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Abstract

Spectrum Sharing by Cognitive Radios: Opportunities and Challenges
by

Rahul Tandra
Doctor of Philosophy in Engineering—Electrical Engineering and Computer Sciences

University of California, Berkeley
Professor Anant Sahai, Chair

Under the current regulatory model of static frequency assignment, most of the spectrum
is allocated while the actual usage is sparse. This seeming waste is commonly referred to as
the problem of “regulatory overhead”. The advent of frequency-agile cognitive radios repre-
sents a potential opportunity to improve performance and reduce this regulatory overhead.
The white space ruling on Nov 4th 2008, legalizing the reuse of television band whitespaces,
is a first step taken by the FCC to address the issue of regulatory overhead. However, the
problem is that we do not yet know what the right regulatory changes are that will reduce
the regulatory overhead.

In this thesis we focus on one fundamental aspect of this problem, namely sensing spec-
trum for empty bands that are not being used at their current time and location for their
primary purpose. It turns out that obtaining a suitable technical formulation for this seem-
ingly simple problem is a highly non-trivial task. Traditionally, sensing problems are formu-
lated mathematically using a binary hypotheses test between the two hypotheses — “signal
present” and “signal absent”. In the latter part of this thesis we show that the traditional
framework does not completely capture all the interesting dimensions of the sensing problem.
However, there are several 1-bit decision problems in spectrum sharing that can be directly
modeled using the hypothesis testing framework, and our technical results are directly ap-
plicable for those problems.

In the traditional binary hypothesis testing framework, we show that designing robust
algorithms that can distinguish between the two hypotheses at low signal to noise ratios is
a very hard problem. Real world uncertainties in the noise plus interference, and the fading
process make spectrum sensing very challenging. In particular, we prove that there exist
fundamental limits called SNR walls, below which robust detection is impossible, regardless
of how many samples we take.

We show that the presence of signal features in the primary signal can significantly
improve robustness of detection for the secondary user. Coherent detection algorithms that
look for commonly existing signal features like pilot tones and cyclostationary features are
also limited by SNR walls, although they are more robust than signals without any features.
We also explicitly construct signals with macroscale features that can be robustly detected at
arbitrarily low SNRs. These results suggest that in order to allow cognitive radio operation,
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the primary user must pay in terms of restrictions on its freedom to choose any possible
signaling scheme.

The SNR wall result leads us to the natural question: why does a cognitive radio need
to sense at extremely low SNRs? To answer this question, we are forced to look at the
spatial dimension of the sensing problem, which introduces new tradeoffs that cannot be
fully understood using the traditional hypothesis testing formulation. In this thesis, we
propose a new space-time sensing framework that helps us better understand this problem
and brings out new tradeoffs that are otherwise not apparent. We give two new metrics, Fear
of harmful interference (FHI) and the Weighted probability of space-time recovered (WPSTR)
which characterize the safety for the primary user and the performance of the secondary user
respectively. These metrics show that single-radio based sensing algorithms can only recover
a small fraction of the available opportunities even if they take an infinite number of samples.
The key reason for this is that single-radio sensors are forced to be conservative to protect
the primary user from atypical fading events. This helps us make a concrete claim for looking
at other approaches like collaborative sensing algorithms, multiband algorithms etc.
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Chapter 1

Introduction

Significant advances in wireless technologies over the last decade have left us on the verge
of another IT revolution. Billions of users will carry portable communication/computation
devices with wireless as their primary mode of connectivity. To support this grand vision
of an Internet-like revolution in wireless it is important to scale the performance of systems
appropriately. This leads us to the big question: how can we get the next 10 − 100 factor
improvement in the performance of wireless systems?

To address this question we take a look at the different layers (physical layer (PHY),
MAC layer, network layer etc.) in a communication system architecture. Each of these
layers are primarily designed by engineers and there are reasonably well defined metrics that
can measure performance of these layers. For example, data rate and bit-error probability
in the PHY layer, average medium occupancy and packet collision probability in the MAC
layer, and latency and average queue length in the network layer. With the aid of these
metrics it is easy to get an idea of how much room for improvement is possible in each of
these layers.

As engineers, we often ignore the existence of another layer: the “regulatory layer” that
provides access to spectrum for wireless systems. This layer provides a system with details
of the band of operating frequencies, power constraints, interference margins etc. The design
of this layer is primarily done by non-engineers like policymakers, economists and lawyers.
This leads to an important question: is there a lot of room for improvement in the design of
this layer? Furthermore, can we use engineering principles to derive reasonably-approximate
metrics for the regulatory layer?

To answer these questions we first look at the current design of the regulatory layer. In
the United States, the Federal Communications Commission (FCC) regulates interstate and
international communications by radio, television, wire, satellite and cable under a command-
and-control model [1]. The FCC allocates frequency bands to be exclusively used for a
particular service, within a given spatial region, and for a specified time duration. Figure 1.1
shows the National Telecommunications and Information Administration’s (NTIA) chart of
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Chapter 1. Introduction

spectrum allocation in the United States [2]. From the spectrum allocation chart it is evident
that most of the usable frequencies are already allocated and that there is very little room
for future innovative services. On the other hand, Figure 1.2 shows a plot of the real-time
usage of spectrum in the 0 to 2.5 GHz band [3]. The usage picture shows that only a small
fraction (about 5%) of the spectrum is actually used1. The inefficient use of spectrum due
to the static and exclusive-use allocation model is sometimes referred to as a problem of
regulatory overhead [6].

Figure 1.1: Spectrum allocation chart for the United States. It is evident from the chart that
most of the frequencies are already allocated, and there is very little room for new and innovative
services in the future.

1There were several other spectrum-measurement studies done [4; 5] in the United States, each of these
confirmed the fact that most bands in most places are underused most of the time.
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Chapter 1. Introduction

Figure 1.2: A ten minute snapshot of the spectral activity in the 0-2.5 GHz spectrum. The
figure shows real-time measurements taken at the Berkeley Wireless Research Center (BWRC) in
downtown Berkeley. The‘brown’ regions in the plot show usage in time and frequency. As it is
evident from the figure, most of the frequencies are unused.
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Chapter 1. Introduction

1.1 Dynamic spectrum access

The unused spectrum opportunities, referred to as spectrum holes are a natural consequence
of the gap between the distinct scales at which regulation and use occur. This is because
spectrum allocation and planning is done over a time span of several years/decades, whereas
the use of spectrum occurs at time scales of the order of seconds/minutes. This suggests that
in order to solve the problem of regulatory overhead a dynamic approach to spectrum access
is required. However, the exact form of these dynamic allocation strategies is unclear. There
have been two extreme proposals to solve the problem of regulatory overhead — spectrum
privatization and spectrum commons. Spectrum privatization advocates allocation of spec-
trum through real-time markets [1; 7], whereas the spectrum commons’ proponents argue
that the task of sharing spectrum must be left to the devices themselves and that advances
in technology will make the devices capable of dynamically sharing spectrum efficiently [8;
9]. The reader is advised to refer to [10] for a detailed survey on the history of the commons
versus privatization debate, and also other regulatory issues in spectrum sharing.

A hybrid model for spectrum access known as opportunistic spectrum sharing has been
proposed to reduce the regulatory overhead. In this model, radios (secondary users) can
opportunistically refill the spectrum holes in licensed bands (primary users) as long as they
do not cause significant harmful interference to the licensed users. This model has the
advantage of being implementable with very little change to the currently existing system,
and hence is a more politically feasible solution than both the privatization or commons
models. The opportunistic spectrum sharing approach had gained significant traction in the
last few years due to technological advances in radio technology. In particular, the advent
of frequency agile and software defined radios, also known as cognitive radios has made the
vision of opportunistic spectrum access technically feasible.

The term “cognitive radio” was initially coined by Mitola in the late 1990’s [11; 12].
In a broad sense, cognitive radios are devices that can sense their environment and au-
tonomously adapt and optimize their system parameters based on the changing operating
conditions [13; 14]. Existing wireless systems like cellular networks and wireless local-area
networks (WLANs) already have cognitive capabilities like adaptive power control, dynamic
channel selection etc. However, the grand vision of the cognitive radio paradigm is for
situation-awareness and system-level adaptation [15]. There are many projects that are cur-
rently working to incorporate this vision into the next-generation wireless networks. For
example, the Defense Advanced Research Projects Agency (DARPA) XG program [16], the
IEEE 802.22 wireless regional area network (WRAN) standard [17] (secondary use of televi-
sion bands), and the European end-to-end reconfigurability (E2R) research program [18].

In this thesis we mainly focus on opportunistic spectrum sharing using cognitive radios.
We consider an opportunistic model because it is an easy extension to the current regulatory
system with potential to improve spectral efficiency. Also, the key questions we answer under
this model show up both in the privatization and commons models. In an opportunistic
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Chapter 1. Introduction

model the cognitive radios must make sure that the band is unused by any primary user
in its vicinity before transmitting in the band. So reliably identifying spectrum holes is
one of the core technical challenges for cognitive radios. Also, the rules of operation for an
opportunistically shared band of spectrum is an important policy question. Presumably, a
policymaker would want the rules to be such that they preserve as much flexibility as possible
for both the primary and secondary users. Flexibility is an important factor because it gives
systems the freedom to innovate and deploy new services in the future. This is an important
consideration from a policymaker’s point of view because the time scale of technological
advances is faster than that of rulemaking.

In this thesis, we formulate the following key questions: What are the core technical
challenges that need to be overcome in order to make opportunistic spectrum sensing work?
How does the solution to these technical challenges influence the regulations? In particular,
what are the implication of these results from a ‘freedom of use’ point of view?

Even though our results hold for any general opportunistic spectrum sharing system,
we use the example of cognitive use of television bands (50 − 800 MHz) as a case study
throughout the thesis. This example is also practically significant because the television
(TV) bands were the first licensed bands (licensed to the TV broadcasters) which were
identified by the FCC as candidate bands for cognitive radio use (see the Spectrum Policy
Task Force report [19]).

The licensed users of TV bands are television stations broadcasting information from high
power transmitters mounted on towers (about 500 m high), and wireless microphones2 (part
74 devices). At any given time and spatial location, a subset of the TV channels are unused,
and hence these unused opportunities (also called as ‘white space’) can be used for cognitive
transmissions. Since the FCC task force report in 2002, there has been lot of work both in
academic circles as well as in industry to identify the key problems that needed to be solved
in order to deploy cognitive radios in the TV band3. In particular, the IEEE 802.22 task
group was formed to come up with a standard for Wireless Rural Area Networks that can
operate opportunistically within the TV bands [17]. Finally, on November 4, 2008 the FCC
passed a ruling that legalized the use of ‘white space’ devices in the television bands [26].
The white space ruling allows devices with a combination of geo-location capability (GPS
measurement of its position as well as the TV tower locations) and sensing technology to
operate in locations and bands that are not currently registered as occupied. The FCC ruling
was made after considering all the work done by researchers on spectrum sensing, including

2Technically, a wireless microphone needs to be registered with a TV broadcaster before it can transmit
in a TV band. However, there are a large number of wireless microphones that are currently operating
(illegally) in the TV bands, which are not registered with the broadcasters.

3A comprehensive review of all the literature on dynamic spectrum sharing can be found in the proceedings
of the IEEE symposia on new frontiers in dynamic spectrum access networks (DySpAN) [20; 21; 22]. There
are several other special issues of journals which are exclusively devoted to papers on cognitive radios and
dynamic spectrum access [23; 24; 25].
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some of our key results discussed in this thesis.

1.2 Opportunistic spectrum sharing

We now formulate the problem of opportunistic reuse of television bands by cognitive radios.
For simplicity, we focus on a single television band (6 MHz wide) with primary transmitters4

(TV towers) distributed over a large geographic area with non-overlapping service regions5.
A television station’s transmitter is mounted on a high tower and serves a large area (radius
of ≈ 135 km). As we move away from the TV tower, the primary signal is very weak and
hence the band is clean enough for the cognitive radio to use it for its transmissions. This
is a pollution-oriented viewpoint [31]. Moreover a secondary user at such far away locations
can transmit without causing too much interference to the primary receivers. This is a
protection-oriented viewpoint for the secondary user. Our attention will mostly be focused
on a single one of those towers and the area around it.

Figure 1.3(a) shows a primary transmitter broadcasting information to its receivers. In
the absence of interference from cognitive radios, a primary receiver within the dashed circle
(Figure 1.3(a)) with radius rdec would be able to decode a signal from the transmitter,
while a receiver outside the circle would not. To tolerate any secondary users, the primary
receiver needs to accept some additional interference. The grey circle represents the protected
radius (denoted rp) where decodability is guaranteed to primary receivers. Primary receivers
between the two circles may not be able to get service once secondary systems come on, but
this is considered to be an acceptable loss of primary user’s quality of service (QoS)6. We
call the annulus between rdec and rp as a “sacrificial zone”.

Given the primary transmit power (pt), the protection radius rp, the minimum decodable
signal to noise plus interference ratio7 (η) for a primary receiver, and the pathloss function

4In this thesis, we ignore the issue of peaceful coexistence with wireless microphones operating in the
television bands. Such smaller scale primary users introduce additional challenges [27; 28].

5We can also leverage gains by considering multiple primary bands simultaneously for sensing. The gains
in this case arise from the fact that shadowing is highly correlated across frequency and hence measurements
in one band can provide robust information about the shadowing environment in other bands [29; 30].

6This can be viewed as either the loss of service to certain customers of the primary system or an additional
cost of transmit power that must be spent by the primary user to maintain service to all the same customers.

7The FCC ruling specifies this protection margin to the primary receivers as a lower bound on the desired
to undesired signal power (signal to interference) ratio at the edge of the protection radius. The value of
this protection ratio in the FCC ruling is 23 dB [26].
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(a)

(b)

Figure 1.3: Opportunistic spectrum sensing
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l(r), we can compute the maximum allowable secondary interference at a primary receiver

pt · l(rp)
σ2
n + Is

≥ η

⇒ Is ≤
pt · l(rp)

η
− σ2

n,

where σ2
n is the background noise power in the frequency band, and Is is the interference

from the secondary users at the location of the primary receivers.
The maximum allowable secondary interference (Is) at a primary receiver translates into

a no-talk region around each primary receiver where a secondary user cannot safely transmit.
The radius of this no-talk region depends on the nature of the secondary transmission. If
a secondary transmitter has a low transmit power, the no-talk zone around each primary
receiver can be small. If it has high transmit power, the radius of the no-talk zone becomes
much larger8.

The overall no-talk area is thus the union of the no-talk regions of all primary receivers.
The spectrum hole is the complement of this union. To recover this area, the secondary
system must know the locations of all primary receivers (see Figure 1.3(a)). Since a primary
user may know this information, such complete area recovery might be possible with explicit
primary participation. In addition, secondary users themselves may be able to determine the
locations of receivers for particular TV channels by sensing the TV receivers themselves [34].

However, if we want the primary user to have the flexibility of deploying receivers any-
where within its protected region, or to have the flexibility to deploy passive receivers (which
cannot be sensed), then the secondary user cannot hope to recover spectrum holes within
the protected region. Moreover, even if a secondary transmitter can safely transmit in a
particular location on a particular band it does not imply that it should want to do so. After
all, close to a functioning primary receiver there will usually be a lot of interference from the
primary signal itself. Consequently, in this thesis we focus on recovering the region outside
the global no-talk zone (rn), as shown in Figure 1.3(b). The global no-talk radius is the
union of the no-talk radius around primary receivers corresponding to all possible locations
for protected primary receivers9. For simplicity, we refer to the global no-talk radius as the
no-talk radius in the rest of the thesis. The cognitive radio can use the band only if it lies

8For simplicity, this discussion assumes a single simultaneous secondary transmission. In practice, the
secondary system is likely to contain many transmitters operating simultaneously over a distributed area.
Such systems can have their user footprints considered in terms of their power density as shown in [32]
and [33]. However, the analysis in [27] shows that this interpretation becomes problematic when we really
try to scale to secondary users with very different footprints.

9The global no-talk radius can be computed from the knowledge of the protection radius, the transmit
power of the cognitive radio, and the propagation model from the cognitive radio to the primary receivers [35;
33; 31].
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outside the no-talk10 radius of all the towers transmitting on this frequency band.

1.2.1 The spectrum sensing approach

If a cognitive radio wants to opportunistically reuse primary spectrum then it must be able
to reliably decide whether it is inside or outside the primary transmitter’s no-talk radius rn.
Ideally, a cognitive radio should make this decision without imposing too many restrictions
on the flexibility of the primary system. Note that we already assumed that the primary
transmitter’s power pt and its service region rp is known to the cognitive radio, and that
they are fixed. This is a restriction on the primary’s flexibility to use any transmit power it
wants. However, this restriction is tolerable as the primary transmitter anyways has to obey
a power spectral density mask in the band, and it has no incentive to transmit at any power
lesser than the maximum allowable spectral mask.

One possible way for a cognitive radio to know whether it is inside or outside the no-
talk radii of all primary transmitters is to have access to a GPS receiver that tells its own
location, and also a database of all primary transmitter locations. This is called a geo-
location based approach. The problem with this approach is that additional infrastructure
in the form of a GPS receiver is needed at the cognitive radio. Moreover, this approach
imposes a restriction on the freedom of mobility for the primary transmitters. For instance,
maintaining a database of all the TV transmitter locations does not impose any restriction
on the TV broadcasters as the TV towers are stationary. However, maintaining a database
of all the wireless microphones can impose severe restrictions on their freedom of mobile
deployment.

So, in this thesis we assume that the cognitive radio does not have access to its relative
location with respect to the primary transmitter. Instead, the cognitive radio can sense the
primary transmitter’s signal and use it as a proxy for the distance between the primary
transmitter and itself. This information can be implicitly used by the cognitive radio to
decide whether it is inside or outside the primary’s no-talk radius. We call this a ‘sense
before talk’ approach. In this approach the primary transmitter’s signal at the edge of its
no-talk radius can be weak enough that it can no longer be decoded, especially if the cognitive
radio transmits at moderately high powers [35]. This means that the cognitive radio must be
able to detect undecodable signals. Designing sensors that can detect undecodable signals

10An empirical computation of the no-talk radius around every TV tower, and across all the TV channels
in the United States is done in [36; 31; 37]. Using this computation the authors show that on an average
≈ 31 TV channels per person are available for white space use if an uniform population density is assumed,
and an average of ≈ 19 TV channels per person are available when using the actual population density. The
authors in [31] used the US Census data of 2000 which lists the population density per zip code [38]. The
amount of white space in the TV bands when viewed from a capacity point of view is estimated in [39].
These results show that the opportunity provided by TV white spaces is shown to be potentially of the same
order as the recent release of 700MHz spectrum for wireless data service.
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is uncommon as in most traditional communication systems there is no point in detecting
signals if they are too weak to decode.

1.2.1.1 Related work

There has been much work on designing cognitive radio systems using a sense-before-talk
approach. Table 1.1 gives a brief sampling of some representative single-user sensing tech-
niques. The techniques given there are by no means exhaustive. The reader is encouraged
to look into the references within these references for more.

There have also been several other formulations for spectrum sharing that are differ-
ent than the ‘sense before talk’ approach. Information-theoretic models for cognitive radios
have been proposed [40] in which the spectrum sharing problem is viewed as a joint primary-
secondary communication system design with constraints on the interference at the primary
receiver. This model assumes that the primary explicitly participates in spectrum sharing
with the secondary system. In these results, the secondary transmitter decodes the primary
signal using dirty paper coding (DPC) techniques and simultaneously boosts the primary
signal in the direction of interference [41; 42]. The key assumption in these results is that
the secondary transmitter assumes knowledge of the codeword of the primary transmitter,
which might not always be practical. Furthermore, it has also been shown that DPC based
approaches are not robust since simple phase uncertainty can significantly lower the perfor-
mance of such schemes [43].

Other forms of partial information, like knowledge of the primary user’s codebook, are
also not useful unless the secondary receiver can actually decode the primary signal and use
multiuser detection. Otherwise, it has been shown that the secondary system is forced to
treat the primary transmission as noise [49]. Implicit feedback from the primary system has
also been shown to be useful in the spectrum sharing context. For example, [44; 45] proposes a
spectrum-sharing architecture in which a secondary user eavesdrops on a packetized primary
user’s automatic repeat request (ARQ) messages to stay within the interference budget of
the primary users.

1.2.2 Hypothesis-testing based formulation for spectrum sensing

There are different ways in which one can mathematically formulate the sensing problem
described in Section 1.2.1. We now describe the most popular formulation, in which the
sensing problem is cast as a binary hypothesis test between the following two hypotheses —
“primary ON” and “primary OFF”. This formulation has been used in many research papers
on cognitive radios, including our initial paper [35]. We use the same binary hypothesis
testing formulation in Chapters 2, 3, and, 4.

Let X(t) denote the band-limited primary signal we are trying to sense, and let the
additive noise process be W (t). The discrete-time version is obtained by sampling the
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received signal at the appropriate rate. The two hypotheses are:

Signal absent H0 : Y [n] = W [n]

Signal present H1 : Y [n] =
√
PH(X[n]) +W [n], (1.1)

for n = 1, 2, · · · , N . Here P is the received signal power, X[n] are the unattenuated samples
(normalized to have unit power) of the primary’s transmitted signal, H(·) is the fading
operator (also normalized to have unit power), W [n] are noise samples and Y [n] are the
received signal samples. We assume that the signal is independent of both the noise and the
fading process.

The goal is to design detectors that will distinguish between the two hypothesis (with low
probability of error) for low values of P (weak received signal). For instance, the FCC white
space ruling says that sensing based cognitive radios must be able to detect the primary
signal at −114 dBm [26], which corresponds to an SNR of about −18 dB. Even the IEEE
802.22 standard [46] requires the WRAN devices to sense primary signals at around −20 dB.

For the sake of completeness, we review the traditional performance metrics for binary
hypothesis testing [47]. To be concrete, consider test-statistic/threshold based detection

algorithms. Let the detector be given by T (Y) := 1
N

∑N
n=1 φ(Y [n])

H1

≷
H0

λ, where φ(·) is a

known deterministic function and λ is the detector threshold. For a fixed detector threshold
λ, and the sensing time N , the error probabilities are defined as

PFA(N, λ) := PW (T (Y) > λ|H0) ,

PMD(N, λ) := PW (T (Y) < λ|H1) . (1.2)

The lowest signal to noise ratio, SNR := P
σ2
n

(here σ2
n is the nominal noise power) for which

the constraints in (1.2) are met is called the sensitivity11 of the detector. Furthermore,
eliminating λ from (1.2) we can solve for N as a function of the SNR (sensitivity), PFA, and
PMD. Hence, we can write

N = ξ(SNR,PFA, PMD). (1.3)

This is called the sample complexity of the detector. Expressions for the asymptotic sample-
complexity of commonly-used detectors like the radiometer (N = O(SNR−2) [48]), and the
sample complexity of a matched filter (N = O(SNR−1) [49]) are known.

The traditional metrics triad of sensitivity, PFA, and PMD, are used along with the
sample complexity to evaluate the performance of detection algorithms. For reasonable
detectors, ξ(SNR,PFA, PMD) is a monotonically decreasing function of SNR, PFA and PMD.

11In signal processing jargon, a highly sensitive detector implies that it can detect extremely weak signals.
This usage is somewhat counter intuitive because ‘high’ sensitivity is related to ‘low’ SNRs.
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In particular, when the noise and fading distributions are ergodic, we can choose a threshold
λ such that arbitrarily high sensitivities (low SNRs) can be achieved by increasing the number
of samples [50; 51].

1.2.3 Is the sensing problem trivial?

Detection theory tells us that one can always design highly sensitive cognitive radios at the
cost of increased sensing time. However, the key assumption that was made in the hypothesis
testing formulation in Section 1.2.2 was that the cognitive radio sensor had precise knowledge
about the distribution of the noise and fading processes. In reality, the distributions of the
noise and fading processes are never known to infinite precision. Thermal noise depends
on the circuit elements in the cognitive radio sensor, and it is impossible to fit a precise
model for these random fluctuations. It is commonly modeled as ‘white’ Gaussian, whereas
in reality this is only an approximation. Similarly, Rayleigh and Rician fading models are
also approximations.

So, an important design question is: how robust are sensing algorithms to modeling
uncertainties? This is a practical question faced by any engineer deploying communication
systems in the field. Naturally, there has been lot of work on developing detection algorithms
that are robust to distributional uncertainties in the noise and fading processes [52; 53; 54;
55; 56; 57]. However, most of these results on robust detection algorithms assume that the
underlying SNR is moderate to high (larger than 0 dB). Whereas, for cognitive radios the
functional requirement is to robustly detect signals as weak as −20 dB.

1.3 Thesis outline and main contributions

The discussion in Section 1.2.3 leads to one of the core questions addressed in this thesis: Can
we design robust detection algorithms that work at extremely low signal to noise ratios? We
formulate this question as a robust hypothesis testing problem and analyze the performance
of non-coherent detection algorithms in Chapter 2. For simplicity, in this chapter we consider
only uncertainty in the noise process and ignore fading between the primary transmitter and
secondary sensor. We incorporate uncertainty in the fading process in Chapters 3, and 4.

In Chapter 2, we model the uncertainty in the noise process using a bounded-moment
distributional uncertainty model (see Section 2.4.1). Also, we assume that the primary user
is flexible to use any signaling scheme of his choice, and we only assume knowledge of the
average primary received signal power. Freedom of use for the primary user translates into
uncertainty for the cognitive radio sensor. Under these modeling assumptions, we show that
there exist fundamental limits to robust detection. These limits are in the form of SNR
thresholds, called SNR walls, below which robust detection is impossible, regardless of how
many samples we take. We first show the SNR wall result for a radiometer. Uncertainty in
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the noise power is sufficient to induce a wall for the radiometer, and this wall is very severe
for moderately low values of the uncertainty.

Furthermore, if the primary user has the flexibility to transmit iid signal samples X[n]
drawn out of a zero-mean symmetric constellation, then even knowledge of the signal constel-
lation at the detector is not helpful. That is, even with knowledge of the signal constellation,
all possible detection algorithms suffer from an SNR wall limitation and their performance
is at most 3 dB better than that of a radiometer. These results have significant impact
for policymakers writing regulations for white space use. In particular, the SNR wall result
says that if the primary user is given the freedom to transmit iid symbols from a symmetric
signal constellation, then the cognitive radios cannot guarantee robust detection, and hence
they will not be able to recover any white spaces. This means that opportunistic spectrum
sharing with complete freedom of signaling to the primary user will not solve the regulatory
overhead problem.

This leads to the natural question of: what kind of restrictions on the primary user will
help the secondary sensor robustly detect the primary signal? Many communication signals
use pilot/training symbols to help their receivers achieve phase and symbol synchronization.
These known ‘signal features’ are also useful in estimating the channel for coherent commu-
nication. In chapter 3 we analyze how the presence of known signal features in the primary
signal help in robust detection for the secondary user. In particular, we focus on two com-
monly used signal features — narrowband pilots, and cyclostationary signal features. The
key idea is that known signal features allow the secondary detector to coherently process the
primary signal and average out the noise. So, averaging preserves the strength of the signal
feature but reduces the uncertainty in the noise process. In the limit of infinite coherent
processing (coherent averaging for large sensing time N), any signal with arbitrarily low
SNR can be robustly detected in the presence of uncertain noise. This suggests that the
presence of known signal features will avoid SNR wall limitations.

However, we have not yet modeled the uncertainty in the wireless channel between the pri-
mary transmitter and the secondary sensor. Fading can be modeled as a linear time-varying
filter, with the rate of variation characterized by the coherence time of the channel [58]. As
the received primary signal strength can be very low, the secondary sensor cannot track the
fading channel coefficients reliably. We model this by assuming an iid block fading model for
the wireless channel between the primary transmitter and secondary sensor with the latter
knowing only a lower bound on the channel coherence time. Under this model, we show
that the finite coherence time imposes a limit on the amount of coherence processing gains
feasible for coherent detection of the known signal feature. In particular, for the case of
narrowband pilots, we show that the uncertainty in the phase of the fading process (phase
changes randomly after every coherence time and hence the pilot tone can be coherently
matched only for the length of a coherence block) imposes an SNR wall limitation for pilot
detection. However, the SNR wall for a pilot detector is better than that of a radiometer due
to the robustness gains achieved by coherent processing for the duration of the coherence
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time.
In the case of narrowband pilots we show that robustness can be further improved by run-

time noise calibration, which is an accurate calibration of uncertain statistical quantities like
noise at run-time. If a signal contains a narrowband pilot, then we can measure the average
noise plus interference power at frequency locations different from the pilot frequencies and
use it to calibrate the power of the noise plus interference at the location of the pilot tone.
The idea is that, whatever the power spectral density of the noise plus interference is, as
long as it is approximately ‘white’ around the pilot tone frequency then calibration can
significantly reduce uncertainty in the noise plus interference power during run-time!

In Chapter 3 we also consider signals with cyclostationary features. Most communication
signals have inbuilt periodicities in them, like the symbol rate, carrier frequency, cyclic prefix
in OFDM packets, etc. Hence, signals can be modeled as cyclostationary, whereas noise
is typically modeled as stationary. Many researchers have worked on designing detection
algorithms to exploit the inbuilt periodicities in signals, of which the class of cyclostationary
feature detectors proposed by William Gardner [59] are the most popular ones. These
detectors have been widely studied in the spectrum sharing community and are believed
to be good for both signal detection as well as signal identification/classification [60; 61].

A serious drawback of Gardners form of cyclostationary feature detectors is that they
need the signal to have spectral redundancy in order for the detector to work. That is,
these detectors work only when the symbol rate of the signal is slower than the Nyquist
rate of the signal. Hence, spectral redundancy was believed to be a fundamental cost one
needs to pay for the cyclostationary signal to be detectable. In Chapter 3, we disprove this
fact by explicitly constructing examples of signals that do not have spectral redundancy,
and yet there exist histogram-based sensing algorithms that can detect the underlying cy-
clostationarity. The key idea behind the counter-example shown in this chapter is the fact
that Gardners cyclostationary feature detectors depend on the periodicity of second-order
statistics (autocorrelation function) of the signal. Whereas in our example we look for dis-
tributional periodicity, which exists in every cyclostationary signal even when the signal is
wide-sense stationary (second-order statistics are time-invariant).

From a robustness point of view, we show that cyclostationary signals are non-robust
to time-varying frequency selective fading processes. Frequency selective fading mixes the
signal samples and as the fading coefficients vary with time it destroys the periodicity in the
signal statistics. The signal is locally cyclostationary within the channel coherence time, but
it is stationary across multiple coherence blocks. So, even in this case the finite coherence
time limits the gains from cyclostationary feature detection algorithms, leading to an SNR
wall. Both Gardner’s form of cyclostationary feature detectors and our histogram-based
detectors suffer from these SNR wall limitations.

Narrowband pilots as well as cyclostationary signals suffer from SNR wall limitations,
and the location of the SNR wall in each of the case depends on the channel coherence time.
This leads to the question of: what are the relevant channel coherence times in both cases?
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In the narrowband pilot case, the change of phase of the fading coefficients causes an SNR
wall. So, the relevant coherence time is the time after which the phase of the signal changes
significantly. We call this the phase coherence time. Note that the phase coherence time
could be finite even when the physical wireless channel is time-invariant (the transmitter,
receiver and all reflectors are stationary) due to the frequency jitter of the oscillator at the
secondary sensor relative to the oscillator at the primary transmitter. We show that the
location of the SNR wall varies as log10Nc (in dB scale), where Nc is a lower bound on the
length of the phase coherence time of the channel.

In the case of cyclostationary signals, the channel forgets the timing of the signal samples
relative to the period of the cyclostationary process, causing an SNR wall. So, the relevant
coherence time in this case is the time after which the shape of the impulse response of
the channel changes significantly. We call this the delay coherence time of the channel.
The delay coherence time of the channel could be finite even when the fading process is
stationary due to the clock jitter at the secondary sensor. Also, the location of the SNR
wall for cyclostationary signals varies as 1

2
log10Dc (in dB scale), where Dc is a lower bound

on the length of the delay coherence time of the channel. More importantly, there can be
physical situations in which the delay coherence time Dc is significantly larger than the phase
coherence time Nc. So, it is possible that 1

2
log10DC > log10Nc (see Section 3.3.4.1).

