
Compile Time Task and Resource Allocation of
Concurrent Applications to Multiprocessor Systems

Nadathur Rajagopalan Satish

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2009-19

http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-19.html

January 29, 2009

Copyright 2009, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Compile Time Task and Resource Allocation of Concurrent Applications to
Multiprocessor Platforms

by

Nadathur Rajagopalan Satish

B.Tech. (IIT Kharagpur) 2003

A dissertation submitted in partial satisfaction of the
requirements for the degree of

Doctor of Philosophy

in

Engineering - Electrical Engineering and Computer Sciences

in the

GRADUATE DIVISION
of the

UNIVERSITY OF CALIFORNIA, BERKELEY

Committee in charge:
Professor Kurt Keutzer, Chair

Professor John Wawrzynek
Professor Alper Atamtürk

Spring 2009

The dissertation of Nadathur Rajagopalan Satish is approved:

Chair Date

Date

Date

University of California, Berkeley

Spring 2009

Compile Time Task and Resource Allocation of Concurrent Applications to

Multiprocessor Platforms

Copyright 2009

by

Nadathur Rajagopalan Satish

1

Abstract

Compile Time Task and Resource Allocation of Concurrent Applications to

Multiprocessor Platforms

by

Nadathur Rajagopalan Satish

Doctor of Philosophy in Engineering - Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Kurt Keutzer, Chair

Single-chip multiprocessors are now commonly present in both embedded and desktop systems. A

key challenge before a programmer of modern systems is to productively program the multiproces-

sor devices present in these systems and utilize the parallelism available in them. This motivates the

development of automated tools for parallel application development. An important step in such an

automated flow is allocating and scheduling the concurrent tasks to the processing and communica-

tion resources in the architecture. When the application workload and execution profiles are known

or can be estimated at compile time, then we can perform the allocation and scheduling statically at

compile time. Many applications in signal processing and networking can be scheduled at compile

time. Compile time scheduling incurs minimal overhead while running the application. It is also

relevant to rapid design-space exploration of micro-architectures.

Scheduling problems that arise in realistic application deployment and design space explo-

ration frameworks can encompass a variety of objectives and constraints. In order for scheduling

techniques to be useful for realistic exploration frameworks, they must therefore be sufficiently ex-

tensible to be applied to a range of problems. At the same time, they must be capable of producing

high quality solutions to different scheduling problems. Further, such techniques must be compu-

tationally efficient, especially when they are used to evaluate many micro-architectures in a design

space exploration framework.

The focus of this dissertation is to provide guidance in choosing scheduling methods that best

trade-off the flexibility with solution time and quality of the resulting schedule. We investigate

and evaluate representatives of three broad classes of scheduling methods: heuristics, evolutionary

2

algorithms and constraint programming. In order to evaluate these techniques, we consider three

practical task-level scheduling problems: task allocation and scheduling onto multiprocessors, re-

source allocation and scheduling data transfers between CPU and GPU memories, and scheduling

applications with variable task execution times and dependencies onto multiprocessors. We use

applications from the networking, media and machine learning domains to benchmark our tech-

niques. The above three scheduling problems, while all arising from practical mapping concerns,

require different models, have differing constraints and optimize for different objectives. The diver-

sity of these problems gives us a base for studying the extensibility of scheduling methods. It also

helps provide a more holistic view of the merits of different scheduling approaches in terms of their

efficiency and quality of solutions produced on general scheduling problems.

Professor Kurt Keutzer
Dissertation Committee Chair

i

Dedicated to my family.

ii

Contents

List of Figures v

List of Tables viii

1 Introduction 1
1.1 Challenges in the use of single chip multiprocessors 2
1.2 Bridging the implementation gap . 4
1.3 The mapping step . 6

1.3.1 Complexity of the scheduling problem . 7
1.3.2 The case for compile-time scheduling . 8
1.3.3 Methods for Compile-time Scheduling . 9

1.4 Application of compile-time methods to practical scheduling problems 12
1.5 Contributions of the dissertation . 14

2 Static Task Allocation and Scheduling 15
2.1 Mapping streaming applications onto soft multiprocessor systems on FPGAs . . . 15

2.1.1 Examples of Streaming Applications . 16
2.1.2 The Mapping and Scheduling Problem . 17
2.1.3 Soft Multiprocessor Systems on FPGAs 18
2.1.4 The need for automated mapping . 20

2.2 Automated Task Allocation and Scheduling . 20
2.2.1 Static Models . 20
2.2.2 Optimization Problem . 24

2.3 Techniques for Static Task Allocation and Scheduling 28
2.3.1 Heuristic Methods . 28
2.3.2 Simulated Annealing . 31
2.3.3 Constraint Optimization Methods . 35
2.3.4 Lower bounds . 41

2.4 Results . 42
2.4.1 Benchmarks . 42
2.4.2 Comparisons on regular processor architectures 42
2.4.3 Comparison on realistic architectural models 46
2.4.4 Throughput estimation using makespan 48

iii

2.5 Comparing different optimization approaches . 50

3 Resource allocation and communication scheduling on CPU/GPU systems 52
3.1 Mapping applications with large data sets onto CPU-GPU systems 52

3.1.1 Applications . 53
3.1.2 CPU/GPU systems . 55
3.1.3 The mapping step . 57

3.2 Task and Data transfer scheduling to minimize data transfers 61
3.2.1 Static Models . 61
3.2.2 Optimization Problem . 62

3.3 Techniques for Static Optimization . 68
3.3.1 Previous Work . 69
3.3.2 Exact MILP formulation . 70
3.3.3 Decomposition-based Approaches . 75
3.3.4 Data transfer scheduling given a task order 75
3.3.5 Finding a good task ordering . 77

3.4 Results . 81
3.5 Choice of Optimization Method . 87

4 Statistical Models and Analysis for Task Scheduling 89
4.1 Variability in application execution times . 91

4.1.1 IPv4 packet forwarding on a soft multiprocessor system 92
4.1.2 H.264 video decoding on commercial multi-core platforms 96

4.2 Statistical Models . 101
4.2.1 Application Task Graph . 101
4.2.2 Architecture Model . 103
4.2.3 Performance Model . 103
4.2.4 Optimization Problem . 106

4.3 Statistical Performance Analysis . 107
4.3.1 Valid allocation and schedule . 107
4.3.2 Formulation of the performance analysis problem 108
4.3.3 Types of performance analysis . 110
4.3.4 Comparison of Statistical to Static Analysis 115

4.4 The need for generalized statistical models and analysis 119
4.5 Conclusions . 120

5 Statistical Optimization 122
5.1 Statistical task allocation and scheduling onto multiprocessors 122
5.2 Techniques for Statistical Optimization . 123

5.2.1 Statistical Dynamic List Scheduling . 124
5.2.2 Simulated Annealing . 131
5.2.3 Deterministic Optimization Approaches 134

5.3 Related Work . 135
5.4 Results . 136

5.4.1 Benchmarks . 136

iv

5.4.2 Comparison to deterministic scheduling techniques 137
5.4.3 Comparison of statistical DLS and SA optimization techniques 142
5.4.4 Summary . 144

6 Constraint Optimization approaches to Statistical Scheduling 146
6.1 Decomposition based Approaches . 147
6.2 Algorithmic extensions . 152

6.2.1 Boolean Satisfiability procedure to solve the master problem 152
6.2.2 Pruning intermediate nodes in the search 153
6.2.3 Guiding master problem search using heuristics 154

6.3 Iterative decomposition-based algorithm . 154
6.4 Results . 157

6.4.1 Comparison of different decomposition-based scheduling approaches . . . 157
6.4.2 Comparison of decomposition-based scheduling to other approaches 158

7 Conclusions 163
7.1 Comparison of scheduling approaches . 164

7.1.1 Heuristic techniques . 164
7.1.2 Constraint Optimization methods . 166
7.1.3 Simulated Annealing . 167

7.2 Incorporating Variability into Compile-time scheduling models and methods 168
7.3 Future Work . 169

7.3.1 Broader range of applications . 169
7.3.2 Other evolutionary algorithms . 169
7.3.3 Symmetry considerations . 169
7.3.4 Parallel Implementation of Scheduling Methods 170
7.3.5 Dynamic Scheduling . 171

7.4 Summary . 171

Bibliography 172

v

List of Figures

1.1 The Y-Chart approach for deploying concurrent applications. 5

2.1 Block diagram of the data plane of the IPv4 packet forwarding application. 16
2.2 Block diagram of the Motion JPEG video encoding application. 17
2.3 Architecture model of a soft multiprocessor composed of an array of 3 processors. . 19
2.4 Task graph the IPv4 header processing application. 21
2.5 Task graph for the Motion JPEG video encoding application. 22
2.6 Execution and communication time annotations for the task graphs of the (a) IPv4

forwarding and (b) Motion JPEG encoding applications. 24
2.7 Throughput computation in the delay model: the task graph in (a) is unrolled for

three iterations in (b). 27
2.8 A solution to the master problem that contains a cycle, hence representing an invalid

schedule. 39
2.9 A second solution to the master problem that represents a valid schedule. 40
2.10 Different target architectures for IPv4 packet forwarding. 46
2.11 Percentage improvements of DA and SA makespans over the DLS makespan for

larger task graph instances (with up to 277 tasks) derived from Motion JPEG en-
coding scheduled on 8 processors arranged in a mesh topology. 48

2.12 Graph of the estimated throughput of the IPv4 packet forwarding application as a
function of the number of iterations of the application task graph. 49

3.1 Task graph depicting the data parallel tasks and data in the edge detection application. 55
3.2 Task graph depicting the data parallel tasks and data in a Convolutional Neural

Network. 56
3.3 A schedule of task and data transfers for the task graph in Figure 3.1. 59
3.4 A second schedule of task and data transfers for the task graph in Figure 3.1. 60
3.5 Task order and resulting data transfers obtained from the DFS heuristic for the task

graph in Figure 3.1. 79
3.6 Percentage difference between the data transfers obtained from the DFS/MILP and

SA/MILP approaches for the CNN1 benchmark in Table 3.2 optimized for the 8800
GTX platform. 84

vi

3.7 Data transfers obtained from the SA/MILP approach for the CNN1 benchmark for
input image resolutions of (a) 6400×4800 and (b) 8000×6000 optimized for GPUs
of different sizes. 87

4.1 Parallel tasks and dependencies in the IPv4 header processing application. 93
4.2 Example of a multi-bit trie with stride order (12 8 4 3 3 2) and the corresponding

route table. 93
4.3 Prefix length distribution of a typical backbone router (Telstra Router, Dec 2000)

from [Ruiz-Sánchez et al., 2001]. 94
4.4 Probability distribution of the number of memory accesses for lookup 95
4.5 Block diagram of the H.264 decoder. 97
4.6 Spatial dependencies for I macroblocks in a H.264 frame. 98
4.7 Partial task graph for (a) an I-frame and (b) a P-frame for H.264 video decoding. . 98
4.8 Spatial distribution of P-skip macroblocks within frames of the manitu.264 stream.

Different colors encode the probabilities that particular macroblocks are P-skip
macroblocks. 99

4.9 Execution time variations of P-skip, P and I macroblocks in the manitu.264 video
stream. 101

4.10 (a) Probabilistic dependencies for a single task in a P-frame of a H.264 decoding
task graph. (b) shows a partial task graph for P-frames with more than one task. . . 102

4.11 Task graph for IPv4 packet forwarding annotated with the performance model. . . . 105
4.12 Two valid schedules for the task graph in Figure 4.1. The dashed edges represent

the ordering edges. 109
4.13 χ2 error for Monte Carlo analysis with varying numbers of Monte Carlo iterations

versus exact analysis for a 4-port IP forwarder. 113
4.14 Architecture model of a soft multiprocessor composed of an array of 3 processors. . 116
4.15 Analysis results for schedules (a) and (b) in Figure 4.12. 117
4.16 A third schedule for IPv4 packet forwarding and the corresponding analysis result. 118
4.17 Histogram of the percentage differences between worst-case deterministic analy-

sis and Monte Carlo analysis for a set of 1000 schedules for H.264 decoding on
manitu.264. The deterministic analysis is uneven in its estimation of makespan. . . 119

5.1 (a) An example task graph for statistical scheduling and (b) a partial allocation and
schedule of tasks src, X1 and X2 onto two processors. 126

5.2 Two valid schedules for the task graph in Figure 5.1(a). 127
5.3 Incremental Statistical Analysis.. 133
5.4 Comparison of statistical SA to deterministic worst-case and common-case opti-

mization for different numbers of tasks in IPv4 packet forwarding. 141

6.1 A task graph where no single path length determines the makespan. 148
6.2 Average percentage improvement of the makespans obtained by the DA and IT-DA

statistical decomposition approaches over the statistical DLS makespan for random
task graphs containing 50 tasks scheduled on 4. 8 and 16 fully-connected processors
as a function of edge density. 158

vii

6.3 Percentage improvement of the statistical SA and IT-DA makespans over the sta-
tistical DLS makespan for task graphs derived from the IPv4 packet forwarding
application scheduled on the architecture of Figure 2.10(b). 160

6.4 Percentage improvement of the statistical SA and IT-DA makespans over the sta-
tistical DLS makespan for task graphs derived from the IPv4 packet forwarding
application scheduled on the architecture of Figure 2.10(c). 161

viii

List of Tables

2.1 Makespan results for the DLS, Simulated Annealing (SA), and decomposition ap-
proach (DA) on task graphs derived from MJPEG decoding scheduled on 2, 4, 6,
and 8 fully connected processors. 43

2.2 Makespan results for the DLS, MILP, and decomposition approach (DA) on task
graphs derived from IPv4 packet forwarding scheduled on 2, 4, 6, and 8 fully con-
nected processors. 44

2.3 Average percentage difference from optimal solutions for makespan results gener-
ated by DLS, SA, and DA for random task graph instances scheduled on 2, 4, 6, 8,
9, 12, and 16 fully connected processors. 45

2.4 Makespan results for the DLS, DA, and SA methods on task graphs derived from
IPv4 packet forwarding scheduled on the architectures (a) through (c) of Figure 2.10. 47

3.1 Benchmark characteristics for evaluating different scheduling techniques for mini-
mizing data transfers. 82

3.2 Data transfer optimization results for the single-pass MILP approach and two de-
composition approaches: a depth-first search heuristic combined with MILP (DF-
S/MILP) and a simulated annealing search combined with MILP (SA/MILP) on
different benchmarks on three GPU platforms. 83

3.3 Percentage difference between the data transfer results of the SA/MILP approach
and a variant SA/MILP (long) that is allowed to run overnight on different bench-
marks on three GPU platforms. This is used as a measure of the optimality of the
SA/MILP approach. 85

3.4 Run times (in seconds) of the DFS/MILP and the SA/MILP decomposition ap-
proaches corresponding to the entries of Table 3.2 on different benchmarks on three
GPU platforms. 86

4.1 Joint probability distribution table for tasks Lookup 1-6 of Fig 4.1 assuming that
each memory lookup takes 20 cycles. 95

5.1 Salient characteristics of the H.264 video decoding algorithm for different input
streams. 137

5.2 Makespan results for the deterministic worst-case, deterministic common-case and
statistical SA methods on task graphs derived from IPv4 packet forwarding sched-
uled on the architectures (a) and (c) of Figure 2.10. 138

ix

5.3 Makespan results for the deterministic worst-case, deterministic common-case and
statistical SA methods on task graphs derived from H.264 video decoding applica-
tion scheduled on the architectures with 4,8,10,12 and 16 processors. 139

5.4 Average percentage degradation of the worst and common-case deterministic sched-
ules from the statistical SA schedule at different percentiles for random task graphs
scheduled on 4,6 and 8 processors. 140

5.5 Makespan results for the statistical DLS and statistical SA methods on task graphs
derived from IPv4 packet forwarding scheduled on the multiprocessor architectures
of Figure 2.10(a) and (b). 142

5.6 Makespan results for the statistical DLS and statistical SA methods on task graphs
derived from H.264 video decoding application scheduled on architectures with 4,8
and 16 processors. 143

6.1 Makespan results for the statistical DLS, SA and iterative DA methods on task
graphs derived from IPv4 packet forwarding scheduled on the 8 processors con-
nected in full and ring topologies. 159

6.2 Runtime (in minutes) for the statistical DLS, SA and iterative DA methods on the
mapping instances of Table 6.1. 161

x

Acknowledgments

I thank my advisor, Professor Kurt Keutzer for guiding me through my graduate life at Berke-

ley. He has inspired me in various ways. As a researcher, I am continually amazed at his clarity

of thought and his ability to get the fundamental idea behind a problem with just a few questions.

The emphasis he places on the practical aspects of solving a problem will continue to inspire and

guide me in my future career. His focus on communication skills has left me a much better public

speaker than when I came to Berkeley. As an advisor, he has always struck the right balance be-

tween allowing students to perform independent research versus guiding them to ensure they pick

topics of practical interest. It has been an honor to work with him and I look forward to continuing

to collaborate with him in the years ahead.

I thank Professor John Wawrzynek and Professor Alper Atamtürk for serving on my disserta-

tion and qualifying examination committees. They have provided me with valuable guidance and

feedback regarding this dissertation. Professors Wawrzynek’s course on reconfigurable computing

was an inspiration for the first portion of this work. Professor Atamtürk taught me two courses on

computational and linear optimization, and his courses provided the spark and a basic foundation

for a significant part of this research.

I thank Professor Ras Bodik for having served on my qualifying exam committee. He provided

valuable feedback to me on my research topic that has helped shape the direction of my work.

I thank all my professors who have taught me various courses here at Berkeley. They have not

only imparted me knowledge of the subject matter, but have also enabled me to think objectively

and critically about research in various fields.

I thank my direct collaborators in my research work: Yujia Jin, William Plishker, Kaushik

Ravindran and Narayanan Sundaram. I would especially like to thank Kaushik Ravindran, who

has closely collaborated with me for most of my research career at Berkeley. We studied different

models and optimization methods to solve mapping problems.

I thank the present and past members of the MESCAL research group, which has been renamed

the PALLAS group. These include: Jike Chong, Bryan Catanzaro, Matt Moskewicz, Andrew Mihal,

Scott Weber, Niraj Shah, Dave Chinnery, Christian Sauer, Matthias Gries, Chidamber Kulkarni and

Martin Trautmann. They are a really smart group of people. They have sparked many an idea.

I thank other students in the DOP Center for having made life more fun. These include (but are

not limited to): Abhijit Davare, Animesh Kumar, Arindam Chakrabarti, Arkadeb Ghosal, Donald

Chai, Douglas Densmore, Kelvin Lwin, Krishnendu Chatterjee, Mark McKelvin, Nathan Kitchen,

xi

Qi Zhu, Satrajit Chatterjee and Trevor Meyerowitz. I have become good friends with most of this

group. I remember a few sightseeing trips we went on together - those were good fun!

I would like to thank the members of the EECS administrative staff: Mary Byrnes, Ruth

Gjerde, Jontae Gray, Patrick Hernan, Cindy Keenon, Brad Krepes, Ellen Lenzi, Loretta Lutcher,

Dan MacLeod, Marvin Motley, Jennifer Stone, and Carol Zalon. They have always helped students

navigate around the various procedures and bureaucracy involved in graduate life. My thoughts and

prayers remain with Ruth.

A shout-out to my former and current apartment-mates: Shariq Rizvi, Rahul Tandra, Pankaj

Kalra, Susmit Jha and John Blitzer: the lunches and dinners, the conversation, watching sports and

movies - all have now become a regular part of my life. I know I’ll miss all of the camaraderie.

To my parents and sister - your encouragement, effort and sacrifices are what made this possi-

ble. I cannot possibly thank you enough.

1

Chapter 1

Introduction

There has been a major shift in the computing landscape due to the advent of devices with

multiple processors on a single chip. The shift towards single-chip multiprocessors is motivated

by the simple fact that while Moore’s law has continued to allow the doubling of transistors on a

die every 18-24 months, these transistors can no longer be effectively used to increase performance

of a single processor. The prohibitive increase in power consumption of single processor designs

and the complexity of designing such processors are the key reasons that prevent single core per-

formance from scaling [Olukotun and Hammond, 2005] [Borkar, 1999]. The alternative method to

utilize the additional transistors that are made available in each process generation is to instantiate

multiple processors on the same chip. In keeping with Moore’s law, it is expected that the number

of processors per die with double with each process generation [Asanovic et al., 2006].

As of 2008, single chip multiprocessors have become firmly established in the server, desk-

top and embedded markets. Some of the early trends towards chip multiprocessors occurred in

the embedded market. These early chip multiprocessors were driven by the need to satisfy the

ever-increasing computational requirements of embedded applications while not sacrificing the pro-

grammability of the platform [Horowitz et al., 2003] [Masselos et al., 2003]. As a consequence,

programmable multiprocessors with high computational capability were designed in an attempt

to exploit the concurrency naturally present in many embedded applications. Such multiproces-

sors have remained useful in light of the limits to which single processor performance can be im-

proved.Some examples of programmable multiprocessors in the embedded market include the IXP

network processors from Intel [Intel Corp., 2002], the CRS-I Metro Chip from Cisco [Eatherton,

2005], the Cell processor by the IBM-Sony-Toshiba consortium [IBM Corp., 2007] and Digital Sig-

nal Processors (DSPs) from TI, Analog Devices and Picochip. It is to be noted that this is by no

2

means an exhaustive list and other companies have also brought out or are in the process of bringing

out programmable multiprocessor chips.

In the general-purpose market, Intel and AMD started marketing dual-core processors for the

desktop market around 2004-2005. The trend in the general purpose market has been from multi-

core to many-core: from dual-, quad- and eight-core chips to chips with 32 cores, 64 cores and

beyond. This is a natural consequence of Moore’s law, and the number of processors on a die can

be expected to continue to scale to hundreds of cores. The advent of Graphics Processing Units

(GPUs) from NVIDIA and ATI/AMD and the forthcoming Larrabee processor from Intel are early

indicators of this trend.

At the same time, multiprocessor designs have also been implemented on Field Programmable

Gate Array (FPGA) platforms. FPGAs allow for the instantiation of a network of processing el-

ements, logic blocks and memories using Lookup Tables (LUTs) on the fabric. One of the key

advantages of FPGA based systems is its flexibility to customize the architecture to suit different

application requirements. The primary FPGA vendors, Xilinx and Altera, offer tools to help de-

sign multiprocessor networks on their platforms [Xilinx Inc., 2004] [Altera Inc., 2003]. FPGA

based multiprocessor systems have primarily been used as a emulation platform for evaluating mul-

tiprocessor architectures, and as a research tool for evaluating the scalability of multiprocessor sys-

tems [Wawrzynek et al., 2007].

Programmable single-chip multiprocessors are now an established trend in both the embedded

and general-purpose markets. Such processors offer the potential to allow application performance

to keep scaling with process generation. However, in order to harness this potential, programmers

must be able to effectively utilize the resources available on these devices. This is often a challeng-

ing task on multiprocessors which can have a complex set of architectural features to exploit.

1.1 Challenges in the use of single chip multiprocessors

The key challenge before a programmer is to utilize the parallelism inherent in modern plat-

forms. It is a challenge to keep the increasing numbers of processors on modern chips busy. One

approach to utilize the parallelism in the hardware is to run completely independent applications in

parallel on different processor cores. However, the number of applications that run simultaneously

at a point of time is currently limited in most typical embedded or desktop applications. This is not

a scalable solution as the number of processors increases. This means that each single application

must be capable of utilizing multiple cores. Fortunately, many applications, especially in the net-

3

working, multimedia and gaming fields as well as emerging desktop applications such as the Intel

RMS application suite [Chen et al., 2008], are inherently concurrent. The concurrency present in

such applications may be at a coarse level with multiple threads of control that coordinate among

themselves, or at a finer level within a single thread of execution. The first level of concurrency is

called task-level or thread-level concurrency. A program that uses threading libraries like Pthreads

uses task-level concurrency. Each task may also exhibit data-level concurrency if the task can pro-

cess many units of data in parallel. The hardware may also support data-level parallelism when each

processor is capable of processing more than piece of data in parallel, typically using vector/SIMD

units.

The programmer must then map the task and data level concurrency in the application to the

parallelism in the architecture. The aim of the programmer is to produce high-performance imple-

mentations on the target platform. At the same time, the programmer must be able to develop the

implementation productively. These dual goals are often in conflict. The ability of the programmer

to come up with high-performance parallel implementations is hindered by many factors. First,

there is usually no formal technique for application programmers to express the task and data level

concurrency in the application. There is similarly no facility to express the parallelism in the ar-

chitecture. Second, the granularity and extent of concurrency in the architecture may not match the

architectural features of the platform. For instance, different tasks in the application will usually not

take the same amount of time to execute on the target platform. In such a case, it is the responsi-

bility of the programmer to manually balance the computations performed on different processors

to ensure that no single processor becomes the computational bottleneck. In order to ensure that

communication does not become a bottleneck, tasks that communicate a lot of data with each other

must be allocated to processors are physically close on the chip. Third, the architecture may impose

a varied set of restrictions on the possible mapping of the application. For instance, there may be

restrictions on which processors can communicate with each other. The size and connectivity of lo-

cal memory could also restrict the distribution of tasks among the processors. Finally, the presence

of heterogeneity in terms of the processing elements or memory access times further complicates

the mapping problem.

In view of these challenges to producing high-performance implementations, programmers of-

ten resort to coding applications at a fairly low level in order to fine-tune their implementations.

Such a programming practice is highly unproductive and error-prone. Moreover, as platforms

change, the program must often be recoded to take advantage of the new architectural features.

These reasons motivate an automated approach to programming multiprocessor chips.

4

From the above discussion, we see that there is a big gap between the concurrency present

in the application and the low-level architectural features in the platform. This gap is called the

implementation gap [Gries and Keutzer, 2005]. In order to utilize the hardware efficiently and

productively, it is critical to automate the process of bridging this implementation gap.

1.2 Bridging the implementation gap

The implementation gap between a concurrent application and the architectural platform arises

due to the obstacles in modeling the application and architecture and mapping the application onto

the architecture. There are three main aspects to successfully bridge this gap:

• Construct an application description that exposes the concurrency in the application

• Create an architectural model that captures the performance related hardware features and

resource limitations

• Map the application description to the architecture model to optimize for a given metric

The popular Y-chart method for Design Space Exploration (DSE) advocates a separation be-

tween these three aspects of bridging the implementation gap. The basic flow of the Y-chart ap-

proach is shown in Figure 1.1. The approach starts with independent descriptions of the application

model and the architecture model. The mapping step then is responsible for binding the applica-

tion onto the architecture. The results of the mapping are then evaluated and iterative refinements

are then made either to the way the application is represented (or a different algorithm is chosen,

the choice of architecture or the mapping step. This continues until the desired performance goal

(and/or cost) is achieved.

The application and architecture models used in the Y-chart approach will differ depending on

the granularity of concurrency that the programmer wishes to exploit. In this dissertation, we limit

our attention to the mapping issues revolving around the task-level parallelism in the application.

In such a case, a popular representation for an application is a task graph that exposes the concur-

rent tasks, the input and output data of these tasks and the dependencies between the tasks. The

architecture model is typically a network of processors that exposes the communications between

the processors and the memories that connect to them. The mapping step is then responsible for

(a) allocating the tasks to the processors, (b) allocation of data to the memories, (c) allocation of

the communication and data transfers between tasks to the communication links in the architecture,

5

PerformancePerformance

AnalysisAnalysis

Multiprocessor

platform
Application

description

Implementation

Allocation/Scheduling

Platform

Constraints
Task

Graph

S
1

R
1

L
1

T
1

R
2 L

2
T
2

S
2

P
1

M
1

M
2

P
2

P
3

Figure 1.1: The Y-Chart approach for deploying concurrent applications.

(d) scheduling the tasks in time and (e) scheduling the communication and data transfers in time.

While performing this mapping, restrictions on the architectural topology, task clustering, preferred

allocation of tasks to processors, limited amount of memory, constraints on communication band-

width, heterogeneity in processors/communication links etc. must be respected. The objective of

the mapping problem is to optimize for performance, power, cost or a combination of such met-

rics. The mapping problem in general will necessarily be a complex and potentially multi-objective

optimization problem.

For applications that have a combination of task and data level parallelism, the models de-

scribed above express only the task-level parallelism directly. However, this does not mean that

data-level parallelism cannot be leveraged: each task can have data-parallel operations inside its

definition and can be mapped onto the SIMD/vector units inside of a single processor. In this case,

after the allocations of tasks to processors is complete, an additional compilation step must be per-

formed to extract the data-level parallelism. Details of such approaches can be found in [Gries and

Keutzer, 2005, Chapters 3-4].

6

1.3 The mapping step

The mapping step is a key step in enabling efficient design space exploration. The mapping

step involves solving a combinatorial optimization problem over a large design space under many

resource constraints. It is difficult to manually find good solutions to the mapping problem. Manual

efforts to solve the problem revolve around finding solutions that appear intuitive to the programmer.

However, with the growing complexity of applications and architectures, it becomes increasingly

likely that such solutions will prove sub-optimal [Gries, 2004]. The need of the hour is hence to

find automated techniques to solve the mapping problem.

A number of approaches have been described to map the task level concurrency in the applica-

tion to a multiprocessor network. Some of the early work was carried out in the Operations Research

community in the context of mapping jobs to be done in workshops onto multiple machines. The

techniques developed there came to be known as scheduling methods [Hall and Hochbaum, 1997].

There have been many variants of the scheduling problem that have been considered. Graham

et al. [Graham et al., 1979] introduced a 3-field α|β|γ classification of scheduling methods onto

where α denoted the machine (target platform) characteristics, β the job characteristics and γ the

scheduling characteristics. The different possibilities for the target machine α cover the number of

machines and whether the machines were identical (homogeneous). The β parameter covers many

different job characteristics, including whether jobs can be preempted, whether jobs consume other

resources other than machine time, whether jobs are independent or have dependencies, and whether

tasks have differing execution durations (often called execution times) on the same machine. The

γ parameter indicates the optimality criterion of the scheduling problem, with the possibilities be-

ing the end-to-end completion time (or makespan, represented as Cmax), sum of task lateness with

respect to task deadlines, or the number of tasks that do not meet their deadlines. Similar classifica-

tions have also been proposed for multiprocessor scheduling problems. The surveys by [Kwok and

Ahmad, 1999b] and [Casavant and Kuhl, 1988] introduce a taxonomy of scheduling problems for

multiprocessor scheduling.

In this dissertation, we shall concern ourselves with scheduling problems related to mapping

concurrent tasks onto multiprocessors. A number of such problems fall under the R|prec|Cmax

classification according to Graham. The classification can be explained as follows: parameter R in-

dicates that the target architecture has multiple heterogeneous processors, parameter prec indicates

that the tasks have precedence constraints and parameter Cmax indicates that the optimization cri-

terion is the makespan of the system. A number of additional resource constraints are also usually

7

required to solve practical problem instances. In addition, we also consider a different scheduling

problem that minimizes the total time required for data transfer between tasks. Different variants of

multiprocessor scheduling problems with differing constraints and optimization metrics have been

studied in the literature. In the following sections, we shall list the theoretical complexity results

and practical algorithms developed for multiprocessor scheduling.

1.3.1 Complexity of the scheduling problem

Many variants of the scheduling problem have been proven to be NP-COMPLETE in the

scheduling literature. For the special case of 1|prec|Cmax (single machine), there exist polynomial-

time solutions. However, the problem becomes NP-hard when there is more than one processor,

even if there are no precedence constraints between tasks [Lenstra et al., 1977]. The general prob-

lem of finding a task schedule that minimizes the makespan of the system (R|prec|Cmax) is a

generalization of this problem and is therefore also NP-hard. In fact, a number of these problems

have also been proven to be strongly NP-hard in the sense that no polynomial-time approximation

algorithms are possible unless P=NP [Garey and Johnson, 1978]. The decision versions of these

problems have also been shown to be in the class NP, and are hence NP-complete [Brucker, 2001].

The result that scheduling problems are NP-complete means that we cannot expect to obtain

optimal or near-optimal solutions for all possible instances of the scheduling problem. However,

this does not automatically mean that there do not exist viable practical approaches to solve these

problems. This is because NP-completeness is only an indication of the worst-case complexity of

solving a problem, and not of the difficulty of solving individual practical instances of the prob-

lem. For the multiprocessor scheduling problem, there have been a variety of computationally

efficient techniques that can solve practical instances of various scheduling problems. The surveys

of [Kwok and Ahmad, 1999b] and [Casavant and Kuhl, 1988] provide a taxonomy of approaches

that have been used to solve the multiprocessor scheduling problem. At the top level, such classifi-

cations distinguish between compile-time (or static) scheduling methods and run-time (or dynamic)

scheduling methods. Compile-time methods make scheduling decisions before the actual execution

of the application. These decisions are based on reliable models of the application in terms of the

tasks, dependencies between tasks and performance characteristics of individual tasks. The result-

ing schedule is then used to implement the application. Once the scheduling decisions have been

made, they are not changed during the execution of the application; hence compile-time methods

are also often called static methods. In contrast, run-time methods make scheduling decisions as the

8

application executes. They do not assume knowledge about the application characteristics such as

the task graph structure or execution times of tasks before execution. As the application executes,

these algorithms maintain a list of all tasks that are ready to execute at a particular point of time and

then schedule these tasks on-the-fly to processors that are not busy at that time.

1.3.2 The case for compile-time scheduling

In this dissertation, we concentrate on the use of compile-time techniques for scheduling.

Compile-time techniques have a key advantage in that all scheduling activities are done before the

application executes and hence there is almost no scheduling overhead (except the cost of imple-

menting the schedule) while the application runs. On the other hand, run-time dynamic scheduling

algorithms must devote some of the computational capability of the platform to do the scheduling.

When the application workload and execution characteristics are known at compile time, compile-

time scheduling has clear benefits over run-time scheduling.

A second disadvantage of run-time schedules is that they do not take into account the global

nature of the scheduling problem. Since dynamic scheduling techniques do not assume knowledge

about tasks that will be available to run in the future, they cannot take such tasks into account while

making scheduling decisions. They are thus inherently “short-sighted” and offer no guarantee of

global optimality. On the other hand, compile-time techniques can use knowledge about future tasks

and their execution characteristics to produce more optimal solutions to the scheduling problem.

In the context of design space exploration for multiprocessor systems shown in Figure 1.1,

dynamic evaluation of designs would necessitate the elaboration of an entire micro-architecture,

synthesis of that micro-architecture and re-targeting the application to that micro-architecture. In

many cases, building an executable model may be very expensive during exploration. Further,

re-targeting the application involves either the development of a compiler for the new platform

or a manual reimplementation of the program. These options are usually expensive in terms of

design effort and time. In such cases, compile-time methods that use models of the application and

architecture rather than a physical instantiation of the system become useful. Compile-time methods

can quickly prune a large part of the design space without the need for expensive synthesis [Gries,

2004].

Compile-time techniques rely on the knowledge of application workload and execution char-

acteristics of tasks at compile-time. Several applications in the signal processing and network pro-

cessing domain are amenable to compile-time scheduling [Sih and Lee, 1993] [Shah et al., 2004].

9

Models of the execution characteristics of the application are derived from analytical evaluations of

application behavior, or through extensive simulations and profiling of application run time charac-

teristics on the target platform.

However, in certain applications, the tasks that need to be performed may depend on applica-

tion inputs which are only known at run-time. For such applications, it is not possible to model the

application at compile-time. In such cases, dynamic scheduling approaches must be used.

1.3.3 Methods for Compile-time Scheduling

Compile-time scheduling algorithms fall into three major categories: heuristics, randomized

algorithms and exact methods. These algorithms have different tradeoffs in terms of the three met-

rics: the quality of solution they produce, computational efficiency of the scheduling method and

the extensibility of the method. We describe these metrics below.

Metrics to choose scheduling methods

• Quality of scheduling results: defined by how close the scheduling method can approach the

optimal solution to the scheduling problem.

• Computational Efficiency: defined by how the computational and memory requirements of a

scheduling method.

• Extensibility: defined by how easily a scheduling method can be modified to satisfy a diverse

set of constraints.

While it is evident that a good scheduling method must produce high-quality results with reason-

able computational efficiency, some explanation is due for the third metric. The extensibility of a

scheduling algorithm is a way of denoting how easily practical constraints on the mapping problem

can be accommodated in the method. For instance, the architecture may impose constraints related

to topology restrictions, memory size limits and communication bandwidth limits that restrict the

space of valid mappings. Restrictions may also arise die to application constraints on task affinities

to processors and maximum communication overheads. Further, the programmer may manually add

in constraints to offer insight into the scheduling problem over the course of design space explo-

ration. An extensible scheduling method will ensure that such constraints can be easily added while

solving the problem.

10

The three metrics mentioned above for comparing scheduling algorithms are often at odds

with each other. Therefore, algorithms generally prioritize one or two of the three metrics at the

expense of the rest. Techniques for compile-time scheduling range from heuristics that emphasize

the computational efficiency of the scheduling method to exact techniques that emphasize the quality

of the solution obtained. We describe below the individual trade-offs offered by different compile-

time scheduling approaches.

Heuristic Approaches

Heuristic techniques are computationally efficient algorithms that attempt to find acceptable

solutions to scheduling problems. The exact nature of heuristics used depends on the objective

and constraints of the scheduling problem. Surveys of heuristic approaches for the R|prec|Cmax

scheduling problem outlined earlier have been reported in [Kwok and Ahmad, 1999b]. The most

commonly used heuristics are list-scheduling based algorithms [Sih and Lee, 1993] [Hu, 1961]

[Coffman, 1976]. The value of a heuristic is that is uses some pre-existing knowledge of a problem

to find a good solution while exploring a very small portion of the search space. As a conse-

quence, heuristics are in general a good choice only when they have been developed for the partic-

ular scheduling problem at hand. For instance, a number of list scheduling algorithms have been

developed for mapping task graphs to homogeneous multiprocessors that have a fully connected

topology. In case these fundamental assumptions about the homogeneity or topology of the multi-

processor network change, the algorithms are no longer directly applicable and must be modified.

In practice, since heuristics have been tuned to a specific problem, modifications are hard to per-

form. It is often the case that the heuristic loses much of its computational efficiency when such

modifications are imposed. This reduces the viability of using heuristics in an automated scheduling

framework.

Randomized Methods

As opposed to heuristic methods, randomized algorithms offer the advantages of increased ex-

tensibility and a wider search of the solution space. An important class of randomized algorithms

are simulated annealing based algorithms. Simulated Annealing is an optimization meta-algorithm

that is used to find the optimum of some objective over large design spaces. It was first introduced

by Kirkpatrick et al. [Kirkpatrick et al., 1983]. The algorithm starts with an initial state in the

design space, and initially allows for near-random transitions to “nearby” states. As the annealing

11

proceeds, these transitions become more restrictive: it becomes more likely that a transitions will

only occur to a state that improves the objective. The ability to transition to states that increase

the value of the optimization objective allows the algorithm to escape local optima, making these

algorithms superior to heuristics. At the same time, the annealing schedule allows the system to

settle down as the annealing proceeds. Simulated Annealing has been successfully used for solving

scheduling problems with different objectives and constraints [Devadas and Newton, 1989] [Koch,

1995] [Orsila et al., 2008]. Indeed, the ability of simulated annealing based algorithms to flexibly

accommodate varied resource and implementation constraints is a key advantage of such methods.

A key drawback to simulated annealing methods is that they do not, in practice, provide any guar-

antees on the optimality of the solution obtained. As a mitigating factor, they do possess a number

of parameters that can be tuned to obtain a high quality of solutions within a reasonable runtime.

Exact Methods

Although randomized algorithms can be tuned to provide for a good balance between compu-

tational efficiency and quality of solutions produced, it is useful to have a technique that can produce

provably optimal solutions to optimization problems. Such exact methods generally use a variant

of branch-and-bound to search the solution space. Branch-and-bound methods work by system-

atically enumerating the solution space and pruning out large subsets of inferior solutions at once

using upper and lower bounds to the optimal solution. There have been a number of approaches

that use branch-and-bound techniques to solve multiprocessor scheduling problems [Kasahara and

Narita, 1984] [Fujita et al., 2003]. Standard solvers such as Mixed Integer Linear Programming

(MILP) solvers and Boolean Satisfiability (SAT) solvers can be used to abstract the branch-and-

bound search. The optimization problem is then encoded as a set of constraints expressed in a for-

mat that is specific to the solver. Such solvers have been used to solve many optimization problems

in the operations research community [Atamtürk and Savelsbergh, 2005]. Various MILP and SAT

formulations have been proposed to scheduling problems [Bender, 1996] [Thiele, 1995] [Tomp-

kins, 2003]. The advantage of using exact methods is that they can handle additional restrictions

to a scheduling problem through the addition of side constraints to the problem. The nature of

constraints that can be added is only limited by the constraint structure that the solver accepts. In

addition to MILP and SAT, there are many other solvers that handle constraints in various “theories”

[Dutertre and de Moura, 2006] [Wang et al., 2006]. The main disadvantage of exact methods is that

the computation cost can be significant. In many cases, exact methods can only handle problems

12

that have a very small solution space. Thus they may not be applicable to practical problems of

larger size.

1.4 Application of compile-time methods to practical scheduling prob-

lems

The key to successful application deployment on single-chip multiprocessors lies in effectively

mapping the concurrency in the application to the architectural resources provided by the plat-

form. Compile-time scheduling is an essential step in this mapping process. In this dissertation, we

shall investigate and evaluate the use of heuristics, randomized algorithms and exact algorithms for

scheduling concurrent tasks onto multiprocessor platforms. Scheduling problems that arise in real-

istic application deployment and design space exploration frameworks can encompass a variety of

objectives and constraints and require different features to be exposed in the application and archi-

tecture models. In order for scheduling techniques to be useful for realistic exploration frameworks,

they must then be sufficiently flexible to be applied to a range of problems. They must also produce

high quality solutions and must be computationally efficient.

We shall compare different scheduling methods in the context of three scheduling problems

that can arise in practical mapping scenarios. First, we consider the problem of allocating tasks

with dependencies to processors and scheduling them in time in order to minimize the end-to-end

completion time (or makespan) of an application. The inputs to the problem are the task graph,

representing the tasks and dependencies, and an architecture model that contains the number of

processors and the interconnection topology of the processors. We assume that we have complete

knowledge of the tasks and performance characteristics of tasks at compile-time. As an example,

we consider the mapping of two realistic applications, namely IPv4 packet forwarding and Motion-

JPEG encoding on Xilinx FPGA based soft multiprocessors [Xilinx Inc., 2004]. We compare three

scheduling algorithms for solving the resulting mapping problem: a list scheduling heuristic, a

simulated annealing randomized method and a constraint optimization based exact method. This is

presented in Chapter 2 of the dissertation.

Second, we focus on the problem of mapping applications with large data sets onto a system

consisting of a CPU and GPU connected with a PCI-Express bus. We focus on a different facet

of mapping concurrent applications, that of resource allocation of data to GPU and CPU memory

and scheduling the data transfers between them in order to optimally utilize the communication

13

bandwidth between the CPU and GPU. The application is again represented as a task graph with

nodes representation tasks and edges representing dependence and data transfers between tasks.

In addition, we also explicitly denote the sizes of the data transferred between the tasks. For this

problem, we assume that all tasks are data-parallel and will be mapped onto the GPU. However, all

the intermediate data that needs to be stored during the application execution may not fit into GPU

memory. In such cases, some of the data needs to be spilled to CPU memory. Such spills are slow

(needing to go over the PCI-Express bus) and can become a bottleneck for the system. The total

amount of data that is spilled must, therefore, be minimized. It can be shown that the order in which

tasks and data transfers are scheduled can have a significant impact on the amount of data spills.

Thus the optimization problem is to find the start time of tasks as well as the timing of data transfers

between tasks in order to minimize the total amount of data spills. In Chapter 3, we evaluate the use

of different scheduling methods to solve this optimization.

In the third problem, we revisit our first problem of task allocation and scheduling to minimize

makespan in the context of applications with variable execution times and task dependencies. Such

variations often arise due to data-dependent executions or jitter in memory access times in the

application. We propose an extension to the compile-time models and optimization frameworks

to handle statistical variations in application execution times and task dependencies. We capture

task dependencies, task execution and communication times with statistical variables rather than as

constant values. We then propose statistical optimization methods that utilize statistical analysis

to evaluate the makespan of different schedules. The optimization objective is to minimize a given

percentile of the application makespan distribution to provide a guaranteed Quality of Service (QoS)

for the application. As an example, a IPv4 packet forwarding algorithm may require that 95% of all

packets complete within a specified period. In such a case, the finish time of the application is best

measured as the 95th percentile of the makespan distribution. In Chapter 4, we define statistical

models to take variability in execution times into account and a statistical analysis procedure to

compute the application finish times for different schedules. In Chapters 5 and 6, we extend the

scheduling algorithms used in Chapter 2 to find schedules that minimize application finish time.

We can see that the above scheduling problems, while all arising from practical mapping con-

cerns, require different models, have differing constraints and optimize for different objectives. A

programmer may need to select a particular model and objective based on the specific concerns

posed by the design that is being evaluated. In such a context, a general tool for design space ex-

ploration must be capable of handling these varied constraints and objectives. The focus of this

dissertation is to provide guidance in choosing scheduling methods that best trade-off the flexibility

14

with solution time and quality of the resulting schedule.

1.5 Contributions of the dissertation

This dissertation has two main contributions. First, we investigate and evaluate a range of

techniques to solve three scheduling problems: task allocation and scheduling onto multiprocessors,

resource allocation and scheduling data transfers between CPU and GPU memories, and schedul-

ing applications with variable task execution times and dependencies onto multiprocessors. We

develop a code framework that we use to evaluate different scheduling techniques for these task-

level scheduling problems. The scheduling techniques that we investigate and evaluate comprise

heuristic methods, simulated annealing based optimization and constraint optimization based ex-

act techniques. These techniques have different trade-offs with respect to the quality of solution,

computational efficiency and extensibility. The system programmer can then choose among these

available techniques based on the requirements of the problem. Over the course of this evaluation,

we show that simulated annealing is a good technique for solving scheduling problems. For the

three scheduling problems that we consider in this dissertation, simulated annealing offers solutions

that are comparable to other scheduling approaches. At the same time, it offers immense flexibility

in being able to accommodate a variety of problem constraints and objectives. Further, the method

is scalable and works on large scheduling instances. These three advantages makes simulated an-

nealing an appealing choice for scheduling problems with large and complicated design spaces.

Next, we show that we can extend compile-time techniques to scheduling instances with vari-

ability in application execution times and task dependencies. One of the key drawbacks of compile-

time scheduling methods has been that they assume exact knowledge of the performance model of

the application at compile time. However, real execution and communication times can vary sig-

nificantly across different runs due to the presence of data dependencies or jitter in memory access

times. Static methods typically assume worst case behavior for performance models. However,

a large class of soft real-time applications do not require worst case performance guarantees but

only require statistical guarantees on steady-state behavior. For such applications, scheduling for

worst-case behavior may not best utilize system resources. This motivates our move to statisti-

cal models that expose the variability present in the application. In this dissertation, we present

scheduling methods that accompany these statistical models for effectively mapping soft real-time

applications.

15

Chapter 2

Static Task Allocation and Scheduling

One of the main challenges in utilizing modern many-core architectures is in programming

them to effectively utilize the available parallelism and achieve high-performance implementations.

In order to address this challenge, we outlined a Y-chart approach to application deployment on

parallel architectures in Chapter 1. In this chapter, we describe the Y-chart approach in the context

of mapping streaming applications to soft multiprocessor systems on FPGAs. The central problem

to be solved is the issue of allocating and scheduling parallel tasks to multiprocessors to optimize

the end-to-end finish time of the application. We discuss static models to model the application and

architecture, and then discuss different methods to solve this mapping problem.

2.1 Mapping streaming applications onto soft multiprocessor systems

on FPGAs

Streaming applications are characterized by the presence of concurrent computational kernels

that process large sequences of data. Such systems have become prevalent in a number of application

domains starting from small embedded systems, Digital Signal Processors (DSPs) to large-scale

internet routers and cellular base stations. It has been estimated that over 90% of the computing

cycles on consumer machines are utilized by streaming applications [Rixner et al., 1998].

Stream-based applications offer extensive opportunities for concurrent implementations on

parallel platforms. The elements in the input sequence are typically independent of each other,

resulting in data-level parallelism across independent input streams. The computational kernels op-

erating on each piece of data are also typically concurrent; this offers the potential for task-level

16

parallelism. The challenge then is to map the concurrency in such applications to multiprocessor

architecture so as to best utilize architecture resources. The optimization criterion is either appli-

cation throughput, the aggregate rate at which input data items are processed, or latency, the time

taken to process a single input data item.

We now offer two examples of streaming applications, IPv4 packet forwarding and Motion-

JPEG decoding. The first example is a networking application, where the stream consists of dif-

ferent network packets that can be concurrently processed. The second is a multimedia application

consisting of a sequence of video frames that must be decoded.

