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1 Executive Summary
Cloud Computing, the long-held dream of computing as a utility, has the potential to transform a large part of the
IT industry, making software even more attractive as a service and shaping the way IT hardware is designed and
purchased. Developers with innovative ideas for new Internet services no longer require the large capital outlays
in hardware to deploy their service or the human expense to operate it. They need not be concerned about over-
provisioning for a service whose popularity does not meet their predictions, thus wasting costly resources, or under-
provisioning for one that becomes wildly popular, thus missing potential customers and revenue. Moreover, companies
with large batch-oriented tasks can get results as quickly as their programs can scale, since using 1000 servers for one
hour costs no more than using one server for 1000 hours. This elasticity of resources, without paying a premium for
large scale, is unprecedented in the history of IT.

Cloud Computing refers to both the applications delivered as services over the Internet and the hardware and
systems software in the datacenters that provide those services. The services themselves have long been referred to as
Software as a Service (SaaS). The datacenter hardware and software is what we will call a Cloud. When a Cloud is
made available in a pay-as-you-go manner to the general public, we call it a Public Cloud; the service being sold is
Utility Computing. We use the term Private Cloud to refer to internal datacenters of a business or other organization,
not made available to the general public. Thus, Cloud Computing is the sum of SaaS and Utility Computing, but does
not include Private Clouds. People can be users or providers of SaaS, or users or providers of Utility Computing. We
focus on SaaS Providers (Cloud Users) and Cloud Providers, which have received less attention than SaaS Users.

From a hardware point of view, three aspects are new in Cloud Computing.

1. The illusion of infinite computing resources available on demand, thereby eliminating the need for Cloud Com-
puting users to plan far ahead for provisioning.

2. The elimination of an up-front commitment by Cloud users, thereby allowing companies to start small and
increase hardware resources only when there is an increase in their needs.

3. The ability to pay for use of computing resources on a short-term basis as needed (e.g., processors by the hour
and storage by the day) and release them as needed, thereby rewarding conservation by letting machines and
storage go when they are no longer useful.

We argue that the construction and operation of extremely large-scale, commodity-computer datacenters at low-
cost locations was the key necessary enabler of Cloud Computing, for they uncovered the factors of 5 to 7 decrease
in cost of electricity, network bandwidth, operations, software, and hardware available at these very large economies
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of scale. These factors, combined with statistical multiplexing to increase utilization compared a private cloud, meant
that cloud computing could offer services below the costs of a medium-sized datacenter and yet still make a good
profit.

Any application needs a model of computation, a model of storage, and a model of communication. The statistical
multiplexing necessary to achieve elasticity and the illusion of infinite capacity requires each of these resources to
be virtualized to hide the implementation of how they are multiplexed and shared. Our view is that different utility
computing offerings will be distinguished based on the level of abstraction presented to the programmer and the level
of management of the resources.

Amazon EC2 is at one end of the spectrum. An EC2 instance looks much like physical hardware, and users can
control nearly the entire software stack, from the kernel upwards. This low level makes it inherently difficult for
Amazon to offer automatic scalability and failover, because the semantics associated with replication and other state
management issues are highly application-dependent. At the other extreme of the spectrum are application domain-
specific platforms such as Google AppEngine. AppEngine is targeted exclusively at traditional web applications,
enforcing an application structure of clean separation between a stateless computation tier and a stateful storage tier.
AppEngine’s impressive automatic scaling and high-availability mechanisms, and the proprietary MegaStore data
storage available to AppEngine applications, all rely on these constraints. Applications for Microsoft’s Azure are
written using the .NET libraries, and compiled to the Common Language Runtime, a language-independent managed
environment. Thus, Azure is intermediate between application frameworks like AppEngine and hardware virtual
machines like EC2.

When is Utility Computing preferable to running a Private Cloud? A first case is when demand for a service varies
with time. Provisioning a data center for the peak load it must sustain a few days per month leads to underutilization
at other times, for example. Instead, Cloud Computing lets an organization pay by the hour for computing resources,
potentially leading to cost savings even if the hourly rate to rent a machine from a cloud provider is higher than the
rate to own one. A second case is when demand is unknown in advance. For example, a web startup will need to
support a spike in demand when it becomes popular, followed potentially by a reduction once some of the visitors turn
away. Finally, organizations that perform batch analytics can use the ”cost associativity” of cloud computing to finish
computations faster: using 1000 EC2 machines for 1 hour costs the same as using 1 machine for 1000 hours. For the
first case of a web business with varying demand over time and revenue proportional to user hours, we have captured
the tradeoff in the equation below.

UserHourscloud × (revenue− Costcloud) ≥ UserHoursdatacenter × (revenue−
Costdatacenter

Utilization
) (1)

The left-hand side multiplies the net revenue per user-hour by the number of user-hours, giving the expected profit
from using Cloud Computing. The right-hand side performs the same calculation for a fixed-capacity datacenter
by factoring in the average utilization, including nonpeak workloads, of the datacenter. Whichever side is greater
represents the opportunity for higher profit.

Table 1 below previews our ranked list of critical obstacles to growth of Cloud Computing in Section 7. The first
three concern adoption, the next five affect growth, and the last two are policy and business obstacles. Each obstacle is
paired with an opportunity, ranging from product development to research projects, which can overcome that obstacle.

We predict Cloud Computing will grow, so developers should take it into account. All levels should aim at hori-
zontal scalability of virtual machines over the efficiency on a single VM. In addition

1. Applications Software needs to both scale down rapidly as well as scale up, which is a new requirement. Such
software also needs a pay-for-use licensing model to match needs of Cloud Computing.

2. Infrastructure Software needs to be aware that it is no longer running on bare metal but on VMs. Moreover, it
needs to have billing built in from the beginning.

3. Hardware Systems should be designed at the scale of a container (at least a dozen racks), which will be is
the minimum purchase size. Cost of operation will match performance and cost of purchase in importance,
rewarding energy proportionality such as by putting idle portions of the memory, disk, and network into low
power mode. Processors should work well with VMs, flash memory should be added to the memory hierarchy,
and LAN switches and WAN routers must improve in bandwidth and cost.

2 Cloud Computing: An Old Idea Whose Time Has (Finally) Come
Cloud Computing is a new term for a long-held dream of computing as a utility [35], which has recently emerged as
a commercial reality. Cloud Computing is likely to have the same impact on software that foundries have had on the
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Table 1: Quick Preview of Top 10 Obstacles to and Opportunities for Growth of Cloud Computing.
Obstacle Opportunity

1 Availability of Service Use Multiple Cloud Providers; Use Elasticity to Prevent DDOS
2 Data Lock-In Standardize APIs; Compatible SW to enable Surge Computing
3 Data Confidentiality and Auditability Deploy Encryption, VLANs, Firewalls; Geographical Data Storage
4 Data Transfer Bottlenecks FedExing Disks; Data Backup/Archival; Higher BW Switches
5 Performance Unpredictability Improved VM Support; Flash Memory; Gang Schedule VMs
6 Scalable Storage Invent Scalable Store
7 Bugs in Large Distributed Systems Invent Debugger that relies on Distributed VMs
8 Scaling Quickly Invent Auto-Scaler that relies on ML; Snapshots for Conservation
9 Reputation Fate Sharing Offer reputation-guarding services like those for email
10 Software Licensing Pay-for-use licenses; Bulk use sales

hardware industry. At one time, leading hardware companies required a captive semiconductor fabrication facility,
and companies had to be large enough to afford to build and operate it economically. However, processing equipment
doubled in price every technology generation. A semiconductor fabrication line costs over $3B today, so only a handful
of major “merchant” companies with very high chip volumes, such as Intel and Samsung, can still justify owning and
operating their own fabrication lines. This motivated the rise of semiconductor foundries that build chips for others,
such as Taiwan Semiconductor Manufacturing Company (TSMC). Foundries enable “fab-less” semiconductor chip
companies whose value is in innovative chip design: A company such as nVidia can now be successful in the chip
business without the capital, operational expenses, and risks associated with owning a state-of-the-art fabrication
line. Conversely, companies with fabrication lines can time-multiplex their use among the products of many fab-less
companies, to lower the risk of not having enough successful products to amortize operational costs. Similarly, the
advantages of the economy of scale and statistical multiplexing may ultimately lead to a handful of Cloud Computing
providers who can amortize the cost of their large datacenters over the products of many “datacenter-less” companies.

Cloud Computing has been talked about [10], blogged about [13, 25], written about [15, 37, 38] and been featured
in the title of workshops, conferences, and even magazines. Nevertheless, confusion remains about exactly what it is
and when it’s useful, causing Oracle’s CEO to vent his frustration:

The interesting thing about Cloud Computing is that we’ve redefined Cloud Computing to include ev-
erything that we already do. . . . I don’t understand what we would do differently in the light of Cloud
Computing other than change the wording of some of our ads.

Larry Ellison, quoted in the Wall Street Journal, September 26, 2008

These remarks are echoed more mildly by Hewlett-Packard’s Vice President of European Software Sales:

A lot of people are jumping on the [cloud] bandwagon, but I have not heard two people say the same thing
about it. There are multiple definitions out there of “the cloud.”

Andy Isherwood, quoted in ZDnet News, December 11, 2008

Richard Stallman, known for his advocacy of “free software”, thinks Cloud Computing is a trap for users—if
applications and data are managed “in the cloud”, users might become dependent on proprietary systems whose costs
will escalate or whose terms of service might be changed unilaterally and adversely:

It’s stupidity. It’s worse than stupidity: it’s a marketing hype campaign. Somebody is saying this is
inevitable — and whenever you hear somebody saying that, it’s very likely to be a set of businesses
campaigning to make it true.