If the primary signal has known features, then the results from Chapter 3 tell us that the
secondary sensor can robustly detect weak primary signals (SNR walls lower than −20 dB
are achievable). However, the cost of this improved robustness for the secondary sensor is
the loss in freedom for the primary user, as it is forced to transmit strong features in its
signals. So, in Chapter 4 we consider the tradeoff between the loss in freedom for the primary
user and the gain in robustness for the secondary sensor. We capture the loss in freedom
for the primary user by the hit in data rate (to the primary receivers) it suffers in order
to provide robustness gains for the secondary sensor. We call this the capacity-robustness
tradeoff. We derive the tradeoff curves for several combinations of primary signaling schemes
and secondary sensing algorithms. These tradeoff curves help the regulators choose a suitable
point in the capacity-robustness tradeoff space.

This formulation leads us to the question of what the optimal capacity-robustness tradeoff
curve is. We give an answer to this question in Chapter 4 by constructing an example of a
primary signaling scheme that can be robustly detected by the secondary sensor at arbitrarily
low SNRs. Furthermore, the loss of capacity for the primary user under this signaling scheme
can also be made arbitrarily close to zero. This shows that the optimal capacity-robustness
tradeoff is a trivial rectangle!

The signaling scheme is motivated from the results on cyclostationary feature detection
in Chapter 3. This signal is constructed by block-interleaving two iid white Gaussian signals
with distinct average power levels. This gives rise to a cyclostationary signal. The length of
each Gaussian block is chosen such that the scale of the feature (period of the cyclostationary
process) is larger than the delay spread of the fading channel between the primary user and
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secondary sensor. This ensures that the fading process cannot completely mix the signal
samples and destroy the underlying cyclostationarity. For this reason we say that this signal
contains macroscale features. This signal is shown to be completely robust to arbitrarily
varying noise and fading processes. On the other hand, the power levels of the two Gaussian
processes can be chosen close to make the data rate arbitrarily close to the primary channel
capacity.

Having proved that one can design robust sensing algorithms that can detect weak (of the
order of−20 dB) signals, it is clear that cognitive radios can opportunistically share spectrum
while guaranteeing protection to the primary users. The question is: what fraction of the
spectrum holes does the cognitive radio recover? More concretely, in the TV band case
can we design sensing algorithms that do as well as a geo-location based spectrum sharing
solution? The traditional sensing metrics of PFA, PMD and the sensing time N are insufficient
to give answers to these questions. The reason is that the hypothesis testing formulation
given in Section 1.2.2 does not capture the spatial perspective for spectrum sensing, which
is essential for cases with primary transmitters distributed over space.

We formulate the joint time-space spectrum sensing problem in Chapter 5. We present
two new metrics, the fear of harmful interference (FHI) and the weighted probability of
space-time recovered (WPSTR) metric that capture protection to the primary user and the
fraction of white space opportunities recovered by the secondary user respectively.

The main idea in this formulation is the asymmetric nature of the two performance
metrics. The FHI metric is computed as a worst case over uncertainty models for the various
statistical quantities like noise, multipath fading and shadow fading. On the other hand,
the WPSTR metric is computed as an average using probabilistic models for the statistical
quantities involved in problem. The reason for this is that the primary user does not trust the
models used by the secondary and hence we need a worst case metric for protection, whereas
the secondary is free to use any probabilistic model for measuring its own performance12.

The key advantages of using the new space-time sensing framework are:

• Firstly, our formulation focuses both on time and space, which is not done in any
existing work. Secondly, we introduce the idea of a short sacrificial time-segment at
the beginning of a primary transmission during which secondary users are permitted
to cause interference (see Chapter 5). Like its spatial equivalent (the annulus of width
rdec − rp between the decodable and protected radius), this can be viewed as either
a loss of QoS for the primary user in the sense of a dropped frame or as requiring
the primary user to lengthen its synchronization preamble before commencing data
transmission. Without this provision, a secondary user could never transmit due to
the fear of primary user reappearance during the secondary transmission.

12After all, an engineer designing a secondary system has no incentive to lie to himself, unlike his incentive
to lie to his investors!
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• This framework gives a uniform way to compare the performance of different sens-
ing algorithms. For instance, it can be used to compare single-user sensing algo-
rithms, collaborative sensing algorithms, and multi-band sensing algorithms [62; 63;
64]. Furthermore, this framework quantifies the intuition that single-radio sensing al-
gorithms have poor performance and one needs collaborative sensing algorithms to
improve the white space recovery performance.

• This framework brings out the tradeoff between the performance in space versus the
performance in time, which is otherwise not at all obvious to see. In Chapter 5, we
show that in some cases the WPSTR performance is not monotonic with the sensing
time N . Increasing the sensing time improves the detector performance, but it also
means that the secondary user has a smaller fraction of time in which it can use the
spectrum hole.

• Finally, this framework also brings out the analogous SNR wall story in the spatial
domain. We show that in the presence of uncertainties, there is a finite FHI (protection)
threshold below which the performance of the cognitive radio goes to zero. That is to
protect the primary below this threshold the secondary has to give up all the spectral
opportunities.

Finally, we conclude with a discussion of the potential future work stemming out this
thesis in Chapter 6.
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Detection algo-
rithm

Description of algorithm What is modeled? What to
gain?

Energy detec-
tion [65] [66]

Get empirical estimate of
energy in a frequency band
and compare against a de-
tection threshold.

Average power Baseline
detector
for com-
parison.

FFT for DTV pi-
lot signal [67; 68;
69]

Partial coherent detection
using Filter around pilot to
reduce noise power. Use
FFT as partial coherent de-
tector for sinusoids.

DTV pilot. Sig-
nal contains
narrowband pilot
tone

Sensing
time and
robustness

Run-time noise
calibrated detec-
tion [70]

Noise is calibrated during
run-time leading to robust-
ness gains.

Asymmetric use
of degrees of free-
dom

Robustness

Cyclostationary
detec-
tion [59] [71] [72]

Spectral correlation function
reveals peaks at multiples
of the modulation rate/pilot
frequency.

Signal is modeled
as wide-sense cy-
clostationary

Robustness

Dual FPLL pilot
sensing [73]

Use two Digital PLLs which
are preset to±30kHz around
the pilot. Use time to con-
verge as test statistic.

Signal contains
narrowband pilot
tone

Simplicity
of imple-
mentation

Eigenvalue based
detection [74; 75]

Utilizes the fact that white
noise is uncorrelated across
samples/antennas while a
band-limited external signal
is correlated

Band-limited
primary signal
and secondary ra-
dio has multiple
receive antennas

Sensing
time

Event-based de-
tection [76; 77]

The detector tries to detect
arrival/departure of signals.
This technique can be used
for identifying time-domain
holes.

Primary user
ON/OFF dura-
tions are much
shorter than the
time between
secondary user
movement.

Robustness

Table 1.1: Comparison of representative single-user sensing algorithms for DTV detection. These
algorithms use various facets of the transmitted signal to obtain a better detection sensitivity over
simple energy detection.
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SNR walls for detection

2.1 Introduction

As discussed in Chapter 1, the goal is to design a secondary sensor that meets a given target
probability of false-alarm (pfa) and probability of missed-detection (pmd) constraints at low
SNRs (high sensitivity). Classical detection theory suggests that degradation in the pfa and
pmd due to reduced SNR can be countered by increasing the sensing time [47], [50]. Hence,
the achievable sensitivity is considered to be limited by the maximum possible sensing time,
which depends on higher layer design considerations. For instance, the QoS requirements
(delay constraints) of the application drive the protocol layer design, which in turn dictates
the time available for sensing by the physical layer. This traditional perspective implies that
a cognitive radio system can always be engineered at the cost of low enough QoS.

However, it is impossible to model parameters in real-world physical systems with infinite
precision. For example, real-world background “noise” is neither perfectly Gaussian, per-
fectly white, nor perfectly stationary. Fluctuations in the thermal noise floor were observed
even in a calibrated1 experimental setup [78]. The channel fading is neither flat nor is it
constant over time. Real-world filters are not ideal, A/D converters have finite precision,
I and Q signal pathways in a receiver are never perfectly matched and local oscillators are
never perfect sine-waves. In this chapter2, we argue that these model uncertainties impose
fundamental limitations on detection performance. The limitations cannot be countered by
increasing the sensing duration. At very low SNRs, the ergodic view of the world is no longer
valid, i.e., one cannot count on infinite averaging to combat the relevant uncertainties.

To illustrate the impact of model uncertainties, consider a simple thought experiment.
Imagine a detector that computes a test-statistic and compares it to a threshold to decide if
the primary is present/absent. The threshold is set so the target false alarm probability is met

1Variation in the noise power due to temperature changes was accounted for in the experiment. Further-
more, the experiment was setup such that there was no in-band interference.

2The discussion in this chapter is based on out results in [79; 80; 66].
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using the nominal model. Now, this detector is deployed in physically distinct scenarios with
their own slight variations in local noise and fading characteristics. The actual performance
can deviate significantly from the prediction. An example using the radiometer is illustrated
in Figure 2.1. In fact, below a certain SNR threshold, at least one of the error probabilities
can become worse than 1

2
. We call this sort of failure a lack of robustness in the detector.

The nominal SNR threshold below which this phenomenon manifests is called the SNR wall
for the detector.

Figure 2.1: Error probabilities of radiometric detection under noise uncertainty. The point marked
by an ‘X’ is the target theoretical performance under a nominal SNR of −10 dB. The shaded
area illustrates the range of performance achieved with actual SNR’s varying between −9.9 dB
and −10.1 dB (x = .1 in Definition 2.1).

Such robustness limits were first shown in the context of radiometric (energy) detection
of spread spectrum signals [81]. Robustness limits to radiometric detection in the context of
cognitive radios were first shown in [82]. Subsequently, these limitations were also verified
by controlled experiments that were carefully calibrated to limit uncertainties [83].

The outline of the chapter is as follows. The spectrum sensing problem in presence of
modeling uncertainties is formulated as a robust hypothesis test in Section 2.2. We review
the robustness performance of a radiometer in Section 2.3. We show that uncertainty in the
noise power is sufficient to impose severe limitations on the performance of a radiometer. In
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particular, we show that there exists an SNR threshold (called an SNR wall) below which
robust detection is impossible for the radiometer. To make progress for general classes of
signals and detection algorithms, we distill the relevant uncertainties into tractable mathe-
matical models in Section 2.4.1. These models enable us to focus on those uncertainties that
are most critical. Using these models we show in Section 2.4 that even the optimal detector
suffers from SNR wall limitations when the ‘signal of interest’ does not contain any known
feature. In particular, we show that the robustness performance of an optimal non-coherent
detector is as bad as the radiometer. The existence of absolute SNR walls for non-coherent
detection was first proved in my Masters thesis [80]. However, in my Masters thesis we only
conjectured that the lower bound on the location of the absolute SNR wall was as shown
in (2.10). The proof for this conjecture is given in this chapter in Theorem 2.2. We conclude
this chapter with the policy implications of the SNR wall result in Section 2.5. Our results
imply that if the primary user has complete flexibility of use, then the secondary user can-
not reliably discover whitespaces. Hence, the regulators must impose some restrictions on
the primary user in order to allow the secondary user to opportunistically recover spectrum
holes.

2.2 Robust hypothesis test formulation

Let X(t) denote the band-limited signal we are trying to sense and let the additive noise
process be W (t). The discrete-time version is obtained by sampling the received signal at
the appropriate rate. In this chapter we ignore the fading in the wireless channel between
the primary transmitter and the secondary detector. The idea is to isolate the impact of
uncertainty in the noise process from the uncertainty in the fading process. Our goal is
to incorporate real-life uncertainties in noise into our hypothesis testing framework, and
quantify the impact of these uncertainties on the performance of sensing algorithms. This
is done using the robust hypothesis testing framework proposed by Huber [84]. The two
hypotheses are:

H0 : Y [n] = W [n]; W [n] ∼ W ∈ W
H1 : Y [n] =

√
P ·X[n] +W [n]; X[n] ∼ X ∈ X ,W [n] ∼ W ∈ W (2.1)

Here P is the received signal power, X[n] are the unattenuated samples (normalized to
have unit power) of the primary signal, W [n] are noise samples and Y [n] are the received
signal samples. We assume that X[n] is an independent and identically (iid) distributed
random process, W [n] is an iid random process and that the signal (X[n]) is independent of
the noise process (W [n]). We model uncertainty in the noise process by assuming that the
underlying noise distribution lies in some neighborhood of an idealized noise distribution.
That is, assume that the underlying noise distribution W ∈ W , where W is a class of
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distributions containing the nominal noise distribution Wn. For simplicity, we assume that
the nominal noise distribution is a Gaussian, Wn ∼ N (0, σ2

n). Define the signal to noise ratio
to be SNR := P

σ2
n
. As the primary user can have freedom to change its signaling scheme, and

the secondary sensor might not have precise knowledge of the primary signaling scheme, we
assume that the signal distribution can lie anywhere in a class of distributions, i.e., X ∈ X .

In this thesis we focus on threshold based detection rules. For a given test-statistic

based detection rule T (Y)
H1

≷
H0

λ, where Y := (Y [1], Y [2], · · · , Y [N ]) and λ is the detection

threshold, the probability of false alarm and the probability of missed-detection are defined
as (this is the min-max formulation introduced in [85])

PFA(N, λ) := sup
W∈W

PW (T (Y) > λ|H0) ,

PMD(N, λ) := sup
W∈W

PW,X (T (Y) < λ|H1) . (2.2)

Furthermore, eliminating λ from (2.2) we can solve for N as a function of the SNR (sensi-
tivity), PFA, and PMD, and the uncertainty set W . Hence, we can write

N = ξ(SNR,PFA, PMD,W). (2.3)

This is called the sample complexity of the detector. The traditional metrics triad of sensitiv-
ity, PFA, and PMD, are used along with the sample complexity to evaluate the performance
of detection algorithms. For reasonable detectors, ξ(SNR,PFA, PMD,W) is a monotonically
decreasing function of SNR, PFA and PMD. For a given SNR, the aim is to design detectors
that minimize the sample complexity, while achieving the target PFA and PMD.

2.3 Impact of uncertainty: radiometer example

In this Section we review the performance of a simple as well as very commonly used de-
tector, namely the radiometer [48] under uncertain noise distributions. The advantage of
the radiometer is that it does not need any knowledge of the signal distribution, and all it
needs to know is the average power of the signal. As the radiometer only sees the power,
the distributional uncertainty of noise can be summarized by uncertainty in its variance, i.e.,
we assume that the noise variance σ2 ∈ [1

ρ
σ2
n, ρσ

2
n] where σ2

n is the nominal noise power and
ρ > 1 is a parameter that quantifies the size of the uncertainty. The impact of noise-power
uncertainty on a radiometer was first quantified in [81].
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2.3.1 Radiometer robustness

The test-statistic for the radiometer is given by T (Y) = 1
N

∑N
n=1 |Y [n]|2. For a given noise

variance σ2, the central limit theorem (see [86]) gives the following approximations [47]:

T (Y)|H0 ∼ N (σ2,
1

N
2σ4),

T (Y)|H1 ∼ N (P + σ2,
1

N
2(P + σ2)2), (2.4)

Using these approximations

PFA(N, λ) = sup
σ2∈[ 1

ρ
σ2
n,ρσ

2
n]

Prob
(
T (Y) > λ|H0, σ

2
)

= sup
σ2∈[ 1

ρ
σ2
n,ρσ

2
n]

Q

λ− σ2√
2
N
σ2


= sup

σ2∈[ 1
ρ
σ2
n,ρσ

2
n]

Q

 λ
σ2 − 1√

2
N


(a)
= Q

λ− ρσ2
n√

2
N
ρσ2

n

 , (2.5)

where λ is the detector threshold and Q(·) is the standard Gaussian complementary CDF.
The equality in (a) follows from the observation that Q(·) is a monotonically decreasing
function and λ

σ2 is minimized at σ2 = ρσ2
n.

Similarly,

PMD(N, λ) = 1− inf
σ2∈[ 1

ρ
σ2
n,ρσ

2
n]
Q

λ− (P + σ2)√
2
N

(P + σ2)


= 1−Q

λ− (P + 1
ρ
σ2
n)√

2
N

(P + 1
ρ
σ2
n)

 . (2.6)

The probability of false-alarm and probability of missed-detection targets (PFA(N, λ) ≤
pfa and PMD(N, λ) ≤ pmd for some 0 ≤ pfa, pmd ≤ 1) can be achieved by choosing the
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sensing time

N ≈ 2[Q−1(pfa)−Q−1(1− pmd)]2[
SNR−

(
ρ− 1

ρ

)]2 . (2.7)

This is the sample complexity of the radiometer under uncertain noise-power3. The above
sample-complexity expression was obtained by eliminating λ from (2.5) and (2.6), and by
approximating 1 + SNR ≈ 1.

From the sample-complexity expression in (2.7) it is clear that N → ∞ as SNR ↓(
ρ− 1

ρ

)
. This suggests that robust detection is impossible for SNR ≤

(
ρ− 1

ρ

)
. We now

formalize this observation.

Definition 2.1. Consider the robust hypothesis testing problem in (2.1). Fix an SNR > 0,
and a detector characterized by the test-statistic T (·). The detector is said to be non-robust
at the given SNR if for any 0 ≤ pfa < 0.5, 0 ≤ pmd < 0.5, we cannot choose an N > 0 and
a detector threshold λ such that both the false-alarm and missed-detection constraints are
met, i.e., PFA(N, λ) ≤ pfa and PMD(N, λ) ≤ pmd cannot simultaneously be satisfied for any
choice of (N, λ).

Definition 2.2. Consider the robust hypothesis testing problem in (2.1). For a given de-
tector we define an “SNR wall” to be the maximum signal to noise ratio (SNR) threshold
below which the detector is non-robust.

Theorem 2.1. Consider the robust hypothesis testing problem in (2.1) with uncertain noise
variance, i.e., σ2 ∈ [1

ρ
σ2
n, ρσ

2
n]. Then, there exists an SNR threshold below which the ra-

diometer is non-robust to uncertainty in the noise power. Furthermore, the “SNR wall” for
the radiometer is given by

SNRenergy
wall =

ρ2 − 1

ρ
. (2.8)

Proof. Fix an 0 ≤ SNR ≤ ρ2−1
ρ

. Suppose, if possible assume that the radiometer is robust at
the given SNR. Then, from Definition 2.1, there exists a 0 ≤ pfa < 0.5, and 0 ≤ pmd < 0.5,
such that we can choose a N > 0 and λ such that PFA ≤ pfa and PMD ≤ pmd.

From (2.5), it is clear that PFA ≤ pfa implies λ > ρσ2
n. This follows from the choice of

pfa ≤ 0.5. Similarly, PMD ≤ pmd implies λ < P + 1
ρ
σ2
n (see (2.6)). The above inequalities

3Substituting ρ = 1 in (2.7), which corresponds to the no uncertainty case, gives us the expression for
the sample complexity of a radiometer with perfectly known noise variance [48], [87], [80]
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give

ρσ2
n < λ < P +

1

ρ
σ2
n

⇒ ρσ2
n < P +

1

ρ
σ2
n

⇒ P

σ2
n

>

(
ρ− 1

ρ

)
⇒ SNR >

ρ2 − 1

ρ
, (2.9)

which is a contradiction. So, the radiometer is non-robust for all 0 ≤ SNR ≤ ρ2−1
ρ

.

Remarks:

• The above result shows that the radiometer is highly non-robust to uncertainty in the
noise power. This is true even when the signal distribution X is known, i.e., where X
is a singleton.

• The key intuition in traditional binary hypothesis testing is that as we increase the
number of samples (N) to infinity, the distribution of the empirical test-statistic concen-
trates around the corresponding mean for each hypothesis [50]. So, if the test-statistic
means under both hypotheses are distinct, the two hypotheses can be distinguished
with arbitrarily low error probabilities.

However, the situation is different under noise uncertainty. For instance, the test-
statistic means for the radiometer with noise uncertainty are given by

ET (Y|H0) ∈
[

1

ρ
σ2
n, ρσ

2
n

]
,

ET (Y|H1) ∈
[
P +

1

ρ
σ2
n, P + ρσ2

n

]
.

The test-statistic means under each hypothesis can take any arbitrary value in the
corresponding interval. Using the same intuition as before, the two hypotheses can be
robustly distinguished if the intervals for the test-statistic means are disjoint. For the
radiometer this happen if ρσ2

n < P + 1
ρ
σ2
n, which is same as the condition in (2.9).

Figure 2.2 illustrates the overlap of the test-statistic means for SNR ≤ ρ2−1
ρ

. Fig-

ure 2.3(a) plots the location of the SNR wall for a radiometer (see (2.8)) as a function of the
noise uncertainty parameter x = 10 log10 ρ, as expressed in dB terms. Extensive simulations
showing the limits on radiometer performance under noise uncertainty have been reported
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in [88]. Our theoretical SNR wall limits were also experimentally validated in [78]. The
sample-complexity of a radiometer under noise uncertainty is illustrated in Figure 2.3(b).
From the figure, we can see that the sample complexity approaches infinity as the SNR
approaches the radiometer SNR wall. From the figure it is clear why we call it an “SNR
Wall”.

Signal
present

Target
Sensitivity

!2
n

!2
n

Finite sample
uncertainty

Uncertainty
Zone

Intrensic Noise power
}

Impossible

Test statistic

1/"

"

Figure 2.2: Understanding noise uncertainty for a radiometer. The shaded area in the figure
represents the uncertainty in the noise power. It is clear that if the test statistic falls within the
shaded region, there is no way to distinguish between the two hypotheses.

2.3.2 ROC-based Intuition of the SNR wall result

So what happens on the other side of the wall? An understanding can be obtained by
looking at a detector’s Receiver Operating Characteristic (ROC) curves. The ROC curve
for a detector is the tradeoff between the probability of false-alarm and the probability of
missed-detection for a fixed SNR and sensing time N [47]. Figure 2.4 plots the ROC curves
with/without (solid/dashed) noise uncertainty for a radiometer.

Consider the case without noise uncertainty. Every point on the ROC curve corresponds
to a particular choice of the detector threshold λ. From the dashed curves in Figure 2.4 we
can clearly observe the performance of the detector as a function of the SNR and the sensing
time N . Firstly, as we increase the SNR (top left plot to the top right plot in Figure 2.4)
the ROC curves shift towards the (0, 0) corner. This shows that the detector performance
can be improved by increasing the SNR for a fixed sensing time N . The reason for this is
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Figure 2.3: Figure (a) shows how the sample complexity N varies for the radiometer as the SNR
approaches the SNR wall (See Equation (2.7) and use x = 10 log10 ρ). Figure (b) plots the
SNRenergy

wall in (2.8) as a function of noise level uncertainty x = 10 log10 ρ. The point marked by
a “x” on the plot corresponds to x=1 dB of noise power uncertainty.
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that as the SNR increases the separation between the test-statistic means under both the
hypotheses increases4. Secondly, for a fixed SNR the radiometer performance improves as N
increases (the ROC curve shifts towards the (0, 0) corner). The reason for this is that as N
increases the distribution of the test-statistic concentrates around its mean due to ergodic
averaging [89] [51].

Now, consider the performance of a radiometer with noise uncertainty. As before, an ROC
curve is defined as the tradeoff between the probability of false-alarm and the probability
of missed-detection obtained by varying the detector threshold λ, while keeping the SNR
and sensing time N fixed. However, with noise uncertainty there is a subtle difference in
the interpretation of an ROC curve. Recall the definition of the probability of false-alarm
and the probability of missed-detection under noise uncertainty given in (2.2). From (2.2)
it is clear that under noise uncertainty the error probabilities PFA and PMD are computed
using the worst-case distribution from the uncertainty set W . Furthermore, the worst-case
distribution from a false-alarm point of view can be different than the worst-case distribution
from a missed-detection point of view. In particular, for a radiometer with uncertain noise
power, every point on the ROC curve corresponds to two different choices of the underlying
noise power5. This means that for every point (pfa, pmd) on the ROC curve, the actual
probability of false-alarm is upper bounded by pfa and the actual probability of missed-
detection is upper bounded by pmd. As there is no way of knowing the actual noise power
we use the upper bound (pfa, pmd) as a measure of detector performance.

The solid curves in the top right plot in Figure 2.4 show the ROC curves for a radiometer
with x = 1 dB of uncertainty, and a nominal SNR of −2 dB (above the radiometer SNR
wall). The ROC curves for each N are worse (shift away from the (0, 0) corner) than the
corresponding curves without uncertainty (dashed curves in the plot). The intuition for this
is given in the bottom right plot in Figure 2.4 which shows the set of possible test-statistics
means under both hypotheses. The plot also shows the two least-favorable distributions. The
difference in means of the two least-favorable distributions is smaller than the difference in
means of the nominal distributions. So, the performance with noise uncertainty is degraded
as compared to the performance without noise uncertainty. In this case, the performance
degradation due to noise uncertainty can be compensated for by increasing the number of
samples. The sets of test-statistic means under both hypotheses do not overlap and hence
ergodic averaging is helpful. However, if the SNR is below the SNR wall, then the sets

4In binary hypothesis testing, the performance of a detector is a function of the Kullback-Leibler (KL)
divergence between the two distributions corresponding to the two hypotheses. In particular, the KL diver-
gence between two Gaussian distributions is a monotonically increasing function of the difference of means
of the Gaussian distributions.

5These two distributions are called the least-favorable distributions in robust hypothesis testing liter-
ature [85]. The standard likelihood-ratio test between these two least-favorable distributions gives us an
optimal min-max robust hypothesis test for the original problem [85]. The bottom plots in Figure 2.4 shows
the set of possible test-statistic distributions under both hypotheses for a radiometer. The curves shown in
bold correspond to the probability density function of the least-favorable distributions under each hypothesis.
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Figure 2.4: The solid ROC curves correspond to the case with noise uncertainty and the dotted
ROC curves correspond to the case without noise uncertainty. The plots on the right correspond
to the case where the operating SNR is above the SNR wall. The plots on the left correspond to
the case when the operating SNR is below the SNR wall.

of test-statistic means under both hypotheses overlap as shown in the bottom left plot in
Figure 2.4. The ROC curves in this case are given by the solid curves in the top left plot in
Figure 2.4. The ROC curves can be worse than those of the random coin-tossing detector!
(dotted straight line in Figure 2.4).

2.4 Optimal non-coherent detection

The results in Section 2.3.1 tell us that the radiometer is non-robust to uncertainty in the
variance of the noise process. Moreover, the SNR wall for the radiometer is close to 0 dB
for moderate values (x ≈ 1 dB) of the noise uncertainty. This suggests that secondary users
cannot use a radiometer to sense weak primary signals. The obvious question now is whether
there are other detectors whose robustness performance is significantly better than that of

29



Chapter 2. SNR walls for detection

the radiometer. In order to answer this question, we need to work with a generalized noise
uncertainty model.

2.4.1 White-noise uncertainty model

For the radiometer it was sufficient to model the uncertainty in the noise power. This model
was backed up by the experimental observation that the thermal noise power fluctuates in an
non-ergodic fashion [78]. Since the noise power is uncertain it is reasonable to assume that
the other moments of the noise process will also be uncertain. So, we propose a bounded
moment noise uncertainty model that captures the idea of approximate Gaussianity. See
Figure 2.5 for a pictorial description of the noise uncertainty set.

Definition 2.3. Define Wx, the class of uncertain noise distributions to be the set of all
distributions W that satisfy:

• The noise process is symmetric EW 2k−1 = 0,∀k = 1, 2, . . ..

• Even moments of the noise must be close to the nominal noise moments in that EW 2k ∈
[ 1
ρk

EW 2k
n , ρk EW 2k

n ], where Wn ∼ N (0, σ2
n) is a nominal Gaussian noise random variable

and ρ = 10x/10 > 1.

The parameter x in Definition 2.3 is used to quantify the amount of uncertainty in the
noise power, i.e., we allow for ±x dB of uncertainty in the noise variance. The above model
is reasonable for the following reasons:

• If the nominal noise distribution is believed to be Wn ∼ N (0, σ2
n). Then, any reasonable

uncertainty model must include Gaussian distributions with variance slightly different
than σ2

n, i.e., any Gaussian with variance σ2 ∈ [1
ρ
σ2
n, ρσ

2
n], for some ρ > 1.

• Background noise also includes weak signals from interferers, quantization noise, and
other random disturbances. This means that assuming perfect Gaussianity6 is unre-
alistic and the noise uncertainty set should include other distributions that are close
to Gaussian. For mathematical tractability, closeness to Gaussian distributions is ex-
pressed in terms of the moments. It is clear that similar results hold if the noise
uncertainty set is modeled as a small ball (in the variational distance) around the
nominal Gaussian CDF for Wn.

6In information theory, it turns out that the Gaussian distribution is a saddle point for many interesting
optimization problems. Therefore, we are sometimes safe in ignoring the distributional uncertainty and just
overbounding with a worst case Gaussian. However, this turns out not to be true in our problem of spectrum
sensing.
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Figure 2.5: An example of a noise uncertainty set Wx, for x = 3dB. The shaded region is a set
of possible pdfs for the noise random variable. The bold curve inside the region is the pdf of a
nominal Gaussian, Wn. The dashed curve is the pdf of X +Wn for BPSK X at SNR = −6dB.
This illustrates that at low signal powers, it is impossible to robustly distinguish the signal from
noise.

2.4.2 Absolute SNR walls

Given the mathematical model for distributional uncertainty in the noise process, the key
questions we ask is: do all detectors suffer from SNR wall limits? If so, how robust is the
optimal detector as compared to the radiometer? One approach to answer these questions
is to find the optimal detection rule and then compute the SNR wall for that detector.
The problem with this approach is that finding optimal detection rules for min-max robust
hypothesis testing problems is hard7. So, we take an alternative approach —we show the
existence of SNR thresholds below which all possible detection algorithms will be non-robust.
We call such thresholds absolute SNR walls. Having shown the existence of absolute SNR
walls, we try to give upper and lower bounds on the locations of these walls.

7The only known approach, proposed by Huber [85], is to identify two distributions, one from each
hypothesis such that the likelihood ratio test between these two distributions is the optimal robust test
for the original min-max robust hypothesis test. These distributions are called a least-favorable pair of
distributions. Huber gives sufficient conditions for a pair of distributions to be a least-favorable pair of
distributions [85]. However, there is no technique to construct a least-favorable pair of distributions. The
only option is to guess a pair of distributions and test whether they satisfy Huber’s conditions.
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We now give a sufficient condition for the existence of absolute SNR walls. Consider
the robust hypothesis testing problem in (2.1). As the received signal samples Y are iid
under both hypotheses, the distribution of Y is characterized by its marginal distribution.
Let Y [n] ∼ Y (i) ∈ Y(i) for i ∈ {0, 1}, where i denotes the underlying hypothesis. Here Y(i)

denotes the set of possible distributions for the received signal samples under hypothesis Hi,
i = 0, 1. Suppose Y(0)

⋂
Y(1) 6= Φ, then it is clear that no possible detection algorithm can

robustly distinguish between the two hypotheses.
Assume that the distributional uncertainty in noise is as given in Definition 2.3. That

is, Y(0) = Wx for some x > 0. Let the distribution of the signal samples X[n] ∼ X, with
X being known. Then, Y(1) = {X + W |W ∈ Wx}. In particular, X + Wn ∈ Y(1), where
Wn ∼ N (0, σ2

n) is the nominal noise distribution. Intuitively, it is clear that if the signal
power P is sufficiently low, then by continuity the distribution of X + Wn is close to the
distribution of Wn and hence can lie in Y(0), in which case robust detection is impossible for
any detection algorithm.

To get a better understanding of absolute SNR walls and the conditions under which
these walls exist, we look at the quantized version of the sensing problem. Assume that the
secondary sensor has access only to quantized versions of the received signal samples. This
is a reasonable assumption because in reality every receiver chain has an analog-to-digital
converter that samples and quantizes the received signals. We assume that the received
signal vector Y is quantized by passing each sample Y [n] through a symmetric scalar 2K-bin
quantizer. Let the quantization points be denoted by a−(K−1), a−(K−2), · · · a0, a1, a2, · · · , aK−1

with a0 = 0. This quantizer is symmetric if the quantization points are symmetric around the
origin, i.e., a−i = ai, for all i = 1, 2, · · · , K−1. Figure 2.6 is an example of a symmetric scalar
6-bin quantizer. Let Yq denote the quantized received signal samples. As Y is iid, Yq will
also be iid. So, the distribution of Yq is uniquely characterized by its marginal distribution.

Let Yq[n] ∼ Y
(i)
q ∈ Y(i)

q for i ∈ {0, 1}, where i denotes the underlying hypothesis. Here Y(i)
q

is used to denote the set of possible distributions of the quantized signal under hypothesis
Hi. Note that Y

(i)
q is a discrete random variable with a support set of size 2K. As the

quantizer is symmetric and since the received signal samples Y [n] are symmetric around 0,

the probability mass function of Y
(i)
q is completely characterized by the probabilities of the

K non-negative bins. Denote these probabilities by p
(i)
0 , p

(i)
1 , · · · , p

(i)
K (see Figure 2.6). Note

that these probabilities must satisfy
∑K

j=0 p
(i)
j = 1

2
for i ∈ {0, 1}.