2.1.1 Examples of Streaming Applications

IPv4 packet forwarding

The IPv4 packet forwarding application runs at the core of network routers and forwards pack-

ets to their final destinations [Baker, 1995]. For each input packet, the forwarder decides the IP

address of the next hop and the egress port where the packet should be routed.

Lookup

next-hop by

longest prefix

match

Receive

IPv4 packet

Verify

version,

checksum

and TTL

Update

checksum

and TTL

Transmit

IPv4 packet

Header

Payload
Ingress Egress

Route

Table

Header

Figure 2.1: Block diagram of the data plane of the IPv4 packet forwarding application.

Figure 2.1 shows a block diagram of the data plane of the IPv4 packet forwarding application.

The data plane of the application involves three operations: (a) receive the packet and check its

validity by examining the checksum, header length, and IP version, (b) lookup the next hop and

egress port by performing a longest prefix match lookup in the route table using the destination

address, and (c) update header checksum and time-to-live fields (TTL), recombine header with

payload, and forward the packet on the appropriate port. These operations can be classified into

operations on the packet header and the packet payload. No computations are performed on the

packet payload, which must only be buffered and transmitted. Since all processing occurs on the

17

header, the performance of the router is determined by the header processing.

Motion-JPEG encoding

Motion JPEG is a video compression standard that encodes a video as a sequence of JPEG

images without any inter-frame compression. This standard is commonly implemented in consumer

and security cameras.

Pre-process
convert RGB

to YCbCr

DCT
transform

each color

component

Quantization
Huffman
encoding

Update
quantization

tables

Source Sink

Figure 2.2: Block diagram of the Motion JPEG video encoding application.

Figure 2.2 shows the block diagram of an Motion JPEG encoder. The encoder takes in a se-

quence of images in raw RGB format. Each pixel in the image has data corresponding to the three

color components of red, green and blue. The key kernels of the application are: (a) pre-processing,

that converts the color space from RGB to YCbCr format that uses the luminance (Y), blue chromi-

nance (Cb) and red chrominance (Cr) to represent a pixel, (b) a forward integer DCT transform

that converts the spatial YCbCr data to the frequency domain, (c) lossy quantization to compress

the frequency domain values by dividing each component by a user-supplied coefficient from a

quantization table, and (d) a Huffman encoding step that uses run-length compression followed by

a lookup into a pre-defined Huffman table to compactly represent the quantized data, and (e) a fi-

nal step used to update quantization tables based on the differences between the actual and desired

compression rates.

Motion JPEG offers parallelism since different kernels can process different data images simul-

taneously. The performance goal for Motion JPEG encoding is to minimize the end-to-end latency

of encoding a given set of JPEG images into Motion JPEG video.

2.1.2 The Mapping and Scheduling Problem

The first step in mapping streaming applications onto multiprocessors is to obtain a descrip-

tion of the parallel tasks and dependencies in the application in the form of an application model.

18

One way to obtain this is from a natural description of the application in a Domain Specific Lan-

guage. DSLs provide component libraries and computation and communication models to express

the concurrency. Examples of such languages include Click [Kohler et al., 2000] for networking

applications, Simulink [The MathWorks Inc., 2005] for dataflow applications, LabVIEW [National

Instruments Inc.,] for data-acquisition and processing applications and so on.

Dataflow representations have been commonly used to describe streaming applications in many

domain specific languages. For instance, Simulink [The MathWorks Inc., 2005] is a DSL that cap-

tures dynamic dataflow in digital signal processing applications. The G-language in LabVIEW [Na-

tional Instruments Inc.,] also supports static dataflow to describe the processing of data after it is

acquired. Software synthesis frameworks have also been built to directly design static dataflow

(SDF) applications. The Streamit language [Thies et al., 2002] essentially allows the expression of

static dataflow constructs for streaming applications. The Dataflow Interchange Format of [Hsu et

al., 2005] is also an example that allows a DSP application to be built up from pre-existing kernels

connected using a static dataflow representation. In this work, we use a static dataflow representa-

tion to express the parallel tasks and their dependencies.

Since we are interested in optimizing the execution time of the application, the tasks in the

dataflow model need to be annotated with a timing-related performance model. This is obtained by

profiling each task on a single target processor either in simulation or by actually running it on the

target platform. The dependence edges also need to be annotated with the time taken to transfer the

data that is communicated on the edge over different hardware links.

Given an annotated dataflow description of the parallel tasks and dependencies and a particular

multiprocessor architecture, solving the mapping problem involves the following steps: (1) allo-

cating the tasks in the dataflow to different processing elements and (2) compute a start time for

each task (respecting task execution times and dependence constraints) to minimize the completion

time of the application. The performance objective may also be to maximize the throughput of the

application. The mapping is subject to a number of resource constraints. For instance, the topology

of the architecture may impose restrictions on the allocation of dependent tasks. Other common

constraints include data memory limits and instruction store limits.

2.1.3 Soft Multiprocessor Systems on FPGAs

A target platform that allows us to explore a range of architectures and demonstrate the value

of our mapping techniques is a Field-Programmable Gate Array (FPGA). FPGAs are highly cus-

19

tomizable and can be used as a fabric to instantiate a variety of multiprocessor architectures. A soft

multiprocessor system is a multiprocessor network that is created out of processing elements, mem-

ories and interconnection structures on an FPGA [Jin et al., 2005] [Ravindran et al., 2005]. Soft

multiprocessors offer the opportunity to try different numbers of processors, interconnect schemes,

memories and peripherals to perform an effective design space exploration for the target application.

Soft multiprocessors can also help open the world of FPGAs to software programmers if they are

used as end deployment platforms.

Recognizing this opportunity, leading FPGA vendors such as Xilinx and Altera have offered

tools and design flows to help design soft multiprocessor networks on FPGAs. Xilinx offers the Em-

bedded Development Kit (EDK) [Xilinx Inc., 2004] that helps instantiate networks of IBM PowerPC

cores on chip and soft processors (called the MicroBlaze processor) connected to on-chip Block-

RAM memory and off-chip SDRAM memory. Each soft processor has local instruction and data

memory and is connected to it through a Local Memory Bus (LMB). The processors are connected

to each other either directly through high-speed point-to-point FIFO links called Fast Simplex Links

(FSLs) or through shared on-chip memory using an On-chip Peripheral Bus (OPB). Altera offers

similar capabilities through their System-on-Programmable Chip (SOPC) builder using Arm and

Nios processors [Altera Inc., 2003].

Header In

P1

M1 M2

FSL FSL FSL FSL
MicroBlaze MicroBlaze MicroBlaze

BlockRAM BlockRAM

Route

Table

Route

Table

OPB

Header Out

P2 P3

OPB

Figure 2.3: Architecture model of a soft multiprocessor composed of an array of 3 processors.

Figure 2.3 shows an example of a soft-multiprocessor network for IPv4 packet forwarding

instantiated on a Xilinx FPGA. The figure shows a pipeline of three MicroBlaze processors. The

MicroBlaze processor is a 32-bit RISC processor with configurable instruction and data memory

sizes. The pipeline is set up using point-to-point FSL links. Each of these MicroBlaze processors

will execute one or more of the primary kernels in the IPv4 forwarding application. The second

and third MicroBlaze processors in the pipeline are connected to on-chip BlockRAM containing the

packet forwarding route table using the On-chip Peripheral Bus.

We note that the topology of the architecture in Figure 2.3 is not fully-connected. This architec-

20

ture therefore imposes constraints on the mapping problem described in Section 2.1.2. In particular,

it is not possible to pass any data from the third processors in the pipeline to the first or second;

hence tasks that require input data from the third processor also need to be assigned to the same

processor. Further, constraints can also arise because of memory connectivity: any tasks requiring

access to the route table cannot be allocated to the first processor.

2.1.4 The need for automated mapping

One of the key benefits of using a soft multiprocessor network on FPGAs is the ability to

evaluate different architectures. The resource-constrained mapping problem needs to be solved for

each design to evaluate the performance of the application. Manual evaluation of each of these

designs can be cumbersome, especially for designs with a large number of processors and irregular

architectures. Today, a commercially available FPGA can support more than 20 processors with

complex memories and interconnection schemes. For such large designs, there is a need for an

automated framework that can estimate the performance of the application based on a model of

the architecture. In the next section, we show such an automated mapping step in the context of

streaming applications.

2.2 Automated Task Allocation and Scheduling

In this section, we describe an automated mapping step that statically evaluates the perfor-

mance of a concurrent application on a multiprocessor architecture. Such a step is key to efficiently

explore complex design spaces.

We first develop models for the concurrent application and the multiprocessor architecture that

allow for automated performance evaluation. We then formally describe the mapping problem and

present it as an optimization problem.

2.2.1 Static Models

Static models are used to capture the knowledge about the concurrency in the application,

task execution times and parallelism in the architecture at compile time. Such models are used in

static scheduling, where scheduling decisions related to allocation and ordering of tasks are done at

compile time. In contrast, dynamic scheduling methods make such decisions at run time. Dynamic

scheduling does not assume knowledge about the models at compile time, but instead attempts to

21

optimize application performance on-the-fly with minimum overhead.

In the context of design space exploration for soft multiprocessors, dynamic evaluation of de-

signs would necessitate the synthesis of each possible multiprocessor design. Synthesis and place-

ment of large soft multiprocessor networks on FPGAs can take many hours, belying the requirement

of quick design evaluations. Static techniques can quickly prune a large part of the design space

without the need for expensive synthesis [Gries, 2004].

Static techniques are also useful when mapping is aimed at application deployment onto a

fixed architecture and not design space exploration. For many streaming applications, the dataflow

of the application is known at compile time. In some streaming application domains such as Digital

Signal Processing, a static dataflow graph is in fact a natural representation of the application [Lee

and Messerschmitt, 1987a]. When the application workload and concurrency in the application are

known at compile time, static scheduling techniques are viable. In such contexts, static scheduling

avoids the overhead associated with dynamic scheduling.

Application Model

A popular representation of the concurrency in the application is the task graph model [Graham

et al., 1979] [Bokhari, 1981] [Gajski and Peir, 1985] [Kwok and Ahmad, 1999b]. The task graph

model is a directed acyclic graph G = (V,E), where V is the set of vertexes representing the

tasks, and E ⊆ V × V is the set of edges representing task dependencies and communication.

A task represents a sequence of instructions that are executed on a single processor without pre-

emption. Task dependencies restrict a task to start only after all its predecessors are complete.

Figures 2.4 and 2.5 show the task graph for the IPv4 packet forwarding application and the Motion

JPEG application. Each of the tasks represents a kernel that must operate on the input data stream.

Receive

Route

lookup 1

Route

lookup 2

Verify

time-to-live,
version

Verify

checksum

Route

lookup 3

Transmit
Update

time-to-live

Update

checksum

Route

lookup 4

Route

lookup 5

Route

lookup 6

Route

lookup 7

Figure 2.4: Task graph the IPv4 header processing application.

22

Pre-

process

DCT

on Y

Quantize

Y

Huffman

encode Y

Combine
DCT

on Cb

DCT

on Cr

Quantize

Cb

Quantize

Cr

Huffman

encode

Cb

Huffman

encode

Cr

Figure 2.5: Task graph for the Motion JPEG video encoding application.

The task graph is a variant of a dataflow representation of the application. In particular, it

represents a acyclic homogeneous static dataflow graph. A homogeneous data flow graph is one

where each task is run once for a single application input. An acyclic task graph does not have any

cyclic dependencies between tasks, which means that there is a valid topological order for tasks to

be scheduled.

Static dataflow representations have been commonly used in describing streaming applications.

However, such static dataflow graphs are not naturally homogeneous or acyclic. Lee and Messer-

schmitt [Lee and Messerschmitt, 1987a] present a scheme to convert general SDF graphs to acyclic

homogeneous static dataflow graphs. The conversion is based on unrolling the original graph for

a certain number of iterations. The temporal dependencies between the iterations is depicted by

adding extra edges to preserve the data dependencies. The number of iterations to be unrolled is the

maximum number of inputs. In practice, the input stream may be infinite or very large, resulting in

unmanageably large task graphs. We then typically restrict the number of iterations to a constant.

We shall discuss the implications of the choice of this constant as we discuss the results of our

approach in Section 2.4.4.

Architecture Model

We model the architecture as a set of processors P connected by an interconnection network

C ⊆ P × P . The interconnection network represents point-to-point links between pairs of proces-

sors. This is a natural fit for the point-to-point FIFO links present in soft multiprocessor systems.

In case the architecture has a bus connecting two or more processors through shared memory, the

corresponding architecture model will have those processors completely connected with all sets of

possible edges. In this case, the model works as an abstraction of the communication between the

23

processors.

This model does not have an explicit representation of memory. The assumption in this model

is that every processor has local memory associated with it. If shared memory is used for commu-

nicating between the processors, it is modeled as a communication edge. This model is a accurate

fit for distributed multiprocessor systems such as soft multiprocessors on FPGAs. In such contexts,

the typical use case is that data communication between processors is done via the point-to-point

links, and all memory blocks are either local to a processor or are read-only if shared between pro-

cessors. The importance of memory in such systems arises due to either memory size constraints or

the contribution of memory access cost to task execution times. Both of these are accounted for in

our model, either when modeling performance or as constraints on the mapping problem.

Performance Model

A performance model is necessary to estimate the throughput or latency of a particular map-

ping. We associate each task v in the task graph with weights w(v, p), indicating the execution time

of task v on a given processor p. Note that this allows the processors to be heterogeneous. Each edge

in the task graph (v1, v2) is associated with a weight c((v1, v2), (p1, p2)), which indicates the cost

of data transfer from v1 to v2 when such transfer occurs over the communication edge between pro-

cessors p1 and p2. A transfer would occur over the link (p1, p2) only if v1 and v2 were allocated to

processors p1 and p2 respectively. The edge (p1, p2) must be present in C, the list of communication

edges. It is common to assume that the cost of local communication within a processor is negligible,

i.e. c(e, (p1, p1)) = 0. Figure 2.6 shows the annotated task graphs for IPv4 packet forwarding and

Motion JPEG encoding. For our soft multiprocessor network, all the processors and communication

channels are identical, consisting of MicroBlazes and point-to-point FIFO links respectively. Hence

a single value is sufficient to represent the execution time of each task and communication delay

along each edge.

This model is commonly used in multiprocessor scheduling problems. The model is popularly

called the delay model in scheduling literature. In the delay model, the values of w and c are

considered to be real-valued constants. In practice, the worst-case execution time or average-case

execution time of tasks is typically used. Such estimates may be available through profiling or by

analytical modeling of each task.

The delay model abstracts the complexity of each task and only exposes a single performance

number for the task. It groups local and shared memory access time inside a task with the compu-

24

Receive

Route

lookup 1

Route

lookup 2

Route

lookup 3

Route

lookup 4

Route

lookup 5

Route

lookup 6

Route

lookup 7

Transmit

Verify

time to live

version

Verify

checksum

Update

time to live

Update

checksum

40

25

5 25
10

5

5 5 5 5 5 5

5

20 20 20 20

5 5

Execution

time

Communication

time

5

20 20 20 20 20 20 20

(a)

Pre-

process

DCT

on Y

Quantize

Y

Huffman

encode Y

Combine
DCT

on Cb

DCT

on Cr

Quantize

Cb

Quantize

Cr

Huffman

encode

Cb

Huffman

encode

Cr

200

4760 2572 3442

4760 2572 3442

4760 2572 3442

2542

768

768

768

768

768

768

768

768

768

168

168

168

(b)

Figure 2.6: Execution and communication time annotations for the task graphs of the (a) IPv4
forwarding and (b) Motion JPEG encoding applications.

tation time for the task. It does not take into account any variability in memory access or execution

time. However, it exposes the key components required for reliable performance estimates: the

parallel tasks, dependencies and execution and communication times. The simplicity of the model

makes it easier to analyze and optimize the timing performance of the application. The delay model

would be insufficient if we wished to optimize for some other metric such as power, area, amount

of memory transferred or cost. Such problems would require the model to be annotated with the

appropriate metrics. We present one example of this in Chapter 3.

2.2.2 Optimization Problem

Given the application and architecture models, the optimization problem is to find a valid allo-

cation of tasks to processing elements and a valid schedule for these tasks to maximize throughput

or minimize latency. We now give a mathematical formulation of the task allocation and scheduling

problem. We start with defining a valid allocation and schedule and then describe the optimization

problem.

25

Valid Allocation and Schedule

Given a task graph G = (V,E), and an architecture model (P,C), a valid allocation A is a

function A : V → P that maps each task in V to a processor in P . In the presence of a restricted

processor interconnect topology, the following constraint must be satisfied:

(v1, v2) ∈ E ⇒ (A(v1), A(v2)) ∈ C

which indicates that all edges that represent data communications between tasks must be mapped

onto a valid communication edge in the architecture.

Given a performance model (w, c) and a valid allocation A, a valid schedule S is a function

S : V → <+ that provides a start time for every task. This must satisfy the following constraints:

∀(v1, v2) ∈ E (dependence constraints),

(a) S(v2) ≥ S(v1) + w(v1) + c((v1, v2), (A(v1), A(v2)))

∀v1, v2 ∈ V, v1 6= v2 (ordering constraints),

(b) A(v1) = A(v2) ⇒ S(v1) ≥ S(v2) + w(v2) ∨ S(v2) ≥ S(v1) + w(v1)

Constraint (a) enforces the dependence constraints between tasks. If there is a dependence edge

from v1 to v2, then v2 can start only after v1 completes and finishes communicating its outputs to

v2. The cost of communication c((v1, v2), (A(v1), A(v2))) is zero if v1 and v2 are assigned to the

same processor. Constraint (b) orders tasks assigned to the same processor. The constraint specifies

that if v1 and v2 are assigned to the same processor, either v1 finishes before v2 starts or v2 finishes

before v1 starts. This constraint is responsible for ensuring that tasks executions are not preempted,

and that at any point of time a single processor executes at most one task.

Constraint (b) is redundant if there is a dependence edge between v1 and v2. In that case,

constraint (a) captures the necessary relation between the start times of v! and v2. Given a task

graph G = (V,E), we call tasks v1 and v2 independent if (v1, v2) /∈ ET , where ET is the set

of edges in the transitive closure of G = (V,E). It is possible to capture constraints between

independent tasks as additional edges in the graph. We define

E′′ = {(v1, v2) /∈ ET |A(v1) = A(v2) ∧ S(v2) ≥ S(v1) + W (v1)}

to be the set of ordering edges that define the total order in which tasks allocated to the same

processor execute. The dependence and ordering edges define the constraints that must be satisfied

when deciding the start time of tasks.

26

In addition to the above constraints, there could be other constraints imposed by the architec-

ture. Potential constraints could include:

• Memory size: The memory requirements for individual tasks must be met by the processors

to which they are allocated. This restricts the space of allocations.

• Preferred allocation: A task may be required to be assigned to a specific processor. This can

arise when tasks require access to memory or I/O that are only connected to certain processors.

• Clustering: A set of tasks must be assigned to the same processor. This constraint occurs

when tasks share a large amount of state, and communication costs between processors are

prohibitive. While these considerations are taken into account during the mapping, an explicit

clustering constraint can help simplify the scheduling problem to be solved.

Such constraints should also be respected while solving the mapping problem.

The constraints described in this section attempts to capture the relevant restrictions imposed

by practical scheduling problems. However, the model on which these constraints are based does

have certain limitations. We list a few of them below.

• The granularity of tasks is fixed in our model. In general, we might want a hierarchical

representation of tasks and an automated way to pick the right granularity to best load balance

the tasks.

• The model does not capture variability in task execution times. In general, data-dependent

executions and jitter can cause execution and communication times to vary.

• The model does not explicitly denote shared memory. The presence of shared memory is

only indirectly captured through communication links. As such, arbitration constraints and

race conditions are not handled.

Inspite of these limitations, the scheduling problem described in this section is a good representative

of problems that arises during scheduling. As such, the techniques that we develop over the course

of this work should carry over to other scheduling problems.

Optimization Objective

Given a valid allocation and schedule, a common optimization objective is to minimize the

latency of the application. This optimization objective has been well studied in scheduling literature

27

and is referred to as the makespan of the application. The makespan of a valid allocation and

schedule is defined as maxv∈V S(v) + w(v,A(v)). After adding the ordering edges to the graph,

the makespan can simply be computed as the longest path in the graph. The makespan gives us

a measure of the parallel speedup of the application as compared to a sequential implementation.

Minimizing the makespan corresponds to finding the allocation and schedule with the maximum

parallel speedup.

A related objective which is common for streaming applications is to maximize throughput.

We can cast the problem of maximizing throughput to the problem of minimizing the makespan of

multiple iterations of a task graph. In Section 2.2.1, we had discussed the unrolling of a general SDF

graph to obtain a homogeneous acyclic task graph. This unrolled graph is also useful for computing

throughput.

a cb

a1
c1b1

a2
c2b2

a3
c3b3

(a) (b)

Figure 2.7: Throughput computation in the delay model: the task graph in (a) is unrolled for three
iterations in (b).

Given a task graph G, we create a graph G′ which contains the tasks in G repeated for a number

of iterations. Figure 2.7 shows a graph and its unrolled version. The unrolled graph has additional

edges apart from the edges in G. The dotted dependence edges between tasks in different iterations

represent the potential temporal dependence between the iterations. If there is a dependence across

iterations of the task graph (for instance, each task may carry state across inputs), then these edges

ensure that a task does not start processing an input before all previous inputs are processed. These

edges are unnecessary if there is no dependence between different iterations.

If graph G is unrolled I times to obtain graph G′, the throughput of G is estimated to be

proportional to I/M , where M is the makespan of G′. Thus maximizing the throughput of G

corresponds to minimizing the makespan of G′. The throughput so computed is only a lower bound

on the exact throughput, but is more easily computed given our performance models. The accuracy

of the approximation can be improved by increasing the number of iterations for which the task

graph is unrolled.

28

2.3 Techniques for Static Task Allocation and Scheduling

In this section, we develop a toolbox of methods to solve the task allocation and scheduling

problem to optimize for makespan. The optimization problem of minimizing the makespan has been

well studied in scheduling literature. A variety of techniques have been employed for solving this

problem that trade-off the quality of results for solution time [Lee and Messerschmitt, 1987b] [Kwok

and Ahmad, 1999b] [El-Rewini et al., 1995]. These range from quick heuristic approaches to exact

approaches based on constraint programming. We shall now highlight a popular heuristic method for

scheduling and then investigate the use of simulated annealing and constraint optimization [Satish

et al., 2007] to solve the task allocation and scheduling problem.

2.3.1 Heuristic Methods

There are two main classes of heuristics that have been used for scheduling problems: tech-

niques based on clustering and those based on list-scheduling. The idea behind clustering algo-

rithms is to merge tasks together into clusters that are then allocated to a single processor. Clusters

are typically formed by merging tasks along the critical path of the graph [Kim and Browne, 1988]

[Gerasoulis and Yang, 1992]. Clustering techniques have been applied to mapping streaming DSP

applications to multiprocessors to maximize throughput [Hoang and Rabaey, 1993].

The most efficient heuristic algorithms for scheduling, however, are based on list-scheduling.

The basic structure of a list scheduling algorithm is as follows:

• Compute a global ordering of tasks that reflects the priority of scheduling a task

• While there are tasks left to schedule

– Select the next task to schedule, based on its priority and whose predecessors have

completed execution

– Allocate the task to a processor that allows the earliest start time for the task, while

respecting the validity of the allocation

List scheduling algorithms have been studied since the 1970s [Graham et al., 1979]. Approxima-

tion bounds have been proven under specialized conditions [Papadimitriou and Yannakakis, 1988]

[Graham et al., 1979].

Different list-scheduling heuristics differ in how they decide the priority metric. A common

priority metric involves the static level of tasks, which is the largest sum of execution times from

29

the task to any vertex in the graph. Ties between tasks with the same static level are broken by the

number of immediate successors that the task has.

A successful variant of list scheduling that has been used for different scheduling problems

has been dynamic level scheduling (DLS) [Sih and Lee, 1993]. This algorithm has been shown to

yield results close to the optimum in the absence of additional constraints on mapping [Kwok and

Ahmad, 1999a] [Davidović and Crainic, 2006] [Koch, 1995]. Dynamic list scheduling differs from

list scheduling in that the global ordering of tasks is updated after each allocation in the algorithm.

The global order can thus select the effects of past allocations to give accurate estimates of start

times of tasks on different processors.

Algorithm 2.1 DLS(G, w, c, P) → makespan

// task allocation and start time variables
1 A(v) = ε, S(v) = ε, ∀v ∈ V

2 for (i = 1 . . . |V |)

// choose next task processor pair to schedule
3 (v, p) = DLSDECIDE(A,S,G, w, c, P)

// update schedule based on selection
4 S(v) = max{DA(v, p, A, S), TF (p, A, S)}, A(v) = p

5 return maxv∈V S(v) + w(v)

The algorithm for dynamic list scheduling is outlined in Algorithm 2.1. The inputs to the al-

gorithm are the task graph G = (V,E), the architecture model (P,C) and the performance model

(w, c). The output is the heuristically optimized makespan. This algorithm does not enforce addi-

tional constraints on the mapping outlined in Section 2.2.2.

The algorithm first initializes the allocation and scheduling variables(line 1). The algorithm

executes in |V | steps(line 2). At each step, we maintain the current allocation A and start times S

for the tasks assigned in previous steps. The algorithm chooses a single task for allocation and a

single processor on which the task is allocated based on a priority metric (line 3). The A and S

variables are then updated based on this assignment (line 4). The algorithm terminates when all

tasks have been assigned (line 5).

After a scheduling decision has been made in line 3, the algorithm assigns the task to the

earliest time that the task can start on the processor chosen. This is computed in line 4 as the

maximum of the two parameters:

• DA(v, p, A, S) : the earliest time that all predecessor constraints in Section 2.2.2 are met.

30

• TF (p, A, S) : the earliest time that processor p is free after executing all tasks assigned to it

so far.

These parameters are computed as:

DA(v, p, A, S) =



∞ : if v has already been assigned

∞ : ∃(v1, v) ∈ E,A(v1) = ε

max
(v1,v)∈E

S(v1) + w(v1) : otherwise

+c ((v1, v), (A(v1), A(v)))

TF (p, A, S) = max
v∈V,A(v)=p

S(v) + w(v).

Algorithm 2.2 DLSDECIDE(A,S,G, w, c, P) → (v ∈ V, p ∈ P)
1 foreach (v ∈ V, p ∈ P)

// compute dynamic level for each task processor pair
2 DL(v, p) = SL(v)−max{DA(v, p, A, S), TF (p, A, S)}

// return task processor pair with highest dynamic level
3 return arg maxv∈V,p∈P DL(v, p)

The key step in DLS is the choice of the scheduling decision to make in line 3. This is addressed

in Algorithm 2.2. The algorithm computes a priority for every (task, processor) pair (line 1). The

priority is computed as the difference between SL(v), the static level of the task and TF (p, A, S),

the earliest start time of the task on the processor (line 2). The pair with the highest priority is then

returned (line 3). The static level of a node v is the length of the longest path from the node to any

node in G. Nodes with high static levels are more likely to be on critical paths and hence are given

higher priority. When comparing different processors, processors that allow earlier start times are

more desirable. The metric takes both factors into account.

Extensions have been proposed to DLS to deal with processor heterogeneity and irregular

multiprocessor architectures. The strategy followed in these works is to modify the priority based

metric in these cases. However, extending DLS for particular constraints is non-obvious and must

be handled on a case-by-case basis. A more fundamental limitation of heuristic schemes such as

DLS is that they take a very local view of the constraints and optimization objective of the mapping

problem. It is, in general, possible that a heuristic will discover that there are no valid solutions to

the mapping problem after making a set of local decisions. It is in general not possible to ensure that

a combination of local scheduling decisions will even yield a valid global solution. This motivates

us to look at more global schemes such as simulated annealing that can judge the validity and

31

optimality of a schedule more holistically. A simulated annealing based algorithm is capable of

flexibly supporting many practical constraints such as irregular multiprocessor topologies, resource

constraints, preferred task allocations or task clustering.

2.3.2 Simulated Annealing

Simulated Annealing is an optimization meta-algorithm based on an adaption of the Metropolis-

Hastings algorithm, a Monte Carlo method to generate sample states of thermodynamic systems. It

was first introduced by Kirkpatrick et al. in 1983 [Kirkpatrick et al., 1983].

Simulated Annealing is a global optimization approach that is used to find the optimum of

some objective over large design spaces. The inspiration behind simulated annealing came from

annealing in metallurgy, a technique involving heating and subsequent slow cooling of metals to

allow metal structures to attain their lowest internal energy states. By analogy with this process,

simulated annealing starts with an initial state in the design space, and initially allows for near-

random transitions to “nearby” states. This simulates the behavior of metals when heated to high

temperatures. As time proceeds, the transitions become more restricted to states that improve the

optimization criteria. The restriction of the transitions is defined by a control parameter, called

the temperature. As temperature decreases, it is more likely that only transitions that improve the

objective be allowed.

The general structure of the simulated annealing algorithm is shown in Algorithm 2.3. The

inputs are the initial state s0, an initial temperature t0 and a final temperature t∞. The output

is a final state sbest. The algorithm initially evaluates the objective function for the initial state

(line 1) using the COST function. The algorithm proceeds in a sequence of iterations (line 2). At

each iteration i, the control parameter called TEMP(i) is evaluated (line 3). The temperature is

a decreasing function of the iteration number. At each iteration, the state and cost at the end of

the previous iteration is recalled (line 4). The algorithm then generates a new state snew which is

obtained by means of a MOVE function. The cost of the new state snew is then evaluated to cnew (line

5). The algorithm then computes the difference in cost between the current and new states (line 6).

The proposed transition is accepted if the cost of the new state decreases (we assume a minimization

problem). If the cost increases, then the decision to accept or reject the transition depends on

the extent of cost increase and the control temperature parameter. At high temperatures, almost

all transitions are accepted, while at lower temperatures, only transitions that do not significantly

increase the cost are accepted. If a transition is accepted, the current state and cost are updated

32

(line 7) and the best seen state is updated if necessary (line 8). These iterations continue until the

temperature drops to below t∞ (line 9). The best state seen is then returned (line 10).

Algorithm 2.3 SIMULATED ANNEALING(s0, t0, t∞) → sbest

1 sbest = so, c0 = cbest = COST(so)
2 for (i = 0 . . .∞)

// set temperature for iteration i, generate new move and evaluate cost
3 T = TEMP(i)
4 si = si−1, ci = ci−1

5 snew = MOVE(si), cnew = COST(snew)
// decide whether to accept or reject the move

5 ∆c = cnew − ci

6 if (∆c < 0 or Prob(∆c, T) ≥ Rand(0, 1))
// accept transition

7 si = snew, ci = cnew

8 if (ci < cbest) sbest = si, cbest = ci

9 if (ti < t∞) break
10 return sbest

A common criticism of randomized algorithms such as simulated annealing is that there is no

guarantee that the algorithm will stabilize to an optimal or near-optimal solution given any amount

of execution time. Further, the exploration of the design space is said to be ad-hoc and not sys-

tematic. However, we contend that for many practical scheduling instances, simulated annealing

algorithms yield very good results. The widespread use of simulated annealing algorithms in many

optimization problems including scheduling [Devadas and Newton, 1989] [Koch, 1995], [Orsila et

al., 2008], endorses our stand. Further, for problems with large and complex design spaces, it may

not be possible to systematically explore the entire design space in a reasonable amount of time. In

such a case, a simulated annealing algorithm that works by sampling points in the design space and

avoids local minima can frequently yield better solutions than a systematic approach.

Simulated Annealing has been successfully used for solving scheduling problems. Devadas

and Newton [Devadas and Newton, 1989] use simulated annealing to solve scheduling problems

for datapath synthesis. Koch [Koch, 1995] advances a technique for performing multiprocessor

allocation and scheduling on DSP platforms. A key advantage to using simulated annealing is that

the technique can flexibly accommodate varied resource and implementation constraints.

Orsila et al. [Orsila et al., 2008] present a survey of simulated annealing algorithms for the

multiprocessor scheduling problem. Different simulated annealing algorithms vary in how they

tune various functions and parameters in the general algorithm shown in Algorithm 2.3. These

33

include the COST, TEMP, PROB and MOVE functions and the initial and final temperatures. We use

the techniques in [Koch, 1995] and [Orsila et al., 2006] to tune these characteristics.

We now describe the key simulated annealing characteristics used in solving the allocation and

scheduling problem.

• COST function: The cost function COST(s) specifies the value of the optimization objective

for a given state s. In the context of the scheduling and allocation problem, the set of valid

states is the set of valid allocations and schedules in Section 2.2.2. The COST function is

naturally expressed as the makespan of the valid allocation and schedule.

• TEMP function: The temperature function describes the temperature as a function of the itera-

tion number. Common temperature functions include geometric and fractional schedules [Or-

sila et al., 2008]. In this work, we use the function described by Koch [Koch, 1995].

Temp(i) =


Temp(i−1)

1+δ
Temp(i−1)

σi−L,i

if (i mod L) = 0

Temp(i− 1) otherwise

where

σi−L,i = stddev{COST(sk)|i− L ≤ k ≤ i }

According to this function, the temperature only changes once every L steps. The extent of the

temperature decrease is determined by two factors: δ, which is a constant multiplicative factor

(set to 0.3 in our implementation), and σi−L,i, which accounts for the standard deviation in the

makespans produced in the last L steps. A high standard deviation means that the annealing

has not stabilized as yet; hence the temperature is only slightly decreased. When stabilization

occurs, the temperature drops to near zero and the annealing procedure ends.

• PROB function: The probability function determines whether a cost-increasing transition is

accepted or not. A normal probability function uses an increasing function of the − ∆c
Temp

ratio. The function we use is:

Prob(∆c, Temp) = exp(− ∆c

Temp
)

This function leads to lower acceptance probabilities as either the cost difference ∆c rises, or

as the temperature Temp gets lower.

• MOVE function: The move function defines the “neighborhood” on which the transitions oc-

cur. The MOVE function is based on a random move of one or more tasks from one processor

34

to another to create a new valid schedule from the current one. In our work, we choose ex-

actly one task for movement. Let s be the current state characterized by an allocation A and

a schedule S. Let Vp = {v ∈ V |A(v) = p} be the set of tasks assigned to processor p. As

discussed in Section 2.2.2, schedule S imposes a total ordering on these tasks. The MOVE

function picks a random task v ∈ V and a processor p ∈ P and fixes the allocation A(v) = p.

It then selects a position in the global ordering of tasks in Vp and schedules the task to run in

that position. The start times S are then recomputed for tasks in Vp. We need to ensure that

the resulting schedule is valid. This can be assured by checking that there are no predecessors

of v among the tasks in Vp after the position chosen, and that there are no successors of v in

the tasks in Vp before the position chosen.

• t0 and t∞: An annealing procedure must start with a high initial probability of acceptance

of transitions p0 and a low final acceptance rate pf . We should choose the initial and final

temperatures to achieve these probabilities. Using the PROB function above, the temperature

t for a fixed probability p is:

t =
∆c

ln(1
p)

Assuming that we expect a minimum cost change of ∆cmin and a maximum of ∆cmax, the

initial and final temperatures are set to:

t∞ =
∆cmin

ln(1
p)

<
∆cmax

ln(1
p)

= t0

Additional Constraints

A big advantage of simulated annealing is that additional constraints such as processor topolo-

gies, memory sizes or task clusterings can be easily imposed on the scheduling problem. The only

SA function that needs to change is the MOVE function. In general, the MOVE function can be

changed to have a final post-transition check of the validity of the new schedule. If the new sched-

ule obtained after the move is invalid, then the transition is unrolled, and a new random move is

taken. The overhead of imposing additional constraints is the small cost of performing the valid-

ity check and the unrolling of the schedule if required. This makes simulated annealing a very

appealing optimization method to solve complex and heavily constrained optimization problems.

Although simulated annealing algorithms provide for a good balance of flexibility, efficiency

and quality of solution produced, it is still useful to find the optimal solution to a scheduling prob-

lem, if it is possible to do so in a reasonable amount of time. Even if an optimal solution cannot be

35

obtained, it is frequently useful to find bounds to the optimal solution that can help evaluate how

much improvement can be made to a given solution. Scheduling approaches that focus on finding

optimal solutions or bounds to the optimization problem fall under the category of exact approaches.

2.3.3 Constraint Optimization Methods

A commonly used exact approach to solve many optimization problems in operations research

is Mixed Integer Linear Programming (MILP) [Atamtürk and Savelsbergh, 2005]. This is because

of the ease of expressing constraints and the availability of high performance solvers like the ILOG

CPLEX [ILOG Inc.,] solver. MILP based approaches have been tried in various scheduling prob-

lems. Bender describes MILP formulations for resource-constrained scheduling problems [Bender,

1996]. Thiele uses MILP to solve complex scheduling problems in memories and buses [Thiele,

1995]. However, MILP methods have been shown to be unsuccessful in scheduling large-scale

problems [Davidović et al., 2004] [Tompkins, 2003]. Davare et al. present a taxonomy of possible

MILP approaches to the task allocation and scheduling problem [Davare et al., 2006] for solving

small-scale problems of up to 30 tasks (or up to a thousand variables and constraints in the problem

formulation).

Constraint programming (CP) is another solver method to solve discrete optimization prob-

lems. The variables in such methods take discrete values from finite domains and the constraints

are usually first-order logic constraints. Ekelin and Jonsson propose a CP approach to solving em-

bedded scheduling problems using the SICtus Prolog constraint solver [Ekelin and Jonsson, 2000].

However, as in MILP techniques, applications of CP techniques to scheduling problems has also

been limited to small scale problems.

Since it is difficult to solve the entire scheduling problem in a single pass, a natural solution

technique is to attempt to split up the problem into more manageable parts. We now describe

one such approach: a decomposition-based constraint programming scheme that uses a iterative

combination of a constraint based “master” problem and a graph-theoretic based “sub” problem.

The master problem solves a simplified version of the full optimization problem. The sub-problem

then analyzes these solutions and in turn learns new constraints to prune portions of the search

space. These constraints are then added to the master problem and a new iteration is performed.

Decomposition methods have been used to solve complex optimization problems in operations

research. Jain and Grossmann [Jain and Grossmann, 2001] use a decomposition based technique to

schedule independent tasks with release and finish times on a multiprocessor. The master problem

36

is formulated as an MILP problem and the sub-problem as a CP problem. Benini et al. consider a

similar multiprocessor scheduling problem, and apply a similar MILP/CP decomposition technique

to solving the problem [Benini et al., 2005].

The particular strategy we use is inspired by Bender’s decomposition [Benders, 1962]. Benders

decomposition has been used as a solution strategy for constraint programming and other combina-

torial optimization approaches such as Boolean satisfiability [Hooker and Ottosson, 1999] [Hooker

and Yan, 1995]. Bender’s technique is to start with a simple problem with a small subset of the

constraints in the problem and iteratively solve more complex problems by adding back some of

the constraints. The choice of which constraints to add is decided by another sub-problem. This

choice of constraints to add is key to the efficiency of the approach. It is important to prune as large

a search space as possible with the constraints added at each iteration so that not many iterations are

required.

For the problem formulation in Section 2.2.2 , we propose a decomposition technique using a

combination of a Boolean satisfiability based master problem and a graph-theoretical sub-problem

algorithm. The inputs to the algorithm are the task graph G = (V,E), the architecture model

(P,C) and the performance model (w, c). In this section, we assume that the processor network

is homogeneous (the scheme, however, is also applicable to other constrained networks). . Then

the execution time w is only a function of a task and not its allocation. The communication time

c is also a function of only the edge (v1, v2) in the task graph and not the allocation of tasks v1

and v2. The outputs of the algorithm are a valid allocation A and a valid schedule S, as defined in

Section 2.2.2.

The decomposition-based approach (DA) algorithm in shown in Algorithm 2.4. The con-

straints for the master problem are formulated in conjunctive normal form (line 3). The approach

consists of a number of iterations (line 4). Each iteration solves the master problem using a sat-

isfiability solver (line 5). A satisfiable solution allocates tasks to processors and orders all tasks

belonging to the same processor. The sub-problem then adds the ordering edges corresponding to

the total ordering of tasks to each processor as described in Section 2.2.2 (line 7). There are two

possible cases: the new graph with ordering edges may contain a cycle or may be acyclic. If it

does contain a cycle, then the ordering is invalid; hence a set of constraints are added to the master

problem that eliminate the cycle (line 9). If the graph is acyclic, then the ordering is valid; the sub-

problem then finds the makespan of the schedule as the longest path in the graph and conditionally

updates the best makespan found so far (line 11). The sub-problem also adds a set of constraints

that attempt to prune parts of the solution space that are guaranteed to have strictly inferior solutions

37

than the best makespan (line 12). The constraints that are generated by the sub-problem take effect

when the next master problem iteration is solved. The process continues until the master problem

is unsatisfiable, at which point we have found the optimal makespan.

Algorithm 2.4 DA(G, w, c, P, C) → makespan

1 makespan = ∞

2 φ = empty CNF formula
3 BASECONSTRAINTS(G, w, c, P, C, φ)

4 while (true)

// master problem
5 xSAT =SATSOLVE(φ)
6 if (xSAT = UNSAT) return makespan

// sub-problem
7 G′ = UPDATEGRAPH(G, xSAT)
8 if (G′ contains a cycle)
9 CYCLECONSTRAINTS(G′, xSAT , φ)
10 else
11 makespan = min{makespan, MAKESPAN(G′) }
12 PATHCONSTRAINTS(G′, w, c, makespan, xSAT , φ)

We now describe in detail the master and sub-problem formulations.

1. Master problem: The master problem uses Boolean variables to encode task allocation and

ordering. A subset of the constraints to make the allocation and ordering valid are also added

as conjunctive normal form clauses. There are three sets of Boolean variables that are used:

∀v ∈ V,∀p ∈ P,

xa(v, p) =

 1 : if task v assigned to processor p

0 : else

∀(v1, v2) ∈ E,

xc(v1, v2) =


1 : if tasks v1 and v2 are assigned

to different processors

0 : else

∀v1, v2 ∈ V, (v1, v2) /∈ ET , (v2, v1) /∈ ET ,

xd(v1, v2) =

 1 : if task v1 precedes task v2

0 : else

38

The xa variables are used to encode the ordering of tasks to processors. The ordering vari-

ables xd encode the “ordering edges” that are used to order independent tasks assigned to the

same processor. The communication edges encode whether there is a communication delay

between two dependent tasks (i.e. whether they are assigned to different processors).

The constraints related to the master problem include:

∀v ∈ V,

(A1)
(∨

p∈P

xa(v, p)
)

∀v ∈ V, ∀p1, p2 ∈ P, p1 6= p2,

(A2) xa(v, p1) ∧ xa(v, p2) ⇒ 0

∀(v1, v2) ∈ E, ∀(p1, p2) ∈ (P × P)− C,

(A3)
(
xa(v1, p1) ∧ xa(v2, p2)

)
∨

(
xa(v1, p2) ∧ xa(v2, p1)

)
⇒ 0

∀(v1, v2) ∈ E, ∀p1, p2 ∈ P, p1 6= p2,

(C1) xa(v1, p1) ∧ xa(v2, p2) ⇒ xc(v1, v2)

∀v1, v2 ∈ V, (v1, v2) /∈ ET , (v2, v1) /∈ ET , ∀p ∈ P,

(D1) xa(v1, p) ∧ xa(v2, p) ⇒ xd(v1, v2) ∨ xd(v2, v1)

(D2) xd(v1, v2) ∧ xd(v2, v1) ⇒ 0

Constraints A1, A2 and A3 encode constraints on task allocation. Constraint A1 specifies

that each task must be allocated to at least one processor. Constraint A2 specifies that a task

cannot be allocated to more than one processor. Constraint A3 indicates that dependent tasks

must be allocated to processors that can communicate with each other. These three constraints

naturally fall out of the discussion in Section 2.2.1. Constraint C1 sets a communication

variable corresponding to an edge to 1 if the tasks on the edge are allocated to different

processors. Constraints D1 and D2 encode the ordering constraint: if two independent tasks

are allocated to the same processor, one of them should be ordered before the other.

2. Sub problem: The sub problem is responsible for identifying whether the allocation and

schedule returned by the master problem is valid or not, and if valid the makespan of the

schedule. In order to do this, we add the “ordering edges” represented by the xd variables to

the task graph. The edges added are defined by:{
(v1, v2) | xd(v1, v2) ∧

(
∃p ∈ P : xa(v1, p) ∧ xa(v2, p)

)}

39

R

RL1 RL2 RL3 RL4 RL5 RL6 RL7

TVTTL

VCS

UTTL UCS

xc(VCS,UTTL)xa(RL3,3)

xc(UTTL,UCS)xa(RL2,3)

xa(RL6,3)

xc(UCS,T)xa(RL5,3)

xc(RL1,RL2)xa(RL4,3)

xa(VCS,2)

xa(VTTL,1)

xa(RL7,3)

xa(T,3)

xa(UCS,2)

xa(UTTL,1)

xc(R, VCS)xd(UCS, RL1)xa(RL1,2)

xc(R, RL1)xd(RL1, VCS)xa(R,1)

CommunicationOrderingAllocation

Cycle: {RL1, VCS, UTTL, UCS}

Cycle Constraint:

xd(RL1,VCS) Λ xd(UCS, RL1) ⇒ 0

Figure 2.8: A solution to the master problem that contains a cycle, hence representing an invalid
schedule.

As an example, Figure 2.8 shows a master problem solution to scheduling the IPv4 application

onto the architecture shown in Figure 2.3. The figure shows the task graph (with names

abbreviated) to which the ordering edges (represented as dashed edges) have been added.

The xa, xc and xd variables that have been set to 1 are also indicated. After the addition of

these edges, the master problem solution has a cycle, highlighted in the figure with edges that

are bold. Since all edges have a positive weight, the presence of such a cycle means an invalid

schedule, and all solutions that contain this cycle must be eliminated from consideration. In

order to do this, we add the constraint xd(RL1, V CS)∧xd(UCS, RL1) =⇒ 0. In general,

given a cycle consisting of edges Ec = {(u1, v1), (u2, v2), . . . , (uk, vk)}, the associated cycle

constraint is:

(∧
(u,v)∈Ec−E

xd(u, v)
)
⇒ 0 .

After this cycle has been added, the master problem is solved again and yields a new solu-

tion. Figure 2.9 presents this solution. The solutions differ in the orientations of the edges

40

R

RL1 RL2 RL3 RL4 RL5 RL6 RL7

TVTTL

VCS

UTTL UCS

xc(VCS,UTTL)xa(RL3,3)

xc(UTTL,UCS)xa(RL2,3)

xa(RL6,3)

xc(UCS,T)xa(RL5,3)

xc(RL1,RL2)xa(RL4,3)

xa(VCS,2)

xa(VTTL,1)

xa(RL7,3)

xa(T,3)

xa(UCS,2)

xa(UTTL,1)

xc(R, VCS)xd(RL1, UCS)xa(RL1,2)

xc(R, RL1)xd(VCS, RL1)xa(R,1)

CommunicationOrderingAllocation

Critical Path: {R, VCS, RL1, RL2, RL3,

RL4, RL5, RL6, Rl7, T}

Path Constraint:

xc(R,VCS) Λ xd(VCS,RL1) Λ xc(RL1,RL2)

⇒ 0

Makespan: 190

Figure 2.9: A second solution to the master problem that represents a valid schedule.

(RL1, V CS) and (UCS, RL1). Now, the solution has no cycles and is thus valid. The

makespan of a valid allocation and schedule can be obtained by a longest path computa-

tion on the graph with ordering edges. The longest path in Figure 2.9 has been highlighted

with bold edges. The makespan is the length of this longest path, which is 190 in this ex-

ample. The algorithm keeps track of the best makespan found so far and updates it with

the makespan of this schedule, if necessary. Given a schedule with a critical path, it is

clear that no other solution that contains this path can have a lower makespan. In this ex-

ample, this means that it is no longer necessary to consider schedules that contain the path

R → V CS → RL1 → ... → RL7 → T . In order to record this information, we add the

constraint xc(R, V CS) ∧ xd(V CS, RL1) ∧ xc(RL1, RL2) =⇒ 0. It is to be noted that

the only scheduling variables that impact the delay of a path are the set of ordering edges

(xd variables set to 1) and the set of communication edges (xc variables set to 1). Only such

variables need to be recorded.

In general, we could record any path in the graph that has a makespan worse than the best

makespan found so far. If Ep = {(u1, v1), (u2, v2), . . ., (uk, vk)} are the edges comprising

a path in G′ with delay greater than or equal to the best makespan at an iteration, then the

41

associated path constraint is:(∧
(u,v)∈Ep−E

xd(u, v)
)
∧

(∧
(u,v)∈Ep∩E,A(u) 6=A(v)

xc(u, v)
)
⇒ 0.