Richard Stallman, quoted in The Guardian, September 29, 2008

Our goal in this paper to clarify terms, provide simple formulas to quantify comparisons between of cloud and
conventional Computing, and identify the top technical and non-technical obstacles and opportunities of Cloud Com-
puting. Our view is shaped in part by working since 2005 in the UC Berkeley RAD Lab and in part as users of Amazon
Web Services since January 2008 in conducting our research and our teaching. The RAD Lab’s research agenda is to
invent technology that leverages machine learning to help automate the operation of datacenters for scalable Internet
services. We spent six months brainstorming about Cloud Computing, leading to this paper that tries to answer the
following questions:
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• What is Cloud Computing, and how is it different from previous paradigm shifts such as Software as a Service
(SaaS)?

• Why is Cloud Computing poised to take off now, whereas previous attempts have foundered?

• What does it take to become a Cloud Computing provider, and why would a company consider becoming one?

• What new opportunities are either enabled by or potential drivers of Cloud Computing?

• How might we classify current Cloud Computing offerings across a spectrum, and how do the technical and
business challenges differ depending on where in the spectrum a particular offering lies?

• What, if any, are the new economic models enabled by Cloud Computing, and how can a service operator decide
whether to move to the cloud or stay in a private datacenter?

• What are the top 10 obstacles to the success of Cloud Computing—and the corresponding top 10 opportunities
available for overcoming the obstacles?

• What changes should be made to the design of future applications software, infrastructure software, and hard-
ware to match the needs and opportunities of Cloud Computing?

3 What is Cloud Computing?
Cloud Computing refers to both the applications delivered as services over the Internet and the hardware and systems
software in the datacenters that provide those services. The services themselves have long been referred to as Software
as a Service (SaaS), so we use that term. The datacenter hardware and software is what we will call a Cloud.

When a Cloud is made available in a pay-as-you-go manner to the public, we call it a Public Cloud; the service
being sold is Utility Computing. Current examples of public Utility Computing include Amazon Web Services, Google
AppEngine, and Microsoft Azure. We use the term Private Cloud to refer to internal datacenters of a business or
other organization that are not made available to the public. Thus, Cloud Computing is the sum of SaaS and Utility
Computing, but does not normally include Private Clouds. We’ll generally use Cloud Computing, replacing it with
one of the other terms only when clarity demands it. Figure 1 shows the roles of the people as users or providers of
these layers of Cloud Computing, and we’ll use those terms to help make our arguments clear.

The advantages of SaaS to both end users and service providers are well understood. Service providers enjoy
greatly simplified software installation and maintenance and centralized control over versioning; end users can access
the service “anytime, anywhere”, share data and collaborate more easily, and keep their data stored safely in the
infrastructure. Cloud Computing does not change these arguments, but it does give more application providers the
choice of deploying their product as SaaS without provisioning a datacenter: just as the emergence of semiconductor
foundries gave chip companies the opportunity to design and sell chips without owning a fab, Cloud Computing allows
deploying SaaS—and scaling on demand—without building or provisioning a datacenter. Analogously to how SaaS
allows the user to offload some problems to the SaaS provider, the SaaS provider can now offload some of his problems
to the Cloud Computing provider. From now on, we will focus on issues related to the potential SaaS Provider (Cloud
User) and to the Cloud Providers, which have received less attention.

We will eschew terminology such as “X as a service (XaaS)”; values of X we have seen in print include Infrastruc-
ture, Hardware, and Platform, but we were unable to agree even among ourselves what the precise differences among
them might be.1 (We are using Endnotes instead of footnotes. Go to page 20 at the end of paper to read the notes,
which have more details.) Instead, we present a simple classification of Utility Computing services in Section 5 that
focuses on the tradeoffs among programmer convenience, flexibility, and portability, from both the cloud provider’s
and the cloud user’s point of view.

From a hardware point of view, three aspects are new in Cloud Computing [42]:

1. The illusion of infinite computing resources available on demand, thereby eliminating the need for Cloud Com-
puting users to plan far ahead for provisioning;

2. The elimination of an up-front commitment by Cloud users, thereby allowing companies to start small and
increase hardware resources only when there is an increase in their needs; and

3. The ability to pay for use of computing resources on a short-term basis as needed (e.g., processors by the hour
and storage by the day) and release them as needed, thereby rewarding conservation by letting machines and
storage go when they are no longer useful.
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Figure 1: Users and Providers of Cloud Computing. The benefits of SaaS to both SaaS users and SaaS providers are
well documented, so we focus on Cloud Computing’s effects on Cloud Providers and SaaS Providers/Cloud users. The
top level can be recursive, in that SaaS providers can also be a SaaS users. For example, a mashup provider of rental
maps might be a user of the Craigslist and Google maps services.

We will argue that all three are important to the technical and economic changes made possible by Cloud Com-
puting. Indeed, past efforts at utility computing failed, and we note that in each case one or two of these three critical
characteristics were missing. For example, Intel Computing Services in 2000-2001 required negotiating a contract and
longer-term use than per hour.

As a successful example, Elastic Compute Cloud (EC2) from Amazon Web Services (AWS) sells 1.0-GHz x86
ISA “slices” for 10 cents per hour, and a new “slice”, or instance, can be added in 2 to 5 minutes. Amazon’s Scalable
Storage Service (S3) charges $0.12 to $0.15 per gigabyte-month, with additional bandwidth charges of $0.10 to $0.15
per gigabyte to move data in to and out of AWS over the Internet. Amazon’s bet is that by statistically multiplexing
multiple instances onto a single physical box, that box can be simultaneously rented to many customers who will not
in general interfere with each others’ usage (see Section 7).

While the attraction to Cloud Computing users (SaaS providers) is clear, who would become a Cloud Computing
provider, and why? To begin with, realizing the economies of scale afforded by statistical multiplexing and bulk
purchasing requires the construction of extremely large datacenters.

Building, provisioning, and launching such a facility is a hundred-million-dollar undertaking. However, because of
the phenomenal growth of Web services through the early 2000’s, many large Internet companies, including Amazon,
eBay, Google, Microsoft and others, were already doing so. Equally important, these companies also had to develop
scalable software infrastructure (such as MapReduce, the Google File System, BigTable, and Dynamo [16, 20, 14, 17])
and the operational expertise to armor their datacenters against potential physical and electronic attacks.

Therefore, a necessary but not sufficient condition for a company to become a Cloud Computing provider is that
it must have existing investments not only in very large datacenters, but also in large-scale software infrastructure
and operational expertise required to run them. Given these conditions, a variety of factors might influence these
companies to become Cloud Computing providers:

1. Make a lot of money. Although 10 cents per server-hour seems low, Table 2 summarizes James Hamilton’s
estimates [23] that very large datacenters (tens of thousands of computers) can purchase hardware, network
bandwidth, and power for 1/5 to 1/7 the prices offered to a medium-sized (hundreds or thousands of computers)
datacenter. Further, the fixed costs of software development and deployment can be amortized over many more
machines. Others estimate the price advantage as a factor of 3 to 5 [37, 10]. Thus, a sufficiently large company
could leverage these economies of scale to offer a service well below the costs of a medium-sized company and
still make a tidy profit.

2. Leverage existing investment. Adding Cloud Computing services on top of existing infrastructure provides a
new revenue stream at (ideally) low incremental cost, helping to amortize the large investments of datacenters.
Indeed, according to Werner Vogels, Amazon’s CTO, many Amazon Web Services technologies were initially
developed for Amazon’s internal operations [42].

3. Defend a franchise. As conventional server and enterprise applications embrace Cloud Computing, vendors
with an established franchise in those applications would be motivated to provide a cloud option of their own.
For example, Microsoft Azure provides an immediate path for migrating existing customers of Microsoft enter-
prise applications to a cloud environment.
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Table 2: Economies of scale in 2006 for medium-sized datacenter (≈1000 servers) vs. very large datacenter (≈50,000
servers). [24]

Technology Cost in Medium-sized DC Cost in Very Large DC Ratio
Network $95 per Mbit/sec/month $13 per Mbit/sec/month 7.1
Storage $2.20 per GByte / month $0.40 per GByte / month 5.7
Administration ≈140 Servers / Administrator >1000 Servers / Administrator 7.1

Table 3: Price of kilowatt-hours of electricity by region [7].

Price per KWH Where Possible Reasons Why
3.6¢ Idaho Hydroelectric power; not sent long distance

10.0¢ California Electricity transmitted long distance over the grid;
limited transmission lines in Bay Area; no coal
fired electricity allowed in California.

18.0¢ Hawaii Must ship fuel to generate electricity

4. Attack an incumbent. A company with the requisite datacenter and software resources might want to establish a
beachhead in this space before a single “800 pound gorilla” emerges. Google AppEngine provides an alternative
path to cloud deployment whose appeal lies in its automation of many of the scalability and load balancing
features that developers might otherwise have to build for themselves.

5. Leverage customer relationships. IT service organizations such as IBM Global Services have extensive cus-
tomer relationships through their service offerings. Providing a branded Cloud Computing offering gives those
customers an anxiety-free migration path that preserves both parties’ investments in the customer relationship.

6. Become a platform. Facebook’s initiative to enable plug-in applications is a great fit for cloud computing, as
we will see, and indeed one infrastructure provider for Facebook plug-in applications is Joyent, a cloud provider.
Yet Facebook’s motivation was to make their social-networking application a new development platform.