Figure 2.7 illustrates the set of distributions in Y(0)
q and Y(1)

q for the case when the received
signal samples Y [n] are passed through a 6-bin symmetric quantizer shown in Figure 2.6.

Each distribution in the set Y(i)
q for i ∈ {0, 1} is characterized by a probability vector

(p
(i)
0 , p

(i)
1 , p

(i)
2 ) (K = 3 in this example) with p

(i)
0 + p

(i)
1 + p

(i)
2 = 0.5. So, every probability

distribution in Y(i)
q can be uniquely represented by a point in the 2-dimensional space spanned

by the two probabilities p
(i)
0 and p

(i)
1 . In the Figure 2.7, as the signal power P is decreased
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Figure 2.6: A six-bin symmetric scalar quantizer is shown in this figure. The quantizer is symmetric
around the origin if a0 = 0, and a−2 = a2 and a−1 = a1. Each bin is colored differently,
while the bins symmetric around the origin are shown in the same color. In this example the
probability mass function is uniquely characterized by the probability vector (p0, p1, p2), which
satisfy p0 + p1 + p2 = 1

2
.

the distributional uncertainty sets Y(i)
q get close to each other and eventually overlap when

P is below a certain threshold. Robust detection is impossible for any detector (working
with a 6-bin symmetric quantized signal) below this threshold, and hence this threshold is
an absolute SNR wall.

The existence of absolute SNR walls can be shown for quantized signal with any number
of quantization bins. Intuitively, the location of this absolute SNR wall is a function of the
number of quantization bins, and it improves as the number of quantization bins increase.
In the next section we show that there exists an absolute SNR wall even in the limiting case
of infinite quantization bins, i.e., even when the detector has access to continuous valued
signal samples Y [n].
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Figure 2.7: The distributional uncertainty sets Y(i)
q for i = 0, 1 are shown for different values of

the signal power P . The blue colored set corresponds to distributions under hypothesis H0 and
the red colored set corresponds to distributions under hypothesis H1. It is clear from the figure
that the distributional uncertainty sets overlap when the power P is sufficiently small, and hence
this leads to an absolute SNR wall.

2.4.2.1 Main theorem

Theorem 2.2. Consider the robust hypothesis testing problem defined in (2.1) with the noise
uncertainty set (W = Wx, x > 0) described in Definition 2.3. Let ρ = 10

x
10 . Also, assume

that the primary signal model X includes signals X[n] satisfying the following properties:

1. X[n] are independent of the noise samples W [n̂], for all n, n̂ > 0.

2. X[n] are independent and identically distributed as a random variable X.

3. X is zero-mean and all its odd moments are zero, i.e., E[X2k−1] = 0 for all k = 1, 2, · · ·

4. X has bounded support so |X| ≤ X̄.

Define SNRpeak = X̄2

σ2
n

. Under these assumptions, there exists a threshold SNR∗wall such
that robust detection is impossible if SNRpeak ≤ SNR∗wall. Furthermore, there are easy to
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compute bounds on this SNR wall:

ρ− 1 ≤ SNR∗wall ≤
ρ2 − 1

ρ
. (2.10)

Proof. See Appendix A.1 for the proof.

The upper bound in (2.10) is the SNR wall for the radiometer from (2.8). Furthermore,
the gap between the upper and lower bounds is at most a ratio of 2 when the uncertainty
parameter ρ is very close to 1, and the ratio approaches 1 if the uncertainty factor ρ gets
large. Thus, Theorem 2.2 asserts the existence of an absolute SNR wall that is essentially
like that of the radiometer. This wall holds for white primary signals with bounded support
in cases without fading.

2.5 Implication of SNR walls

The results in this chapter suggest that if the primary user has complete freedom to choose its
signaling scheme (within a given power constraint), then it is impossible for the secondary
sensor to guarantee robust detection at low SNRs. In other words, if the regulations for
opportunistic spectrum access are written to provide complete flexibility to the primary
system then the secondary system will fail to recover any spectral opportunities. So, even
opportunistic spectrum sharing cannot reduce the regulatory overhead.

This leads to the natural policy question: how much loss in freedom should the primary
incur in order to provide sufficient robustness to the secondary sensor? Restrictions on the
primary user’s freedom in the form of mandating ‘known features’ in its signal is explored
in Chapter 3. We show that the presence of known signal features in the primary signal
can significantly improve robustness for the secondary sensor. The tradeoff between loss in
freedom for the primary user and gain in robustness for the secondary sensor is technically
quantified in Chapter 4. The results in Chapters 3 and 4 tell us that achieving robustness
to modeling uncertainties at low SNRs is extremely hard.

In fact, our results on robust detection motivated us to ask the question: do we really
want to sense signals at such low SNRs? We answer this question in Chapter 5 by showing
that it is not desirable to design detectors that sense at low SNRs as this forces the secondary
users to give up a significant fraction of the spectral opportunities in space. The results in
Chapter 5 make the discussion of robust detection of signal at low SNRs in Chapters 3 and 4
potentially redundant.

However, there are several 1-bit decision problems that arise in opportunistic spectrum
sharing, which are naturally modeled as binary hypothesis tests. For instance, providing
robust identity to secondary users so that the primary can decide whether a secondary user
is interfering with it or not [90]. The results on designing robust detection algorithms at low
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SNR are directly applicable to solve such problems. Moreover, the discussion in Chapters 3
and 4 is given to maintain a chronology of results in opportunistic spectrum sensing.
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Chapter 3

Signals with known features

3.1 Introduction

In Chapter 2 we saw that robust detection of signals without any special structure (or
knowledge of one) is impossible below certain thresholds, called SNR walls. In this chapter,
we explore how additional structure in the primary signal can improve robustness. We
consider primary signals that contain signal features that are known to the secondary sensor.
In particular, we consider two kinds of signal features: pilot tones/training sequences and
cyclostationary signal features.

If the secondary sensor knows the primary signal feature, then it can project the received
signal in the direction of the known primary signal feature. For example, consider a primary
signal with a known pilot tone. In this case a secondary user can run a matched filter
(projection in the direction of the pilot tone) and compare the averaged filter output to a
threshold to detect the presence/absence of the pilot tone. If the received signal contains a
pilot tone (primary is present), then averaging the matched filter output reduces the noise
power, while preserving the pilot tone. As the noise averages out, the uncertainty in the noise
statistics also shrinks. This improves the effective SNR of the pilot tone. Hence, coherently
combining the received signal samples with the known pilot tone provides robustness gains for
the secondary user by increasing the effective SNR. We call this improvement in robustness
as gains from coherent processing.

In the above discussion we ignored the fading in the wireless channel from the primary
transmitter to the secondary sensor. Fading changes the direction of the pilot tone, and
hence perfect matched filtering is only possible if the channel coefficients are known at
the secondary sensor. However, as the primary signal can be very weak, it is impossible
to accurately track the channel fading coefficients. The lack of knowledge of the fading
coefficients at the secondary sensor limits the amount of coherent processing gains feasible.
We can expect to coherently combine the signal feature only as long as the channel remains
relatively static. So, there is only a finite amount of robustness gain possible, which is a
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function of the channel coherence time. This shows that even when the primary signal has
a known feature, it suffers from SNR wall limitations. However, the SNR walls in this case
are significantly better than those for the radiometer.

The improvement in the SNR wall also depends on the kind of signal feature present.
For pilot tones, the improvement in the SNR wall is proportional to log10Nc (in dB scale),
where Nc is the length of the coherence time of the channel. For cyclostationary signals, the
improvement in the SNR wall is proportional to 1

2
log10Nc (in dB scale). More subtly, the

relevant coherence times can be qualitatively different for these two cases.
Also, if the signal feature occupies a fraction of the total available degrees of freedom,

then we can further improve robustness by calibrating noise during run-time. The idea is that
by taking measurements along a subset of the signal degrees of freedom, we can calibrate
the noise in the degrees of freedom where the signal feature is present. This reduces the
uncertainty in the noise during run-time!

Table 3.1 summarizes the robustness results proved in this chapter for signals with known
features. The scaling of the SNR wall in each case is listed along with the key uncertainty
to which the feature is non-robust to.

Signal model Strategy Key reason for non-
robustness

SNR wall
scaling

Unknown or
‘white’ signal
with a power
constraint

Energy detection Uncertain noise power constant

Optimal detection Uncertain noise moments
‘White’ signal
with narrow-
band pilot

Matched filter Finite phase-coherence
time and uncertain noise
power

Matched filter with run-
time noise calibration

Finite phase-coherence
time and uncertain noise
color

log10Nc

Cyclostationary
signals

Histogram-based detector
defined in (3.16)

Finite delay-coherence
time and uncertain noise
power

Histogram-based detector
defined in (3.20) with run-
time noise calibration

Finite delay-coherence
time and uncertain noise
color

1
2

log10Dc

Table 3.1: Comparison of robustness results for different classes of signal models.
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3.2 Signals with deterministic pilot tones

Assume that the primary signal allocates a fraction of its total power to transmit a known
and deterministic pilot tone and the secondary sensor just focuses on that part for detection.
This model covers many practical communication schemes that use pilot tones/training
sequences for data frame synchronization and timing acquisition. For example, a digital
television (ATSC) signal is mandated to have a pilot tone that is -11 dB weaker than the
average signal power [91].

3.2.1 Pilot detection

We now consider detection algorithms for signals containing pilot tones. For concreteness,
we state the hypothesis test for this problem, which is similar to the one in (2.1)

H0 : Y [n] = W [n]; W [n] ∼ W ∈ W
H1 : Y [n] =

√
P ·H(X[n]) +W [n]; X[n] ∈ Xp,W [n] ∈ W , (3.1)

where we assume that all potential primary signals X[n] ∈ XP are of the form
√
θXp[n] +√

(1− θ)Xd[n]. Here Xp[n] is a deterministic pilot tone (normalized to have unit power)
with θ being the fraction of the total power guaranteed to be allocated to the pilot tone.
Let Xd[n] denote the data carrying part of the primary signal, modeled as a zero-mean iid
random process. Again, without loss of generality we assume that Xd[n] has unit power. The
noise samples W [n] are independent of the signal, and can take any distribution in the noise
uncertainty set W . The fading process is denoted by the operator H(·), and can also be
uncertain, i.e., H ∈ Hf . We also assume that the fading operator is normalized to have unit
norm. This is justified by capturing the fluctuations in the signal power (due to path-loss
and fading) using the received signal power parameter P . This assumption simplifies the
detector specification, and the impact of fading is dealt by mandating detectors to have high
sensitivity (can detect signal with low values of P ). In Chapter 5 we show that this modeling
assumption might not always reveal the true underlying tradeoffs, and present a framework
in which we can explicitly incorporate models for path-loss and fading into the hypothesis
testing formulation.

The matched filter1 is the most commonly used detector to sense signals with pilot tone.
The test-statistic of a matched filter is given by T (Y) = 1

N

∑N
n=1 Y [n]Xp[n].

1In the case of completely known noise statistics, the matched filter is asymptotically optimal. It achieves
a dwell time of N ≈ [Q−1(PD)−Q−1(PFA)]2 θ−1SNR−1 [80]
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3.2.1.1 Robustness analysis of the matched filter

We consider two different cases, with and without fading.

No fading: It is easy to see that when there is no fading (H(·) is an identity opera-
tor), and the noise uncertainty set is Wx (see Definition 2.3), the matched filter is com-
pletely robust to uncertainties in the noise distribution. Notice that E[T (Y)|H0] = 0 and
E[T (Y)|H1] =

√
θP 1

N

∑N
n=1 |Xp[n]|2 6= 0. This shows that the set of means of T (Y) under

both hypotheses do not overlap and hence the detector can robustly achieve any (PFA, PMD)
pair by choosing a sufficiently large N .

Faded signal: In this case the matched filter is non-robust to time-selectivity of the fading
process. Let us consider the simplest possible time-selective fading process: H(·) is modeled
as acting on the signal by simple scalar multiplication H(X[n]) = h[n]X[n] where h[n] is
the unknown time-varying flat fade. Even with this simple fading model, it is clear that we
cannot reap the gains of coherent signal processing forever. As soon as the channel assumes
an independent realization, we can no longer gain from coherent signal processing.

To simplify analysis we assume a block fading model for the fades h[n]. That is, h[n] is
assumed to be a random variable (constant within each coherence block) taking an indepen-
dent realization every coherence time. Furthermore, assume that the length of the coherence
time is Nc. It is clear that a good modification to the matched filter gives the following test
statistic

T (Y) =
1

M

M−1∑
n=0

[
1√
Nc

Nc∑
k=1

Y [nNc + k]Xp[nNc + k]

]2

, (3.2)

where M is the number of coherent blocks over which we can listen for the primary.
This detector can be visualized as a combination of two detectors. First, the signal is

coherently combined within each coherence block. Coherent processing gain boosts the signal
power by Nc while the noise uncertainty is unchanged. Second, the new boosted signal is
detected by passing it through a radiometer. The radiometer aspect remains non-robust to
noise uncertainties, in spite of the boost in the signal strength. The effective SNR of the
coherently combined signal is given by SNReff = SNR · θ ·Nc.

Hence, the modified matched filter will be non-robust if

SNR · θ ·Nc ≤
(
ρ2 − 1

ρ

)
⇒ SNRmf

wall =
1

Nc · θ

(
ρ2 − 1

ρ

)
. (3.3)
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Using computations similar to the ones in Section 2.3.1, we can also show that the sample
complexity of the modified matched filter given in (3.2) is

Nmf ≈ 2Nc[Q−1(PFA)−Q−1(1− PMD)]2[
θ ·Nc · SNR−

(
ρ2−1
ρ

)]2 (3.4)

Figure 3.1 plots the sample complexity of the radiometer and the matched filter with and
without (solid and dashed curves) noise uncertainty. Notice that at high SNR, the radiometer
has better sample-complexity performance than the matched filter. This is because the
radiometer uses the total power in the signal for detection, but the matched filter uses only
a small fraction of the total signal power. The most prominent feature of the figure is
that under noise uncertainty, the sample complexity curves blow up to infinity as the SNR
approaches the corresponding SNR walls.

Notice that the sample-complexity curves for the radiometer and the matched filter
(dashed lines) without uncertainty have slopes of − 2

10
and − 1

10
respectively. With noise

uncertainty, the sample-complexity curves deviate from their nominal (no uncertainty) be-
havior as the SNR approaches the wall. The matched-filter’s curve (blue) has an interesting
intermediate phase. For moderately low SNRs, the number of samples required for the
matched filter is on the order of multiple coherence times and here the slope transitions to
− 2

10
before ramping to −∞ near the SNR wall.

Coherent processing gains could also be limited due to implementation issues. For ex-
ample, the clock-instability of both the sensing radio and the primary transmitter imposes
a limit on the coherent processing time. The primary signal itself might also contain pi-
lots that are only coherent for a certain length of time. For example, the primary “user”
might actually be a collection of wireless nodes doing TDMA among each other and sending
packets within their assigned time-slots. Each packet has its own pilot, but the different
primary nodes are not all phase-synchronized with each other so no coherent processing gain
is available across packets.

Extensive simulation results evaluating the performance of coherent detectors for cap-
tured DTV signals can be found in [69; 92].

3.2.2 Noise calibration

So far we have shown the existence of SNR walls for detection algorithms that do not
attempt to explicitly do anything about the noise uncertainty. The key question is whether
it is possible to obtain accurate calibration of uncertain statistical quantities like noise or
fading at run-time. The focus on run-time is important because both the fading process and
the noise/interference are likely to be at least mildly non-stationary in practice. This means
that calibration will get stale (leaving substantial residual uncertainty) if it is done far in
advance.
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Figure 3.1: Under noise uncertainty the sample complexities for both the radiometer (blue curve)
and the matched filter (red curve) blow up to infinity as the SNR approaches the corresponding
wall. The dashed lines show the sample complexity without noise uncertainty. In the plot, the
pilot tone contains a fraction θ = 0.1 of the total signal power.
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This leads to a tension. Ideally, we would like access to H0 in a parallel universe that
is identical to our own except that the primary user is guaranteed to be absent. However,
our detector is necessarily confined to our own universe where the presence or absence of the
primary user is unknown. Any run-time calibration that aims to reduce the noise uncertainty
must use data that might be corrupted by the presence of the primary signal. When the
primary user is allowed to be white, then Theorem 2.2 can be interpreted as telling us that
noise-calibration is impossible. Intuitively, there is no degree of freedom that is guaranteed
to be uncorrupted by the primary signal.

Therefore, a prerequisite for getting any noise-calibration gains is that the primary signal
must be constrained to discriminate among the available degrees of freedom. In a run-
time setting, noise-calibration is only possible if the signal features allow it. Pilot-detection
provides a natural case to explore since the pilot signal is confined to a specific frequency,
leaving measurements at other frequencies available to do noise calibration.

One can think of noise calibration as a method for adjusting the detector threshold using
the additional run-time measurements. For instance, in Section 2.3.1 the radiometer sets
its detector threshold corresponding to the worst case noise variance in [1

ρ
σ2
n, ρσ

2
n]. If the

radiometer had access to additional measurements of noise at run-time, then it could adjust
its threshold accordingly and hence improve performance.

3.2.2.1 Pilots with white noise

Consider the basic model of Section 3.2.1, except with the additional assumption that the
pilot Xp[n] is a narrowband pilot-tone given by Xp[n] =

√
2 sin 2π fp

B
n, where P is the average

signal power and fp is the pilot tone frequency. Rather than modeling the fading process
using a block-fading model with a coherence time of Nc samples, it is convenient to think
about the fading model Hf as being arbitrary but bandlimited to a Doppler bandwidth of
Bd. This means that the coherence time Tc ≈ 1

Bd
. Since Nc = TcB where B is the original

width of the channel, the Doppler bandwidth can be considered Bd = B
Nc

. Thus, the coherent
processing using the matched filter of the previous section can be reinterpreted as an ideal
bandpass filter that selects a bandwidth that is a factor 1

Nc
as wide as the total primary band

and centered on fp. The bandpass filter gives a reduction in noise power, and thus boosts
the effective SNR by a factor of Nc.

The approach of the previous section throws away all the information in the received
signal that lies outside that bandpass filter. Noise calibration is about using that information
to improve detection robustness.

Figure 3.2 pictorially describes the noise calibration technique in the case of signals with
narrowband pilots. The figure plots the power spectral density (PSD) of the primary signal
plus noise. The shaded region is the noise PSD and the solid region corresponds to the signal
PSD. The sinusoidal pilot tone is shown as a Dirac delta in the frequency domain. Let fp
be the frequency of the pilot tone and fm 6= fp be any other frequency within the channel.
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fp fm
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fp fm
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Band pass filters

Figure 3.2: Noise calibration in the case of stationary white noise and white signals with narrow-
band pilot tones.

The noise-calibration detection algorithm can be formally described as follows:

• Pass the received signal through two identical bandpass filters with disjoint passbands
centered at fp and fm respectively. For mathematical convenience assume that these
bandpass filters are ideal “brick-wall” filters and denote their bandwidth by BBPF . Let
the output of these filters be denoted by Yp[n] and Ym[n] respectively.

• Measure the empirical power of both outputs. Let them be denoted by P̂ (fp, N)

and P̂ (fm, N) respectively. That is P̂ (fp, N) = 1
N

∑N
n=1 |Yp[n]|2 and P̂ (fm, N) =

1
N

∑N
n=1 |Ym[n]|2.

• Compare P̂ (fp, N) to a detector threshold λ to distinguish between the two hypotheses.
The threshold λ is set so as to robustly achieve the target probability of false alarm,
PFA. If we ignore the additional noise measurements P̂ (fm, N), then this detector
would get coherent processing gains due to reduction in noise power, but would not
get any gains from noise calibration. However, P̂ (fm, N) gives a reliable estimate of
the actual noise level and hence can be used to adjust the detector threshold, i.e., set
λ = λ

′
+ P̂ (fm, N).

• Adjusting the detector threshold is the same as considering the following new test
statistic: T (Y, N) := [P̂ (fp, N) − P̂ (fm, N)]. Compare this test statistic to a static
threshold λ

′
and declare the signal is present if it exceeds the threshold.

We call this detector the pilot power detector [69]. P̂ (fp, N) estimates the total power in
a narrow band around the pilot tone and this includes the pilot power itself, signal power
(the solid region in Figure 3.2) and the noise power. Since we are concerned with the low
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SNR regime, the signal power in the band is much lower than the noise power and can be
safely neglected. Similarly, P̂ (fm, N) estimates the signal power plus noise power in a narrow
band around fm. If we assume that the noise is guaranteed to be white, the noise power
in the output of both the band pass filters is the same. Hence, E[T (Y, N)|H0] = 0 and
E[T (Y, N)|H1] = θP 6= 0. This clearly implies that this detector is robust to distributional
uncertainties in the marginals of a white noise process.

3.2.2.2 Colored noise uncertainty model

The robustness of the pilot power detector described in the previous section critically depends
on the absolute whiteness of noise. It is unreasonable to assume that noise is completely
white. Since “noise” includes thermal noise and interference from other transmitters sharing
the same band of spectrum, leakage from adjacent bands, etc, it has some a priori unknown
color to its spectrum. Real-world noise also contains seemingly arbitrarily placed spurs and
other terms that can change quite rapidly across the channel [93].

Our noise model is motivated by the idea that the noise uncertainty is dominated by the
unknown interference that is coming from an aggregation of many sources. The uncertainty
in the level of the overall noise corresponds to the uncertainty in the activity level of the
interference. This can vary wildly over possible sites because it is a function of how far
away the sources of interference are. To understand the color, suppose that each interferer
is roughly white to begin with, but hits our spectrum sensor after passing through its own
frequency-selective channel representing multipath fading. The channels between our spec-
trum sensor and the different interferers are independent. Thus the autocorrelation function
of the sum has a large term at a lag of zero, but the non-zero lag terms coming from different
interferers tend to cancel out by the independence of the fades. However, there are a finite
number of dominant interferers and so the autocorrelation function of the aggregate is not
a perfect delta-function. This type of scenario naturally leads to a model of unknown, but
slight, color for the noise.

Definition 3.1. The colored noise uncertainty set Ŵρ,ν is defined as the set of all noise
distributions satisfying the following properties:

• The noise process W [n] ∈ Ŵρ,ν is assumed to be stationary.

• Let W [n] ∼ W denote the marginal distribution of the stationary process W [n]. Then,
W ∈ Wx (see Section 2.4.1), where x = 10 log10 ρ.

• The power spectral density of the noise process SW (f) satisfies 1
ν
Na ≤ SW (f) ≤ νNa

for some ρ > ν > 1. Here Na satisfies ν
ρ
N0 ≤ Na ≤ ρ

ν
N0 and represents the unknown

overall PSD level actually experienced by the cognitive radio in this particular site at
the time of sensing. N0 is the nominal PSD level at design time and this is related to
the discrete-time σ2

n using N0B = σ2
n.
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Figure 3.3(a) illustrates the set of possible noise power spectral densities under the earlier
model Wx of Section 2.4.1. The PSD is flat, but its variance can vary within the bounds as
shown in the figure. Figure 3.3(b) plots the set of possible power spectral densities under

the new colored noise uncertainty model Ŵρ,ν . The two solid (red) curves correspond to two
different nominal levels around which the noise has some ripples.

1/ ! N
0

N
0

!

f
Band of interest 

Actual noise PSD

(a)

1/ ! N
0

N
0

!

Na" Na1/"!

f
Band of interest 

Two possible noise PSDs

(b)

Figure 3.3: Figure (a) describes the power spectral density of noise under the white noise un-
certainty model, and Figure (b) describes the power spectral density of noise under the colored
noise uncertainty model.

3.2.2.3 Pilots with colored noise

Consider the detector in Section 3.2.2.1 under our new colored noise uncertainty model.
Recall that the test statistic for the detector is T (Y, N) = P̂ (fp, N)− P̂ (fm, N), i.e., the test
statistic measures the difference in powers at the pilot frequency fp and the noise calibration
frequency fm. Since the noise can be colored, it is clear that the difference between the noise
powers in the two passbands (centered at fp and fm) need not be zero. The gains from noise
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calibration are limited and the detector faces SNR wall limitations.

Theorem 3.1. Consider the detection problem in (3.1). Assume that X[n] =
√
θXp[n] +√

(1− θ)Xd[n], the fading uncertainty set Hf contains arbitrary bandlimited processes H
with Doppler bandwidth B

Nc
and unit gain, and W [n] are noise samples whose distribution

lies in the colored noise uncertainty set Ŵρ,λ. Assume Xp[n] =
√

2 sin 2π fp
B
n.

In this case the pilot power detector defined in Section 3.2.2.1 is non-robust if

SNR ≤ ρ

νθ
·
(
ν2 − 1

ν

)
·
(

2BBPF

B

)
, (3.5)

where B is the bandwidth of the primary signal and BBPF ≥ B
Nc

is the bandwidth of the

bandpass filter in the detection algorithm. If the filter’s width BBPF = B
Nc

is set to be as
narrow as possible, then (3.5) simplifies to:

SNR ≤ ρ

νθ
·
(
ν2 − 1

ν

)
·
(

2

Nc

)
. (3.6)

Proof. The test statistic in Section 3.2.2.1 is T (Y, N) = P̂ (fp, N)− P̂ (fm, N). This detector
is non-robust if

inf
W∈cWρ,ν ,H∈Hf

EW,H [T (Y, N)|H1] ≤ sup
W∈cWρ,ν

EW [T (Y, N)|H0]

(a)⇒ θP + inf
W∈cWρ,ν

EW [T (W, N)] ≤ sup
W∈cWρ,ν

EW [T (W, N)]

(b)⇒ θP +

(
1

ν
NaBBPF − νNaBBPF

)
≤

(
νNaBBPF −

1

ν
NaBBPF

)
(c)⇒ SNR :=

P

σ2
n

≤ 1

θ
·
(
ν2 − 1

ν

)
·
(

2BBPF

B

)
·
(
Na

N0

)
≤ ρ

νθ
·
(
ν2 − 1

ν

)
·
(

2BBPF

B

)
.

• In step (a) above, W is an N dimensional vector of noise samples drawn from a

distribution W ∈ Ŵρ,ν . The result follows from the fact that the test statistic under
hypothesis H1 is the sum of the faded pilot power and test statistic on the noise alone.
This is true since the bandpass filter is wide enough to capture all the pilot power even
after it is spread in frequency by the channel’s Doppler spread. So E

[
|H(Xp)|2

]
=

E[|H|2]E[|Xp|2] = θP since the unknown bandlimited fading process H is restricted to
have unit gain on average.
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In addition, we are neglecting the power of the data part of the signal (Xd[n]) in the
passband. This assumption is reasonable because we are interested in the regime where
P � σ2

n.

• Step (b) is obtained by using the fact that the minimum difference in noise powers in
the two bands is

(
1
ν
NaBBPF − νNaBBPF

)
. Similarly, the maximum possible difference

is
(
νNaBBPF − 1

ν
NaBBPF

)
.

• (c) follows from the fact that N0B = σ2
n. The final factor of ρ

ν
is just present to

account for the fact that Na
N0

could be as big as ρ
ν
. This is an artifact of the fact that we

are expressing the wall in terms of the nominal SNR and the uncertainty is modeled
multiplicatively.

From Theorem 3.1, the only way to have the pilot power detector’s SNR wall go to zero
is to let

(
BBPF
B

)
→ 0. This in turn requires the coherence-time Nc →∞. This is because the

pilot tone is a Dirac delta in frequency domain and is smeared out due to the fading process.
The pilot power is spread over the bandwidth of the fading process in some unknown way.
Under this uncertainty model Hf , tightening the bandpass filter any further could result in
the loss of all the pilot power and hence missed detection.

It is easy to see that because the time allowed for sensing is unbounded, the above noise
calibration strategy does not really depend on the width of the bandpass filter used for
calibration. Even if a detector used all the information outside of the tight window of width
Bd containing the pilot signal, the detector cannot completely calibrate the noise process
within that tight window due to the model Ŵρ,ν of unknown color. Within the tight window
of width Bd, all detectors essentially face the same problem as Theorem 2.2 — an arbitrary
(and hence possibly white) signal in the presence of noise with a residual unknown level
coming from the color ripple.

3.2.2.4 Primary signals with perfect guard-bands

The case of pilot tones is just one way that the primary signal can leave room for noise
calibration. Suppose instead that the primary signal leaves empty a contiguous (1 − β)B
of its total licensed bandwidth B for a guard-band, but is free to use the remaining βB
bandwidth as it sees fit. It is immediately obvious that the pilot power detector can be
generalized to this case:

• Pass the received signal through two different ideal bandpass filters. Let the first
encompass the tightest band guaranteed to contain the entire primary signal. By the
assumptions above, this is of width BBPF = (β+ 1

Nc
)B since the βB must be expanded

by Bd to account for the fading Doppler. Let the second bandpass filter have width
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0 < Bc ≤ (1− β − 1
Nc

)B and be placed entirely in the guard-band. Let the output of
these filters be denoted by Yp[n] and Ym[n] respectively.

• Measure the empirical power P̂ (fp, N) and P̂ (fm, N) of both filter outputs. Since there
is no limit on the sample complexity, assume that we listen for long enough for both
to have converged to their limits.

• The test statistic is given by T (Y, N) := [P̂ (fp, N) − BBPF
Bc

P̂ (fm, N)]. Compare this
test statistic to a threshold and declare the signal is present if it exceeds the threshold.
The normalization term BBPF

Bc
would make the test statistic perfectly zero if there were

no signal and the noise were perfectly white.

It is easy to see that Theorem 3.1 generalizes to this scenario and detector. The SNR
wall from (3.5) holds with θ = 1 and BBPF as above. This shows that the noise calibration
gains add to the bandwidth reduction gains in a straightforward way by reducing the noise
uncertainty to a factor that depends on the coloring uncertainty ν.

However, it is important to note that run-time noise calibration does not improve the sam-
ple complexity of detection. Noise calibration reduces the uncertainty in the noise variance,
but does not reduce the value of the actual noise variance. Hence, the sample-complexity of
detection is constant even after noise calibration.

3.3 Signals with cyclostationary features

Most communication signals have in-built periodicities in them, like the symbol rate, carrier
frequency, cyclic prefix in OFDM packets, etc. Hence, signals can be modeled as cyclostation-
ary, whereas noise is typically modeled as stationary. Many researchers have worked on de-
signing detection algorithms to exploit the in-built periodicities in signals, of which the class
of cyclostationary feature detectors proposed by William Gardner [59] are the most popular
ones. These detectors have been widely studied in the spectrum sharing community and are
believed to be good for both signal detection as well as signal identification/classification [61;
60]. We now discuss robustness properties of cyclostationary signals and see what kind of
sensing algorithms can exploit the presence of cyclostationary features.

3.3.1 Gardner’s Cyclostationary feature detectors

3.3.1.1 Cyclostationary signal model

We first review the basic properties of cyclostationary random processes. The notation
used here is same as in [59]. We work with continuous time signals in this section as it
is intuitively easier to think of cyclostationary signals in continuous time. The signal of
interest, X(t) is called wide-sense cyclostationary if its mean and autocorrelation function

49



Chapter 3. Signals with known features

are periodic in time. That is, there exists a T0 > 0 such that mX(t) = mX(t + T0) and
RX(t+ τ

2
, t− τ

2
) = RX(t+ T0 + τ

2
, t+ T0 − τ

2
), where

mX(t) := E[X(t)], RX(t1, t2) := E [X(t1)X∗(t2)] .

This immediately implies that RX(t + τ
2
, t − τ

2
) admits a Fourier series representation

given by

RX(t+
τ

2
, t− τ

2
) =

∑
α

Rα
X(τ)ei2παt,

where α = k
T0

, k = 0, 1, 2, . . .. Assume that the signal X(t) is zero-mean, i.e., mX(t) = 0.
The Fourier coefficient Rα

X(τ), which depends on the lag parameter τ , is called the cyclic
autocorrelation function, and α is called the cycle frequency. For α = 0, it reduces to the
conventional autocorrelation function R0

X(τ). One can visualize R0
X(τ) as the DC component

of the lag-product waveform X(t+ τ
2
)X∗(t− τ

2
) for each value of τ , and Rα

X(τ) can be thought
of as the AC component corresponding to the frequency α. The Fourier transform of Rα

X(τ)
is given by

SαX(f) :=

∫ ∞
−∞

Rα
X(τ)e−i2πfτ dτ

is called the spectral correlation function. For α = 0 this reduces to the conventional power
spectral density. For α 6= 0, SαX(f) can be thought of as the density of the correlation
between spectral components at frequencies f + α

2
and f − α

2
. Explicit formulas of SαX(f) for

many classes of modulated signals can be found in [94; 95; 96]. It is easy to show that if W (t)
is wide-sense stationary, then its spectral correlation function SαW (f) = 0 for α 6= 0 [97].