We keep adding either cycle or path constraints at each iteration of the sub problem, until

there is no solution to the master problem. At this stage, we have considered all possible

allocations and schedules and we can stop.

This scheme should eventually yield the optimal makespan. However, the time required to

finish computing the optimal makespan can exceed reasonable time limits. In such a case, we can

elect to stop the algorithm at any time, and take the best makespan found so far as the result of the

algorithm.

In order to improve the performance of the solver, it is easy to change the algorithm to take in

a heuristic solution and use that makespan as the initial value in line 1 of Algorithm 2.4. In general,

any upper bound to the makespan can be used here. In our experiments, we start with the results of

the DLS algorithm. This helps the DA procedure to avoid redoing the work performed by the DLS

algorithm.

Additional constraints

The additional constraints in Section 2.2.2 can be added as constraints to the master problem

in the DA approach. The sub-problem and the nature of the constraints added by the sub-problem

to prune the solution space remain unchanged. One example of such a side constraint is constraint

(A3) in the master problem. This constraint enforces processor topology constraints by ensuring

that dependent tasks must be allocated to processors that can communicate with each other. If there

are other side constraints such as memory size, task clusterings or preferred allocations of tasks,

they should be added to the master problem.

2.3.4 Lower bounds

The above algorithms give us valid makespans for the task allocation and scheduling problems.

These are upper bounds to the optimal makespan. It is sometimes useful to obtain lower bounds as

well. A lower bound to the scheduling problem gives us the lowest possible makespan for any valid

allocation and schedule. No scheduling algorithm can give better makespans than the lower bound.

For the task allocation and scheduling problem, there are two categories of lower bounds. The

first assumes that there are no task dependencies, and converts the scheduling problem to a load

42

balancing problem. For a task graph G = (V,E) scheduled on |P | processors, a lower bound to

makespan is
P

v∈V w(v)

|P | . Thus assumes that tasks are perfectly load balanced across processors.

The other class of lower bounds assumes that task dependencies exist, but that there are no

resource restrictions. In particular, it is common to assume that there are an infinite number of

processors. The simplest possible bound is then the longest path in graph G, assuming zero com-

munication costs. Fernandez and Bussell [Fernandez and Bussell, 1973] propose an alternate bound

that takes into account the minimum possible communication between tasks. This has been imple-

mented by Fujita et al. [Fujita and Nakagawa, 1999].

2.4 Results

In this section, we present the results of our experiments to evaluate different techniques of

solving the task allocation and scheduling problem to minimize makespan. We compare the Dy-

namic List Scheduling (DLS) algorithm to simulated annealing (SA) and the decomposition-based

constraint programming approach (DA). We implemented all algorithms on a 2.66 GHz Core 2

Quad system with 2 GB RAM running Linux. The DA approach was implemented on top of the

MiniSAT solver [Een and Sörensson, 2003].

2.4.1 Benchmarks

We used two sets of benchmarks. The first was the two streaming applications of IPv4 packet

forwarding and Motion JPEG encoding. Performance profiles were collected by implementation on

a soft MicroBlaze core. The FPGA platform used was a Xilinx Virtex 2VP50 using the Embedded

Development Kit (EDK). The task graphs in Figure 2.6 for IPV4 and Motion JPEG were unrolled

1-10 times to exploit the data-level parallelism. For IPv4 forwarding, the number of copies is the

number of inputs ports in the forwarder. For Motion JPEG, the number of copies determines the

number of frames that are buffered and can simultaneously be decoded. The second benchmark is a

set of random task graphs from Davidović et al. [Davidović and Crainic, 2006]. These are reputed

to be among the harder scheduling problems to solve and incorporate a variety of graph structures

found in real applications.

43

2.4.2 Comparisons on regular processor architectures

Tables 2.1 and 2.2 show the makespan results of the Motion JPEG and IPv4 forwarding ap-

plications on fully-connected processor architectures with 2,4,6 and 8 processors. Column 1 shows

the number of tasks in the application on unrolling the task graph from one to ten times. The other

columns show the results of DLS, SA and DA algorithms along with the lower bound to makespan.

The DA approach was started with the result of the DLS algorithm, and hence never returns a

makespan worse than the DLS makespan. The best makespan obtained by the DA procedure after

5 minutes is taken as the result. Any DA runs that yielded optimal results before 5 minutes are

highlighted in bold. We also indicate the lower bounds obtained by the DA procedure in the “LB”

column. For all DA instances that are proved to be optimal, the LB is represented by a “-”.

Processors = 2 # Processors = 4
Tasks DLS SA DA (LB) DLS SA DA (LB)

13 20198 19328 19328 - 14352 14352 14352 -
24 36702 36666 36636 34964 22386 21786 21618 -
35 54264 54128 54162 52446 30588 31140 30102 26223
46 72438 71600 71884 69928 39148 39460 38826 34964
57 89576 89098 89126 87410 48144 47926 48144 43705
68 107178 106568 106564 104892 56738 57156 56738 52446
79 124190 123860 124190 122374 65482 65776 65422 61187
90 142102 141292 141744 139856 74044 74568 74042 69928
101 159224 158888 159224 157338 82728 82952 82728 78669
112 176590 176472 176590 174820 92366 92060 92366 87410

Processors = 6 # Processors = 8
Tasks DLS SA DA (LB) DLS SA DA (LB)

13 14352 14352 14352 - 14352 14352 14352 -
24 19112 19112 19112 - 19112 19112 19112 -
35 24578 25126 24578 22936 23872 23872 23872 -
46 30590 31972 30392 27696 28632 28632 28632 -
57 37310 37602 35954 32456 33392 33392 33392 -
68 42462 43456 41780 37216 38152 40300 38152 -
79 47982 48332 47976 41976 42912 44224 42912 -
90 54068 54762 53680 46736 47672 50462 47672 -

101 59948 62374 59600 52446 52432 54542 52432 -
112 66618 67350 65874 58274 57728 60056 57192 -

Table 2.1: Makespan results for the DLS, Simulated Annealing (SA), and decomposition approach
(DA) on task graphs derived from MJPEG decoding scheduled on 2, 4, 6, and 8 fully connected
processors.

Table 2.3 shows the results for the set of random benchmarks from Davidović et al.[Davidović

44

Processors = 2 # Processors = 4
Tasks DLS SA DA (LB) DLS SA DA (LB)

15 155 155 155 - 155 155 155 -
28 270 260 260 250 175 175 175 -
41 395 385 395 375 225 235 220 195
54 520 510 510 500 290 295 290 250
67 640 635 640 625 350 345 345 313
80 765 760 760 750 415 415 410 375
93 885 885 885 875 495 475 470 438

106 1015 1010 1010 1000 555 545 535 500
119 1155 1135 1135 1125 615 615 600 563
132 1280 1260 1260 1250 670 675 660 625

Processors = 6 # Processors = 8
Tasks DLS SA DA (LB) DLS SA DA (LB)

15 155 155 155 - 155 155 155 -
28 175 175 175 - 175 180 175 -
41 200 210 200 - 200 215 200 -
54 240 255 225 - 230 245 225 -
67 280 285 270 245 250 280 245 -
80 320 330 305 285 290 315 285 -
93 365 395 345 325 330 345 325 -

106 410 435 385 365 370 400 365 -
119 445 470 425 405 410 450 405 -
132 470 530 470 445 455 475 445 -

Table 2.2: Makespan results for the DLS, MILP, and decomposition approach (DA) on task graphs
derived from IPv4 packet forwarding scheduled on 2, 4, 6, and 8 fully connected processors.

and Crainic, 2006]. For each of these examples, the optimal results are known a priori. The table

shows the difference between the optimal results and the makespans obtained from each of the

algorithms. The results are tabulated for task graphs consisting of 50 and 100 tasks with different

edge densities (the percentage of the number of edges in the transitive closure of the task graph to

the total number of edges). For each task size and edge density, we obtain the makespan percentage

difference from the optimum for the random graph scheduled on 2,4,6,8,9,12 and 16 processors. We

then tabulate the average of these seven percentages. For the DA approach, we additionally list the

number of graphs (out of the seven) that were solved to optimality.

The above tables show that the DLS heuristic performs very well on regular fully-connected

architectures. The technique is usually within 5-10% of the optimum makespan. This is in line with

results reported in the literature [Kwok and Ahmad, 1999a][Davidović and Crainic, 2006]. The

DA approach is successful in reporting optimal solutions on task graphs with 100-150 tasks. The

45

Tasks Edge DLS SA DA (# optimal) Average Average
Density DLS−SA

DLS % DLS−DA
DLS %

50 00 4.8 3.1 3.3 (1) 1.6 0.3
50 10 13.5 15.0 3.3 (0) -1.5 8.9
50 20 16.2 16.1 4.6 (0) 0.1 9.8
50 30 16.0 18.8 4.0 (0) -2.4 10.3
50 40 15.9 18.7 1.9 (3) -2.5 12.0
50 50 14.4 20.3 0.4 (5) -5.4 12.3
50 60 8.8 17.4 0 (7) -7.7 7.8
50 70 4.8 13.6 0 (7) -8.4 4.4
50 80 3.2 18.1 0 (7) -14.6 2.9
50 90 3.0 18.5 0 (7) -14.3 2.7

Average 10.1 16.0 1.9 -5.5 7.1
Optimal Solutions 0 / 70 0 / 70 37 / 70 - -

Tasks Edge DLS SA DA (# optimal) Average Average
Density DLS−SA

DLS % DLS−DA
DLS %

100 00 3.3 1.6 3.2 (0) 1.6 0.1
100 10 25.0 31.0 15.7 (0) -5.6 7.1
100 20 16.3 24.2 15.7 (0) -7.8 0.5
100 30 16.0 23.1 14.6 (0) -6.4 1.2
100 40 8.7 18.2 8.3 (0) -8.3 0.3
100 50 7.1 17.1 5.9 (0) -8.9 1.1
100 60 6.5 30.0 4.3 (2) -13.9 2.1
100 70 4.1 13.7 1.7 (4) -8.6 2.3
100 80 2.9 16.9 0.8 (5) -12.8 2.0
100 90 1.1 14.7 0.3 (6) -12.0 0.8

Average 9.1 20.1 -10.3 1.8
Optimal Solutions 0 / 50 0 / 50 17 / 70 - -

Table 2.3: Average percentage difference from optimal solutions for makespan results generated
by DLS, SA, and DA for random task graph instances scheduled on 2, 4, 6, 8, 9, 12, and 16 fully
connected processors.

simulated annealing algorithm tends to perform somewhat worse than either DLS or DA on such

regular architectures. From the tables, we can see that it can be up to 25% worse than the best DA

solution.

An interesting observation from Table 2.3 is that the DA technique performs better when the

graph has a high density of edges. For such graphs, the ordering between the tasks is almost fully

defined by the edges in the graph itself. In this case, we have very few scheduling xd variables,

reducing the number of scheduling decisions we must make. However, the SA technique is more

uniform over graph of different edge densities, except for the zero edge density case. When there

46

are no edges, the scheduling problem boils down to a load balancing problem without precedences,

which is a simpler problem. Both SA and DLS perform well on this case. The DLS heuristic has an

interesting trend: it performs well at the two extremes of edge density but does worse in between.

The heuristic optimality seems to be the best measure of the inherent difficulty of the problem. The

scheduling problem is hardest to solve at moderate edge densities.

The other dimension of comparison of our techniques is the runtime of each optimization

technique. The DLS heuristic is the fastest approach, completing in under a minute under all cases.

The SA approach can take up to three minutes on different instances, with runtimes for individual

cases being unpredictable. The DA approach has the longest runtime, and is stopped at five minutes.

From the above discussion, it is clear that the DLS algorithm is the method of choice when

mapping algorithms to regular multiprocessor architectures. However, as we have previously men-

tioned, the drawback of heuristics becomes apparent when additional constraints are added to the

mapping problem. We shall next discuss the results of the scheduling approaches on realistic archi-

tecture models that are not so regular.

2.4.3 Comparison on realistic architectural models

We now show the makespan results for the IPv4 forwarding on different architectural designs

that we explored using soft multiprocessor networks. Figure 2.10(a-c) show the different designs

we wish to evaluate. These designs include a pipeline of three processors in (a), replicated array of

processors in (b), and an irregular architecture in (c).

Table 2.4 shows the results of makespan optimization for tasks obtained from unrolling the

IPv4 task graph from 1 to 10 times on the processor architectures (a) through (c) of Figure 2.10.

For each architecture, we show the results of all our optimization approaches. The heuristic DLS

approach was modified to support arbitrary processor topologies as proposed in [Bambha and Bhat-

tacharyya, 2002]. We can easily extend the SA and DA approaches to provide support for different

topologies as described in Sections 2.3.2 and 2.3.3. The DA results in the table correspond to the

best makespans obtained after 5 minutes of execution. The bold entries indicate the solutions that

are proved to be optimal by the DA approach before the 5 minute timeout.

From these results, we can see that the DLS algorithm is not as good on restricted topologies as

on fully-connected architectures. This is an understandable trend as the DLS heuristic was initially

developed for fully connected models. While DLS still is within 5% of SA and DA results on the

small architecture, both SA and DA outperform the heuristic by 15-25% on the larger architectures.

47

BlockRAM BlockRAM

Header In

P1

M1 M2

FSL FSL FSL FSL
MicroBlaze MicroBlaze MicroBlaze

Route

Table

Route

Table

OPB
Header Out

P2 P3

OPB

P1

M1 M2

P4

P7

P10

P8

P2 P3

P5 P6

P9

P11 P12

(b)

(a)

M1 M2

P1

P6

P7

P2 P3

P4 P5

P8

P9 P10

(c)

Figure 2.10: Different target architectures for IPv4 packet forwarding.

Arch. (a) Arch. (b) Arch. (c)
Tasks DLS SA DA (LB) DLS SA DA (LB) DLS SA DA (LB)

15 185 165 165 - 205 165 165 - 205 165 165 -
28 230 220 220 - 205 165 165 - 205 170 170 -
41 315 305 300 195 205 165 165 - 205 170 170 -
54 405 385 405 250 205 165 165 - 205 170 170 -
67 495 470 490 313 250 220 215 - 255 215 215 -
80 590 555 590 375 250 230 215 155 280 255 240 155
93 700 655 700 438 250 230 215 155 280 255 240 160
106 785 750 785 500 250 245 215 155 280 275 245 182
119 875 835 875 563 340 305 300 174 365 310 310 205
132 985 920 985 625 340 330 300 193 385 355 360 228

Average
improvement

from DLS (%) - 5.6 2.1 - - 12.1 15.8 - - 12.9 14.9 -

Table 2.4: Makespan results for the DLS, DA, and SA methods on task graphs derived from IPv4
packet forwarding scheduled on the architectures (a) through (c) of Figure 2.10.

For smaller task graphs up to 100 tasks shown in Table 2.4, the decomposition approach yields

the best makespans. However, like other exact approaches, the decomposition approach stops scal-

48

8 processors - mesh topology

0

5

10

15

20

25

30

35

40

1
3

3
5

5
7

7
9

1
0
1

1
2
3

1
4
5

1
6
7

1
8
9

2
1
1

2
3
3

2
5
5

2
7
7

Number of tasks (MJPEG encoding)

%
 i

m
p

ro
v
e
m

e
n

t
o

f
D

A
 a

n
d

 S
A

m
a
k
e
s
p

a
n

s
 o

v
e
r

D
L

S
 m

a
k
e
s
p

a
n

SA

DA

Figure 2.11: Percentage improvements of DA and SA makespans over the DLS makespan for larger
task graph instances (with up to 277 tasks) derived from Motion JPEG encoding scheduled on 8
processors arranged in a mesh topology.

ing to problem sizes after a certain point. Figure 2.11 shows the results of our makespan optimiza-

tion on larger task graphs. We use the Motion JPEG encoding application and vary the number of

tasks in the application from 13 to 277 by unrolling the task graph from 1 to 25 times. These graphs

are then scheduled on an 8-processor architecture arranged in a mesh topology.

From Figure 2.11, the DA approach stops improving the DLS results significantly if the prob-

lem has more than 150 tasks (which corresponds to a few tens of thousands of variables and con-

straints in the problem formulation). The SA algorithm is more consistent across a wider range of

problem sizes: we find that it improves the solution even for problems as large as 500 tasks. For

large instances with irregular architectures, SA is the method of choice.

49

2.4.4 Throughput estimation using makespan

In many streaming applications, the optimization criterion is typically throughput maximiza-

tion rather than makespan minimization. However, by unrolling the task graph, we can obtain good

estimates of the throughput of the mapping from its makespan. As stated earlier, if task graph G is

unrolled I times to obtain graph G′, the throughput of G is estimated to be proportional to I/M ,

where M is the makespan of G′. Thus maximizing the throughput of G corresponds to minimizing

the makespan of G′. The throughput so computed is only a lower bound on the exact throughput,

but accuracy can be improved by increasing the number of iterations for which the task graph is

unrolled.

It is, in general, hard to find the exact value of I , the number of times that the graph is to be

unrolled. For perfect accuracy, we would have as many iterations as the number of input data. How-

ever, for streaming applications, the number of inputs can be very large or even conceptually infinite.

In such a case, we will have to use a bounded value for I and accept a lower bound on through-

put. However, as we increase the value of I from one, the accuracy of the estimated throughput

improves. We illustrate this through an example. Figure 2.12 shows a plot of the estimated through-

put for IPv4 packet forwarding on the 3-processor pipeline in Figure 2.12 with increasing values of

I . The throughput is measured in Gigabits per second (Gbps), assuming a packet size of 64 bytes

and a clock frequency of 100 MHz. All results were obtained by using the decomposition-based

approach.

From the figure, we note that as the number of iterations increases, the estimated throughput

increases and asymptotically reaches a value of 0.57 Gbps. This value of 0.57 Gbps is also an upper

bound on the achievable throughput for this mapping problem. This value of throughput is obtained

using a lower bound to the makespan of 90 cycles, obtained when there are no task dependencies.

Thus we can see that in this example, as we increase the number of iterations, the estimated lower

bound on throughput reaches its highest possible value, which indicates that the estimate of 0.57

Gbps is the exact throughput for this schedule. It also happens that this is the schedule with the

optimum throughput.

In general, we find that as we increase the number of iterations, the value of the throughput

achieved gradually increases and stabilizes asymptotically to the exact value. As a practical consid-

eration, we do not want to unroll the graph more times as necessary in order to avoid handling large

optimization problems. There is thus a tradeoff between the size of the optimization problem and

the accuracy of the estimated throughput. For practical scheduling problems, we have found only

50

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Number of task graph iterations

T
h
ro
u
g
h
p
u
t
(G
b
p
s
)

0.57 Gbps (throughput upper bound)

Figure 2.12: Graph of the estimated throughput of the IPv4 packet forwarding application as a
function of the number of iterations of the application task graph.

incremental improvements in the accuracy of throughput estimates on unrolling the task graph for

more than about 10 iterations.

2.5 Comparing different optimization approaches

The goal of any scheduling approach is to arrive at a high quality schedule while being compu-

tationally efficient and being flexible to the incorporation of additional constraints to the mapping.

From the results in Section 2.4, it is clear that each of our scheduling approaches has their own ad-

vantages and disadvantages with respect to the metrics stated above. At the outset, the DLS heuristic

is very effective for the regular multiprocessor models that it is designed to handle. However, the

presence of additional constraints can invalidate the assumptions of the heuristic algorithm. The

51

heuristic then has to be modified for the particular set of constraints under study. Even if the heuris-

tic is so modified, the efficiency of the approach can suffer. We demonstrated this for the problem

of mapping applications to architectures with restricted topologies.

The DA approach and other constraint programming approaches have the key advantage that

they maintain a high degree of flexibility while also guaranteeing the optimality of the solutions

they provide. The range of side constraints that can be added to the problem is only limited by the

structure of the constraints that the solver technology can handle. In addition to Boolean clauses

in SAT and linear inequalities in an MILP solver, solvers that allow pseudo-boolean constraints,

sat-modulo constraints and constraints in many other specialized “theories” have become popular

in recent years. With respect to solution quality, it is often the case that optimal solutions cannot be

guaranteed in a reasonable completion time of five minutes. Even under such conditions, constraint

optimization techniques can provide bounds as to how much the result is inferior to the optimal

solution. Constraint optimization techniques also have the useful property that the solutions returned

by these techniques are guaranteed to improve with runtime; hence they allow for tradeoffs between

runtime and quality of the solution. However, all such exact approaches suffer from the fact that the

solution space of scheduling problems is not smooth and as such is difficult to explore completely.

Such solvers usually have a “knee” effect: they handle all problems up to a certain size well, but

suddenly fail at a certain problem size. As solvers become more powerful, the “knee” will be

pushed to larger problem sizes; but the ultimate exponential nature of the runtime of such solvers

will persist.

Finally, the use of evolutionary algorithms such as SA provide a middle ground: they are as

flexible as any constraint optimization method, but they do not offer the promise of exact solutions.

As a consequence, they also do not suffer as much from the NP-completeness of the problem. In

our experiments, for large problem sizes of over 150 tasks (which corresponds to a few tens of

thousands of variables and constraints in the problem formulation), we found that is most beneficial

to use simulated annealing techniques. Simulated Annealing consistently offer improvements over

the DLS heuristic for constrained problems.

52

Chapter 3

Resource allocation and communication

scheduling on CPU/GPU systems

In the previous chapter, we described the mapping of streaming applications onto multipro-

cessor networks for best performance. We formulated this problem as an optimization problem of

allocating and scheduling tasks with dependencies onto multiprocessor networks with the objective

of minimizing application makespan.

In this chapter, we describe a different problem related to mapping applications with large data

sets to a system consisting of a CPU and GPU. This problem illustrates a different facet of mapping

concurrent applications, that of resource allocation of data to GPU and CPU memory and scheduling

the data transfers between them in order to optimally utilize the communication bandwidth between

the CPU and GPU. As in the previous chapter, we will discuss static models and methods to solve

the mapping problem for this objective.

3.1 Mapping applications with large data sets onto CPU-GPU systems

CPU-GPU systems have become increasingly popular in recent years as a means of delivering

large computational power to the desktop market. Such systems consist of a host CPU with the

GPU device connected to the CPU through a PCI-Express link. GPUs support high computational

rates (in terms of floating point operations per second) and have a high bandwidth to memory on the

GPU board, making such systems ideal for throughput oriented applications.

In order to support high memory bandwidth rates, GPU memory is integrated along with the

execution units on the GPU card. A consequence of this is that the memory available on the GPU is

53

limited and cannot be upgraded by the end-user. Present-day high-end GPUs offer anywhere from

512 MB to 1.5 GB of memory on-board the GPU card. If more than this amount of memory is

required by the application, data has to spilled to CPU memory. Such memory transfers go over

the PCI-Express bus which has a much lower bandwidth (1-2 Gbps) than the on-board memory

bandwidth (over 64 Gbps). This can then become the bottleneck of the system, especially if large

amounts of data need to be transferred over the bus. Bleiweiss reports that about half the time in a

GPU pathfinding algorithm on large graphs is spent on transferring intermediate data to and from

the GPU[Bleiweiss, 2008].

One class of applications that deals with large data sizes are machine learning applications.

The intermediate data required to be stored in machine learning applications can easily be much

larger than the GPU memory size. It has been reported that the resulting traffic over the PCI-express

bus can take well over half the execution time of the application [Sundaram et al., 2009]. For such

applications, it is important to try to minimize data transfers.

We explore the issue of minimizing data transfers in the context of applications that are rep-

resented as a task graph. We show examples of machine learning applications represented as task

graphs in Section 3.1.1. In this context, there are two factors that affect the amount of data transfers

required by an application: (1) the order in which different tasks in the application execute (or task

scheduling) affects how much intermediate data is live at any point of time and (2) the choice of

which intermediate data is spilled to CPU memory as tasks execute (or data transfer scheduling)

affects the sizes of the data transferred. The problem of finding the task and data transfer schedules

that minimize the total data transfer can be posed as an optimization problem. Sundaram al. [Sun-

daram et al., 2009] describe a compiler flow that takes a task graph description of the application

and generates a task schedule (and corresponding CUDA code) for the application that attempts

to minimize memory transfers. However, the approaches used in their work for minimizing data

transfers are heuristics that are sub-optimal. This work is an attempt to obtain better solutions to

this optimization problem.

We begin by providing the background to this problem. We first describe the machine learning

applications that we intend to map onto CPU-GPU systems. We then describe the platform and the

nature of the optimization problem that arises during the mapping step.

54

3.1.1 Applications

Machine learning applications encompass a broad range of applications that are used to ex-

tract information from large amounts of data. They are used in various applications such as fields

including analysis and processing of signal processing applications, face, gesture and handwriting

recognition in image and video processing applications and speech recognition. We show two ex-

amples of such applications: an edge detection application used in extracting features for image

processing, and a convolutional neural network used in handwriting and face recognition.

Edge detection

Edge detection is used as a pre-processing step in many image recognition applications (such

as cancer detection). A classic edge detection technique is the Canny edge detector [Canny, 1986].

Ziou et al. provide a good overview of edge detection techniques [Ziou and Tabbone, 1998]. Edge

detection consists of the following steps: (1) a convolution step that takes in an input filter and

applies (convolves) it to the input image; different rotations of the kernel are tried out to find edge

orientations (2) a threshold and remap step that converts the convolved values to the normal gray-

scale value range, and (3) a reduction operation(such as addition/max/absolute value) to combine

the remapped results of different edge orientations. Figure 3.1 shows the tasks in the edge detection

application. Each of the circles in the figure represents a task. Here, we use four kernel rotations and

perform a convolution and remap task for each of them. The values are then reduced pairwise using

a max reduction to obtain the final result. Each of these tasks is data-parallel: a single convolution

requires the kernel to be applied to every pixel in the image. The remap and max stages also require

operations per pixel of the image. The graph in Figure 3.1 is hence a task-level abstraction of the

application.

The boxes in the graph denote the data that is transferred between these tasks. The input image

is required by every convolution task. Each convolution then produces a different convolved image

(which is of similar size to the input image). Each max operation requires two convolved images

as inputs. At any point during the execution of the application, many of these convolved images

may need to be kept in GPU memory. Each image can be hundreds of megabytes in size at high

resolution. All such intermediate data may not fit in GPU memory, leading to spillage to CPU

memory.

55

Im

C1 C2

E1’ E2’

E5’ E6’

R1’ R2’

max1

O1

Im

E1’’ E2’’

E5’’ E6’’

R1’’ R2’’

max2

O2

Tasks

Ci: convolution stages

Ri: remap stages

maxi: max reduction stages

Data Items

Im: input image

Ei: intermediate data

Oi: output image with

annotated edge strengths

Figure 3.1: Task graph depicting the data parallel tasks and data in the edge detection application.

Convolutional Neural Networks

Convolution Neural Networks (CNNs) are used in many image recognition problems. CNNs

are useful in applications like face detection where there is insufficient input data to deal with

recognition of features under shifts and rotations [Lawrence et al., 1997]. A typical CNN consists of

a set of layers, each of which contains one or more planes. Each layer does one of three operations:

a convolution step which is used to extract different features from the image, a sub-sampling step

that is used to decrease the importance of the exact position of the feature in the image, and a

sigmoidal activation layer that applies a sigmoidal (usually tanh) function to perform the neural

network decision. The different planes within each layer are responsible for handling different

features in the image. A typical convolutional neural network structure is shown in Figure 3.2. As in

edge detection, the circles represent tasks (one per plane in each layer) and the boxes represent data

that is transferred between tasks. The structure of the task graph in terms of the number of layers

and the types of these layers (convolution, sub-sampling and sigmoidal) can be tuned depending on

the exact application the CNN is used in. In our experiments, we used CNNs with 10-15 layers,

consisting of a few thousand tasks and data items.

56

In1

C1 C2

L11 L21 L31L12 L22 L32

B1 B2

A1

A3

A5

S11

S12

O1

A2

A4

A6

S21

S22

O2

In2

C3 C4

In3

C5 C6

Tasks

Ci: convolution stages

Ai: addition stages

Data Items

Ini: input data planes

Oi: output data planes

Bi: bias values

Lij, Sij: temporaries

Figure 3.2: Task graph depicting the data parallel tasks and data in a Convolutional Neural Network.

3.1.2 CPU/GPU systems

CPU-GPU systems consist of a host CPU and a Graphics Processing Unit (GPU) card attached

to it using a PCI/PCI-Express bus. The function of the GPU in such a system is to accelerate the

compute-intensive portions of the application. The CPU is responsible for handling the control

dominant parts.

GPU architectures have evolved over the years from graphics-specific functionality to support-

ing general-purpose computations. However, GPUs still work best on application workloads that

mimic typical graphics applications. Such applications tend to be highly data parallel and require

high memory throughput while having a minimum of control flow and synchronization. Accord-

ingly, GPUs support massive amounts of data-level parallelism in the application. General purpose

programs written for GPUs then need to heavily exploit data-level parallelism to efficiently utilize

GPU resources.

Modern programming languages for CPU-GPU systems such as the CUDA language from

NVIDIA [NVIDIA Corp., 2007] structure the application as a collection of data-parallel kernels.

Each kernel executes on the GPU, and is typically massively multi-threaded. It is usually the case

57

that only one kernel executes on the GPU at a time; hence each kernel should be capable of saturat-

ing the GPU compute resources. The language provides support for expressing the data parallelism

within each individual kernel.

The function of the CPU is to handle the high level control flow of the application. In particular,

in applications with more than one kernel, the CPU code must decide which data-parallel kernels

need to execute on the GPU as also the order in which they execute. The CPU is also responsible for

ensuring that all data required by kernels on the GPU are present in GPU memory. This is achieved

by explicit transfers to and from CPU memory using pre-defined API calls. Such transfers go over

the PCI-Express bus connecting the CPU to the GPU.

3.1.3 The mapping step

The performance of an application executing on a CPU-GPU system is determined by how

well each kernel utilizes GPU compute and memory bandwidth resources, as well as how well the

CPU code minimizes the memory transfers that are required between the CPU and GPU. While

existing GPU languages like CUDA focus on expressing and optimizing each data-parallel kernel,

not much emphasis has been placed on the problem of minimizing memory transfers.

One recent development by NVIDIA in the direction of reducing the impact of memory trans-

fers on application execution time has been to allow data transfers into and out of the GPU to occur

in parallel with computation using CUDA [NVIDIA Corp., 2007]. However, this comes at the po-

tential cost of having to hold in GPU memory the data that is being transferred at the same time as

the data required by the currently executing task. In contrast, if we only allow data transfers to occur

in between task executions, we can then perform all data transfers out of the GPU before the task

executes, and postpone data transfers into the GPU until after the task completes. In this way, we

can free up the maximum possible GPU memory for each task. In this work, we focus our attention

on applications with large data sets where memory is a tight constraint, and hence we disallow data

transfer to occur in parallel with task execution. We note that the core problem of reorganizing the

application to reduce the total amount of data transferred is useful irrespective of whether the data

is transferred in parallel with task executions, as this will in any case help reduce the execution time

of the application. In this work, we focus on the problem of minimizing data transfers between the

CPU and GPU as a proxy for reducing the execution time of applications. We focus our attention

on applications with large data sets for which such execution time can be the dominant cost.

The key objective of our work is to help automate the process of minimizing data transfers

58

between the CPU and GPU. We start with a description of the entire application as a task graph

consisting of data-parallel kernels. An example of such a graph is shown in Figure 3.1 for the edge

detection application. We assume that only one task executes on the GPU at a given point of time.

Each task in the graph consumes one or more input data items (shown as boxes) and generates one

or more output data items. A given data item must be stored in memory (and is said to be live) from

the time it is produced by a task until the time that all tasks that utilize the data finish executing.

The order in which the GPU executes the tasks in the task graph determines when each data item is

produced and consumed; and hence the set of data items that are live at any point of time.

The total memory footprint of all live data at a given point of time may be greater than the GPU

memory size. In such a case, some of the live data needs to be transferred to CPU memory. During

the execution of a task, the inputs to the task need to be stored in GPU memory. There should

also be enough space available for the outputs of the executing task to be stored. In this work, we

assume that the GPU memory is big enough that the inputs and outputs of each single task fits in

GPU memory. If this is not the case, then the application cannot be executed on the GPU. We must

then either restructure the application by sub-dividing the data into smaller chunks or pick a GPU

with larger memory.

All data items other than the inputs of the currently executing task may be transferred to the

CPU memory to make space for the inputs and outputs of the task. The data items that are sent

to the CPU memory then have to be brought back to the GPU when they, in turn, are required as

the inputs to a task. The choice of which data items to transfer out depends on two factors: (1) the

size of the data item(s) and (2) how soon the transferred data will be required by another task. It

is obviously beneficial to avoid transferring large data items when the GPU memory constraint can

be met by transferring smaller data items. It is also beneficial to transfer data items that will not be

immediately required as inputs to other tasks, so that GPU memory resources are freed up for the

maximum possible amount of time. There might be trade-offs involved between these two factors.

The impact of task ordering on the amount of live data can be significant. Figures 3.3 and 3.4

(taken from [Sundaram et al., 2009]) shows two schedules for the edge detection application. The

schedule in Figure 3.3 executes the tasks in a breadth-first order (C1 → C2 → R′
1 → R′′

1 → R′
2 →

R′′
2 → max1 → max2). The schedule results in the creation of a lot of live data; indeed there exist

three different points in the execution where 7 or more data items (of a total of 11) are live. The

schedule in Figure 3.4, on the other hand, attempts to use data items produced by tasks as soon as

possible. This schedule only has one point with 7 live data items. It is clear that schedule (b) will

require fewer transfers than schedule (a). For the example data sizes and total memory size shown in

59

Im

C1
C2

E1’ E2’

E5’ E6’

R1’ R2’

max1

E’

Im

E1’’ E2’’

E5’’ E6’’

R1’’ R2’’

max2

E’’

{E1’’,E2’’,E5’’,E6’’,E’’}{E’}

—{E’,E’’}

{E1’,E2’,E5’,E6’, E’}
{E1’’,E2’’,

E5’’,E6’’}

{E1’,E2’,E2’’,E6’,E6’’}{E1’’,E5’,E5’’}

{E1’,E1’’,E2’,E2’’,E6’}{E5’,E5’’}

{E1’,E1’’,E2’,E2’’,E5’’}{E5’}

{E1’, E2’, E2’’,E5’}{E1’’}

{Im, E1’, E2’, E2’’}{E1’’}

{Im, E1’, E1’’}

—{Im}

GPU Memory

(Size = 5)

CPU
Memory

C1

C2

R1’

R2’

R2’’

R1’’

max1

max2
2Im

1All others

SizeData

Final State

Total data transfers = 15 units

Initial State

4 data transfers

Figure 3.3: A schedule of task and data transfers for the task graph in Figure 3.1.

Figures 3.3 and 3.4 (the real data and memory sizes for edge detection are reported in Section 3.4),

it turns out that the two schedules require 15 and 8 units of data transfer respectively. The data

transfers for the two schedules differ by nearly a factor of two. The details of the data transfers are

shown in the figures.

Given a particular task order, we still have to make decisions about which data items need to

be kept in CPU memory and which should be shifted to GPU memory. In the schedule shown in

Figure 3.3, the following sequence of operations occur:

1. Initially, the input data Im is present in CPU memory. It must be transferred to the GPU to

begin execution. This is a compulsory transfer.

2. Immediately after task C1 completes (row 2 in the table of Figure 3.3), the input data Im to

task C1 and the outputs E′
1 and E′′

1 are present in GPU memory. All this data fits in GPU

memory.

3. Immediately before executing task C2 (next on our task order), we must ensure that there is

enough space in GPU memory to store the inputs and outputs of task C2. With the current

contents of GPU memory, there will not be enough space to store output data items E′
2 and

60

Im

C1 C2

E1’ E2’

E5’ E6’

R1’ R2’

max1

E’

Im

E1’’ E2’’

E5’’ E6’’

R1’’ R2’’

max2

E’’

{E1’’,E2’’,E5’’,E6’’,E’’}{E’}

—{E’,E’’}

{E1’’,E2’’,E5’’,E6’’}{E’}

{E1’’,E2’’,E5’’}{E’}

{E1’,E2’,E5’,E6’,E’}{E1’’, E2’’}

{E1’, E2’, E2’’, E5’, E6’}{E1’’}

{E1’, E2’, E2’’,E5’}{E1’’}

{Im, E1’, E2’, E2’’}{E1’’}

{Im, E1’, E1’’}

—{Im}

GPU Memory

(Size = 5)

CPU
Memory

C1

C2

R1’

R2’

R2’’

R1’’

max1

max22Im

1All others

SizeData

Final State

Total data transfers = 8 units

Initial State

Figure 3.4: A second schedule of task and data transfers for the task graph in Figure 3.1.

E′′
2 . We must thus transfer one item of data to CPU memory. We could choose to transfer one

of E′
1 or E′′

1 , which are live at the point of execution of C2, but are not used in the execution

of C2. These are both of the same size and thus will incur the same transfer cost. The correct

choice turns out to be to transfer E′′
1 , since this data is used at a later point of execution than

data E′
1. In general, such decisions are not easy to make: we prove this problem is in itself

NP-complete in Section 3.3.4. After transferring out E′′
1 and executing task C2, the contents

of GPU memory are as in row 3 of the table. At this point, we find that data Im is no longer

required to be kept in memory: hence it is not live any more. It is then freed up in GPU

memory.

4. We continue executing tasks and transferring data to make room for inputs and outputs of

executing tasks until we get all our primary outputs. We need the primary outputs of the

program in CPU memory, and we have additional compulsory transfers.

As we can see from the edge detection schedules, the problem of minimizing data transfers

reduces to a problem of (1) ordering task executions to minimize the data that is live at any time

so as to reduce the need for transfers, and (2) scheduling the right set of data items to transfer

61

out of the GPU (if required) so as to free up GPU memory for the maximum possible period of

time. In Chapter 2, we identified generalized techniques such as simulated annealing and constraint

optimization that can be used to solve different scheduling problems. We shall explore the use of

these techniques to solve the data transfer minimization problem in the rest of the chapter.

3.2 Task and Data transfer scheduling to minimize data transfers

In this section, we formally state and analyze the optimization problem of scheduling tasks and

data transfers in order to minimize the total amount of data transferred between the CPU and GPU.

3.2.1 Static Models

The static models that we describe in this section capture the tasks and the data dependencies

between tasks in the application, the memory footprint of each data item and the total GPU memory

size. We formalize these notions below.

Application Model

The application model is a directed acyclic graph G = (V,E) (hereafter called the task graph),

where the nodes V represent either tasks or data items and E represents the data dependencies

between the tasks. We can write V = VT ∪ VD, where VT represents the set of tasks and VD

represents the set of data. These tasks consume input data and produce output data on execution.

We denote E = ETD ∪ EDT , where ETD ⊆ VT × VD denotes the set of edges that connect tasks

to the data they produce; and EDT ⊆ VD × VT denotes the edges that connect tasks to the data

they consume. Figures 3.1 and 3.2 show examples of the task graphs for the edge detection and

convolutional neural network applications.

Given a task graph G, we can obtain the following auxiliary definitions that will be used later.

(a) PI = {d ∈ VD |∀t ∈ VT , etd /∈ ETD} : primary inputs

(b) PO = {d ∈ VD |∀t ∈ VT , edt /∈ EDT } : primary outputs

∀t ∈ VT

(c) ID(t) = {d ∈ VD | edt ∈ EDT } : input data to task t,

(d) OD(t) = {d ∈ VD | etd ∈ ETD} : output data of task t,

62

∀t ∈ VT

(e) O(t) = {t′ ∈ VT | ∃ d ∈ VD : d ∈ OD(t)

∧ d ∈ ID(t′)} : tasks dependent on task t

∀d ∈ VD

(f) P (d) =

t : edt ∈ EDT if d /∈ PI

ε if d ∈ PI
: task that produces data d

(g) U(d) = {t ∈ VT | edt ∈ EDT } : tasks that use data d

Architecture Model

The architecture consists of a CPU and a GPU connected by a bus. The only architectural

parameter that affects the mapping is the total memory size M of the GPU. We assume that the

CPU memory is large enough to hold all application data.

Task graph annotations

We annotate all data items VD in the task graph G with the size of their footprint in memory.

This is denoted by the function s : VD → <+, which assigns a non-negative size s(d) to each data

item d.

3.2.2 Optimization Problem

Variables

There are two sets of primary variables that we use in the optimization problem. The first of

these encodes the ordering of tasks on the GPU. Given the application model G = (VT , VD), data

sizes s and GPU memory limit M , we define a function L : VT → {1, 2, . . . |VT |}which maps every

task t ∈ VT to the position (or level) of the task in the global task schedule order. The assumption

here is that all tasks execute on the GPU. The function L is an onto function: each task is assigned

to a single level.

The second set of primary variables encodes the data that are present on the GPU after each

task has been executed. Let GPU(d, l) be a binary variable that is 1 if data d is present in GPU

memory at level l in the task schedule order and takes the value 0 otherwise. GPU(d, l) presents a

snapshot of the data resident in GPU memory immediately after the task at level l executes.

63

The L and GPU variables together define the solution space of the problem. However, for the

ease of representing the constraints of the problem, we also define the following auxiliary variables

that define the data transfers to and from GPU memory. We define the binary variable IN(d, l) to

be 1 if data item d is transferred into the GPU just before the task at level l executes. We also define

OUT (d, l) to be 1 if data item d is transferred out of the GPU just after the task at level l executes.

Constraints

For the task schedule L to be valid, it must obey the precedence constraints in the task graph.

∀t1 ∈ VT ,∀t2 ∈ O(t1) (dependence constraints),

(a) L(t2) ≥ L(t1) + 1

Given a valid schedule level L, we can compute the liveness of the data items. We follow the

same definition of liveness as the definition in the register allocation problem in compiler optimiza-

tion [Goodwin and Wilken, 1996]. A data item d ∈ VD is said to be live at a particular level l if the

following constraint is satisfied:

lmin(d) ≤ l ≤ lmax(d)

where

lmin(d) =

L(P (d)) if d /∈ PI

0 otherwise

lmax(d) =

max{L(u) : u ∈ U(d)} if d /∈ PO

|VT |+ 1 otherwise

This says that a data element d becomes live at the level lmin where either the task that produces d

(P (d)) executes, or if d is a primary input to the application, at the beginning of the application.

Similarly, data d stops being live at a level lmax where either all tasks that use it finish executing, or

if d is a primary output of the application, the end of the application.

The set of tasks that are live at a particular level need to be present either in GPU or CPU

memory. Since most data excepting the primary inputs and outputs are both produced and consumed

on the GPU, it is preferable to keep as much of the data as possible in GPU memory. The following

constraints need to be satisfied on the GPU(d, l) variables that define the set of data present in GPU

64

memory at any given level l:

∀d ∈ VD (initial state constraints),

(b) GPU(d, 0) = 0

∀d ∈ VD (final state constraints),

(c) GPU(d, |VT |+ 1) = 0

∀t ∈ VT , ∀d ∈ (ID(t) ∪OD(t)) (input/output constraints),

(d) GPU(d, L(t)) = 1

Constraint (b) says that no data is present in GPU memory at the beginning of the application.

Constraint (c) imposes a similar restriction at the end of the application. This models the common

usage model of CPU-GPU systems, where input data is produced on the CPU, sent to the GPU for

processing and the results transferred back from the GPU. Constraint (d) ensures that the inputs and

outputs of a task that has just finished executing should be present in GPU memory.

The memory size of the GPU limits the data that can be present in the GPU at any point of

time. The following constraint enforces that all live data present on the GPU at any level fits into

GPU memory. Here ID(t) and OD(t) are the input and output data of task t, s(d) is the size of

data s, and M is the GPU memory size.

∀l ∈ {1, 2, |VT |} (memory size constraints),

(e)
∑

d:lmin(d)≤l≤lmax(d)(s(d) ·GPU(d, l)) ≤ M

The data that is live at any level but is not present on the GPU at a particular level must have

been transferred out of the GPU before that level. Such data must then be transferred back to the

GPU when they are required as inputs to an executing task. The following constraints determine the

values of the OUT (d, l) and IN(d, l) variables that define whether data element d is transferred out

or into the GPU at level l:

∀d ∈ VD, ∀l ∈ {1, 2, |VT |}, (l − 1) ≥ lmin(d) (input data transfer constraints),

(f) ¬ GPU(d, l − 1) ∧GPU(d, l) ⇒ IN(d, l)

∀d /∈ PI, ∀l ∈ {1, 2, |VT |}, (l + 1) ≤ lmax(d) (output data transfer constraints),

(g) GPU(d, l) ∧ ¬ GPU(d, l + 1) ∧ (
∧

l′<l ¬ OUT (d, l′)) ⇒ OUT (d, l)

Constraint (f) specifies that if data d is not present at level l − 1 but is present at level l, and if d

was live at level l − 1, then it must have been brought in to the GPU at level l. The condition that

data d must be live at level l − 1 prevents data transfers in case data d is produced at level l. Note

that it is possible for a data element to be repeatedly brought back to GPU memory from the CPU;

65

each such transfer would be represented by a different IN(d, l) variable being set to 1. Constraint

(g) specifies that if a data item is present in the GPU at level l and not at level l + 1 and it is live

at l + 1, then it must be transferred out of the GPU. However, we assume that the CPU memory is

large enough to retain all the data that it ever receives from the GPU for the entirety of execution of

the application. Hence, data that has already been transferred once from the GPU to the CPU need

never be transferred out again. Such data can be overwritten in GPU memory, and can be recalled

from CPU memory at a later point if necessary. This is encoded in our constraint by ensuring that

we do not set OUT (d, l) = 1 if OUT (d, l′) = 1 at any previous level l′. For a similar reason,

it is also never necessary to transfer the primary inputs of the application to the CPU, even if it

will be required again at a later point of time. Therefore we do not impose the output data transfer

constraint for primary inputs.

The primary inputs to the application are initially present in CPU memory and the primary

outputs need to be transferred to CPU memory. Constraints (b), (d) and (f) ensures that the primary

inputs are transferred into the GPU when they are first used. Constraints (c), (d) and (f) together

ensure that the primary outputs of the application are transferred to the CPU at or before level |VT |.
This is because the primary outputs are present in the GPU at the level they are produced (from (c)),

but are not present in the GPU at level |VT + 1| (from (d)). Hence constraint (g) is invoked at some

level between the point of production and the end of the program, thereby causing the transfer out

of the GPU.

Optimization Objective

The optimization objective is to minimize the sum of the sizes of all data transferred to and

from the GPU.

min
∑

d∈VD

∑
l∈{1,2,...|VT |}

s(d) · (IN(d, l) + OUT (d, l))

subject to constraints (a) through (g) described previously.

Properties of the optimal solution

The above optimization problem is expressed in terms of the primary variables of L, the task

ordering and GPU , the data present on the GPU after each task executes. It turns out that we can

reduce the solution space of the problem by instead expressing it in terms of the L and a subset of

the IN(d, l) variables, where the IN variables represent the transfers into the GPU just before the

66

execution of each task. We prove below that only those input transfers IN(d, l) where the data d

is an input to the task at level l need to be considered as part of the solution space. Further, we

can prove that we do not need to include the OUT and GPU variables in the solution space if we

include these IN variables. This can significantly reduce the solution space and thereby increase

the efficiency of solution techniques.

We begin by defining Use(d, l) for a data item d and a schedule level l to be 1 if data d is an

input at level l. This will be the case if any of the tasks that use d execute at level l.

Use(d, l) =

1 if l ∈ {L(u) : u ∈ U(d)}

0 otherwise

We now note the following properties:

Theorem 3.2.1 There exists an optimal solution to the data transfer minimization problem such

that IN(d, l) = 0 whenever Use(d, l) = 0.

Proof Proof is by contradiction. Assume that there is a optimal solution where IN(d, λ) = 1 when

Use(d, λ) = 0 at some level λ. Consider all λ′ > λ in increasing order until either we reach a

point, say at level k, where Use(d, k) = 1 or we reach λ′ = |VT |, the end of the application. In the

former case, scheduling IN(d, k) = 1 instead of IN(d, λ) = 1 will have the same transfer cost,

but using λ instead of k unnecessarily increases the region where data item d is present in GPU

memory. This can lead to unnecessary transfers of other data from GPU memory. Replacing λ by

k can thus never increase the overall optimization cost, and hence IN(d, λ) is not required for the

optimal solution. In the latter case when λ′ = |VT |, the data item d is never used in the program at

point λ or beyond, and hence it is unnecessary to ever transfer it to the GPU. A solution to the data

transfer minimization problem containing IN(d, λ) cannot be optimal.

Theorem 3.2.2 There exists an optimal solution to the data transfer minimization problem such

that

OUT (d, l) =

1 if (d /∈ PI) ∧ (l = L(P (d))) ∧
(
(
∨|VT |

l=1 IN(d, l)) ∨ (d ∈ PO)
)

0 otherwise

Proof We consider two cases: d ∈ PI and d /∈ PI . A data element d ∈ PI never needs to be

transferred to the CPU, since it is already present in CPU memory at the beginning of the application.

