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Abstract

Probabilistic models of the performance of
computer systems have long been used to
predict future performance. What has not
been recognized, however, is that perfor-
mance models can also be used to diagnose
past performance problems. In this paper, we
analyze queueing networks from the proba-
bilistic modeling perspective, applying infer-
ence methods from graphical models that al-
low answering diagnostic questions from in-
complete data. In particular, we present a
slice sampler for networks of G/G/K queues.
As an application of this technique, we lo-
calize performance problems in distributed
systems from incomplete system trace data.
On both synthetic networks and a benchmark
distributed Web application, we identify bot-
tlenecks with 25% of the overhead of full in-
strumentation.

1. Introduction

Diagnosis of performance problems in computer sys-
tems is a rich application area for machine learning,
because data about system performance can be read-
ily obtained. Many such diagnostic questions concern
system performance in the face of load. For example:
“Five minutes ago, a brief spike in workload occurred.
Which parts of the system were the bottleneck during
that spike?” A second type of question is diagnosis of
slow requests: “During the execution of the 1% of re-
quests that perform poorly, which system components
receive the most load?” The bottleneck for slow re-

quests could be very different than the bottleneck for
typical requests if, for example, a storage or network
resource is failing intermittently.

However, classical approaches to machine learning are
not an entirely good fit: Supervised learning requires
labeling failure data, a time-consuming task that may
need to be performed anew for each application to be
diagnosed. On the other hand, a fully unsupervised
approach fails to exploit the known structure of the
system. An appealing alternative is a model-based
approach, in which we design a performance model
that can be learned directly from measurements of
system performance and that incorporates the struc-
ture of the system as an inductive bias. A class of
performance model that is particularly well studied is
queueing models. Queueing models predict the explo-
sion in system latency under high workload in a way
that is often reasonable for real systems, allowing the
model to extrapolate from performance under low load
to performance under high load. Queueing theory has
been studied for over a hundred years, but the theory
concerns approximating future behavior of the system,
not inference about past system behavior or learning
from incomplete data.

The main contribution of this paper is a new family
of analysis techniques for queueing models, based on a
statistical viewpoint. We collect a training set by sam-
pling a small set of arrival and departure times from
the system, treating the times that were not sampled
as missing data. The issue of missing data is unavoid-
able in real systems, either because full instrumenta-
tion is too expensive, or because the true bottlenecks
in the system are unknown. To learn the model param-
eters, we sample from the posterior distribution over
missing data and parameters in a Bayesian fashion,
using approximate inference algorithms for graphical
models. Essentially, we view a queueing network as a
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structured probabilistic model, a novel viewpoint that
combines queueing networks and graphical models.

Specifically, we develop a slice sampler for networks
of G/G/K queues (Section 3). Algorithmically, the
sampler is significantly more complex for queueing net-
works than for standard graphical models, because the
local conditional distribution over a single departure
can have many singularities (Section 3.1), and because
the Markov blanket for a single departure can be ar-
bitrarily large (Section 3.2). On both synthetic data
(Section 4.1) and data from a benchmark Web applica-
tion (Section 4.2), we demonstrate the ability to find
bottlenecks with 25% of the overhead of full instru-
mentation.

Despite the long history of queueing models, we are un-
aware of any existing work that treats them as latent-
variable probabilistic models, and attempts to approx-
imate the posterior distribution directly. Furthermore,
we are unaware of any technique for estimating the
parameters of a queueing model from an incomplete
sample of arrivals and departures.

2. Modeling

In this section, we describe queueing networks from a
novel viewpoint, as a structured probabilistic model
over arrivals and departures to a system.