3.3.1.2 Single cycle feature detectors

It is well known that we need to over-sample the received signal in order to reconstruct the
features from the signal samples since the features are capturing the shape of the pulses
onto which the symbols have been modulated. We assume that the sampling rate fs >
2 max{α,B}, where α is the cycle frequency of the feature we are trying to detect, and B is
the bandwidth of X(t).

The test statistic for a single cycle feature detector is defined as

Zsc(N) :=

∫ fs
2

− fs
2

∣∣S̃αY (f,N)ŜαX(f)∗
∣∣ df, (3.7)

where ŜαX(f) :=
SαX(f)√
E , with E =

∫ fs
2

− fs
2

|SαX(f)|2 df , and N is the number of signal samples

used for sensing. Note that
∫ fs

2

− fs
2

|ŜαX(f)|2 df = 1. Intuitively, the detector (3.7) is doing
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matched filtering of the estimated spectral correlation function S̃αY (f) with the normalized

spectral correlation function ŜαX(f) of the signal we are trying to detect. Figure 3.4 shows
the block diagram for a single cycle feature detector.

The empirical estimate of the spectral correlation function, S̃αY (f,N), can be computed
from the received signal samples Y [n] by [94; 98]

S̃αY (f,N) =
1

N

1

T

N∑
n=0

YT

(
(2n+ 1)

T

2
, f +

α

2

)
Y ∗T

(
(2n+ 1)

T

2
, f − α

2

)
, (3.8)

where YT (n, f) is a T point DTFT of the signal Y [n] centered at time n, i.e.,

YT (n, f) =

n+T
2∑

u=n−T
2

Y [u]e−i2π(
f
fs

)u. (3.9)

Figure 3.4: The block diagram showing various stages in the single-cycle cyclostationary feature
detection algorithm.

The key idea behind the single cycle feature detector is that for α 6= 0,

lim
N→∞

S̃αY (f,N)

{
= 0 Y [n] is stationary (H0)
6= 0 Y [n] is cyclostationary (H1)

Hence, by increasing the sensing time N , one can extract the signal feature from noise and
thereby detect the presence/absence of the signal. Figure 3.5 shows the empirical estimate
of the spectral correlation function for Y [n] under hypotheses H1 for different values of the
sensing time N . In this figure, the signal X(t) is a raised-cosine pulse modulated with iid
BPSK samples. It is clear from the figure that as the sensing time increases, averaging forces
the noise to zero, but the signal feature stands out.

3.3.2 Spectral redundancy

A key requirement for the single-cycle cyclostationary feature detector (see Eqn. (3.7)) to
work is that the signal of interest should have spectral redundancy. We now define what

51



Chapter 3. Signals with known features

Figure 3.5: The empirical spectral correlation function S̃αY (f,N) for a single-cycle cyclostationary
feature detector is illustrated in this figure. In this figure, the signal X(t) is a raised-cosine
function modulated with iid BPSK symbols, and W (t) is a white Gaussian noise process. As
the raised-cosine pulse shape has spectral redundancy, the empirical spectral correlation function
shows cyclostationary features. In fact, as N increases the noise averages to zero, but the
cyclostationary signal feature stands out.

we mean by spectral redundancy and then give an example of a class of signals with and
without spectral redundancy.

Definition 3.2. Consider a digital modulated signal X(t) being transmitted over a given
frequency band. The signal X(t) is said to have spectral redundancy if the symbol rate is
strictly less than the Nyquist rate.

For example, consider the class of pulse-amplitude modulated (PAM) signals.

X(t) =

(
∞∑

m=−∞

Amδ(t−mT0)

)
∗ p(t)

=
∞∑

m=−∞

Amp(t−mT0),
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where p(t) is the pulse shape onto which the data symbols Am are modulated.

• p(t) = sinc
(

t
T0

)
. In this example, the Nyquist rate is 1

T0
(twice the bandwidth of the

signal), and the symbol rate is also 1
T0

(one symbol is transmitted even t0 seconds).
Hence, a PAM signal with Sinc modulation has no spectral redundancy.

• p(t) = sinc
(

t
T0

)
cos
“
πβt
T0

”
1− 4β2t2

T2

is a raised-cosine pulse function with roll-off factor β 6= 0. In

this case the Nyquist rate is (1 +β) · 1
T0

, and the symbol rate is 1
T0

. This is an example
where the symbol rate is strictly less than the Nyquist rate, and hence this signal is
said to have spectral redundancy.

Given the formal definition of spectral redundancy it is easy to show that the signal cycle
cyclostationary feature detector described in Section 3.3.1.2 will not work if the signal has no
spectral redundancy. The main idea is that the spectral correlation function SαX(f) vanishes
when the spectral redundancy is zero [99].

We now give a counter-example showing that spectral redundancy is not fundamental to
cyclostationary feature detection.

3.3.3 Counter-example: PAM signals with Sinc modulation

Consider a pulse-amplitude modulated signal using a Sinc pulse function. That is

Xs(t) =
∞∑

m=−∞

Amsinc

(
t−mT0

T0

)
, (3.10)

for some T0 > 0, and let Am be independent and identically distributed data symbols.
For concreteness, assume that Am are drawn out of a symmetric BPSK constellation, i.e.,
Am ∼ Bernoulli(1

2
) ∈ {−

√
P ,
√
P}. X(t) is cyclostationary with no spectral redundancy.

This implies that the spectral correlation function SαXs(f) = 0. Hence, we cannot use the
single cycle detection described in Section 3.3.1.2 to distinguish the presence/absence of
Xs(t) in noise.

We now show the existence of histogram based detection algorithms that can distinguish
the presence/absence of the cyclostationary signalX(t) in noise. Detection algorithms similar
to the histogram-based detectors proposed in this section have also been proposed before
in the cognitive radio literature. For instance, the idea of using higher-order statistics for
signal detection is given in [100]. Entropy-based detection algorithms for signal detection
have been proposed in [101]. Most of these algorithms rely on the fact that noise is Gaussian
(in some of the papers, the noise variance is unknown). However, our algorithm works for
any stationary noise distribution.
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We now state the hypothesis testing problem.

Signal absent H0 : Y (t) = W (t)

Signal present H1 : Y (t) =
√
PXs(t) +W (t), (3.11)

where W (t) is assumed to be a stationary noise process, Xs(t) is the unattenuated signal
defined in (3.10) and Y (t) is the received signal.

The key steps in the histogram based cyclostationary signal detection algorithm are de-
scribed below:

1. First oversample the received signal Y (t) in (3.10) to give a discrete signal Y [n]. For
concreteness, assume that the signal is sampled at twice the Nyquist rate, i.e., Y [n] =
Y
(
n · T0

2

)
.

2. Collect the odd and even numbered samples separately and label these processes are
Yo[n] := Y [2n − 1] and Ye[n] := Y [2n]. Figure 3.6 shows the oversampling process
pictorially. The odd and even numbered samples are colored in ‘black’ and ’blue’
respectively.

3. The test-statistic for the detector is given by

T (Y) =
2

N

N
2∑

n=1

φ(Yo[n])− 2

N

N
2∑

n=1

φ(Ye[n]), (3.12)

where N is the total number of signal samples (assumed to be even) collected, and the
function φ(·) is chosen such that Eφ(Xe[n]) 6= Eφ(Xo[n]). Here Xo[n] := Xs[2n − 1]
and Xe[n] := Xs[2n], with Xs[n] := Xs

(
n · T0

2

)
. The existence of such a function φ(·),

and the proof of why this detection algorithm works in given below.

Figure 3.6: Oversampled Sinc function, resulting in a cyclostationary signal
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Theorem 3.2. Consider the hypothesis testing problem in (3.11), with the signal of interest
Xs(t) as given in (3.10). Let the detector test-statistic be given by the expression in (3.12).
Then, this detector can distinguish between the two hypotheses with arbitrarily low probabil-
ities of error.

Proof. We begin by proving the existence of the function φ(·). It is easy to verify that the
random processes {Xe[n]}∞n=1 and {Xo[n]}∞n=1 are stationary processes. This is because each
of them are Nyquist-rate sampled versions of the original PAM process Xs(t). This implies
that {Xe[n]}∞n=1 and {Xo[n]}∞n=1 are identically distributed (marginal distributions are same
for all n) random processes. However, the marginal distributions of each of these processes
are distinct. This is true because Xe[n] is a BPSK random variable, whereas Xo[n] is a
particular linear combination of an infinite number of BPSK random variables. Figure 3.7
shows the histograms of the even and odd samples. Clearly, the histogram of the even
samples has a Bernoulli distribution, whereas the histogram of the odd samples is something
different. This implies that at least one of the moments2 of Xe[n] will be distinct from the
moments of Xo[n]. Hence, there exists some function φ(·) such that Eφ(Xe[n]) 6= Eφ(Xo[n]).

Since {Xe[n]}∞n=1 and {Xo[n]}∞n=1 are identically distributed random processes with dis-
tinct marginal distributions, we can show that {Ye[n]}∞n=1 and {Yo[n]}∞n=1 also are also iden-
tically distributed random processes with distinct marginal distributions under hypothesis
H1. On the other hand, under hypothesis H0, {Ye[n]}∞n=1 and {Yo[n]}∞n=1 are samples from
a stationary noise process W (t). So under hypothesis H0, {Ye[n]}∞n=1 and {Yo[n]}∞n=1 are
identically distributed random processes with the same marginal distributions.

Using the above observations we have

lim
N→∞

T (Y) = lim
N→∞

2

N

N
2∑

n=1

φ(Yo[n])− 2

N

N
2∑

n=1

φ(Ye[n])

= Eφ(Yo[n])− Eφ(Ye[n])

=

{
Eφ(Wo[n])− Eφ(We[n]) under H0

Eφ(Xo[n] +Wo[n])− Eφ(Xe[n] +We[n]) under H1{
= 0 under H0

6= 0 under H1

This shows that the test-statistic converges to zero under hypothesis H0, whereas it
converges to a non-zero value under hypothesis H1 as the sensing time N approaches infinity.
Hence, this detection algorithm can distinguish between the ‘noise only’ hypothesis and the
‘signal plus noise’ hypothesis.

2For the case of a BPSK modulation all the even moments of Xe[n] excluding the 2nd moment are distinct
from the corresponding moments of Xo[n].
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Figure 3.7: The histograms of the even and odd signal samples are distinct, whereas the his-
tograms of the even and odd noise samples are identical. Hence, any test-statistic that calibrates
out the noise can be used to robustly distinguish the signal from noise. This is an example of a
cyclostationary signal without spectral redundancy, yet it can be robustly detected in the presence
of unknown stationary noise.
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Figure 3.8: The histogram of the even and odd signal samples are shown for the case when the
data symbols Am are Uniform ∼ [−

√
3,
√

3]. Even in this case the histogram are distinct and
hence run-time calibration can distinguish the presence/absence of the signal in noise with any
unknown stationary distribution.
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Remarks:

• The main idea behind the counter-example is that the oversampled cyclostationary
process Xs[n] is wide-sense stationary (both the mean and auto-correlation function
are time-invariant). This can be shown by using Parseval’s identity and the fact that
there is no aliasing when the pulse function p(t) is a Sinc.

• On the other hand, if one looks at the empirical distribution of Xs[n] we can clearly see
two distinct distributions — the distribution of the even samples and the distributions
of the odd samples. This is shown by the histogram of the even and odd samples
in Figure 3.7. So, looking at the distributions of the even and odd samples helps us
identify the presence of the signal versus noise alone (the distribution of the even and
odd samples of the noise process are identical). As a contrast Figure 3.7 also shows the
histogram of the even and odd samples of a white Gaussian noise process, and they
look identical. This result also holds true for any stationary noise distribution.

• The counter-example style above is not restricted to BPSK modulated data. Figure 3.8
shows the histogram of the even and odd samples of the signal for the case when the
data symbols Am are uniformly distributed random variables. Even in this case the
two histograms are distinct from each other.

3.3.4 Robustness of cyclostationary detection

So far we have seen two types of detectors, Gardner’s cyclostationary feature detectors and
our histogram-based cyclostationary signal detectors, both of which can detect wide-sense
cyclostationary signals. However, the histogram-based detectors can detect any cyclosta-
tionary signal, even if it is wide-sense stationary. In this section we analyze the robustness
performance of these detectors. For simplicity, we only present the robustness analysis of the
histogram-based detectors here. The readers are encouraged to refer to our paper [72] for
the robustness analysis of Gardner’s cyclostationary feature detectors. It turns out that the
robustness performance of both these detectors is qualitatively the same. The only differ-
ence is that the histogram-based detectors are more general than Gardner’s cyclostationary
feature detectors.

Again, for concreteness we rewrite the two hypotheses in the detection problem.

H0 : Y [n] = W [n]; W [n] ∈ Ŵρ,ν

H1 : Y [n] =
√
P ·H(X[n]) +W [n]; W [n] ∈ Ŵρ,ν . (3.13)

We assume that that the signal X[n] is a zero-mean, symmetric (all odd moments are zero at
each time n) cyclostationary process. We normalize the signal such that the average signal
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power is 1. For simplicity, we consider cyclostationary signals with period 2, and assume that
the odd and even samples of X[n] are stationary processes, and have distinct marginals3.
That is, if we define Xe[n] := X[2n], and Xo[n] := X[2n−1], then we assume that Xe[n] and
Xo[n] are stationary processes respectively, and the marginal distribution of Xe[n] is distinct
from the marginal distribution of Xo[n].

For this sensing problem we consider histogram-based detection algorithms. As the
marginal distribution of Xe[n] and Xo[n] are distinct there exist some integer k > 0 such
that the the 2kth moment of Xe[n] is distinct from the 2kth moment of Xo[n], i.e., EXe[n]2k 6=
EXo[n]2k. Then, we define the test-statistic of the sensing algorithm to be

T (Y) =
2

N

N
2∑

n=1

|Yo[n]|2k − 2

N

N
2∑

n=1

|Ye[n]|2k, (3.14)

We analyse the robustness of this detector for three different models for the fading oper-
ator H(·).

• No channel fading: Suppose that there was no fading (H(·) is an identity operator
in (3.13)). In this case it is easy to verify that E[T (Y)|H0] = 0. This follows from the
assumption that noise is stationary, and E[T (Y)|H1] 6= 0. This easily follows from the
fact that EXe[n]2k 6= EXo[n]2k. Therefore, it is clear that we robustly detect the signal
X[n] for arbitrarily low values of P by increasing the sensing time N . This argument
is identical to the proof of Theorem 3.2.

• Flat fading: Assume that the channel fading is flat, i.e., H(X[n]) = h[n], where h[n] are
unknown flat fading coefficients. Assume that h[n] is a stationary random process, and
that the average power of h[n] is normalized to be one. Recall that for pilot-detection,
this is enough to cause an SNR wall (see Section 3.2.1.1). In this case however, even
after the scalar multiplication by h[n] the average 2k-th moments of the even and odd
samples are distinct (stationarity of fading). That is, E[T (Y)|H1] 6= 0. As before
the stationarity of the noise guarantees that the test-statistic mean under hypothesis
H0, E[T (Y)|H0] = 0. So, the signal is robust to flat-fading uncertainty. Figure 3.10
shows the histogram of even and odd samples of a flat-faded signal h[n] · Xs[n] (iid
BPSK data modulated over a Sinc pulse as given in (3.10)). It is clear from the
figure that flat fading affects the marginal distributions of the even and odd samples,
but the marginal distributions are still distinct. Hence, the signal can be robustly

3Any pulse-amplitude-modulated signal with a raised cosine pulse function (or a Sinc pulse), iid data
symbols drawn from a signal constellation (except a Gaussian), and an oversampling rate of 2 satisfy the
above criterion. The results can easily be extended to any general cyclostationary process with a period
N0 > 1. The key property that is required for our results to hold is that the signal X[n] must have at least
two sub processes that have distinct marginal distributions.
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detectable. Robustness of cyclostationary signals to flat-fading can also be observed
by using Gardner’s cyclostationary feature detectors, as shown in Figure 3.9.

Figure 3.9: The empirical spectral correlation function S̃αY (f,N) for a single-cycle cyclo-
stationary feature detector is illustrated in this figure. In this figure, the received signal
Y [n] =

√
Ph[n]X[n] +W [n], where the signal X[n] is a raised-cosine function modulated

with iid BPSK symbols, the fading process h[n] is chosen to be a Gauss-Markov process,
and W [n] are samples of a white Gaussian noise process. This figures clearly shows that
cyclostationary features are robust to flat-fading processes.

• Frequency-selective fading: The previous result is somewhat surprising as the matched
filter for pilot tones is not-robust to this kind of flat-fading uncertainty, even with
noise calibration when the noise is colored. However, frequency-selective fading does
introduce an SNR wall for the detector in (3.14). Figure 3.12 illustrates this idea for
the signal Xs[n] (iid BPSK data modulated over a Sinc pulse as given in (3.10)) when
passed through a 2-tap Rayleigh fading process. As shown in the figure, the empirical
distributions of the even and odd samples are identical. Frequency-selective fading
mixes the even and odd samples and hence destroys the cyclostationarity. Figure 3.11
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illustrates the same qualitative behavior using Gardner’s cyclostationary feature trans-
form.

To mathematically quantify the non-robustness to frequency selective fading, we con-
sider the simplest possible frequency-selective fading: a pure delay. Let the received
signal under hypothesis H1 be Y [n] = X[n− l[n]] + W [n]. In this case, we show that
uncertainty in the delay l[n] will lead to an SNR wall. To be concrete, consider a
block-fading model in which the delay l[n] is piecewise constant for Dc (assumed to
be even) time steps before taking on an independent realization. Since Dc models
the minimum time over which the delay of the fading process changes significantly,
we call it the delay-coherence time. More generally, the delay-coherence time refers to
the minimum time over which the shape of the impulse response of the fading process
changes significantly.

3.3.4.1 Interpretation of delay-coherence time

The reason for considering the example of a pure delay is two fold: firstly, from a robustness
point of view H(X[n]) = h[n]X[n − l[n]] would behave the same as just X[n − l[n]]; sec-
ondly, a pure-delay is the simplest example for which we can illustrate the non-robustness
of cyclostationary signals. We now give an intuitive interpretation for the delay-coherence
time and compare it with the phase-coherence time and amplitude-coherence time.

The amplitude-coherence time is the minimum time over which the magnitude response
of the fading process changes significantly. The change in the magnitude response is caused
due to motion and the amplitude-response time is inversely proportional to the Doppler
spread of the channel. In a traditional communication system, a significant change in the
magnitude-response leads to a change in the power allocation across frequency. The phase-
response time is the minimum time over which the phase of an individual channel tap changes
significantly. This change occurs at a much faster scale than the change in the amplitude-
response time. On the other hand the delay-coherence time is the minimum time over which
the shape of the impulse response changes significantly. Alternatively, we can also think of it
as the minimum time over which the relative phase response changes significantly. Typically,
the delay-coherence time is larger than the phase-coherence time, but is smaller than the
amplitude-coherence time.

In most traditional communication systems, receivers have a phase lock loop (PLL).
However, for receivers trying to detect the presence/absence of primary signals it is not
possible to have an accurate PLL because the receiver is not sure whether the primary signal
is present or absent. This leads to a frequency offset error, which impacts the delay-coherence
time. Further, clock offset and clock jitter can leads to missed samples, which impacts the
delay-coherence time of the channel.

To further understand the nature of the delay-coherence time Dc, it is useful to consider
two cases:
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• Assume that the delay spread of the channel is significantly larger than 1 sample and
all of the channel taps arise from the sum of many paths. (There is no dominant line-
of-sight path) As these path-lengths change over time, all of the taps will get different
values. In such a case, the delay-coherence time Dc and the traditional phase-coherence
time Nc (or equivalently, the reciprocal of the bandwidth of the fading process) are the
same since the relative phase response can change significantly in this time. This is the
model that is likely to hold for wideband primary users being detected at significant
distances from their transmitters. This basically corresponds to when ISI is significant.

• Now suppose there is only one dominant line-of-sight path that is arriving at the
spectrum sensor, but is subject to local reflections in the near neighborhood of the
sensor. (e.g. A user in an airplane) The delay spread of the channel can be smaller
than 1 sample. In this case, there will just be a single tap in the filter. The amplitude
might change rapidly since the local paths can go in and out of phase with each other,
but the overall delay is not going to be changing as fast. In such cases, the delay-
coherence time Dc > Nc and the dominant effect may very well be the clock skew of
the sensor’s local oscillator relative to the primary oscillator. In such cases, the factor
difference between Dc and Nc is comparable to the factor difference between the signal
bandwidth and the carrier frequency.

3.3.4.2 Robustness analysis for the pure-delay case

For this simplest example of a fading process with finite Dc, the strategy of (3.14) is doomed
to failure if the sums are taken beyond one coherence time. The signal will corrupt both the
even and odd time samples eventually due to the random delay. This makes the empirical
marginal distribution, when computed across several coherence blocks, of both the even and
odd samples identical. By analogy with the case of matched filtering, a natural detection
strategy is to compute the square of the test statistic within each coherence time and average
that over multiple coherence times.

We now derive SNR wall expressions for a simple example signal X[n] in which the odd
samples Xo[n] are iid BPSK data with average power 2, and the even samples Xe[n] are
identically zero. The behavior of the SNR wall for the general case is qualitatively similar.
However, evaluating closed form expressions for the general case (with arbitrary distributions
for Xe[n] and Xo[n]) and for higher moments (k ≥ 2 in (3.14)) is very tedious. The signal
X[n] can be described as

X[n] =

{
±
√

2 with probability 1
2
, if n is odd,

0 if n is even.
(3.15)

Theorem 3.3. Let the received signal under hypothesis H1 in (3.13) be given by Y [n] =
X[n− l[n]] +W [n], with X[n] as in (3.15). Let W [n] be stationary uncertain noise indepen-
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dent of the signal. Assume that the distribution of the noise arises from the colored noise
uncertainty set Ŵρ,ν. Suppose the delay fading satisfies:

• l[n] is constant within a delay-coherence block (of length Dc) and iid across different
delay-coherence blocks.

• l[n] is uniformly distributed on {0, 1}.

Define, SNR = P
σ2
n

. Then, the detector with test-statistic given by

T (Y, Dc) =
1

M

M−1∑
k=0

∣∣√ 2

Dc

Dc/2∑
n=1

{|Y [kM + 2n− 1]|2 −
√

2

Dc

Dc/2∑
n=1

|Y [kM + 2n]|2}
∣∣2 ,(3.16)

where N = MDc is non-robust if

SNR ≤
−2
(
ν
ρ

)
+

√
4
(
ν2

ρ2

)
+ 2Dc

(
ρ2

ν2 − ν2

ρ2

)
Dc

. (3.17)

Proof. From (3.16) it is clear that

E[T (Y, Dc)|Hi] = E

∣∣∣∣∣∣
√

2

Dc

Dc/2∑
n=1

{
|Y [2n− 1]|2 − |Y [2n]|2

}∣∣∣∣∣∣
2 ∣∣Hi

 , (3.18)

for i = 0, 1. Since we are computing the square of the test statistic within each coherence
block, assume without loss of generality that the delay in the first coherence block is zero,
i.e., l[n] = 0 for n = 1, 2, · · · , Dc. The detector in (3.16) is non-robust if there exists a class
of noise distributions such that the set of means under both hypotheses overlap. We now
exhibit a specific class of noise distributions that satisfy this condition.

Assume W [n] are iid random variables with marginals given by W [n] ∼ N (0, σ2) for
some ν

ρ
≤ σ2 ≤ ρ

ν
. The following lemma gives the desired quantities.

Lemma 3.4.

E[T (Y, Dc)|H0] = 4σ4,

E[T (Y, N)|H1] = 2P 2Dc + 8Pσ2 + 4σ4, (3.19)

where σ2 = E[|W [n]|2].

Proof. See Appendix B.1.
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Using Lemma 3.4, it is clear that the detector in (3.16) is non-robust if the set of means
under both hypotheses overlap. This condition is equivalent to

min
ν
ρ
σ2
n≤σ2≤ ρ

ν
σ2
n

2P 2Dc + 8Pσ2 + 4σ4

≤ max
ν
ρ
σ2
n≤σ2≤ ρ

ν
σ2
n

4σ4

⇒ P 2Dc + 4

(
ν

ρ

)
Pσ2

n − 2

(
ρ2

ν2
− ν2

ρ2

)
σ4
n ≤ 0

The last inequality in SNR := P
σ2
n

can be solved to give the required result by the quadratic
formula.

This theorem suggests that it is the uncertainty corresponding to the frequency selectivity
of the fading that induces limits on the detection of very weak signals that do not fully utilize
all the degrees of freedom in time-domain. There are two interesting aspects of this result:

• The dependence of the SNR wall for this detector on the delay coherence time is
O( 1√

Dc
). This gain from increasing delay-coherence time is slower than the O( 1

Nc
)

gain for the matched filter, but it is better than the lack of any gain with coherence
time for a primary signal that only uses half the degrees of freedom in the frequency
domain [66].

• The SNR wall result so far does not depend on the color of the noise! The proposed
detector in (3.16), while being intuitively very natural, is non-robust in the presence
of frequency-selective fading, even when the noise is truly white (use ν = 1 in (3.17)).
As the next section shows, this is an artifact of the detection strategy used.

3.3.5 Noise calibration for cyclostationary signals

In matched filtering, we obtained the approximate level of noise from noise power measure-
ments in an adjacent band. In the current example, the test statistic is a difference and so
intuitively, the sum can provide access to the approximate level of noise. Explicitly, compute
the empirical power in the received signal P̂ = 1

N

∑N
n=1 |Y [n]|2. This converges to P + σ2

under H1 and to σ2 under H0 as N →∞, where σ2 = E[|W [n]|2]. We normalize the received
signal with this empirical power estimate and compute the new test statistic given in (3.20).
Intuitively, one can think of this as passing the received signal through an automatic gain
controller (AGC), which is tuned such that its output is normalized to unit power.

Theorem 3.5. Let the received signal under hypothesis H1 in (3.13) be given by Y [n] =
X[n − l[n]] + W [n], with X[n] given in (3.15), and W [n] being independent of the signal
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with an unknown distribution from the colored noise uncertainty set Ŵρ,ν. Suppose the delay
fading l[n] satisfies:

• l[n] is constant within a delay-coherence block and iid across different delay-coherence
blocks.

• The length of the delay-coherence block is Dc > 2.

• l[n] is uniformly distributed on {0, 1}.

Then, the detector with test-statistic given by

T̃ (Y, Dc) =
1

M

M−1∑
k=0

∣∣√ 2

Dc

Dc/2∑
n=1

{|Ŷ [kM + 2n− 1]|2 −
√

2

Dc

Dc/2∑
n=1

|Ŷ [kM + 2n]|2}
∣∣2 ,(3.20)

where N = MDc and Ŷ [n] = Y [n]√
1
N

PN
n=1 |Y [n]|2

is non-robust if

SNR ≤
(ρ
ν

)
·

2
(

1− 1√
ν

)
√
Dc

. (3.21)

Proof. Assume that a genie guarantees that the times when the delay l[n] assumes an inde-
pendent realization are integer multiples of Dc itself. From (3.20) it is clear that

E[T̃ (Y, Dc)|Hi] = E

∣∣∣∣∣∣
√

2

Dc

Dc/2∑
n=1

{
|Ŷ [2n− 1]|2 − |Ŷ [2n]|2

}∣∣∣∣∣∣
2 ∣∣Hi

 , (3.22)

for i = 0, 1. Since we are computing the square of the test statistic within each coherence
block, assume without loss of generality that the delay in the first coherence block is zero, i.e.,
l[n] = 0 for n = 1, 2, · · · , Dc. The detector in (3.20) is non-robust if there exist two distinct

noise distributions W1,W2 ∈ Ŵρ,ν such that EW1 [T̃ (Y, Dc)|H1] = EW2 [T̃ (Y, Dc)|H0]. We
now exhibit a specific class of noise distributions that satisfy this condition.

Let M [n] be an iid white Gaussian noise process, with the variance σ2
m ∈ [ν

ρ
σ2
n,

ρ
ν
σ2
n]. Let

W [n] = M [n]− αM [n− 1] for some α within some small range 0 ≤ |α| ≤ αmax.
To apply the central limit theorem, define

(G1, G2) :=

√ 2

Dc

Dc/2∑
n=1

|Ŷ [2n− 1]|2,
√

2

Dc

Dc/2∑
n=1

|Ŷ [2n]|2
 . (3.23)
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The parameters of the jointly Gaussian approximation for (G1, G2) are computed in the
following lemma.

Lemma 3.6. Assume N � 0. Then, the statistics of (G1, G2) under hypothesis H1 are
given by

m̄ =
1

κ

 √
Dc
2

(2P + σ2)√
Dc
2
σ2

 ,

ν =
1

κ2

 8Pσ2 + 2σ4 4α2σ4
m

[
Dc−2
Dc

]
4α2σ4

m

[
Dc−2
Dc

]
2σ4

 , (3.24)

where κ := 1
P+σ2 , σ2 = (1 + α2)σ2

m, and

m̄ :=

(
EG1

EG2

)
,

ν :=

(
Var(G1) Cov(G1, G2)

Cov(G1, G2) Var(G1)

)
.

The corresponding statistics under the hypothesis H0 are computed by substituting P = 0
in (3.24).

Proof. See Appendix B.2.

From (3.22) we have

E[T̃ (Y, Dc)|H1] = E[|G1 −G2|2]

= Var(G1) + Var(G2)− 2Cov(G1, G2) + (EG1 − EG2)2. (3.25)

Substituting (3.24) in (3.25) gives

E[T̃ (Y, Dc)|H1] =
4[(1 + α2)2P + (1 + α4)σ2

m]σ2
m

(P + (1 + α2)σ2
m)2

+
8α2σ4

m

(
2
Dc

)
+
(
Dc
2

)
4P 2

(P + (1 + α2)σ2
m)2

. (3.26)
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Setting P = 0 in (3.26) gives

E[T̃ (Y, Dc)|H0] =
4(1 + α4) + 8

(
2
Dc

)
α2

(1 + α2)2

= 4

1−
2α2

(
1− 2

Dc

)
(1 + α2)2


≤ 4, (3.27)

∀Dc > 2. From (3.26) and (3.27), it is clear that the means of the test statistic under both
hypotheses overlap if

4 ≥ 4[(1 + α2
max)2P + (1 + α4

max)σ
2
m]σ2

m

(P + (1 + α2
max)σ

2
m)2

+
8α2

maxσ
4
m

(
2
Dc

)
+
(
Dc
2

)
4P 2

(P + (1 + α2
max)σ

2
m)2

⇒ 0
(a)

≥ −(1− 2

Dc

)8α2
maxσ

4
m +

(
Dc

2
− 1

)
4P 2

⇒ SNR ≤ 2αmax√
Dc

(
σ2
m

σ2
n

)
≤
(ρ
ν

) 2αmax√
Dc

. (3.28)

In the above chain of inequalities, (a) follows by completing squares on the right hand
side.

To prove the result of the theorem we need to give conditions on αmax such that the
distribution of the noise process W [n] lies in Ŵρ,ν .

Lemma 3.7. Let αmax = 1− 1√
ν
, where ν > 1 is the parameter in the definition of the colored

noise uncertainty set Ŵρ,ν. Then the class of noise processes defined by W [n] = M [n] −
αM [n− 1] (for white M [n] with variance σ2

m ∈ [ν
ρ
σ2
n,

ρ
ν
σ2
n]) have distributions W ∈ Ŵρ,ν for

all 0 ≤ |α| ≤ αmax.

Proof. See Appendix B.3.

By Lemma 3.7, setting αmax = 1− 1√
ν

in (3.28) gives us the required result.
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3.4 Discussion and conclusions

3.4.1 Comparing different SNR walls

In this chapter we have shown the existence and computed the location of SNR walls for
pilot detectors and histogram-based cyclostationary feature detectors (for the 50%-duty-cycle
example), both with and without noise calibration. Figure 3.13 plots the SNR wall locations
for the radiometer, the matched filter, and the 50% duty-cycle example with and without
noise calibration as a function of the channel-coherence time Nc. In this example, the delay-
coherence time is assumed to be the same as the phase-coherence time, i.e., Nc = Dc. In
this plot we have assumed θ = 0.5 (See (3.3))) for the matched filter. The noise uncertainty

parameters for this Figure are ρ = 10 and ν = 10
1
10 .