This is covered by the second case in the theorem.

67

Consider d /∈ PI . If d ∈ PO, the d always needs to be transferred out of the CPU at some

point. Also, for all other data elements, if IN(d, l) = 1 for any l, then data d must be present in

the CPU at level l; hence there must exist some point before l at which OUT (d, l) = 1. In the

following, we show that it is sufficient to transfer d only when l = L(P (d)), i.e. as soon as it is

produced (case 1). Further, we show that if d is neither a primary output nor has it been transferred

in from the CPU at some point, then the data need not be transferred to the CPU at all (case 2).

We show this in two parts: (a) we first show that OUT (d, l) = 0 whenever l 6= L(P (d)), and

(b) we show that OUT (d, l) = 0 whenever
∨|VT |

l=1 IN(d, l) = 0 and d /∈ PO.

Proof of claim (a) is by contradiction. Assume that there is a optimal solution with d /∈ PI

and where OUT (d, l) = 1 when l 6= L(P (d)). Consider all l′ < l in decreasing order until either

we reach a point, say at level k, where k = L(P (d)) or we reach l′ = 0, the beginning of the

application. In the former case, scheduling OUT (d, k) = 1 instead of OUT (d, l) = 1 will have the

same transfer cost, but using l instead of k can unnecessarily increase the region where data item d

is present in GPU memory. This can lead to unnecessary transfers of other data from GPU memory.

Replacing l by k can thus never increase the overall optimization cost, and hence l is not required

for the optimal solution. In the latter case when l′ = 0, the data item d has not been produced by the

tasks at level l or before, and hence cannot be transferred out. Such a schedule with OUT (d, l) = 1

is not valid.

We now only need to prove claim (b) for l = L(P (d)). We note that since d is not a primary

input or output, it is only used internally by tasks in VT . Under these circumstances, the trans-

fer OUT (d, l) is only necessary if it is transferred into the GPU at some future point. However,∨|VT |
l=1 IN(d, l) = 0 implies that IN(d, l) = 0∀l ∈ {1, 2, . . . |VT |}. This means that d is never

transferred in. Hence we can remove the transfer OUT (d, l), if present, without making the result-

ing schedule invalid, thereby strictly reducing the cost. This invalidates our assumption that our

initial schedule was optimal.

Theorem 3.2.3 There exists an optimal solution to the data transfer minimization problem such

that:

GPU(d, l) =


1 if l ∈ {L(u) : u ∈ U(d)} ∪ L(P (d))

1 if lmin(d) ≤ l ≤ lmax(d) ∧ ¬IN(d, Next Use(d, l))

0 otherwise

68

where

Next Use(d, l) = min{l′ > l : l′ ∈ {L(u) : u ∈ U(d)}}

Proof The first line follows from the input/output constraint (d). We need to prove the other two

lines.

To prove that GPU(d, l) = 1 if d is live at level l and ¬IN(d, Next Use(d, l)), we note

that from the contra-positive of constraint (f), ¬IN(d, l) ⇒ GPU(d, l− 1) ∨ ¬GPU(d, l). But by

definition, for k = Next Use(d, l), d is used at level k, and hence GPU(d, k) = 1 (from constraint

(d)). Hence, from the contra-positive of (f) at level k, we are left with GPU(d, k − 1) = 1. If

l = k − 1, then we are done. Otherwise, we note that d is not transferred into the GPU between

level l and k (by theorem 1). Hence, we continue applying the contra-positive of (f) at levels

k − 1, k − 2, . . . l + 1 to obtain GPU(d, l) = 1.

To prove that in all other cases, GPU(d, l) = 0, we first note that if d is not live, then clearly

GPU(d, l) = 0. If d is live and IN(d, Next Use(d, l)) = 1, then we prove that GPU(d, l) =

0 by contradiction. Assume that GPU(d, l) = 1. Then we can construct a new schedule by

changing GPU(d, l) = 0. Since data d is not used between l and Next Use(d, l) (by defini-

tion), the new schedule is still valid at levels between l and Next Use(d, l). For all levels at

or above Next Use(d, l), the schedule and the set of data in GPU memory remains the same

as in the original schedule. Data d is still present in the GPU at level Next Use(d, l) because

IN(d, Next Use(d, l)) = 1. Since the schedule is valid and does not lead to any additional trans-

fers, it is still optimal.

Theorem 3.2.4 The schedule levels L and the transfers into the GPU IN(d, l) (subject to Theo-

rem 3.2.1) are sufficient to fully describe the optimization problem.

Proof The only other variables in constraints (a) - (f) involve the OUT (d, l) and GPU(d, l) vari-

ables. We have shown in Theorems 3.2.2 and 3.2.3 that these can be defined in terms of the L and

IN(d, l) variables.

The above theorems restrict the effective solution space of the problem to possible schedule

levels L and possible IN(d, l) values where d is an input to the task at level l. We use these theorems

to simplify the optimization techniques that we present in the next section.

3.3 Techniques for Static Optimization

In this section, we discuss techniques to solve the data transfer minimization problem.

69

3.3.1 Previous Work

The problem of minimizing data transfers in the GPU context has only been recently stud-

ied [Sundaram et al., 2009]. The authors propose a heuristic to perform task ordering and data

transfer scheduling to minimize transfers.

The problem of minimizing data transfers has, however, been studied in other contexts. Reg-

ister allocation is a well-known problem routinely solved by optimizing compilers. The problem of

local register allocation is to allocate variables within a basic block to hardware registers in such

a way as to minimize spillage to memory. The local register allocation problem was proved to be

NP-hard in [Farach and Liberatore, 1998]. Many exact and approximate techniques have been devel-

oped for register allocation [Goodwin and Wilken, 1996] [Farach and Liberatore, 1998] [Liberatore

et al., 1999]. However, local register allocation generally works with a fixed sequence of instruc-

tions. This problem is then similar to our problem under a fixed task ordering. The same problem

of minimizing data transfers is also studied in the context of minimizing transfers to scratchpad

memory [Verma et al., 2004]. This problem also, however, works with a fixed task ordering.

The problem of finding optimal task orderings has been studied in the context of instruction

reordering and task scheduling (Chapter 2). Most of these approaches optimize for application

execution time and not data transfers. A related problem to our work is the problem of finding

an optimal instruction ordering for minimizing register usage. This problem has been proven to

be NP-hard in [Govindarajan et al., 2003]. The authors propose an exact method and a heuristic

to solve this problem. However, the problem they consider is still simpler than our problem as it

merely seeks to find the minimum number of registers required to avoid spills. The problem of

finding the minimum amount of spillage under a fixed register size is harder from a theoretical

computational complexity perspective than this problem. For instance, under a fixed instruction

ordering, the former problem can be solved in polynomial time while the latter is NP-hard [Farach

and Liberatore, 1998].

The data transfer minimization problem as outlined in the previous sections is NP-hard. The

problem of local register allocation can be reduced to this problem by fixing a particular task order-

ing for our problem. Since the local register allocation problem is known to be NP-hard, so is our

problem. Further, the decision version of this problem is in the complexity class NP. The decision

version of the problem asks whether it is possible to find a valid task and data transfer schedule

such that the total data transfer size is smaller than a given constant. Given a certificate of a task

and data transfer, it is a polynomial time algorithm to (1) check that the certificate represents a valid

70

schedule (check that it satisfies all the polynomial number of constraints of the problem) and (2)

if the schedule is valid, then compute the total transfer size and check that it is less than the given

constant. Therefore the decision version of this problem is NP-complete.

Although the problem is NP-complete, it is not necessarily the case that we will not be able to

solve this problem. We now study a range of exact and approximate techniques in a bid to solve this

problem.

3.3.2 Exact MILP formulation

We can express the problem as a Mixed Integer Linear Programming (MILP) problem and use

commercial MILP solvers such as the CPLEX engine from ILOG [ILOG Inc.,] to solve it. From our

experiments on other scheduling problems (Chapter 2), we expect that a single pass MILP solution

(where all problem constraints are presented at the start of execution) will not be able to handle large

scale problems. Nevertheless, an MILP-based approach can usually solve small-scale problems to

optimality. For instances where the problem is not optimally solved, an MILP based approach can

deliver consistent improvements to a bound for the optimal solution over time. Additionally, such

an approach has the advantage of leveraging a commercial tool and can reap the benefits of regular

solver improvements over time.

The variables and constraints for the MILP formulation are obtained from the problem de-

scription in Section 3.2.2. We have the option of adding additional constraints corresponding to the

results of Theorems 3.2.1- 3.2.3 to reduce the effective solution space. It is not always the case

that adding these constraints speeds up the time taken by the solver. There is usually a trade-off

between the size of the solution space encoded in the problem and the actual number of variables

and constraints presented to the solver. In this section, we attempt to encode all the information in

Section 3.2.2 into our formulation.

We start by considering the result of Theorem 3.2.4. According to this theorem, the primary

decision variables for the data transfer optimization problem are those used to encode the task

schedule and the input data transfers. We define the binary variables:

71

∀t ∈ VT ,∀l ∈ {1, 2 . . . |VT |},

xSL(t, l) :

 1 if schedule level of task t = l

0 o.w.

∀d ∈ VD,∀l ∈ {1, 2 . . . |VT |},

xIN (d, l) :

 1 if data d is transferred into the GPU just before the task at level l

0 o.w.

We impose the following constraints on the xSL variables:

∀l ∈ {1, 2 . . . |VT |}, (D1)
∑|VT |

t=1 xSL(t, l) = 1

∀t ∈ VT , (D2)
∑|VT |

l=1 xSL(t, l) = 1

∀t1 ∈ VT , ∀t2 ∈ O(t1), ∀l1, l2 ∈ {1, 2, . . . |VT }, l2 > l1,

(D3) xSL(t1, l2) + xSL(t2, l1) ≤ 1

Constraints (D1) - (D3) are responsible for obtaining a valid task ordering. (D1) forces each level

to be occupied by any one task and (D2) assigns each task to some level. Constraint (D3) restricts

the valid task orderings to respect the precedence constraints in the task graph.

We next consider Theorems 3.2.1 to 3.2.3 in sequence. As per Theorem 3.2.1, we can restrict

the xIN (d, l) variables to be set to 1 only if data d is an input to the task executing at level l. This

constraint is imposed as:

∀d ∈ VD,∀l ∈ {1, 2 . . . |VT |}, (IN1) xIN (d, l) ≤
∑

u∈U(d)

xSL(u, l)

By Theorem 3.2.2, there is only one possible level at which a given data d can be transferred to

the CPU. This is known to be the level at which the task producing the data executes. A consequence

of this theorem is that the optimization problem does not need to solve for the exact level at which

each data item is transferred out of the GPU. We can instead merely optimize for whether a given

data item d is to be transferred out at any point of the program or not. If it is transferred out, the task

72

schedule encoded in the values of the xSL variables will allow us to easily obtain the exact position

of the transfer. We define the binary variable:

∀d ∈ VD, xOUT (d) :

 1 if data d is transferred out of the GPU at any level

0 o.w.

From Theorem 3.2.2, we can obtain the value of xOUT as:

∀d ∈ PO, (O1) xOUT (d) = 1

∀d ∈ VD, d /∈ PI, d /∈ PO, ∀l ∈ {1, 2, . . . |VT |}, (O2) xOUT (d) ≥ xIN (d, l)

Condition (O1) asserts that all primary outputs are always transferred out. Condition (O2) says that

if a task is not a primary input or output, then it is transferred only if it has been transferred in at

some level.

It now remains to encode the presence of the data in GPU memory using Theorem 3.2.3. In

order to do this, we must first define the following binary variables:

∀d ∈ VD,∀l ∈ {1, 2, . . . |VT |},

xP (d, l) : 1 if data d has been produced at or before level l

xC(d, l) : 1 if data d has been used by all tasks before level l

xL(d, l) : 1 if data d is live at level l

xUSE(d, l, l′) : 1 if data d is used after level l and at or before level l′

xNU (d, l, l′) : 1 if the next use of data d after level l is at level l′

xIN NU (d, l) : 1 if xIN (d, l′) = 1 where l′ is the next use of data d after level l


and 0 o.w.

The following constraints are responsible for defining the liveness variables xP , xC and xL.

∀d ∈ PI, (L1) xP (d, 0) = 1

∀d /∈ PI, (L1′) xP (d, 0) = 0

∀d ∈ PO, (L2) xC(d, |VT |) = 0

∀d /∈ PO, (L2′) xC(d, |VT |) = 1

∀d /∈ PI,∀l ∈ {1, 2 . . . |VT |}, (L3) xP (d, l) ≥ xSL(P (d), l)

∀d ∈ VD,∀l ∈ {1, 2 . . . |VT |}, (L4) xP (d, l) ≥ xP (d, l − 1)

∀d /∈ PO, ∀l ∈ {1, 2 . . . |VT |},

∀u ∈ U(d) (L5) xC(d, l) + xSL(u, l) ≤ 1

73

∀d ∈ VD,∀l ∈ {1, 2 . . . |VT |}, (L6) xC(d, l) ≤ xC(d, l + 1)

∀d ∈ PO, ∀l ∈ {1, 2 . . . |VT |} (L7) xL(d, l) ≤ xP (d, l), xL(d, l) + xc(d, l) ≤ 1

∀d ∈ PO, ∀l ∈ {1, 2 . . . |VT |} (L8) xL(d, l) ≥ xP (d, l)− xC(d, l)

Of these, constraints (L1) and (L1’) set the initial conditions for the xP variable. Constraints

(L2) and (L2’) do the same for the xC variable which indicates when data has been fully consumed.

Constraints (L3) sets the xP (d, l) variable to 1 if d is produced at level l. Constraint (L4) propagates

the values of all xP (d, l) variables set to 1 to successor levels. Constraint (L5) sets xC(d, l) to 0 if

data d is used at level l, thereby implying that not all tasks that use d finish before level l. Constraint

(L6) propagates this information to previous levels. Finally, constraints (L7) and (L8) define data d

to be live if it xP (d, l) = 1 and xC(d, l) = 0.

The xUSE , xNU and xIN NU variables are set by the following constraints:

∀d ∈ VD,∀l ∈ {1, 2 . . . |VT |}, (U1) xUSE(d, l, l) = 0

∀d ∈ VD,∀l ∈ {1, 2 . . . |VT |},∀l′ > l,

(U2) xUSE(d, l, l′) ≥ xUSE(d, l, l′ − 1)

(U3) xUSE(d, l, l′) ≥
∑

u∈U(d)

xSL(u, l′)

∀d ∈ VD,∀l ∈ {1, 2 . . . |VT |},∀l′ > l,

(NU1) xNU (d, l, l′) ≤ xUSE(d, l, l′)

(NU2) xNU (d, l, l′) + xUSE(d, l, l′ − 1) ≤ 1

(NU3) xNU (d, l, l′) ≥ xUSE(d, l, l′)− xUSE(d, l, l′ − 1)

∀d ∈ VD,∀l ∈ {1, 2 . . . |VT |},∀l′ > l,

(INNU1) xIN NU (d, l) ≥ xIN (d, l′) + xNU (d, l, l′)− 1

∀d ∈ VD,∀l ∈ {1, 2 . . . |VT |}, (INNU2) xIN NU (d, l) ≤
∑
l′>l

z(d, l′)

where z(d, l′) ≤ xIN (d, l′), z(d, l′) ≤ xNU (d, l, l′)

Constraints (U1)-(U3) express the constraint: xUSE(d, l, l′) =
∨

u∈U(d),l≤k≤l′ xSL(u, k). Con-

straints (NU1) and (NU2) define xNU (d, l, l′) = xUSE(d, l, l′) ∧ ¬xUSE(d, l, l′ − 1). Constraints

(INN1) and (INN2) define the quantity xIN NU (d, l) = xIN (d, Next Use(d, l′)) as used in the

definition of Theorem 3.2.3.

74

Finally, we define the binary variable:

∀d ∈ VD,∀l ∈ {1, 2 . . . |VT |}, xGPU (d, l) : 1 iff data d is present in the GPU at level l

and the corresponding constraints:

∀d ∈ VD,∀l ∈ {1, 2 . . . |VT |} (G1) xGPU (d, l) ≥ xUSE(d, l)

∀d ∈ VD,∀l ∈ {1, 2 . . . |VT |} (G2) xGPU (d, l) ≥ xSL(P (d), l)

∀d ∈ VD,∀l ∈ {1, 2 . . . |VT |} (G3) xGPU (d, l) ≥ xL(d, l)− xIN NU (d, l)

∀d ∈ VD,∀l ∈ {1, 2 . . . |VT |} (G4) xGPU (d, l) ≤ xUSE(d, l) + xSL(P (d), l) + y(d, l)

where y(d, l) ≤ xL(d, l), y(d, l) ≤
(
1− xIN NU (d, l)

)
∀l ∈ {1, 2 . . . |VT |} (M)

∑|VD|
d=1 s(d) · xGPU (d, l) ≤ M

Constraints (G1) - (G4) define xGPU (d, l) as in Theorem 3.2.3. Constraint (M) imposes the memory

size constraint of the GPU.

Finally, we must ensure that the primary inputs and outputs are transferred into and out of the GPU.

Constraint (O1) takes care of transferring the primary outputs back to the CPU. The primary inputs,

on the other hand, have to be handled separately:

∀d ∈ PI, (IN2) xIN NU (d, 0) = 1

This constraint ensures that the primary input is transferred into the CPU at its first use.

The objective of the optimization is:

min
∑

d∈VD

∑
l∈{1,2,...|VT |}

s(d) · (xIN (d, l) + xOUT (d, l))

where s(d) represents the size of the data element d.

The problem encoding involves O(|VD||VT |2) variables and constraints. The scales of the

problems we look at range from |VT |, |VD| ∼ 10’s to 1000’s. This can lead to problems in the range

of millions of variables and constraints. Commercial integer programming solvers like CPLEX can

solve the small examples with |VT |, |VD| around 50-100 to completion, but do not perform well on

the large examples. In many cases, the solver does not find the solution to even the LP relaxation

of the problem. Thus there is a need to reduce the size of the problem in terms of the variables and

constraints. This motivates the need to break up this problem into simpler sub-problems that are

solved more easily.

75

3.3.3 Decomposition-based Approaches

A common way to simplify complex optimization problems is to decompose the problem into

simpler sub-problems. A natural decomposition of our problem would be to separate out the op-

timization of the task schedule from the optimization of data transfers. However, these two sub-

problems are inter-related: we need to know the task schedule in order to find the optimal data

transfers. Moreover, we cannot evaluate the optimality of a task schedule without solving the data

transfer optimization problem. A brute-force exact approach to resolving this inter-dependence is

to iterate over all possible task orders and solve the data transfer optimization sub-problem exactly

for each possible task order. This is, of course, not a feasible approach since the number of task

orderings grows exponentially in the number of tasks. Alternatively, we can sample the solution

space of possible task orders using heuristics or simulated annealing, and only solve the data trans-

fer optimization on those task orders. Such a technique would be more feasible in terms of runtime,

but we lose the guarantee of optimality of the resulting schedule. We follow the latter approach in

Section 3.3.5. Before we study techniques to sample the solution space of task orders, we focus on

the sub-problem of finding the optimal data transfer schedule given a task order. This is the subject

of Section 3.3.4.

3.3.4 Data transfer scheduling given a task order

Given a task ordering xSL, we can simplify the optimization problem in Section 3.3.2. As a

first step, the value of the schedule levels xSL is given, and hence constraints (D1)-(D3) that deal

with obtaining a task order can be omitted.

Under a fixed task ordering, many of the variables in the exact formulation become constants

that can be pre-computed. In Theorem 3.2.1, we can determine the values of Use(d, l) for each

(d, l) pair. We can use these pre-computed Use(d, l) values to eliminate all xIN (d, l) variables

where Use(d, l) = 0. We do this by simply replacing these variables with the constant 0 wherever

they appear in the MILP formulation. In Theorem 3.2.3, both the liveness of variables (repre-

sented as the xL variables in Section 3.3.2 as well as the position of the next use of a data item

Next Use(d, l) can be computed as per their definitions in Section 3.2.2 and Theorem 3.2.3 re-

spectively. This eliminates the need for the liveness constraints (L1)-(L8) and the set of constraints

(U1)-(U3), (NU1)-(NU3) and (INNU1)-(INNU2) that compute the Next Use variable.

Finally, we can use Theorem 3 to eliminate the need for expressing the xGPU variables. We

know that each input and output data d for the task executing at each level l must be present in the

76

GPU at that level (Constraint (G1)). Instead of imposing this as a constraint, we replace the value of

such xGPU variables by the constant 1 wherever they occur in the formulation of the problem. We

also know that for (d, l) pairs where data d is not live at level l, xGPU (d, l) = 0 (Constraint (G2)).

Again, we do not create xGPU variables for such (d, l) pairs and replace them by the constant 0.

For all other (d, l) pairs, Theorem 3.2.3 indicates that xGPU (d, l) = ¬xIN (d, Next Use(d, l)). As

Next Use(d, l) is a constant, we can replace occurrences of xGPU variables with the expression(
1− xIN (d, Next Use(d, l))

)
.

After performing all the simplifications outlined above, the resulting data transfer problem has

the sets of variables:

∀(d, l) ∈ VD × {1, 2 . . . |VT |} : l ∈ {L(u) : u ∈ U(d)},

xIN (d, l) : 1 iff data d is transferred into the GPU just before

the task at level l executes

∀d ∈ VD

xOUT (d) : 1 iff data d is transferred out of the GPU immediately after

the task at level L(P (d)) executes

The constraints for the problem are:

∀l ∈ {1, 2 . . . |VT |}
(M ′)

∑
d ∈ ID(t) ∪ OD(t)

: xSL(t,l)

s(d) +
∑

d /∈ID(t) ∪ OD(t)

: xSL(t,l)

∧ lmin(d)≤l≤lmax(d)

s(d) ·
(
1− xIN (d, Next Use(d, l))

)
≤ M

∀d ∈ PO

(O1) xOUT (d) = 1

∀d ∈ VD, d /∈ PO, ∀l ∈ {1, 2, . . . |VT | | l ∈ {L(u) : u ∈ U(d)} }
(O2) xOUT (d) ≥ xIN (d, l)

∀d ∈ PI

(I1) xIN (d, Next Use(d, 0)) = 1

Here constraint (M’) is the equivalent of the memory size constraint (M)
∑|VD|

d=1 s(d) ·xGPU (d, l) ≤
M of Section 3.3.2, which states that the sum of data sizes of all data on the GPU must be smaller

than the GPU memory size. We obtain (M’) from (M) by replacing the xGPU values according

to the discussion previously in this section. Constraints (O1) and (O2) represent the results of

77

Theorem 3.2.2, and are carried forward from Section 3.3.2. Constraint (I1) is the equivalent of

constraint (IN2) from Section 3.3.2. Together, constraints (I1) and (O1) ensure that primary inputs

are transferred into the GPU and primary outputs are transferred out of the GPU.

The objective, as before, is to minimize the total transfers:

min
∑

d∈VD

s(d) ·

xOUT (d) +
∑

l∈{L(u):u∈U(d)} }

xIN (d, l)


This optimization problem only has variables of the order of the number of edges E in the task graph

G, since each input edge to a task represents one point where a data d is used, and hence to one

xIN (d, l) variable. The number of constraints is of the order of O(E + VT), which is linear in the

input graph. This optimization problem is considerably smaller than the problem of simultaneously

optimizing both the task schedule and data transfers. Even for large problem sizes with a few

thousands of tasks and data items, the problem of finding the optimum data transfer schedule given

a task schedule can be solved to completion in a fraction of a second using commercial solvers such

as CPLEX.

Apart from computational feasibility, the formulation also aids us in our understanding of the

problem. Constraint (M’) clearly shows the impact of data being transferred into the GPU on the

data that needs to be kept in the GPU. In particular, if xIN (d, l) is always 0, the left hand side of

the inequality blows up to the sum of sizes of all data that is live at each level. We can thus obtain

the intuitive result that unless the GPU memory size is big enough to hold all live data at each level,

it is necessary for some input transfers to occur. Constraints (O1) and (I1) explicitly show that

data transfers of the primary inputs and outputs are compulsorily required irrespective of the task

schedule. This establishes a lower bound on the result of the optimization.

3.3.5 Finding a good task ordering

In order to minimize data transfers, tasks must be ordered in such a way as to minimize the

time for which data items are live. By definition, a data item is live from the time it is produced

until the time that all tasks that use this data complete.

The problem of finding the optimal task order for our problem is NP-complete. We can reduce

the problem of optimizing instruction reordering to minimize register usage [Govindarajan et al.,

2003] to this problem. Indeed, the decision version of the instruction reordering problem asks if

it possible to order a set of instructions with dependence constraints so as to use no more than

K registers, for some fixed K. We can solve this problem by mapping instructions to tasks and

78

registers to memory locations, and ask if it is possible to order the tasks so as to produce code with

0 spills, given a memory bound of K. This is the decision version of our problem with all data

assumed to have unit sizes.

Heuristic Approaches

Sundaram et al. propose a heuristic to order the tasks according to a depth-first traversal of

the directed acyclic graph G [Sundaram et al., 2009]. Their reasoning is that a depth-first ordering

of a graph ensures that data along only one path of the graph from the inputs to the outputs needs

to be kept in memory. The procedure for finding such a task order is given in Algorithm 3.1. The

input to the algorithm is the task graph G. The output is a valid task order encoded by the levels

L at which tasks execute. The algorithm uses a visited array that keeps track of whether a task has

already been scheduled or not. This is initialized to 0 for all tasks (line 1). The algorithm works by

scheduling tasks to execute at increasing levels starting with level 0. The current level is stored in

a level variable (line 2). The algorithm starts by scheduling tasks that use the primary inputs (line

3-4). For each such task, the algorithm calls a recursive procedure that is responsible for finding

the schedule levels of all tasks in the sub-tree of G rooted at that task (line 5). Finally, the levels L

updated by the recursive procedure is returned (line 6).

The recursive procedure is outlined in Algorithm 3.2. This algorithm takes in the graph, the

task u whose sub-tree needs to be scheduled, the visited array, the current level and the currently

updated set of schedule levels L. It updates the visited, level and L variables. The procedure first

checks if the node u has already been scheduled, and if so, exits the procedure (line 1). If u is not

yet scheduled, the procedure then checks to see if all predecessors of u have been scheduled; if not

it returns (line 2). This ensures that the schedule order returned obeys the task precedence edges in

the graph: no task is scheduled at a level unless all predecessors are scheduled at earlier levels. If

all predecessors of u have already been scheduled, then L(u) is set to the current value of level,

which is then incremented (line 3). The task is then stored as having been scheduled (line 4). The

procedure is then recursively called for each data item that is produced by u (line 5). For each such

data d, all tasks that use d are attempted to be scheduled successively (line 6-7).

Algorithm 3.1 embodies a heuristic task ordering algorithm for the data transfer minimization

problem that may not yield optimal solutions. As an example, the task ordering obtained by the

algorithm for the edge detection application of Figure 3.1 is shown in Figure 3.5. The optimal

data transfers given this task schedule is also shown in the figure. For the example data sizes and

79

Algorithm 3.1 DFS(G) → L

1 Set visited(t) = 0 ∀t ∈ VT

2 Set level = 0
3 forall (d ∈ PI)

// run depth first search from the tasks that use d
4 forall u ∈ U(d)
5 DFSRECURSIVE(G, u, visited, level, L)
6 return L

Algorithm 3.2 DFSRECURSIVE(G, u, visited, level, L)
1 if visited(u) = 1 return
2 if (visited(v) = 1 ∀v : u ∈ O(v))
3 L(u) = level, level + +
4 visited(u) = 1
5 forall w ∈ O(u)
6 DFSRECURSIVE(G, w, visited, level, L)
7 return

Im

C1 C2

E1’ E2’

E5’ E6’

R1’ R2’

max1

E’

Im

E1’’ E2’’

E5’’ E6’’

R1’’ R2’’

max2

E’’

{E1’’,E2’’,E5’’,E6’’,E’’}{E’}

—{E’,E’’}

{E2’’,E6’’}{E1’’,E5’’,E’}

{E1’,E2’,E5’,E6’,E’}{E1’’,E2’’,E5’’}

{E1’,E2’,E2’’,E6’}{E1’’,E5’,E5’’}

{Im,E1’,E2’, E2’’}{E1’’,E5’,E5’’}

{Im,E1’, E1’’,E5’’}{E5’}

{Im, E1’, E1’’,E5’}

{Im, E1’, E1’’}

—{Im}

GPU Memory

(Size = 5)

CPU
Memory

C1

C2

R1’

R2’

R2’’

R1’’

max1

max22Im

1All others

SizeData

Final State

Total data transfers = 12 units

Initial State

Figure 3.5: Task order and resulting data transfers obtained from the DFS heuristic for the task
graph in Figure 3.1.

memory size shown, we can see that this task schedule requires 12 units of data to be transferred.

As a comparison, the task order in schedule Figure 3.4 only requires 8 units of data transfer. The

task schedule in Figure 3.4 is the optimal schedule, but is more irregular than the DFS heuristic

80

schedule.

It is important to realize that the presence of task precedence constraints prevents the task order

returned by Algorithm 3.1 from purely being a depth-first order. For instance, in Figure 3.5, tasks

R′
1 and max1 use data item E′

1; hence DFSRECURSIVE is called successively on tasks R′
1 and

max1. However, max1 can start execution only after R′
2 completes, and is thus not available for

execution at that point. The algorithm instead proceeds (in a depth-first fashion) to next execute task

R′′
1 , and then C2, R′

2 and so on. Thus the ordering obtained by the algorithm is C! → R′
1 → R′′

1 →
C2 → R′

2 → max1 → It turns out that this modified depth-first order does not help reduce the

number of live variables in this example. It is better instead to avoid executing R′′
1 in between R′

1

and C2, as in the schedule shown in Figure 3.4.

The problem of finding the optimal task ordering is NP-complete. As such, it is not surprising

to find that a heuristic solution that finds a single valid task order according to some greedy criterion

is sub-optimal. An alternative approach is to explore the space of valid task orders according to

a simulated annealing algorithm. Such an algorithm was also used to explore the space of valid

allocations of tasks to processors and task schedules in the multiprocessing scheduling problem of

Chapter 2.

Simulated Annealing

Simulated Annealing is a generic approach to solve many combinatorial optimization prob-

lems. Simulated Annealing works by making moves (transitions) over a state space and evaluating

a cost metric at each state. The basic structure of a simulated annealing algorithm was described in

Algorithm 2.3 in Chapter 2. As we noted in Section 2.3.2, a particular implementation of simulated

annealing tunes the selection of the COST, MOVE, PROB and TEMP functions, and the initial and

final temperature parameters t0 and t∞.

In Section 2.3.2, we described the use of simulated annealing and the choice of the parameters

and functions in the context of the task allocation and scheduling for multiprocessors. The solution

space of our current problem (all valid task orderings) is similar to the solution space of the mul-

tiprocessor scheduling problem, with the exception that all tasks execute on the single GPU in the

system and hence task allocation to processors is not a concern. The similarity in the state space of

the two problems means that a similar choice of functions and parameters as Section 2.3.2 should

be expected to yield good results for the current problem as well.

In the current work, we reuse the PROB, TEMP function and the initial and final temperatures

81

t0 and t∞ from Section 2.3.2. The COST and MOVE functions are the only ones we change. These

are chosen as follows:

• COST function: The COST function Cost(s) specifies the value of the optimization function

at state s of the simulated annealing. In the current context, a state encodes a particular global

ordering of tasks, subject to task precedence constraints (Section 3.2.2). The COST function

for such a state is the value of the optimum data transfer from the CPU to the GPU given

this task order. We obtain this by solving the Mixed Integer Linear Program as described in

Section 3.3.4. The time taken for the COST evaluation is a fraction of a second.

• MOVE function: The MOVE function defines the transitions in the state space of simulated

annealing. Our MOVE function is based on a random move of one task from its initial position

in the global order to a new position. Let s be the current state defined by the task schedule

levels L. The MOVE function then picks a random task v ∈ VY and selects a new position

l′ for the task. It then inserts task v into position l′ by shifting all tasks currently scheduled

at or after position l′. In other words, the task schedule levels are updated to L′ such that

L′(v) = l′, and L′(w) = L(w) + 1,∀w : L(w) ≥ l′. To ensure that this defines a valid task

order, we need to check that there are no predecessors of v at a level greater than l′, and that

there are no successors of v at a level less than l′. If the new state does not define a valid task

schedule, it is discarded and a new random task schedule is picked again.

3.4 Results

In this section, we present the results of our experiments to evaluate different techniques of

solving the task and data transfer scheduling problem to minimize makespan. We compare the

“single-pass” Mixed Integer Linear Programming (MILP) approach with two decomposition based

approaches. Both decomposition based approaches break up the problem into a task ordering prob-

lem followed by a data transfer scheduling problem given the task order. The first decomposition

approach constructs a heuristic task order based on the depth-first heuristic described in [Sundaram

et al., 2009](Section 3.3.5), and then solves a MILP problem for obtaining the schedule of data

transfers given the task order. We denote this approach as (DFS/MILP). The second approach per-

forms a simulated annealing (SA) search over the space of task orders and solves a MILP problem

for each task order that it evaluates. This is denoted as the (SA/MILP) approach. The single-pass

MILP was given a timeout of 20 minutes, and the best solution obtained until that time was taken

82

as the solution of the problem. All experiments were run on a 2.4 GHz machine with 8 GB RAM

running Linux.

Name # # Data Input image Size of total Size of
Tasks Items resolution intermediate data PI + PO

(words) (words)
1000× 1000 5841800 1968768

Edge detection 8 13 5000× 5000 149201800 49840768
10000× 10000 598401800 199680768
4500× 3800 3,729,863,824 315,144,108

CNN1 740 1134 6400× 4800 6,709,288,924 566,690,708
8000× 6000 10,491,402,124 885,961,908
4500× 3800 3,478,703,106 278,714,152

CNN2 1600 2434 6400× 4800 6,261,866,429 501,282,002
8000× 6000 9,795,926,781 783,798,202

Table 3.1: Benchmark characteristics for evaluating different scheduling techniques for minimizing
data transfers.

The benchmarks used in our comparison were the edge detection and convolutional neural net-

work applications. The task graphs for both applications were obtained from the authors of [Sun-

daram et al., 2009]. For each of these applications, we experimented with input data of different

sizes. For the edge detection application, the input data corresponds to images of high resolution. In

our experiments, we used input images of sizes of 1000× 1000, 5000× 5000 and 10000× 10000.

For the Convolutional Neural Network (CNN) application, we used two different networks with

differing numbers of layers, tasks and data items. The first of these has 7 layers with 740 tasks and

1134 data items, while the second CNN has 11 layers with 1600 tasks and 2434 data items. For

each CNN, we use data images of sizes 4500 × 3800, 6400 × 4800 and 8000 × 6000. The key

characteristics of the benchmarks are summarized in Table 3.1. For each benchmark, we show the

size of the input image, the size of all data in the benchmark (expressed in units of 32-bit words)

and the size of the primary inputs and outputs of the benchmark (in words). We use three GPUs of

varying memory sizes: the NVIDIA 8800 GT with 512 MB memory, the NVIDIA 8800 GTX with

768 MB memory and the NVIDIA Tesla C870 platform with 1.5 GB memory.

Table 3.2 shows the results of the three scheduling approaches on the data transfers on each of

our benchmarks. The first two columns state the benchmark and the input image resolution used.

The third column is the number of floating point data transfers required for the primary inputs and

outputs. This provides a lower bound to the number of transfers required for the benchmark. The

rest of the columns show the results in terms of the number of floating point data transfers obtained

83

Benchmark Input image Lower 8800 GT (512 MB memory)
resolution bound MILP DFS/ SA/

(words) MILP MILP
1000× 1000 1,968,768 1,968,768 1,968,768 1,968,768

Edge detection 5000× 5000 49,840,768 49,840,768 49,840,768 49,840,768
10000× 10000 199,680,768 ∞ ∞ ∞
4500× 3800 315,144,108 - 596,249,820 451,148,460

CNN1 6400× 4800 566,690,708 - 2,463,812,372 1,469,753,036
8000× 6000 885,961,908 - ∞ ∞
4500× 3800 278,714,152 - 559,819,864 314,774,228

CNN2 6400× 4800 501,282,002 - 2,398,403,666 1,062,256,223
8000× 6000 783,798,202 - ∞ ∞

8800 GTX (768 MB memory) Tesla C870 (1.5 GB memory)
MILP DFS/ SA/ MILP DFS/ SA/

MILP MILP MILP MILP
1,968,768 1,968,768 1,968,768 1,968,768 1,968,768 1,968,768

49,840,768 49,840,768 49,840,768 49,840,768 49,840,768 49,840,768
∞ ∞ ∞ 199,680,768 299,361,024 199,680,768
- 315,144,108 315,144,108 - 315,144,108 315,144,108
- 1,607,411,540 941,433,176 - 566,690,708 566,690,708
- 4,067,974,476 2,705,681,316 - 1,508,786,916 1,244,702,988
- 278,714,152 278,714,152 - 278,714,152 278,714,152
- 1,542,002,834 547,160,618 - 501,282,002 501,282,002
- 3,965,810,770 2,275,595,289 - 1,406,623,210 926,847,914

Table 3.2: Data transfer optimization results for the single-pass MILP approach and two decom-
position approaches: a depth-first search heuristic combined with MILP (DFS/MILP) and a sim-
ulated annealing search combined with MILP (SA/MILP) on different benchmarks on three GPU
platforms.

(in units of 32-bit words) from the three scheduling approaches on three different NVIDIA GPUs

with different on-board memory sizes. The MILP technique is stopped after twenty minutes, and

the best result obtained until that time is taken. We indicate the entries where the MILP approach

finds an optimal result within 20 minutes in bold. The remaining approaches are run to completion

(all instances completed under twenty minutes). For data inputs that are very large, it is possible for

the inputs and outputs of a single task to not fit into GPU memory. For such cases, the application

cannot be mapped onto the GPU. We represent such cases with a “∞”.

We can see that the single-pass MILP approach can give us optimal results for the edge detec-

tion application which has only 8 tasks and 13 data items. However, the MILP approach does not

scale to larger task graphs, and in many cases does not even find the solution to the LP relaxation

84

of the problem within the time bound of 20 minutes. We represent such cases where no solution to

the problem is found by ”-” in the table. From Table 3.2, we can see that the single-pass approach

cannot solve any of the medium scale or large scale CNN cases.

0

20

40

60

80

100

120

15 17.5 20 22.5 25 27.5 30 32.5 35 37.5 40 42.5 45 47.5 50

Size of input data (millions of words)

%
 d

if
fe

re
n

ce
 b

e
tw

e
e

n
 D

F
S

/M
IL

P
 a

n
d

S
A

/M
IL

P
 r

e
su

lt
s

Average improvement

Figure 3.6: Percentage difference between the data transfers obtained from the DFS/MILP and
SA/MILP approaches for the CNN1 benchmark in Table 3.2 optimized for the 8800 GTX platform.

For the larger test cases, both the DFS/MILP and the SA/MILP approaches can be used to

minimize data transfers. The DFS/MILP heuristic approach is successful at identifying cases where

no additional data transfers are required on top of the lower bound of the primary inputs and outputs.

This generally happens for benchmarks that use small to medium resolution input data images.

For the larger resolution images, additional data transfers become necessary as the intermediate

data does not fully fit into GPU memory. In this case, we find that the heuristic approach gives

significantly worse results than the simulated annealing approach. Figure 3.6 shows the percentage

difference between the memory transfers obtained by the DFS/MILP and SA/MILP approaches for

the CNN1 benchmark with the 8800 GTX GPU. We can see that the SA/MILP approach routinely

finds solutions that are 40-60% better than the DFS/MILP approach. The average improvement for

the data shown in the graph is 44.2%.

For the edge detection example, both the single-pass MILP and the SA/MILP approaches are

able to obtain the optimal solution. However, we do not know how close the SA/MILP results

are to the optimal solutions for the larger CNN examples. In order to judge the optimality of the

SA/MILP approach for the large examples, we compared it to a variant of the SA/MILP method

that was modified to increase the number of transitions at each annealing temperature by a factor of

100. This latter technique, henceforth called “SA/MILP (long)” was allowed to run overnight. We

85

expect the result of SA/MILP (long) to be fairly close to the optimal solution. Hence this forms a

good benchmark solution for our optimization methods. Table 3.3 shows the results of comparing

the SA/MILP approach to the SA/MILP (long) approach for the CNN benchmarks. The table shows

the percentage differences between the amount of data transfers computed by the SA/MILP and

the SA/MILP (long) algorithms. For data inputs that are very large, it is possible for the inputs

and outputs of a single task to not fit into GPU memory. For such cases, the application cannot

be mapped onto the GPU. We represent such cases with a “∞”. The entries marked 0 indicate the

cases where the result of SA/MILP is not improved even when it is run overnight. All such entries

correspond to the cases where the SA/MILP results are optimal (this can be seen by comparing the

results to the lower bound in Table 3.2). For the cases where the result of SA/MILP is not optimal,

we generally see an improvement when the technique is run overnight. This improvement can be in

the range of 5-15%. If we can assume that the SA/MILP (long) solution is close to optimal, then the

result of the SA/MILP algorithm is up to 15% away from optimal. Another way of looking at this

result is that we can gain up to 15% in the size of data transferred by allowing the SA/MILP approach

to run longer. The choice of whether a longer runtime (of the order of a few hours) is acceptable

or not depends on the context in which this optimization problem is solved. If the optimization

problem is solved inside of a design space exploration over the space of different GPUs, then we

may not be able to devote a few hours to each run. In that case, it would be acceptable to lose

10-15% in solution optimality. However, if we only wish to solve the optimization problem for a

single GPU platform, then we can afford to let the optimization run overnight.

Benchmark Input image % difference from SA/MILP and SA/MILP (long)
resolution 8800 GT 8800 GTX Tesla C870

4500× 3800 3.4 0 0
CNN1 6400× 4800 13.6 0.8 0

8000× 6000 ∞ 10.8 8.3
4500× 3800 6.3 0 0

CNN2 6400× 4800 15.8 12.3 0
8000× 6000 ∞ 14.9 10.5

Table 3.3: Percentage difference between the data transfer results of the SA/MILP approach and
a variant SA/MILP (long) that is allowed to run overnight on different benchmarks on three GPU
platforms. This is used as a measure of the optimality of the SA/MILP approach.

The other dimension to look at when deciding which algorithm to use is the run time taken to

obtain these solutions. We only compare the two decomposition methods under this metric, since

these are the methods consistently applicable to problems of large size. Table 3.4 reports the time

86

Benchmark Input image 8800 GT 8800 GTX Tesla C870
resolution DFS/ SA/ DFS/ SA/ DFS/ SA/

MILP MILP MILP MILP MILP MILP
1000× 1000 0 0 0 0 0 1

Edge detection 5000× 5000 0 0 0 1 0 0
10000× 10000 0 0 0 0 0 0
4500× 3800 1 346 1 472 1 443

CNN1 6400× 4800 1 238 1 306 1 427
8000× 6000 0 0 1 523 1 365
4500× 3800 1 1023 1 834 1 974

CNN2 6400× 4800 1 736 1 1129 1 1012
8000× 6000 0 0 1 966 1 825

Table 3.4: Run times (in seconds) of the DFS/MILP and the SA/MILP decomposition approaches
corresponding to the entries of Table 3.2 on different benchmarks on three GPU platforms.

taken by the two methods for each of our benchmarks of Table 3.2. As expected, the heuristic

approach only considers a single task order, and as such always completes in at most a second. The

SA/MILP approach, on the other hand, explores many task orders. However, we find that for all

our cases, it does finish within twenty minutes, which is a reasonable time-frame to optimize an

application.

The solutions to the data transfer problem can be used in the choice of GPUs to be used for a

particular application. Figure 3.7 shows the amount of data transfers (along with the lower bound)

for the first CNN application with 6400 × 4800 and 8000 × 6000 resolution images versus the

memory size of the GPU. We can see that the graphs for both the resolution images follow the same

trends: until the GPU size reaches a certain size, the input/output data for a single task does not

fit into GPU memory. Thus we cannot run the application on such GPUs. This is marked as the

minimum GPU size on the graphs. As we increase the size of the GPU beyond that point, the size

of the required data transfers decreases gradually until it reaches a lower bound. The lower bound

corresponds to the transfer of primary inputs and outputs, which must be performed irrespective of

the GPU memory size. This establishes a maximum GPU memory size that can lead to reductions in

data transfers. The minimum and maximum GPU sizes so obtained help decide the range of GPUs

to be used for input data of different sizes. In this example, it is possible to use the 8800 GT card

with 512 MB RAM for the 6400× 4800 application, but not for the larger 8000× 6000 resolution

images. For the larger resolution images, it is best to use the 1.5 GB NVIDIA Tesla card. If cost or

power considerations rule out using the Tesla card, then it is also possible to use the 8800 GTX card

at the cost of about a 2.2X increase in the number of memory transfers.

87

(a)

(b)

0

500

1000

1500

2000

2500

3000

3500

4000

200 400 600 800 1000 1200 1400 1600

GPU size (MB)

D
a

ta
 t

ra
n

sf
e

rs

(m
il

li
o

n
s

o
f

w
o

rd
s)

8000 x 6000

Lower bound on transfers:

Size of primary inputs and outputs

Minimum

GPU size

0

200

400

600

800

1000

1200

1400

1600

200 400 600 800 1000 1200 1400 1600

GPU size (MB)

D
a

ta
 t

ra
n

sf
e

rs

(m
il

li
o

n
s

o
f

w
o

rd
s)

6400 x 4800

Lower bound on transfers:

Size of primary inputs and outputs

Minimum

GPU size

Figure 3.7: Data transfers obtained from the SA/MILP approach for the CNN1 benchmark for input
image resolutions of (a) 6400× 4800 and (b) 8000× 6000 optimized for GPUs of different sizes.

3.5 Choice of Optimization Method

In this chapter, we studied the optimization problem of resource allocation of data to GPU and

CPU memory and scheduling the data transfers between them in order to minimize data transfers

between the CPU and GPU. We outlined three techniques for solving the data transfer optimization

problem. The single-pass MILP solution does not scale beyond 50 tasks and data items, and hence is

not applicable to medium and large scale problems. The two decomposition approaches SA/MILP

and DFS/MILP are viable techniques. In this work, we found that the sub-problem of deciding

a schedule for data transfers given a task order can be solved to optimality very quickly using

a commercial MILP solver. The remaining problem is to pick a task order. For this problem,

we found that the SA/MILP approach that performs a simulated annealing search over the set of

task orders is superior (by an average of 44.2%) to the DFS/MILP approach that uses a heuristic

88

depth-first task order. We also found that the SA/MILP approach can optimize data transfers for

large task graphs containing thousands of tasks and data items in under twenty minutes. Hence the

simulated annealing algorithm gives us the best mix of quality of results versus optimization time

for optimizing data transfers.

As an additional benefit, we note that the parameters for tuning the simulated annealing algo-

rithm as described in this chapter are very similar to the techniques described in Chapter 2 for the

task allocation and scheduling problem. This enables a quick development of the simulated anneal-

ing algorithm for this problem, and points to the extensibility of using simulated annealing as an

optimization engine.

89

Chapter 4

Statistical Models and Analysis for Task

Scheduling

In Chapter 2, we discussed the task allocation and scheduling problem using compile-time

knowledge of the characteristics of the concurrent application. Optimization techniques used for

compile-time scheduling are useful when we have complete knowledge (at compile time) of (a) the

computation tasks, (b) task dependencies, and (c) task execution times. The underlying assumption

in the task graph model we use in Chapter 2 is that execution times and communication delays of

each task are fixed real-valued constants. This model is popularly referred to as the delay model

in scheduling literature [Papadimitriou and Ullman, 1987] [Boeres and Rebello, 2003]. The delay

model has been used in many multiprocessor scheduling problems [Hu, 1961] [Coffman, 1976]

[Papadimitriou and Ullman, 1987] [Veltman et al., 1990] [El-Rewini et al., 1995] [Teich and Thiele,

1996] [Dick et al., 2003].

A fundamental limitation of the delay model is that it does not capture the variability in task

execution times and dependencies. Task execution times can vary significantly across different runs

in many real-world applications, due to (a) input data dependent executions of loops or conditionals

that are present within the code, (b) the effect of contention and arbitration for shared resources, (c)

effects of cache hits or misses on memory access times in a multi-level memory hierarchy, and (d)

the increasing effect of process variations that leads to variable clock frequencies among different

cores of a multi-core architecture. In some applications (such as H.264 video decoding), we may

not even have complete knowledge of the dependencies in the application during compile-time.