Several Cloud Computing (and conventional computing) datacenters are being built in seemingly surprising loca-
tions, such as Quincy, Washington (Google, Microsoft, Yahoo!, and others) and San Antonio, Texas (Microsoft, US
National Security Agency, others). The motivation behind choosing these locales is that the costs for electricity, cool-
ing, labor, property purchase costs, and taxes are geographically variable, and of these costs, electricity and cooling
alone can account for a third of the costs of the datacenter. Table 3 shows the cost of electricity in different locales [10].
Physics tells us it’s easier to ship photons than electrons; that is, it’s cheaper to ship data over fiber optic cables than
to ship electricity over high-voltage transmission lines.

4 Clouds in a Perfect Storm: Why Now, Not Then?
Although we argue that the construction and operation of extremely large scale commodity-computer datacenters was
the key necessary enabler of Cloud Computing, additional technology trends and new business models also played
a key role in making it a reality this time around. Once Cloud Computing was “off the ground,” new application
opportunities and usage models were discovered that would not have made sense previously.

4.1 New Technology Trends and Business Models
Accompanying the emergence of Web 2.0 was a shift from “high-touch, high-margin, high-commitment” provisioning
of service “low-touch, low-margin, low-commitment” self-service. For example, in Web 1.0, accepting credit card
payments from strangers required a contractual arrangement with a payment processing service such as VeriSign or
Authorize.net; the arrangement was part of a larger business relationship, making it onerous for an individual or a very
small business to accept credit cards online. With the emergence of PayPal, however, any individual can accept credit
card payments with no contract, no long-term commitment, and only modest pay-as-you-go transaction fees. The level
of “touch” (customer support and relationship management) provided by these services is minimal to nonexistent, but
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the fact that the services are now within reach of individuals seems to make this less important. Similarly, individuals’
Web pages can now use Google AdSense to realize revenue from ads, rather than setting up a relationship with an
ad placement company, such DoubleClick (now acquired by Google). Those ads can provide the business model for
Wed 2.0 apps as well. Individuals can distribute Web content using Amazon CloudFront rather than establishing a
relationship with a content distribution network such as Akamai.

Amazon Web Services capitalized on this insight in 2006 by providing pay-as-you-go computing with no contract:
all customers need is a credit card. A second innovation was selling hardware-level virtual machines cycles, allowing
customers to choose their own software stack without disrupting each other while sharing the same hardware and
thereby lowering costs further.

4.2 New Application Opportunities
While we have yet to see fundamentally new types of applications enabled by Cloud Computing, we believe that
several important classes of existing applications will become even more compelling with Cloud Computing and
contribute further to its momentum. When Jim Gray examined technological trends in 2003 [21], he concluded that
economic necessity mandates putting the data near the application, since the cost of wide-area networking has fallen
more slowly (and remains relatively higher) than all other IT hardware costs. Although hardware costs have changed
since Gray’s analysis, his idea of this “breakeven point” has not. Although we defer a more thorough discussion of
Cloud Computing economics to Section 6, we use Gray’s insight in examining what kinds of applications represent
particularly good opportunities and drivers for Cloud Computing.

Mobile interactive applications. Tim O’Reilly believes that “the future belongs to services that respond in real
time to information provided either by their users or by nonhuman sensors.” [38] Such services will be attracted to
the cloud not only because they must be highly available, but also because these services generally rely on large data
sets that are most conveniently hosted in large datacenters. This is especially the case for services that combine two or
more data sources or other services, e.g., mashups. While not all mobile devices enjoy connectivity to the cloud 100%
of the time, the challenge of disconnected operation has been addressed successfully in specific application domains,
2 so we do not see this as a significant obstacle to the appeal of mobile applications.

Parallel batch processing. Although thus far we have concentrated on using Cloud Computing for interactive
SaaS, Cloud Computing presents a unique opportunity for batch-processing and analytics jobs that analyze terabytes
of data and can take hours to finish. If there is enough data parallelism in the application, users can take advantage
of the cloud’s new “cost associativity”: using hundreds of computers for a short time costs the same as using a few
computers for a long time. For example, Peter Harkins, a Senior Engineer at The Washington Post, used 200 EC2
instances (1,407 server hours) to convert 17,481 pages of Hillary Clinton’s travel documents into a form more friendly
to use on the WWW within nine hours after they were released [3]. Programming abstractions such as Google’s
MapReduce [16] and its open-source counterpart Hadoop [11] allow programmers to express such tasks while hiding
the operational complexity of choreographing parallel execution across hundreds of Cloud Computing servers. Indeed,
Cloudera [1] is pursuing commercial opportunities in this space. Again, using Gray’s insight, the cost/benefit analysis
must weigh the cost of moving large datasets into the cloud against the benefit of potential speedup in the data analysis.
When we return to economic models later, we speculate that part of Amazon’s motivation to host large public datasets
for free [8] may be to mitigate the cost side of this analysis and thereby attract users to purchase Cloud Computing
cycles near this data.

The rise of analytics. A special case of compute-intensive batch processing is business analytics. While the large
database industry was originally dominated by transaction processing, that demand is leveling off. A growing share
of computing resources is now spent on understanding customers, supply chains, buying habits, ranking, and so on.
Hence, while online transaction volumes will continue to grow slowly, decision support is growing rapidly, shifting
the resource balance in database processing from transactions to business analytics.

Extension of compute-intensive desktop applications. The latest versions of the mathematics software packages
Matlab and Mathematica are capable of using Cloud Computing to perform expensive evaluations. Other desktop
applications might similarly benet from seamless extension into the cloud. Again, a reasonable test is comparing the
cost of computing in the Cloud plus the cost of moving data in and out of the Cloud to the time savings from using
the Cloud. Symbolic mathematics involves a great deal of computing per unit of data, making it a domain worth
investigating. An interesting alternative model might be to keep the data in the cloud and rely on having sufficient
bandwidth to enable suitable visualization and a responsive GUI back to the human user. Offline image rendering or 3D
animation might be a similar example: given a compact description of the objects in a 3D scene and the characteristics
of the lighting sources, rendering the image is an embarrassingly parallel task with a high computation-to-bytes ratio.

“Earthbound” applications. Some applications that would otherwise be good candidates for the cloud’s elasticity
and parallelism may be thwarted by data movement costs, the fundamental latency limits of getting into and out of the
cloud, or both. For example, while the analytics associated with making long-term financial decisions are appropriate
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for the Cloud, stock trading that requires microsecond precision is not. Until the cost (and possibly latency) of wide-
area data transfer decrease (see Section 7), such applications may be less obvious candidates for the cloud.

5 Classes of Utility Computing

Any application needs a model of computation, a model of storage and, assuming the application is even trivially
distributed, a model of communication. The statistical multiplexing necessary to achieve elasticity and the illusion
of infinite capacity requires resources to be virtualized, so that the implementation of how they are multiplexed and
shared can be hidden from the programmer. Our view is that different utility computing offerings will be distinguished
based on the level of abstraction presented to the programmer and the level of management of the resources.

Amazon EC2 is at one end of the spectrum. An EC2 instance looks much like physical hardware, and users
can control nearly the entire software stack, from the kernel upwards. The API exposed is “thin”: a few dozen
API calls to request and configure the virtualized hardware. There is no a priori limit on the kinds of applications
that can be hosted; the low level of virtualization—raw CPU cycles, block-device storage, IP-level connectivity—
allow developers to code whatever they want. On the other hand, this makes it inherently difficult for Amazon to
offer automatic scalability and failover, because the semantics associated with replication and other state management
issues are highly application-dependent.

AWS does offer a number of higher-level managed services, including several different managed storage services
for use in conjunction with EC2, such as SimpleDB. However, these offerings have higher latency and nonstandard
API’s, and our understanding is that they are not as widely used as other parts of AWS.

At the other extreme of the spectrum are application domain-specific platforms such as Google AppEngine and
Force.com, the SalesForce business software development platform. AppEngine is targeted exclusively at traditional
web applications, enforcing an application structure of clean separation between a stateless computation tier and a
stateful storage tier. Furthermore, AppEngine applications are expected to be request-reply based, and as such they
are severely rationed in how much CPU time they can use in servicing a particular request. AppEngine’s impressive
automatic scaling and high-availability mechanisms, and the proprietary MegaStore (based on BigTable) data storage
available to AppEngine applications, all rely on these constraints. Thus, AppEngine is not suitable for general-purpose
computing. Similarly, Force.com is designed to support business applications that run against the salesforce.com
database, and nothing else.

Microsoft’s Azure is an intermediate point on this spectrum of flexibility vs. programmer convenience. Azure
applications are written using the .NET libraries, and compiled to the Common Language Runtime, a language-
independent managed environment. The system supports general-purpose computing, rather than a single category
of application. Users get a choice of language, but cannot control the underlying operating system or runtime. The
libraries provide a degree of automatic network configuration and failover/scalability, but require the developer to
declaratively specify some application properties in order to do so. Thus, Azure is intermediate between complete
application frameworks like AppEngine on the one hand, and hardware virtual machines like EC2 on the other.

Table 4 summarizes how these three classes virtualize computation, storage, and networking. The scattershot
offerings of scalable storage suggest that scalable storage with an API comparable in richness to SQL remains an open
research problem (see Section 7). Amazon has begun offering Oracle databases hosted on AWS, but the economics
and licensing model of this product makes it a less natural fit for Cloud Computing.