In Figure 3.13, the curve with ‘triangle’ markers corresponds to the energy detection SNR
wall, and this is independent of the channel-coherence time. The dashed curve corresponds
to the matched filter. The dashed-dotted curved corresponds to the 50%-duty-cycle example
without noise calibration (See (3.17)), and the solid curve represents the SNR wall for the
50%-duty-cycle example with noise calibration (See (3.21)). Notice that in Fig 3.13, the
matched filter SNR wall is better than the SNR wall for the 50%-duty-cycle example with
noise calibration for Nc ≥ 300.

3.4.2 Concluding remarks

In this chapter we considered the problem of detecting signals containing known features.
We considered signal features like pilot tones and cyclostationary features that exist in most
communication signals. The presence of signal features allow for coherent processing as well
as run-time noise calibration, which improves the robustness performance for the secondary
user. However, the robustness gains are limited due to the uncertainty in the fading process.
The presence of a known pilot tone improves the SNR wall by log10Nc dB, where Nc is
the minimum length of the phase coherence time. The presence of a cyclostationary signal
feature improves the SNR wall by 1

2
log10Dc dB, where Dc is the delay coherence time of the

channel.
More subtly, pilot tones are non-robust even to uncertain flat fading processes, whereas

cyclostationary signals are robust to such uncertainties. However, cyclostationary signals are
non-robust to frequency-selective fading processes. Furthermore, we have shown that there
exist scenarios in which the delay coherence time Dc can be much longer than the phase
coherence time Nc.

In this chapter we considered commonly existing signal features like pilot tones and
cyclostationary features, and focused on designing sensing algorithms that can detect these
features. However, one can ask the following question: can we explicitly design robustly
detectable signal features? This question is very useful and arises naturally in many spectrum
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sharing scenarios. For instance, the primary user can put out a robustly detectable beacon
to indicate that it is back in the band and that all secondary systems should vacate the band.
On the flip side, the secondary users might be mandated to include a robustly detectable
feature in their signals to help in spectrum enforcement. In Chapter 4, the ideas developed in
this chapter are used to construct macroscale signal features which can be robustly detected
at arbitrarily low SNRs.
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Figure 3.10: This figure illustrates the change in the empirical distribution of the even and
odd samples of the signal Xs[n] (see Eqn. (3.10)) when it is passed through a single-tap
block Rayleigh fading process. The histograms in (a) show the empirical distributions when
there is no fading. As expected, the even samples are iid Bernoulli random variables (BPSK
data) and odd samples have a distribution different than a Bernoulli process. Figure (b)
shows the histogram of the even and odd samples of the faded signal h[n]Xs[n]. Even
after fading the two distributions are distinguishable. This shows that the signal Xs can be
robustly detected under uncertain flat fading.
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Figure 3.11: The empirical spectral correlation function S̃αY (f,N) for a single-cycle cyclo-
stationary feature detector is illustrated in this figure. In this figure, the received signal
Y [n] =

√
PH(X[n]) + W [n], where the signal X[n] is a raised-cosine function modu-

lated with iid BPSK symbols, the fading process H(·) is a 3-tap Gauss-Markov process,
with the filter taps independent of each other, and W [n] are samples of a white Gaussian
noise process. This figures clearly shows that cyclostationary features are non-robust to
frequency-selective fading processes. As you can see increasing the number of samples N
destroys the signal feature.
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Figure 3.12: This figure illustrates the change in the empirical distribution of the even and
odd samples of the signal Xs[n] (see Eqn. (3.10)) when it is passed through a two-tap
block Rayleigh fading process. The histograms in (a) show the empirical distributions when
there is no fading. As expected, the even samples are iid Bernoulli random variables (BPSK
data) and odd samples have a distribution different than a Bernoulli process. Figure (b)
shows the histogram of the even and odd samples of the faded signal H(Xs[n]), when H(·)
is a two-tap block Rayleigh fading process. The distribution of the even and odd samples
of the faded process are identical! This shows that the signal Xs is non-robust to uncertain
frequency selective fading.
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Figure 3.13: The location of SNR walls for various detection algorithms is plotted as a function of
the delay-coherence time. The curve with ‘triangle’ markers (blue) is the location of the SNR wall
for the energy detector. The dashed curve (red) is the location of the SNR wall for the matched
filter. The dashed-dotted curve (black) is the location of the SNR wall for the 50%-duty-cycle
example without noise calibration. Finally, the solid curve (green) is the location of the SNR
wall for the 50%- duty-cycle example with noise calibration. These curves were obtained from
Equations (2.8), (3.3), (3.17), and (3.21) respectively

.
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Overcoming SNR walls

4.1 Introduction

In Chapters 2 and 3 we derived robustness results for several sensing algorithms and showed
that their robustness can be characterized by the location of their SNR walls. The robustness
performance of a secondary sensor depends on two main factors — the amount of modeling
uncertainty in the system, and the presence/absence of known signal features in the primary
signal. The robustness of a secondary sensor can be improved by reducing the amount of
modeling uncertainty in the system. For instance, the secondary user can build a receiver
with expensive and finely calibrated circuit components1. On the other hand, the secondary
user’s robustness can also be improved by mandating the primary user to transmit known
features in its signal. This loss of freedom for the primary user leads to improved robustness
for the secondary user. Our aim in this chapter is to quantify the tradeoff between loss of
freedom for the primary user and the gain in robustness for the secondary user.

The goal of a primary user is to communicate information to the primary receivers (for
example, the TV transmitter broadcasts information to TV receivers) and it optimizes its
system accordingly. Also, the primary transmitter wants the flexibility to change its sig-
naling scheme over time. The goal of a secondary sensor is to robustly sense the primary
transmitter’s signal at low SNRs. The results in Chapter 2 show that complete flexibility
of signaling for the primary transmitter implies that the secondary sensor cannot robustly
sense the primary signal. Hence, the key question that the policymakers must address is:
how much freedom should the primary sacrifice so that the secondary user can robustly sense
it at low SNRs?

To technically study this problem we must model the cost of “loss in freedom” for the
primary user. This leads to the following important philosophical question: “what forms of

1For example a radio astronomy receiver is designed such that the fluctuations in the noise power are
significantly less than those in a cellular phone receiver.
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loss in freedom are acceptable, and what are not acceptable?”. For example, mandating the
primary user to transmit a pilot tone is one way of restricting the primary’s freedom (this
can potentially leads to loss in primary data rate). However, this form of loss in freedom
may be tolerable as the primary might need to transmit pilot signals for its own needs (to
assist its receivers in channel equalization and timing/phase synchronization). On the other
hand, restricting the primary user’s signal to a narrow class of signaling schemes might be
unacceptable, even if these schemes achieve high data rates.

In this chapter we quantify the pain due to loss in freedom for the primary system by the
data rate it must sacrifice in order to provide robustness to the secondary system. This gives
us a tradeoff between the primary’s data rate and the secondary’s robustness. We call this
the capacity-robustness tradeoff2. The detailed technical assumptions in our formulation and
some tradeoff curves are presented in Section 4.2. This formulation immediately prompts the
following question: what is the optimal capacity-robustness tradeoff? We give an answer to
this question in Section3 4.3. We show the existence of signaling schemes that can be robustly
detected by the secondary sensor at arbitrarily low SNRs (SNR wall at negative infinity).
Moreover, the loss in data rate for these schemes can be made arbitrarily small, which shows
that the optimal capacity-robustness tradeoff is the trivial rectangle corresponding to no
loss in primary data rate and complete robustness to the secondary user. However, for these
signaling schemes, as the data rates approach the channel capacity for the primary system,
the number of samples required for the secondary user to detect these signals approaches
infinity, even at a finite SNR. This observations leads to the conjecture that the tradeoff
between the primary capacity and the delay of the secondary user is a fundamental and
non-trivial tradeoff. We comment on this in Section 4.4.

4.2 Capacity-robustness tradeoffs

In this section we formulate the capacity-robustness tradeoff problem. The primary perfor-
mance is quantified using its achievable data rate and the secondary’s robustness is quantified
by the location of its SNR wall (see the results in Chapter 2 and Chapter 3).

In reality the primary transmitter also cares for robust detection for its own receivers, but
at high SNR. The primary receivers must robustly detect the start of a primary packet, they
must lock onto the phase of the primary signal and must also be able to time synchronize
to the primary signal. Furthermore, they must also detect the pilot/training sequences in
order to track the channel fading coefficients. There have been numerous papers [103; 104;
105; 106] and books [107; 108; 109; 110; 111; 112] written over the last four decades on
robust techniques to achieve carrier and timing synchronization. The key difference between

2The capacity-robustness tradeoff problem was first proposed by us in [66]. The results in the first half
of this chapter are mainly drawn from this paper.

3The discussion in this section is based on the results in [102].
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robustness requirement for primary receivers and secondary sensors is the operating SNR.
Primary receivers care about robust carrier and symbol synchronization at moderate to high
SNRs (greater than 0 dB, whereas the secondary user must robustly sense the primary signal
at low SNRs (of the order of −20 dB). The reason for this is that the primary transmitter
cares about communicating information to its receivers, and communication over wireless
fading channels at low SNRs is very inefficient. For instance, it is shown in [113] that the
information-theoretic capacity of a very wideband CDMA system is inversely proportional
to the number of resolvable multipaths, and in fact goes to zero if the number of paths is
too large. The limitation comes from the fact that when there are many multipaths, it is
very difficult to track the channel. Hence, the primary system will not want to operate at
low SNRs, and so it does not care about robustness at low SNRs either. On the other hand
the secondary sensor has to robustly detect weak undecodable primary signals.

4.2.1 Problem formulation

Figure 4.1 shows the block diagram for the capacity-robustness problem. The primary
transmitter is communicating information to its receiver via the ‘primary-primary’ chan-
nel which we assume to be a bandlimited AWGN channel4. The capacity of this channel
is C = B log (1 + SNRP ) assuming complex signaling. Here, B is the channel bandwidth
and the primary signal to noise ratio SNRP = PP

N0B
where PP is the received primary signal

power at the primary receiver.
A secondary user measures the signal in the band and tries to sense for the pres-

ence/absence of the primary transmitter. We call the sensing channel between the primary
transmitter and the secondary user the ‘primary-secondary’ channel. When the primary
transmitter is ON, we assume that the ‘primary-secondary’ channel is a Rayleigh fading
channel with additive noise. As the received primary signal strength at the secondary user,
PS can be very low, we assume that the secondary user cannot track the Rayleigh fading
coefficients, and that it only knows a lower bound on the channel coherence time. Further-
more, we assume that the noise distribution at the secondary receiver is uncertain and lies
in the noise uncertainty set described in Definition 3.1. Finally, we assume that the nominal
noise power spectral density is given by N0.

Given the above assumptions about the ‘primary-primary’ and ‘primary-secondary’ chan-
nel, our goal is to determine the tradeoff between the primary’s data rate and the secondary’s
robustness as we vary the signaling scheme and the detection algorithm chosen by the pri-
mary transmitter and the secondary user respectively.

4The AWGN channel assumption is made to make the mathematical analysis simple. We can also consider
fading in the primary-primary channel. In this case the capacity-achieving distribution might not be a
Gaussian [114; 115; 116]. This can potentially give interesting results from the point of view of the capacity-
robustness tradeoff. However, we do not explore this dimension in the thesis.
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Figure 4.1: Block diagram showing the primary and secondary systems in the capacity-robustness
problem formulation.

4.2.2 Capacity-robustness tradeoff: radiometric detection

Figure 4.2: Primary transmitter signaling over a fraction of the total available degrees of freedom.

Suppose the spectrum sensor uses a radiometer to detect the primary signal. As seen in
Section 2.3, the relevant SNR wall is given by SNRenergy

wall = ρ2−1
ρ

, with the nominal SNR at

the secondary sensor given by SNRS = PS
N0B

. It is clear that the common parameter that
affects both the primary’s data rate and the sensing SNR is the bandwidth B. The primary
user can tradeoff its rate in exchange for robustness at the spectrum sensor by reducing the
fraction of degrees of freedom used (see Figure 4.2). Let Bactual = βB, where β ∈ [0, 1].
We also assume that the fading at the spectrum sensor is bandlimited and has a Doppler
bandwidth of Bd = B

Nc
. In this case, the total bandwidth occupied by the primary signal at

the spectrum sensor is βB + B
Nc

. The effective SNR wall is given by (β + 1
Nc

)
(
ρ2−1
ρ

)
. Hence

the capacity-robustness tradeoff for the simple radiometer is given by the parametric curve[
(β +

1

Nc

)

(
ρ2 − 1

ρ

)
, βB log

(
1 +

PP
βN0B

)]
, (4.1)
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where β ∈ [0, 1]. The first coordinate in (4.1) is the robustness of secondary detection and
the second coordinate is an upper bound on the data rate achievable for the primary system.
The factor β+ 1

Nc
in the robustness is the processing gain obtained because the primary does

not use all the degrees of freedom.
One can also obtain noise calibration gains by taking measurements in the frequencies

over which the primary does not spread its signal. Using the model in Section 3.2.2.4, the
uncertainty in the noise is reduced from ρ to some smaller number λ. Therefore, the tradeoff
with noise calibration is given by:[

(β +
1

Nc

)
2ρ

λ

(
λ2 − 1

λ

)
, βB log

(
1 +

PP
βN0B

)]
. (4.2)

4.2.3 Capacity-robustness tradeoff: coherent detection

Figure 4.3: Primary transmitter signaling using a narrowband pilot tone with a fraction θ of the
total power.

Assume that the spectrum sensor uses a coherent detector and the primary signal has a
deterministic pilot tone as in Section 3.2.1. Any power spent on the pilot improves robustness
but reduces the power available for communicating messages. Let θ be the fraction of
total power spent in the pilot tone (see Figure 4.3). The primary data rate is bounded

by RP = B log
(

1 + (1−θ)PP
N0B

)
. From (3.3), the SNR wall is given by SNRmf

wall = 1
Nc·θ

(
ρ2−1
ρ

)
,

where θ ∈ [0, 1] and Nc is the channel coherence time. Thus, the capacity-robustness tradeoff
for the matched filter is given by the parametric curve[

1

Nc · θ

(
ρ2 − 1

ρ

)
, B log

(
1 +

(1− θ)PP
N0B

)]
, (4.3)

where θ ∈ [0, 1]. The gains in robustness given in (4.3) are coherent processing gains. As
discussed in Section 3.2.2.3, noise calibration can also be used to reduce the uncertainty
down to the λ level. Hence, by (3.6) the capacity-robustness tradeoff with noise calibration
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is given by [
2ρ

λ ·Nc · θ

(
λ2 − 1

λ

)
, B log

(
1 +

(1− θ)PP
N0B

)]
. (4.4)

4.2.4 Tradeoff curves
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Figure 4.4: The capacity-robustness tradeoff curves for the radiometer and coherent detectors
where the primary is operating at high spectral efficiency and large noise uncertainty (ρ = 10, λ =
100.1).

Figure 4.4 compares the capacity-robustness tradeoff curves for the radiometer and coher-
ent detection. These curves were plotted using Equations (4.1), (4.2), (4.3) and (4.4). These
plots correspond to a bandwidth B of 1 MHz, the signal to noise ratio of the primary channel
SNRP = 20 dB, the channel coherence time Nc = 1000, the noise uncertainty parameters
ρ = 10 (to account for potentially significant interference) and λ = 100.1. Qualitatively, one
can see that coherent detection is much better than the radiometer, i.e., for a given loss in
primary data rate, it gives better robustness gains for the secondary system. Essentially, the
primary system is not power limited at an SNRP = 20 dB. So, sacrificing some power to the
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Figure 4.5: The capacity-robustness tradeoff curves for the radiometer and coherent detectors
where the primary is operating at low spectral efficiency and large noise uncertainty (ρ = 10, λ =
100.1)
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pilot tone is not a significant cost, but it gives significant robustness gains. However, shrink-
ing the bandwidth and using fewer degrees of freedom to improve radiometer robustness is
painful since it is degrees of freedom that are the critical resource for high SNR primary
users.

Figure 4.5 compares the capacity-robustness tradeoffs for the radiometer and coherent
detection when the primary SNRP is low. These tradeoffs were plotted for SNRP = −10
dB. The remaining parameters are the same as in Figure (4.4). Since the primary is power
limited, the loss of power to the pilot has a non-trivial rate penalty. Meanwhile, giving up
degrees of freedom incurs less of a penalty to help the radiometer. The robustness curves
for the two strategies come closer to each other, but deterministic pilot tones and coherent
detection still win out. Also, both Figure 4.4 and 4.5 are plotted for the case when the ratio
of the noise uncertainty parameters ρ = 10 and λ = 100.1 is large. In this case it is clear
that run-time noise calibration gives significant gains to both the radiometer and coherent
detector.

Figure 4.6 and 4.7 plot the capacity robustness tradeoff curves for the radiometer and
coherent detection when the ratio of the noise uncertainty parameters ρ = 100.2 and λ = 100.1

is small. As before the two figures correspond to high and low spectral efficiency for the
primary system.

Finally, in order to make a fair comparison, the nominal SNRs in all these plots correspond
to the worst possible noise power within the noise uncertainty set as opposed to the middle
noise power. This way, it is clear that after noise calibration, it makes no difference what
the original ρ was. But noise-calibration makes less of a difference when λ is very close to 1.

4.3 Overcoming SNR walls

In Section 4.2 we have derived some achievable capacity-robustness tradeoff curves. A natural
question one can ask is: what is the optimal capacity-robustness tradeoff curve? In this
section we construct primary signaling schemes with rates arbitrarily close to the AWGN
channel capacity, while they are also robust to uncertainties in the noise and fading processes
at arbitrarily low signal to noise ratios. That is, we construct signals with no SNR wall
limitations and with primary data rates close to the channel capacity. This result shows
that the optimal capacity-robustness tradeoff is a trivial tradeoff!

In reality, we must also consider delay into the equation. How long does the secondary
sensor take to detect the presence/absence of the primary signal? We know that the sensing
time is a function of the received SNR at the secondary sensor. However, is it also dependent
on the particular signaling scheme chosen by the primary transmitter. In fact, for the example
given in this section the sensing time for the secondary approaches infinity as the primary
data rate approaches its capacity. This prompts us to consider the tradeoff between the
capacity of the primary user and the sensing delay for the secondary user. We comment on
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Figure 4.6: The capacity-robustness tradeoff curves for the radiometer and coherent detectors
where the primary is operating at high spectral efficiency and moderate noise uncertainty (ρ =
100.2, λ = 100.1)
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Figure 4.7: The capacity-robustness tradeoff curves for the radiometer and coherent detectors
where the primary is operating at low spectral efficiency and moderate noise uncertainty (ρ =
100.2, λ = 100.1)
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this tradeoff in Section 4.4.

4.3.1 Modeling philosophy

To show that a signal can be robustly detected at arbitrarily low SNRs, it is no longer
sufficient to work with the bounded moment noise uncertainty model given in Definition 3.1.
The reason for this is that the uncertainties in real life are worse than the ones captured in
the bounded-moment model. Hence, we propose an arbitrarily varying uncertainty model,
and use this to prove our robustness results. The idea is that if a signal can be robustly
detected under an adversarial uncertainty (arbitrarily varying uncertainty model), then it
must be robust to the uncertainties in practice.

Figure 4.8 pictorially illustrates our modeling philosophy. Let the ‘green’ shaded region
in the figure denote the set of all uncertainty model in reality, the innermost ‘tan’ region in
the figure correspond to the bounded-moment uncertainty model, and the outermost region
denote the arbitrarily varying uncertainty model. As shown in the Figure, the bounded-
moment model is a very conservative uncertainty model, the arbitrarily varying model is
a very pessimistic model for noise uncertainty, and the actual uncertainties encountered in
practice are somewhere in between these two models. The main idea is that if detectors
have SNR wall limitations under the conservative uncertainty model (‘bounded moment’),
then their performance will only be worse in real life. Hence, the SNR wall results are of
significant practical importance. Similarly, if a signal is robust to arbitrary variations in the
noise process, then it will definitely be robust to uncertainties in real life.

Figure 4.8: An illustrative picture to capture the modeling philosophy behind the uncertainty
model used in this Chapter.
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4.3.1.1 Arbitrarily varying uncertainty model

We now define the set of possible noise and fading processes within the arbitrarily fading
uncertainty model:

• We model noise as an arbitrarily varying sequence {W [n]}∞n=1 with a finite empirical
second moment. That is, 1

N

∑N
n=1 |W [n]|2 =: σ2, for some unknown σ > 0.

• We model the fading process as an L-tap linear time-varying filter with coefficients
hl[n], where the fading coefficients are arbitrarily varying but are normalized to satisfy∑L

l=0 |hl[n]|2 = 1 for all n = 1, 2, 3, · · · . In other words we are assuming that most
of the energy in the received signal is coming from paths than have a delay falling
within the first L filter taps. This modeling assumption on the fading process is not
unrealistic if we choose L sufficiently large.

• We also make some boundedness assumptions on the fourth moments of the noise and
fading processes. The exact form of these assumptions are given in Theorem 4.1.

• Finally, we assume that the primary transmitter and the secondary sensor have access
to common randomness.

The arbitrarily varying uncertainty model described above is similar to the ones used in
the arbitrarily varying channel (AVC) literature [117; 118; 119]. The AVC is an information-
theoretic model for communication in the presence of a malicious interferer or a jammer,
whose objective is to minimize the reliable rate of communication of the link it is trying to
jam. For our problem, a malicious-jammer model for the uncertainty in noise and fading is
probably pessimistic. Realistically, noise and fading processes are approximately stationary
and they might have time-varying fluctuations. Hence, they cannot be modeled by any
stationary, ergodic class of uncertain distributions. We tackle this problem by treating the
noise and fading process as potentially malicious, but to counter them we give the primary
transmitter and secondary sensor access to common randomness. The idea of sharing a source
of common randomness between the encoder and decoder allowing them to randomize their
coding strategy is well known in the AVC literature [117; 119]. Recent results have also
shown the capacity of AVCs under limited common randomness constraints [120].

4.3.2 Signals with Macroscale features

We start off by constructing a signal which can be robustly detected at arbitrarily low signal
to noise ratios. However, the infinite robustness gain is achieved at the cost of reducing the
primary data rate by a constant factor. The key idea is to introduce macroscale features
in signals, which in turn enable robust detection even in the presence of uncertainties. The
idea of introducing macroscale features for robust detection was first proposed by us in [102].
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Subsequently, this result lead to the idea of using macroscale features to construct codes that
provide robust identity in wireless systems [121; 90; 6].

Let X[n] be a discrete time signal given by

X[n] =

{
±
√

2P w.p. 1
2

if d n
K
e is odd,

0 if d n
K
e is even.

, (4.5)

for some K � L. Time is divided into blocks of size K, the odd numbered blocks contain
iid Bernoulli ±

√
2P random variables, and the even numbered blocks have zeros. We call

the former ‘data’ blocks and the latter ‘silence’ blocks. Figure 4.9 pictorially describes the
construction of the signal X[n].
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Example of a Macroscale Signal
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Data Blocks

Figure 4.9: This figure pictorially shows the signal described in Equation (4.5). The solid regions
correspond to the “data” blocks, which contain iid BPSK(±

√
2P ) signal samples, and the empty

regions correspond to the “silence” blocks, and they contain zeros.

It can easily be verified that X[n] is a cyclostationary signal and it exhibits cyclostation-
ary features described in Chapter 3. The key difference between this signal and the ones
discussed in Chapter 3 is that the scale of the feature in X[n] is much larger than the delay
spread of the channel. This is true because the width of the ON/OFF periods in X[n] is K,
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which is chosen to be larger than L (the first L taps contain more than half of the signal
energy). For this reason, we say that X[n] has a macroscale feature (relative to the delay
spread of the fading channel).

When K > L, even an arbitrarily varying fading process cannot completely mix the
‘data’ blocks and the ‘silence’ blocks. So, the faded signal will have some parts that are
guaranteed to have lower average power than the other parts of the signal. Moreover, these
lower power blocks occur periodically in time. This means that we can run a detector that
searches for these periodic fluctuations in the signal power to detect the signal in noise. Note
that the number of alternatives in the search does not grow exponentially with the sensing
time, and hence our algorithm will successfully detect the signal given a sufficiently long
sensing duration5. Also, observe that the important thing is the width of the fluctuation in
the signal power rather than the absolute value itself. Hence, this signal can be robustly
distinguished from noise at arbitrarily low signal to noise ratios.

Notice that for the above result to be true we must make the assumption that the noise
process is stationary and hence its power does not vary with time. In Section 4.3.3 we relax
the stationarity assumption in the noise process.

The signal X[n] has no SNR wall limitation, but the signal uses only half the degrees of
freedom. So, even though this achieves complete robustness it achieves only half the channel
capacity to the primary user. Hence, this example does not achieve the best possible tradeoff
point in the capacity-robustness space.

4.3.3 Macroscale feature example: mixture of Gaussian signals

We now give another example of a signal that contains macroscale features, and which also
makes better use of the degrees of freedom. Define X̃[n] to be

X̃[n] =

{
N (0, P + ε) if d n

K
e is odd,

N (0, P − ε) if d n
K
e is even.

, (4.6)

for some 0 < ε < P . This signal is obtained by interleaving two iid Gaussian signals with
power P + ε and P − ε respectively. A candidate detection algorithm for this example is
to compute the difference in the average power between the odd numbered blocks and the
even numbered blocks and compare it to a threshold. If the received signal is stationary
noise, then this difference converges to zero as N increases to infinity. If the received signal

5The faded signal H(X[n]) has silence blocks of length at least K − L occurring periodically every K
samples. As there can be a time-offset between the secondary sensor and the primary transmitter, the
secondary sensor has to run K parallel detectors each with a different time-offset. This will ensure that at
least one of these K detectors will align with the periodic silences perfectly. The PFA and PMD of each of
the parallel detectors can be made arbitrarily small by increasing the sensing time N . As the number of
parallel detectors is fixed, the overall PFA and PMD will also decrease as N increases.
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Figure 4.10: This figure shows the transmitted signal X[n], faded version of the signal H(X)[n],
and the received signal Y [n] =

√
PH(X[n]) +W [n]. The fading process H(·) is assumed to be

a linear time-varying filter with L taps. From the figure it is clear that at certain time instances,
the fading mixes with all zeros in the signal and so the output is also zero. Hence, in these time
slots we can have access to noise even under hypothesis H1.
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contains X̃[n], then the difference in powers converges to a non-zero constant proportional
to ε. Hence, this signal can be robustly distinguished from stationary noise.

However, if the noise itself has a time-varying variance then it is possible that the differ-
ence in the average power between the odd numbered blocks and the even numbered blocks
is non-zero even under hypothesis H0. So, robust detection is not guaranteed at low SNRs.
The possibility of noise having time-varying variance is not unrealistic because noise also
contains interference, which is due to man-made signals transmitted by other users over the
wireless medium.

One way to overcome this problem is to choose a complex signature that does not occur
either in nature or in other licensed systems. This is analogous to the idea proposed by Carl
Sagan that space-aliens would signal to us by modulating the signal with prime numbers
that could not occur by any natural process unlike pure pilot tones [122; 123]. The complex
signature is used to choose the blocks to transmit a Gaussian signal with power P + ε, while
the remaining blocks are used to transmit a Gaussian signal with power P − ε. To model
this different level of complexity, we make a technical assumption of common randomness
to capture codes that are effectively random when viewed from the perspective of natural
effects. Specifically, we assume common randomness between the secondary detector and the
primary transmitter. This allows the secondary detector to know the random partitioning
of blocks created by the primary transmitter. The detailed description of the construction
of a common-randomness based signal with macroscale features is given below.

Let X[n] denote the signal we are trying to construct. Divide time into blocks of length
K = M + L − 1 for some M > 0. Rewrite the sequence {X[n]}∞n=1 as {Xi}∞i=1, where
Xi ∈ R1×K is a K dimensional row vector given by Xi = (X[(i − 1)K + 1], X[(i − 1)K +
2], · · · , X[(i − 1)K + K]). Let {Bi}∞i=1 be a sequence of iid Bernoulli-1

2
random variables

taking values in the set {0, 1}. Think of this Bernoulli sequence as labeling the sequence
{Xi}∞i=1 by ‘1’s and ‘0’s.

Given the Bernoulli sequence {Bi}∞i=1, define

Xi =

{
N (0, (P + ε)IK×K) if Bi = 1
N (0, (P − ε)IK×K) if Bi = 0

, (4.7)

where N (m,ΛK×K) denotes a K-dimensional Gaussian random vector with mean m and
covariance matrix ΛK×K . Here ε is chosen such that 0 < ε < P , where P is the average
power of the signal. Intuitively, the signal {Xi}∞i=1 is a mixture of two iid random Gaussian
processes, one with power (P + ε) and another with power (P − ε). The choice of the block
length K ensures that fading cannot completely mix the two Gaussian processes.

Assume that the same Bernoulli sequence {Bi}∞i=1 is also available at the detector. This
can be thought of as common randomness between the primary transmitter and the secondary
detector. Given this common randomness, the detection algorithm can be described as
follows:
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• For any K-dimensional vector X := (X[1], X[2], · · · , X[K]) ∈ R1×K , K > L, define the
function κ(X) := 1

K−L+1

∑K
k=L |X[k]|2. This function computes the empirical power

(excluding the first L− 1 samples) of the vector X. excluding the first L− 1 samples
is to prevent fading from mixing samples within two adjacent blocks. This property
will be used in the proof of Theorem 4.1.

• Assume that N is an integer multiple of K, i.e., N = K · G for some integer G >
0. Rewrite the received sequences {Y [n]}Nn=1 as a sequence of K-dimensional vectors
{Yi}Gi=1, where Yi = (Y [(i− 1)K + 1], Y [(i− 1)K + 2], · · · , Y [(i− 1)K +K]).

• Compute

T1 :=
1

G

G∑
i=1

Bi · κ(Yi);

T2 :=
1

G

G∑
i=1

(1−Bi) · κ(Yi) (4.8)

T1 and T2 are the empirical average of the received signal powers in the blocks labeled
‘1’ and ‘0’ respectively.

• The detector is given by

T
(
{Yi}Gi=1

)
:= T1 − T2

H1

≷
H0

λ, (4.9)

where λ > 0 is the detection threshold.

The intuitive justification for choosing the test-statistic in (4.9) is as follows: if the signal is
present, the difference in powers in the blocks labeled ‘1’ and the blocks labeled ‘0’ converges
in probability to a non-zero number as G→∞. On the other hand, if the signal is absent,
this difference converges to zero as G→∞.

Figure 4.11 pictorially describes the signal transmitted X[n], the received signal Y [n] =
H(X[n]) +W [n], and the test-statistic of the detection algorithm given in (4.9).

4.3.3.1 Robustness analysis

Theorem 4.1. Consider the robust hypothesis testing problem in (2.1). Assume that the
sensing time can be written as N = K ·G, for some positive integers K and G. Let H(X)[n] =∑L−1

l=1 hl[n]X[n − l], for some integer K > L > 0. For any K-dimensional vector W =
(W [1],W [2], · · · ,W [K]), and a L × K matrix H = {hl[k]}, l = 0, 1, · · ·L − 1 and k =
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Figure 4.11: This figure illustrates the construction of the signal X[n], and also shows how the
signal can be distinguished in the presence of arbitrarily varying noise and fading processes.

1, 2, · · · , K, define

κ(W) :=
1

K − L+ 1

K∑
k=L

|W [k]|2

κ(H) :=
1

K − L+ 1

K∑
k=L

L−1∑
l=0

|hl[k]|2.

Assume that the fading and noise processes satisfy the following constraints.

• 1
G

∑G
i=1 κ(Wi) = σ2, for some unknown constant σ > 0.

• 1
G

∑G
i=1 κ(Hi) = 1.

• There exist known constants G0 > 0, and Ci > 0, i = 1, 2, 3, such that for all G > G0,
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we have

1

G

G∑
i=1

κ2(Wi) ≤ C1

1

G

G∑
i=1

κ2(Hi) ≤ C2

1

G

G∑
i=1

κ(Wi) · κ(Hi) ≤ C3,

(4.10)

where Wi := (W [(i− 1)K + 1],W [(i− 1)K + 2], · · · ,W [(i− 1)K +K]), and Hi is a L×K
matrix with Hi := {hl[(i− 1)K + k]}, l = 0, · · · , L− 1, and k = 1, · · · , K.