Such variations in individual tasks lead to variations in the resulting end-to-end execution time (or

90

makespan, defined in Section 2.2.2) of the overall application. In particular, the makespan of the

application can no longer be accurately represented as a single number. We instead need to capture

the variability in the makespan by the statistical distribution of finish times of the application.

It is possible to obtain better estimates of task execution times at run-time with knowledge of

the inputs to the application. However, variability due to the architecture involving cache misses

and bus arbitration effects cannot be easily predicted even at run-time. Shih et al. perform a work-

load characterization of the H.264 video decoder and conclude that “unpredictable branch behavior

appears to be the main performance bottleneck in the (H.264) application” [Shih et al., 2004]. Holli-

man et al. develop a performance analysis of MPEG-2 and H.264 decoders on the Pentium architec-

ture and independently corroborate that “branches for variable-length decoding are often essentially

random and performance-limiting” [Holliman et al., 2003]. Building compile-time models for sys-

tems also has other benefits for design space exploration of different architectures. In many cases, it

may be too costly or even impossible to build an executable model of each system to be evaluated.

In such cases, an accurate compile-time model of the system can help in early pruning of the design

space [Gries, 2004].

In the presence of variations in execution times, compile-time models for applications that

require strict execution time guarantees rely on capturing either the worst-case behavior of tasks.

Such applications are often called hard real-time applications. For applications that do not require

hard real-time guarantees, the dominant execution scenarios may instead be captured in the models.

These approaches approximate the distribution of application performance by the worst-case or

common-case scenarios. In contrast, a large class of recent applications fall under the category

of soft real-time applications. Soft real-time applications do not define application performance in

terms of the absolute worst case execution scenario, but instead use a statistical metric to define

a scenario that covers a high fixed percentage of all executions. Examples of such applications

include video encoders/decoders in the multimedia domain, packet forwarders and network address

translation in the networking domain and many other streaming applications. Since the performance

of the application does not reflect the worst-case execution scenario, it is possible under certain

conditions for the application to not complete within its expected execution time. Soft real-time

applications must therefore be tolerant to incomplete processing of up to a fixed percentage of

data (frames in video applications, packets in networking applications). For instance, it may be

acceptable for a H.264 video decoder to only decode 95% of the input frames and drop the remaining

5%. In this scenario, the execution time of the decoder is best measured as the 95th percentile of

the distribution of frame execution times rather than the worst or average case. Such an estimate of

91

performance has the advantage of being robust to the worst case execution time, which may not be

truly representative of real application performance.

In order to obtain the performance distribution of the application at compile-time, it is essential

to model the variations in task execution times. Thus the static delay model is insufficient for

our purposes. In this chapter, we explore the types of variations present in applications in the

networking and multimedia domains. We will consider two specific benchmarks - IPv4 packet

forwarding and H.264 video decoding. We propose statistical models to capture these variations and

perform statistical analysis on these models to produce the application makespan distributions. We

compare the statistical analysis of these two applications to worst-case and average case analysis.

We will then revisit the task allocation and scheduling problem in the context of statistical models

in Chapters 5 and 6.

4.1 Variability in application execution times

In this section, we shall study some of the causes of variability in application execution times.

The variability in application makespan is a consequence of the variability of the execution times of

each task in the application. Since the execution time of a task depends on both the code inside the

task as well as the platform that executes the code, a natural classification of the variability is into

application and architecture related causes.

Many application tasks exhibit variable execution times due to data-dependent executions on

different inputs. The extent of the variability depends on how much control flow there is within the

task in the form of data-dependent branches and loop iterations. Many applications in the network-

ing [Gupta, 2000] [Yu et al., 2005] and media [Hughes et al., 2001] [Shih et al., 2004] domains

exhibit such variations. Hughes et al. demonstrated a 33% variability in frame execution times for

a range of video encoding/decoding applications on a single processor core [Hughes et al., 2001].

Gupta et al. studied the impact of the variable number of memory accesses required to lookup IPv4

packets with different source IP addresses [Gupta, 2000]. In addition, the dependencies and interac-

tions between tasks may also be variable in the presence of varying inputs. Video decoders such as

H.264 [Chong et al., 2007] are good examples. We will explore this source of variability in Section

4.2.1.

The presence of shared resources in the architecture results in variations in memory access and

communication times. The effect of caches on task execution times has been well studied [Agarwal

et al., 1988] [Cucchiara et al., 1999] [Slingerland and Smith, 2001]. Caches can cause variations due

92

to data-dependent cache hits and misses. Variations can also occur due to bus arbitration effects.

Kim et al. demonstrated that contention among a set of 16 processors sharing the same bus can

result in a 5-fold increase in communication times on bus loads common to multimedia applications

[Kim et al., 2005]. Finally, the increasing extent of process variations as we move to smaller process

technology nodes has led to variability in execution time even between the cores of a multiprocessor

system.

We now consider two examples in the networking and multimedia domains: the IPv4 packet

forwarding application when mapped to a soft multiprocessor system on an FPGA, and the H.264

video decoding algorithm mapped onto a commercial many-core processor.

4.1.1 IPv4 packet forwarding on a soft multiprocessor system

We discussed the IPv4 packet forwarding application in brief in Chapter 2. In that chapter, we

also defined a soft multiprocessor system on an FPGA. We construct soft multiprocessor systems

out of the MicroBlaze soft processor core, the On-Chip Peripheral (OPB) buses to connect these

processors to on-chip BlockRAM memory and Fast Simplex Links (FSLs) to provide point-to-point

links between the processors [Ravindran et al., 2005] [Jin et al., 2005].

The basic IP forwarding application consists of the following steps (Section 2.1): (a) receive

the packet, (b) verify the packet checksum and Time-to-Live (TTL) fields, (c) lookup the IP next

hop and forwarding port using longest prefix matching on a route table, (d) update the checksum and

TTL fields, and (e) send out the packet. The complete data plane of the IPv4 application must also

deal with packet payload transfer. However, the header processing component, in particular the next

hop lookup, is the most compute intensive data plane operation. The packet payload is buffered on

chip and transferred to the egress port after the header is processed. Since all data processing occurs

only on the header, the resulting forwarding throughput only depends on the header processing

component.

Figure 4.1 replicates the task graph described in Chapter 2 for IPv4 packet forwarding. The

tasks in the top branch perform the memory lookups in the IPv4 packet forwarding application. The

other tasks are receive, which receives the packet, tasks for verifying the IP checksum and time-to-

live fields, tasks to update the checksum and time-to-live fields, and the transmit task that sends the

packet to the next hop.

93

Receive

Route

lookup 1

Route

lookup 2

Verify

time-to-live,
version

Verify

checksum

Route

lookup 3

Transmit
Update

time-to-live

Update

checksum

Route

lookup 4

Route

lookup 5

Route

lookup 6

Route

lookup 7

Figure 4.1: Parallel tasks and dependencies in the IPv4 header processing application.

Variations due to application characteristics

The next hop lookup is the most intensive operation in the application, and this is also where

most of the variability in the application comes from. The lookup involves searching a route table

for the longest prefix that matches the packet’s destination address. A natural way to express pre-

fixes is a tree-based data structure (called a trie) that uses the bits of the prefix to direct branching.

There have been many variations to the basic trie scheme that attempt to trade-off the memory re-

quirements of the trie table and the number of memory accesses required for lookup [Ruiz-Sánchez

et al., 2001]. Figure 4.2 shows an example of a fixed-stride multi-bit trie table and the route table

that it encodes. The stride is the number of bits inspected at each step of the prefix match algo-

rithm. The stride order we use in our implementation (shown in Figure 4.2) is (12 8 4 3 3 2): the

first-level stride of the trie inspects the first 12 bits of the destination IP, the second level inspects

the next 8 bits and so on, leading to a maximum of 6 memory accesses for a 32-bit address lookup.

These lookups take us to a matching node for the destination address in the trie; there is one last

memory access required for obtaining the egress port, making for a total maximum of 7 lookups. In

figure 4.1, lookup stages 1 to 6 depict the 6 possible lookups to get to a leaf of the trie and lookup

stage 7 represents the final compulsory port lookup.

Due to the nature of the longest prefix match, the lookup algorithm can often reach a matching

node while performing fewer than 7 lookups. The number of bits required to be looked up depends

on the IP address and the distribution of prefixes in the route trie table. Figure 4.3 shows the prefix

length distribution of the trie table of a typical backbone router (Telstra router) taken from [Ruiz-

Sánchez et al., 2001]. We note from the figure that most prefixes are between 16 and 24 bits in

length, with less than 4% being more than 24 bits, and an even smaller fraction (less than 2%)

being more than 28 bits. Kim et al. independently corroborate that over 99% of another router

94

Prefix IP Address Output

match port

a 0000000000000000* 1

b 0011000000000000* 5

c 0011000000000000- 2

-0000000*

d 1110000000000001* 6

e 0011000000000000- 3

-11111111000*

a

00
00
00
00
00
00
00
00

b d

c c

e e

00000000 000000001
11111111

11110000 0001

0
0
1
1
0
0
0
0
0
0
0
0

0
0
0
0

00
00
00
00
00
00
00
01

0
x
1
1
1
0
0
0
0
0
0
0
0

0
0
0
0
1

1111111111111111

Level 0

Level 1

Level 2

Level 3

Level 6

Figure 4.2: Example of a multi-bit trie with stride order (12 8 4 3 3 2) and the corresponding route
table.

(MAE-EAST) have prefixes smaller than 24 bits [Kim and Han, 2005]. Similar characteristics also

exist for smaller campus routers [Oh and Lee, 2003]. From this prefix distribution, we can obtain

the probability distribution for the number of memory accesses required for our multi-bit trie. Any

prefix that is shorter than 12 bits will be at level 1 of the trie and requires only one memory access.

With a prefix length greater than 12 bits, more than one access will be required. The probability

distribution of the number of memory accesses is shown in Figure 4.4. This probability distribution

is a histogram of the number of memory lookups required for each router trie table entry assuming

that each entry is accessed equally often. The assumption that each trie table entry is accessed

equally often is commonly used in networking applications as exact data traffic characteristics are

not readily available for privacy reasons [Gupta, 2000] [Kim and Han, 2005].

memory Probability Execution Time of Lookup Stages
accesses Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 Stage 6 Stage 7

2 0.0816 20 0 0 0 0 0 20
3 0.1131 20 20 0 0 0 0 20
4 0.7744 20 20 20 0 0 0 20
5 0.0124 20 20 20 20 0 0 20
6 0.0155 20 20 20 20 20 0 20
7 0.0030 20 20 20 20 20 20 20

Table 4.1: Joint probability distribution table for tasks Lookup 1-6 of Fig 4.1 assuming that each
memory lookup takes 20 cycles.

The execution times of each lookup task can be represented as a binary distribution depending

on whether the particular lookup stage is active or not. Figure 4.4 naturally yields the execution

95

0.001

0.01

0.1

1

10

100

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Prefix Length

P
e
rc

e
n

ta
g

e
 o

f
e
n

tr
ie

s
 (

lo
g

 s
c
a
le

)

Figure 4.3: Prefix length distribution of a typical backbone router (Telstra Router, Dec 2000) from
[Ruiz-Sánchez et al., 2001].

time distribution of each of the 7 forwarding tasks in the task graph of Figure 4.1. From Chapter

2, each of the memory lookup tasks has a 20-cycle latency. The first lookup always occurs and

hence the Lookup 1 task has to perform a 20-cycle latency memory lookup with 100% probability.

Lookup 2 is required whenever at least 3 memory lookups are required; this occurs 91.8% of the

time from Figure 4.4. Lookup 2 is inactive (with a execution time of 0) the remaining 8.2% of

the time. The remaining lookup stages will have corresponding distributions that can be computed

from Figure 4.4. However, it is important to realize that the execution times of these tasks cannot

vary independently; in statistical terms, the execution times of the tasks are said to be correlated

random variables. This is because whenever a lookup is done at a particular level of the trie table,

lookups at previous levels must also have been done. Thus it is impossible for the task representing

Lookup 3 to have an execution time of 20 without the Lookup 2 task also taking 20 cycles. Such

correlated distributions are represented by means of a joint probability distribution table. Table 4.1

shows the joint probability distribution table for the lookup tasks of the IPv4 application. Note that

the distribution is discrete with 6 independent scenarios, involving 2-7 memory lookups. The final

lookup of the egress port (Lookup 7) needs to be performed under all these scenarios.

96

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

2 3 4 5 6 7

Number of memory lookups

P
ro

b
a

b
il

it
y

`

Figure 4.4: Probability distribution of the number of memory accesses for lookup

Variations due to the architecture

We implemented the IPv4 packet forwarding application using the Embedded Development Kit

(EDK) from Xilinx on an Xilinx Virtex-II Pro 2VP50. We used the MicroBlaze soft processors for

computation and the on-chip BlockRAM for storing the route table. We connected the processors to

the BlockRAM using the OPB CoreConnect bus and the processors to each other using FSL FIFO

links.

Our implementation of IPv4 on soft multiprocessors systems on FPGAs yields few sources

of variations. The MicroBlaze soft processor IP is itself has an in-order 32-bit RISC engine and

thus does not cause variability due to out of order executions. The remaining potential sources

of variability are due to cache misses and bus arbitration. The MicroBlaze processor does have a

facility to have a small data cache that can be used to cache route table entries. However, this is

constructed out of the same BlockRAM that is used to store the route table. Due to the large size of

our route table, we we could only afford a 8 KB data cache per processor. The measured hit rate,

under the assumption that all entries in the route table are accessed equally is less than 5%. Besides,

our route table is entirely present on-chip, and thus the gains from caching are minimal.

The final potential source of variations comes from the on-chip peripheral buses that transfers

data to and from the route tables. These are a potential source of variability due to arbitration effects.

However, our experiments showed no significant variability when up to two masters share the same

bus, and a big drop-off in performance if more than two masters are present. We restricted our

design space to multiprocessor systems where fewer than 2 masters share the same OPB bus, and

instead used multiple OPB buses when more than two processors need to be connected to the same

piece of memory.

97

4.1.2 H.264 video decoding on commercial multi-core platforms

H.264 or MPEG-Part 10 is an advanced video codec proposed by the ITU-T Video Coding

Experts Group (VCEG) together with the ISO/IEC Moving Picture Experts Group (MPEG). The

H.264 standard aims at providing high video quality at lower bit rates than previous standards,

while maintaining the complexity of the implementation at practical levels.

H.264 is a block based video compression standard. Each video segment is split into frames,

and each frame is further divided into macroblocks. Each macroblock represents a 16x16 pixel area

in a frame. These macroblocks are encoded within the input compressed stream; and must thus be

extracted from the stream. The macroblocks so decoded only contain the differences of pixel values

from a predicted value. The predicted value is obtained from the decoded values of already decoded

macroblocks, hence introducing data dependencies. This prediction is added to the macroblock

extracted to obtain the final macroblock, which must then go through a de-blocking filter to remove

edge artifacts.

Entropy

decode
Reorder Q-1 T-1

Intra

prediction

Motion

compensation

Current

frame

Reference

frame

Filter

H.264

Stream

Parsing Decoding Filtering

Figure 4.5: Block diagram of the H.264 decoder.

As part of the baseline profile mainly meant for mobile applications, the H.264 standard sup-

ports two types of macroblocks depending on the way in which the predicted values of the mac-

roblocks are stored. The first of these is called Intra macroblocks or I-macroblocks. These mac-

roblocks use the values of previously decoded macroblocks within the same frame of video to pro-

vide the predicted value. Such macroblocks rely on spatial coherence within a video frame. The

other type of macroblock is the Predicted macroblock (or P-macroblocks), which use previously

decoded values from previous frames (with some offsets) as the prediction. Both these types of

macroblocks also have a varying amount of residual information that cannot be inferred from previ-

ous macroblocks. Figure 4.5 shows the block diagram for the H.264 decoder. The application can be

broadly divided into (1) parsing: involving entropy decoding, reordering, inverse quantization and

98

inverse transform steps to obtain the difference macroblock values, (2) rendering: involving motion

compensation for computing the predicted values of P-macroblocks and intra-prediction for com-

puting the predicted values of I-macroblocks, and (3) the final de-blocking filter. The rendering step

is the most compute intensive step in the application. We concentrate on techniques to parallelize

this step.

The parallelism in the rendering stage is due to the potential for simultaneous decoding of

different macroblocks in each frame. In this work, we assume that frames are decoded sequentially

- each frame must complete before the next starts. In most cases, such as assumption is necessary: a

P-macroblock can use decoded values from any macroblock in the previous frame, thus introducing

a sequential dependency between frames. The H.264 standard allows for multiple previous frames

to be accessed, all of which must be stored in a global frame buffer. However, a P-macroblock does

not impose any ordering on the processing of macroblocks within the frame.

Intra

Pred.

Intra

Pred.

Intra

Pred.

Intra

Pred.

current

I-MB

Figure 4.6: Spatial dependencies for I macroblocks in a H.264 frame.

I

I I

I I I

I I I I

I I

I

I

I

P

P I

P I P

P P P P

P I

P

P

P

(a) (b)

Figure 4.7: Partial task graph for (a) an I-frame and (b) a P-frame for H.264 video decoding.

In contrast, an I-macroblock does not introduce sequential dependencies between frames; how-

ever, it uses decoded values of other macroblocks within the frame. The H.264 standard imposes the

restriction that an I-macroblock during intra-prediction can only predict data from the pixels to the

99

left, top-left, top and/or top-right relative to the current macroblocks. This introduces a dependency

between macroblock executions as shown in Figure 4.6. Figure 4.7 shows a portion of the task de-

pendency graph for an I-frame that consists entirely of I-macroblocks, and a P-frame that consists

of a mixture of I- and P-macroblocks.

Variations in dependencies between macroblocks

From the above discussion, it is clear that the dependency pattern for macroblocks within

a frame depends on the distribution of I- and P-macroblocks within the frame. While I-frames

consisting entirely of I-macroblocks have predictable dependency patterns, the same is not true for

P-frames. The exact locations of P-macroblocks in a P-frame can only be found at run-time, as it

differs from frame to frame of the input video stream and is determined by the particular encoder

used to encode the stream. However, by profiling the application with a set of video streams,

we can collect statistical information about the probability that a macroblock will be an I- or P-

macroblock. We collect this information for each macroblock across all frames of different streams

and use their average as the probability of the macroblock being an I-macroblock. The probability

of a macroblock being an I-macroblock determines the probability of the edges from neighboring

macroblocks as per Figure 4.6.

Variations in macroblock execution times

Key

0-10%

10-20%

20-30%

30-40%

40-50%

50-60%

60-70%

70-80%

80-90%

>90%

Figure 4.8: Spatial distribution of P-skip macroblocks within frames of the manitu.264 stream.
Different colors encode the probabilities that particular macroblocks are P-skip macroblocks.

The variations in macroblock execution times come from three major reasons: (1) differing

execution time characteristics of I-macroblocks and P-macroblocks, (2) variation in execution time

among different I- and P-macroblocks due to varying amount of difference information, and (3) vari-

ations due to architecture related parameters. P-macroblocks tend to take longer than I-macroblocks

100

due to the need to access global frame buffer memory to obtain reference frame information. How-

ever, certain P-macroblocks are of a special kind, called P-skip macroblocks, for which there is

no difference information - the macroblock is just a direct copy of the previous frame. P-skip

macroblocks have low decoding times as there is no execution involved in the decoding process.

Figure 4.8 shows the spatial distribution of P-skip macroblocks in the manitu.264 video stream.

The color encoding represents the probabilities that particular macroblocks are P-skip macroblocks

across all frames of the stream. Macroblocks towards the edges of the frame are more likely to repre-

sent background information which can be skipped and copied from previous frames. Macroblocks

towards the center are much less likely to be P-skip macroblocks, and hence will take longer to

execute. Similar statistics can also be collected regarding the distribution of I-macroblocks in the

frame. Given these statistics, we can compute the probability of specific macroblocks being I-, P-

or P-skip macroblocks.

However, the knowledge of the distribution of I-, P- and P-skip macroblocks alone is insuf-

ficient to fully characterize execution time distributions of different macroblocks. This is because

the execution time of I and P macroblocks can each vary significantly. In general, the amount of

difference information is indicative of the amount of work that needs to be done to reconstruct the

macroblock. The combination of the distribution of types of macroblocks and the execution time

variation among macroblocks of a single type gives us the full distribution of macroblock execution

times.

Variations due to architecture related parameters

In addition to the above factors, the execution times of macroblocks is also affected by architecture-

related parameters. Our implementation is based on the baseline profile of the H.264 decoder in C

from [Fiedler and Baumgartl, 2004]. The architectural platform is a commercial 2.66 GHz Core 2

Quad platform. The main impact of the architecture comes from the out-of-order processing in the

core and the effect of caches on the global frame buffer access time for P-macroblocks. The existing

literature on H.264 decoding attributes most of the variation to branch misprediction penalties and

not to frame buffer accesses [Hughes et al., 2001] [Shih et al., 2004].

Our approach to quantifying the extent of variability in macroblock execution times is through

a profiling based approach. We run each video sequence through a number of times and note the

execution times of each I-, P- and P-skip macroblock in each of the runs. The resulting distribution

of execution times incorporates both variations due to the architecture (branch misprediction and

101

0

10

20

30

40

50

60

0 20 40 60 80 100

Execution Time (microseconds)

P
e

rc
e

n
ta

g
e

 o
f

m
a

c
ro

b
lo

c
k

s

P-skip macroblocks

0

1

2

3

4

5

6

7

8

9

10

0 20 40 60 80 100

Execution Time (microseconds)

P
e

rc
e

n
ta

g
e

 o
f

m
a

c
ro

b
lo

c
k

s

I macroblocks

0

2

4

6

8

10

12

14

16

0 20 40 60 80 100

Execution Time (microseconds)

P
e

rc
e
n

ta
g

e
 o

f
m

a
c

ro
b

lo
c

k
s P macroblocks

Figure 4.9: Execution time variations of P-skip, P and I macroblocks in the manitu.264 video stream.

cache effects) and application related factors. Figure 4.9 shows the distribution of execution times

for I, P and P-skip macroblocks. From the figure, we can see that the execution time of different P-

and I-macroblocks can differ by close to an order of magnitude. It is thus extremely important to

capture this variation in the form of a statistical model.

4.2 Statistical Models

In the following sections, we only focus on developing models and methods that make schedul-

ing decisions statically in the presence of variations. Even when scheduling is done dynamically,

statistical models are useful to capture unpredictable sources of variations such as cache misses and

bus arbitration effects. Since our modeling technique is based on profiling the application through

traces, such unpredictable sources of variations can be transparently incorporated. As in the static

delay model, we first describe the application model that describes the concurrent tasks and the

dependencies, the architecture model that exposes the parallelism in the architecture, and then the

performance model that estimates the performance of a task on a processing element.

102

4.2.1 Application Task Graph

We introduced the task graph model for static scheduling in Chapter 2. The task graph is a

directed acyclic graph (DAG) G = (V,E) with the vertexes V representing the set of tasks and the

edges E representing task dependencies and data transfers. Each task represents a set of instructions

that must be executed without pre-emption on a single processor. The dependence edges enforce

the constraint that tasks can start only after all their predecessors have finished executing. The

task graph is a specialization of the static dataflow (SDF) model of computation. In particular, it

represents an acyclic homogeneous data flow graph, where each task is executed exactly once in a

single run of the application and the order of execution respects the dependencies between tasks.

The static task graph model is directly applicable to the statistical scheduling problem if there

is no variation in task dependencies. The IPv4 packet forwarding application described in Sec-

tion 4.1.1 is an example of with deterministic dependencies. Figure 4.1 shows the task graph of the

IPv4 packet forwarding application. All dependencies between tasks are known at compile time. For

instance, while “Verify time-to-live” and “Verify checksum” can be executed in parallel, the “Up-

date checksum” task can only start after both the verify tasks complete. Another example of this is

in decoding the I-frames in the H.264 video decoding application. The task graph in Figure 4.7(a)

represents the decoding of a single I-frame of H.264, with each task decoding an I-macroblock.

Each I-macroblock depends on the macroblocks to its left, top, top-left and top-right (Figure 4.6).

Prob (current MB is of type I) = p

=> Prob. of existence of each edge = p

MB

MB MB

MB MB MB

MB MB MB MB

MB MB

MB

MB

MB
MB MB MB

MB
current

MB
P(I-MB) = p

ppp

p

(a) (b)

Each MB can have different

probabilities of being an I-MB

(p1) (p2) (p3) (..) (..)

Figure 4.10: (a) Probabilistic dependencies for a single task in a P-frame of a H.264 decoding task
graph. (b) shows a partial task graph for P-frames with more than one task.

Often, some or all of the dependencies between tasks cannot be completely determined at

103

compile time. Such a situation may occur because the dependencies are input dependent, as is

the case in the P-frames of the H.264 video decoding application. In this case, we modify the

task graph to add edge probability weights that indicate the statistical probability of the edge being

present. Figure 4.10(a) shows the dependencies for decoding a single macroblock of a P-frame in

H.264 decoding. While I-macroblocks depend on neighboring macroblocks, P-macroblocks have

no dependencies on macroblocks in the same frame. Thus the probability of a task representing an I-

macroblock determines the probability of the edges from tasks to its left, top, top-left and top-right.

Different macroblocks have different probabilities of being an I-macroblock. Thus the probabilities

on different edges can be different. A portion of the task graph for a P-frame of H.264 is shown in

Figure 4.10(b).

Formally, a statistical task graph is a DAG G = (V,E, L) with V and E representing the

set of tasks and (probabilistic) edges, and L : E → (0, 1] representing the non-zero probability

(likelihood) of each edge dependency. Edges with zero probability need not be represented in the

model. The presence of probabilistic edges cannot be easily handled in a static task graph model.

Each edge in a static model must either be present or not; and we have to be conservative in our

decisions so as to produce a valid schedule. Thus the static task graph would assume each edge with

non-zero probability to be present. As we shall see in Section 4.3.4, such worst-case assumptions

lead to a significant overestimation in application finish time.

4.2.2 Architecture Model

In Chapter 2, we introduced the (P,C) model for multiprocessor architectures. In the (P,C)

model, the multiprocessor network is modeled by a set of processors P connected by a set of direct

point-to-point links. The links are represented by C ⊆ P × P , the set of processors that are

connected to each other (Chapter 2). We use the same model for statistical scheduling as well.

4.2.3 Performance Model

In the previous sections, we developed a representation of the concurrency in the application

and the parallelism in the architecture. In order to determine the performance of a mapping of the

application to the architecture, it is important to annotate the task graph with a performance model.

In Chapter 2, we discussed the static delay model (G, w, c) where G = (V,E) denotes the static

task graph, w : V ×P → <+ with w(v, p) being a real valued constant denoting the execution time

of task v on processor p, and c : E × C → <+ with c(e, (p1, p2)) being a constant denoting the

104

communication latency of the data transferred along edge e on the link connecting p1 and p2..

However, as discussed in Section 4.1, the execution times of tasks can vary due to input depen-

dent control flow or due to the effect of architectural features such as caches. The communication

latency between tasks can also exhibit variance if the communication link is a bus with variance due

to bus arbitration, or is a packet-based network where packets may be retransmitted after a loss. In

such cases, the model cannot use real-valued constants to represent weights of tasks and edges. The

weights w(v, p) and c(e, (p1, p2)) are instead represented as random variables that can take values

in the set of real numbers <. The values taken by these random variables are encoded through their

probability distributions.

There have been previous attempts at characterizing execution times of tasks [van Gemund,

1996] [Gautama and van Gemund, 2000] [Iverson et al., 1999]. These can be primarily classified

into analytical and simulation based approaches. Analytical approaches build up the variability of

a task from the variability of each statement of code and the control structure of the code [Iverson

et al., 1999] [van Gemund, 1996]. These can be accurate for variations arising due to input depen-

dent execution traces. However, these are usually difficult to build, and cannot easily account for

random sources of variation such as bus arbitration effects. Simulation based approaches execute

the code with different inputs on a simulator of the platform or the real platform itself and obtain

the distribution of real execution times [Gautama and van Gemund, 2000]. Such an approach is

simpler but assumes access to the final platform. Frameworks consisting of a combination of the

two approaches have also been proposed [Yang et al., 1993].

In this dissertation, we use a simulation-based approach to characterizing the runtimes of dif-

ferent tasks. There are two types of variations we wish to capture: (1) variations in runtime due to

different inputs exciting different execution traces in the task and (2) variations in the runtime with

the same input across many runs due to cache effects or bus arbitration. To capture the first effect,

we simulate the runtimes of each task in the task graph with different inputs. To capture the second

effect, we simulate the runtimes of different tasks in the task graph a number of times while other

tasks are executing on different processors.

Representing distributions

The distribution of a random variable is commonly represented by means of its probability

density function (p.d.f). The probability density function of a random variable is a function whose

integral over a given interval gives the probability that the values of the random variable fall within

105

that interval. In case the random variable is discrete rather than continuous, the integral is replaced

with a summation over the discrete values that the random variable can take within the considered

interval.

In this work, we discretize all continuous random variables by binning the range of values that

the random variable takes and using the midpoint of each bin to represent all the values contained

in that bin. This enables us to uniformly represent all distributions by means of a probability dis-

tribution table. Such a table would contain entries of the form (variable range, probability), and

represents the probability that the random variable is in the specified range.

Assumption of task independence

The delay model for static performance estimation assumes that task execution times and com-

munication delays are independent. However, task execution times in many applications are cor-

related. The runtimes of the lookup tasks in the IPv4 application are shown to be correlated in

Section 4.1.1. For correlated random variables, individual probability distributions cannot be used

to represent distributions; we instead need to store the joint probability distribution tables of all

the correlated variables. Table 4.1 shows the joint probability distribution table of the lookup tasks

in IPv4 forwarding. The entries here are of the form (range1, range2, ... , rangen, probability),

which stores the joint probability that the value of random variable 1 lies in range1, the value of

random variable 2 lies in range2 and so on.

It may so happen that only certain sets of tasks have correlated execution times, while others

do not. In fact, the tasks in the IPv4 task graph of Figure 4.1 that are not lookups are independent

(and in fact have constant execution times). In this case, the joint probability distribution table only

needs to contain the correlated variables. Thus for our IPv4 application, we only require the joint

probability distribution of Table 4.1 and constant execution times for other tasks. The task graph for

the IPv4 application with the annotated probability distributions is shown in Figure 4.11.

For the sake of notational convenience, it is possible to consider constant static values as ran-

dom variables that take only one value. The probability distribution table then contains exactly one

entry: (value, 1.0). This indicates that the random variable only takes one value with a probability

of 1.0.

106

Receive

Route

lookup 1

Route

lookup 2

Route

lookup 3

Route

lookup 4

Route

lookup 5

Route

lookup 6

Route

lookup 7

Transmit

Verify

time to live

version

Verify

checksum

Update

time to live

Update

checksum

40

25

5 25
10

5

5 5 5 5 5 5

5

20 20 20 20

5 5

Execution

time

Execution

time probability

density function
0.003020202020202020
0.01552002020202020

0.0124200020202020
0.774420000202020

0.11312000002020

0.0816200000020

Stage 7Stage 6Stage 5Stage 4Stage 3Stage 2Stage 1
Prob.

Execution Time of Lookup Stages

Communication

time

5

Figure 4.11: Task graph for IPv4 packet forwarding annotated with the performance model.

4.2.4 Optimization Problem

The static scheduling optimization problem as described in Chapter 2 is to find (1) an allocation

of tasks to processors and (2) a start time for each task while respecting task dependency constraints

in order to optimize for the end-to-end finish time for the application or makespan (Section 2.1.4).

While the makespan for a static scheduling algorithm can be computed as a single number, this is

no longer the case for statistical scheduling. Since the execution and communication times are now

distributions, the makespan of a valid schedule is a distribution as well.

The focus of this work is on soft real-time applications where not all the inputs in the input

stream need be processed. Such applications instead have a fixed statistical requirement on the

percentage of all inputs that must be processed. For instance, an IPv4 packet forwarding algorithm

may only require that 99% of its input packets are processed. For such applications, the performance

of the application is not accurately measured by the worst or average case value of the makespan

distribution, but rather by a fixed percentile of the makespan distribution. The η’th percentile of a

distribution (0 ≤ η ≤ 100) is defined as the value below which η% of the observations of the distri-

bution fall. For the IPv4 forwarder that requires 99% of all inputs to be processed, the performance

of the application is measured as the 99th percentile of the makespan distribution of the forwarder.

The required guarantee η on the percentage of inputs to be processed depends on the application

and the quality of service that is needed. It is common for IP forwarding to have different quality

107

of service requirements for different classes of traffic. In such a context, the value of η is often an

additional parameter for performance analysis.

A scheduling algorithm based on this metric of performance analysis must then take in η as a

parameter. In this work, we consider the required percentile η to be one of the inputs to our sched-

uler. The objective of the scheduling problem is to then find an allocation and schedule to minimize

the ηth percentile of the makespan distribution. In order to solve this optimization problem, we must

first be able to evaluate the objective function for a given allocation and schedule. The problem of

computing the ηth percentile of the makespan given a valid allocation and schedule is called the

statistical analysis problem.

4.3 Statistical Performance Analysis

In this section, we consider the problem of computing a required percentile of the makespan

given a valid allocation and schedule. We first proceed by defining a valid allocation and schedule.

4.3.1 Valid allocation and schedule

Given a statistical task graph G = (V,E, L), an architecture model H = (P,C), and a per-

formance model (w, c), we define a valid allocation A : V → P that assigns every task in V to a

single processor in P . As in Chapter 2, we do not consider the more general case where a single

task is broken up into smaller tasks. Given a particular A, the communication delay between tasks

v1 and v2 is defined as c(e, (A(v1), A(v2))), where e = (v1, v2) represents the edge between tasks

V1 and v2, and (A(v1), A(v2)) represents the communication link between processors A(v1) and

A(v2). A schedule is a function S : V → D, which assigns a random variable d ∈ D as the start

time of the task. The random variable d only takes values from the non-negative real numbers, and

is represented by its probability density function pd where for each x ∈ <+, pd(x) = Prob(d = x).

For the schedule to be valid, it must satisfy two constraints:

∀(v1, v2) ∈ E (dependence constraints),

(a) S(v2) ≥

S(v1) + w(v1) + c((v1, v2), (A(v1), A(v2))) with probability L(v1, v2),

0 with probability 1− L(v1, v2).

∀v1, v2 ∈ V, v1 6= v2 (ordering constraints),

(b) A(v1) = A(v2) ⇒ S(v1) ≥ S(v2) + w(v2) ∨ S(v2) ≥ S(v1) + w(v1)

108

Constraint (a) enforces that the task dependencies are met probabilistically: a task can start

only after all its predecessors complete. However, this constraint only holds with the probability of

the edge dependency L(v1, v2). If the dependence does not exist (probability 1 − L(v1, v2), then

there is no constraint imposed on the start time of task v2, represented as S(v2) ≥ 0. We can

interpret this constraint as follows: at run time, given a stream of inputs, a certain fraction of those

inputs will result in a particular edge dependency (v1, v2) begin present. For those inputs, a run

time system delays the execution of task v2 until task v1 is complete. For other inputs where the

dependency does not exist, task v2 is allowed to run at any point of time. The probabilistic constraint

captures both these scenarios and computes the probability distribution of the start time of task v2.

We can rewrite constraint (a) as:

(a′) S(v2) ≥ L(v1, v2) ∗ (S(v1) + w(v1) + c((v1, v2), (A(v1), A(v2))))

where the operation k ∗ D, k being a constant (0 ≤ k ≤ 1) and D being a distribution is defined by

the following procedure: multiply each probability in the probability distribution table correspond-

ing to D by k. If distribution D already takes the value 0 with some non-zero probability pD(0),

then add (1−k) to pD(0); else add a new entry of 0 to the table with probability = (1−k). We note

that (a’) is merely a short form representation for the operation in (a).

Constraint (b), as in the static case enforces a total ordering of the set of all tasks assigned to

a processor. There is no probabilistic nature to these inequalities, since they arise due to the hard

constraint that tasks allocated to a single processor should not overlap. It is possible that two tasks

v1 and v2 are assigned to the same processor may already have a dependence edge (v1, v2) between

them in G. In such a case, constraint (b) implies that S(v2) ≥ S(v1) + w(v1), which is stronger

than constraint (a) for that edge. Hence constraint (a) is unnecessary for such pairs of tasks.

4.3.2 Formulation of the performance analysis problem

The makespan of a valid allocation and schedule is defined as the ηth percentile of maxv∈V S(v)+

w(v,A(v)) for a given η. The performance analysis problem comes down to computing this quan-

tity. In the following sections, we consider the problem of obtaining the makespan distribution.

Given the makespan distribution, we can easily read off the required percentile as the makespan.

Given the task graph G(V,E, L), an allocation A and a schedule S, we can capture the schedule

graphically by by adding additional edges to the task graph. Define

E′′ = {(v1, v2) /∈ E|A(v1) = A(v2) ∧ S(v2) ≥ S(v1) + w(v1)}

109

Receive

Route

lookup 1

Route

lookup 2

Route

lookup 3

Route

lookup 4

Route

lookup 5

Route

lookup 6

Route

lookup 7

Transmit
Verify

TTL

Verify

CS

Update

TTL

Update

CS

(a)

Receive

Route

lookup 1

Route

lookup 2

Route

lookup 3

Route

lookup 4

Route

lookup 5

Route

lookup 6

Route

lookup 7

Transmit
Verify

TTL

Verify

CS

Update

TTL

Update

CS

(b)

Figure 4.12: Two valid schedules for the task graph in Figure 4.1. The dashed edges represent the
ordering edges.

to be the set of ordering edges that define the total order in which tasks allocated to the same

processor execute. Define G′ = (V,E′, L′) where E′ = E ∪ E′′ and

L′(e) =

1.0 if e ∈ E′′

L(e) if e /∈ E′′ ∧ e ∈ E′′

G′ is the graph with the ordering edges added. The probability of each of the ordering edges is set

to 1. In case there is an edge e that is both a dependence and ordering edge, then the probability

of existence of the edge is replaced by 1. G′ remains a directed acyclic graph for a valid schedule.

Analysis of the schedule is then a longest path computation on G′, which can be computed with a

breadth-first traversal of G′. Figure 4.12 shows two valid schedules for the IPv4 forwarding appli-

cation. The dashed edges represent the ordering edges. All edges in the graph have a probability of

1.

The challenge in computing the longest path comes from the fact that each node execution

time and edge communication time is an arbitrary random distribution expressed as an (individual

or joint) probability distribution table. Furthermore, the dependence edges are probabilistic as well,

requiring manipulation of the probability distribution tables. When traversing each node v of the

110

graph in a breadth-first manner, the following operation needs to be performed:

max
u:(u,v)∈E

L(u, v) ∗ (S(u) + w(u) + c((u, v), (A(u), A(v))))

There are thus three types of operations involved in the longest path computation: (1) sum of execu-

tion and communication times along a path of the graph and (2) max of arrival times at nodes with

more than one incoming edge and (3) performing the ∗ operation. These operations must be carried

out statistically, taking into account the distributions and potential correlations between different

distributions.

4.3.3 Types of performance analysis

The techniques used in solving the statistical performance analysis problem depend on the

statistical model used. In this section, we shall describe techniques to analyze the general statis-

tical model that we described in the previous section. We justify our need for a general model in

Section 4.4.

Exact Performance Analysis

An exact analysis aims at computing the exact distribution for the longest path of the scheduled

task graph G′ described in Section 4.3.2. The key components to the analysis are computing the

sum, max and ∗ operations on a set of random variables. Of these, the third operation involves a

direct manipulation of the probability distribution tables as already described in Section 4.3.2. It

then remains to compute the sum and max of arbitrary random distributions.

We first assume that A and B are independent distributions. Let C = A + B be the sum of

these two random variables. For this case, the probability distribution of C (pC) is known in the

literature to be the convolution of the probability distributions of A and B and is represented as

pC = pA ◦ pB [Freedman et al., 2007]. pC is computed as:

pC(x) = pA ◦ pB =
∑

y∈RA

pA(y) · pB(x− y)

The sum of more than two distributions Sn = X1+X2+· · ·Xn can be computed using associativity

of the summation operator as Sn = Sn−1 + Xn, where sn−1 = X1 + x2 + · · ·Xn−1.

The probability density function of the maximum of random variables is hard to compute

directly. Instead, we can compute the cumulative probability distribution function, defined as

111

PA(x) =
∑

y≤x pA(y). Given distributions A and B with cumulative probability distributions

PA and PB , we can compute the cumulative probability distribution of D = max(A,B), PD as:

PD(x) = PA(x) · PB(x)

The probability density function pD(x) can be computed from PD by successive differences be-

tween adjacent PD values.

However, the assumption of independence of variables is inaccurate. There are many sources

of correlation between these variables including: (1) the individual task execution times or commu-

nication times may in themselves be correlated due to the nature of the application (as in IPv4 packet

forwarding), or (2) even if individual task execution times are independent, the execution times of

the sums of task execution times along different paths may be correlated. As a simple example, the

execution times of paths A → B and A → C are correlated because the two paths share a common

task A. If both these paths are inputs to task D, then we cannot use a simple max computation as

outlined above to compute the start time of D.

The only way to compute exact sum’s and max’s in the presence of arbitrary correlations is a

brute-force approach of trying every possible combination of values of each of the random distribu-

tions involved. For instance, to compute D = max(A+B,A+C), we need to consider each triplet

of values of (a ∈ A, b ∈ B and c ∈ C), and compute max(a+b, a+c) for each such triplet, with the

corresponding probability of P (A = a∧B = b∧C = c). If each of A, B and C can take k values,

then this computation involves order of k3 computations. Each of these computed values can be

unique: the probability density function of D can contain up to k3 values. These values needs to be

propagated on to the successors of D in the task graph, and can be involved in further correlations.

In the worst case, each combination of the set of all random variables in the task graph needs to

be considered for computing the makespan distribution. In general, in order to compute the longest

path of a graph with n variables each of which can take k distinct values, we need to perform order

of kn computations, which is exponential in n. Thus computing the exact makespan distribution is

usually intractable. This motivates the use of approximations for computing the performance of the

application. We now describe one such approximation based on a commonly used technique called

Monte Carlo statistical analysis.

Monte Carlo Analysis

Monte Carlo methods rely on repeated random sampling to perform statistical analysis. Monte

Carlo simulations are typically used when exact approaches are impossible or infeasible due to com-

112

putational requirements [Hubbard, 2007]. Each random sample in a Monte Carlo simulation gives

us a particular value that the required distribution can take. As the number of samples increases,

the frequency of these values approximates the required distribution. Monte Carlo methods rely on

the laws of large numbers to ensure that the estimate converges to the correct value as the number

of draws increases. Monte Carlo simulations have been used in a number of applications related

to insurance risk analysis [Vose, 2008], computational finance [Glasserman, 2004], computational

physics and computational mathematics among many others.

A general Monte Carlo simulation has the following steps:

1. Define the domain of possible inputs

2. Generate random inputs from the domain according to the given probability distributions and

perform a deterministic computation on these inputs

3. Combine the computational results of all deterministic runs to give the aggregate result

We now discuss the application of Monte Carlo simulations to computing the makespan distri-

bution of a scheduled task graph. We begin by noting that the domain of possible inputs is defined in

the statistical model. There is a first set of random variables corresponding to the edge probabilities

L. Further, under the assumption that each probability distribution table (joint or individual) is in-

dependent of all other tables, each of these distributions represents an independent random variable

with the domain being the set of entries in the table. Each individual probability distribution table

represents one execution or communication time variable; while a joint table corresponds to more

than one original execution or communication time variables. The assumption of independence of

probability distributions may not hold in cases where a subset of random variables in two joint prob-

ability distributions are shared. In such cases, we will combine the two tables with a single joint

probability distribution, which will then satisfy the assumption.

Each independent random variable corresponding to an edge probability or a probability dis-

tribution table must be sampled according to the respective distributions. For each edge e with

a probability of existence l(e), this is achieved by choosing a random number r uniformly in the

range [0,1], and choosing the edge to be present if r < l(e). A similar scheme is used to sample the

probability distribution tables of execution and communication times. For a table with two entries

with probabilities 0.6 and 0.4 respectively, we must ensure that the first entry is chosen in 60% of all

samples and the second is chosen 40% of all samples. A common method of sampling probability

distribution tables is by generating uniformly distributed random numbers in the range [0,1] and us-

113

ing the inverse of the cumulative probability distribution function to obtain the sample. In the above

example, we would generate uniform random numbers in the range [0,1]. The cumulative proba-

bility distribution table for this example is F (x) = 0.6, x ≤ entry1, 1.0 otherwise. The inverse

of this function is F−1(y) = entry1, y ≤ 0.6, entry2 otherwise. We would choose the first entry

whenever the uniformly generated random number is ≤ 0.6 and use the second entry otherwise. We

can easily see that this would gives us the right percentage of both entries with sufficient samples.

A similar procedure is used to sample joint probability distribution tables, except that each sample

corresponds to more than one (dependent) random variable value.

After samples have been generated for all tables, we take the first sample of all independent

random variables (one for each table) and use the deterministic value obtained for all the execution

and communication times (the dependent random variables) to perform a deterministic analysis

of makespan. Deterministic analysis boils down to a linear time longest path computation on the

scheduled DAG. This procedure is then repeated for other samples, yielding a sequence of makespan

values. This is then aggregated into a probability distribution function for the makespan.

The main advantage of using Monte Carlo techniques for statistical analysis is that it is a

very general method that can be used with any type of random distributions. Further, the method

inherently takes into account any correlations between the random variables. This generality does

come at a cost: Monte Carlo simulations rely on the law of large numbers to achieve convergence

to the exact distribution. It is typical to require a large number of iterations (∼1000) to reduce the

error from the exact distribution to acceptable levels. It has been shown that the error of Monte Carlo

simulations from the exact solution ε ∝ c√
n

, where n is the number of Monte Carlo simulations and

c is a constant depending on the nature of the distributions involved. This proportionality has two

important consequences: (1) the rate of convergence is independent of the number of variables,

except insofar as it affects the constant term (typically small), and (2) there is a law of diminishing

returns with respect to errors - in order to achieve one order of magnitude improvement in error, we

require to perform 100 times as many iterations.

In order to judge the accuracy of Monte Carlo for our problem, we compare Monte Carlo

makespan distributions to that obtained from the exact performance analysis procedure described

earlier in this section. A common metric used to judge the difference between two discrete distribu-

tions is the chi-squared difference, defined as

χ2 =
k∑

i=1

(pMC(i)− pexact(i))2/pexact(i)

114

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

1 10 100 1000 10000

Number of Monte Carlo iterations

E
r
r
o

r

Figure 4.13: χ2 error for Monte Carlo analysis with varying numbers of Monte Carlo iterations
versus exact analysis for a 4-port IP forwarder.

where pMC and pexact denote the probability density functions of the makespan obtained by Monte

Carlo analysis and exact analysis respectively, and i ranges over the set of discrete values that

are taken by these probability distributions. Figure 4.13 shows the χ2 error of the Monte Carlo

simulations versus exact analysis for an average of 10 schedules for a 4-port IP forwarder (the task

graph of Figure 4.1 was replicated four times). The figure indicates that there is not too much

improvement in error to be had after about 1000 iterations. In the rest of this dissertation, we use

Monte Carlo with 1000 iterations for analysis.

Deterministic Scenario based analysis

A deterministic approach to analyzing statistical task graphs is to use corner-case or common-

case estimates on each random variable present in the graph. Since we are usually interested in

solving the analysis problem for a high value of η (the input percentile) to provide high guarantees

on makespan, a typical approach is to use worst-case estimates on all random variables. In particular,

we replace the statistical task execution and communication times by their worst-case values. We

also replace the statistical probability of each dependence edge with a deterministic probability of

1.0. We then perform a deterministic analysis (Section 2.2) on this deterministic task graph. This

method assumes that all individual random variables will simultaneously attain their worst-case

values. Consequently, this method is conservative and produces an upper bound to the statistical

115

analysis result.

Another deterministic approach is to use the most dominant execution trace to provide de-

terministic values for the random variables. Such a scheme approximate individual execution and

communication times by their most common values, and retains only those dependence edges have

a probability of existence greater than 0.5. All ordering edges have a probability of existence greater

than 0.5 and will be retained. Of course, the result of such an analysis will not result in a valid set of

start times for tasks during the actual application execution. It is expected that certain tasks (at least

for some inputs) will be scheduled to start before their inputs arrive. It is important to realize, how-

ever, that the intent of statistical analysis is only as a mechanism for comparing different schedules.

Using the makespan under the common-case assumption does serve this purpose. During the actual

application execution, the start times of tasks are ignored; only the ordering of tasks is retained.

We shall describe this mechanism later in Section 5.2.3 of Chapter 5. Using the common-case es-

timates for task dependencies and execution and communication times does give a good estimate

of the mean makespan of the application, but does not accurately measure high percentiles of the

makespan. In general, common-case analysis yields a heavy underestimate of the actual makespan.