2.1. Single Queues

In this paper, we consider two types of queues:
G/G/K/FCFS and G/G/1/RSS queues.1 To illustrate
our viewpoint, however, we first describe a special case
of the G/G/K/FCFS queue, the G/G/1/FCFS queue.
A G/G/1/FCFS queue is a system that can process
one request at time and has a queue to hold incom-
ing requests. Each request e for e ∈ [1, N ] arrives at
the system at a time ae, where each interarrival time
δe := ae − ae−1 is drawn iid according to a density
g. For example, if g is an exponential density, then
the arrival times are drawn from a Poisson process.
Requests are removed from the queue in a first-come
first-served (FCFS) manner. The amount of time a
request spends in the queue is called the waiting time
we. Once the request leaves the queue, it begins pro-
cessing, and remains in service for some service time
se. The service times are drawn independently from a
distribution with density f . The total response time

1In this standard notation for queues, the first G means
that the interarrival time follows a general (G) distribution,
the second G refers to the service time, the 1 indicates that
there is a single server, and FCFS indicates that jobs are
removed from the queue in a FCFS basis.

is defined as re := se + we.

In this way, the model decomposes the total response
time of a job into two components: the waiting time,
which represents the effect of system load, and the ser-
vice time, which is independent of system load. From
this perspective, an attraction of queueing models is
that they specify the distribution over response times
as a function of the distributions over arrival and ser-
vice times.

We can view the generative process for a G/G/1/FCFS
queue, conditioned on the total number N of jobs that
are ever processed, as follows. First generate interar-
rival times δe ∼ f independently for e ∈ [1, N ]. Then
generate service times se ∼ g independently. Finally
compute the arrival and departure times as

ae = ae−1 + δe

de = se + max[ae, de−1]
(1)

Notice that if we consider only interarrival and service
times, then all the variables are iid, but if we consider
the arrival and departure times, complex dependen-
cies arise. For example, certain combinations of ar-
rival and departure times are impossible. In particular,
a G/G/1/FCFS makes strong assumptions about the
behavior of the system. The strongest is an order as-
sumption, that the arrival order is the same as the de-
parture order. This assumption seldom holds in com-
puter systems. To relax this assumption, we consider
two more complex queueing models: the G/G/1/RSS
queue and the G/G/K/FCFS queue.

First, a G/G/1/RSS queue is like the FCFS queue, ex-
cept that when the processor finishes a job, a new job
is chosen randomly from all jobs currently in queue.
As before, interarrival and service times are generated
from f and g independently, but computing the re-
sulting arrival and departure times is more compli-
cated. To write the likelihood for this model, define
γ(e) as the predecessor of job e in the departure or-
der of the queue and IQDe as the set of jobs in queue
when e departs. Both these variables and the depar-
ture times can be computed from the interarrival and
service times by the system of equations

IQDe = {e′ | ae′ < de and de < de′}

γ−1(e) =

{
Random(IQDe) if IQDe 6= ∅
arg min{e′ | de<ae′} ae′ otherwise

ue = max[ae, dγ(e)]
de = se + ue

, (2)

where Random(S) indicates an element of the set S,
chosen uniformly at random, and ue denotes the com-
mencement time, that is, the time that e enters service.
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It can be shown that γ(e) is always the event immedi-
ately preceding e in the departure order of the queue.

The order assumptions made by this queueing disci-
pline are far less strict than those of the G/G/1/FCFS
queue, but still some combinations of arrivals and de-
partures are infeasible. The main constraint is that
whenever a job e arrives at a nonempty queue, at least
one other job must depart before e can enter service.

To write the likelihood for this model, we need to in-
corporate both the service density and the random se-
lection of jobs from the queue. For the latter purpose,
define Ne to be the number of jobs in queue when e
enters service, that is,

Ne = 1 + #{e′ | ae′ < ae and ue < de′}. (3)

Then the likelihood is

p(A) =
∏
e

N−1
e g(ae − ae−1)f(de − ue) (4)

Second, a G/G/K/FCFS queue has K processors,
meaning that it can serve K jobs concurrently, and
any additional jobs must wait in queue. So instead
of a job entering service when the previous job de-
parts, rather a job enters service when all but K − 1
of the previous jobs have departed. To compute the
departure times, we introduce auxiliary variables pe to
indicate which of the K servers has been assigned to
job e, the time bek to indicate the first time after job
e arrives that the server k would be clear, and ce to
indicate the first time after e arrives that any of the
K servers are clear. Given the interarrival and service
times, all other variables can be computed determin-
istically using the system of equations

bek = max{de′ | ae′ < ae and pe′ = k}
ce = min

k∈[0,K)
bek

pe = arg min
k∈[0,K)

bek

ue = max[ae, ce]
de = se + ue

(5)

and the resulting likelihood is

p(A) =
∏
e∈A

g(ae − ae−1)f(de − ue) (6)