Let {Bi}Gi=1 be a sequence of Bernoulli-1
2

iid random variables taking values in the set
{0, 1}. Rewrite the signal samples {X[n]}Nn=1 as {Xi}Gi=1, where Xi := (X[(i − 1)K +
1], · · · , X[(i− 1)K +K]), and

Xi =

{
N (0, (P + ε)IK×K) if Bi = 1
N (0, (P − ε)IK×K) if Bi = 0

, (4.11)

where 0 < ε < P .
Consider the detection algorithm in (4.9). Define,

PFA(G) := P
(
T
(
{Yi}Gi=1

)
> λ|H0

)
PMD(G) := P

(
T
(
{Yi}Gi=1

)
< λ|H1

)
. (4.12)

Then, for any given choice of 1 ≥ PFA > 0, 1 ≥ PMD > 0, and P > 0, there exists a G such
that PFA(G) ≤ PFA, PMD(G) ≤ PMD. Hence, the detection algorithm in (4.9) is robust to
uncertainties for all P > 0.

Proof. See Appendix C.1 for the proof.

In Theorem 4.1 we have shown that the signal X[n] is completely robust to uncertainty
noise and fading processes and arbitrarily low SNRs. The question we ask is whether the
primary user has to pay a penalty for the improved robustness of the secondary user? Recall
that the channel from the primary transmitter to the primary receiver was assumed to be
an AWGN channel with noise power σ2

p := N0B. Hence, the rate achieved at the primary
receiver is the average of the rates achieved by the two Gaussian streams in the signal X[n],
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i.e.,

Rp :=
1

2

[
1

2
log

(
1 +

P + ε

σ2
p

)
+

1

2
log

(
1 +

P − ε
σ2
p

)]
≤ Cp (4.13)

The concavity-∩ of the capacity function Cp shows that the primary takes a hit in the data
rate to its receivers in order to provide robustness guarantee to the secondary users. This rate
penalty depends on the parameter ε, and as ε ↓ 0, the rate penalty converges to zero. This
suggests that the cost to the primary (in terms of loss in data rate) for providing robustness
to the secondary can be made arbitrarily close to zero.

On the other hand, the parameter ε affects the sensing time (number of samples) re-
quired by the secondary user to robustly attain a given target PFA and PMD. Eliminating λ
in (C.15), and using the fact that Θ ≈ 1 for large G, we get

N = G ·K = K

[√
λ1

PFA
+

√
λ2

PMD

]
ε−2 (4.14)

Equation (4.14) tells us that the sensing delay at the secondary user monotonically increases
as ε ↓ 0. Therefore, in the Gaussian mixture example there is tension between the primary’s
data rate and the sensing delay at the secondary detector.

4.4 Capacity-delay tradeoff

Comparing Equations (4.13) and (4.14) we can see that there is a tradeoff between the data
rate (Rp) achieved by the primary user and the sensing delay (N) for the secondary user.
We call this the capacity-delay tradeoff. An important question arising from this discussion
is — whether there is a fundamental capacity-delay tradeoff? That is, does the primary
user always have to take a hit in its data rate to provide sensing delay guarantees to the
secondary users. The intuitive reasoning for the existence of a fundamental capacity-delay
tradeoff is given below.

We know that the capacity-achieving output distribution is unique for most channels [124;
125]. Appealing to the continuity of mutual information this means that in most generic cases
the capacity achieving input distribution is also unique. The results in this chapter show that
the secondary user can robustly detect the primary user if the primary signal is a mixture
of two distinct distributions. So, if the primary user is operating close to capacity using an
input signal that is a mixture of two distributions, then both these distinct distributions
must be close to the unique capacity-achieving input distribution. By continuity, the two
output distributions at the secondary receiver must also be close to each other. Hence, to
distinguish between these two output distributions, the sensing delay at the secondary must
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be large. So, as the primary rate approaches its channel capacity, the sensing delay at the
secondary must approach infinity.

4.5 Policy implications

In this chapter we considered the tradeoff between the loss in freedom for the primary user
and robustness for the secondary user. We modeled the loss in freedom for the primary user
by the hit in data rate it suffers in order to provide robustness (measured by the SNR wall)
gains for the secondary user. We called this the capacity-robustness tradeoff.

The technical results in this chapter have non-trivial policy implications. For instance,
regulators can mandate the primary users to transmit commonly used signal features like
pilot tones and cyclostationary signals. This leads to a loss in data rate for the primary
user, but provides sufficient robustness for the secondary user. On the other hand, the
regulators can also mandate the primary users to transmit macroscale features which are
complex and unnatural. The loss in data rate in this case can be made arbitrarily small,
while also providing sufficient robustness to the secondary user.

From a purely data rate point of view, mandating macroscale features seems to be the
right thing to do. However, this can be severely restrictive from a freedom point of view.
The primary is forced to choose from the class of signals containing macroscale features,
which can be unnatural and complex signaling schemes (like the mixture Gaussian example
in Section 4.3.3). Unlike macroscale features, most communication signals already have
pilot tones and cyclostationary features. So, mandating the primary user to transmit these
features (pilots/cyclostationary features) might not be severely restrictive, even though it
causes a loss in data rate. Also, the primary might anyway want to transmit these features
for timing/synchronization to its own receivers.

These results suggest that there are different kinds of loss in freedom for the primary
user. Some of them are good forms of loss in freedom even if they lead to loss in data rate,
while others are not so good from a freedom point of view even though they do not incur
any loss in data rate. A regulator needs to take these into consideration while writing rules
for whitespace use.

The results so far indicate that with some restrictions on the flexibility of primary users,
and by using carefully designed sensing algorithms, the secondary user can robustly detect
very weak primary signals (SNRs of the order of −20 dB). The important question we need
to ask is: What fraction of the whitespaces do the secondary users recover if they use these
sensing algorithms? This is important because the whole point of opportunistic spectrum
sharing is to reuse whitespaces and reduce the regulatory overhead of static spectrum allo-
cation. We answer this question in Chapter 5.
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Space-time sensing metrics

5.1 Introduction

Philosophically, sensing is a decision problem: is it safe to use the spectrum where we
are or is it unsafe? This is a question with a binary answer and so it seems natural to
encapsulate the entire problem of spectrum sensing by mathematically casting it as a binary
hypothesis testing problem. So far, in Chapters 2, 3, 4 we modeled the binary hypotheses as
primary present, and primary absent. This suggested that the key metrics are the probability
of missed-detection and the probability of false-alarm. This chapter shows that while such
formulations are seemingly natural, if we are not careful, they can blind us to some of the true
fundamental limits involved in spectrum sensing. In particular, the core spatial dimension
to the problem and its interaction with fading in wireless channels introduces tradeoffs that
need a better formulation to understand.

The SNR wall limits shown in Chapters 2, 3, 4 suggest that it is very hard to design highly
sensitive detectors. However, why does one need sensitive detectors? The main reason is
because the cognitive radio needs to be sure that it is far away (outside the no-talk radius
rn) from the primary transmitter. The strength of the primary transmitter’s signal received
at the cognitive radio is just a proxy to ensure that we are ‘far enough’. This prompts the
question: what is the right level of sensitivity at which the cognitive radio is sufficiently
‘far away’ from the primary transmitter? If there were no wireless fading, there would be a
single ‘right level’ of sensitivity. It is the reality of fading that makes us demand additional
sensitivity.

Because fading can effect different detectors differently, this reveals that a head-to-head
comparison of the sensitivity of two detectors can be misleading. Instead, the possibility
of fading has to be incorporated into the “signal present” hypothesis itself. The logical
tradeoff is then between the effective probability of missed detection (it matters not whether
the miss is due to an unfortunate fade or a quirk in the noise realization) and the sample
complexity [63].
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The bigger conceptual challenge comes in trying to understand “false alarms.” The
traditional hypothesis-testing formulation would say that a false alarm consists of when the
detector says that we should not use the channel when the primary is truly absent (‘noise
only’ hypotheses). But this is not always the problem facing a cognitive radio. There are two
possible situations when the cognitive radio can use the band — the primary is truly absent,
or the primary is present but is far away from the cognitive radio. The cognitive radio must
guard against saying that it is close to the primary when it is indeed far enough away. This
suggest that the “signal absent” hypothesis needs to be modified in some reasonable way.

At this point, a joint space-time perspective is essential. For ease of exposition we first
review the ‘space only’ situation. We assume that the primary is always ON and the only
spectrum opportunities are the spatial locations farther than rn from the primary transmit-
ter. We show that this problem can also be cast into a binary hypothesis-testing framework.
However, the there are two fundamental differences in this formulation from the binary
hypothesis-testing formulation in Section 1.2.2. Firstly, both the hypotheses are composite-
hypotheses, parametrized by the spatial location of the cognitive radio. Secondly, we assume
a worst-case spatial distribution under hypothesis H1 (‘band used’), and a Bayesian ap-
proach for hypothesis H0 (‘band unused’). The asymmetry in the formulation is due to the
fact that the primary need not trust the deployment model for the secondary user, whereas
the secondary might have a good model of its own spatial deployment.

This hypothesis-testing framework leads to two metrics (similar to PMD and PFA) first
introduced by us1 in [62]. The first metric, namely the Fear of Harmful interference FHI ,
captures the safety to the primary users. The second metric, namely the Weighted Prob-
ability of Area Recovered WPAR, captures the performance of spectrum sensing by ap-
propriately weighting the probability of false alarm (PFA) across different spatial loca-
tions. These metrics give a unifying framework in which to compare different spectrum-
sensing algorithms. Reasonable metric parameters from real-world data are given in [63;
64]. The tradeoff between WPAR and FHI is thus the correct ROC curve for spectrum
sensing. However, the probabilistic uncertainty underlying the hypotheses is non-ergodic
and so the tradeoffs are interesting even if we allow an infinite number of samples.

The new metrics show that fading uncertainty forces the WPAR performance of single-
radio sensing algorithms to be very low for desirably small values of FHI , even with infinite
samples. The physical reason for such poor performance is that a single radio cannot distin-
guish whether it is close to the primary user and severely (and atypically) shadowed, or if it
is far away and (as typical) not shadowed. Furthermore, these metrics shed a new perspec-
tive on the impact of noise uncertainty on the sensing performance of spatial spectrum holes
as well as on the comparison of different detectors. We show that under noise uncertainty,
there exits an FHI threshold beyond which the WPAR vanishes to zero, i.e., if we need to

1The metrics defined in Section 5.3.1 and the spatial domain formulation of the spectrum sensing problem
is joint work with Shridhar Mubaraq Mishra. The usefulness of the spatial metrics to analyze multi-user
sensing algorithms has been shown in Shridhar Mubaraq Mishra’s PhD dissertation [64]
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guarantee protection to the primary below this threshold, then one cannot robustly recover
any spectrum holes in space. In addition, a head-to-head comparison is made between the
energy detector and the coherent pilot detector. This reveals that even with an infinite
number of samples, the energy detector will do better for high values of FHI and it is only
noise-uncertainty that allows the coherent pilot detector to do better at low FHI . This fact
would be invisible without using the right metrics. These new spatial metrics also bring new
insights into the fundamental tradeoffs involved in cooperative spectrum sensing [63; 62; 126;
64].

After reviewing the framework for spatial sensing metrics, we focus on the joint space-
time spectrum sensing problem. There has been lot of work on the design of spectrum sensing
algorithms to dynamically reuse the OFF times in a primary ON/OFF process [127; 128;
129; 130]. There has also been work on using change-detection techniques to detect a change
in the state of the primary signal (ON to OFF transition), and use it to identify the unused
primary channels [131; 77]. All these papers focus on the time-domain aspect of the problem,
i.e, they assume that the secondary is located within the service area of the primary user and
hence it can only transmit when the primary user is OFF. In this chapter, we consider the
general scenario where the location of the secondary user can also vary in space. We propose
a framework to analyze this problem and we give metrics that characterize the protection to
the primary user, and also quantify the space-time opportunities recovered.

The key aspects of our space-time spectrum sensing framework are

• We argue the need for a sacrificial buffer zone (δ samples) at the start of each primary
ON period within which secondaries are allowed to interfere with the primary. This is
the time-domain equivalent to the spatial area sacrificed (between the decodable radius
and the protected radius as shown in Figure 1.3(a)) by the primary user to allow the
operation of secondary radios. This buffer zone is required to give the secondary time
to evacuate the band when the primary comes back ON.

• We propose the Weighted Probability of Space-Time Recovered (WPSTR) metric that
quantifies the opportunities in space-time recovered by the secondary user.

• We give an example in which there is a tension between performance in time versus
performance in space. In this example, there exists an optimal choice of the sensing
time for which the WPSTR metric is maximized. This is contrary to traditional wisdom
which says that the performance improves monotonically with the sensing time. This
non-trivial observation is hard to see without these space-time metrics.

5.2 Problems with the traditional formulation

The key idea behind the formulation in Section 1.2.2 is that the received signal power, P ,
averaged over fading is a monotonically decreasing function of distance between the cognitive
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radio and the primary transmitter. So, a detector with high sensitivity (that can sense weak
signals) ensures an appropriately low probability of mis-declaring that we are outside the no-
talk radius whenever we are actually inside. However, this formulation has some fundamental
flaws, which we discuss below.

5.2.1 How much sensitivity do we really need?

One is forced to ask the question – At what level should we set the detector sensitivity? The
right level of sensitivity should correspond to the signal power at the no-talk radius. If there
were no fading, the required sensitivity would immediately follow from the path-loss model.
However, multipath fading and shadowing exist. We may hope to average over the multipath
fading since it changes every coherence time. However, the coherence time is itself uncertain
since it depends on physical motion — there is a real possibility of an infinite coherence
time since the transmitter and the cognitive radio may both be stationary. This is thus
potentially a nonergodic uncertainty, even though it presumably has a probabilistic model.
One approach to deal with this nonergodic fading is to incorporate a margin for fading into
the sensitivity, i.e., set the sensitivity low enough to account for the 1% worst-case fades.
The problem with this approach is that firstly, different detectors may be effected differently
by the details of the fading distribution. Hence, a single level of sensitivity for all detectors
is a flawed. Secondly, setting extremely low values of sensitivity leads to performance loss
as shown below.

5.2.2 How to measure performance of cognitive radios?

Traditionally, the “band unused” hypothesis (H0) has been modeled as receiving noise alone,
and the performance of the cognitive radio is measured by the probability of false-alarm
(PFA). However, that does not reflect what we actually care about for cognitive radio
systems. It is perfectly fine for the primary transmitter to be ON, as long as the cognitive
radio can verify that it is outside the primary’s no-talk radius. So, comparing against the
“noise only” hypothesis is incorrect. In fact, as the received signal depends on the distance
of the cognitive radio from the primary transmitter, hypothesis H0 is different for different
locations of the cognitive radio. In particular, the performance of a cognitive radio is a
function of its position, and how we set our detector’s threshold impacts how much area we
can recover for cognitive radio operation [31].

5.3 Spectrum Sensing: spatial-domain perspective

The discussion in the previous section forces us to rethink the hypothesis-testing formulation.
The goal is to decide whether the cognitive radio is inside or outside rn based on the measured
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received signal samples Y [n]. The received signal can be modeled as Y [n] =
√
P (R)X[n] +

W [n], where R is the distance of the cognitive radio from the primary transmitter2. For
a fixed distance R, the received signal power P (R) is a random variable depending on the
path-loss and fading distributions. Hence, we come up with the following hypothesis testing
model:

H0 : Y [n] =
√
P (R)X[n] +W [n], R > rn

H1 : Y [n] =
√
P (R)X[n] +W [n], 0 ≤ R ≤ rn

The only problem with the above is that both the hypotheses are parametrized by the
distance R, and we need to come up with model for R for the formulation to make sense. The
true position of the cognitive radio is unknown. For H1, it is natural to take the worst-case
position of being just within rn. This is because the primary might not trust the deployment
model for the cognitive radios. Suppose we took the same approach to H0. Then the worst-
case location under H0 would be just outside rn. After all, if we can recover this location
then we can recover all the area greater than rn. This approach is fatally flawed since the
distribution of the signal strength just within rn and outside of rn are essentially the same.
No interesting tradeoff is possible. We miss the fundamental fact that we must give up some
area immediately outside of rn to avoid having a cognitive radio use the channel within rn.

Simply averaging over R (distance from the primary transmitter) also poses a challenge.
The interval (rn,∞) is infinite and hence there is no uniform distribution over it. This
mathematical challenge corresponds to the physical fact that if we take a single primary-
user model, the area outside rn that can be potentially recovered is infinite. With an infinite
opportunity, it does not matter how much of it that we give up! We need to come up with
probability distribution over R or in other words, we need to weight/discount area outside
rn appropriately. Weighting area by “utility” is a possibility, but as discussed in [62], this
would tightly couple the evaluation of sensing with details of the business model and system
architecture. It is useful to find an approximate utility function that decouples the evaluation
of the sensing approach from all of these other concerns.

With the above discussion in mind, we come up with the following hypothesis testing
model:

H0 : Y [n] =
√
P (R)X[n] +W [n], R ∼ w(r)r

H1 : Y [n] =
√
P (R)X[n] +W [n], R ∈ [0, rn] (5.1)

where w(r) must satisfy
∫∞
rn
w(r) r dr = 1 and w(r) = 0 if r < rn. The numerical re-

sults in this paper have been computed using an exponential weighting function, w(r) =
A exp (−κ(r − rn)), for r > rn and w(r) = 0 for 0 ≤ r ≤ rn. One possible justification for

2Throughout this chapter we assume radial symmetry and hence it is sufficient to consider the radial
distance of the cognitive radio from the primary transmitter to characterize its location.
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the choice of the weighting function comes from the fact that an exponential distribution has
the maximum entropy among the set of all continuous valued distributions on [0,∞) with a
given mean. In our case the mean corresponds to the average distance between two primary
towers transmitting on the same frequency band.

From the above, the asymmetry between the two hypotheses is clear. H0 is a well-
defined probability and so PFA can be calculated for a detector. Meanwhile, H1 has R as a
non-probabilistic uncertainty and so we would have to require something like

sup
r∈[0,rn]

PR=r (T (Y) < λ|H1) ≤ PMD.

The resulting mixed ROC curve for a detector reveals the fundamental tradeoffs.
However, such a formulation mixing worst-case and Bayesian uncertainties in different

ways across the two hypotheses is novel. Using the traditional names PFA and PMD in this
context is likely to lead to confusion. Therefore, as in [62] we gave them new more descriptive
names that better reflected their roles.

5.3.1 Spatial sensing metrics

5.3.1.1 Safety: Controlling the Fear of Harmful Interference

The idea behind the safety metric is to measure the worst-case safety that the cognitive radio
can assure the primary (the worst case is calculated over the fading distribution negotiated
between the cognitive radio and the primary, and over the location of the cognitive radio
within the no-talk radius). To capture the strength of the safety guarantee under uncertainty
we define a new metric called the Fear of Harmful Interference. This is the same as the
average PMD but takes into account all uncertainties in location and fading.

Definition 5.1. Fear of Harmful Interference (FHI) metric is

FHI = sup
0≤r≤rn

sup
Fr∈Fr

PFr(D = 0|R = r). (5.2)

where D = 0 is detector’s decision declaring that the cognitive radio is outside the no-
talk radius and Fr is the set of possible distributions for P (r),W at a distance of r from
the primary transmitter. The outer supremum is needed to issue a uniform guarantee to all
protected primary receivers and also reflects the uncertainty in cognitive radio deployments.
The inner supremum reflects the non-probabilistic uncertainty in the distributions of the
path-loss, fading, noise, or anything else.
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5.3.1.2 Performance

Next we consider a metric to deal with the cognitive radio’s performance — its ability to
identify spectrum opportunities. From a traditional perspective, this is basically a weighted
PFA. Every point at a radial distance r > rn is a spectrum opportunity. For any detection
algorithm, there is a probability associated with identifying an opportunity there, called the
probability of finding the hole PFH(r):

PFH(r) = PFr(D = 0|R = r), r > rn. (5.3)

where Fr represents the propagation, fading, and noise models believed by the cognitive
radio designer.

Definition 5.2. The Weighted Probability of Area Recovered (WPAR) metric is

WPAR =

∫ ∞
rn

PFH(r)w(r) rdr, (5.4)

where w(r) is a weighting function that satisfies
∫∞
rn
w(r) r dr = 1.

The name WPAR reminds users of the weighting of performance over spatial locations
that is fundamental to the cognitive radio context. 1 −WPAR is the appropriate analog
of PFA and measures the sensing overhead [37]. Note that WPAR = 1 corresponds to the
cognitive radio recovering all the area outside rn.

5.3.2 Models for fading uncertainty

The received primary signal strength P (in dBm) can be modeled as P (r) = pt−(l(r)+S+M),
where pt is the power of the transmitted signal, l(r) is the loss in power due to attenuation
at a distance r from the primary transmitter, S is the loss due to shadowing and M is the
loss due to multipath fading. Unless specifically mentioned, in this chapter we assume that
all powers are measured in the Decibel (dB) scale. We assume that l(r) = 10 log10(rα), and
α is the true attenuation exponent.3

5.3.2.1 Nominal model

For convenience, S and M are assumed to be independent of r and to follow a nominal
model for S + M that is Gaussian (S + M ∼ N (µS, σ

2)) on a dB scale. This implies that
P ∼ N (µ(r), σ2), where µ(r) = pt − (l(r) + µS). This is the distribution used to compute
the WPAR as in (5.4). For the plots in this paper, µS = 0 dB and the standard deviation
σ = 5.5 dB were chosen to match standard assumptions in the IEEE 802.22 literature [132].

3We could include an uncertainty model for the attenuation exponent and include this in the computation
of FHI . However, for simplicity we assume complete knowledge of the attenuation exponent in this chapter.
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5.3.2.2 Quantile models

To compute FHI , we cannot always use the nominal model for shadowing and multipath as
it is important to model the fact that the primary user does not trust this model completely.
Instead, it is possible that the primary user trusts only a quantized version (or a coarse his-
togram) of the fading distribution. Mathematically, we model this as a class of distributions
(Fr) that satisfy given quantile constraints.

Definition 5.3. A single-quantile model Fr is a set of distributions for the received signal
power defined by a single number 0 ≤ β ≤ 1 and a function of r denoted γ(r, β). A
distribution Fr ∈ Fr iff

PFr(P < γ(r, β)) = β. (5.5)

A k-quantile model is a set of distributions Fr for the received signal power defined by a
list of numbers (β1 < . . . < βk) and a corresponding list of functions (γ1(r, β1), . . . , γk(r, βk)).
A distribution Fr ∈ Fr iff ∀i ≤ k

PFr(P < γi(r, βi)) = βi. (5.6)

For consistency, the quantiles are chosen so that the nominal Gaussian N (µ(r), σ2) is
always one of the possible distributions for P .

γ(r, β) = Q−1(1− β)σ + µ(r), (5.7)

where Q−1(·) is the inverse of the standard Gaussian tail probability function.
Figure 5.1 shows a picture of the distributions allowed under the quantile model (5 learned

quantiles) defined in this section. The set of allowed Cumulative Distribution Functions
(CDF’s) for P under our quantile model is precisely the set of all possible curves sandwiched
between the upper and lower bounds shown in Figure 5.1. The dashed (black) curve in the
figure shows that nominal Gaussian CDF for P , and the quantile constraints can be thought
of as samples of the nominal CDF (the triangle points (in red) in the figure).

5.3.3 Single radio sensing performance

The tradeoff between FHI and WPAR depends on the detector used by the secondary user.
We start with a hypothetical single-radio detector (with infinite sensing time) that meets
the current FCC sensing requirement [26]. The issue of finite sensing time is illustrated next
through the example of a radiometer.
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Figure 5.1: The quantile model for the received signal power (P ) distribution. The dashed
(black) curve is the nominal Gaussian CDF for P , and the triangle points (in red) show the
quantile constraints on the CDF. The dashed-dotted (magenta) curve is the upper bound and
the solid (blue) curve is the lower bound on the allowable CDF for P . The actual CDF can lie
anywhere in between these two bounding functions.
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5.3.3.1 Evaluating an ideal -114 dBm detector

The detector specifications (for sensing-based cognitive radio systems) in the FCC whitespace
ruling require any proposed sensing algorithm to be able to detect digital television signals
at −114 dBm to a probability of mis-detection PMD ≤ 0.1 and probability of false alarm
PFA ≤ 0.1 [26].4 We now show that detectors based on such specifications lead to very poor
area recovery.

We assume a generic detection algorithm that computes a test statistic T (Y) as a function
of the received signal samples Y = (Y [1], Y [2], · · · , Y [N ]) and compares it to a threshold to
decide whether the band is free to use or not, i.e,

T (Y)
D=1

R
D=0

λ.

Let P (in dBm) denote the average power of the received signal samples. P is a ran-
dom variable whose distribution depends on the shadowing and fading distributions. The
probability of mis-detection and probability of false-alarm to be

PMD(p) := P(T (Y) < λ|P = p),

PFA := P(T (Y) ≥ λ|P = −∞). (5.8)

Note that the probability of mis-detection is a function of the received signal power, where as
the probability of false-alarm is a single number. For most reasonable detection algorithms
PMD(p) is a monotonically increasing function, i.e., as the received signal power increases
there is a smaller chance of missing the signal.

Theorem 5.1. Consider a generic detection algorithm that computes a test-statistic T (Y)
and compares it to a detector threshold λ to decide whether the band is free to use. Assume
that the detection algorithm satisfies the following specifications:

• The mis-detection probability function (defined in (5.8)) satisfies, PMD(−114) ≤ 0.1.

• PMD(p) is a monotonically decreasing function of p.

• The probability of false-alarm (defined in (5.8)) satisfies PFA ≤ 0.1.

Assume that the nominal distribution (to compute WPAR) for the received single power P
is N (µ(r), σ2), where µ(r) is a deterministic monotonically decreasing function of r. Fur-
thermore, assume that the set of distributions Fr, that the primary trusts (to compute FHI)

4The FCC report does not explicitly state the probability of false alarm and the probability of missed-
detection to be 0.1. However, we choose these values based on the sensing requirements in the IEEE 802.22
standard.
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for the received signal power P satisfies the single-quantile model in Definition 5.3. That is,
any distribution Fr ∈ Fr satisfies5

PFr(P < −114) = β(r), (5.9)

where β(r) = 1−Q
(
µ(r)−(−114)

σ

)
. Then, we have

FHI = 0.9β(rn) + 0.1,

PFH(r) ≤ β(r) + 0.1, (5.10)

Proof. The secondary user can use any detection algorithms as long as it meets the specifi-
cations given in the statement of the Theorem. To compute the fear of harmful interference
to the primary user, one must consider the worst-possible detection algorithm satisfying the
given specifications.

Let D denote the set of all detection algorithms satisfying the specifications given in the
statement of the theorem. Then, the fear of harmful interference is

FHI = sup
0≤r≤rn

sup
Fr∈Fr

sup
D∈D

EFr

[
PD
MD(P )

]
(a)
= sup

0≤r≤rn
sup
D∈D

PD
MD(−∞)P(P < −114) + PD

MD(−114)P(P ≥ −114)

(b)
= sup

0≤r≤rn
sup
D∈D

[(1− PD
FA)P(P < −114) + PD

MD(−114)P(P ≥ −114)]

(c)
= sup

0≤r≤rn
[β(r) + 0.1(1− β(r))]

= sup
0≤r≤rn

(0.9β(r) + 0.1)

(d)
= 0.9β(rn) + 0.1.

In the above chain of equalities the superscript D is used to denote a detection algorithm
from the class of allowed detection algorithms D. Equality (a) follows from the fact that the
maximizing distribution F ∗r ∈ Fr corresponds to placing a mass of β(r) at −∞ and (1−β(r))
at −114 dBm. This is the maximizing distribution irrespective of the actual detection
algorithm D ∈ D. This is because PD

MD(p) is a monotonically decreasing function of p, for
all D ∈ D. Equality (b) follows from the fact that PD

MD(−∞) is the mis-detection probability
when the signal is absent (p = −∞). This corresponds to the event when noise-only received
signal samples do not cause a false-alarm. Hence, PD

MD(−∞) = 1−PD
FA. Equality (c) follows

5Since only the −114 dBm level is specified, it is natural to assume that the primary only has confidence
in a single-quantile that corresponds to that level.
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from the fact that supD∈D(1−PD
FA) = 1, and supD∈D(1−PD

MD(−114)) = 0.1. Finally, equality
(d) follows from the fact that β(r) is a monotonically increasing function.

Now, for any D ∈ D, the probability of finding a hole is given by

PFH(r) = EP

[
P(TD(Y) < λ|P )

]
= EP [PD

MD(P )]
(e)

≤ PD
MD(−∞)P(P < −114) + PD

MD(−114)P(P ≥ −114)
(f)

≤ β(r) + 0.1, for r > rn. (5.11)

The bound in (e) follows from the fact that the function PD
MD(p) ≤ PD

MD(−∞), for −∞ <
p < −114, and PD

MD(p) ≤ PD
MD(−114), for −114 ≤ p < ∞. These inequalities follows from

the fact that PD
MD(p) is a monotonically decreasing function of p. The bound in (f) follows

from observing that PD
MD(−∞) ≤ 1, P(P < −114) := β(r), PD

MD(−114) ≤ 0.1 ∀D ∈ D,
and P(P ≥ −114) ≤ 1.

Shockingly, there is a benefit from missed detections above in step (f) of (5.11)! This sug-
gests that a clever detector designer would do well to introduce intentional missed detections
to improve performance while still meeting the official specification. This calls into ques-
tion the unspoken assumption that deployed detector implementations would have better
probabilities of missed detection when the primary signal is stronger than −114 dBm.

Using (5.11) in the definition of WPAR (See (5.4)) and applying our nominal model
gives a WPAR ≤ 0.16. This clearly shows that while the −114 dBm requirement seems
very conservative, the detector specification is actually not very safe and simultaneously has
a poor area recovery irrespective of the actual detector used. In the worst-case, the signal
can indeed fall as low as -114 dBm at the no-talk radius. However in the average case the
signal is a lot stronger and this leads to a lot of valuable area going unrecovered.

5.3.3.2 The radiometer

Recall from Chapter 2 that the test-statistic for the radiometer can be written as

T (Y) =
1

N

N∑
n=1

|Y [n]|2
D=1

R
D=0

λ, (5.12)

where λ is the design parameter and is called the detector threshold. Here

Y [n] =
√
P (r)X[n] +W [n],
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where X[n] is the faded primary signal at time n, and W [n] is the background noise at
time n. For convenience assume that all W [n] are independent and identically distributed
as N (0, σ2

w).

Theorem 5.2. Consider the radiometer whose test-statistic is defined in (5.12). Let P
denote the average received primary signal power in the Decibel scale. Let Fr be the set of
possible distributions for P at a distance of r from the primary transmitter.

Assume that the received power distribution is completely known and is given by P ∼
N (µ(r), σ2), where µ(·) is a known monotonically decreasing function. This corresponds to
the case of total consensus between primary and secondary and Fr contains just the nominal
model.

In this case, the safety/performance of the radiometer given in (5.12) is

F ck
HI =

∫ ∞
−∞

1−Q

λ− (10
p
10 + σ2

w)√
2
N

(10
p
10 + σ2

w)

 · ξ exp
−(p−µ(rn))2

2σ2 dp +O

(
1√
N

)
,

PFH(r) =

∫ ∞
−∞

1−Q

λ− (10
p
10 + σ2

w)√
2
N

(10
p
10 + σ2

w)

 · ξ exp
−(p−µ(r))2

2σ2 dp +O

(
1√
N

)
,(5.13)

where ξ := 1√
2πσ2

, and the WPAR is given by

WPARck =

∫ ∞
rn

w(r)PFH(r) rdr

Proof. As the received power distribution is completely known, the fear of harmful interfer-
ence is given by

F ck
HI = EP [P (T (Y) < λ|P )] , (5.14)

where P ∼ N (µ(rn), σ2). Let P = p be a given received power realization, then using
the Central Limit Theorem we can approximate T (Y) ∼ N

(
10

p
10 + σ2

w,
2
N

[10
p
10 + σ2

w]2
)

[66].