An extension to using the most common case behavior is to use a set of most likely scenarios.

Such an approach has been proposed in [Gheorghita et al., 2008]. The idea here is that schedules

can be found for each individual scenario and a run-time system dynamically chooses between such

scenarios depending on application inputs. While such techniques are useful if there is a small

set of scenarios that can be pre-characterized, it is in general hard to obtain a comprehensive set

of such scenarios. Moreover, the effects of architecture-related variations are not easily captured

through this method. Our statistical analysis based technique relies entirely on simulations to obtain

variations, and does not require pre-characterization into scenarios.

4.3.4 Comparison of Statistical to Static Analysis

As outlined in the previous section, there are different analysis techniques that can be used to

compute makespan in a statistical context: exact analysis, Monte Carlo analysis and deterministic

analysis. These techniques trade-off performance for accuracy of analysis. While exact techniques

are the best in terms of accuracy, they rapidly become computationally infeasible for task graphs

with more than a few 10’s of independent random variables. The accuracy-runtime tradeoff can

be tuned in Monte Carlo analysis by adjusting the number of Monte Carlo iterations as shown in

Section 4.3.3. Monte Carlo techniques provide good accuracy at reasonable runtimes when we have

116

only a few hundred random variables. Deterministic analysis can be done very efficiently, but is

inaccurate. The choice of using deterministic or Monte Carlo techniques depends on the extent of

the inaccuracy of deterministic analysis and how it affects the quality of the schedule generated. In

this section, we compare the accuracy of statistical Monte Carlo analysis to deterministic worst-case

and average-case analysis.

Header In

P1

M1 M2

FSL FSL FSL FSL
MicroBlaze MicroBlaze MicroBlaze

BlockRAM BlockRAM

Route

Table

Route

Table

OPB

Header Out

P2 P3

OPB

Figure 4.14: Architecture model of a soft multiprocessor composed of an array of 3 processors.

Consider the task graph for IPv4 packet forwarding in Figure 4.11 that has been annotated with

the performance model. We consider possible mappings of this application onto the architecture

model in Figure 4.14. This architecture model is an abstraction of a soft multiprocessor system with

three MicroBlaze processors connected in a pipeline using FIFO channels, with processors 2 and 3

connected to the on-chip route table.

For the two schedules shown in Figure 4.12, we run 1000 Monte Carlo simulations of the

scheduled graph to obtain the Monte Carlo makespan distribution. For η = 99%, we compare the

99th percentile of the makespan to the deterministic estimates obtained by individually raising each

task execution time to its worst-case estimate. The results of the comparison of Monte Carlo to the

deterministic estimates is shown in Figure 4.15. For comparison, the exact makespan distribution

is also shown in the same figure. From Fig. 4.15, we can conclude that Monte Carlo analysis

is very accurate with respect to exact analysis. In contrast, the deterministic worst-case analysis

overestimates the Monte Carlo makespan at η = 99% in both schedules (a) and (b). Further, the

worst-case estimate does not overestimate both schedules evenly: it is more accurate for schedule

(a) than schedule (b). A scheduling technique based on worst-case estimates would conclude that

both schedules (a) and (b) have a makespan of 165, and are therefore equally good. However, the

Monte Carlo simulations clearly indicate that schedule (b) is better than (a) at η < 99.7%, with a

makespan of 145 for schedule (b) rather than 150 for schedule (a). In general, worst-case estimates

can yield unpredictable accuracy in makespan estimates, thereby misleading a scheduling algorithm

into making wrong scheduling decisions.

117

0

0.2

0.4

0.6

0.8

1

125 130 135 140 145 150 155 160 165

Makespan

P
ro

b
a

b
il
it

y

Exact Analysis

Monte Carlo,

1000 iterations

Det. worst case

makespan

Statistical makespan

at η > 99.7%

Det. avg. case

makespan

Statistical makespan

at η < 99.7%

0

0.2

0.4

0.6

0.8

1

125 130 135 140 145 150 155 160 165

Makespan

P
ro

b
a

b
il
it

y

Exact Analysis

Monte Carlo,

1000 iterations

Det. worst case

makespan

Statistical makespan

at η > 99.7%

Statistical makespan

at 98.1% < η < 99.7%

Det. avg. case

makespan

Statistical makespan

at η < 98.1%

(a)

(b)

Figure 4.15: Analysis results for schedules (a) and (b) in Figure 4.12.

Another drawback of deterministic analysis is that the worst-case estimates are not sensitive to

the required percentile, while the actual makespan depends on the required percentile. From Fig-

ure 4.15, we can also obtain the 95% percentile of the makespan distributions of the two schedules

(which can be obtained by merely reading off a different percentile, once Monte Carlo analysis is

done). We find that at a percentile of 95%, it becomes even more important to choose schedule

(b) over (a): the makespan of schedule (b) is now 125, compared to 150 for schedule (a). How-

ever, the deterministic analysis is unaware of the percentile and still considers the two schedules to

118

be equivalent. In general, the inaccuracy of deterministic worst-case analysis becomes even more

pronounced at lower percentiles, as we move away from the worst-case assumption.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

125 130 135 140 145 150 155 160 165 170 175 180 185 190

Makespan

P
ro

b
a

b
il
it

y

Exact Analysis

Monte Carlo,

1000 iterations

Det. worst case

makespan

Stat. makespan

at η > 99.7%

Stat. makespan at

98.1% < η < 99.7%

Stat. makespan at

96.9% < η < 98.1%

Det. avg. case

makespan

Stat. makespan at

19.4% < η < 96.9%

(c)

Receive

Route

lookup 1

Route

lookup 2

Route

lookup 3

Route

lookup 4

Route

lookup 5

Route

lookup 6

Route

lookup 7

Transmit
Verify

TTL

Verify

CS

Update

TTL

Update

CS

Figure 4.16: A third schedule for IPv4 packet forwarding and the corresponding analysis result.

Using the most common execution times for each task (for the task graph in Fig 4.11, this

would correspond to the third row of the probability distribution table with 4 active lookup stages)

is an alternative to worst-case analysis. However, considering the common case does not improve

the accuracy of the analysis. Figure 4.15 also shows the makespan estimates obtained by common-

case analysis for schedules (a) and (b). We can see that the analysis significantly underestimates

the makespan in both schedules at high percentiles. Common-case analysis also has the potential to

mislead scheduling algorithms. For instance, consider a third schedule (c) for IPv4 forwarding and

the corresponding analysis result in Figure 4.16. Common-case analysis judges this schedule (c) to

have a makespan of 130 and thus better than schedule (a) with a makespan of 150. However, from

the Monte Carlo analysis, we can see that at η = 99%, schedule (a) is actually significantly better

119

than schedule (c).

0

5

10

15

3 9 15 21 27 33 39 45 51 57 63

% makespan difference from Monte carlo

simulations

P
e
rc

e
n

ta
g

e
 o

f
to

ta
l
s
c
h

e
d

u
le

s

Figure 4.17: Histogram of the percentage differences between worst-case deterministic analysis
and Monte Carlo analysis for a set of 1000 schedules for H.264 decoding on manitu.264. The
deterministic analysis is uneven in its estimation of makespan.

These results also hold for other applications as well. In particular, worst-case overestimates

the actual makespan and common-case analysis typically underestimates it; moreover, they do so

unevenly. Figure 4.17 shows a histogram of the percentage differences between deterministic worst-

case estimates and Monte Carlo analysis for a set of 1000 different schedules in a frame of H.264

decoding for the manitu.264 video stream. We use the execution time distributions as shown in

Figure 4.9. There is a large spread in the accuracy of the deterministic worst-case estimate with

respect to Monte Carlo values. Any optimization method based on this analysis is thus sub-optimal.

4.4 The need for generalized statistical models and analysis

We have so far described a very general method of representing variations based on joint and

independent probability distribution tables. Statistical models have been previously used in de-

scribing statistical variations in gate delays in circuits for timing analysis [Orshansky and Keutzer,

2002][Visweswariah et al., 2006][Najm and Menezes, 2004], representing activity time distribu-

tions in project management using the Program Evaluation and Review Technique (PERT) [Kerzner,

2003] [Klastorin, 2003] and financial modeling for risk analysis [Ruppert, 2006][Lai and Xing,

2008]. The approach used in these cases have been to model the statistical variations in the form

120

of specialized distributions such as normal distributions in circuit analysis [Visweswariah et al.,

2006][Orshansky and Keutzer, 2002], or beta [Gupta and Nadarajah, 2004] or triangular distribu-

tions [van Dorp and Kotz, 2002] in project management. Using specialized distributions can enable

analytical approaches to analysis [Visweswariah et al., 2006] [Orshansky and Keutzer, 2002] or

analysis based on table lookups [Sinha et al., 2007]. The key feature that enables the normality

assumption in circuit analysis is the central limit theorem [Rice, 1994], which posits that the sum of

a large number of random variables is approximately normally distributed. The number of random

variables present in circuit analysis is indeed in the thousands to millions; hence the normality as-

sumption is usually valid. However, the number of tasks usually present in application task graphs

is at most a few hundred; hence the resulting makespan distributions are often not normal. In fact,

the distributions need not even be continuous; we see this in the IPv4 packet forwarding example.

Analysis of models with asymmetric and discrete random distributions requires a general approach.

Such general analysis approaches are computationally more expensive than analytical approaches.

The need to keep analysis simple at a time when computational resources were limited led to the

use of beta and triangular distributions for project management. However, increasing computing

resources has made more accurate analysis techniques such as Monte Carlo simulations feasible.

Such general approaches are also seen in financial risk analysis, where the distributions are simi-

larly complex [Ruppert, 2006][Lai and Xing, 2008].

4.5 Conclusions

In this chapter, we described extensions to the application and performance models used in

compile-time scheduling in order to capture variations in application performance. The variations

in application performance arise due to input data dependent executions and jitter in memory access

times inside the application. For the sake of the accuracy of performance modeling, it is necessary

for the variability in such applications to be captured. In this work, we proposed to capture the

variations using statistical models for task dependencies as well as task execution and communica-

tion times. The importance of capturing these variations inside a scheduling approach is two fold:

(1) it allows for more accurate estimations of the makespan of the scheduled application, and (2)

optimization techniques can rely on these better estimates of performance to yield more optimal

schedules. In order to achieve accurate estimates of application makespan, we proposed a Monte

Carlo based statistical performance analysis procedure. We shall show over the next two chapters

how this procedure is used inside statistical optimization algorithms for compile-time scheduling.

121

In this chapter, we studied the performance variations present in two applications: IPv4 packet

forwarding and H.264 video decoding. These two applications show differing extents of variation in

performance. An application like H.264 is highly control dominated. Execution times of individual

macroblocks can vary by an order of magnitude depending on macroblock type and memory access

times. It is of high importance to account for the variability when scheduling such applications.

The variations in IPv4 forwarding is somewhat more limited in scope: only the lookup tasks of the

forwarder exhibit variability in execution times. As such, it may not be as important to account

for the variability in applications such as IPv4 forwarding. However, it is important to note that

applications in many fields are becoming more complex and control-dominated. For instance, in

the video codec space, we observe that the trend has been from simple and less efficient coding

schemes like Motion-JPEG and MPEG-1 towards more efficient but logically complex and control-

dominated coding schemes such as H.264. We expect similar trends in other application areas such

as networking as standards such as IPv6 and video telephony come in. As such, we expect the

importance of accounting for variations in applications to increase.

122

Chapter 5

Statistical Optimization

In Chapter 4, we motivated the need to account for the variations present in applications in the

form of task execution times and dependencies during task allocation and scheduling. We captured

the variations in applications using a statistical model. We then defined the optimization problem of

obtaining a task allocation and schedule that minimizes a given percentile of the makespan distri-

bution of the application. As a first step to solving this problem, we presented a Monte-Carlo based

analysis procedure to obtain the makespan distribution (and the required percentile) given a valid

task allocation and schedule. In this chapter, we use this procedure to develop optimization pro-

cedures to find the task allocation and schedule that minimizes a given percentile of the makespan

distribution. In particular, we develop statistical analogues to the heuristic and simulated anneal-

ing optimization techniques used in the task allocation and scheduling problem for static models as

described in Chapter 2.

5.1 Statistical task allocation and scheduling onto multiprocessors

We present a brief summary of the statistical task allocation and scheduling problem presented

in Section 4.2.4. The inputs to the optimization problem are a task graph G(V,E, L), the perfor-

mance model (w, c) of the application and the architecture model (P,C). The nodes V of the graph

represent the tasks in the application and the edges E represent the dependencies between tasks.

L defines the probability of existence of each edge. The performance model parameters w and c

represent the statistical distributions of the execution and communication times of the tasks. The

architecture model is defined by P , the set of processors in the architecture, and C, the communi-

cation links between these processors. The output of the optimization is a valid allocation A that

123

maps tasks onto processors and a schedule S that orders tasks assigned to each processor. The allo-

cation and schedule must respect the dependencies in the application (Section 4.3.1). The objective

of the optimization is to obtain the best makespan for the application. However, in the presence

of variations in task execution times and dependencies, the makespan is not a single number but is

also variable. A useful optimization metric for soft real-time applications is to optimize for a fixed

percentile η of the makespan distribution of the application. Such an optimization provides the best

possible guarantee on the performance of the application while meeting a required Quality of Ser-

vice (QoS) guarantee. For example, an IPv4 packet forwarding application may require that 99% of

its inputs complete within a specified time frame. In this case, the makespan is best measured as the

99th percentile of the makespan distribution. The fixed percentile η is an user-defined input to the

optimization problem that is dependent on what QoS needs to be guaranteed for the application.

The optimal task allocation and schedule depends on the percentile of makespan that is being

considered. For instance, in Section 4.3.4, we compared the makespans obtained from three differ-

ent schedules (shown in Figures 4.12 (a) and (b), and Figure 4.16) for the IPv4 packet forwarding

application mapped onto a pipeline of three processors, and showed the schedule in Figure 4.12(a)

has the best 95th percentile of makespan (among the three schedules), while the schedule in Fig-

ure 4.12(b) has the best 99th percentile of makespan. Since the optimality of a schedule is influenced

by the given percentile, any optimization procedure for the statistical task allocation and scheduling

problem must take the percentile as an input and must be tuned for specific percentiles.

5.2 Techniques for Statistical Optimization

In this section, we will discuss two techniques for solving the statistical task allocation and

scheduling problem. The first of these is a variant of the dynamic list scheduling algorithm which

was described in Section 2.3.1. The second is a simulated annealing algorithm which can be adapted

with very little change from the algorithm in Section 2.3.2. These two techniques offer different

tradeoffs between the quality of the schedule and the time taken to compute the schedule.

The difference between the algorithms described in this chapter and those in Chapter 2 arise

from the variations present in the statistical models. In the presence of variations, the conditions for

the validity and optimality of schedules varies from those for a static model. Further, the makespan

results must be customized to specific percentiles. We describe below how we adapt the heuristic

and simulated annealing algorithms to meet these requirements.

124

5.2.1 Statistical Dynamic List Scheduling

Dynamic List Scheduling(DLS) is a popular heuristic algorithm that has been widely used in

multiprocessor scheduling problems. The algorithm was initially developed for scheduling task

graphs with static performance models onto fully connected multiprocessors [Sih and Lee, 1993].

We have shown in Chapter 2 that the DLS algorithm produces close to optimal solutions for static

models and fully connected architectures. Since heuristics like DLS offer the promise of quickly

obtaining close to optimal solutions (for certain architectural topologies), they form an important

part of a toolbox of scheduling solutions.

In this section, we describe how to implement the DLS algorithm for statistical models. We first

summarize the algorithm presented in Chapter 2 for static application models, and then highlight

the changes that we need to make for statistical models.

In Section 2.3.1, we described a dynamic list scheduling heuristic for solving the task alloca-

tion and scheduling problem with static models. Algorithm 2.1 presented the structure of such an

algorithm. The algorithm proceeds as a sequence of iterations. Each iteration involves allocating

and scheduling a single task to a processor, while keeping in mind the scheduling decisions made

in previous iterations. Recall that the key step in the dynamic scheduling algorithm is to define a

priority metric (called the dynamic level) that decides the next task to be allocated and the proces-

sor to which it is allocated. This metric is recomputed at each iteration of the DLS algorithm of

Algorithm 2.1 and is hence “dynamic”.

The algorithm that defines the dynamic levels given a partial allocation A and schedule S was

described in Algorithm 2.2. The dynamic level of a (task v, processor p) pair is computed as the

difference between (1) the static level of the task (represented as SL(v) in Algorithm 2.2) which

is the longest path from the node representing task v to any other node in the task graph, and (2)

the earliest start time of the task v on the processor p (represented as ES(v, p, A, S)). The (task,

processor) pair with the highest dynamic level is chosen for allocation at each step. The static

level SL(v) of a task is computed by a breadth-first longest path computation on the task graph G.

The earliest start time of a task on a processor ES(v, p, A, S) is defined as the maximum of two

parameters: DA(v, p, A, S) which represents the earliest time that all predecessors of task v finish

executing and communicating their results to v, and TF (p, A, S) which represents the earliest time

that processor p is free after executing all tasks assigned to it so far. Both DA and TF depend on

the partial schedules computed so far.

125

Dynamic levels for statistical models

The key difference between the DLS algorithms for static and statistical models lies in the

definition and computation of the dynamic level metric. In the presence of variability in task exe-

cution times and dependencies, both the static levels SL and the earliest start time of the task on

a processor ES are statistically varying quantities. In order to compute these values, we can use

our statistical analysis procedure described in Chapter 4. Recall that our statistical analysis pro-

cedure is based on a Monte Carlo simulation procedure. In Section 4.3.3, we described the key

steps in the analysis. As a first step, we randomly pick a set of 1000 samples for all execution and

communication times and dependencies in the task graph. In order to compute the static level, we

must perform (for each sample) a standard linear-time longest path computation from each node

in the task graph. We then obtain a set of 1000 values for the static level SL(v) for each node v.

We then aggregate all SL(v) values obtained into a probability density function for each task. We

can adopt a similar procedure for computing the earliest start time of task v on processor p. We

perform this computation by adding a set of ordering edges representing the partial schedule A and

S computed so far (Section 4.3.2). We can then directly compute the earliest start time of a task

on a processor ES(v, p, A, S) = max{DA(v, p, A, S), TF (p, A, S)} as the longest path from any

node in the graph to node v, taking care to add communication times between tasks that are allo-

cated to different processors. This technique is analogous to the makespan computation procedure

of Section 4.3.2, with the notable difference that the allocation A and schedule S constitutes an

intermediate solution where not all tasks have been allocated or scheduled, and hence does not fully

satisfy the constraints of the optimization problem.

Given the distributions of the static levels SL(v) and earliest start times ES(v, p, A, S), we

can also compute the dynamic level, defined as the difference between these two values, as a distri-

bution. However, the characterization of the dynamic level as a distribution is unsatisfactory as we

need to be able to compare dynamic levels for different pairs of tasks and processors. Further, the

comparisons between different dynamic levels must depend on the required percentile of makespan

η, since the quality of a schedule depends on the percentile.

In order to achieve both these aims, it is most convenient to define the dynamic levels as a single

number that is dependent on the value of η, the required percentile. We achieve this by defining the

statistical dynamic level of a (task v, processor p) pair SDL(v, p, A, S) as the difference between

the ηth percentiles of SL(v) and ES(v, p, A, S). The ηth percentiles of SL(v) and ES(v, p, A, S)

distributions are defined to be the statistical static level SSL(v) and the statistical earliest start times

126

SES(v, p, A, S) respectively.

SDL(v, p, A, S) = SSL(v)− SES(v, p, A, S)

where

SSL(v) = ηth percentile of SL(v)

SES(v, p, A, S) = ηth percentile of ES(v, p, A, S)

src

X1

Z

0

0

0

5

0.23

0.81

ProbabilityEx. Time

X1Proc. 1

Proc. 2

0 1 2 3

Partial allocation and schedule

Y

4 5

20

src

ES(Y, proc. 1) = ES(Z, proc. 1) = 5

ES(Y, proc. 2) = ES(Z, proc. 2) = 4

(a) (b)

X20

4

X2

Figure 5.1: (a) An example task graph for statistical scheduling and (b) a partial allocation and
schedule of tasks src, X1 and X2 onto two processors.

We now show by means of a simple example that the dynamic level and the scheduling choices

made by the algorithm change with the value of the input makespan percentile η. The task graph

shown in Figure 5.1(a) with 5 nodes needs to be scheduled onto two processors (processor 1 and

processor 2). Nodes X1, X2 and Y have deterministic execution times of 5, 4 and 2 respectively,

while node Z can have an execution time of either 1 (with 80% probability) or 3 (with 20% proba-

bility). The src node has an execution time of 0. For simplicity sake, let us set all communication

times to zero. For this example, the static levels SL(v) for nodes X1, X2, Y and Z have the same

distributions as their respective execution times. The src task must be scheduled first, since this is

the only task with no input dependencies. Tasks X1 and X2 are then scheduled as they have the

127

highest dynamic levels. Until this point in the algorithm, the tasks chosen do not exhibit variabil-

ity in execution times, and the decisions made will be the same as the DLS algorithm in Chapter

2. Now let us consider the situation where we have finished scheduling the src node followed by

nodes X1 and X2 as shown in Figure 5.1(b). We are trying to decide whether to schedule Y or Z

next and which processor to schedule it on. For this example, the value of the earliest start time

ES(v, p, A, S) = 5 for p = 1 and 4 for p = 2 (irrespective of whether x = Y or Z). It is clear that

it is better to schedule the next task on processor 2. The choice is then as to which task should be

scheduled on processor 2. The decision here is more complex as the static level of task Z could

either be smaller or larger than the static level of task Y, depending on the percentile at which we

sample the static level distribution of Z.

X1

X1Proc. 1

Proc. 2

src

(a)

X2

Z

0 1 2 3 4 5 6 7

Y

Proc. 1

Proc. 2

0 1 2 3 4 5

src

(b)

X2

6

Y
Z

7 8

Makespan = 7

Makespan =
6, if η < 80%

8, if η ≥ 80%

Figure 5.2: Two valid schedules for the task graph in Figure 5.1(a).

We now consider two cases depending on the value of the required percentile η. We first

consider η ≥80%. If we sample the static level of Z at such a percentile, then task Z would have

a higher static level (SSL(Z) = 3) than task Y (SSL(Y) = 2). The dynamic level for the task

processor pair (Z, 2) will then be the highest among all pairs, and the algorithm will pick task Z to

be scheduled first on processor 2. Task Y would then be scheduled on processor 1. This schedule

is shown in Figure 5.2(a). The decision to schedule Z first is the correct decision to minimize

128

makespan. The makespan of the schedule obtained above is a deterministic value of 7 irrespective

of the value of η. The alternative decision of scheduling Y on processor 2 and Z on processor 1

(shown in Figure 5.2(b)) results in a makespan that can either take the value 6 (whenever task Z has

an execution time of 1) or 8 (when task Z has an execution time of 3). At η ≥ 80%, this makespan

takes the value 8, which is longer than the makespan of the schedule chosen by the statistical DLS

algorithm. The other case is η < 80%, in which case the schedule shown in Figure 5.2(b) has

a makespan of 6 and is better than the schedule in Figure 5.2(a). We can see that the statistical

DLS algorithm picks the right schedule in this case as well: SSL(Y) = 2 and SSL(Z) = 1 (the

ηth percentile of SL(Z) with η < 80%), and hence the dynamic level of (Y,2) is greater than the

dynamic level of (Z,2).

It is also possible that the earliest start time of a task on a processor ES(v, p, A, S) is a statis-

tically varying value. For instance, this occurs in the example in Figure 5.1 after we have scheduled

all the tasks. Consider, for example, the schedule in Figure 5.2(b). While the earliest time that

processor 2 becomes free is a deterministic value (6), the time that processor 1 becomes free is a

distribution. If we wanted to schedule a new task on these processors, the choice of the processor to

schedule it on will depend on the value of η. At η < 80%, processor 1 has a finish time of 5, which

is lower than the finish time of processor 2. On the other hand, processor 1 has a finish value of 8

when η > 80%. Thus processor 1 would be picked for scheduling the next task if η < 80% and

processor 2 would be picked otherwise. This is taken into account by the SES(v, p, A, S) value as

defined previously.

Algorithm pseudo-code

We now formally describe a list scheduling heuristic that uses the statistical dynamic levels de-

scribed above for scheduling task graphs with statistical performance models onto multiprocessors.

The algorithm for statistical dynamic list scheduling is outlined in Algorithm 5.1. The inputs

to the algorithm are the task graph G = (V,E, L), the set of processors P , the performance model

(w, c) and the required makespan percentile η. The output is the heuristic statistical makespan. Note

that the processor topology C of the architecture model is not an input here: the heuristic assumes

a fully-connected architecture. Such limitations on the scheduling problems are normally found in

heuristic methods and are a key drawback of such methods.

The algorithm first initializes the allocation and schedule (line 1). It then computes the static

129

Algorithm 5.1 STATDLS(G, w, c, P, η) → makespan

// task allocation and start time variables
1 A(v) = ε, S(v) = ε, ∀v ∈ V

// obtain static level distributions by Monte Carlo simulations
2 SL(v) = MCSIMULATE (G, w, c, P)
3 SSL(v) = ηth percentile of SL(v)

4 for (i = 1 . . . |V |)

// choose next task processor pair to schedule
5 (v, p) = STATDLSDECIDE(A,S,G, w, c, P, SSL, η)

// update schedule based on selection
6 S(v) = ES(v, p, A, S), A(v) = p

7 return ηth percentile of maxv∈V S(v) + w(v)

level of tasks SL(v) as the longest path in graph G using a Monte Carlo analysis technique (line 2).

The statistical static level SSL(v) is then computed by reading off the ηth percentile of SL(v) (line

3). The algorithm then proceeds in |V | steps (line 4). As in the DLS algorithm in Algorithm 2.1,

the algorithm maintains the current allocation A and the start time S of tasks assigned so far. The

algorithm then chooses a single task v to allocate and a single processor p to allocate it on (line 5).

Then the start time of task v on processor p is set to ES(v, p, A, S) which is defined as:

ES(v, p, A, S) =



∞ : if A(v) 6= ε

∞ : ∃(v1, v) ∈ E,A(v1) = ε

maxv1:(v1,v)∈E

∨A(v1)=p

S(v1) + w(v1) : otherwise

+c ((v1, v), (A(v1), A(v)))

When computing ES(v, p, A, S), we add the set of ordering edges (Section 4.3.2) {(u, v) : A(u) =

p} to graph G. These edges ensure that task v is scheduled after all previously allocated tasks on

processor p (line 6). After adding these edges, ES(v, p, A, S) can be computed as the maximum

finish plus communication times of all predecessors of v (including those coming from dependence

edges and ordering edges). The max operation is computed using a statistical Monte Carlo approach.

After all tasks have been scheduled, the maximum finish time of any task in the graph yields the

makespan distribution. The ηth percentile of this distribution is returned as the makespan (line 7).

Algorithm 5.2 shows the procedure used to decide the (task,processor) pair returned in line

5 of Algorithm 5.1. The algorithm computes a priority for every (task, processor) pair (line 1).

The priority is computed as the difference between SSL(v), the statistical static level of the task

130

Algorithm 5.2 STATDLSDECIDE(A,S, η,G, w, c, P, SSL, η) → (v ∈ V, p ∈ P)
1 foreach (v ∈ V, p ∈ P)

// compute statistical dynamic level for each task processor pair
2 SDL(v, p) = SSL(v)− SES(v, p, A, S)

// return task processor pair with highest dynamic level
3 return arg maxv∈V,p∈P DL(v, p)

and SES(v, p, A, S), the earliest start time of the task on the processor (line 2). The pair with

the highest priority is then returned (line 3). The SES(v, p, A, S) value is computed as the ηth

percentile of the ES(v, p, A, S) distribution that has been previously defined.

We now show that the resulting schedule is valid and satisfies the dependence and ordering

constraints of Section 4.3.1. The dependence constraint enforces that the task dependencies are met

probabilistically: a task can start only after all its predecessors complete. The ordering constraint

enforces a total ordering of the set of all tasks assigned to a processor. There is no probabilistic

nature to these inequalities, since they arise due to the hard constraint that tasks allocated to a single

processor should not overlap.

At each iteration of Algorithm 5.1, we assign the start time of a task to the maximum of the

finish plus communication times of all predecessors. Such predecessors include both the original

dependence edges in the task graph (which can have a probability of existence of less than 1) as

well as the ordering edges from the tasks previously assigned to the same processor (which will

have probability of existence of 1). The computation of the maximum is performed statistically

using a Monte Carlo analysis technique. This statistical max computation straightaway encodes

both the constraints of Section 4.3.1: the dependence edges ensure that the dependence constraint is

satisfied, while the ordering edges ensure a global order among tasks assigned to the same processor.

The ordering edges are given a probability of 1.0 (Section 4.3.2), and hence the probabilistic max

reduces to the deterministic equivalent for these edges. This is taken care of by the Monte Carlo

analysis. For those edges that are both dependence and ordering edges, we replace the dependence

edge probability with the ordering edge probability of 1.0 - hence ensuring strict non-overlap of

dependent tasks within the same processor.

The statistical DLS algorithm outlined above reduces to the deterministic DLS algorithm of

Algorithm 2.1 if there is no variation in the application. As in the definition of the deterministic

Dynamic List Scheduling algorithm, the definition of static levels used changes if the system is

heterogeneous or if additional constraints are introduced in the mapping. For heterogeneous sys-

131

tems, the average execution time of a task on all processors is generally used to compute the static

levels [Sih and Lee, 1993]. In case task execution times vary, then the statistical average must be

employed. Extensions to the priority metric to deal with irregular multiprocessor architectures have

also been proposed to the DLS algorithm [Bambha and Bhattacharyya, 2002]; these can also be

used in the statistical algorithm. However, such extensions to a heuristic algorithm like DLS are

non-trivial to make and involve a significant amount of customization. It is necessary, in general, to

develop techniques that can more flexibly handle additional restrictions to the scheduling problem

such as topology restrictions, constraints on task grouping or clustering of tasks. This motivates the

use of a generic algorithm such as Simulated Annealing to solve the statistical scheduling problem.

5.2.2 Simulated Annealing

While heuristics have been found effective for certain multiprocessor scheduling problems,

they are often difficult to tune for specific problem instances. There are often additional constraints

imposed on the problem in the form of topology constraints, constraints on task grouping and so on.

A technique that has found success in exploring the complex solution space in scheduling problems

has been Simulated Annealing. The simulated annealing technique is flexible and can accommodate

a variety of objectives.

We have already discussed the use of Simulated Annealing as a generic and flexible combina-

torial optimization approach in Chapters 2 and 3. We described the basic structure of a simulated

annealing algorithm in Algorithm 2.3. In order to use simulated annealing to solve a particular opti-

mization problem, it is necessary to tune the selection of the COST, MOVE, PROB and TEMP func-

tions, and the initial and final temperature parameters t0 and t∞ (Section 2.3.2). In Section 2.3.2, we

discussed the choice of these functions and parameters to solve the task allocation and scheduling

problem for static models.

In the context of task allocation and scheduling with statistical models, a valid simulated an-

nealing state corresponds to a valid allocation and ordering of tasks subject to the constraints in

Section 4.3.1. The MOVE function defines the transitions between these states. As in Section 2.3.2,

our transitions are based on moving a single task from one processor to a random location on

another processor. After each transition, the COST function evaluates the makespan of the valid

allocation and schedule corresponding to the state. For statistical optimization, the cost of a state is

the makespan obtained by the statistical analysis procedure in Section 4.3. Note that this analysis

procedure takes into account the required makespan percentile η. The decision to accept or reject

132

a transition is defined by the PROB and TEMP functions. We do not change the definitions of these

functions from the ones described in Section 2.3.2 for static models.

The main drawback of using a Monte Carlo based statistical analysis technique for the COST

evaluation is the high runtime involved in performing Monte Carlo iterations. A simulated anneal-

ing based optimization procedure to schedule a few hundred tasks can take more than an hour to

complete if 1000 Monte Carlo iterations are used to evaluate each state. However, we can avoid

performing the full Monte Carlo analysis for each state by exploiting the way in which the MOVE

function picks the next state. We describe this in the next section.

Use of Incremental Timing Analysis to speed up cost evaluation

The Monte Carlo statistical analysis method is used inside the inner loop of the simulated an-

nealing engine. Performing a full Monte Carlo analysis inside each iteration can become computa-

tionally challenging and make Simulated Annealing an unattractive choice as a scheduling technique

for statistical models.

An incremental analysis is useful when we already have an analysis of a graph, and the graph

structure is then perturbed a little. If edges are added or removed from the graph, then it is just

the nodes in the fanout cone of the modified edges that need to be analyzed again. The start times

(produced by statistical analysis) of all other nodes in the graph remain the same as before. If only a

few edges are modified, this can lead to substantial savings in the number of nodes analyzed. Such

incremental techniques have been used in the context of circuit simulation and physical synthesis

to compute circuit delays. The limitation of the nodes to be considered for analysis has been called

level limiting analysis in [Visweswariah et al., 2006]. In the context of statistical scheduling, the

analysis is a longest path computation on the task graph with additional ordering edges added to

it. The longest path computation is usually performed using a breadth-first traversal of the graph.

In the incremental analysis, we do the same - except that we only need to perform a breadth-first

traversal of the graph starting from the target nodes of the modified edges.

We now study the change in the structure of the ordering edges as we perform a move inside

the simulated annealing algorithm. The MOVE function in the simulated annealing algorithm only

shifts a single task to a new processor. Therefore, the only change in the task graph structure is

involved with the ordering edges of the task that is moved. Before the move, the task that is being

moved had two ordering edges associated with it - one from its preceding task in the processor to

which it was allocated and the other from its succeeding task in the same processor. Figure 5.3

133

X

X

X

prev_pred

(on old

processor)

prev_succ

(on old

processor)

new_pred

(on new

processor)

new_succ

(on new

processor)

vertex

moved from

old to new

processor

Fanout area to be considered

in incremental analysis

X Old ordering edges (deleted)

New ordering edges (added)

Figure 5.3: Incremental Statistical Analysis..

shows how these ordering edges change with a single transition. There are a total of six edges that

change due to the transition. First, the edges from the predecessor and successor of the task in

the old processor are removed. In order to maintain a global order of tasks in the old processor, an

ordering edge is added from the predecessor to the successor of the task in the old processor. After a

new processor and a new location for the task is found, the ordering edge from the new predecessor

of the task and the edge to the new successor are added. Finally, the ordering edge between the

predecessor and the successor of the task in the new processor can be removed.

The fanout of the six edges that are modified overlap significantly. In particular, the fanout of

the successor task in the old schedule and the task that has been relocated are the only two tasks

whose fanouts have to be considered. In Figure 5.3, the area to be considered in considered in

incremental analysis has been highlighted in orange.

Another facet of incremental analysis is dominance-limiting analysis. If a particular modified

edge does not affect the arrival time of the target node, then it has been dominated by the node’s

134

other fan-in edges. Then we do not need to proceed with a breadth-first traversal of that edge. In

the context of our Monte Carlo analysis, we perform a number of deterministic runs. If an edge has

been dominated in any of these runs, then there is no need to carry forth the breadth-first analysis

for that particular run. We could also decide not to carry forward the results of the entire node if all

the runs are dominated.

The techniques of level limiting and dominance limiting analysis together can significantly

reduce the number of operations to be considered in the course of Monte Carlo analysis. By adopting

these techniques inside the Simulated Annealing algorithm, we can obtain a speedup of up to 5X

over performing full Monte Carlo analysis. Such a speedup helps to keep simulated annealing a

viable scheduling technique.

5.2.3 Deterministic Optimization Approaches

An alternative approach to the statistical optimization approaches described so far in this sec-

tion is to use optimization techniques that rely on the deterministic scenario-based analysis tech-

niques described in Section 4.3.3. Such a technique would use worst-case or common-case estimates

of task executions and dependencies (as described in Section 4.3.3), thereby approximating the sta-

tistical application model with an easily analyzable static model. The deterministic analysis can

then replace the statistical Monte Carlo analysis in the algorithms described in this chapter (which

will yield the deterministic algorithms described in Chapter 2). It is to be noted that the common-

case analysis must ensure that the ordering of tasks on processors do not violate any precedence

edges, including the edges with a probability of existence below 0.5. In a DLS heuristic, this is

done by ensuring that the earliest start time computation of a task on a processor returns ∞ unless

all predecessors of the task in the original task graph are complete. In a SA based algorithm, the

check for schedule validity must explicitly check the validity of task orderings.

However, such optimization approaches may still not yield allocations and schedules that are

valid under the constraints of Section 4.3.1. In particular, the start times for all tasks obtained

through deterministic optimization will naturally be approximate constants and not distributions.

The exact value of the makespan returned by these algorithms will likewise be inaccurate. One

viable workaround to this problem would be to only use the task allocation and ordering of tasks re-

turned by deterministic optimization, and ignore the deterministic values for task start times. Such a

policy is in fact widely used in implementing schedules, and is popularly called self-timed schedul-

ing [Poplavko et al., 2003] [Moreira and Bekooij, 2007]. Such a system is typically implemented

135

using synchronization primitives to regulate task initiations and terminations. One specific method

is to use a logical queue between tasks, with tasks being triggered when inputs to the task arrive

from its predecessors. Under the assumption of self-timed scheduling, schedules obtained by de-

terministic optimization can also be used in a statistical context. The makespan obtained through

a deterministic self-timed schedule will vary depending on the inputs and architectural parameters.

This variation can be computed by using the statistical Monte Carlo analysis procedure of Sec-

tion 4.3.3. The required makespan percentile η of the resulting makespan distribution is the result

of the optimization.

Although the deterministic scheme proposed above does factor in the variations in the ap-

plication model, it only does so after all optimization is done. The evaluation and comparisons

of different schedules is performed using static analysis. In Section 4.3.4, we showed that static

analysis can compare different valid schedules incorrectly. An optimization scheme based on such

inaccurate comparisons leads to the selection of suboptimal schedules. We will quantify the extent

of this sub-optimality in Section 5.4.

5.3 Related Work

In the previous chapter, we outlined works that develop statistical models in the context of both

task scheduling [van Gemund, 1996] [Gautama and van Gemund, 2000] as well as other areas such

as circuit timing analysis [Visweswariah et al., 2006] [Orshansky and Keutzer, 2002] [Najm and

Menezes, 2004]. Such works also develop analysis and optimization techniques that utilize these

models. In the scheduling context, algorithms that use statistical task execution models have been

proposed for real-time scheduling of periodic tasks with deadlines onto multiprocessors [Manolache

et al., 2004] [Manolache et al., 2007]. Such methods assume that tasks are periodic and have

individual deadlines. In this work, we focus on a different optimization problem of scheduling

aperiodic tasks to optimize for schedule length.

Statistical timing analysis has been well studied recently for circuit timing in the presence

of process variations. As we mentioned in the previous chapter, the models used in this context

are primarily normal (or near-normal) distributions that allow for fast analysis of large graph with

millions of nodes [Visweswariah et al., 2006] [Orshansky and Keutzer, 2002]. Such models and

analysis have been used in varied optimization problems involving power optimization [Srivastava

et al., 2004] [Mani et al., 2005] and gate sizing [Mani and Orshansky, 2004]. The problems are

usually modeled as convex optimization problems. Scheduling, on the other hand, is an inherently

136

discrete and non-convex optimization problem. Moreover, most scheduling problems involve only

a few hundred tasks and hence we can afford to use optimization techniques that utilize a more

expensive and general Monte Carlo analysis technique.

Optimizing compilers have used profiling-based techniques to solve the instruction schedul-

ing problem [Chen et al., 1994], but these have traditionally been based on average-case analysis.

We target applications where high statistical guarantees on performance are required; and hence

average-case scheduling is not directly useful.

The closest work to the techniques described in this chapter has come from the operations

research community that has worked on using statistical optimization for job-shop scheduling prob-

lems [Beck and Wilson, 2007]. As in our current work, the work in [Beck and Wilson, 2007] tries to

find a schedule to optimize for a fixed percentile of the finish time. However, it solves only the job-

shop scheduling problem, which is a special case of the multiprocessor scheduling problem with the

restriction that the tasks must consist of independent chains [Coffman, 1976]. The technique also

uses only the means and standard deviations of task executions. In this work, we consider arbitrary

distributions of task execution times.

5.4 Results

In this chapter, we have described optimization techniques for the task allocation and schedul-

ing problem using statistical application models. In this section, we compare the makespans ob-

tained by deterministic techniques with those obtained from the statistical optimization techniques

described so far in this chapter.

5.4.1 Benchmarks

We use two sets of benchmarks. The first set consists of two practical applications - the IPv4

packet forwarding application and the H.264 video decoding application. The performance profile

of the IPv4 application was collected on soft MicroBlaze cores. The task graph for the IPv4 ap-

plication was unrolled 1-10 times to represent multiple input channels in the forwarder. The soft

multiprocessor architectures shown in Figures 2.10 were used in our benchmarks. The H.264 appli-

cation profile was collected on an 2.6 GHz Intel Core2 Duo machine. We used three different input

video streams - the akiyo.264, foreman.264 and the manitu.264 video streams. For each stream,

we collected execution time statistics for I-, P- and P-skip macroblocks, as well as the percentage

137

Avg. Prob. that a macroblock is of type
Name Resolution I P P-skip
akiyo 176× 144 0.01 0.14 0.85

foreman 176× 144 0.01 0.76 0.23
manitu 320× 144 0.12 0.52 0.36

Name Execution time variations (microseconds)
I P P-skip

BC WC CC BC WC CC BC WC CC
akiyo 14 44 30 14 48 16 3 22 4

foreman 14 52 26 14 72 28 3 26 4
manitu 12 70 28 14 82 26 3 29 4

Table 5.1: Salient characteristics of the H.264 video decoding algorithm for different input streams.

of time that a given macroblock belongs to each of these categories. A summary of the key char-

acteristics of these streams are shown in Table 5.1. The table presents the average probability that

a macroblock is an I-, P- or P-skip macroblock, as well as the execution times (best case, worst

case and common case) of macroblocks of each of these types. Recall from Section 4.5 that we

consider the H.264 application to be representative of future applications with respect to the extent

of variability present in the application. For each input stream, we map the H.264 application on

architecture models comprising of 4,8, 10, 12 and 16 processors. For each model, the processors

were divided into two sets, communication between which was a factor of 4 more expensive than

within the set (this models locality of processors on an on-chip multiprocessor network).

The second set of benchmarks consisted of a set of random task graphs obtained from Davi-

dović et al. [Davidović and Crainic, 2006]. These cover a wide range of task graph structures and

contain both easy and hard scheduling instances. For each benchmark, we assume that the execution

times of tasks are normally distributed. The mean execution times were taken from the benchmarks.

The standard deviations were chosen randomly in the range [0 - 0.7*mean] such that the average

ratio of standard deviation to the mean of each task is 0.35. We chose a value of 0.35 as this was the

average ratio for the two practical applications.

5.4.2 Comparison to deterministic scheduling techniques

In this section, we compare the makespans obtained by the deterministic worst-based and

common-case techniques (Section 5.2.3) with the result of the statistical simulated annealing tech-

nique described in Section 5.2.2 at different makespan percentiles. The deterministic techniques also

138

use a simulated annealing optimization technique as described in Chapter 2 with the same annealing

parameters as the statistical algorithm for a fair evaluation. A final Monte Carlo run is performed

on the schedule returned by the deterministic optimization techniques in order to incorporate the

makespan percentile η into the deterministic algorithms.

Arch. (a) Arch. (b)
η = 99% η = 95% η = 99% η = 95%

Det. Det. Stat. Det. Det. Stat. Det. Det. Stat. Det. Det. Stat.
Tasks WC CC SA WC CC SA WC CC SA WC CC SA

15 150 165 145 150 125 125 150 165 145 150 125 125
28 220 215 205 220 195 195 150 165 145 150 145 135
41 300 290 265 300 280 255 155 170 145 155 155 145
54 385 345 315 385 330 325 220 230 195 220 220 180
67 455 430 390 455 410 385 225 240 195 225 225 190
80 535 490 455 535 470 440 235 250 200 230 235 200
93 640 575 515 640 555 510 305 305 270 305 295 250

106 750 675 600 750 665 590 320 310 275 320 300 265
119 840 790 690 840 750 680 335 340 290 320 310 275
132 930 840 725 930 800 710 390 380 335 390 360 320

Avg. %
degradation

from Stat. SA 19.6 10.7 - 21.6 7.3 - 12.1 16.0 - 17.3 12.8 -

Arch. (c)
η = 99% η = 95%

Det. Det. Stat. Det. Det. Stat.
Tasks WC CC SA WC CC SA

15 150 165 145 150 125 125
28 150 170 145 140 155 140
41 175 170 150 170 165 145
54 190 180 165 190 175 145
67 215 240 195 215 220 200
80 245 255 220 245 240 210
93 250 265 230 250 250 215

106 275 280 245 275 265 235
119 320 315 275 320 300 270
132 365 345 305 365 325 295

Avg. %
degradation

from Stat. SA 11.7 15.1 - 16.8 14.0 -

Table 5.2: Makespan results for the deterministic worst-case, deterministic common-case and statis-
tical SA methods on task graphs derived from IPv4 packet forwarding scheduled on the architectures
(a) and (c) of Figure 2.10.

Table 5.2 reports the results of the deterministic and statistical optimization techniques for the

139

IPv4 packet forwarding application on the three soft multiprocessor architectures of Figure 2.10.

The first column shows the number of tasks in the application on unrolling the task graph from

one to ten times. The other columns show the results of the deterministic worst-case (Det. WC),

deterministic common-case (Det. CC) and statistical simulated annealing (Stat. SA) techniques

at percentiles of 99% and 95% for the three different architectures. Table 5.3 shows the same

comparison for the H.264 video decoding application. We use three different video streams. Column

2 shows the number of macroblocks (tasks) in each video stream. Column 3 shows the number of

processors in the architecture. The remaining columns show the results of the deterministic and

statistical approaches at η = 99%, 95% and 90%.

η = 99% η = 95% η = 90%
Bench- # # Det. Det. Stat. Det. Det. Stat. Det. Det. Stat.
mark Tasks Procs. WC CC SA WC CC SA WC CC SA
akiyo 101 4 289 295 273 260 275 249 250 242 237

8 240 215 173 220 187 151 208 157 144
10 175 164 151 155 141 131 147 133 123
12 170 165 137 142 142 118 132 132 109
16 153 165 121 136 140 103 126 97 94

Avg. % degradation
from Stat. SA 22.2 19.5 - 24.2 19.6 - 24.9 8.7 -

foreman 101 4 860 903 791 806 780 760 791 760 740
8 516 634 448 478 494 416 460 464 406

10 467 510 366 462 473 344 430 381 328
12 373 404 325 360 387 303 357 311 284
16 336 367 270 304 307 242 295 263 225

Avg. % degradation
from Stat. SA 18.1 31.1 - 20.7 23.5 - 21.6 11.9 -

manitu 182 4 1410 1435 1393 1343 1362 1333 1359 1285 1271
8 984 1019 819 928 940 762 891 802 701

10 801 796 695 732 735 649 745 660 598
12 697 694 595 644 614 528 616 528 474
16 638 704 527 572 560 461 564 446 406

Avg. % degradation
from Stat. SA 16.9 19.8 - 19.7 18.8 - 30.1 10.7 -

Table 5.3: Makespan results for the deterministic worst-case, deterministic common-case and sta-
tistical SA methods on task graphs derived from H.264 video decoding application scheduled on the
architectures with 4,8,10,12 and 16 processors.

Table 5.4 shows the results of the scheduling approaches on the benchmark with randomly

generated task graphs. The graphs are classified by the number of tasks and edge density (the

percentage ratio of the number of edges in the task graph to the maximum possible number of

edges). Columns 3 through 8 report the percentage degradation of the deterministic worst-case and

140

Percentage degradation from Stat. SA
η = 99% η = 95% η = 90%

Edge Det. Det. Det. Det. Det. Det.
Tasks Density WC CC WC CC WC CC

52 10 14.1 15.2 26.9 11.1 33.4 7.4
30 16.2 26.6 24.7 20.8 24.4 19.5
50 14.3 31.3 26.1 28.9 32.7 23.1
70 12.4 22.3 30.9 18.4 37.2 13.7
90 16.4 14.2 20.1 16.5 26.3 14.4

Avg. % degradation
from Stat. SA 14.7 21.9 25.7 19.1 30.8 15.6

102 10 20.5 26.4 29.7 16.3 34.1 10.2
30 14.1 24.4 26.9 21.8 33.4 16.4
50 13.1 33.2 19.9 29.5 27.9 19.3
70 16.4 21.4 26.9 14.9 33.4 16.1
90 24.7 14.9 34.1 9.3 41.8 6.4

Avg. % degradation
from Stat. SA 17.3 24.1 27.3 18.4 34.1 13.6

Table 5.4: Average percentage degradation of the worst and common-case deterministic schedules
from the statistical SA schedule at different percentiles for random task graphs scheduled on 4,6
and 8 processors.

common-case makespans from the statistical makespan. The comparisons are done for makespan

percentiles of 99%, 95% and 90%. Each row in the table is an average over the percentages for

4,6 and 8 processors. As before, the deterministic worst-case and common-case makespans are

obtained through a final Monte Carlo run on the schedule returned by the respective deterministic

algorithms.