2.2. Networks of Queues

Many systems are naturally modeled as a network of
queues. For example, web services are often designed
in a “three tier” architecture (Figure 1), in which the

Web servers

Storage

Middleware

NetworkNetwork

Figure 1. A queueing network model of a three-tier web
service. The circles indicate servers, and the boxes indicate
queues.

first tier is a presentation layer that generates the re-
sponse HTML, the second tier performs application-
specific logic, and the third tier handles persistent stor-
age, often using a relational database. Each tier is
replicated on redundant servers, so it is natural to use
one queue for each server on each tier and one queue
for the network connection. As another example, a dis-
tributed storage system might use one queue for each
storage server, and one queue for each disk.

We model the process of a task through the system as
a probabilistic finite state machine, where each state
σ emits a new queue for the task according to a distri-
bution p(q|σ), and the transition distribution between
states is p(σ′|σ). We expect that the system FSM is
defined in advance, for example, from a known proto-
col or multi-tier network.

A series of tasks can be represented compactly by the
notion of an event. An event represents the process
of a task arriving at a queue, waiting in queue, re-
ceiving service, and departing. Each state transition
corresponds to an event e = (ke, σe, qe, ae, de), where
ke is the task that changed state, σe is the new state,
qe the new queue, ae the arrival time, and de the de-
parture time. Every event e has two predecessors: a
within-queue predecessor ρ(e), which is generated by
the previous task to arrive at queue qe, and a within-
task predecessor π(e), which is generated by the task’s
previous arrival. Arrivals to the system as a whole are
represented using special initial events, which arrive
at a designated initial queue q0 at time 0 and depart
at the time that the task entered the system.

Putting this together, the joint density for a set of
events is p(E) =

∏
e∈E f(de − ue) p(qe|σe) p(σe|σπ(e)).

3. Inference

In this section, we tackle the challenging task of devel-
oping a slice sampler for networks of G/G/K queues.
Given a complete set of arrivals and departures to the
system, Section 2 described how the service and wait-
ing times can be computed, allowing answers to many
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Figure 2. Variables used in the Gibbs sampler

diagnostic questions. However, complete data is not
always available, either because the performance cost
of instrumenting every request is unacceptable, or be-
cause the resources that cause the queueing effects may
be unknown to the system developers.

Therefore, our concern is answering diagnostic ques-
tions from incomplete data. We assume that the ob-
served training set contains all arrival, departure, and
FSM path information for a randomly-selected subset
of tasks. Also, whenever a task is observed, we also
measure the total number of tasks, both observed and
hidden, that have entered the system. (This informa-
tion is trivial to collect in actual systems.) The in-
ference task is to compute the posterior p(E|O), where
E is a full set of events, as defined in the last section,
and O ⊂ E is the observed subset. The posterior is
intractable even for the simplest queueing models, so
we sample from it using MCMC.

Designing a sampler for this situation is difficult be-
cause of several issues that are specific to queueing
models. One issue is that because of the determinis-
tic dependencies between arrivals and departures de-
scribed in Section 2, the sampler must be constructed
carefully to ensure the resulting samples of arrivals
and departures are feasible. Indeed, it is challenging
to simply find a good point at which to initialize the
sampler (for details, see Section 3.5).