Will one model beat out the others in the Cloud Computing space? We can draw an analogy with programming
languages and frameworks. Low-level languages such as C and assembly language allow fine control and close
communication with the bare metal, but if the developer is writing a Web application, the mechanics of managing
sockets, dispatching requests, and so on are cumbersome and tedious to code, even with good libraries. On the other
hand, high-level frameworks such as Ruby on Rails make these mechanics invisible to the programmer, but are only
useful if the application readily fits the request/reply structure and the abstractions provided by Rails; any deviation
requires diving into the framework at best, and may be awkward to code. No reasonable Ruby developer would argue
against the superiority of C for certain tasks, and vice versa. Correspondingly, we believe different tasks will result in
demand for different classes of utility computing.

Continuing the language analogy, just as high-level languages can be implemented in lower-level ones, highly-
managed cloud platforms can be hosted on top of less-managed ones. For example, AppEngine could be hosted on
top of Azure or EC2; Azure could be hosted on top of EC2. Of course, AppEngine and Azure each offer proprietary
features (AppEngine’s scaling, failover and MegaStore data storage) or large, complex API’s (Azure’s .NET libraries)
that have no free implementation, so any attempt to “clone” AppEngine or Azure would require re-implementing those
features or API’s—a formidable challenge.
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Table 4: Examples of Cloud Computing vendors and how each provides virtualized resources (computation, storage,
networking) and ensures scalability and high availability of the resources.

Amazon Web Services Microsoft Azure Google AppEngine
Computation
model (VM)

• x86 Instruction Set Architecture
(ISA) via Xen VM
• Computation elasticity allows
scalability, but developer must build
the machinery, or third party VAR
such as RightScale must provide it

• Microsoft Common Lan-
guage Runtime (CLR) VM;
common intermediate form
executed in managed envi-
ronment
• Machines are provi-
sioned based on declarative
descriptions (e.g. which
“roles” can be replicated);
automatic load balancing

• Predefined application
structure and framework;
programmer-provided “han-
dlers” written in Python,
all persistent state stored in
MegaStore (outside Python
code)
• Automatic scaling up and
down of computation and
storage; network and server
failover; all consistent with
3-tier Web app structure

Storage model • Range of models from block store
(EBS) to augmented key/blob store
(SimpleDB)
• Automatic scaling varies from no
scaling or sharing (EBS) to fully au-
tomatic (SimpleDB, S3), depending
on which model used
• Consistency guarantees vary
widely depending on which model
used
• APIs vary from standardized
(EBS) to proprietary

• SQL Data Services (re-
stricted view of SQL Server)
• Azure storage service

•MegaStore/BigTable

Networking
model

• Declarative specification of IP-
level topology; internal placement
details concealed
• Security Groups enable restricting
which nodes may communicate
• Availability zones provide ab-
straction of independent network
failure
• Elastic IP addresses provide per-
sistently routable network name

• Automatic based on pro-
grammer’s declarative de-
scriptions of app compo-
nents (roles)

• Fixed topology to ac-
commodate 3-tier Web app
structure
• Scaling up and down is
automatic and programmer-
invisible
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6 Cloud Computing Economics
In this section we make some observations about Cloud Computing economic models:

• In deciding whether hosting a service in the cloud makes sense over the long term, we argue that the fine-
grained economic models enabled by Cloud Computing make tradeoff decisions more fluid, and in particular
the elasticity offered by clouds serves to transfer risk.

• As well, although hardware resource costs continue to decline, they do so at variable rates; for example, com-
puting and storage costs are falling faster than WAN costs. Cloud Computing can track these changes—and
potentially pass them through to the customer—more effectively than building one’s own datacenter, resulting
in a closer match of expenditure to actual resource usage.

• In making the decision about whether to move an existing service to the cloud, one must additionally examine the
expected average and peak resource utilization, especially if the application may have highly variable spikes in
resource demand; the practical limits on real-world utilization of purchased equipment; and various operational
costs that vary depending on the type of cloud environment being considered.

6.1 Elasticity: Shifting the Risk
Although the economic appeal of Cloud Computing is often described as “converting capital expenses to operating
expenses” (CapEx to OpEx), we believe the phrase “pay as you go” more directly captures the economic benefit to
the buyer. Hours purchased via Cloud Computing can be distributed non-uniformly in time (e.g., use 100 server-hours
today and no server-hours tomorrow, and still pay only for what you use); in the networking community, this way of
selling bandwidth is already known as usage-based pricing. 3 In addition, the absence of up-front capital expense
allows capital to be redirected to core business investment.

Therefore, even though Amazon’s pay-as-you-go pricing (for example) could be more expensive than buying and
depreciating a comparable server over the same period, we argue that the cost is outweighed by the extremely important
Cloud Computing economic benefits of elasticity and transference of risk, especially the risks of overprovisioning
(underutilization) and underprovisioning (saturation).

We start with elasticity. The key observation is that Cloud Computing’s ability to add or remove resources at a fine
grain (one server at a time with EC2) and with a lead time of minutes rather than weeks allows matching resources
to workload much more closely. Real world estimates of server utilization in datacenters range from 5% to 20%
[37, 38]. This may sound shockingly low, but it is consistent with the observation that for many services the peak
workload exceeds the average by factors of 2 to 10. Few users deliberately provision for less than the expected peak,
and therefore they must provision for the peak and allow the resources to remain idle at nonpeak times. The more
pronounced the variation, the more the waste. A simple example demonstrates how elasticity allows reducing this
waste and can therefore more than compensate for the potentially higher cost per server-hour of paying-as-you-go vs.
buying.

Example: Elasticity. Assume our service has a predictable daily demand where the peak requires 500
servers at noon but the trough requires only 100 servers at midnight, as shown in Figure 2(a). As long as
the average utilization over a whole day is 300 servers, the actual utilization over the whole day (shaded
area under the curve) is 300× 24 = 7200 server-hours; but since we must provision to the peak of 500
servers, we pay for 500× 24 = 12000 server-hours, a factor of 1.7 more than what is needed. Therefore,
as long as the pay-as-you-go cost per server-hour over 3 years4 is less than 1.7 times the cost of buying the
server, we can save money using utility computing.

In fact, the above example underestimates the benefits of elasticity, because in addition to simple diurnal patterns,
most nontrivial services also experience seasonal or other periodic demand variation (e.g., e-commerce peaks in De-
cember and photo sharing sites peak after holidays) as well as some unexpected demand bursts due to external events
(e.g., news events). Since it can take weeks to acquire and rack new equipment, the only way to handle such spikes
is to provision for them in advance. We already saw that even if service operators predict the spike sizes correctly,
capacity is wasted, and if they overestimate the spike they provision for, it’s even worse.

They may also underestimate the spike (Figure 2(b)), however, accidentally turning away excess users. While
the monetary effects of overprovisioning are easily measured, those of underprovisioning are harder to measure yet
potentially equally serious: not only do rejected users generate zero revenue, they may never come back due to poor
service. Figure 2(c) aims to capture this behavior: users will desert an underprovisioned service until the peak user
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(a) Provisioning for peak load (b) Underprovisioning 1

(c) Underprovisioning 2

Figure 2: (a) Even if peak load can be correctly anticipated, without elasticity we waste resources (shaded area) during
nonpeak times. (b) Underprovisioning case 1: potential revenue from users not served (shaded area) is sacrificed. (c)
Underprovisioning case 2: some users desert the site permanently after experiencing poor service; this attrition and
possible negative press result in a permanent loss of a portion of the revenue stream.

load equals the datacenter’s usable capacity, at which point users again receive acceptable service, but with fewer
potential users.

Example: Transferring risks. Suppose but 10% of users who receive poor service due to underpro-
visioning are “permanently lost” opportunities, i.e. users who would have remained regular visitors with
a better experience. The site is initially provisioned to handle an expected peak of 400,000 users (1000
users per server × 400 servers), but unexpected positive press drives 500,000 users in the first hour. Of
the 100,000 who are turned away or receive bad service, by our assumption 10,000 of them are perma-
nently lost, leaving an active user base of 390,000. The next hour sees 250,000 new unique users. The
first 10,000 do fine, but the site is still over capacity by 240,000 users. This results in 24,000 additional
defections, leaving 376,000 permanent users. If this pattern continues, after lg 500000 or 19 hours, the
number of new users will approach zero and the site will be at capacity in steady state. Clearly, the service
operator has collected less than 400,000 users’ worth of steady revenue during those 19 hours, however,
again illustrating the underutilization argument —to say nothing of the bad reputation from the disgruntled
users.

Do such scenarios really occur in practice? When Animoto [4] made its service available via Facebook, it expe-
rienced a demand surge that resulted in growing from 50 servers to 3500 servers in three days. Even if the average
utilization of each server was low, no one could have foreseen that resource needs would suddenly double every 12
hours for 3 days. After the peak subsided, traffic fell to a level that was well below the peak. So in this real world
example, scale-up elasticity was not a cost optimization but an operational requirement, and scale-down elasticity
allowed the steady-state expenditure to more closely match the steady-state workload.