Furthermore, if FN
T (x) is the CDF of T (Y)−(10

p
10 +σ2

w)√
2
N

[10
p
10 +σ2

w]
, then the Berry-Esseen Theorem (see

Theorem 2.4.9 in [86]) about the convergence of the CLT gives us∣∣FN
T (x)−G(x)

∣∣ ≤ c√
N
,

where G(x) is the CDF of a N (0, 1) distribution, and c > 0 is a known constant.
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Therefore,

P (T (Y) < λ|P = p) = 1−Q

λ− (10
p
10 + σ2

w)√
2
N

(10
p
10 + σ2

w)

+O

(
1√
N

)
. (5.15)

Using (5.15) in (5.14) we get

F ck
HI =

∫ ∞
−∞

1−Q

λ− (10
p
10 + σ2

w)√
2
N

(10
p
10 + σ2

w)

+O

(
1√
N

) · ξ exp
−(p−µ(rn))2

2σ2 dp

=

∫ ∞
−∞

1−Q

λ− (10
p
10 + σ2

w)√
2
N

(10
p
10 + σ2

w)

 · ξ exp
−(p−µ(rn))2

2σ2 dp +O

(
1√
N

)
. (5.16)

The probability of finding a hole at a distance r from the transmitter is given by

PFH(r) = EP [P(T (Y) < λ|P )] , (5.17)

where P ∼ N (µ(r), σ2). Therefore,

PFH(r) =

∫ ∞
−∞

1−Q

λ− (10
p
10 + σ2

w)√
2
N

(10
p
10 + σ2

w)

 · ξ exp
−(p−µ(r))2

2σ2 dp +O

(
1√
N

)
. (5.18)

Substituting (5.18) in (5.4) gives us the expression for WPAR

WPARck =

∫ ∞
rn

w(r)

∫ ∞
−∞

1−Q

λ− (10
p
10 + σ2

w)√
2
N

(10
p
10 + σ2

w)

 · ξ exp
−(p−µ(r))2

2σ2 dp

 rdr

+ O

(
1√
N

)
. (5.19)

Note that the expressions for the performance/safety of the radiometer in Theorem 5.2
contain error terms from the CLT approximation. If one wishes to compute exact expressions
then they must use the Chi-squared distribution for the test-statistic T (Y). In the rest of
the chapter, we omit the error terms arising due to the CLT approximation. This is done to
keep the mathematical equations simple.

Theorem 5.2 gives us the safety/performance of a radiometer with complete distribu-
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tional knowledge. We now give the safety/performance under the single-quantile model of
Section 5.3.2 for the received signal distribution.

Theorem 5.3. Consider the radiometer whose test-statistic is defined in (5.12). Let P
denote the average received primary signal power in the Decibel scale. Let Fr be the set
of possible distributions for P at a distance of r from the primary transmitter. Assume
that the uncertain set Fr satisfies the single-quantile model of Section 5.3.2. That is, given a
0 ≤ β ≤ 1, the primary agrees on a threshold γ(r, β) such that for every distribution Fr ∈ Fr,
PFr(P < γ(r, β)) = β, where γ(r, β) = σQ−1(1− β) + µ(r).

In this case, the fear of harmful interference is given by

F sq
HI = β

1−Q

λ− σ2
w)√

2
N
σ2
w

+ (1− β)

1−Q

λ− (10
γ(rn,β)

10 + σ2
w)√

2
N

(10
γ(rn,β)

10 + σ2
w)

 , (5.20)

where γ(rn, β) = σQ−1(1 − β) + µ(rn). The WPAR performance is same as Eqn. (5.19) in
Theorem 5.2.

Proof. See Appendix D.1 for the proof.

Note that the secondary user has two parameters to adjust. It can adjust the threshold λ
on its own and it can negotiate with the regulator/primary regarding the appropriate value
for β. We assume that it does both and satisfies (D.4). The optimal β and λ are chosen to
maximize WPARck (See Eqn. (5.19)). This can be done numerically. Figure 5.2 shows the
resulting safety/performance tradeoff for a single radio with both a finite and infinite number
of samples. From Figure 5.2 we can see that the impact of the uncertainty is substantial
when the sensing time is finite.

A special limiting case of interest is when the number of samples available for detection
is infinite. This allows us to isolate the effect of fading/shadowing from the effect of finite
samples. We call this a ‘perfect’ radiometer (in general a single-user perfect detector).
The test-statistic for a perfect radiometer is T per(Y) = limN→∞

1
N

∑N
n=1 |Y [n]|2. As Y [n]

are independent and identically (iid) distributed random variables, the strong law of large
numbers implies 1

N

∑N
n=1 |Y [n]|2 a.s.−→ 10

p
10 + σ2

w, where p (in dBm) is the average received
signal power. Therefore, the perfect radiometer decides whether the band is used/unused
according to the following rule

T per(Y) = 10
P
10 + σ2

w

D=1

R
D=0

λ

⇔ P
D=1

R
D=0

10 log10(λ− σ2
w), (5.21)
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We now derive the safety/performance of the perfect radiometer.

Theorem 5.4. Consider a perfect radiometer, whose test-statistic is defined in (5.21), where

P is the received signal power, λ̃ := 10 log10(λ− σ2
w) is the detection threshold and Fr is the

set of possible distributions for P at a distance of r from the primary transmitter.

• A: Assume that the received power distribution is completely known (Fr is a singleton)
and is given by P ∼ N (µ(r), σ2), where µ(·) is a known monotonically decreasing
function. Then, the safety/performance is given by

F per,ck
HI = 1−Q

(
λ̃− µ(rn)

σ

)
,

WPARper,ck =

∫ ∞
rn

w(r)

[
1−Q

(
λ̃− µ(r)

σ

)]
r dr. (5.22)

• B: Assume that the uncertain set Fr satisfies the single-quantile model of Section 5.3.2.
That is, given a 0 ≤ β ≤ 1, the primary agrees on a threshold γ(r, β) such that for
every distribution Fr ∈ Fr, PFr(P < γ(r, β)) = β, where γ(r, β) = σQ−1(1−β) +µ(r).
Then, the fear of harmful interference is given by

F per,sq
HI =

{
β if λ̃ ≤ γ(rn, β)
1 otherwise.

(5.23)

The WPAR in this case is same as in the complete knowledge case (See Eqn. (5.22)).

Proof. See Appendix D.2 for the proof.

Corollary 5.5. Consider the perfect radiometer under the single-quantile uncertainty model
for Fr. For a given choice of target fear of harmful interference F t

HI , the optimal β∗ and λ̃∗

that maximizes WPARper,sq subject to F per,sq
HI ≤ F t

HI is given by

β∗ = F t
HI , λ̃∗ = σQ−1(1− F t

HI) + µ(rn). (5.24)

Hence, F t
HI = Q

(
λ∗−µ(rn)

σ

)
, which is the same as the safety performance given in (5.22) for

the perfect radiometer under complete distributional knowledge.

Proof. From (5.23) it is clear that, to meet the constraint F per,sq
HI ≤ F t

HI we must have

β ≤ F t
HI and γ(rn, β) ≥ λ̃. Therefore, the optimization problem is reduced to

sup
β,eλ
[∫ ∞

rn

w(r)

[
1−Q

(
λ̃− µ(r)

σ

)]
r dr

]
: s.t. β ≤ F t

HI , λ̃ ≤ σQ−1(1− β) + µ(rn).(5.25)
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Note that the objective function is monotonically increasing function of λ̃. This is because[
1−Q

(eλ−µ(r)
σ

)]
is monotonically increasing with λ̃ and w(r) ≥ 0. Also, note that the con-

straint on λ̃, σQ−1(1−β)+µ(rn) is monotonically increasing with β. These two observations

imply that the optimizing β∗ and λ̃∗ are the extreme values of the constraint functions, i.e.,
β∗ = F t

HI and λ̃∗ = σQ−1(1− F t
HI) + µ(rn).

10−4 10−3 10−2 10−1 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Single Detector Performance

W
ei

gh
te

d 
Pr

ob
ab

ili
ty

 o
f F

al
se

 A
la

rm
 (W

PA
R)

Fear of Harmful Interference (FHI)
 

 

Perfect detector, Number of Samples (N) = !
Complete knowledge, Number of Samples (N) = 100
Single Quantile knowledge, Number of Samples (N) = 100

Figure 5.2: Performance of a perfect detector (infinite samples) as compared with a radiometer
using a finite number of samples.

The black curve in Figure 5.3 shows the FHI vs WPAR tradeoff for a single user running
a radiometer. The WPAR performance at low FHI is bad even for the perfect radiometer.
This captures the physical intuition that guaranteeing strong protection to the primary user
forces the detector to budget for deep fading events. Unlike in traditional communication
problems where there is no harm if the fading is not bad, here there is substantial harm since
a spectrum opportunity is left unexploited. The reader is encouraged to read [62], [126] to
understand the (FHI ,WPAR) tradeoffs for detectors limited to a finite number of samples
as well as those for uncertain fading models.
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5.3.3.3 Impact of noise uncertainty: SNR walls in space

In the analysis of the perfect radiometer (see Eqn (5.21)) we assumed that the noise power
σ2
w is completely known. We now see the impact of uncertainty in the noise power on the
FHI vs WPAR tradeoff for the perfect radiometer.

Theorem 5.6. Consider a perfect radiometer, whose test-statistic is defined in (5.21), where

P (r) is the received signal power, λ̃ := 10 log10(λ− σ2
w) is the detection threshold, σ2

w is the
nominal noise power, and Fr is the set of possible distributions for P (r) at a distance of r
from the primary transmitter. Assume,

• The received power distribution is completely known (Fr is a singleton) and is given by
P (r) ∼ N (µ(r), σ2), where µ(·) is a known monotonically decreasing function.

• The noise power is uncertain, and is known only within a certain range given by σ2
w ∈

[1
ρ
σ2
n, ρσ

2
n], where σ2

n is the nominal noise power, and ρ is a parameter that captures
the uncertainty in the noise power.

Then, there exists an FHI threshold F t
HI := 1 − Q

(
10 log10([1− 1

ρ
]σ2
n)−µ(rn)

σ

)
, below which

the area recovered is zero, i.e., WPAR = 0.

Proof. From the definition of the fear of harmful interference, we have

FHI = sup
σ2
w∈[ 1

ρ
σ2
n,ρσ

2
n]

P
(
P (r) < λ̃|r = rn

)
= sup

σ2
w∈[ 1

ρ
σ2
n,ρσ

2
n]

[
1−Q

(
λ̃− µ(rn)σ

)]
=

[
1−Q

(
10 log10(λ− 1

ρ
σ2
n)− µ(rn)

σ

)]

From the above expression the threshold λ can be computed to be

λ =
1

ρ
σ2
n + 10

„
µ(rn)+σQ−1(1−FHI )

10

«
(5.26)

Now, the probability of finding a hole is given by

PFH(r) = PFr
(
P (r) < 10 log10(λ− σ2

n)
)

= PFr

(
10

P (r)
10 < λ− σ2

n

)
(5.27)
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Substituting the expression for λ from (5.26) in (5.27), we get

PFH(r) = PFr

(
10

P (r)H2

10 < 10

„
µ(rn)+σQ−1(1−FHI )

10

«
− (σ2

n −
1

ρ
σ2
n)

)
(5.28)

Since 10
P (r)H2

10 > 0, PFH(r) = 0 ∀r ≥ rn

⇔ 10

„
µ(rn)+σQ−1(1−FHI )

10

«
− (σ2

n −
1

ρ
σ2
n) ≤ 0

⇔ 10

„
µ(rn)+σQ−1(1−FHI )

10

«
≤ (σ2

n −
1

ρ
σ2
n)

⇔ FHI ≤ 1−Q

(
10 log10([1− 1

ρ
]σ2
n)− µ(rn)

σ

)
, (5.29)

This implies, WPAR = 0, for all FHI ≤ F t
HI .

Theorem 5.6 gives an FHI threshold such that a safety guarantee to the primary beyond
this threshold will force the cognitive radio to lose all the recoverable area (WPAR = 0).
In order to guarantee very low FHI for the primary, the threshold must be set such that the
primary is protected against extremely deep fading events. In traditional terms, the resulting
sensitivity requirement is beyond the SNR wall. Recall that the traditional H0 corresponds
to R =∞ since an infinitely far away primary transmitter might as well not exist at all.

Figure 5.3 shows the FHI vs WPAR performance for the radiometer and the matched
filter under fading and noise uncertainty. The noise uncertainty model used is described in
the statement of Theorem 5.6 and the fading is assumed to be uncertain, and only knowledge
of the minimum length of the uncertain channel coherence time, Nc is assumed. The black
curve in Figure 5.3 is the tradeoff for the radiometer with fading uncertainty and no noise
uncertainty, whereas the red curve is the tradeoff for the radiometer with both fading and
noise uncertainty. Notice how the noise uncertainty introduces a FHI threshold below which
the WPAR is zero.

5.3.3.4 Dual detection: how to exploit time-diversity

A diversity perspective is interesting to consider. Since the number of samples N is infinite,
one could exploit time diversity for multipath if we believed that the actual coherence time
is finite Nc < ∞. However, for the radiometer all the thresholds must be set based on the
primary user’s fear of an infinite coherence time. So, the radiometer cannot do anything
even if the cognitive radio designer actually believed that the coherence time is most likely
finite.
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Figure 5.3: The impact of noise uncertainty from a spatial perspective is illustrated in this
figure. Under noise uncertainty, there is a finite FHI threshold such that if the cognitive radio
needs to guarantee protection below this threshold, the area recovered by a radiometer is zero
(WPAR = 0). The coherent detector (modified matched filter) has a more interesting set of
plots discussed in the text.
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Now consider the matched filter trying to sense for a sinusoidal pilot tone. As the
sinusoidal pilot is narrowband the matched filter suffers from the lack of frequency diversity
as compared to the radiometer: effectively, fading is more variable. This means that we
have to be more conservative, which can cost us in area. However, the matched filter gives
us an opportunity to deal with the situation where the coherence-time is uncertain. We
can run two parallel matched filters, one assumes that the coherence time is infinity and
the other assumes that the coherence time is Nc, with the thresholds set according to their
respective assumptions on the coherence time. If either of these detectors declares that the
band is used then the decision is that the band is used (this is an “OR” rule among the
two sub-detectors). This ensures that the FHI constraint is met irrespective of the actual
coherence time.

From a WPAR point of view, the matched filter assuming an infinite coherence time
has no SNR wall (as infinite coherent processing kills the uncertainty in the noise), but is
susceptible to multipath (no time-diversity to exploit) and shadowing. So, as Figure 5.3
shows, this detector loses a lot of area. The other matched filter runs using a coherence time
of Nc. This enjoys time-diversity that completely wipes out multipath and so has better
performance. However, this detector still has an SNR wall due to noise uncertainty. This
SNR wall shows up as the WPAR crashing to zero at an appropriately low FHI .

The dual-detector approach leads to two different FHI vs WPAR curves depending on
what the mix of underlying coherence times is (stationary devices or moving devices). The
good thing about the dual-detector approach is that the FHI is met even when the primary is
uncertain, simultaneously guaranteeing the best possible WPAR based on the true channel
coherence time. Figure 5.3 shows this for a very short coherence time Nc = 100. For any
realistic coherence time, the SNR wall effect would becomes negligible at all but extremely
paranoid values for FHI .

So Figure 5.3 shows an interesting effect. In the case when the actual coherence time
is infinite, the radiometer (red curve) has a better WPAR performance than the matched
filter for FHI ≥ 2 · 10−3, even under noise uncertainty! This suggests that diversity is very
important, and the lack of it can lead to poor performance. This effect of the radiome-
ter outperforming a matched filter at high FHI is analogous to the time-domain effect of
the radiometer sometimes having a better sample complexity than the matched filter (see
Figure 3.1).

5.4 Spectrum sensing: space-time perspective

In Section 5.3 we considered the situation when the primary is always “ON”, and proposed
metrics (FHI and WPAR) to evaluate the performance of sensing algorithms. In this section,
we consider the general sensing problem where the primary signal has both “ON” and “OFF”
periods. Unlike the previous case, where space was very critical (the spectrum hole was
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infinite in the time-dimension), in this case both space and time must be considered together.
As in Section 1.2, we assume that a primary transmitter is providing service to its re-

ceivers within a service area. As before, there is a no-talk region around the primary trans-
mitter. The only change now is that the primary transmitter turns ON/OFF according
to some random process (whose knowledge might not be known apriori to the secondary
user). We assume that the length of the ON and OFF durations of the primary transmitter
are much longer than the typical sensing time for the secondary user. In this situation,
protection to the primary corresponds to the secondary remaining quiet within the no-talk
region when the primary is ON. On the other hand, the secondary can transmit under two
conditions: if it is outside the primary’s no-talk radius, or if it is inside the primary’s no-talk
radius and the primary transmitter if OFF.

5.4.1 Space-time sensing formulation

We now formulate the most general version of the space-time sensing problem. Let U [n]
denote the state of the primary transmitter at each time instance n, U [n] = 1 if the pri-
mary transmitter is ON, and U [n] = 0 if the primary transmitter is OFF. Assume that the
secondary decides to sense at time instances ni, i = 1, 2, 3, · · · , and let the length of each
sensing interval be denoted by δi, where δi < ni+1 − ni. At the end of each sensing interval,
the secondary makes a decision of whether the band is safe to use (Di = 0) or not safe to
use (Di = 1). If the sensing algorithm declares the band to be unused, then we assume that
the secondary transmits its signal until the start of the next sensing epoch ni+1, otherwise
the secondary user does not transmit and waits for the outcome of the next sensing decision.
Based on the sensing decisions, we can construct a random process Zr[n] ∈ {0, 1} which
denotes the state of the secondary user located at a distance r from the primary transmitter.
Zr[n] = 1 implies that the secondary user is transmitting (ON), and Zr[n] = 0 implies it
is not transmitting (OFF). An example scenario illustrating U [n], the sensing epochs and
Zr[n] are shown in Figure 5.4. Given the problem setup we now define the two main metrics
of interest:

5.4.1.1 Protection

Intuitively, interference to the primary can be quantified by measuring the fraction of the
time (ON time of the primary) the secondary is transmitting within the no-talk region when
the primary is also ON . However, there is a problem with this definition as illustrated by
the scenario below.

Assume that the primary transmitter if OFF, and that a secondary user senses the
primary for N samples and declares that the primary is OFF and hence starts transmitting
its packets. Now, there is a finite probability (strictly non-zero and does not scale with
the sensing time N) that the primary comes back ON while the secondary is transmitting,
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Figure 5.4: The figure illustrates the problem set up for space-time spectrum sensing. The state
of the primary U [n], the sensing epochs, as well as the secondary ON/OFF process Zr[n] are
shown in the figure. The ‘red’ colored sensing windows indicate the events where the detector
declares the band to be used, and the ‘green’ colored sensing windows indicate the events where
the detector declared the band to be unused. The primary buffer zones are shown by the ‘tan’
shaded regions on the function U [n], and the actual interference events are shown by shaded
‘red’ regions on Zr[n].

leading to an interference event. According to our definition, the secondary has caused
interference to the primary even when its detector was correct. So, with the current definition
of interference, the only way to drive the probability of interference to zero is to scale
the secondary transmission time to zero. This gives an uninteresting tradeoff between the
protection to the primary system and the performance of the secondary user6.

To avoid running into the scenario described above, we assume that there is a sacrificial
buffer zone (∆ samples) at the beginning of every OFF to ON transition of the primary user
within which interference from the secondary user is tolerated. This is shown by the shaded
‘tan’ region in Figure 5.4. This is equivalent to the primary user potentially losing some
marginal users (operating close to the noise-limited contour) due to the potential operation
of the secondary user [31].

In this formulation we assume that the primary packets are of moderate length and if the
secondary interferes with the primary’s packet (outside the buffer zone), then we fear that
the whole packet may be lost. So, a reasonable metric to protect the primary from losing
packets is to constraint the total fraction of mis-detection by the secondary. So, the fear of

6A similar conclusion was presented in [133]. In that paper the authors model the primary ON/OFF
distributions as exponentially distributed, and they show that the fraction of time the secondary can use the
band (performance) is proportional to the fraction of time the primary is interfered with (interference).
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harmful interference is same as the FHI definition in Section 5.3.1.1.

FHI = sup
0≤r≤rn

sup
Fr∈Fr

PFr(D = 0|R = r). (5.30)

As before, we assume a worst-case location of the secondary user to compute the inter-
ference caused to the primary, i.e., we measure the interference caused by the secondary
located at the edge of the primary no-talk radius.

5.4.1.2 Performance

The metric that measures the performance of the secondary user can be defined similar to
the definition in Section 5.3.1.2. For each location r, we can compute the total fraction of
space-time opportunities recovered by the sensing algorithm

PSTR(r) =


limM→∞

1
M

∑M
n=1 I(Zr[n]=1) if r > rn

limM→∞
1
M

PM
n=1 I(Zr [n]=1,U [n]=0)
1
M

PM
n=1 I(U [n]=0)

if r ≤ rn

Finally, we assume a distribution (weighting function) w(r) on the location of the secondary
users, and use this to compute the weighted probability of space-time recovered (WPSTR)
by

WPSTR =

∫ ∞
0

PSTR(r)w(r)rdr, (5.31)

where
∫∞

0
w(r)rdr = 1. Notice that the integral spans locations inside and outside the no-

talk radius (0 to ∞). Also, the weighting function w(r) is non-zero for r ≤ rn. This is
different than the definition of WPAR in (5.4) where the integral is only from the edge of
the no-talk radius to infinity, and w(r) = 0 for r ≤ rn. In fact the only information about the
value of the weighting function inside the no-talk radius w(r), 0 ≤ r ≤ rn that is relevant to
compute WPSTR is the integral

∫ rn
r=0

w(r)rdr. This is because the probability of finding a
hole inside the no-talk radius is the probability that the noise does not trigger the detection
threshold (1− pfa), which is independent of the spatial location r.

5.4.2 Memoryless sensing algorithms

Having formulated the metrics for space-time spectrum sensing in Section 5.4.1, we now
consider a sub-optimal class of algorithms and evaluate their FHI vs WPSTR performance.
Even these restrictive class of algorithms bring out some interesting tradeoffs which were
absent in the space only scenario. The assumptions we make are:
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• We consider memoryless detection algorithms with fixed sensing time. That is, we
assume that the detector senses for N samples and makes a decision based on the
measured N samples, and it does not consider any past information about the channel.
This is clearly sub-optimal because memory could help significantly [77]. However,
memoryless algorithms are easy to certify as compared to the ones with memory.

• We assume that the transmit time for the secondary is fixed. That is, whenever the
sensing algorithm declares the band to be unused, the secondary transmits for NTX

number of samples before sensing the channel again. Also, if the detector declares the
channel to be used, then it senses the channel again after NTX samples. We make this
assumption to make the analysis simple.

• We assume that the mean length of the ON/OFF time of the primary are much larger
than the sensing time N .

• As the sensing time N is much smaller than the mean ON/OFF duration, the chance of
a sensing window of N samples containing a primary state transition (ON −→ OFF, or
OFF −→ ON) is very low. In this section, we ignore such transitions and assume that
every sensing window (N samples) has either the primary ON or the primary OFF.
In particular, to compute FHI we assume that the primary is ON for the whole of the
sensing window (N samples). This approximation can lead to higher rate of missed-
detections because if the primary turns ON somewhere within the sensing window,
there is a chance that the energy detector will not trigger the threshold due to less
than typical energy in the sensing window. To counter this we enforce N +NTX ≤ ∆.

• Finally, for simplicity we consider a radiometer (energy detector). The analysis in
this section can easily be extended to other single user as well as cooperative sensing
algorithms.

5.4.2.1 FHI for a radiometer

Given a sensing window of N samples, the secondary interferes with the primary user only
if the secondary is within the no-talk radius, the primary is ON, and the secondary user
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mis-detects the primary. The fear of harmful interference is given by

FHI

= P (T (Y) < λ|r = rn, ON)

= P

(
1
N

N∑
n=1

|
√
P (rn)X[n] +W [n]|2 < λ

)

=
∫ ∞
−∞
P

(
1
N

N∑
n=1

|
√

10p/10X[n] +W [n]|2 < λ

∣∣P (rn) = 10
p
10

)
P(P (rn) = 10

p
10 )dp

≈
∫ ∞
−∞

[
1−Q

(
λ− (10

p
10 + σ2

w)√
2/N(10

p
10 + σ2

w)

)]
frn(p)dp. (5.32)

In the above derivation we assumed that the received signal power (in dBm) is log-normal
distributed. That is, 10 log10 P (r) ∼ N (µ(r), σ2), where µ(·) is a deterministic function of r.
Also, σ2

w is used to denote the noise variance, Q(·) is the Gaussian tail-probability function

and fr(·) is the Gaussian probability density function given by fr(p) := 1√
2πσ2

exp
(
−p−µ(r)

2σ2

)
,

where p is the signal power in dBm.

5.4.2.2 WPSTR for a radiometer

The performance of a radiometer can be characterized along two dimensions: time-recovery
and spatial-recovery. As the radiometer uses N samples out of a total of ∆ samples for
sensing, the fraction of time available for secondary transmissions is given by 1 − N

∆
. This

can be thought of as the time recovery metric.
The space-recovered metric is similar to the WPAR computed in Section 5.3.1.2. The

only difference now is that the secondary can also reuse the spectrum inside the no-talk
radius when the primary is OFF. As before, to compute the WPAR we first compute the
probability of finding a hole as a function of the spatial location

PFH(r) = P (T (Y) < λ)

=


poff

(
T (Y) < λ

∣∣OFF) if r ≤ rn

poff
(
T (Y) < λ

∣∣OFF)
+pon

(
T (Y) < λ

∣∣OFF) if r > rn

(5.33)

where pon is the probability that the primary transmitter is ON, and poff is the probability
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that the primary transmitter is OFF. Furthermore,

P
(
T (Y) < λ

∣∣OFF) = P

(
1

N

N∑
n=1

|W [n]|2 < λ

)

= 1−Q

λ− σ2
w√

2
N
σ2
w

 =: 1− pfa,

where pfa is used to denote the false-alarm probability of the radiometer. Similarly,

P
(
T (Y) < λ

∣∣ON)
= P

(
1

N

N∑
n=1

|
√
P (r)X[n] +W [n]|2 < λ

)

≈
∫ ∞
−∞

1−Q

λ− (10
p
10 + σ2

w)√
2
N

(10
p
10 + σ2

w)

 fr(p)dp
Weighting the probability of finding a hole PFH(r) using the weighting function w(r)r

gives us the weighted probability of space recovered metric:

WPSR

=

∫ ∞
0

PFH(r)w(r)rdr

= poff (1− pfa) + pon

∫ ∞
rn

PFH(r)w(r)rdr

= poff (1− pfa)

+pon

(∫ ∞
rn

w(r)rdr

)∫ ∞
rn

PFH(r)

[
w(r)∫∞

rn
w(r)rdr

]
rdr

= poff (1− pfa) + pon · β ·
∫ ∞
rn

PFH(r)w̃(r)rdr, (5.34)

where β :=
∫∞
rn
w(r)rdr denotes the weighted fraction of the area outside the no-talk radius,

with the convention that
∫∞

0
w(r)rdr = 1. Also, w̃(r) := w(r)R∞

rn
w(r)rdr

can be thought of as

a new weighting function for area outside the no-talk radius. Note, by definition we have∫∞
rn
w̃(r)rdr = 1. This gives a new interpretation to Equation (5.34): WPAR is a linear

weighting of the area recovered when the primary is OFF (1− pfa) and the area recovered
when the primary is ON (β ·

∫∞
rn
PFH(r)w̃(r)rdr ).
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Finally, the space-time recovery metric is given by

WPSTR = Time metric · Space metric

=

[
1− N

∆

]
·WPSR (5.35)

Remark: The WPSTR expression derived in (5.35) is same as the one obtained by evalu-
ating the expression in (5.31) for the special case of memoryless sensing algorithms.

5.4.2.3 Numerical simulations

In this Section we give some numerical simulations for a single-radio energy detector trying
to detect an ON/OFF primary transmitter with a given duty cycle. Figure 5.5 shows that
FHI vs WPSTR performance of a radiometer for different values of the sensing time N .
Each curve in the figure shows this tradeoff for a fixed sensing time N . It is clear from the
figure that the optimal sensing time is a function of the protection metric FHI . In fact, the
best possible tradeoff is given by the envelope of these performance curves.

In Figure 5.6 we consider the WPSTR performance as a function of the sensing time N
for a fixed value of protection, FHI = 0.01. The figure shows that there is an optimal value
of N for which the space-time performance is maximized. This is contrary to the traditional
wisdom which tells us that the sensing performance is a monotonic function of the sensing
time N . However, our space-time framework shows that there is a tension between space
and time. This tradeoff between performance in time and performance in space is shown in
Figure 5.7.

Finally, Figure 5.8 shows the effect of increasing sensing time on WPSTR. However,
the sensing time is constrained by the sacrificial buffer-zone ∆. So, to see the effect of very
large sensing times N we scale ∆ proportional to N while keep the ratio N

∆
to be constant

at 0.5. The figure shows that the performance of a cognitive radio saturates to a finite value
(strictly less than 0.5) even as N is increased to infinity. This shows that increasing the
sensing time does not necessarily guarantee improved performance.

5.5 Concluding remarks

In this chapter we showed that the traditional binary hypothesis testing formulation with the
two hypotheses being “primary ON” and “primary OFF” does not completely reveal the true
fundamental tradeoffs involved in spectrum sensing. This formulation is particularly bad for
spatially distributed primary users. The metrics of sensitivity, probability of false-alarm and
probability of missed detection arising out of the traditional formulation fail to capture the
tradeoffs in the spatial dimension of the spectrum sensing problem. In fact, using sensitivity
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as a metric the secondary sensor is forced to sense at very low SNRs (high sensitivity) to
guarantee protection to the primary user (as in the -114 dBm rule). Unfortunately, sensing at
such low SNRs forces the secondary user to lose a significant portion of the spatial spectrum
holes as shown in Section 5.3.3.1.

We proposed a new joint space-time formulation for the spectrum sensing problem that
addresses the drawbacks in the traditional formulation. Using our new formulation, we
derived two new metrics, FHI and WPSTR that quantify safety to the primary user as well
as performance for the secondary users. The tradeoff between FHI and WPSTR is the new
(and fundamental) ROC curve for this problem.

With our new space-time metrics framework we show that the FHI vs WPSTR per-
formance for any single-radio detector is poor. The reason for this is that a single-radio
detector cannot robustly quantify its shadowing environment and hence is forced to budget
for deep (and atypical) shadow fades. Our result suggests that one needs to look at other
sensing strategies like collaborative sensing, multiband sensing approaches, etc to improve
performance. The key is to have a robust way for the secondary user to conclude that it is
not deeply shadowed (which is the typical case) and hence can aggressively set its detector
threshold.

One possible approach is to use memory to know your shadowing environment robustly.
That is, if a secondary sees a strong primary signal in the near past, then it knows that
it is not deeply shadowed. If the shadowing environment does not change rapidly (slowly
moving secondary and primary users), the secondary user can use this to set an aggressive
threshold at the current time. This suggests that change-detection based algorithms can
improve performance.

123



Chapter 5. Space-time sensing metrics

Figure 5.5: FHI vs WPSTR for different values of N . In this figure pon = 0.25, and poff = 0.75.
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Figure 5.6: WPSTR as a function of sensing time N for fixed FHI = 0.01. In this figure
pon = 0.25, and poff = 0.75
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Figure 5.7: Time recovery metrics vs Space recovery metric for a fixed value of FHI = 0.01. In
this figure pon = 0.25, and poff = 0.75
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Figure 5.8: The WPSTR performance as a function of the sensing time N as we increase N to
infinity keeping N

∆
= 0.5.
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Conclusions and future work

6.1 Concluding remarks

In November 2002, the spectrum policy task force published a report [19] that contained
recommendations to the FCC with regard to improving the way spectrum was managed in
the United States. This report served as a catalyst for several investigations into the problem
of reducing regulatory overhead by using cognitive radios. In particular, it was this report
that led us to begin working on spectrum sharing problems in early 2004.

Spectrum sensing was identified as one of the key requirements for cognitive radios. The
perception at that time was that to guarantee protection for the primary users, cognitive
radios must sense very weak signals. The sensing problem was modeled (as done tradition-
ally) as a binary hypothesis test between the two hypotheses: “signal present” and “signal
absent”. Using this formulation, it was shown that cognitive radios could sense weak signals
by choosing a sufficiently long sensing time.