Two other issues directly influence the choice of sam-
pling algorithm. First, the conditional distribution
over a single departure contains singularities at the
times when other events arrive and depart, as de-
scribed in Section 3.1. For this reason, it is difficult
to design a proposal function that is suitable for im-
portance sampling, rejection sampling, or Metropolis-
Hastings. A second difficulty, described in Section 3.2,
is that the Markov blanket for a single departure can
be arbitrarily large, because changing one departure
time de can affect arbitrarily many later events, by
changing the time those events enter service. Never-
theless, the expected number of later events that are

altered is often reasonable, so inference is still possible.
However, implementing a naive Gibbs sampler is diffi-
cult because sampling from the single-departure condi-
tional distribution requires computing its normalizing
constant. But the normalizing constant must be com-
puted numerically, which can be expensive because of
its many singularities.

To address these difficulties, we use a Gibbs sampler
within a slice sampling framework (Neal, 2003). This
has the advantage that we need only compute the local
conditional distribution up to a constant, not sample
from it. Specifically, the local conditional distribution
is p(ae|E\e), where ae is the arrival of one of the unob-
served events e ∈ E\O. Because of the deterministic
dependencies mentioned above, when resampling ae,
we must also resample dπ(e), and the service times se′
for all later jobs e′ in qe. The notation E\e means all
of the information from E, except for those variables.
These variables are illustrated in Figure 2.

To compute the distribution p(ae|E\e), essentially
we need to compute the list of events whose ser-
vice time would be affected if a single departure time
changed. This amounts to solving the system of equa-
tions in either (2) or (5). We describe how to do
this for G/G/K/FCFS queues in Section 3.3 and for
G/G/1/RSS queues in Section 3.4.

3.1. Difficulties in Proposal Functions

A simpler alternative to computing the exact condi-
tional distribution for the Gibbs sampler is to sample
from the single-variable conditional distribution using
either an importance sampler or a rejection sampler.
But designing a good proposal is difficult for even the
simplest queueing models, because the shape of the
conditional distribution varies with the arrival rate.
To see this, consider two independent M/M/1/FCFS
queues, each with three arrivals, as shown below:

1

1 2 3

2 3

1

1 2 3

2 3

Queue 1

Queue 2

Here the horizontal axis represents time, the vertical
arrows indicate when jobs arrive at the system, and
each box represents the interval between when a job
enters service and when it finishes, that is, the service
time. The notation M/M/1 means that the interarrival
distribution is exponential with rate λ, and the service
distribution is exponential with rate µ.
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Figure 3. A departure with a large Markov blanket.

For each of these two queues, suppose that we wish to
resample the arrival time of job 2, conditioned on the
state of the rest of the system. At top, the queue is
lightly loaded (λ� µ), so the dominant component of
the response time is the service time. Therefore, the
distribution a2 = d2 −Exp(µ) is an excellent proposal
for an importance sampler. (It is inexact because the
shape of the distribution changes in the area a2 < d1.)
However, this proposal would be extremely poor for
the heavily loaded case at bottom, because there the
true conditional distribution is Unif[a1; a3]. A better
proposal would be flat until the previous job departs
and then decay exponentially. But this is precisely the
behavior of the exact conditional distribution, so we
derive that instead.

3.2. Difficulties in Markov Blankets

In this section, we describe an example that illustrates
how the Markov blanket of a single departure is diffi-
cult to characterize. Consider the single G/G/2/FCFS
queue shown in Figure 3, in which we wish to resample
the departure d1 to a new value d′1, holding all depar-
tures constant. Thus, as d1 changes, so will the service
times of jobs 3–6.

Three different choices for d′1 are illustrated in panels
2–4 of Figure 3. First, suppose that d′1 falls within
the range (d1, a4) (second panel). This has the effect
of shortening the service time s3 without affecting any
other jobs. If instead d′1 falls in (d2, d4) (third panel),
then both jobs 3 and 4 are affected: job 3 moves to

Algorithm 1 Update dependent events for a depar-
ture change in G/G/K/FCFS queue.

function ForwardPropagate(e0)
// Input: e0, event whose departure has changed
stabilized ← 0
e← ρ−1(e0)
while e 6= Null and not stabilized do
bek ← bρ(e),k ∀k ∈ [0,K)
be,k(ρ(e)) ← dρ(e)
stabilized ← 1 if be = old value of be else 0
ce ← mink∈[0,K] bek
pe ← arg mink∈[0,K] bek
se ← de −max[ae, ce]
e← ρ−1(e)

end while

server B, changing its service time; and job 4 enters
service immediately after job 1 leaves. Third, if d′1 falls
even later, in (a6, d6) (fourth panel), then both jobs 3
and 4 move to server B, changing their service times,
job 5 switches processors but is otherwise unaffected,
and now job 6 can start only when job 1 leaves.