Elasticity is valuable to established companies as well as startups. For example, Target, the nation’s second largest
retailer, uses AWS for the Target.com website. While other retailers had severe performance problems and intermittent
unavailability on “Black Friday” (November 28), Target’s and Amazon’s sites were just slower by about 50%. 5

Similarly, Salesforce.com hosts customers ranging from 2 seat to 40,000+ seat customers.
Even less-dramatic cases suffice to illustrate this key benefit of Cloud Computing: the risk of mis-estimating

workload is shifted from the service operator to the cloud vendor. The cloud vendor may charge a premium (reflected
as a higher use cost per server-hour compared to the 3-year purchase cost) for assuming this risk. We propose the
following simple equation that generalizes all of the above cases. We assume the Cloud Computing vendor employs
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usage-based pricing, in which customers pay proportionally to the amount of time and the amount of resources they
use. While some argue for more sophisticated pricing models for infrastructure services [28, 6, 40], we believe usage-
based pricing will persist because it is simpler and more transparent, as demonstrated by its wide use by “real” utilities
such as electricity and gas companies. Similarly, we assume that the customer’s revenue is directly proportional to the
total number of user-hours. This assumption is consistent with the ad-supported revenue model in which the number
of ads served is roughly proportional to the total visit time spent by end users on the service.

UserHourscloud × (revenue− Costcloud) ≥ UserHoursdatacenter × (revenue−
Costdatacenter

Utilization
) (2)

The left-hand side multiplies the net revenue per user-hour (revenue realized per user-hour minus cost of paying
Cloud Computing per user-hour) by the number of user-hours, giving the expected profit from using Cloud Comput-
ing. The right-hand side performs the same calculation for a fixed-capacity datacenter by factoring in the average
utilization, including nonpeak workloads. Whichever side is greater represents the opportunity for higher profit.

Apparently, if Utilization = 1.0 (the datacenter equipment is 100% utilized), the two sides of the equation look
the same. However, basic queueing theory tells us that as utilization approaches 1.0, system response time approaches
infinity. In practice, the usable capacity of a datacenter (without compromising service) is typically 0.6 to 0.8.6

Whereas a datacenter must necessarily overprovision to account for this “overhead,” the cloud vendor can simply
factor it into Costcloud. (This overhead explains why we use the phrase “pay-as-you-go” rather than rent or lease for
utility computing. The latter phrases include this unusable overhead, while the former doesn’t. Hence, even if you
lease a 100 Mbits/second Internet link, you can likely use only 60 to 80 Mbits/second in practice.)

The equation makes clear that the common element in all of our examples is the ability to control the cost per user-
hour of operating the service. In Example 1, the cost per user-hour without elasticity was high because of resources
sitting idle—higher costs but same number of user-hours. The same thing happens when over-estimation of demand
results in provisioning for workload that doesn’t materialize. In Example 2, the cost per user-hour increased as a result
of underestimating a spike and having to turn users away: Since some fraction of those users never return, the fixed
costs stay the same but are now amortized over fewer user-hours. This illustrates fundamental limitations of the “buy”
model in the face of any nontrivial burstiness in the workload.

Finally, there are two additional benefits to the Cloud Computing user that result from being able to change their
resource usage on the scale of hours rather than years. First, unexpectedly scaling down (disposing of temporarily-
underutilized equipment)—for example, due to a business slowdown, or ironically due to improved software efficiency—
normally carries a financial penalty. With 3-year depreciation, a $2,100 server decommissioned after 1 year of opera-
tion represents a “penalty” of $1,400. Cloud Computing eliminates this penalty.

Second, technology trends suggest that over the useful lifetime of some purchased equipment, hardware costs
will fall and new hardware and software technologies will become available. Cloud providers, who already enjoy
economy-of-scale buying power as described in Section 3, can potentially pass on some of these savings to their
customers. Indeed, heavy users of AWS saw storage costs fall 20% and networking costs fall 50% over the last 2.5
years, and the addition of nine new services or features to AWS over less than one year. 7 If new technologies or
pricing plans become available to a cloud vendor, existing applications and customers can potentially benefit from
them immediately, without incurring a capital expense. In less than two years, Amazon Web Services increased the
number of different types of compute servers (“instances”) from one to five, and in less than one year they added seven
new infrastructure services and two new operational support options. 8

6.2 Comparing Costs: Should I Move to the Cloud?
Whereas the previous section tried to quantify the economic value of specific Cloud Computing benefits such as
elasticity, this section tackles an equally important but larger question: Is it more economical to move my existing
datacenter-hosted service to the cloud, or to keep it in a datacenter?

Table 5 updates Gray’s 2003 cost data [21] to 2008, allowing us to track the rate of change of key technologies for
Cloud Computing for the last 5 years. Note that, as expected, wide-area networking costs have improved the least in 5
years, by less than a factor of 3. While computing costs have improved the most in 5 years, the ability to use the extra
computing power is based on the assumption that programs can utilize all the cores on both sockets in the computer.
This assumption is likely more true for Utility Computing, with many Virtual Machines serving thousands to millions
of customers, than it is for programs inside the datacenter of a single company.

To facilitate calculations, Gray calculated what $1 bought in 2003. Table 5 shows his numbers vs. 2008 and
compares to EC2/S3 charges. At first glance, it appears that a given dollar will go further if used to purchase hardware
in 2008 than to pay for use of that same hardware. However, this simple analysis glosses over several important factors.

Pay separately per resource. Most applications do not make equal use of computation, storage, and network
bandwidth; some are CPU-bound, others network-bound, and so on, and may saturate one resource while underutiliz-
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Table 5: We update Gray’s costs of computing resources from 2003 to 2008, normalize to what $1 could buy in 2003
vs. 2008, and compare to the cost of paying per use of $1 worth of resources on AWS at 2008 prices.

WAN bandwidth/mo. CPU hours (all cores) disk storage
Item in 2003 1 Mbps WAN link 2 GHz CPU, 2 GB DRAM 200 GB disk, 50 Mb/s

transfer rate
Cost in 2003 $100/mo. $2000 $200
$1 buys in 2003 1 GB 8 CPU hours 1 GB
Item in 2008 100 Mbps WAN link 2 GHz, 2 sockets, 4

cores/socket, 4 GB DRAM
1 TB disk, 115 MB/s sus-
tained transfer

Cost in 2008 $3600/mo. $1000 $100
$1 buys in 2008 2.7 GB 128 CPU hours 10 GB
cost/performance
improvement

2.7x 16x 10x

Cost to rent $1 $0.27–$0.40 $2.56 $1.20–$1.50
worth on AWS in
2008

($0.10–$0.15/GB × 3 GB) (128× 2 VM’s@$0.10
each)

($0.12–$0.15/GB-month
× 10 GB)

ing others. Pay-as-you-go Cloud Computing can charge the application separately for each type of resource, reducing
the waste of underutilization. While the exact savings depends on the application, suppose the CPU is only 50%
utilized while the network is at capacity; then in a datacenter you are effectively paying for double the number of
CPU cycles actually being used. So rather than saying it costs $2.56 to rent only $1 worth of CPU, it would be more
accurate to say it costs $2.56 to rent $2 worth of CPU. As a side note, AWS’s prices for wide-area networking are
actually more competitive than what a medium-sized company would pay for the same bandwidth.

Power, cooling and physical plant costs. The costs of power, cooling, and the amortized cost of the building are
missing from our simple analyses so far. Hamilton estimates that the costs of CPU, storage and bandwidth roughly
double when those costs are amortized over the building’s lifetime [23, 26]. Using this estimate, buying 128 hours
of CPU in 2008 really costs $2 rather than $1, compared to $2.56 on EC2. Similarly, 10 GB of disk space costs $2
rather than $1, compared to $1.20–$1.50 per month on S3. Lastly, S3 actually replicates the data at least 3 times for
durability and performance, ensure durability, and will replicate it further for performance is there is high demand for
the data. That means the costs are $6.00 when purchasing vs. $1.20 to $1.50 per month on S3.

Operations costs. Today, hardware operations costs are very low—rebooting servers is easy (e.g., IP addressable
power strips, separate out of band controllers, and so on) and minimally trained staff can replace broken components
at the rack or server level. On one hand, since Utility Computing uses virtual machines instead of physical machines,
from the cloud user’s point of view these tasks are shifted to the cloud provider. On the other hand, depending on the
level of virtualization, much of the software management costs may remain—upgrades, applying patches, and so on.
Returning to the “managed vs. unmanaged” discussion of Section 5, we believe these costs will be lower for managed
environments (e.g. Microsoft Azure, Google AppEngine, Force.com) than for hardware-level utility computing (e.g.
Amazon EC2), but it seems hard to quantify these benefits in a way that many would agree with.

With the above caveats in mind, here is a simple example of deciding whether to move a service into the cloud.

Example: Moving to cloud. Suppose a biology lab creates 500 GB of new data for every wet lab experi-
ment. A computer the speed of one EC2 instance takes 2 hours per GB to process the new data. The lab has
the equivalent 20 instances locally, so the time to evaluate the experiment is 500× 2/20 or 50 hours. They
could process it in a single hour on 1000 instances at AWS. The cost to process one experiment would be
just 1000× $0.10 or $100 in computation and another 500× $0.10 or $50 in network transfer fees. So far,
so good. They measure the transfer rate from the lab to AWS at 20 Mbits/second. [19] The transfer time is
(500GB × 1000MB/GB × 8bits/Byte)/20Mbits/sec = 4, 000, 000/20 = 200, 000 seconds or more
than 55 hours. Thus, it takes 50 hours locally vs. 55 + 1 or 56 hours on AWS, so they don’t move to the
cloud. (The next section offers an opportunity on how to overcome the transfer delay obstacle.)