Tables 5.2 and 5.3 show that statistical scheduling consistently performs better than both the

deterministic techniques for both applications. In the IPv4 application, the deterministic worst-case

makespan is anywhere from 11% to 22% off of the statistical makespan. For the H.264 application,

this difference can go up to over 30%. The inefficiency of deterministic worst-case schedules is

further corroborated from Table 5.4, with differences from statistical schedules going as high as

34%. This is because the worst-case scheduling incorrectly compares different schedules and hence

yields a less optimal schedule than the statistical schedule. The improvement shown by the statistical

algorithm over the worst-case schedule increases at lower η values. This is an expected trend as

the worst-case makespan estimates become worse approximations of the true makespan at lower

percentiles. The statistical technique, on the other hand, performs a Monte-Carlo analysis to find

the true makespan. The deterministic common-case optimization is also inferior to the statistical

technique. In contrast to the worst-case optimization, we can see from Tables 5.2 and 5.3 that

141

the common-case technique improves at lower percentiles. This is also expected: the common

case makespans for the IPv4 and H.264 examples lie close to the 50th percentile of the respective

makespan distributions. As we decrease the required percentile, these become better approximations

of the actual makespan. This trend is also seen in the results for the random benchmarks in Table 5.4.

3 processors - 99th percentile

0

5

10

15

20

25

30

35

28 41 54 67 80 93 106 119 132 145 158 171 184 197

Number of tasks (IPv4 forwarding)

%
 i

m
p

ro
v

e
m

e
n

t
o

f
s

ta
ti

s
ti

c
a

l
S

A
 o

v
e

r
w

o
rs

t
a

n
d

c
o

m
m

o
n

 c
a

s
e

 d
e

te
rm

in
is

ti
c

 S
A

Worst case

Common case

Figure 5.4: Comparison of statistical SA to deterministic worst-case and common-case optimization
for different numbers of tasks in IPv4 packet forwarding.

Another interesting trend is that the percentage difference in makespans between the statistical

and deterministic techniques increases with increasing problem size. Figure 5.4 shows the per-

centage improvements of the statistical versus the deterministic algorithms for the IPv4 forwarding

application. We vary the number of tasks from 28 to 197 by unrolling the task graph up to 15 times.

All runs were performed using η = 99%. From the figure, we can see that the improvements of the

statistical versus common-case schedules start out at about 5% for small task graphs and increase

to about 25% for larger graphs. The percentage improvement is even higher (up to 35%) when

compared to the worst-case schedules for large graphs. This trend occurs because large graphs tend

to have more paths with different path lengths and distributions. The deterministic techniques have

a higher chance of comparing the criticality of different paths incorrectly, leading to sub-optimal

results. The statistical technique uses a Monte-Carlo technique to accurately estimate makespan,

and hence does not suffer from this problem.

142

The improvement in makespan that we achieve with statistical scheduling comes at the expense

of a significant increase in optimization time. We now need to perform a thousand Monte-Carlo

iterations for each schedule that is evaluated over the course of the optimization. This can result in

the SA technique taking up to two hours on large task graphs. The use of the incremental approach

described in Section 5.2.2 brings down this runtime to a maximum of about 20 minutes for task

graphs of size up to 200.

5.4.3 Comparison of statistical DLS and SA optimization techniques

We now compare the results of statistical DLS optimization to the results of the simulated

annealing algorithm. We use task graphs obtained from the IPv4 packet forwarding and H.264

video decoding algorithms as our benchmarks. The architecture models for the IPv4 application

capture the restrictions imposed by the soft multiprocessor networks shown in Figure 2.10, and

the models for the H.264 application capture the effect of locality of processors on inter-processor

communication times (as described in Section 5.4.1). These form additional constraints to the basic

scheduling problem.

Arch. (a) Arch. (b)
η = 99% η = 95% η = 99% η = 95%

Stat. Stat. Stat. Stat. Stat. Stat. Stat. Stat.
Tasks DLS SA DLS SA DLS SA DLS SA

15 185 145 170 125 185 145 170 125
28 220 205 220 195 185 145 170 135
41 310 265 290 255 185 145 180 145
54 390 315 380 325 220 195 220 180
67 415 390 410 385 220 195 220 190
80 510 455 510 440 225 200 220 200
93 565 515 560 510 310 270 290 250

106 665 600 710 590 310 275 295 265
119 755 690 740 680 310 290 295 275
132 800 725 780 710 390 335 380 320

Avg. % improvement
over Stat. DLS - 13.4 - 15.1 - 17.2 - 18.7

Table 5.5: Makespan results for the statistical DLS and statistical SA methods on task graphs derived
from IPv4 packet forwarding scheduled on the multiprocessor architectures of Figure 2.10(a) and
(b).

Table 5.5 shows the makespan results of the DLS and SA algorithms on the IPv4 forwarding

application on the multiprocessor architectures of Figure 2.10(a) and (b). Column 1 shows the

number of tasks obtained from the task graph replication. Columns 2 to 9 show the makespan

143

obtained from the statistical DLS heuristic and statistical SA for the two architectures for makespan

percentiles = 99% and 95%. We can see, the statistical SA algorithm consistently performs better

than the heuristic. This is natural since the SA algorithm explores a larger portion of the design

space. This does, however come at the expense of runtime. The statistical SA procedure can take

up to 20 minutes, while all heuristic runs complete in under 3 minutes.

η = 99% η = 95% η = 90%
Bench- # # Stat. Stat. Stat. Stat. Stat. Stat.
mark Tasks Procs. DLS SA DLS SA DLS SA
akiyo 101 4 281 273 261 249 237 237

8 176 173 151 151 147 144
16 125 121 110 103 94 94

Avg. % improvement
over Stat. DLS - 2.7 - 3.9 - 0.7

foreman 101 4 806 791 768 760 743 740
8 466 448 428 416 426 406
16 286 270 244 242 234 225

Avg. % improvement
over Stat. DLS - 4.0 - 1.6 - 3.1

manitu 182 4 1490 1393 1408 1333 1347 1271
8 885 819 800 762 729 701
16 559 527 498 461 434 406

Avg. % improvement
over Stat. DLS - 7.0 - 6.2 - 5.6

Table 5.6: Makespan results for the statistical DLS and statistical SA methods on task graphs derived
from H.264 video decoding application scheduled on architectures with 4,8 and 16 processors.

However, the statistical SA algorithm does not improve the DLS result significantly for the

H.264 example. Table 5.6 shows the results for the DLS and SA examples on 4, 8 and 16 processors

for the three video streams of Table 5.1. We note that the difference between the DLS and SA

results is always within 8%, and can be as low as less than 1%. This trend occurs because of

the sparsity of dependence edges in the task graphs used in H.264 decoding. For task graphs with

sparse dependencies, the scheduling problem simplifies to essentially a load balancing problem. The

solution space for the load balancing problem is much smoother than the full scheduling problem,

and as such the problem is easier to solve. In particular, list-scheduling heuristics are known to do

very well on load-balancing problems. This is reflected in our results.

The number of dependencies in the task graph for H.264 decoding depends on the input video

stream. In particular, the percentage of all macroblocks in the video stream that are I-macroblocks

directly the density of dependence edges. Most video streams, including the three that we listed in

Table 5.1 have a low percentage of I-macroblocks. This is primarily to increase coding efficiency:

144

P-macroblocks can be encoded using a smaller number of bits than I-macroblocks. Therefore, we

can expect any H.264 task graph to have a sparse set of dependencies, and hence to be easy to

schedule.

The choice of optimization method can thus be seen to depend on the nature of the applica-

tion as well as the trade-off required between the quality of solution and runtime. Applications

whose task graphs do not have many dependencies will not benefit much from using optimization

schemes that explore significant portions of the design space over a simple list scheduling heuristic.

Heuristics also work well for task graphs that are almost fully connected, since such graphs have a

very small solution space of valid orderings and are hence easier to solve. However, a significant

number of applications have task graphs with an intermediate number of edges. Such task graphs

give rise to the most difficult scheduling instances and usually require a systematic exploration of

the design space. For such graphs, the choice whether to use a heuristic algorithm or a more generic

algorithm such as simulated annealing depends on the required tradeoff between computational

speed, quality of solution and flexibility of the technique. In case there are additional constraints

on the scheduling problem (including processor topologies, task clustering and heterogeneous inter-

processor communication times), heuristics need to be modified to capture these constraints. Such

modifications detract from the performance of heuristic techniques. Flexible approaches such as

simulated annealing can consistently deliver better performance than heuristic techniques in the

presence of additional constraints.

5.4.4 Summary

In this section, we first compared the makespans obtained by deterministic optimization tech-

niques with those obtained from statistical optimization. We showed that the statistical simulated

annealing algorithm performs consistently better than its deterministic worst-case and common-case

counterparts for two realistic applications: IPv4 packet forwarding and H.264 video decoding. The

difference in the makespan obtained by deterministic and statistical techniques can be as much as

20% for the IPv4 forwarder and up to 30% for the H.264 video decoder. The percentage improve-

ment further seems to increase for larger task graphs. This motivates the need to consider statistical

models and optimization methods.

We also compared two different statistical optimization methods: a statistical list scheduling

heuristic and a simulated annealing based algorithm. We showed that the simulated annealing al-

gorithm achieves makespans that are 15-20% better than the list scheduling heuristic for the IPv4

145

packet forwarding algorithm. The trade-off is in the time required for optimization: a simulated

annealing algorithm can take up to 20 minutes to execute while all heuristic runs complete in under

3 minutes. We also noted that for the H.264 video application, there was no significant difference in

the makespan produced by the heuristic and the simulated annealing algorithms. This is primarily

because the task graph for the H.264 applications is very sparse and has few dependencies. For

task graphs with sparse dependencies, the scheduling problem is easy to solve. In particular, list

scheduling heuristics perform very well on such graphs.

146

Chapter 6

Constraint Optimization approaches to

Statistical Scheduling

In this chapter, we revisit our decomposition-based constraint optimization approach proposed

in Section 2.3.3 in the context of the statistical models proposed in Chapter 4. A constraint-

programming based optimization technique offers the advantage of maintaining a high degree of

flexibility in the range of additional constraints that can be added to the scheduling problem. They

also offer the promise of obtaining exact solutions to an optimization problem when given enough

computation time. Even when optimal solutions cannot be obtained in reasonable time-frames, these

techniques can offer bounds on the optimality of the solution obtained. These advantages motivate

this study of constraint-programming based approaches to the statistical scheduling problem.

The main disadvantage of constraint-optimization approaches has been the fact that they do not

scale well beyond very small scale problems of 30-50 tasks with approximately a thousand variables

and constraints. A technique that has been shown to work for solving the static scheduling problem

is to decompose the entire scheduling problem into a master and sub problem that are then solved

in a series of iterations with a feedback between successive iterations (Chapter 2). Such a technique

has enabled the use of constraint optimization techniques for medium scale scheduling problems up

to 200 tasks with a few tens of thousands of variables and constraints. This motivates the use of

decomposition-based approaches as good starting points to develop scalable constraint-optimization

techniques for scheduling problems.

In this chapter, we first present a straightforward extension to the decomposition-based tech-

nique described in Chapter 2 in the context of statistical models. The master problem in the decom-

147

position decides an allocation and schedule, and the sub-problem performs a statistical analysis on

that allocation and schedule. As before, these two problems are executed iteratively with a feedback

loop between successive iterations. We then describe techniques based on pruning techniques and

heuristic guidance of the search process that we can use to speed up this constraint optimization

approach.

6.1 Decomposition based Approaches

In Chapter 2, we described a decomposition based constraint optimization approach to task

allocation and scheduling with static models. The approach consisted of breaking up the problem

into a ”master” problem that finds an allocation and schedule and a graph-theoretical ”sub” problem

that analyzes the allocation and schedule to check for validity, and if valid, obtain a makespan. The

two problems are executed iteratively: the result of the sub-problem is used to prune out parts of

the solution space containing solutions that are either infeasible or are inferior to the best solution

found so far. These are encoded as additional constraints to the master problem that is used during

the next iteration. The efficiency of the technique is primarily dependent on the number of iterations

required. This, in turn, is determined by how much of the solution space can be pruned by a single

sub-problem iteration. In Section 2.3.3, we used two types of constraints: cycle-based and path-

based constraints that help to prune the solution space efficiently. The flow of the decomposition

algorithm was presented in Algorithm 2.4.

In the statistical context, the variables and constraints used in the master problem are un-

changed from Section 2.3.3. In particular, we have three sets of Boolean variables: xa, xc and xd

encoding the allocation of tasks to processors, communication between tasks and ordering of tasks

allocated to the same processor respectively. Constraints are added to ensure that the allocation is

valid and that there is a global ordering of tasks allocated to the same processor. The communication

variables between dependent tasks that are allocated to different processors is set so as to account

for the communication time.

The main difference between the static and statistical models lies in the nature of the analysis in

the sub problem. We first recapitulate the key steps in the sub-problem (presented in Section 2.3.3).

The sub-problem must first check if the master problem solution is valid by checking for cycles

in the scheduled graph. If an allocation and schedule returned by the master problem is found to

be valid, the sub-problem has to perform two functions: (1) compute the makespan of the valid

schedule, updating the best makespan found by the algorithm so far if necessary, and (2) find one

148

or more paths in the task graph (after adding ordering edges) that have a path length greater than

or equal to the current best makespan. The key idea here is that the length of a path is a lower

bound on the makespan of any schedule containing the path. Hence the presence of paths with a

path length greater than or equal to the best makespan is in itself a sufficient reason to reject all

schedules containing the path from consideration. Such paths are eliminated using path constraints

that are taken into account in the next iteration of the master problem.

In a statistical context, we can use the statistical analysis procedure of Section 4.3.3 (instead of

the static longest path analysis in Chapter 2) to find the makespan of a valid allocation and schedule.

This procedure returns a distribution of makespans. Recall from Chapter 4 that the optimization

objective in statistical scheduling is to minimize a given percentile η of the makespan distribution.

The last step in the analysis is therefore to read off this percentile η of the makespan distribution to

yield a single makespan number. This number is then used in the sub-problem in a similar fashion

to the way the static makespan is used in Chapter 2. In particular, the makespan value is used to

update the best makespan found so far. After updating the makespan, the sub-problem requires us to

find one or more paths that have a path length at least as long as the updated best makespan mbest.

In a statistical context, the lengths of paths are variable. The analogue to the path constraint in

static scheduling is to find paths whose ηth percentile of path length is greater than the current best

makespan. As in the static approach, this value is a lower bound to the makespan of any schedule

that contains the path. Therefore, if we find a path whose ηth percentile is greater than the best

makespan, it is valid to eliminate all schedules containing that path via a path constraint.

c

a

d

[0, 0, 0]

b

[5, 4, 1]

[2, 6, 4]

[2, 3, 7]

Monte-carlo values for makespan

= [7, 10, 8]

Monte-carlo runs of task execution times

Figure 6.1: A task graph where no single path length determines the makespan.

However, there is a key difference between the path constraints for static and statistical schedul-

ing. For static scheduling, we cannot fail to find a path that is longer than the current best makespan.

This is because such a situation can only arise when the makespan of the current schedule is strictly

smaller than the current best makespan, which is not possible as the current best makespan would

149

have been updated in that case. However, this useful property does not hold for statistical schedul-

ing. In a statistical context, it is possible that there is no single path that is longer than the current

best statistical makespan mbest, but still the overall current makespan is larger than mbest. As an ex-

ample, consider the task graph in Figure 6.1. The graph consists of four nodes and has two paths that

could potentially have a length greater than any given makespan. The task graph is annotated with

the Monte Carlo values for the execution times of tasks, denoted by [v1, v2, . . . vn]. In the example,

we have three Monte Carlo runs. The result of the makespan analysis procedure of Section 4.3.3 is

also shown. Let us assume that the required percentile of the makespan is the 70th percentile, which

would be 8 in this example. Let us further assume that this was the best makespan found so far, and

thus mbest = 8. In this scenario, we are required to find paths that have a 70th percentile of path

length greater than or equal to 8. For path a → c → d, the path length is given by [7, 10, 5], which

has a 70th percentile of 7. The only other path b → c → d has a path length of [7, 7, 8], which

also has a 70th percentile of 7. Thus in this example, it would be incorrect to prune out schedules

containing either path, since such schedules are only guaranteed to have a makespan greater than 7.

We can only prune out schedules that have both paths. In other words, the two paths a → c → d

and b → c → d are together responsible for the 70th percentile of the makespan being larger than

8. Such a situation cannot arise in a static model, where there always exist one or more “longest”

paths that determine the makespans by themselves.

Since no one path may determine the makespan in a statistical context, the path constraints

added to the master problem in statistical scheduling needs to be modified to encode and prune a

combination of paths. We do this by constructing a list of edges that is the union of the edges present

in each of these paths. For the above example, we would construct the list Ep = {a → c, b →
c, c → d}. We then follow the same procedure as in Section 2.3.3: we construct a conjunction of

the variables xd and xc corresponding to the ordering and communication edges among this list and

eliminate the possibility of this conjunction of variables being present in the optimal solution.

In case there is more than one path that is responsible for the makespan, the constraint added

to the master problem only eliminates the union of all these paths from consideration in future

schedules explored. This would necessarily prune only a subset of the solution space that would be

pruned by eliminating any one of these paths. Therefore, if there exists a single path (or a small set

of paths) that determine the makespan of the schedule, it is important to find such paths so that a

larger solution space can be pruned. As an example, in Figure 6.1, if the current best makespan is

7 instead of 8, then either path would individually have a path length equal to the best makespan.

In such a case, adding the path a → c → d (or b → c → d) as a path constraint would prune

150

a larger search space than pruning the union of these paths Ep = {a → c, b → c, c → d}. It is

therefore necessary to develop an algorithm that can decide the minimum set of paths to add to the

path constraint.

Algorithm 6.1 STATPATHCONSTRAINTS(G′, w, c, mbest, η, xSAT , φ)
// arrival time for nodes and edges are vectors with Monte Carlo values

1 arr time(v) = ε, arr time edge(e) = ε, ∀v ∈ V,∀e ∈ E′.

// perform statistical analysis on G′

2 STATANALYSIS(G′, w, c, P, C, xSAT)

// initialize bit-mask for Monte Carlo iterations that are to be considered
3 B(i) = 1 ∀i ∈ {1, 2, . . . # MC iterations}

4 while true
5 p =FINDMAXPATH(G′, w, c, mbest, η, xSAT , φ, B)
6 φ = φ∪ edges(p)
7 l =LENGTH(p)
8 B(i) = B(i) ∧ (l(i) < mbest), ∀i ∈ {1, 2, . . . # MC iterations}

// check if more than η% of the iterations have been covered
9 if COUNT ONES(B) < η% of # MC iterations
10 break
11 return

Algorithm 6.1 embodies a heuristic approach to identify a small set of paths to add to the

path constraint. The inputs to the algorithm are the task graph G′ to which ordering edges have

been added, the performance model w and c, the best makespan found so far mbest, the makespan

percentile η, the result of the master problem xSAT that encodes the valid schedule found and the

(initially empty) list of edges φ. The output of the algorithm is the updated list of edges φ that

stores the paths that together determine the makespan. The first step in the algorithm is to perform

a statistical analysis on graph G′ using Monte Carlo simulation. This gives us the arrival time for

nodes and edges in the graph (line 2). The algorithm then proceeds in a number of iterations(line 4).

Each iteration adds a new path to the list of paths that determine the makespan until no more paths

are required. The basic idea in the algorithm is to first pick the path that is greater than the best

makespan in the maximum percentage of Monte Carlo iterations (line 5). This can be achieved with

a traversal of graph G′ in reverse topological order using the arrival times computed earlier. The list

of edges in the path chosen is then added to φ (line 6). the The algorithm then updates a bit-mask

that stores the iterations in which this path is smaller than mbest (line 8). In case this path is smaller

than the best makespan in less than η% of all Monte Carlo iterations (computed through a count

151

of the bits that are one within the bit-mask), we are done (line 10). If not, we eliminate all Monte

Carlo iterations in which this path is greater than the best makespan. Among all other iterations,

we again pick the path with the highest fraction of iterations greater than the best makespan, and

check if the two paths together now cover η% of all Monte Carlo iterations. If not, we repeat this

procedure of eliminating iterations and picking new paths until we do find a set of paths that cover

η% of all iterations, where we stop.

Using the above algorithm, we propose the following decomposition-based constraint opti-

mization technique for statistical scheduling. Algorithm 6.2 takes in the task graph G, the perfor-

mance model w and c, the architecture model (P,C) and the makespan percentile η. The output

of the algorithm is the optimized schedule for the task graph onto the architecture. The algorithm

follows similar steps as Algorithm 2.4 that optimizes schedules for static models. The parts of the

algorithm that deal with the setup and solution of the master problem (lines 1-6), as well as checking

the validity of the master problem solution (lines 7-10) are unchanged from Algorithm 2.4. Algo-

rithm 6.2 differs from Algorithm 2.4 in lines 11 and 12, where we compute the makespan of the

valid allocation and schedule using a statistical analysis routine (line 11) and use Algorithm 6.1 to

add path constraints that eliminate a part of the solution space from consideration in future master

problem iterations (line 12).

Algorithm 6.2 STATDA(G, w, c, P, C, η) → makespan

1 makespan = ∞

2 φ = empty CNF formula
3 BASECONSTRAINTS(G, w, c, P, C, φ)

4 while (true)

// master problem
5 xSAT =SATSOLVE(φ)
6 if (xSAT = UNSAT) return makespan

// sub-problem
7 G′ = UPDATEGRAPH(G, xSAT)
8 if (G′ contains a cycle)
9 CYCLECONSTRAINTS(G′, xSAT , φ)
10 else
11 makespan = min{makespan, STATANALYSIS(G′) }
12 STATPATHCONSTRAINTS(G′, w, c, makespan, η, xSAT , φ)

152

6.2 Algorithmic extensions

Algorithm 6.2 uses a Boolean Satisfiability based constraint solver to solve the master problem.

There is significant opportunity to constrain and guide the solution returned by the SAT solver to im-

prove the efficiency of the decomposition technique. We first present the existing search procedure

of the SAT solver, and then show how we can modify this procedure to improve solver performance.

6.2.1 Boolean Satisfiability procedure to solve the master problem

A Boolean Satisfiability based solver uses a branch-and-bound procedure that explores the

space of solutions using a series of local scheduling decisions. Each decision involves setting one

or more of the Boolean decision variables of the problem to 1 or 0. The branch-and-bound procedure

also allows a backtrack from the decisions already made to explore other solutions.

Algorithm 6.3 presents the outline of a general SAT solver presented in [Een and Sörensson,

2003]. The algorithm starts by selecting an unassigned decision variable to a particular value (line

8). All occurrences of the decision variable in the constraints are then replaced by the value chosen.

This is called the propagation step, and this may possibly result in more variables being assigned

(line 3). The decision phase continues until either all variables are assigned, in which case the

problem is satisfiable and the satisfying solution is returned (line 5), or a conflict occurs (line 9). In

case there is a conflict, the conflict needs to be analyzed (line 10) and a backtrack is done to the last

non-conflicting state (line 14).

The two important steps that can be modified in this procedure are the ANALYZE and DECIDE

steps. The ANALYZE step is responsible for identifying whether the set of decisions made so far

is incompatible, i.e whether the decisions lead to one or more constraints that are not satisfied. We

modify this step by adding an additional pruning step that attempts to identify whether a particular

set of decisions can lead to an optimal solution. We describe this procedure in Section 6.2.2. The

DECIDE step chooses the next variable to allocate. A SAT solver has an inbuilt mechanism to

order variables in a way that gives priority to more active variables. However, as we shall see in

Section 6.2.3, it is possible to choose a better ordering to guide the search with the knowledge of

the nature of the optimization problem. We do this by using the heuristic list-scheduling decision

procedure (Algorithm 5.2) to help guide the next scheduling decision.

153

Algorithm 6.3 SATSOLVE(φ) → ({ SAT, UNSAT }, xSAT)
1 x = list of assignments to variables in φ (initially empty)

2 while (1)
// propagate variable implications based on current assignments

3 PROPAGATE(φ, x)

4 if (NOCONFLICT(φ, x))
5 if (all variables in x assigned)
6 return (SAT, x)
7 else

// pick a new decision variable and assign it a value
8 DECIDE(φ, x)

9 else
// analyze conflict and add a conflict clause

10 ANALYZE(φ, x)
11 if (top level conflict found)
12 return (UNSAT, x)
13 else

// undo assignments until conflict disappears
14 BACKTRACK(φ, x)

6.2.2 Pruning intermediate nodes in the search

The ANALYZE step in Algorithm 6.3 can be modified to invoke the sub-problem at intermediate

points in the search. If a partial solution contains a cycle, then any set of future decisions to other

variables cannot eliminate the cycle. Therefore, we can prune the search whenever we detect a

cycle, and add the corresponding cycle constraint to the problem. We then restart the search and a

new iteration of the master problem can commence. If there is no cycle in the partial solution, then

we can add ordering edges that captures the partial solution to the task graph. The delay of any path

in the graph with ordering edges is a lower bound to the makespan that can be achieved with the

partial solution. This can be computed using a statistical analysis based technique. We then check if

this lower bound is larger than the best known makespan. If it is indeed larger, then Algorithm 6.1

can be invoked to add the corresponding path constraint. The search is again restarted after the new

constraint has been added.

In general, any lower bound to the makespan that is achievable from a partial schedule can

be used to facilitate pruning at intermediate nodes of the SAT search. A tight lower bound will

identify sub-optimal portions of the search tree earlier in the search process and will hence lead to a

faster search. Lower bounds are typically computed on structural properties of the task graphs. The

154

longest path of the task graph with ordering edges capturing the partial schedule is one example of

such a lower bound. Another obvious lower bound is the ratio of the statistical sum of the execution

time of all unassigned tasks to the number of processors. More complex lower bounds that attempt

to compute the minimum possible communication time between tasks have also been developed

for static models [Gerasoulis and Yang, 1992]. These can also be adapted for statistical models by

using statistical Monte Carlo analysis.

6.2.3 Guiding master problem search using heuristics

A key part of Algorithm 6.3 is the DECIDE step that picks a new variable and sets it to a

value. Although the SAT solver incorporates a generic technique that works well in many cases

[Een and Sörensson, 2003], we can tune the policy to target scheduling problems. In a scheduling

context, the Dynamic List Scheduling (DLS) heuristic is a good choice for making the next decision.

The STATDLSDECIDE procedure used to make a scheduling decision given a partial schedule was

described in Algorithm 5.2. Given a partial schedule, the procedure returns the next (task, processor)

pair to be scheduled. Such a procedure can directly be invoked on the partial schedules encoded by

the intermediate nodes of the SAT search tree, and will return a (task, processor) pair to schedule.

The variables corresponding to the allocation of the task to the processor is fixed and the SAT search

procedure then resumes. Since DLS has been shown to be a heuristic that produces high-quality

solutions [Kwok and Ahmad, 1999a][Davidović and Crainic, 2006], we can expect the search to be

directed towards better solutions.

6.3 Iterative decomposition-based algorithm

The algorithm presented in Section 6.1 even with the algorithmic extensions proposed above

cannot solve large scale statistical scheduling problems under reasonable time limits. The main

problem with the approach is that the lower bound computation at intermediate nodes of the search

tree involves a Monte Carlo simulation that is very compute intensive. Since the master problem

must use the Monte Carlo analysis at each intermediate node that it explores, it spends a long time

in just getting to a leaf node and returning control to the sub problem. We would ideally like single

master and sub-problem invocations to complete quickly to allow for a large number of iterations to

be executed in a given amount of time.

For task graphs with statistical distributions that are either independent or positively correlated,

155

and with a required makespan percentile η > 50%, then the result of an average case analysis

of the task graph can be used as a lower bound. This analysis is a static longest path analysis

and does not require any Monte Carlo simulations. In order to perform such an analysis, the task

graph corresponding to the partial schedule is modified by replacing all task execution times and

communication times with the average value of the respective distributions, and eliminating all

edges with a probability of existence less than 50%. For most common distributions, we can also

use the median, or the 50th percentile of the execution and communication times rather than the

average case values. A linear-time static longest path analysis of this new task graph will then yield

a lower bound to the best makespan that can be achieved from the partial schedule. Such a lower

bound has previously been used in [Beck and Wilson, 2007] for job-shop scheduling problems. The

main problem with such a lower bound is that it is not usually a tight bound, especially at typically

used makespan percentiles above 90%. Using a lower bound that is not tight will lead to ineffective

pruning of the search space, and will lead to the exploration of sub-optimal parts of the search tree.

This can make the algorithm computationally infeasible.

We can modify the above technique in order to tighten the bound obtained while still maintain-

ing the efficiency of computation of the bound. We do this by replacing each statistical variable (task

execution times, communication times and dependencies) with samples that are greater than their

average case values. In particular, we can opt to sample each distribution at a percentile µ > 50%.

We can then perform a static longest path analysis with these samples to obtain a lower bound es-

timate. The result of this computation is an increasing function of µ. As we increase µ from 50%,

we obtain tighter estimates of the lower bound. However, we cannot increase µ arbitrarily: if we

increase it beyond some point, the estimates cease to be lower bounds to the makespan. If we do not

use lower bounds, the branch and bound algorithm may end up pruning the portion of the search tree

with the optimal solution, and hence lose the guarantee of optimality of the solution. The challenge

then is to find the right balance of the sampling percentile µ such that the result of the longest path

estimate remains a lower bound and is as tight as possible. Unfortunately, given arbitrary distribu-

tions of execution and communication times, it is not possible to analytically obtain the right value

for µ.

It is, however, possible to design an algorithm that iteratively explores the space of µ values and

guarantees both solution optimality and efficient pruning of sub-optimal solutions. We now describe

such an approach. We run the decomposition-based method of Algorithm 6.2 multiple times with

decreasing values of µ, starting with µ close to 100% and reducing it to 50%. Each iteration of the

algorithm will use the respective µ value to sample the statistical distributions in the task graphs at

156

intermediate nodes of the SAT search, and use the result of a static analysis on the resulting graph to

bound the search in the master problem. In the very first iteration with high µ values, the algorithm

will prune most of the solution space (potentially including the the optimal solution) and should

return very quickly with a highly sub-optimal solution. Each subsequent iteration will explore a

little more of the search space and returns increasing improved solutions. We stop when we reach

µ = 50%. At µ = 50%, the algorithm is guaranteed to terminate with the optimal solution.

It is important to note that we do not change the nature of the statistical analysis performed at

the leaf nodes of the search tree. In particular, the modifications proposed here are only to the lower

bound computations in step 10 of the master problem described in Algorithm 6.3. The nature of the

sub-problem analysis and the constraints that are added to the master problem remains unchanged

from Algorithm 6.2. Therefore all solutions returned by different iterations of the optimization

problem are still valid irrespective of the value of µ. It is just the optimality of the solution returned

that changes in different iterations. It is possible that the first few iterations of the optimization

problem will not yield any solution if we use very high values for µ (close to 100%). In such cases,

we can ignore such iterations and continue by lowering the value of the µ parameter.

The iterative algorithm has an important practical advantage over a branch and bound algorithm

using a single value of µ = 50%. When time limits are imposed on the scheduling approach, we find

that a branch and bound algorithm with µ = 50% fails to make significant progress in the search. In

our experiments, we found that almost no improvement was made over a heuristic solution under a

time limit of 15 minutes. However, with an iterative approach, the early iterations of the algorithm

with high values of µ tend to terminate quickly. Although the algorithm does not guarantee optimal

solutions in these early iterations, it does explore many leaf nodes over the course of the search.

In practice, we found that it was often the case that the optimal solution was obtained at early

iterations with µ values around 80-90%. Under such circumstances, the iterative approach finds the

optimal solution fairly early in the search and spends the rest of the time proving the optimality of

the solution. It can therefore return good solutions even under strict time limits.

The iterative scheme is also superior to the algorithm described in Section 6.1. The algorithm

in Section 6.1 spends most of its time computing lower bounds at intermediate search nodes. The

iterative algorithm, on the other hand, explores many leaf nodes and therefore identifies better solu-

tions to the optimization problem. We will quantify the difference in the quality of results obtained

using these two algorithms in Section 6.4.1.

157

6.4 Results

In this section, we compare the results of the statistical decomposition-based algorithm (DA)

described in Section 6.1 with the iterative algorithm (IT-DA) that uses static analysis for pruning as

described in Section 6.3. We show that the iterative IT-DA algorithm performs better than the DA

algorithm in terms of the optimality of the solution achieved in a constant runtime. We then compare

the iterative IT-DA algorithm with the statistical Dynamic List Scheduling (DLS) technique and

statistical Simulated Annealing (SA) techniques described in Chapter 5.

6.4.1 Comparison of different decomposition-based scheduling approaches

We compare the DA algorithm with the iterative IT-DA algorithm using the random task graph

instances of Table 5.4. Figure 6.2 shows the average percentage improvement of the makespan

results computed by the DA and IT-DA algorithms over the statistical DLS solution. All algorithms

optimize for the makespan percentile η = 95%. Each data point is computed by scheduling a task

graph with 50 tasks on 4,8 and 16 processors and taking the average percentage difference of the

two algorithms from the DLS solution. The IT-DA algorithm is run using sampling percentiles µ

of 99%, 95%, 90%, 80% and 50%. Each of these algorithms was allowed to run for a total time

of 10 minutes. In the IT-DA algorithm, the iteration corresponding to a lower µ value was started

only if the previous iteration with a higher µ completed within the timeout. The graph in Figure 6.2

plots the average percentage differences from the statistical DLS solution versus edge density of the

task graph instances. The graph shows that the iterative DA algorithm consistently improves the

DLS makespan more than the DA approach within the timeout of 10 minutes. This is because the

iterative DA algorithm quickly reaches feasible solutions at high sampling percentiles µ, and slowly

improves the result on decreasing µ. On the other hand, the DA technique spends much of its time

in computing statistical lower bounds that are used in pruning nodes in the search tree, and hence it

explores only a small portion of the search space.

The IT-DA algorithm is superior to the DA algorithm for most scheduling instances. The

DA algorithm typically fails to make any improvement to the statistical DLS algorithm, and is

therefore of limited use in a toolbox of statistical scheduling approaches. We only consider the

IT-DA algorithm in the rest of our comparisons.

158

0

1

2

3

4

5

6

7

8

9

10

0 10 20 30 40 50 60 70 80 90

Edge density

P
e

rc
e

n
ta

g
e

 i
m

p
ro

v
e

m
e

n
t

o
v

e
r

s
ta

ti
s

ti
c

a
l

D
L

S
 m

a
k

e
s

p
a

n

IT-DA

DA

Figure 6.2: Average percentage improvement of the makespans obtained by the DA and IT-DA
statistical decomposition approaches over the statistical DLS makespan for random task graphs
containing 50 tasks scheduled on 4. 8 and 16 fully-connected processors as a function of edge
density.

6.4.2 Comparison of decomposition-based scheduling to other approaches

We now compare the scheduling results of the iterative DA approach with the statistical DLS

and SA approaches described in Chapter 5. The key criteria for comparison are the quality of the

solution obtained, the runtime of the algorithm and the extensibility of the algorithm. We evaluate

the extensibility of the scheduling approach by the ease with which additional constraints can be

added to the problem and the quality of solution of the resulting algorithm. In particular, we try

our scheduling methods on different architectural topologies and study the quality of the solutions

obtained on these varied topologies.

Table 6.1 shows the makespan obtained by scheduling task graphs corresponding to the IPv4

packet forwarding application on 8 processors that are completely connected (Full) and connected

using a ring topology (Ring). Recall that in Table 5.2 of Chapter 5, we replicated the task graph for

IPv4 forwarding from 1 to 10 times to correspond to forwarders with different numbers of channels.

We perform the same replication in Table 6.1 as well. Column 1 in Table 6.1 shows the number of

tasks in each of these instances. The other columns show the makespan obtained using the three

algorithms at two different makespan percentiles of 99% and 95%. The IT-DA algorithm was run

159

using static percentiles of 99%, 95%, 90%, 80% and 50%. The total time allowed for a single IT-DA

run was 15 minutes. All IT-DA runs that complete within the time limit with the optimal solution

are highlighted in bold.

The results of Table 6.1 show that the IT-DA results are within 4% of both the SA and DLS

solutions for the 99th and 95th percentiles on the fully connected topology. This is true even when

the IT-DA algorithm terminates with the optimal solution (this happens when there are fewer than 60

tasks). This means that the DLS and SA solutions yields near-optimal solutions for fully connected

topologies. A similar trend for the makespans achieved through various algorithms has already

been noted in the context of static models (Chapter 2). The statistical DLS and SA algorithms are

essentially derived from the algorithms for static models, and it is therefore not surprising to obtain

a similar quality of results in the statistical versions as the static versions.

Full Ring
η = 99% η = 95% η = 99% η = 95%

IT- IT- IT- IT-
Tasks DLS SA DA DLS SA DA DLS SA DA DLS SA DA

15 135 135 135 105 105 105 145 135 135 105 105 105
28 135 135 135 125 125 120 145 145 135 130 125 120
41 135 135 135 135 135 135 175 150 145 155 155 140
54 160 160 155 145 135 135 240 185 175 230 210 195
67 185 170 175 175 160 175 290 230 230 250 225 215
80 195 185 195 190 185 190 365 285 295 285 260 265
93 210 220 210 225 215 215 360 280 295 315 275 275

106 250 240 225 230 200 205 365 340 325 400 360 370
119 255 270 255 255 260 255 395 395 370 395 370 370
132 290 270 280 285 270 270 410 375 390 440 360 350

Avg. % diff.
from DLS - 1.3 1.6 - 3.9 3.0 - 12.5 13.9 - 7.9 10.1

Table 6.1: Makespan results for the statistical DLS, SA and iterative DA methods on task graphs
derived from IPv4 packet forwarding scheduled on the 8 processors connected in full and ring
topologies.

The statistical DLS algorithm is not as optimal when the architectural topology is a ring of

processors. From Table 6.1, we find that the DLS makespan is on average more than 10% off of the

decomposition approach. This helps demonstrate one of the key issues with heuristics - they tend

to be difficult to extend to accommodate additional constraints, and cannot be expected to produce

results of high quality once such extensions have been made. In contrast, we note that the statistical

SA algorithm seems to extend well when we modify the topology - the difference between the SA

and IT-DA approaches remains small on both topologies.

160

The trends are similar for other architectural topologies. Figures 6.3 and 6.4 show the percent-

age improvement of the statistical SA and IT-DA makespans over the DLS makespan for the IPv4

application scheduled on the architectures of Figure 2.10(b) and (c) respectively. The differences are

shown for different IPv4 instances with the task graphs unrolled from 1 to 10 times. From the two

figures, we can see that the statistical DLS approach can yield makespans that are up to 35% worse

than the SA or iterative DA approaches. We can also see that the SA and iterative DA approaches

yield similar results. While the iterative DA approach often gives better results for small task graphs,

the SA approach becomes better at large task graphs. This trend was also seen in Chapter 2 for static

scheduling. This can be attributed to the “knee” effect shown by constraint optimization methods,

wherein problems up to a certain size are solved quickly, and problems beyond that size take a very

long time to solve. The scheduling problem is known to be hard to solve optimally, and hence this

is an expected trend.

9 processors - 99th percentile

0

5

10

15

20

25

30

15 28 41 54 67 80 93 106 119 132

Number of tasks

P
e

rc
e

n
ta

g
e

 i
m

p
ro

v
e

m
e

n
t

o
v

e
r

s
ta

ti
s

ti
c

a
l
D

L
S

SA

IT-DA

Figure 6.3: Percentage improvement of the statistical SA and IT-DA makespans over the statistical
DLS makespan for task graphs derived from the IPv4 packet forwarding application scheduled on
the architecture of Figure 2.10(b).

The runtime of the three approaches is also a useful comparison metric. Table 6.2 shows the

runtime of the three algorithms for the corresponding entries of Table 6.1. The table shows that the

statistical DLS heuristic completes within 2 minutes for all scheduling instances. The SA algorithm

finishes within 10 minutes even at the largest instances. The iterative DA algorithm, on the other

161

Full Ring
η = 99% η = 95% η = 99% η = 95%

IT- IT- IT- IT-
Tasks DLS SA DA DLS SA DA DLS SA DA DLS SA DA

15 0 0 0 0 0 0 0 0 0 0 0 0
28 0 0 1 0 0 1 0 0 0 0 0 1
41 0 1 2 0 1 2 0 1 2 0 1 2
54 0 2 3 0 2 4 0 1 15 0 2 15
67 0 2 15 0 2 15 0 2 15 0 2 15
80 0 4 15 0 3 15 0 2 15 0 3 15
93 0 4 15 0 4 15 1 4 15 0 4 15

106 0 5 15 0 5 15 1 6 15 0 5 15
119 1 7 15 1 6 15 1 7 15 1 6 15
132 1 8 15 1 6 15 1 7 15 1 8 15

Table 6.2: Runtime (in minutes) for the statistical DLS, SA and iterative DA methods on the map-
ping instances of Table 6.1.

10 processors - 99th percentile

0

5

10

15

20

25

30

35

15 28 41 54 67 80 93 106 119 132

Number of tasks

P
e

rc
e

n
ta

g
e

 i
m

p
ro

v
e

m
e

n
t

o
v

e
r

s
ta

ti
s

ti
c

a
l
D

L
S

SA

IT-DA

Figure 6.4: Percentage improvement of the statistical SA and IT-DA makespans over the statistical
DLS makespan for task graphs derived from the IPv4 packet forwarding application scheduled on
the architecture of Figure 2.10(c).

hand, does not finish execution beyond 60 tasks, and times out at 15 minutes. For instances below

60 tasks, the iterative DA algorithm terminates with the optimal solution.

The choice of scheduling methods depends on the desired trade-off between the quality of

solution and runtime. We find that the statistical DLS algorithm performs very well on certain types

of scheduling problems. These include problems where there are no additional constraints such as

162

architecture topologies added to the scheduling problem. Another set of scheduling instances where

a DLS based algorithm does well is when the number of edges in the task graph is either close to zero

or close to the maximum possible number of edges. Table 6.2 shows that the exact IT-DA algorithm

does not improve the DLS solution at zero and high edge densities. This can also be seen in decoding

H.264 sequences that consist mainly of P-macroblocks. We showed in Chapter 5 that the statistical

DLS procedure shows less than 8% performance degradation compared to statistical SA for such

sequences. We find that the IT-DA algorithm does not improve the DLS result for this application.

For these examples where the DLS solution is near-optimal, it is clearly the solution of choice,

as it take less than 2-3 minutes to execute even for large task graphs as compared to 20 minutes

or more for the other methods. For other problems that have additional constraints on mapping

and have an intermediate number of edges in the task graph corresponding to the application (the

IPv4 application is a good example), the DLS makespan can be significantly suboptimal. For such

scheduling instances, either the SA or IT-DA algorithms can be used. For statistical scheduling, we

generally find the SA and IT-DA algorithms to yield similar makespans. However, the statistical SA

scheme usually scales better to larger task graphs. In our experiments, we found the SA algorithms

to produce better schedules than the IT-DA algorithm for task graphs of size greater than 100 tasks.

Thus for large task graphs, the statistical SA algorithm offers the best combination of quality of

results and runtime.

163

Chapter 7

Conclusions

Single-chip multiprocessors have now become prevalent in both the embedded and general-

purpose markets. The challenge before the programmer is to productively program these multipro-

cessors so as to use the parallelism available in the devices. This motivates the development of

automated tools for parallel application deployment and design space exploration. A key step in

such an automated flow is mapping task-level concurrency present in the application to the parallel

hardware resources in the multiprocessor platform.

In this dissertation, we concentrated on investigating and evaluating approaches to compile-

time scheduling of applications with task-level concurrency onto multiprocessors. Such techniques

rely on the availability of realistic models of the application and architecture at compile time.

Compile-time scheduling techniques incur minimal overhead while running the application. They

are also useful in rapid design space exploration of micro-architectures and systems. Compile-time

methods are not applicable if there is no knowledge of the parallel tasks and application workload

at compile time. In that case, run-time or dynamic scheduling techniques must instead be used.

Scheduling problems that arise in realistic application deployment and design space explo-

ration frameworks can encompass a variety of objectives and constraints and require different fea-

tures to be exposed in the application and architecture models. In order for scheduling techniques

to be useful for realistic exploration frameworks, they must therefore be sufficiently flexible to be

applied to a range of problems. They must also produce high quality solutions and must be compu-

tationally efficient. In this dissertation, we compared the use of heuristics, simulated annealing and

exact optimization methods for solving three different scheduling problems in view of the above

metrics. All the problems that we considered involved scheduling tasks onto parallel architectures,

but differed in terms of the constraints and optimization objective of the scheduling problem. The

164

diversity of problems studied gave us a base for studying the extensibility of scheduling methods. It

also helped provide a more holistic view of the merits of different scheduling approaches in terms

of their efficiency and quality of solutions produced on scheduling problems in general.

We now briefly summarize the results of this dissertation and comment on directions for future

work.

7.1 Comparison of scheduling approaches

In this work, we investigated and evaluated different techniques for scheduling task-level con-

currency in applications onto multiprocessors. Scheduling techniques broadly fall under one of

three categories: heuristics, randomized algorithms and exact approaches. In this work, we picked

one interesting candidate from each category for each scheduling problem we considered. These

approaches offer different trade-offs in terms of solution quality, optimality of solution and flexi-

bility. As a general strategy, heuristics are most useful when they have been tuned to a particular

optimization problem. A programmer may find that the optimization problem under consideration

fits exactly into a known heuristic solution. In such a case, heuristics are often a good choice.

However, for many practical problems, this may not be the case. A more general technique for solv-

ing optimization problems is then required. Randomized methods and exact approaches both offer

flexibility in terms of the range of problems they can accommodate. Exact approaches additionally

offer the promise of obtaining optimal solutions to the scheduling problem, but usually succeed only

on problems of small to moderate size in terms of the number of variables and constraints in the

problem. For large and complex optimization problems, randomized techniques are the method of

choice.

We will now discuss the use of heuristics, a simulated-annealing based randomized algorithm

and a constraint-optimization based exact approach to solve different scheduling problems. We will

highlight the advantages and disadvantages of using each approach.

7.1.1 Heuristic techniques

Heuristic methods are computationally efficient and can handle large scheduling problems with

thousands of tasks. Consequently, they are a useful option to have in a toolbox of scheduling

methods to be used when other techniques fail to make progress. However, heuristics do not offer the

promise of obtaining optimal solutions to the scheduling problem or even bounds on the optimality

165

of the solution achieved. In this work, we found that the quality of solutions produced by heuristics

can differ depending on the exact scheduling problem. In Chapter 2, we found that a dynamic list

scheduling heuristic can yield solutions within 5-10% of the optimal when scheduling concurrent

tasks onto regular homogeneous processors. On the other hand, heuristics for other scheduling

problems can be as much as 40-50% off from the optimal solution. One example is the data transfer

minimization problem of Chapter 3. The unpredictability of heuristics is a big disadvantage to their

use in practical scheduling frameworks.

Another key drawback of heuristic solutions is the lack of flexibility to accommodate different

sets of models and objectives. As an example, the problems of both Chapters 2 and 3 involve finding

the optimal ordering of tasks within a processor. However, since the models and objectives for the

two problems are different, they use very different heuristics. The list scheduling heuristics for

the task allocation and scheduling problem of Chapter 2 are primarily focused on prioritizing the

execution of tasks on the “critical path” of the application based on task execution times. This is

quite different from the heuristics used for the task and data transfer scheduling problem of Chapter

3, which does not model task execution times. A recently proposed algorithm for this problem

instead relies on a depth-first order to minimize the amount of data that is live at any point in the

schedule.

Even when we consider a single scheduling problem, it is often hard for heuristics to handle

the presence of additional constraints in a scheduling problem without losing their efficiency. As

an example, the dynamic list scheduling (DLS) heuristic, which is a popular heuristic for allocating

and scheduling tasks to multiprocessors, was primarily developed for mapping task graphs onto fully

connected homogeneous architectures. In Chapter 2, we showed that it produces very high quality

solutions that are within 5-10% of the optimal solution on such architectures. However, when

mapping tasks onto more irregular and heterogeneous architectures, the heuristic must be extended.