Finally, notice that it is impossible for d′1 to occur later
than d6 if all other departures are held constant. This
is because job 6 cannot depart until all but one of the
earlier jobs depart, that is, d6 ≥ min[d′1, d5]. So since
d5 > d6, it must be that d6 ≥ d′1.

3.3. G/G/K/FCFS Queues

In this section, we describe how to compute the condi-
tional likelihood for a G/G/K/FCFS queue. Suppose
we wish to resample the arrival time ae of an event e;
equivalently, this is the departure dπ(e) of the previous-
task event π(e). As explained previously, computing
p(ae|E\e) directly, or sampling from it, is difficult. In-
stead, for the slice sampler it is sufficient to compute
the joint density p(ae, E\e), which is proportional to
the conditional density.

Algorithmically, this amounts to setting dπ(e) and ae
to the new value, and propagating the change through
the system of equations (5), thereby obtaining new
values of ce′ , pe′ , and se′ for all other events e′. The
procedure for doing this is specified in Algorithm 1
for the departure dπ(e) and in Algorithm 2 for the ar-
rival ae. The main idea in both algorithms is that any
service time se′ depends on its previous events only
through the processor-clear times bρ(e′) of the imme-
diately previous event ρ(e). Furthermore, be can be
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Algorithm 2 Update dependent events for an arrival
change in G/G/K/FCFS queue.

// Input: e0, event whose arrival has changed
// Input: aOld, old arrival of event e0

Update arrival order ρ for changed arrival of e0

aMin ← min[ae0 , aOld ]
aMax ← max[ae0 , aOld ]
E ← all events that arrive at qe0 in aMin . . . aMax
// First change events that arrive near e0

for all e ∈ E do
bek ← bρ(e),k ∀k ∈ [0,K)
be,k(ρ(e)) ← dρ(e)
ce ← mink∈[0,K] bek
pe ← arg mink∈[0,K] bek
se ← de −max[ae, ce]

end for
// Second, propagate changes to later events
e← ρ−1(lastElement(E))
stabilized ← 1 if be = old value of be else 0
if not stabilized then

ForwardPropagate(e) // Algorithm 1
end if

computed recursively as

bek =

{
dρ(e) if k = pρ(e)

bρ(e),k otherwise
. (7)

After running Algorithms 1 and 2, in principle we can
compute the new joint likelihood p(ae, E\e) directly
from (6). The problem with this naive approach is
that it requires O(|E|) time to update each event de-
parture, so that each iteration of the Gibbs sampler
uses O(|E|2) time. This quadratic computational cost
is unacceptable for the large numbers of events that
can be generated by a real system. To avoid this cost,
we use a lazy updating scheme, in which first we gen-
erate the list of events ∆ that would be changed by
running Algorithms 1 and 2. Then we can compactly
compute the new log-likelihood as

`new = `old +
∑
e∈∆

log f(snew
e )− log f(sold

e ) (8)

If any snew
e is negative, set `new = −∞, which will

cause the slice sampler to try a different value for ae.

3.4. G/G/1/RSS Queues

In this section, we describe computing the slice sam-
pler for a G/G/1/RSS queue. As in the FCFS case, we
compute the joint density instead of the conditional,
by incrementally computing the change to the joint
density resulting from a single departure change. Algo-
rithm 3 describes how to update the dependent events

Algorithm 3 Update dependent events for a depar-
ture change in a G/G/1/RSS queue.