A related issue is the software complexity and costs of (partial or full) migrating data from a legacy enterprise
application into the Cloud. While migration is a one-time task, the amount of effort can be significant and it needs to be
considered as a factor in deciding to use Cloud Computing. This task is already spawning new business opportunities
for companies that provide data integration across public and private Clouds.
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Table 6: Top 10 Obstacles to and Opportunities for Adoption and Growth of Cloud Computing.
Obstacle Opportunity

1 Availability of Service Use Multiple Cloud Providers to provide Business Continuity;
Use Elasticity to Defend Against DDOS attacks

2 Data Lock-In Standardize APIs;
Make compatible software available to enable Surge Computing

3 Data Confidentiality and Auditability Deploy Encryption, VLANs, and Firewalls;
Accommodate National Laws via Geographical Data Storage

4 Data Transfer Bottlenecks FedExing Disks; Data Backup/Archival;
Lower WAN Router Costs; Higher Bandwidth LAN Switches

5 Performance Unpredictability Improved Virtual Machine Support; Flash Memory;
Gang Scheduling VMs for HPC apps

6 Scalable Storage Invent Scalable Store
7 Bugs in Large-Scale Distributed Systems Invent Debugger that relies on Distributed VMs
8 Scaling Quickly Invent Auto-Scaler that relies on Machine Learning;

Snapshots to encourage Cloud Computing Conservationism
9 Reputation Fate Sharing Offer reputation-guarding services like those for email
10 Software Licensing Pay-for-use licenses; Bulk use sales

7 Top 10 Obstacles and Opportunities for Cloud Computing
In this section, we offer a ranked list of obstacles to the growth of Cloud Computing. Each obstacle is paired with
an opportunity—our thoughts on how to overcome the obstacle, ranging from straightforward product development
to major research projects. Table 6 summarizes our top ten obstacles and opportunities. The first three are technical
obstacles to the adoption of Cloud Computing, the next five are technical obstacles to the growth of Cloud Computing
once it has been adopted, and the last two are policy and business obstacles to the adoption of Cloud Computing.

Number 1 Obstacle: Availability of a Service
Organizations worry about whether Utility Computing services will have adequate availability, and this makes some
wary of Cloud Computing. Ironically, existing SaaS products have set a high standard in this regard. Google Search
is effectively the dial tone of the Internet: if people went to Google for search and it wasn’t available, they would
think the Internet was down. Users expect similar availability from new services, which is hard to do. Table 7 shows
recorded outages for Amazon Simple Storage Service (S3), AppEngine and Gmail in 2008, and explanations for the
outages. Note that despite the negative publicity due to these outages, few enterprise IT infrastructures are as good.

Table 7: Outages in AWS, AppEngine, and Gmail
Service and Outage Duration Date
S3 outage: authentication service overload leading to unavailability [39] 2 hours 2/15/08
S3 outage: Single bit error leading to gossip protocol blowup. [41] 6-8 hours 7/20/08
AppEngine partial outage: programming error [43] 5 hours 6/17/08
Gmail: site unavailable due to outage in contacts system [29] 1.5 hours 8/11/08

Just as large Internet service providers use multiple network providers so that failure by a single company will
not take them off the air, we believe the only plausible solution to very high availability is multiple Cloud Computing
providers. The high-availability computing community has long followed the mantra “no single source of failure,”
yet the management of a Cloud Computing service by a single company is in fact a single point of failure. Even
if the company has multiple datacenters in different geographic regions using different network providers, it may
have common software infrastructure and accounting systems, or the company may even go out of business. Large
customers will be reluctant to migrate to Cloud Computing without a business-continuity strategy for such situations.
We believe the best chance for independent software stacks is for them to be provided by different companies, as it
has been difficult for one company to justify creating and maintain two stacks in the name of software dependability.

Another availability obstacle is Distributed Denial of Service (DDoS) attacks. Criminals threaten to cut off the
incomes of SaaS providers by making their service unavailable, extorting $10,000 to $50,000 payments to prevent the
launch of a DDoS attack. Such attacks typically use large “botnets” that rent bots on the black market for $0.03 per
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bot (simulated bogus user) per week [36]. Utility Computing offers SaaS providers the opportunity to defend against
DDoS attacks by using quick scale-up. Suppose an EC2 instance can handle 500 bots, and an attack is launched that
generates an extra 1 GB/second of bogus network bandwidth and 500,000 bots. At $0.03 per bot, such an attack
would cost the attacker $15,000 invested up front. At AWS’s current prices, the attack would cost the victim an extra
$360 per hour in network bandwidth and an extra $100 per hour (1,000 instances) of computation. The attack would
therefore have to last 32 hours in order to cost the potential victim more than it would the blackmailer. A botnet attack
this long may be difficult to sustain, since the longer an attack lasts the easier it is to uncover and defend against, and
the attacking bots could not be immediately re-used for other attacks on the same provider. As with elasticity, Cloud
Computing shifts the attack target from the SaaS provider to the Utility Computing provider, who can more readily
absorb it and (as we argued in Section 3) is also likely to have already DDoS protection as a core competency.

Number 2 Obstacle: Data Lock-In

Software stacks have improved interoperability among platforms, but the APIs for Cloud Computing itself are still
essentially proprietary, or at least have not been the subject of active standardization. Thus, customers cannot easily
extract their data and programs from one site to run on another. Concern about the difficult of extracting data from the
cloud is preventing some organizations from adopting Cloud Computing. Customer lock-in may be attractive to Cloud
Computing providers, but Cloud Computing users are vulnerable to price increases (as Stallman warned), to reliability
problems, or even to providers going out of business.

For example, an online storage service called The Linkup shut down on August 8, 2008 after losing access as much
as 45% of customer data [12]. The Linkup, in turn, had relied on the online storage service Nirvanix to store customer
data, and now there is finger pointing between the two organizations as to why customer data was lost. Meanwhile,
The Linkup’s 20,000 users were told the service was no longer available and were urged to try out another storage site.

The obvious solution is to standardize the APIs so that a SaaS developer could deploy services and data across
multiple Cloud Computing providers so that the failure of a single company would not take all copies of customer data
with it. The obvious fear is that this would lead to a “race-to-the-bottom” of cloud pricing and flatten the profits of
Cloud Computing providers. We offer two arguments to allay this fear.

First, the quality of a service matters as well as the price, so customers will not necessarily jump to the lowest cost
service. Some Internet Service Providers today cost a factor of ten more than others because they are more dependable
and offer extra services to improve usability.

Second, in addition to mitigating data lock-in concerns, standardization of APIs enables a new usage model in
which the same software infrastructure can be used in a Private Cloud and in a Public Cloud. 9 Such an option could
enable “Surge Computing,” in which the public Cloud is used to capture the extra tasks that cannot be easily run in the
datacenter (or private cloud) due to temporarily heavy workloads. 10

Number 3 Obstacle: Data Confidentiality and Auditability

“My sensitive corporate data will never be in the cloud.” Anecdotally we have heard this repeated multiple times.
Current cloud offerings are essentially public (rather than private) networks, exposing the system to more attacks.
There are also requirements for auditability, in the sense of Sarbanes-Oxley and Health and Human Services Health
Insurance Portability and Accountability Act (HIPAA) regulations that must be provided for corporate data to be
moved to the cloud.

We believe that there are no fundamental obstacles to making a cloud-computing environment as secure as the
vast majority of in-house IT environments, and that many of the obstacles can be overcome immediately with well-
understood technologies such as encrypted storage, Virtual Local Area Networks, and network middleboxes (e.g.
firewalls, packet filters). For example, encrypting data before placing it in a Cloud may be even more secure than
unencrypted data in a local data center; this approach was successfully used by TC3, a healthcare company with access
to sensitive patient records and healthcare claims, when moving their HIPAA-compliant application to AWS [2].

Similarly, auditability could be added as an additional layer beyond the reach of the virtualized guest OS (or
virtualized application environment), providing facilities arguably more secure than those built into the applications
themselves and centralizing the software responsibilities related to confidentiality and auditability into a single logical
layer. Such a new feature reinforces the Cloud Computing perspective of changing our focus from specific hardware
to the virtualized capabilities being provided.

A related concern is that many nations have laws requiring SaaS providers to keep customer data and copyrighted
material within national boundaries. Similarly, some businesses may not like the ability of a country to get access to
their data via the court system; for example, a European customer might be concerned about using SaaS in the United
States given the USA PATRIOT Act.
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Cloud Computing gives SaaS providers and SaaS users greater freedom to place their storage. For example,
Amazon provides S3 services located physically in the United States and in Europe, allowing providers to keep data in
whichever they choose. With AWS regions, a simple configuration change avoids the need to find and negotiate with
a hosting provider overseas.

Number 4 Obstacle: Data Transfer Bottlenecks
Applications continue to become more data-intensive. If we assume applications may be “pulled apart” across the
boundaries of clouds, this may complicate data placement and transport. At $100 to $150 per terabyte transferred,
these costs can quickly add up, making data transfer costs an important issue. Cloud users and cloud providers have to
think about the implications of placement and traffic at every level of the system if they want to minimize costs. This
kind of reasoning can be seen in Amazon’s development of their new Cloudfront service.

One opportunity to overcome the high cost of Internet transfers is to ship disks. Jim Gray found that the cheapest
way to send a lot of data is to physically send disks or even whole computers via overnight delivery services [22].
Although there are no guarantees from the manufacturers of disks or computers that you can reliably ship data that
way, he experienced only one failure in about 400 attempts (and even this could be mitigated by shipping extra disks
with redundant data in a RAID-like manner).