The extended heuristic produces less optimal results; it can be up to 25% worse than the optimal

solution. Moreover, the very fact that the heuristic must be manually modified for each possible

constraint detracts from its value for general scheduling problems. Therefore we need a method

that can more flexibly handle constraints such as heterogeneity, memory size limits, preferred task

allocations or task clustering.

166

7.1.2 Constraint Optimization methods

Constraint optimization techniques typically use an underlying solver technology such as Mixed

Integer Linear Programming (MILP) or Boolean Satisfiability (SAT) solvers to specify the con-

straints and optimization objective of the optimization problem. The range of optimization objec-

tives and side constraints that can be added to a scheduling problem is only limited by the structure

of the constraints that the solver technology can handle. In addition to Boolean clauses in SAT and

linear inequalities in an MILP solver, solvers that allow pseudo-boolean constraints, sat-modulo

constraints and constraints in many other specialized “theories” have become popular in recent

years. We were able to use constraint optimization based techniques to solve the three different

scheduling problems we considered.

Of the three classes of scheduling algorithms, constraint optimization techniques are the only

ones that offer the promise of obtaining optimal solutions to the scheduling problem when they are

given enough time to execute. It is often the case that optimal solutions cannot be guaranteed when

constraint optimization methods are limited to a runtime of up to 30 minutes. In our experience,

even when solvers are allowed to run for a few hours, there is usually only slight improvement in

the quality of the solutions returned. However, even under such conditions, constraint optimization

techniques can provide bounds as to how much the result is inferior to the optimal solution. Con-

straint optimization techniques also have the useful property that the solutions returned by these

techniques are guaranteed to improve with runtime; hence they allow for tradeoffs between runtime

and quality of the solution.

However, constraint solvers suffer from the point of view of the efficiency metric: they cannot

usually handle large scheduling instances. The solution space of scheduling problems is not smooth

and is difficult to explore completely. Such solvers usually have a “knee” effect: they handle all

problems up to a certain size well, but suddenly fail at a certain problem size. For the task allo-

cation and scheduling problem of Chapter 2, single pass MILP approaches can only schedule task

graphs of up to 30-50 tasks, which corresponds to about a thousand variables and constraints. For

the scheduling problem in Chapter 3, an MILP based-approach could only schedule task graphs

with up to 30 tasks and data items, which again involves a few thousand variables and constraints.

This can be improved by the use of improved problem formulations or the use of more powerful

solvers. However, such improvements can only push the “knee” to larger problem sizes; the ultimate

exponential nature of the runtime of such solvers will persist. For the task allocation and scheduling

problem of Chapter 2, we were able to decompose the scheduling problem in order to accelerate

167

the solver search mechanism. By using such a decomposition technique, we were able to push the

frontier of the number of tasks that we could schedule from less than 50 to over 150 tasks, which

corresponds to a few tens of thousands of variables and constraints. However, constraint-based

techniques are still not effective beyond that point.

7.1.3 Simulated Annealing

Simulated Annealing is a randomized algorithm that is effective on large-scale scheduling

problems. It offers a middle ground between heuristics and exact techniques. The algorithm does

not offer the promise of obtaining exact solutions, but does allow for some tradeoff between com-

putation time and the quality of solutions they produce. One of the big drawbacks of simulated

annealing algorithms has been the perceived randomness and potential sub-optimality of the solu-

tion they end up with. While it is true that the result of simulated annealing does vary somewhat

across different runs, we found that such differences were usually minor and did not affect the qual-

ity of the solution. Further, we found that it was possible to tune the parameters to the simulated

annealing technique in order to produce high quality solutions. From our experiments on all three

scheduling problems, we found that simulated annealing produced solutions that were within 20-

25% of the solutions returned by exact methods for small problems. For larger problems, where

constraint optimization approaches did not make much progress towards solving the problem, sim-

ulated annealing techniques yielded better solutions than constraint programming methods. Simu-

lated Annealing also gave better results than heuristics in almost all our problems. The difference

varied from a low of 5% to a high of 50% depending on the exact scheduling problem considered.

Simulated Annealing methods also scale well to large scheduling problems. In Chapter 3, we

were able to solve large scheduling instances of up to 1600 tasks using simulated annealing methods.

For the other scheduling problems, we were able to handle instances with a few hundred (200-500)

tasks, which would correspond to about a hundred thousand variables and constraints. Simulated

annealing can solve large enough problems to be of use in solving real-world scheduling problems.

An additional advantage of simulated annealing is that it is very extensible. The algorithm

itself is a meta-optimization procedure that can be tuned to different optimization problems with

a variety of parameters. In particular, the COST function that evaluates the optimization function

corresponding to a “state” (corresponding to a particular schedule) is a callback function that can

easily be tuned to different problems. Different constraints to the scheduling problem can also be

easily incorporated as a part of deciding whether a state represents a valid or invalid schedule. We

168

were able to use simulated annealing based techniques for all three of our scheduling problems by

changing the parameters of the problem.

7.2 Incorporating Variability into Compile-time scheduling models and

methods

One of the key criticisms of compile-time scheduling methods is that the application workload

or execution characteristics of applications may not be fully known at compile-time, due to data-

dependent executions or jitter in execution times. Consequently, such methods usually optimize for

worst-case or common-case application behavior depending on whether the application has real-

time constraints or not. For many applications that have soft real-time constraints, neither of these

optimize for the right metric of application performance. The performance metric for soft real-time

applications is the time at which a given percentile of all inputs complete. For instance, a packet

forwarding application may require a service guarantee that 95% of all input packets complete in a

given time frame. In such a case, the 95th percentile of the application execution time is the correct

metric of system performance. In general, the value of the percentile is a user-provided parameter

that must be taken into account during the optimization.

In this work, we extend compile-time scheduling models and methods to optimize soft real-

time applications. We adopt a profiling based approach to capture the variability in application

execution time. We use statistical variables to represent task dependencies and performance char-

acteristics. We then extend our scheduling techniques to handle such variations. Our scheduling

techniques take into account the percentile of the makespan to optimize for.

We believe that statistical scheduling techniques will be of high relevance for future applica-

tions and architectures. The complexity of applications in terms of the amount of control flow has

in general been increasing in many fields. A typical example has been in video codecs where the

trend has been towards more efficient but logically complex coding schemes such as H.264 [Davare,

2007]. The performance characteristics of such applications tend to be highly dependent on input

data characteristics. For the sake of the accuracy of performance modeling, it is necessary for the

variability in such applications to be captured. This work has helped illustrate some of the basic

models and methods that are used for scheduling such applications.

169

7.3 Future Work

The current work can be extended in many different directions. The first direction is in trying

our scheduling techniques on a broader set of applications. The second direction is in exploring

other compile-time scheduling approaches from the broad category of evolutionary algorithms. The

third direction is in exploiting the symmetry present in common scheduling problems in order to im-

prove the computational efficiency of our solution techniques. The fourth direction is in efficiently

implementing our scheduling methods on current day parallel platforms. Finally, for a complete

solution to the mapping problem, we must also include dynamic scheduling approaches which are

applicable when we do not have knowledge about the application workload at compile-time.

7.3.1 Broader range of applications

In this work, we limited our experiments to moderate-sized applications from the fields of

networking, video processing and machine learning. However, we believe that the main impact of

this work will be felt in more complex applications, where a manual mapping effort will likely prove

very difficult. Therefore, more complex applications, especially from emerging workload classes

such as the recognition, mining and synthesis benchmark [Chen et al., 2008] should be tried.

7.3.2 Other evolutionary algorithms

The area of evolutionary algorithms comprises a fairly broad set of algorithms including simu-

lated annealing, genetic algorithms, genetic programming, ant-colony optimization and others. We

picked the simulated annealing algorithm for our study since this is a technique that has been used

in a variety of scheduling problems. In view of the successful application of simulated annealing for

the problems we studied, it will be of great interest to study the use of other such algorithms. Some

algorithms such as ant-colony optimization have been recently successfully applied to one resource-

constrained scheduling problem [Wang et al., 2007]. It will be of interest to see how extensible the

technique is to other scheduling problems.

7.3.3 Symmetry considerations

Scheduling problems tend to have symmetry either in the task graph or in the architecture

model. Our existing solver techniques do not take into account the symmetry to reduce the effective

solution space of the problem. They instead explore many symmetric solutions over the course of

170

the search. One approach to exploit symmetry is to avoid exploring certain schedules if symmetric

schedules have already been explored. This requires keeping a history of already explored states. A

better alternative is to encode the problem in such a way as to resolve symmetries. Such an approach

can significantly help boost solver performance.

7.3.4 Parallel Implementation of Scheduling Methods

The advent of many-core machines into general-purpose computing means that most schedul-

ing algorithms will likely run on a parallel machine. In this context, we can improve solver effi-

ciency by parallelizing the solver to use multiple cores. Since simulated annealing and constraint

optimization methods are the most promising methods in terms of solution quality, they are the key

targets for parallel execution.

A simulated annealing algorithm works by making a number of transitions at a given temper-

ature and evaluating a cost metric on each of them. Each of these transitions is then accepted or

rejected depending on the result of the cost evaluation. After a certain number of such transitions

are performed, the temperature is then modified, and new transitions are evaluated at the new tem-

perature. The set of transitions at a given temperature can be performed and evaluated in parallel.

However, the temperature update depends on the results of these evaluations, and hence must wait

until all transitions at the temperature complete.

In the simulated annealing algorithms in Chapters 2 and 5, there is a parameter L that deter-

mines the number of transitions to be made at a single temperature. The value of L in our experi-

ments was 500. Thus there is a 500-fold parallelism to be exploited in simulated annealing. Since

each of these transitions are completely independent of each other, it should be relatively easy to

exploit the parallelism. Simulated Annealing should then scale in performance with the number of

cores on future many-core devices. We believe this is an core additional advantage that will make

simulated annealing a very competitive tool as scheduling is relocated to many-core machines.

In contrast, branch-and-bound and related constraint solver methods are not so easily paral-

lelized, and their parallelization is a topic of active research [Chu et al., 2008] [Gil et al., 2008]

[Hamadi et al., 2008]. One of the best performing parallel SAT solvers works by running different

SAT solvers simultaneously and picking the result of the first solver that completes [Hamadi et al.,

2008]. It is unclear if such techniques will scale to dozens or hundreds of cores. Additional research

in this field is highly important if constraint solvers are to remain viable on many-core platforms.

171

7.3.5 Dynamic Scheduling

This dissertation has focused entirely on compile-time methods for scheduling. Compile-time

methods are useful when there is knowledge at compile time about the tasks and execution times

(either deterministically or statistically). However, in certain applications, the tasks that need to

be performed will depend on the inputs. In such cases, dynamic scheduling approaches are the al-

ternative. The criteria for choosing dynamic scheduling algorithms are different from the ones for

compile-time scheduling. Here the main aim is to minimize scheduling overhead; hence it is essen-

tial to use heuristics. In fact, even approaches like the dynamic list scheduling algorithm discussed

in Chapter 2 may be too computationally expensive. A common dynamic scheduling algorithm is

based on maintaining a local work-queue of tasks to be executed on each processor [Casavant and

Kuhl, 1988]. The principle behind this method is that each processor preferentially executes tasks

from its local queue. The execution of a task can lead to more tasks being enqueued; these are

appended onto the local task queue. It may so happen that the task queue for some processors be-

comes empty; in this case some work is “stolen” from other processors based on a greedy heuristic

scheme. This is typically called a “work-stealing” approach and is used in many on-line schedul-

ing algorithms [Rudolph et al., 1991] [Blumofe and Leiserson, 1999]. Sgall et al. conduct a more

intensive survey of on-line scheduling methods [Sgall, 1997].

7.4 Summary

The goal of this research was to identify and evaluate techniques to solve compile-time schedul-

ing problems that arise in practical parallel application deployment scenarios. Over the course of

this dissertation, we identified three broad classes of scheduling approaches: heuristics, random-

ized/evolutionary algorithms and exact constraint optimization techniques that can be used to solve

such scheduling problems. Since exact approaches offer the promise of optimal solutions to schedul-

ing problems, they were of key interest to us. One of our research objectives was in improving exact

scheduling approaches to a point where they could solve problems of practical size. Our results

here have been mixed. Over the course of this research, we improved the scale of the problems that

exact approaches could handle by an order of magnitude (in terms of the number of variables and

constraints handled). While we believe that exact approaches are now at a point where they can be

used for small problems of practical interest, they still cannot handle large problems. For large and

complex design spaces, randomized techniques have proved to be the method of choice.

172

Bibliography

[Agarwal et al., 1988] Anant Agarwal, John Hennessy, and Mark Horowitz. Cache Performance of

Operating Systems and Multiprogramming Workloads. ACM Transactions on Computer Systems,

6(4):393–431, Nov 1988.

[Altera Inc., 2003] Altera Inc. System-on-Programmable-Chip (SOPC) Builder. Altera Corpora-

tion, user guide version 1 edition, June 2003.

[Asanovic et al., 2006] Krste Asanovic, Ras Bodik, Bryan Christopher Catanzaro, Joseph James

Gebis, Parry Husbands, Kurt Keutzer, David Patterson, William Lester Plishker, John Shalf,

Samuel Webb Williams, and Katherine Yelick. The Landscape of Parallel Computing Research:

A View from Berkeley. Technical Report UCB/EECS-2006-183, University of California at

Berkeley, Dec 2006.

[Atamtürk and Savelsbergh, 2005] Alper Atamtürk and Martin W.P. Savelsbergh. Integer Program-

ming Software Systems. Annals of Operations Research, 140:67–124, 2005.

[Baker, 1995] F. Baker. Requirements for IP Version 4 Routers. Network Working Group, Request

for Comments RFC-1812 edition, June 1995.

[Bambha and Bhattacharyya, 2002] Neal K. Bambha and Shuvra S. Bhattacharyya. System Syn-

thesis for Optically Connected Multiprocessors on Chip. In Proc. of the International Workshop

for System on Chip, 2002.

[Beck and Wilson, 2007] J. Christopher Beck and Nic Wilson. Proactive Algorithms for Job Shop

Scheduling with Probabilistic Durations. Journal of Artificial Intelligence Research, 28:183–232,

2007.

[Bender, 1996] Armin Bender. MILP Based Task Mapping for Heterogeneous Multiprocessor Sys-

tems. In Proceedings of EDAC, pages 283–288, 1996.

173

[Benders, 1962] Jacques F. Benders. Partitioning Procedures for Solving Mixed-Variables Pro-

gramming Problems. Numerische Mathematik, 4(1):238–252, Dec 1962.

[Benini et al., 2005] Luca Benini, Davide Bertozzi, Alberto Guerri, and Michela Milano. Alloca-

tion and Scheduling for MPSoCs via Decomposition and No-Good Generation. In Principles

and Practice of Constraint Programming, 11th International Conference, pages 107–121, 2005.

[Bleiweiss, 2008] Avi Bleiweiss. GPU accelerated pathfinding. In GH ’08: Proceedings of the 23rd

ACM SIGGRAPH/EUROGRAPHICS symposium on Graphics hardware, pages 65–74, 2008.

[Blumofe and Leiserson, 1999] Robert D. Blumofe and Charles E. Leiserson. Scheduling multi-

threaded computations by work stealing. Journal of the ACM, 46(5):720–748, 1999.

[Boeres and Rebello, 2003] Cristina Boeres and Vinod E. F. Rebello. Towards optimal static task

allocation and scheduling for realistic machine models: Theory and practice. International Jour-

nal of High Performance Computing Applications, 17(2):173–189, 2003.

[Bokhari, 1981] Shahid Hussain Bokhari. On the Mapping Problem. IEEE Transactions on Com-

puting, C-30(5):207–214, 1981.

[Borkar, 1999] Shekhar Borkar. Design Challenges of Technology Scaling. IEEE Micro, 19(4):23–

29, July-August 1999.

[Brucker, 2001] Peter Brucker. Scheduling Algorithms. Springer-Verlag New York, Inc., 3rd edi-

tion, 2001.

[Canny, 1986] J Canny. A computational approach to edge detection. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 8(6):679–698, 1986.

[Casavant and Kuhl, 1988] Thomas L. Casavant and Jon G. Kuhl. A Taxonomy of Scheduling in

General-Purpose Distributed Computing Systems. IEEE Transactions on Software Engineering,

14(2):141–154, 1988.

[Chen et al., 1994] William Y. Chen, Scott A. Mahlke, Nancy J. Warter, Sadun Anik, and Wen mei

W. Hwu. Profile-assisted instruction scheduling. International Journal on Parallel Programming,

22(2):151–181, 1994.

174

[Chen et al., 2008] Yen-Kuang Chen, J. Chhugani, P. Dubey, C.J. Hughes, Daehyun Kim, S. Ku-

mar, V.W. Lee, A.D. Nguyen, and M. Smelyanskiy. Convergence of Recognition, Mining, and

Synthesis Workloads and Its Implications. Proceedings of the IEEE, 96(5):790–807, May 2008.

[Chong et al., 2007] Jike Chong, Nadathur Rajagopalan Satish, Bryan Catanzaro, Kaushik Ravin-

dran, and Kurt Keutzer. Efficient Parallelization of H.264 Decoding with Macro Block Level

Scheduling. In 2007 International Conference on Multimedia and Expo: ICME 2007, pages

1874–1877, July 2007.

[Chu et al., 2008] Geoffrey Chu, Aaron Harwood, and Peter J. Stuckey. PMiniSat - A par-

allelization of MiniSat 2.0, Mar 2008. http://www-sr.informatik.uni-tuebingen.de/sat-race-

2008/descriptions/solver%5F32.pdf.

[Coffman, 1976] Edward G. Coffman. Computer and Job-Shop Scheduling Theory. John Wiley

and Sons, Inc., New York, February 1976.

[Cucchiara et al., 1999] Rita Cucchiara, Massimo Piccardi, and Andrea Prati. Exploiting Cache in

Multimedia. In 1999 IEEE Conference on Multimedia Systems, pages 345–350, July 1999.

[Davare et al., 2006] Abhijit Davare, Jike Chong, Qi Zhu, Douglas Michael Densmore, and Alberto

Sangiovanni-Vincentelli. Classification, Customization, and Characterization: Using MILP for

Task Allocation and Scheduling. Technical Report UCB/EECS-2006-166, EECS Department,

University of California, Berkeley, Dec 2006.

[Davare, 2007] Abhijit Davare. Automated Mapping for Heterogeneous Multiprocessor Embedded

Systems. PhD thesis, University of California at Berkeley, Sep 2007.

[Davidović and Crainic, 2006] Tatjana Davidović and Teodor Gabriel Crainic. Benchmark-

Problem Instances for Static Scheduling of Task Graphs with Communication Delays

on Homogeneous Multiprocessor Systems. Computers & OR, 33:2155–2177, 2006.

http://www.mi.sanu.ac.yu/∼tanjad/tanjad pub.htm.

[Davidović et al., 2004] Tatjana Davidović, Leo Liberti, Nelson Maculan, and Nenad Mladenović.

Mathematical Programming-Based Approach to Scheduling of Communicating Tasks. Technical

Report G-2004-99, Cahiers du GERAD, December 2004.

175

[Devadas and Newton, 1989] Srinivas Devadas and Arthur Richard Newton. Algorithms for Hard-

ware Allocation in Data Path Synthesis. IEEE Transactions on Computer-Aided Design,

8(7):768–781, July 1989.

[Dick et al., 2003] Robert P. Dick, David L. Rhodes, Keith S. Vallerio, and Wayne Wolf. TGFF:

Task Graphs for Free (TGFF v3.0), Aug 2003. http://ziyang.ece.northwestern.edu/tgff/.

[Dutertre and de Moura, 2006] Bruno Dutertre and Leonardo de Moura. A Fast Linear-Arithmetic

Solver for DPLL(T). In Proceedings of the 18th Computer-Aided Verification conference, volume

4144 of LNCS, pages 81–94. Springer-Verlag, 2006.

[Eatherton, 2005] W. Eatherton. The Push of Network Processing to the Top of the Pyramid.

keynote address at the Symposium on Architectures for Networking and Communication Sys-

tems, October 2005. http://www.cesr.ncsu.edu/ancs/slides/eathertonKeynote.pdf.

[Een and Sörensson, 2003] Niklas Een and Niklas Sörensson. An Extensible SAT-solver [ver 1.2].

In E. Giunchiglia and A. Tacchella, editors, Lecture Notes in Computer Science, volume 2919 of

SAT, pages 502–518. Springer, 2003.

[Ekelin and Jonsson, 2000] Cecilia Ekelin and Jan Jonsson. Solving Embedded System Scheduling

Problems using Constraint Programming. In IEEE Real-Time Systems Symposium, Orlando,

Florida, USA, Nov 2000.

[El-Rewini et al., 1995] Hesham El-Rewini, Hesham H. Ali, and Ted Lewis. Task Scheduling in

Multiprocessing Systems. Computer, 28(12):27–37, 1995.

[Farach and Liberatore, 1998] Martin Farach and Vincenzo Liberatore. On local register allocation.

In SODA ’98: Proceedings of the ninth annual ACM-SIAM symposium on Discrete algorithms,

pages 564–573, 1998.

[Fernandez and Bussell, 1973] E.B. Fernandez and B. Bussell. Bounds on the Number of Pro-

cessors and Time for Multiprocessor Optimal Schedules. IEEE Transactions on Computers,

C-22(8):745–751, Aug 1973.

[Fiedler and Baumgartl, 2004] Martin Fiedler and Robert Baumgartl. Implementation of a basic

H.264/AVC decoder. Technical report, Technische Universität Chemnitz, June 2004.

[Freedman et al., 2007] David Freedman, Robert Pisani, and Roger Purves. Statistics. W. W. Nor-

ton and Company, 4th edition, March 2007.

176

[Fujita and Nakagawa, 1999] Satoshi Fujita and Tadanori Nakagawa. Lower Bounding Techniques

for the Multiprocessor Scheduling Problem with Communication Delay. In Proc. of The In-

ternational Conference on Parallel Architectures and Compilation Techniques (PACT), pages

212–220, 1999.

[Fujita et al., 2003] Satoshi Fujita, Masayuki Masukawa, and Shigeaki Tagashira. A Fast Branch-

and-Bound Scheme for the Multiprocessor Scheduling Problem with Communication Time. In

ICPP Workshops, pages 104–110, 2003.

[Gajski and Peir, 1985] Daniel D. Gajski and Jib-Kwon Peir. Essential Issues in Multiprocessor

Systems. IEEE Computer, 18:9–27, June 1985.

[Garey and Johnson, 1978] Michael R. Garey and David S. Johnson. ”Strong” NP-completeness

results: motivation, examples and implications. Journal of the Association for Computer Ma-

chinery (JACM), 25(3):499–508, July 1978.

[Gautama and van Gemund, 2000] H. Gautama and A. J. C. van Gemund. Static Performance pre-

diction of data-dependent programs. In 2nd International Workshop on Software and Perfor-

mance, pages 216–226, Sep 2000.

[Gerasoulis and Yang, 1992] Apostolos Gerasoulis and Tao Yang. A Comparison of Clustering

Heuristics for Scheduling DAGs onto Multiprocessors. Journal on Parallel and Distributed Com-

puting, 16(4):276–291, Dec 1992.

[Gheorghita et al., 2008] Stefan Valentin Gheorghita, Twan Basten, and Henk Corporaal. Scenario

selection and prediction for DVS-aware scheduling of multimedia applications. Signal Process-

ing Systems, 50(2):137–161, Feb 2008.

[Gil et al., 2008] Luı́s Gil, Paulo Flores, and Luı́s Miguel Silveira. PMSat: a parallel version of

MiniSAT. Journal on Satisfiability, Boolean Modeling and Computation (JSAT), 6:71–98, Sep

2008.

[Glasserman, 2004] Paul Glasserman. Monte Carlo Methods in Financial Engineering. Springer,

2004.

[Goodwin and Wilken, 1996] David W. Goodwin and Kent D. Wilken. Optimal and near-optimal

global register allocations using 0–1 integer programming. Journal on Software Practical Ex-

periments, 26(8):929–965, 1996.

177

[Govindarajan et al., 2003] Ramaswamy Govindarajan, Hongbo Yang, José Nelson Amaral, Chi-

hong Zhang, and Guang R. Gao. Minimum Register Instruction Sequencing to Reduce Regis-

ter Spills in Out-of-Order Issue Superscalar Architectures. IEEE Transactions on Computers,

52(1):4–20, 2003.

[Graham et al., 1979] Ronald L. Graham, Eugene L. Lawler, Jan K. Lenstra, and Alexander

H.G. Rinnooy Kan. Optimization and Approximation in Deterministic Sequencing and Schedul-

ing: A Survey. In Annals of Discrete Mathematics, volume 5, pages 287–326. North-Holland,

1979.

[Gries and Keutzer, 2005] Matthias Gries and Kurt Keutzer. Building ASIPs: The Mescal Method-

ology. Springer, 2005.

[Gries, 2004] Matthias Gries. Methods for Evaluating and Covering the Design Space during Early

Design Development. Integration, the VLSI Journal, 38(2):131–183, 2004.

[Gupta and Nadarajah, 2004] Arjun K. Gupta and Saralees Nadarajah, editors. Handbook of Beta

Distributions and its Applications (Statistics: a Series of Textbooks and Monographs). CRC

Press, 1st edition, June 2004.

[Gupta, 2000] Pankaj Gupta. Algorithms for Routing Lookups and Packet Classification, chapter

Minimum average and bounded worst-case routing lookup time on binary search trees. PhD

thesis, Stanford University, 2000.

[Hall and Hochbaum, 1997] Leslie A. Hall and Dorit S. Hochbaum. Approximation Algorithms

for NP-Hard Problems, chapter Approximation Algorithms for Scheduling. PWS Publishing

Company, Boston, MA, 1997.

[Hamadi et al., 2008] Youssef Hamadi, Said Jabbour, and Lakhdar Sais. ManySat: solver descrip-

tion. Technical Report MSR-TR-2008-83, Microsoft Research, May 2008.

[Hoang and Rabaey, 1993] Phu D. Hoang and Jan M. Rabaey. Scheduling of DSP Programs

onto Multiprocessors for Maximum Throughput. IEEE Transactions on Signal Processing,

41(6):2225–2235, June 1993.

[Holliman et al., 2003] Matthew J. Holliman, Eric Q. Li, and Yen-Kuang Chen. MPEG Decod-

ing Workload Characteristics. In Sixth Workshop on Computer Architecture Evaluation Using

Commercial Workloads, pages 23–34, 2003.

178

[Hooker and Ottosson, 1999] John N. Hooker and Gregor Ottosson. Logic-Based Benders Decom-

position, Dec 1999. http://www.citeseer.ist.psu.edu/hooker95logicbased.html.

[Hooker and Yan, 1995] John N. Hooker and Hong Yan. Logic Circuit Verification by Benders De-

composition. In Vijay A. Saraswat and Pascal Van Hentenryck, editors, Principles and Practice

of Constraint Programming, The Newport Papers, pages 267–288. MIT Press, Cambridge, MA,

1995.

[Horowitz et al., 2003] Michael Horowitz, Anthony Joch, Faouzi Kossentini, and Antti Hallapuro.

H.264/AVC baseline profile decoder complexity analysis. IEEE Transactions on Circuits and

Systems for Video Technologies, 13(7):704–716, July 2003.

[Hsu et al., 2005] Chia-Jui Hsu, Ming-Yung Ko, and Shuvra S. Bhattacharyya. Software Synthesis

from the Dataflow Interchange Format. In International Workshop on Software and Compilers

for Embedded Processors, Dallas, Texas, September 2005.

[Hu, 1961] Te C. Hu. Parallel Sequencing and Assembly Line Problems. Operations Research,

19(6):841–848, Nov 1961.

[Hubbard, 2007] Douglas W. Hubbard. How to measure anything finding the value of ’intangibles’

in business. Wiley, 2007.

[Hughes et al., 2001] Christopher J. Hughes, Sarita V. Adve, Rohit Jain, Jayanth Srinivasan, Praful

Kaul, and Chanik Park. Variability in the Execution of Multimedia Applications and Implica-

tions for Architecture. In ISCA ’01: Proceedings of the 28th Annual Symposium on Computer

Architecture, pages 254–265, 2001.

[IBM Corp., 2007] IBM Corp. Cell Broadband Engine Architecture, 1.02 edition, October 2007.

[ILOG Inc.,] ILOG Inc. ILOG CPLEX Mathematical Programming (MP) Optimizer v10.1.

http://www.ilog.com/products/cplex/.

[Intel Corp., 2002] Intel Corp. Intel IXP2800 Network Processor Product Brief, 2002.

[Iverson et al., 1999] M.A. Iverson, F. Ozguner, and L.C. Potter. Statistical prediction of task ex-

ecution times through analytic benchmarking for scheduling in a heterogeneous environment.

Proceedings of the Eighth Heterogeneous Computing Workshop, 1999 (HCW ’99), pages 99–

111, 1999.

179

[Jain and Grossmann, 2001] Vipul Jain and Ignacio E. Grossmann. Algorithms for Hybrid MILP/-

CLP Models for a Class of Optimization Problems. INFORMS Journal on Computing, 13:258–

276, 2001.

[Jin et al., 2005] Yujia Jin, Nadathur Satish, Kaushik Ravindran, and Kurt Keutzer. An Automated

Exploration Framework for FPGA-based Soft Multiprocessor Systems. In Proceedings of the 3rd

IEEE/ACM/IFIP International Conference on Hardware/Software Codesign and System Synthe-

sis (CODES’05), pages 273–278. ACM Press, 2005.

[Kasahara and Narita, 1984] Hironori Kasahara and Seinosuke Narita. Practical Multiprocessor

Scheduling Algorithms for Efficient Parallel Processing. IEEE Transactions on Computers, C-

33(11), Nov 1984.

[Kerzner, 2003] Harold Kerzner. Project Management: A Systems Approach to Planning, Schedul-

ing and Controlling. Wiley, 8th edition, 2003.

[Kim and Browne, 1988] S. J. Kim and J. C. Browne. A General Approach to Mapping of Parallel

Computation upon Multiprocessor Architectures. In Proceedings of the International Conference

on Parallel Processing, pages 1–8, August 1988.

[Kim and Han, 2005] Kyungjun Kim and Kijun Han. A lookup algorithm based on multiple tables

for high-speed routers. High Speed Networks, Vol.14, Iss.3, pages 227–234, July 2005.

[Kim et al., 2005] Sungchan Kim, Chaeseok Im, and Soonhoi Ha. Schedule-Aware Performance

Estimation of Communication Architecture for Efficient Design Space Exploration. IEEE Trans-

actions on Very Large Scale Integration (VLSI) Systems, 13(5):539–552, May 2005.

[Kirkpatrick et al., 1983] Scott Kirkpatrick, C. D. Gelatt Jr., and Mario P. Vecchi. Optimization by

Simulated Annealing. Science, 220(4598):498–516, May 1983.

[Klastorin, 2003] Ted Klastorin. Project Management: Tools and Trade-offs. Wiley, 3rd edition,

2003.

[Koch, 1995] Peter Koch. Strategies for Realistic and Efficient Static Scheduling of Data Indepen-

dent Algorithms onto Multiple Digital Signal Processors. Technical report, The DSP Research

Group, Institute for Electronic Systems, Aalborg University, Aalborg, Denmark, December 1995.

180

[Kohler et al., 2000] Eddie Kohler, Robert Morris, Benjie Chen, John Jannotti, and M. Frans

Kaashoek. The Click Modular Router. ACM Transactions on Computer Systems, 18(3):263–

297, 2000.

[Kwok and Ahmad, 1999a] Yu-Kwong Kwok and Ishfaq Ahmad. Benchmarking and Compari-

son of the Task Graph Scheduling Algorithms. Journal of Parallel and Distributed Computing,

59(3):381–422, 1999.

[Kwok and Ahmad, 1999b] Yu-Kwong Kwok and Ishfaq Ahmad. Static Scheduling Algorithms for

Allocating Directed Task Graphs to Multiprocessors. ACM Computing Surveys, 31(4):406–471,

1999.

[Lai and Xing, 2008] Tze Leung Lai and Haipeng Xing. Statistical Models and Methods for Finan-

cial Markets. Springer Publishers, 2008.

[Lawrence et al., 1997] Steve Lawrence, Ah Chung Tsoi, and Andrew D. Back. Face recognition:

A convolutional neural network approach. IEEE Transactions on Neural Networks, 8:98–113,

1997.

[Lee and Messerschmitt, 1987a] Edward A. Lee and David G. Messerschmitt. Synchronous Data

Flow. Proceedings of the IEEE, 75(9):1235–1245, September 1987.

[Lee and Messerschmitt, 1987b] Edward Ashford Lee and David G. Messerschmitt. Static

Scheduling of Synchronous Data Flow Programs for Digital Signal Processing. IEEE Trans-

actions on Computers, 36(1):24–35, 1987.

[Lenstra et al., 1977] J.K. Lenstra, Alexander H.G. Rinnooy Kan, and P. Brucker. Complexity of

machine scheduling problems. In Annals of Discrete Mathematics, volume 1, pages 343–362.

1977.

[Liberatore et al., 1999] Vincenzo Liberatore, Martin Farach-Colton, and Ulrich Kremer. Evalua-

tion of Algorithms for Local Register Allocation. In CC ’99: Proceedings of the 8th International

Conference on Compiler Construction, pages 137–152, 1999.

[Mani and Orshansky, 2004] Murari Mani and Michael Orshansky. A New Statistical Optimiza-

tion Algorithm for Gate Sizing. In Proceedings of the 2004 IEEE International Conference on

Computer-Aided Design (ICCAD), pages 272–277, 2004.

181

[Mani et al., 2005] Murari Mani, Anirudh Devgan, and Michael Orshansky. An efficient algorithm

for statistical minimization of total power under timing yield constraints. In DAC 2005: Pro-

ceedings of the 42nd conference on Design Automation, pages 309–314, 2005.

[Manolache et al., 2004] Sorin Manolache, Petru Eles, and Zebo Peng. Schedulability Analysis of

Multiprocessor Real-Time Applications with Stochastic Task Execution Times. ACM Transac-

tions on Embedded Computing Systems (TECS), 3(4):706–735, Nov 2004.

[Manolache et al., 2007] Sorin Manolache, Petru Eles, and Zebo Peng. Real-Time Applications

with Stochastic Task Execution Times: Analysis and Optimization. Springer Netherlands, 2007.

[Masselos et al., 2003] Konstantinos Masselos, Antti Pelkonen, Miroslav Cupak, and Spyros

Blionas. Realization of wireless multimedia communication systems on reconfigurable plat-

forms. IEEE Journal of Systems Architecture: the EUROMICRO Journal, 49(4-6):155–175,

2003.

[Moreira and Bekooij, 2007] Orlando M/ Moreira and Marco J. G. Bekooij. Self-Timed Scheduling

Analysis for Real-Time Applications. EURASIP Journal on Advances in Signal Processing,

2007(Article ID 83710):1–14, 2007.

[Najm and Menezes, 2004] Farid N. Najm and Noel Menezes. Statistical timing analysis based on

a timing yield model. In Proceedings of the 41st Design Automation Conference, pages 460–465,

June 2004.

[National Instruments Inc.,] National Instruments Inc. NI LabVIEW. http://www.ni.com/labview.

[NVIDIA Corp., 2007] NVIDIA Corp. NVIDIA CUDA Programming Guide, November 2007. Ver-

sion 1.1.

[Oh and Lee, 2003] Seunghyun Oh and Yangsun Lee. The Bitmap Trie for Fast IP Lookup. In HSI

2003: Web and Communication Technologies and Internet-Related Social Issues, pages 172–181,

2003.

[Olukotun and Hammond, 2005] Kunle Olukotun and Lance Hammond. The future of micropro-

cessors. ACM Queue, 3(7):26–29, 2005.

[Orshansky and Keutzer, 2002] Michael Orshansky and Kurt Keutzer. A general probabilistic

framework for worst-case timing analysis. In Proceedings of the 39th Design Automation Con-

ference, pages 556–561, June 2002.

182

[Orsila et al., 2006] Heikki Orsila, Tero Kangas, Erno Salminen, and Timo D. Hamalainen. Param-

eterizing Simulated Annealing for Distributing Task Graphs on Multiprocessor SoCs. In Proc.

of the International Symposium on System-On-Chip, pages 1–4, November 2006.

[Orsila et al., 2008] Heikki Orsila, Erno Salminen, and Timo D. Hämäläinen. Simulated Annealing,

chapter Best Practices for Simulated Annealing in Multiprocessor Task Distribution Problems.

I-Tech Education and Publishing KG, 2008.

[Papadimitriou and Ullman, 1987] Christos H. Papadimitriou and Jeffrey D. Ullman. A

Communication-Time Tradeoff. SIAM Journal of Computing, 16(4):639–646, 1987.

[Papadimitriou and Yannakakis, 1988] Christos Papadimitriou and Mihalis Yannakakis. Towards

an Architecture-Independent Analysis of Parallel Algorithms. In STOC ’88: Proceedings of

the twentieth annual ACM symposium on Theory of computing, pages 510–513, New York, NY,

USA, 1988. ACM Press.

[Poplavko et al., 2003] P. Poplavko, T. Basten, M. Bekooij, J. van Meerbergen, and B. Mesman.

Task-level Timing Models for Guaranteed Performance in Multiprocessor Networks-on-Chip. In

Proceedings of the 2003 International Conference on Compilers, Architecture and Synthesis for

Embedded Systems (CASES), pages 63–72, New York, NY, USA, 2003. ACM Press.

[Ravindran et al., 2005] Kaushik Ravindran, Nadathur Satish, Yujia Jin, and Kurt Keutzer. An

FPGA-based Soft Multiprocessor for IPv4 Packet Forwarding. In 15th International Conference

on Field Programmable Logic and Applications (FPL-05), pages 487–492, Aug 2005.

[Rice, 1994] John Rice. Mathematical Statistics and Data Analysis. Duxbury Press, 2nd edition,

June 1994.

[Rixner et al., 1998] Scott Rixner, William J. Dally, Ujval J. Kapasi, Brucek Khailany, Abelardo

López-Lagunas, Peter R. Mattson, and John D. Owens. A bandwidth-efficient architecture for

media processing. In MICRO 31: Proceedings of the 31st annual ACM/IEEE international

symposium on Microarchitecture, pages 3–13, 1998.

[Rudolph et al., 1991] Larry Rudolph, Miriam Slivkin-Allalouf, and Eli Upfal. A simple load bal-

ancing scheme for task allocation in parallel machines. In SPAA ’91: Proceedings of the third

annual ACM symposium on Parallel algorithms and architectures, pages 237–245, 1991.

183

[Ruiz-Sánchez et al., 2001] Miguel Ángel Ruiz-Sánchez, Ernst W. Biersack, and Walid Dabbous.

Survey and Taxonomy of IP Address Lookup Algorithms. Network, IEEE, Vol.15, Iss.2, pages

8–23, March-April 2001.

[Ruppert, 2006] David Ruppert. Statistics and Finance: An Introduction. Springer Publishers, 1st

edition, 2006.

[Satish et al., 2007] Nadathur Satish, Kaushik Ravindran, and Kurt Keutzer. A Decomposition-

based Constraint Optimization Approach for Statically Scheduling Task Graphs with Communi-

cation Delays to Multiprocessors. In 10th Conference of Design, Automation and Test in Europe

(DATE-07), pages 57–62, New York, NY, USA, 2007. ACM Press.

[Sgall, 1997] J. Sgall. Online Scheduling - A Survey. In A. Fiat and G. Woeginger, editors, On-Line

Algorithms, Lecture Notes in Computer Science. Springer-Verlag, Berlin, 1997.

[Shah et al., 2004] Niraj Shah, William Plishker, Kaushik Ravindran, and Kurt Keutzer. NP-Click:

A Productive Software Development Approach for Network Processors. IEEE Micro, 24(5):45–

54, Sep 2004.

[Shih et al., 2004] Tse-Tsung Shih, Chia-Lin Yang, and Yi-Shin Tung. Workload Characterization

of the H.264/AVC Decoder. In 5th IEEE Pacific-Rim Conference on Multimedia, pages 957–966,

2004.

[Sih and Lee, 1993] Gilbert. C. Sih and Edward. A. Lee. A Compile-Time Scheduling Heuristic

for Interconnection-Constrained Heterogeneous Processor Architectures. IEEE Transactions on

Parallel and Distributed Systems, 4(2):175–187, 1993.

[Sinha et al., 2007] Debjit Sinha, Hai Zhou, and Narendra V. Shenoy. Advances in Computation of

the Maximum of a Set of Gaussian Random Variables. IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems (TCAD), 26(8):1522–1533, Aug 2007.

[Slingerland and Smith, 2001] Nathan T. Slingerland and Alan Jay Smith. Cache Performance in

Multimedia Applications. In ICS 2001: Proceedings of the 15th International Conference on

Supercomputing, pages 204–217, June 2001.

[Srivastava et al., 2004] Ashish Srivastava, Dennis Sylvester, and David Blaauw. Statistical opti-

mization of leakage power considering process variations using dual-Vth and sizing. In DAC

2004: Proceedings of the 41st conference on Design Automation, pages 773–778, 2004.

184

[Sundaram et al., 2009] Narayanan Sundaram, Anand Raghunathan, and Srimat T. Chakradhar. A

framework for efficient and scalable execution of domain-specific templates on GPUs. In To

appear in IPDPS ’09: Proceedings of the 23rd IEEE International Parallel and Distributed

Processing Symposium, 2009.

[Teich and Thiele, 1996] Jürgen Teich and Lothar Thiele. A Flow-Based Approach to Solving

Resource-Constrained Scheduling Problems. Technical Report 17, Computer Engineering and

Communication Networks Lab (TIK), Swiss Federal Institute of Technology (ETH), Zurich,

Switzerland, April 1996.

[The MathWorks Inc., 2005] The MathWorks Inc. Simulink User’s Guide, 2005.

http://www.mathworks.com.

[Thiele, 1995] Lothar Thiele. Resource Constrained Scheduling of Uniform Algorithms. VLSI

Signal Processing, 10(3):295–310, Aug 1995.

[Thies et al., 2002] Willian Thies, Michal Karczmarek, and Saman Amarasinghe. StreamIt: A

Language for Streaming Applications. In International Conference on Compiler Construction,

pages 179–196, Apr 2002.

[Tompkins, 2003] Mark F. Tompkins. Optimization Techniques for Task Allocation and Scheduling

in Distributed Multi-Agent Operations. Master’s thesis, Massachusetts Institute of Technology,

Cambridge, MA, June 2003.

[van Dorp and Kotz, 2002] Johan René van Dorp and Samuel Kotz. A novel extension of the trian-

gular distribution and its parameter estimation. The Statistician, 51(1):63–79, 2002.

[van Gemund, 1996] A. J. C. van Gemund. Performance Modeling of Parallel Systems. PhD thesis,

Delft University of Technology, 1996.

[Veltman et al., 1990] B. Veltman, B. J. Lagevreg, and J. K. Lenstra. Multiprocessor Scheduling

with Communication Delays. Parallel Computing, 16(2-3):173–182, 1990.

[Verma et al., 2004] Manish Verma, Lars Wehmeyer, and Peter Marwedel. Dynamic overlay of

scratchpad memory for energy minimization. In CODES+ISSS ’04: Proceedings of the 2nd

IEEE/ACM/IFIP international conference on Hardware/software codesign and system synthesis,

pages 104–109, 2004.

185

[Visweswariah et al., 2006] Chandu Visweswariah, Kaushik Ravindran, Kerim Kalafala, Steven G.

Walker, Sambasivan Narayan, Daniel K. Beece, Jeff Piaget, Natesan Venkateswaran, and Jef-

frey G. Hemmett. First-Order Incremental Block-Based Statistical Timing Analysis. IEEE Trans-

actions on Computer-Aided Design of Integrated Circuits and Systems (TCAD), 25(10):2170–

2180, October 2006.

[Vose, 2008] David Vose. Risk Analysis: A Quantitative Guide. Wiley, 3rd edition, 2008.

[Wang et al., 2006] Chao Wang, Aarti Gupta, and Malay Ganai. Predicate Learning and Selective

Theory Deduction for a Difference Logic Solver. In Proc. of the Design Automation Conference

(DAC), pages 235–240, San Francisco, CA, USA, July 2006.

[Wang et al., 2007] Gang Wang, Wenrui Gong, Brian DeRenzi, and Ryan Kastner. Ant Colony

Optimizations for Resource and Timing Constrained Operation Scheduling. IEEE Transactions

on Computer-Aided Design of Integrated Circuits and Systems,, 26(6):1010–1029, June 2007.

[Wawrzynek et al., 2007] John Wawrzynek, David Patterson, M. Oskin, Shin-Lien Lu, Christos

Kozyrakis, J.C. Hoe, D. Chiou, and Kriste Asanovic. RAMP: Research Accelerator for Multiple

Processors. IEEE Micro, 27(2):46–57, March-April 2007.

[Xilinx Inc., 2004] Xilinx Inc. Embedded Systems Tools Guide. Xilinx Inc., Xilinx Embedded

Development Kit, EDK version 6.3i edition, June 2004.

[Yang et al., 1993] Jaehyung Yang, Ishfaq Ahmad, and Arif Ghafoor. Estimation of Execution

times on Heterogeneous Supercomputer Architectures. In ICPP ’93: Proceedings of the 1993

International Conference on Parallel Processing, pages 219–226, 1993.

[Yu et al., 2005] Jia Yu, Jun Yang, Shaojie Chen, Yan Luo, and Laxmi Bhuyan. Enhancing Network

Processor Simulation Speed with Statistical Input Sampling. In HiPEAC 2005: International

Conference on High Performance Embedded Architectures and Compilers, pages 68–83, 2005.

[Ziou and Tabbone, 1998] Djamel Ziou and Salvatore Tabbone. Edge Detection Techniques - An

Overview. International Journal of Pattern Recognition and Image Analysis, 8(4):537–559,

1998.

	List of Figures
	List of Tables
	Introduction
	Challenges in the use of single chip multiprocessors
	Bridging the implementation gap
	The mapping step
	Complexity of the scheduling problem
	The case for compile-time scheduling
	Methods for Compile-time Scheduling

	Application of compile-time methods to practical scheduling problems
	Contributions of the dissertation

	Static Task Allocation and Scheduling
	Mapping streaming applications onto soft multiprocessor systems on FPGAs
	Examples of Streaming Applications
	The Mapping and Scheduling Problem
	Soft Multiprocessor Systems on FPGAs
	The need for automated mapping

	Automated Task Allocation and Scheduling
	Static Models
	Optimization Problem

	Techniques for Static Task Allocation and Scheduling
	Heuristic Methods
	Simulated Annealing
	Constraint Optimization Methods
	Lower bounds

	Results
	Benchmarks
	Comparisons on regular processor architectures
	Comparison on realistic architectural models
	Throughput estimation using makespan

	Comparing different optimization approaches

	Resource allocation and communication scheduling on CPU/GPU systems
	Mapping applications with large data sets onto CPU-GPU systems
	Applications
	CPU/GPU systems
	The mapping step

	Task and Data transfer scheduling to minimize data transfers
	Static Models
	Optimization Problem

	Techniques for Static Optimization
	Previous Work
	Exact MILP formulation
	Decomposition-based Approaches
	Data transfer scheduling given a task order
	Finding a good task ordering

	Results
	Choice of Optimization Method

	Statistical Models and Analysis for Task Scheduling
	Variability in application execution times
	IPv4 packet forwarding on a soft multiprocessor system
	H.264 video decoding on commercial multi-core platforms

	Statistical Models
	Application Task Graph
	Architecture Model
	Performance Model
	Optimization Problem

	Statistical Performance Analysis
	Valid allocation and schedule
	Formulation of the performance analysis problem
	Types of performance analysis
	Comparison of Statistical to Static Analysis

	The need for generalized statistical models and analysis
	Conclusions

	Statistical Optimization
	Statistical task allocation and scheduling onto multiprocessors
	Techniques for Statistical Optimization
	Statistical Dynamic List Scheduling
	Simulated Annealing
	Deterministic Optimization Approaches

	Related Work
	Results
	Benchmarks
	Comparison to deterministic scheduling techniques
	Comparison of statistical DLS and SA optimization techniques
	Summary

	Constraint Optimization approaches to Statistical Scheduling
	Decomposition based Approaches
	Algorithmic extensions
	Boolean Satisfiability procedure to solve the master problem
	Pruning intermediate nodes in the search
	Guiding master problem search using heuristics

	Iterative decomposition-based algorithm
	Results
	Comparison of different decomposition-based scheduling approaches
	Comparison of decomposition-based scheduling to other approaches

	Conclusions
	Comparison of scheduling approaches
	Heuristic techniques
	Constraint Optimization methods
	Simulated Annealing

	Incorporating Variability into Compile-time scheduling models and methods
	Future Work
	Broader range of applications
	Other evolutionary algorithms
	Symmetry considerations
	Parallel Implementation of Scheduling Methods
	Dynamic Scheduling

	Summary

	Bibliography