Update departure order γ for changed departure de
newPrev , newNext ← Events departing immediately
before and after the time dold

e

oldPrev , oldNext ← Events departing immediately
before and after the time de
dMin ← min[dnewPrev , doldPrev ]
dMax ← max[dnewNext , doldNext ]
L← all events with departures in dMin . . . dMax
for all e ∈ L do
ue ← max[ae, dγ(e)]
se ← de − ue

end for

in queue qπ(e) in response to a change in dπ(e). For the
arrival ae, none of the service times in qe need to be
updated.

There are two other issues that need to be considered.
First, the new value ae = dπ(e) must still be feasi-
ble with respect to the constraints (2). This can be
ensured by computing the new departure order γ for
qπ(e), and then verifying for all events in qe and qπ(e)

that γ−1(e) ∈ IQDe (or that the departure of e emp-
ties the queue, and γ−1(e) is the next event to arrive).

The second issue is that computing the joint density
p(ae, E\e) from (4) is complicated by the factors N−1

e .
These arise from the random selection of job e to en-
ter service, out of the Ne jobs that could have been
selected. These factors are crucial to the likelihood,
because they are the only penalty on a job waiting
in queue for a long time; without them, the sampled
waiting times would become arbitrarily large.

To compute these, we need an efficient data structure
for computing Ne, the number of jobs that were in
queue when the event e entered service. This is im-
plemented by two sorted lists for each queue: one that
contains all of the queue’s arrival times, and one that
contains all of the departure times. From these, we can
use binary search to compute the total number of jobs
that have arrived before ue (call that #Ae) and the to-
tal number of jobs that have departed before ue (call
that #De). Then we can compute Ne = #Ae −#De.

Then the new log-likelihood can be computed as

`new = `old+
∑
e∈∆

(log f(snew
e )−logNnew

e )−(log f(sold
e )−logNold

e )

Here ∆ must include all events e′ whose commence-
ment time falls in aold

e . . . anew
e , because those events

will have a new value of Ne′ .
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Figure 4. Performance of the sampler on synthetic data.
Each point represents the estimated and actual mean ser-
vice time of single queue in one of the networks.

3.5. Initialization

A final issue is how the sampler is initialized. This
is challenging because not all sets of arrivals and de-
partures are feasible: they must obey both the single-
queue constraints in (2) or (5)—neither of which are
convex—and also the network constraint dπ(e) = ae.
In addition to being feasible, the configuration should
also be suitable for mixing: setting all latent interar-
rival and service times to 0 results in a feasible con-
figuration, but one that makes mixing difficult. Or, if
the service distribution belongs to a scale family (such
as gamma or log-normal), initializing all of the service
times to be identical causes the initial variance to be
sampled to a very small value, which is also very bad
for mixing.

Initialization proceeds as follows. For each unobserved
task, we sample a path of states and queues from the
FSM, and service times from an exponential distribu-
tion initialized from the mean of the observed response
times. Sometimes the sampled service time will con-
flict with the observed arrivals and departures. In this
case we use rejection, and if no valid service time can
be found, we set the service time to zero. Finally, we
run a few Gibbs steps with exponential service distri-
butions, before switching to the actual service distri-
butions in the model. This prevents zero service times,
which would cause zero-likelihood problems with some
service distributions (namely, the log normal).
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Figure 6. Workload used for the Cloudstone application

4. Results

4.1. Synthetic Data

To evaluate the sampler, we generate data from a va-
riety of three-tier queueing networks, similar to Fig-
ure 1, but without the network queues. The networks
vary in their numbers of queues (9, 30); queue types
(G/G/K/FCFS and G/G/1/FCFS); and service dis-
tributions, which are chosen so that the expected uti-
lization of each queue varies between 0.5 and 0.9. In
all cases, the service distributions are exponential. In
all, 72 different networks are used. For each network,
1000 tasks are generated, resulting in 4000 sampled
events. To evaluate the ability of the sampler to re-
construct the service time of each queue from incom-
plete data, we observe the arrivals and departures for
either 25% or 50% of the tasks, and record the esti-
mated mean service for each queue. The sampler does
not use the true parameters of the service distribu-
tion. Rather, the network parameters are sampled in
a Bayesian fashion, using uninformative priors.