To quantify the argument, assume that we want to ship 10 TB from U.C. Berkeley to Amazon in Seattle, Wash-
ington. Garfinkel measured bandwidth to S3 from three sites and found an average write bandwidth of 5 to 18
Mbits/second. [19] Suppose we get 20 Mbit/sec over a WAN link. It would take
10 ∗ 1012 Bytes / (20× 106 bits/second) = (8× 1013)/(2× 107) seconds = 4,000,000 seconds,
which is more than 45 days. Amazon would also charge you $1000 in network transfer fees when it received the data.

If we instead sent ten 1 TB disks via overnight shipping, it would take less than a day to transfer 10 TB and the
cost would be roughly $400, an effective bandwidth of about 1500 Mbit/sec.11 Thus, “Netflix for Cloud Computing”
could halve costs of bulk transfers into the cloud but more importantly reduce latency by a factor of 45.

Returning to the biology lab example from Section 6, it would take about 1 hour to write a disk, 16 hours to FedEx
a disk, about 1 hour to read 500 GB, and then 1 hour to process it. Thus, the time to process the experiment would be
20 hours instead of 50, and the cost is would be around $200 per experiment, so they decide to move to the cloud after
all. As disk capacity and cost-per-gigabyte are growing much faster than network cost-performance—10X vs. less
than 3X in the last 5 years according to Table 5—the FedEx disk option for large data transfers will get more attractive
each year.

A second opportunity is to find other reasons to make it attractive to keep data in the cloud, for once data is in the
cloud for any reason it may no longer be a bottleneck and may enable new services that could drive the purchase of
Cloud Computing cycles. Amazon recently began hosting large public datasets (e.g. US Census data) for free on S3;
since there is no charge to transfer data between S3 and EC2, these datasets might “attract” EC2 cycles. As another
example, consider off-site archival and backup services. Since companies like Amazon, Google, and Microsoft likely
send much more data than they receive, the cost of ingress bandwidth could be much less. Therefore, for example, if
weekly full backups are moved by shipping physical disks and compressed daily incremental backups are sent over
the network, Cloud Computing might be able to offer an affordable off-premise backup service. Once archived data is
in the cloud, new services become possible that could result in selling more Cloud Computing cycles, such as creating
searchable indices of all your archival data or performing image recognition on all your archived photos to group them
according to who appears in each photo.12

A third, more radical opportunity is to try to reduce the cost of WAN bandwidth more quickly. One estimate is
that two-thirds of the cost of WAN bandwidth is the cost of the high-end routers, whereas only one-third is the fiber
cost [27]. Researchers are exploring simpler routers built from commodity components with centralized control as a
low-cost alternative to the high-end distributed routers [33]. If such technology were deployed by WAN providers, we
could see WAN costs dropping more quickly than they have historically.

In addition to WAN bandwidth being a bottleneck, intra-cloud networking technology may be a performance
bottleneck as well. Today inside the datacenter, typically 20-80 processing nodes within a rack are connected via
a top-of-rack switch to a second level aggregation switch. These in turn are connected via routers to storage area
networks and wide-area connectivity, such as the Internet or inter-datacenter WANs. Inexpensive 1 Gigabit Ether-
net (1GbE) is universally deployed at the lower levels of aggregation. This bandwidth can represent a performance
bottleneck for inter-node processing patterns that burst packets across the interconnect, such as the shuffle step that
occurs between Map and Reduce producing. Another set of batch applications that need higher bandwidth is high
performance computing applications; lack of bandwidth is one reason few scientists using Cloud Computing.

10 Gigabit Ethernet is typically used for the aggregation links in cloud networks, but is currently too expensive
to deploy for individual servers (about $1000 for a 10 GbE server connection today, vs. $100 for a 1GbE connec-
tion). However, as the cost per 10 GbE server connections is expected to drop to less than $200 in 2010, it will gain
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Figure 3: (a) Memory benchmark performance on 75 Virtual Machines running the STREAM benchmark on left and
(b) Disk performance writing 1 GB files on 75 Virtual Machines on right.

widespread deployment inside the cloud since it has the highly desirable effect of reducing data transfer latencies and
network contention. This in turn enables more cores and virtual machines per physical server node by scaling up the
network. Also in 2010, 40 GbE and 100 GbE will appear for the higher aggregation layers [10].

Number 5 Obstacle: Performance Unpredictability
Our experience is that multiple Virtual Machines can share CPUs and main memory surprisingly well in Cloud Com-
puting, but that I/O sharing is more problematic. Figure 3(a) shows the average memory bandwidth for 75 EC2
instances running the STREAM memory benchmark [32]. The mean bandwidth is 1355 MBytes per second, with a
standard deviation of just 52 MBytes/sec, less than 4% of the mean. Figure 3(b) shows the average disk bandwidth
for 75 EC2 instances each writing 1 GB files to local disk. The mean disk write bandwidth is nearly 55 MBytes per
second with a standard deviation of a little over 9 MBytes/sec, more than 16% of the mean. This demonstrates the
problem of I/O interference between virtual machines.

One opportunity is to improve architectures and operating systems to efficiently virtualize interrupts and I/O chan-
nels. Technologies such as PCIexpress are difficult to virtualize, but they are critical to the cloud. One reason to be
hopeful is that IBM mainframes and operating systems largely overcame these problems in the 1980s, so we have
successful examples from which to learn.

Another possibility is that flash memory will decrease I/O interference. Flash is semiconductor memory that
preserves information when powered off like mechanical hard disks, but since it has no moving parts, it is much faster
to access (microseconds vs. milliseconds) and uses less energy. Flash memory can sustain many more I/Os per second
per gigabyte of storage than disks, so multiple virtual machines with conflicting random I/O workloads could coexist
better on the same physical computer without the interference we see with mechanical disks. The lack of interference
that we see with semiconductor main memory in Figure 3(a) might extend to semiconductor storage as well, thereby
increasing the number of applications that can run well on VMs and thus share a single computer. This advance could
lower costs to Cloud Computing providers, and eventually to Cloud Computing consumers.

Another unpredictability obstacle concerns the scheduling of virtual machines for some classes of batch processing
programs, specifically for high performance computing. Given that high-performance computing is used to justify
Government purchases of $100M supercomputer centers with 10,000 to 1,000,000 processors, there certainly are
many tasks with parallelism that can benefit from elastic computing. Cost associativity means that there is no cost
penalty for using 20 times as much computing for 1/20th the time. Potential applications that could benefit include
those with very high potential financial returns—financial analysis, petroleum exploration, movie animation—and
could easily justify paying a modest premium for a 20x speedup. One estimate is that a third of today’s server market
is high-performance computing [10].

The obstacle to attracting HPC is not the use of clusters; most parallel computing today is done in large clusters
using the message-passing interface MPI. The problem is that many HPC applications need to ensure that all the
threads of a program are running simultaneously, and today’s virtual machines and operating systems do not provide
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a programmer-visible way to ensure this. Thus, the opportunity to overcome this obstacle is to offer something like
“gang scheduling” for Cloud Computing.13

Number 6 Obstacle: Scalable Storage

Early in this paper, we identified three properties whose combination gives Cloud Computing its appeal: short-term
usage (which implies scaling down as well as up when resources are no longer needed), no up-front cost, and infinite
capacity on-demand. While it’s straightforward what this means when applied to computation, it’s less obvious how
to apply it to persistent storage.

As Table 4 shows, there have been many attempts to answer this question, varying in the richness of the query and
storage API’s, the performance guarantees offered, and the complexity of data structures that are directly supported
by the storage system (e.g., schema-less blobs vs. column-oriented storage).14 The opportunity, which is still an open
research problem, is to create a storage system would not only meet these needs but combine them with the cloud
advantages of scaling arbitrarily up and down on-demand, as well as meeting programmer expectations in regard to
resource management for scalability, data durability, and high availability.

Number 7 Obstacle: Bugs in Large-Scale Distributed Systems

One of the difficult challenges in Cloud Computing is removing errors in these very large scale distributed systems. A
common occurrence is that these bugs cannot be reproduced in smaller configurations, so the debugging must occur at
scale in the production datacenters.

One opportunity may be the reliance on virtual machines in Cloud Computing. Many traditional SaaS providers
developed their infrastructure without using VMs, either because they preceded the recent popularity of VMs or
because they felt they could not afford the performance hit of VMs. Since VMs are de rigueur in Utility Computing,
that level of virtualization may make it possible to capture valuable information in ways that are implausible without
VMs.

Number 8 Obstacle: Scaling Quickly

Pay-as-you-go certainly applies to storage and to network bandwidth, both of which count bytes used. Computation
is slightly different, depending on the virtualization level. Google AppEngine automatically scales in response to
load increases and decreases, and users are charged by the cycles used. AWS charges by the hour for the number of
instances you occupy, even if your machine is idle.

The opportunity is then to automatically scale quickly up and down in response to load in order to save money,
but without violating service level agreements. Indeed, one RAD Lab focus is the pervasive and aggressive use of
statistical machine learning as a diagnostic and predictive tool that would allow dynamic scaling, automatic reaction
to performance and correctness problems, and generally automatic management of many aspects of these systems.

Another reason for scaling is to conserve resources as well as money. Since an idle computer uses about two-thirds
of the power of a busy computer, careful use of resources could reduce the impact of datacenters on the environment,
which is currently receiving a great deal of negative attention. Cloud Computing providers already perform careful
and low overhead accounting of resource consumption. By imposing per-hour and per-byte costs, utility computing
encourages programmers to pay attention to efficiency (i.e., releasing and acquiring resources only when necessary),
and allows more direct measurement of operational and development inefficiencies.