However, we showed that the performance of detection algorithms at low SNRs can be
limited due uncertainties in real life systems. In the presence of modeling uncertainties there
exist fundamental limits in the form of finite SNR thresholds, called SNR walls, below which
robust detection is impossible, irrespective of the number of samples we take. In particular,
the SNR walls are severe (close to 0 dB) when the secondary sensor does not have knowledge
of any feature (like pilot tones and training sequence) in the primary signal. We presented
these SNR wall results in a tutorial at the 2005 DySpAN conference [134]. It was only
after our tutorial that robustness was recognized as a fundamentally important performance
metric for spectrum sensing at low SNRs. In fact, our results influenced the IEEE 802.22
sensing task group to adopt a specification for detector robustness to noise uncertainty into
the standard.

In order to achieve robustness at low SNRs (of the order of −20 dB), the secondary
sensor needs to know additional information about the primary signal. We showed that the
presence of known features in the primary signal (like pilot tones, cyclic prefixes in OFDM
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symbols etc) allows for coherent processing and run-time noise calibration, which in turn
provide robustness gains for the secondary sensor. Although, the presence of known signal
features improves robustness, uncertainty in the fading process imposes SNR wall limitations
even for these signals. We derive SNR wall expressions for signals with features and show
how they vary with the feature strength, amount of noise uncertainty, and the length of
the channel coherence time. More subtly, the relevant coherence time can be different for
different signal features.

These results suggest that if the secondary sensor wants to robustly detect the primary
signal then the regulators must mandate signal features in the primary signal. This implies
that the primary user must take a hit it its freedom to provide robustness gains for the sec-
ondary sensor. We technically formulated the tradeoff between the loss in the primary user’s
freedom and the improvement in the secondary user’s robustness as a capacity-robustness
tradeoff. We derived the tradeoff curves for different pairs of primary signaling schemes and
secondary sensing algorithms. These curves provide the regulator with a systematic way of
choosing a suitable operating point in the capacity-robustness tradeoff space. In fact, we
also constructed signals containing macroscale features that can be robustly detected at ar-
bitrarily low SNRs. These macroscale features proved that the capacity robustness tradeoff
is a trivial rectangle.

Our results on robust detection showed that designing real-life systems that can robustly
sense weak signals is extremely challenging, but doable at the cost of complex signal pro-
cessing algorithms at the secondary sensor, and restrictions on the primary user’s freedom.
This led us to the question: Is it desirable for cognitive radios to sense very weak signals?
The results on capacity of wideband CDMA systems tell us that it is not desirable to com-
municate at extremely low SNRs. As the bandwidth increases, the overhead of estimating
the fading coefficients becomes so large that it drives the capacity to zero. Does the message
that “good wireless communication systems should not operate at low SNRs” hold true for
cognitive radios? What is the overhead to cognitive radios for sensing signals at low SNRs?
We answer thesis questions by showing that cognitive radio sensors that are designed to have
a high sensitivity (i.e., can detect weak signals) will recover only a small fraction of the total
available spatial opportunities. The overhead paid by a secondary sensor for sensing weak
signals is a significant loss in its spectrum-hole-recovery performance.

The main reason for this overhead is that a secondary sensor has to budget for the case
when it is deeply shadowed to the primary transmitter and is located within the primary
no-talk radius. The only way to guarantee protection from such atypically deep shadow
fades under the traditional hypothesis testing framework is to design detectors with high
sensitivity. The problem with this approach is that highly sensitive detectors can pick up
typically-shadowed primary signals at locations far away from the primary’s no-talk radius.
Hence they are forced to declare the band to be used even though it is safe to transmit at
these locations.

Firstly, the traditional hypothesis testing framework does not have metrics that can

129



Chapter 6. Conclusions and future work

capture the loss in spatial opportunities. Designing detectors with arbitrarily small values of
PFA does not mean that the sensor will recover most of the spatial opportunities! Secondly,
the traditional framework deals with shadowing by incorporating a safety margin in the
sensitivity. This approach lacks flexibility, and does allow sensing strategies like collaborative
sensing, multiband detection etc, to adaptively set their detection thresholds based on the
shadowing they face.

To overcome the drawbacks of the traditional hypothesis testing framework we propose a
unified space-time formulation for the spectrum sensing problem. The two main objectives
for cognitive radios are: to provide adequate safety guarantees to the primary user; and to
recover as many spectral opportunities as possible. Our formulation naturally results in two
new performance metrics, namely the Fear of Harmful Interference (FHI), and the Weighted
Probability of Space-Time Recovered (WPSTR) that quantify the two objectives mentioned
above. The FHI vs WPSTR tradeoff is a fundamental tradeoff and can be thought of as the
new and relevant ROC curve for this problem.

The joint space-time sensing framework lays a common foundation to compare various
detection algorithms. Using the FHI vs WPSTR tradeoff, we prove that the performance
of single-radio sensing algorithms is poor, even in the limit of infinite sensing time. The key
idea behind this result is that the performance of single-radio detectors is limited due to
the fact that they cannot differentiate between atypical deep shadowing at locations close
to the primary user and typical shadowing when it is far away. It is the uncertainty in
the fading environment that is the bottleneck, which cannot be resolved by designing highly
sensitive detection algorithms. This suggests that we should focus on other sensing strategies
like cooperative sensing, multi-band sensing, and geo-location based sensing algorithms to
recover most of the unused spectral opportunities.

The new framework also allows for a unified treatment of uncertainties in the system.
Both device-level uncertainties like distributional uncertainties in the noise and multipath
fading, and system-level uncertainties like uncertainty in propagation models, and shadow
fading can be incorporated in our framework. This allows us to quantify the impact of
uncertainties on the performance of sensing algorithms (single-user as well as multi-user
based strategies). This framework also brings out the tradeoff between the space-domain
performance and the time-domain performance of cognitive radios.

In retrospect, we know that a cognitive radio sensor would not want to set its threshold
to catch extremely weak signals (even if we can design such a robust detector). So, our
results on designing robustly detectable signals at low SNRs are not directly useful in the
problem of spectrum sensing by cognitive radios. However, these results are useful in other
problems in opportunistic spectrum sharing as discussed in Section 6.2.3.

We close this thesis by pointing out few interesting problems that need to solved in the
future.
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6.2 Future Work

6.2.1 Nailing the opportunistic sensing problem

This thesis builds a foundation using which we can attempt to solve the following question:
what is the optimal design of a sense-before-talk based opportunistic spectrum sharing sys-
tem? That is, we want a strategy that maximizes the secondary user’s performance for a
given protection to the primary user. The results in Chapter 5 suggest that single-radio based
sensing solutions have poor performance. So, we need to look at additional infrastructure-
based sensing strategies. Examples of such strategies are collaborative detection, geo-location
based sensing, assisted detection etc. The reader is advised to refer to [64] for a survey of
some of these strategies, and also the FHI vs WPAR tradeoff for several cooperative sensing
algorithms.

The key here is to accurately model the overhead required for this additional infras-
tructure. For example, we need to model the overhead for cooperation among spatially
distributed cognitive radios which are collaborating to sense the spectrum. The quantity of
interest is the ‘total combined overhead’, which is the combination of the overhead due to
the additional infrastructure and the sensing overhead (1-WPSTR). The goal is to obtain
lower and upper bounds on the ‘total combined overhead’, and use them to compare different
sensing strategies.

6.2.2 Network of secondary users

In this thesis we assumed that only a single secondary user is transmitting at any given time.
For a single system with multiple secondary nodes, it is possible to coordinate transmissions
among different nodes using a MAC protocol. However, there might be multiple systems that
are simultaneously trying to reuse the primary system. Hence it is important to consider the
case of several simultaneous secondary users trying to opportunistically reuse the primary
spectrum.

In such a case it is non-trivial to model the fear of harmful interference (FHI) for the
primary user. Clearly, the interference caused to the primary user will depend on the number
of simultaneous secondary transmitters. As the primary user might not trust the MAC pro-
tocol of the secondary system, we need to consider the uncertainty in the secondary system’s
deployment model. Also, the uncertainty in the propagation model from the secondary users
to the primary receivers needs to be considered.

Conversely, the secondary users must run some network protocols to ensure that they
collectively meet the FHI target. Such protocols are necessary because our results have
shown that single-user based sensing algorithms have poor performance. So, we need to
consider the overhead for such network protocols and incorporate it into the ‘total combined
overhead’ metric to evaluate the safety vs performance tradeoff.
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6.2.3 Other 1-bit decision problems in spectrum sharing

6.2.3.1 Robust identity for secondary users

In an opportunistic spectrum sharing system the primary user will want to catch secondary
users which interfere with its transmissions. To do so, the primary user must be able to
robustly distinguish between interference due to background noise or interference from sec-
ondary users. The idea is to mandate each secondary user to transmit a unique macroscale
feature which can be robustly detected by the primary user. So, by looking at its interfer-
ence pattern, the primary user can catch the secondary users who are interfering with it.
This idea was used to solve the problem for the case of a single interfering secondary node
in [121]. The generalized problem of catching multiple simultaneously interfering secondary
nodes is still open. Mandating secondary users to transmit these identity codes incurs an
overhead. The key question is: how does this overhead scale with the number of secondary
users? Also, at what point does this overhead become so huge that it is no longer worthwhile
for the secondary to share the spectrum with the primary user?

6.2.3.2 Robust beacon design for primary users

In some cases the primary may explicitly send beacon signals to inform the secondary user
whether the primary band can be used or not. For instance, the primary user can lease
its spectrum for secondary use. In such cases the primary user has an incentive incorporate
easy-to-detect features in its signal so that the secondary user can vacate the band as soon as
the primary user returns. For such problems our results on macroscale features are directly
relevant. Again, the key quantity of interest is the ‘total combined overhead’ for robustly
detecting these macroscale features, and it is important to compute lower and upper bounds
on this quantity.
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Appendix A

Proofs for Chapter 2

A.1 Proof of Theorem 2.2

The goal is to show the existence of an absolute SNR wall, below which every detector is
non-robust. This requires all possible test statistics to have overlapping means under the
two hypotheses. The easiest way for this to happen is if the set of joint distributions of the
received signal vector Y under both hypotheses overlap. As the noise and signal are both
modeled as iid, it is sufficient to show that the set of marginal distributions of the scalar
received signal samples Y [n] overlap under both hypotheses. Mathematically, we just need
to show the existence of two noise distributions W1,W2 ∈ Wx, such that W1 + X has the
same distribution as W2.

Let Wn ∼ N (0, σ2
n), W1 ∼ 1√

ρ
Wn. Let W2 := X + W1. If W1 ∈ Wx, and W2 ∈ Wx,

then it is clear that robust detection is impossible. We now prove W2 ∈ Wx by showing that
EW 2k−1

2 = 0 and 1
ρk

EW 2k
n ≤ EW 2k

2 ≤ ρkEW 2k
n ∀ k.

Since E[X2k−1] = 0 and W2 =: X + W1, we have EW 2k−1
2 = 0 and EW 2k

2 ≥ 1
ρk

EW 2k
n .
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Therefore, W2 ∈ Wx

⇔ EW 2k
2 ≤ ρk EW 2k

n

⇔ E(X +W1)2k

EW 2k
n

≤ ρk

⇔
k∑
i=0

(
2k

2i

)
EW 2k−2i

1

EW 2k
n

EX2i ≤ ρk

⇔
k∑
i=0

(
2k

2i

)(
1

ρk−i

)(
1 · 3 · · · (2k − 2i− 1) σ2k−2i

n

1 · 3 · · · (2k − 1) σ2k
n

)
EX2i ≤ ρk

⇔
k∑
i=0

(
2k

2i

)(
1

ρk−i

)(
1 · 3 · · · (2k − 2i− 1)

1 · 3 · · · (2k − 1)

)
EX2i

σ2i
n

≤ ρk, ∀ k = 1, 2, · · · . (A.1)

So, we just need to show that there exits an absolute threshold SNR∗wall such that that the
last inequality in (A.1) is true if SNRpeak ≤ SNR∗wall.

We now construct the threshold SNR∗wall. For k ≥ 1, define f(k, SNR) to be the following
uni-variate degree k polynomial

f(k, SNR) =

[
k∑
i=0

(
2k

2i

)(
1

ρk−i

)(
1 · 3 · · · (2k − 2i− 1)

1 · 3 · · · (2k − 1)

)
SNRi

]
. (A.2)

Note that all the coefficients of f(k, SNR) are non-negative and hence f(k, SNR) is
monotonically increasing in SNR. This means that the equation f(k, SNR) = ρk has a unique

real valued root SNR
(2k)
wall. Because f(k, 0) = 1

ρk
< ρk and ρ > 1, the root SNR

(2k)
wall > 0 for

all k. Define SNR∗wall to be

SNR∗wall := inf
k=1,2,3,···∞

SNR
(2k)
wall. (A.3)

By definition of SNRpeak, we have EX2i

σ2i
n
≤ (SNRpeak)

i. Now, if SNRpeak ≤ SNR∗wall, by
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the monotonicity of f(k, SNR), we have

k∑
i=0

(
2k

2i

)(
1

ρk−i

)(
1 · 3 · · · (2k − 2i− 1)

1 · 3 · · · (2k − 1)

)
EX2i

σ2i
n

≤
k∑
i=0

(
2k

2i

)(
1

ρk−i

)(
1 · 3 · · · (2k − 2i− 1)

1 · 3 · · · (2k − 1)

)
SNRi

peak

= f(k, SNRpeak)

≤ f(k, SNR∗wall) = ρk,

which is the last inequality in (A.1).

In terms of the upper-bound in (2.10), from (A.3) it is clear that SNR∗wall ≤ SNR
(2)
wall =

ρ2−1
ρ

. However, the entire result is vacuous if the infimum in (A.3) is zero. Getting a
nontrivial lower bound is more interesting.

Recall that SNR
(2k)
wall is the root of the polynomial f(k, SNR) − ρk. The coefficient of

SNRi in f(k, SNR) − ρk is
(

2k
2i

) (
1

ρk−i

)(
1·3·5···(2k−2i−1)

1·3·5···(2k−1)

)
. Replace

(
1

ρk−i

)
by 1 to get a new

polynomial, f̃(k, SNR) − ρk. Since ρ > 1, we have
(

1
ρk−i

)
≤ 1 for all i = 1, 2, · · · , k, and

hence the unique positive root of f̃(k, SNR)− ρk = 0 must be smaller than SNR
(2k)
wall. Call

this root S̃NR
(2k)

wall. Clearly,

SNR∗wall ≥ inf
k=1,2,··· ,∞

S̃NR
(2k)

wall (A.4)

where S̃NR
(2k)

wall is the unique positive root of

f̃(k, SNR) :=

[
k∑
i=0

(
2k

2i

)(
1 · 3 · · · (2k − 2i− 1)

1 · 3 · · · (2k − 1)

)
SNRi

]
= ρk. (A.5)
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Fix k ≥ 1 and SNR ≥ 0. From the definition of f̃(k, SNR) in (A.5), we get

f̃(k, SNR) =

[
k∑
i=0

(
2k

2i

)(
1 · 3 · 5 · · · (2k − 2i− 1)

1 · 3 · 5 · · · (2k − 1)

)
SNRi

]

=

[
k∑
i=0

(2k) · (2k − 1) · · · (2k − 2i+ 1)

(2i) · (2i− 1) · · · 1

(
1 · 3 · 5 · · · (2k − 2i− 1)

1 · 3 · 5 · · · (2k − 1)

)
SNRi

]
(a)
=

[
k∑
i=0

(
k

i

)
(2k − 1) · (2k − 3) · · · (2k − 2i+ 1)

(2i− 1) · (2i− 3) · · · 1
· 1 · 3 · 5 · · · (2k − 2i− 1)

1 · 3 · 5 · · · (2k − 1)
SNRi

]
(b)
=

[
k∑
i=0

(
k

i

)
1

(2i− 1) · (2i− 3) · · · 1
SNRi

]

≤

[
k∑
i=0

(
k

i

)
SNRi

]
= (1 + SNR)k. (A.6)

• (a) follows from the following calculation.

(2k) · (2k − 1) · · · (2k − 2i+ 1)

(2i) · (2i− 1) · · · 1

=

(
(2k) · (2k − 2) · · · (2k − 2i+ 2)

(2i) · (2i− 2) · · · 2

)
·
(

(2k − 1) · (2k − 3) · · · (2k − 2i+ 1)

(2i− 1) · (2i− 3) · · · 1

)
=

(
2i · (k) · (k − 1) · · · (k − i+ 1)

2i · (i) · (i− 1) · · · 1

)
·
(

(2k − 1) · (2k − 3) · · · (2k − 2i+ 1)

(2i− 1) · (2i− 3) · · · 1

)
=

(
k

i

)(
(2k − 1) · (2k − 3) · · · (2k − 2i+ 1)

(2i− 1) · (2i− 3) · · · 1

)
.

• (b) follows from the following calculation.

[
(2k − 1) · (2k − 3) · · · (2k − 2i+ 1)

(2i− 1) · (2i− 3) · · · 1
· 1 · 3 · 5 · · · (2k − 2i− 1)

1 · 3 · 5 · · · (2k − 1)

]
=
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1

(2i− 1) · (2i− 3) · · · 1
· 1 · 3 · 5 · · · (2k − 1)

1 · 3 · 5 · · · (2k − 1)

]
=

[
1

(2i− 1) · (2i− 3) · · · 1

]
.

Using (A.6) in (A.5) gives

ρk = f̃(k, S̃NR
(2k)

wall) ≤ (1 + S̃NR
(2k)

wall)
k.
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This implies that S̃NR
(2k)

wall ≥ ρ−1, for all k ≥ 1. Substituting this in (A.4) gives the desired
lower bound.
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Proofs for Chapter 3

B.1 Proof of Lemma 3.4

Under hypothesis H0: Y [n] = W [n] ∼ N (0, σ2) for all n > 0. Using this in (3.18), we get

E[T (Y, Dc)|H0] = E

∣∣∣∣∣∣
√

2

Dc

Dc/2∑
n=1

{
|W [2n− 1]|2 − |W [2n]|2

}∣∣∣∣∣∣
2 . (B.1)

|W [2n − 1]|2 − |W [2n]|2 are iid random variables with zero mean and variance 4σ4. Using
the Central Limit Theorem[86], we get√

2

Dc

Dc/2∑
n=1

{
|W [2n− 1]|2 − |W [2n]|2

}
∼ N (0, 4σ4).

Using this approximation in (B.1), we get E[T (Y, Dc)|H0] = 4σ4.

Under hypothesis H1: Without loss of generality we can assume l[n] = 0. So, we have
Y [2n− 1] = X[2n− 1] +W [2n− 1] and Y [2n] = X[2n] +W [2n] = W [2n]. This implies that
|Y [2n − 1]|2 − |Y [2n]|2 are iid random variables with mean 2P and variance 8Pσ2 + 4P 2.
Again using the Central Limit Theorem[86], we get√

2

Dc

Dc/2∑
n=1

{
|Y [2n− 1]|2 − |Y [2n]|2

}
∼ N (

√
Dc

2
(2P ), 8Pσ2 + 4σ4).

Using this approximation we get
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E[T (Y, Dc)|H1] = 8Pσ2 + 4σ4 +

(√
Dc

2
(2P )

)2

= 8Pσ2 + 4σ4 + 2P 2Dc

B.2 Proof of Lemma 3.6

Recall Ŷ [n] = Y [n]√
1
N

PN
n=1 |Y [n]|2

. Since we are interested in robustness results, we assume that

N is very large. Specifically, we assume that 1
N

∑N
n=1 Y

2[n] = P + σ2 under hypothesis H1

and 1
N

∑N
n=1 Y

2[n] = σ2 under hypothesis H0, where σ2 = (1 + α2)σ2
m.

Under hypothesis H1: From (3.23), we can write G1 = K1S1, and G2 = K1S2, where

S1 =

Dc
2∑

n=1

Y 2[2n− 1], S2 =

Dc
2∑

n=1

Y 2[2n],

and K1 =
√

2
Dc
· 1
P+σ2 . Now, ES1 =

∑Dc
2
n=1 EY 2[2n − 1] =

∑Dc
2
n=1 E(X[2n − 1] + W [2n −

1])2 = Dc
2

[2P + σ2]. Similarly, ES2 =
∑Dc

2
n=1 EY 2[2n] =

∑Dc
2
n=1 E(W [2n])2 = Dc

2
[σ2]. Here

we have used the fact that the random delay in the current coherent block is l[n] = 0.
Therefore, X[2n − 1] is ±

√
2P with probability 1

2
for each sign and X[2n] = 0. Hence, we

get E[G1] = K1E[S1] = 1
P+σ2

(
Dc
2

)
[2P + σ2] and E[G2] = K1E[S2] = 1

P+σ2
Dc
2

[σ2].
We now compute the second order statistics of (G1, G2). By definition, we have E(G1 −

EG1)2 = K2
1E(S1 − ES1)2 and E(G2 − EG2)2 = K2

1E(S2 − ES2)2. Now,

ES2
1 = E

 Dc
2∑

n=1

Y 2[2n− 1]

2

=

Dc
2∑

n=1

E(Y 4[2n− 1]) +
∑
m6=n

E(Y 2[2n− 1]Y 2[2m− 1]). (B.2)

Using the fact that Y [2n−1] = X[2n−1]+W [2n−1], we can easily show that E(Y 4[2n−1]) =
4P 2 + 12Pσ2 + 3σ4 and E(Y 2[2n − 1]Y 2[2m − 1]) = 4P 2 + 4Pσ2 + σ4. Substituting this
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in (B.2) we get

ES2
1 =

Dc

2
[4P 2 + 12Pσ2 + 3σ4] +

Dc

2

(
Dc

2
− 1

)
[4P 2 + 4Pσ2 + σ4].

Therefore,

Var(S1) = ES2
1 − (ES1)2 =

Dc

2
[8Pσ2 + 2σ4]

⇒ Var(G1) = K2
1Var(S1) =

[8Pσ2 + 2σ4]

(P + σ2)2
.

Identical computations show that Var(G2) = [2σ4]
(P+σ2)2

.

E[S1S2] = E

 Dc
2∑

n=1

(X[2n− 1] +M [2n− 1]− αM [2n− 2])2


 Dc

2∑
m=1

(M [2m]−M [2m− 1])2

 . (B.3)

Expanding this product and taking expectations we get a total of
(
Dc
2

)2
terms. The terms

can be grouped into two groups of the form E [(X[3] +M [3]− αM [2])2(M [2]−M [1])2], and
E [(X[3] +M [3]− αM [2])2(M [6]−M [5])2]. The first group has exactly one M [·] term in
common, while the second group has no M [·] terms in common. By standard computations,
we can see that the expectation of each term in group one is (2P )σ2 + σ4 + 2α2σ4

m and the
expectation of each term in group two is (2P )σ2 + σ4. The number of terms in group one is

(Dc − 2) and the number of terms in group two is
(
Dc
2

)2 − (Dc − 2). Using this in (B.3), we
get

E[S1S2] = (Dc − 2)[(2P )σ2 + σ4 + 2α2σ4
m]

+

[(
Dc

2

)2

− (Dc − 2)

]
[(2P )σ2 + σ4]

⇒ Cov(G1, G2) = K2
1Cov(S1, S2) =

[
4α2σ4

m

(P + σ2)2

] [
Dc − 2

Dc

]
.
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B.3 Proof of Lemma 3.7

Let W [n] = M [n] − αM [n − 1], where M [n] is an iid Gaussian noise process with variance

σ2
m ∈ (ν

ρ
σ2
n,

ρ
ν
σ2
n). The noise process {W [n]} certainly has a distribution in Ŵρ,ν if

1

ν
≤ |H(f)|2 ≤ ν, ∀f ∈ [−1

2
,
1

2
]. (B.4)

Here H(f) = 1 − αej2πf , is the DTFT of the discrete time filter with impulse response
h[0] = 1, h[1] = −α. Thus, we have |H(f)|2 = 1 − 2α cos(2πf) + α2. Clearly, we have
(1 − |α|)2 ≤ |H(f)|2 ≤ (1 + |α|)2. Using this in (B.4), we conclude that {W [n]} has a

distribution in Ŵρ,ν if

1

ν
≤ (1− |α|)2 ≤ (1 + |α|)2 ≤ ν

⇔ |α| ≤ 1− 1√
ν

=: αmax.
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Proofs for Chapter 4

C.1 Proof of Theorem 4.1

From Equations (4.9) and (4.12),

PFA(G) = P (T1 − T2 > λ|H0) (C.1)

By the definition of T1 in (4.8),

E[T1|H0] =
1

G

G∑
i=1

E[Bi · κ(Yi)|H0]

=
1

G

G∑
i=1

E[Bi · κ(Wi)]

=
1

2

[
1

G

G∑
i=1

κ(Wi)

]
=
σ2

2
, (C.2)

where Wi = (W [(i− 1)K + 1], · · · ,W [(i− 1)K +K]). Similarly, we can show that

E[T2|H0] =
1

2

[
1

G

G∑
i=1

κ(Wi)

]
=
σ2

2
. (C.3)

From (C.2) and (C.3), we have E[T1 − T2|H0] = 0. So, from Chebyshev’s inequality [86] we
get

P (|T1 − T2| > λ|H0) ≤ Var[T1 − T2|H0]

λ2
. (C.4)
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Using (C.4) in (C.1),

PFA(G) ≤ P (|T1 − T2| > λ|H0)

≤ Var[T1 − T2|H0]

λ2
. (C.5)

We now compute the expressions under hypothesis H1.

E[T1|H1] = E

[
1

G

G∑
i=1

Bi · κ(Yi)|H1

]

=

[
1

G

G∑
i=1

E[Bi · κ(Yi)|H1]

]
. (C.6)

The expectation on the RHS of (C.6) can be simplified as

E[Bi · κ(Yi)|H1]

= E

[
Bi ·

1

K − L+ 1

K∑
k=L

|Y [(i− 1)K + k]|2
∣∣H1

]

=
1

K − L+ 1

K∑
k=L

E
[
Bi|Y [(i− 1)K + k]|2

∣∣H1

]
. (C.7)

Again, the expectation within the summation in the above equation can be simplified using
k̃ = (i− 1)K + k as

E
[
Bi|Y [k̃]|2

∣∣H1

]
= E

Bi

∣∣∣∣∣
L−1∑
l=0

hl[k̃]X[k̃ − l] +W [k̃]

∣∣∣∣∣
2


=
1

2
E

∣∣∣∣∣
L−1∑
l=0

hl[k̃]X[k̃ − l] +W [k̃]

∣∣∣∣∣
2 ∣∣Bi = 1


(a)
=

1

2

[(
(P + ε)

L−1∑
l=0

|hl[k̃]|2
)

+ |W [k̃]|2
]
. (C.8)
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In the above chain of equalities, (a) follows from the fact that X[n] ∼ N (0, P + ε) when
Bi = 1. Substituting (C.8) in (C.7), and substituting the result in (C.6), we get

E[T1|H1]
(b)
=

 1

G

G∑
i=1

 1

K − L+ 1

∑
ek

1

2

{
L−1∑
l=0

(P + ε)|hl[k̃]|2 + |W [k̃]|2
}

=
1

G

G∑
i=1

(
P + ε

2
κ(Hi) + κ(Wi)

)
, (C.9)

where k̃ in the second summation in (b) ranges from (i− 1)K +L to i ·K. Similarly, we can
also show that

E[T2|H1] =
1

G

G∑
i=1

(
P − ε

2
κ(Hi) + κ(Wi)

)
(C.10)

From (C.9) and (C.10), we get

E[T1 − T2|H1] = ε ·
(

1

G
κ(Hi)

)
= ε. (C.11)

Again, using Chebyshev’s inequality, we get

P
(
|(T1 − T2)− ε| > λ̃

∣∣H1

)
≤ Var[T1 − T2|H1]

λ̃2
, (C.12)

where λ̃ = ε− λ. Now, the probability of mis-detection is given by

PMD(G) = P (T1 − T2 < λ|H1)

= P ((T1 − T2)− ε < λ− ε|H1)

= P
(

(T1 − T2)− ε < −λ̃|H1

)
≤ P

(
|(T1 − T2)− ε| > λ̃|H1

)
≤ Var[T1 − T2|H1]

λ̃2
(C.13)

From (C.4) and (C.12), it follow that PFA(G) and PMD(G) can be made arbitrarily small
if Var[T1 − T2|H0] and Var[T1 − T2|H1] decrease to zero as G increases to ∞. This is proved
in the following Lemma.
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Lemma C.1. For all G > G0,

Var[T1 − T2|H0] ≤ λ1 ·G−1

Var[T1 − T2|H1] ≤ λ2 ·G−1, (C.14)

where λ1 and λ2 are constants dependent only on Ci, i = 1, 2, 3.

Proof. The proof of this lemma is straightforward and is omitted here.

Using the bounds in Lemma C.1, we have

PFA(G) ≤ λ1

G · λ2
,

PMD(G) ≤ λ2

G · (ε− λ)2
, ∀ G > G0. (C.15)
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Proofs for Chapter 5

D.1 Proof of Theorem 5.3

In the single-quantile model, the fear of harmful interference (FHI) is then given by

F sq
HI = sup

0≤r≤rn
sup
Fr∈Fr

EFr [P(T (Y) < λ|P = p)] . (D.1)

For a given received power realization P = p, the CLT gives us [66]

T (Y) ∼ N
(

10
p
10 + σ2

w,
2

N
[10

p
10 + σ2

w]2
)
.

Therefore,

P (T (Y) < λ|P = p) = 1−Q

λ− (10
p
10 + σ2

w)√
2
N

(10
p
10 + σ2

w)

 . (D.2)

So,

F sq
HI = sup

0≤r≤rn
sup
Fr∈Fr

EFr [P(T (Y) < λ|P = p)]

(a)
= sup

0≤r≤rn
[βP (T (Y) < λ|P = −∞) + (1− β)P (T (Y) < λ|P = γ(r, β))]

(b)
= [βP (T (Y) < λ|P = −∞) + (1− β)P (T (Y) < λ|P = γ(rn, β))]. (D.3)

The equality in (a) follows from the fact that the optimizing distribution F ∗r ∈ Fr has a mass
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of β at −∞ and has a mass of (1−β) at γ(r, β). This is because, from (D.2) we can see that
P (T (Y) < λ|P = p) is a monotonically decreasing function of p. The Equality in (b) reveals
that the worst-case location corresponds to r = rn. This follows from these observations.
Firstly, P(T (Y) < λ|P = −∞) is independent of r (use p = −∞ in (D.2)). Secondly,
P(T (Y) < λ|P = γ(r, β)) monotonically increases with decreasing γ(r, β), whereas γ(r, β)
monotonically decreases with increasing r (recall, γ(r, β) = σQ−1(1 − β) + µ(r), and µ(r)
decreases with increasing r). So,

F sq
HI = β

1−Q

λ− σ2
w)√

2
N
σ2
w

+ (1− β)

1−Q

λ− (10
γ(rn,β)

10 + σ2
w)√

2
N

(10
γ(rn,β)

10 + σ2
w)

 , (D.4)

where γ(rn, β) = σQ−1(1− β) + µ(rn).

D.2 Proof of Theorem 5.4

Proof of (A): The fear of harmful interference is given by

F per,ck
HI := sup

0≤r≤rn
P(P < λ̃)

(a)
= sup

0≤r≤rn

[
1−Q

(
λ̃− µ(r)

σ

)]
(b)
= 1−Q

(
λ̃− µ(rn)

σ

)
, (D.5)

where (a) follows from the fact that P ∼ N (µ(r), σ2) and (b) follows from the monotonicity
of the Q(·) function. Similarly, the probability of finding a hole is given by

PFH(r) = P(P < λ̃)

= 1−Q

(
λ̃− µ(r)

σ

)
,

Substituting the above expression for PFH(r) in (5.4) gives us the desired result.
Proof of (B): Under the single-quantile model for Fr, the fear of harmful interference

is given by

F per,sq
HI := sup

0≤r≤rn
sup
Fr∈Fr

P(P < λ̃). (D.6)
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We know that P(P < γ(r, β)) = β. If γ(r, β) ≥ λ̃ then clearly the distribution F ∗r ∈ Fr,
maximizing supFr∈Fr P(P < λ̃) has mass β at −∞ and hence supFr∈Fr P(P < λ̃) = β. On

the other hand if γ(r, β) < λ̃ then the distribution having mass of β at −∞ and mass of

(1− β) at γ(r, β) belongs to the set Fr and for this distribution P(P < λ̃) = 1. Therefore,

sup
Fr∈Fr

P(P < λ̃) =

{
β if λ̃ ≤ γ(r, β)
1 otherwise.

(D.7)

Note that γ(r, β) := σQ−1(1 − β) + µ(r) is monotonically decreasing in r. Using this fact
in (D.6), we get

F per,sq
HI := sup

0≤r≤rn
sup
Fr∈Fr

P(P < λ̃) =

{
β if λ̃ ≤ γ(rn, β)
1 otherwise.
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