Figure 4 shows the estimated mean service time as a
function of the actual mean of the entire sample. Each
point represents a single queue in a single network.
The estimated service times are well correlated with
the true values (ρ = 0.90517 for the G/G/K/FCFS
queues, and ρ = 0.86367 for the G/G/1/RSS).

4.2. Web Application

In this section, we demonstrate how this inferential
framework can be used to diagnose performance prob-
lems on a benchmark Web application. We use Cloud-
stone (Sobel et al., 2008), a recently-proposed bench-
mark that is designed to model Web 2.0 applications.
Cloudstone has been implemented on several platforms
for Web development. The version that we use is im-
plemented in Ruby on Rails, which is a popular ap-
plication framework used by several high-profile com-
mercial applications, including Basecamp and Twitter.
Cloudstone was developed by professional Web devel-
opers with the intention of reflecting common idioms
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Figure 5. Reconstruction of the percentage of request time spent in each tier, from 25% tasks observed (left), 50% tasks
observed (center), and all tasks observed (right). The x-axis is the time in seconds that the task entered the system, and
the y-axis the estimated percentage of response time.

of Rails usage in actual applications.

We run a series of 42,936 requests to Cloudstone in
a one-hour period, using the workload generator sup-
plied as part of the benchmark. The number of re-
quests sent per second is shown in Figure 6; this
is derived from a production workload supplied by
Ebates.com, but scaled down to the capacity of Cloud-
stone. The application is run on Amazon’s EC2 utility
computing service, with Rails running in parallel on 5
virtual machines, each running two threads, and a sin-
gle VM running a MySQL database. For each request,
we record which of the Rails instances handled the
request, the amount of time spent in Rails, and the
amount of time spent in the database. Each Cloud-
stone request causes many database queries; the time
we record is the sum of the time for those queries. (We
also record the amount of time spent on the network,
but for this workload the network time is insignificant.)

We model the system as a network of G/G/1/RSS
queues: one for each Rails process (10 queues in all)
and one queue for the database. This choice is moti-
vated by the architecture of Rails, because each Rails
instance processes exactly one request at a time, but
I/O is performed in parallel. The service distribu-
tions are mixtures of four exponential distributions
(the number of components was chosen using AIC).
Interestingly, G/G/K/FCFS queues are an extremely
poor fit to this data. A total of 128,808 events (in the
sense defined in Section 2.2) are caused by the 42,936
requests.

Our goal is to infer the system bottleneck, that is,
what component contributes most to the system re-
sponse time. Although we measure directly how much
time is spent in Rails and how much in the database,
this does not indicate how much time is due to intrin-

sic processing and how much is due to workload. This
distinction is important in practice: If system latency
is due to workload, then we expect adding more servers
to help, but not if latency is due to intrinsic processing.
Therefore, the goal is to infer the expected percentage
of time a request spends in Rails waiting and service,
and what percentage in database and service. These
proportions change depending on the workload, so as
the workload changes over time, the estimated pro-
portions should change as well. Furthermore, we wish
to infer the proportions from as little data as possi-
ble, to minimize the overhead of logging on the Rails
machines, on which latency is critical.

Figure 5 displays the proportion of time per-tier spent
in processing and in queue, as estimated from 25%,
50%, and 100% of the total amount of data. Qualita-
tively, the proportions estimated from only 25% of the
data strongly resemble those one the full data set: In
either case, it is apparent that the Rails waiting time
dominates all other components, and that DB waiting
time dominates DB service time.

5. Discussion

Queueing models have been long studied in telecom-
munications, operations research, and performance
modeling of computer networks and systems. Queue-
ing theory focuses on analytic approximations to
the long-run behavior of the system—such as the
steady-state distribution or large-deviations bounds—
but does not consider the problem of inferring system
behavior from incomplete data. In the systems com-
munity, there has been recent interest in modeling dy-
namic Web services by queueing networks (Urgaonkar
et al., 2005; Welsh, 2002). There is also recent work us-
ing queueing models to initialize more flexible models,
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namely regression trees (Thereska & Ganger, 2008).
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