the oriented energy based
features for various training sizes. We keep the learning parameters fixed atc = 10 in LIBSVM for
all the runs of both the linear and intersection kernel SVM.

4 USPS Dataset Experiments

For completeness we also present experiments on the USPS dataset. This dataset contains7291
training examples and2007 test examples of digits0− 9. This dataset is considered quite hard with
reported human error rate of2.5%. We ran experiments using the following settings of features:
oriented Gaussian derivative filters withσ = 1 as the images are16 × 16 pixels, block sizes of
16 × 16, 8 × 8 and4 × 4 and12 orientation bins. Table 5 shows the error rates of various methods
on this dataset. For comparison we also include raw pixel accuracies using linear and intersection
kernel SVMs. Once again these features with intersection kernel perform close to the state of the
art. Using rbf kernels we outperform the state of the art on methods which use the same training
data as ours.

Per Digit Errors
Kernel Gradient 0 1 2 3 4 5 6 7 8 9 Error Rate

Tap 1 5 7 4 8 10 13 11 9 18 0.86%
intersection Sobel 1 5 9 4 4 10 14 10 13 13 0.83%

OGF(σ = 2) 0 4 8 7 7 8 10 8 14 13 0.79%
poly, d = 5 OGF(σ = 2) 1 4 6 3 5 5 8 8 7 9 0.56%

Table 4: Errors on MNIST (10,000 test examples). The best error rate using the intersection ker-
nel SVM is 0.79% using OGF filters. Training a polynomial kernel SVM on the same features
gives an error rate of0.56% which is same as the previous best results using SVMs (VSV2 method
from [7]). However the polynomial kernel SVM is at least three orders of magnitude slower than
the intersection kernel SVM during classification.
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Figure 1: Comparison of kernel SVM for various training sizes using pyramid features onn the full
training set (60, 000 examples). Using the gradient features the the error rates are 0.79% using
intersection kernel and1.44% using linear kernel SVM. The performance using the raw pixels is
1.41% using rbf and1.34% using the polynomial kernels. The gradient features perform better
using the linear and intersection kernels comprared to rbf and polynomial kernels significantly when
the number of training data is small suggesting that the gradient features capture the invariances in
the digits quite well. We did not train the polynomial and rbfkernel SVMs on the gradient features
as both the training and test time were very high.

Feature Classifier Error Rate
Raw Pixels SVM (linear) 11.3%
Raw Pixels SVM (intersection) 8.7%
Raw Pixels SVM (poly, d = 3) [7] 4.0%
Raw Pixels VSV (poly, d = 3) [7] 3.2%

PHOG SVM (linear) 3.4%
PHOG SVM (intersection) 3.4%
PHOG SVM (poly, d = 5) 3.2%
PHOG SVM (rbf, γ = 0.1) 2.7%
Raw Pixels Tangent Distance [23]* 2.6%
Raw Pixels Boosted Neural Nets [8]* 2.6%

Human Error Rate [3] 2.5%

Table 5: Summary of various results on the USPS dataset. Boththe linear and the intersection kernel
SVMs outperform the existing numbers using SVMs which is at4%. The VSV method which jitters
the Support Vectors to create additional training examples, and retrains a SVM, leads to an improved
accuracy of3.2%. Using polynomial and rbf kernel SVMs on PHOG features reduces the error rate
even further to3.2% and2.7% respectively. Some of the results shown in * use a different training
dataset which has been enhanced by adding machine-printed characters. Note that our numbers are
the best in the unmodified version of the dataset.
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Figure 2: All the79 misclassifications using pyramid HOG features with the intersection kernel
SVM, on the MNIST dataset. X→ Y on the top right corner of each example denotes that X is
misclassified as Y. The number in the bottom left corner is theindex of the example in the test set.
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5 Conclusions

There are several interesting aspects of our approach. We discuss each of them briefly:

Learning Rate The oriented histogram based features significantly outperform raw pixel features
when the number of training examples are small. In fact the intersection kernel SVM has similar
performance using just4, 000 training examples compared to60, 000 examples for the raw pixel
based features as seen in Figure 1. This shows that the oriented gradients histogram features capture
the invariance in the digits quite well.

Number of Support VectorsThe number of support vectors for the full classifier for the histogram
based features are much smaller than those for polynomial kernels. We have on average1304 support
vectors compared to3242 support vectors for the polynomial kernel using10, 000 training examples.
This suggests that our features makes the learning easier, i.e., the data is much more separable. This
is reflected in the good performance of a linear SVM on the histogram features,2.64% compared to
15.38% using linear SVM on the raw pixels.

Classification ComplexityBoth the linear and the intersection kernel SVMs are fast forclassifica-
tion, i.e. run time is independent of the number of support vectors. The feature computation step
is quite fast, as it involves convolution with separable filters followed by computation of block his-
tograms. All this can be done in time linear in the number of pixels using integral histograms. In
the end we have a2172 dimensional feature vector and the classification using linear SVM requires
2172 multiplications per class while the intersection kernel SVM requires about5 times as many
using the piecewise linear approximation to the classification function [18]. The estimated number
of multiply-add operations required by the linear SVM is about 40K while the intersection kernel
requires about125K operations. Note that this includes the time to compute the features. This is
significantly less than about14 million operations required by a polynomial kernel SVM. There-
duced set methods [4] requires approximately650K operations, while the neural network methods
like LeNet5 (0.9% error) requires350K and the boosted LeNet4 (0.7% error) requires450K op-
erations2. For a small cost for computing features we are able to achieve competitive performance
while at the same time are faster.

Training Time One significant advantage of kernel SVMs over neural nets is the relative ease and
speed during training. Our intersection/linear SVM classifiers has just one hyperparameter,C, which
trades off the regularization and misclassification penalties. We set that to10 for all digits. We
found that the performance was fairly robust to the value ofC in that range. With fast linear SVM
training algorithms like LIBLINEAR [9], one can train theseclassifiers in a few minutes total. For
the intersection kernel we train using LIBSVM which uses thesequential minimization optimization
algorithm (SMO). This takes about4 hours on average per class. However one may try to use variants
of stochastic gradient descent algorithms (e.g. [19]) to train an approximate additive classifiers even
faster.

Thus using variants of histograms of oriented gradients features and the intersection kernel SVM
we get an approach which is the best in terms of all three criteria: accuracy, computation time at
training andcomputation time at testing.
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