Being aware of costs is the first step to conservation, but the hassles of configuration make it tempting to leave
machines idle overnight so that nothing has to be done to get started when developers return to work the next day. A
fast and easy-to-use snapshot/restart tool might further encourage conservation of computing resources.

Number 9 Obstacle: Reputation Fate Sharing

Reputations do not virtualize well. One customer’s bad behavior can affect the reputation of the cloud as a whole. For
instance, blacklisting of EC2 IP addresses [31] by spam-prevention services may limit which applications can be effec-
tively hosted. An opportunity would be to create reputation-guarding services similar to the “trusted email” services
currently offered (for a fee) to services hosted on smaller ISP’s, which experience a microcosm of this problem.

Another legal issue is the question of transfer of legal liability—Cloud Computing providers would want legal
liability to remain with the customer and not be transferred to them (i.e., the company sending the spam should be
held liable, not Amazon).
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Number 10 Obstacle: Software Licensing

Current software licenses commonly restrict the computers on which the software can run. Users pay for the software
and then pay an annual maintenance fee. Indeed, SAP announced that it would increase its annual maintenance fee to
at least 22% of the purchase price of the software, which is comparable to Oracle’s pricing [38]. Hence, many cloud
computing providers originally relied on open source software in part because the licensing model for commercial
software is not a good match to Utility Computing.

The primary opportunity is either for open source to remain popular or simply for commercial software companies
to change their licensing structure to better fit Cloud Computing. For example, Microsoft and Amazon now offer
pay-as-you-go software licensing for Windows Server and Windows SQL Server on EC2. An EC2 instance running
Microsoft Windows costs $0.15 per hour instead of the traditional $0.10 per hour of the open source version.15

A related obstacle is encouraging sales forces of software companies to sell products into Cloud Computing. Pay-
as-you-go seems incompatible with the quarterly sales tracking used to measure effectiveness, which is based on
one-time purchases. The opportunity for cloud providers is simply to offer prepaid plans for bulk use that can be sold
at discount. For example, Oracle sales people might sell 100,000 instance hours using Oracle that can be used over
the next two years at a cost less than is the customer were to purchase 100,000 hours on their own. They could then
meet their quarterly quotas and make their commissions from cloud sales as well as from traditional software sales,
potentially converting this customer-facing part of a company from naysayers into advocates of cloud computing.

8 Conclusion and Questions about the Clouds of Tomorrow

The long dreamed vision of computing as a utility is finally emerging. The elasticity of a utility matches the need of
businesses providing services directly to customers over the Internet, as workloads can grow (and shrink) far faster
than 20 years ago. It used to take years to grow a business to several million customers – now it can happen in months.

From the cloud provider’s view, the construction of very large datacenters at low cost sites using commodity
computing, storage, and networking uncovered the possibility of selling those resources on a pay-as-you-go model
below the costs of many medium-sized datacenters, while making a profit by statistically multiplexing among a large
group of customers. From the cloud user’s view, it would be as startling for a new software startup to build its own
datacenter as it would for a hardware startup to build its own fabrication line. In addition to startups, many other
established organizations take advantage of the elasticity of Cloud Computing regularly, including newspapers like the
Washington Post, movie companies like Pixar, and universities like ours. Our lab has benefited substantially from the
ability to complete research by conference deadlines and adjust resources over the semester to accommodate course
deadlines. As Cloud Computing users, we were relieved of dealing with the twin dangers of over-provisioning and
under-provisioning our internal datacenters.

Some question whether companies accustomed to high-margin businesses, such as ad revenue from search engines
and traditional packaged software, can compete in Cloud Computing. First, the question presumes that Cloud Com-
puting is a small margin business based on its low cost. Given the typical utilization of medium-sized datacenters, the
potential factors of 5 to 7 in economies of scale, and the further savings in selection of cloud datacenter locations, the
apparently low costs offered to cloud users may still be highly profitable to cloud providers. Second, these companies
may already have the datacenter, networking, and software infrastructure in place for their mainline businesses, so
Cloud Computing represents the opportunity for more income at little extra cost.

Although Cloud Computing providers may run afoul of the obstacles summarized in Table 6, we believe that over
the long run providers will successfully navigate these challenges and set an example for others to follow, perhaps by
successfully exploiting the opportunities that correspond to those obstacles.

Hence, developers would be wise to design their next generation of systems to be deployed into Cloud Comput-
ing. In general, the emphasis should be horizontal scalability to hundreds or thousands of virtual machines over the
efficiency of the system on a single virtual machine. There are specific implications as well:

• Applications Software of the future will likely have a piece that runs on clients and a piece that runs in the
Cloud. The cloud piece needs to both scale down rapidly as well as scale up, which is a new requirement for
software systems. The client piece needs to be useful when disconnected from the Cloud, which is not the case
for many Web 2.0 applications today. Such software also needs a pay-for-use licensing model to match needs
of Cloud Computing.

• Infrastructure Software of the future needs to be cognizant that it is no longer running on bare metal but on
virtual machines. Moreover, it needs to have billing built in from the beginning, as it is very difficult to retrofit
an accounting system.
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• Hardware Systems of the future need to be designed at the scale of a container (at least a dozen racks) rather
than at the scale of a single 1U box or single rack, as that is the minimum level at which it will be purchased. Cost
of operation will match performance and cost of purchase in importance in the acquisition decision. Hence, they
need to strive for energy proportionality [9] by making it possible to put into low power mode the idle portions of
the memory, storage, and networking, which already happens inside a microprocessor today. Hardware should
also be designed assuming that the lowest level software will be virtual machines rather than a single native
operating system, and it will need to facilitate flash as a new level of the memory hierarchy between DRAM and
disk. Finally, we need improvements in bandwidth and costs for both datacenter switches and WAN routers.

While we are optimistic about the future of Cloud Computing, we would love to look into a crystal ball to see how
popular it is and what it will look like in five years:

Change In Technology and Prices Over Time: What will billing units be like for the higher-level virtualization
clouds? What will Table 5, tracking the relative prices of different resources, look like? Clearly, the number of
cores per chip will increase over time, doubling every two to four years. Flash memory has the potential of adding
another relatively fast layer to the classic memory hierarchy; what will be its billing unit? Will technology or business
innovations accelerate network bandwidth pricing, which is currently the most slowly-improving technology?

Virtualization Level: Will Cloud Computing be dominated by low-level hardware virtual machines like Amazon
EC2, intermediate language offerings like Microsoft Azure, or high-level frameworks like Google AppEngine? Or
will we have many virtualization levels that match different applications? Will value-added services by independent
companies like RightScale, Heroku, or EngineYard survive in Utility Computing, or will the successful services be
entirely co-opted by the Cloud providers? If they do consolidate to a single virtualization layer, will multiple compa-
nies embrace a common standard? Will this lead to a race to the bottom in pricing so that it’s unattractive to become a
Cloud Computing provider, or will they differentiate in services or quality to maintain margins?
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Notes
1The related term “grid computing,” from the High Performance Computing community, suggests protocols to offer shared computation and

storage over long distances, but those protocols did not lead to a software environment that grew beyond its community. Another phrase found in
Cloud Computing papers is multitenant, which simply means multiple customers from different companies are using SaaS, so customers and their
data need to be protected from each other.

2The challenge of disconnected operation is not new to cloud computing; extensive research has examined the problems of disconnected opera-
tion, with roots in the Coda filesystem [30] and the Bayou database [18]. We simply point out that satisfactory application-level and protocol-level
solutions have been developed and adopted in many domains, including IMAP email, CalDAV calendars, version-control systems such as CVS and
Subversion, and recently, Google Gears for JavaScript in-browser applications that can run disconnected. We are confident that similar approaches
will develop as demanded by mobile applications that wish to use the cloud.

3Usage-based pricing is different from renting. Renting a resource involves paying a negotiated cost to have the resource over some time period,
whether or not you use the resource. Pay-as-you-go involves metering usage and charging based on actual use, independently of the time period
over which the usage occurs. Amazon AWS rounds up their billing to the nearest server-hour or gigabyte-month, but the associated dollar amounts
are small enough (pennies) to make AWS a true pay-as-you-go service.

4The most common financial models used in the US allow a capital expense to be depreciated (deducted from tax obligations) linearly over a
3-year period, so we use this figure as an estimate of equipment lifetime in our cost comparisons.

5According to statistics collected by Keynote Systems Inc. on Black Friday 2008 (November 28th), Target and Amazon’s e-commerce sites
were slower on Friday — “a transaction that took 25 seconds last week required about 40 seconds Friday morning” [5].

62nd edition of Hennessy/Patterson had these rules of thumb for storage systems:

• I/O bus < 75%

• Disk bus SCSI < 40% (when attach multiple disks per bus)
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• Disk arm seeking < 60%

• Disk IO per second or MB/s < 80% peak

Hence, 60% to 80% is a safe upper bound.
7Table 8 shows changes in prices for AWS storage and networking over 2.5 years.

Table 8: Changes in price of AWS S3 storage and networking over time.
Storage Cost of Data Stored per GB-Month

Date < 50 TB 50-100 TB 100-500 TB > 500 TB
3/13/06 $0.15 $0.15 $0.15 $0.15
10/9/08 $0.15 $0.14 $0.13 $0.12

% Original Price 100% 93% 87% 80%
Networking Cost per GB of Wide-Area Networking Traffic

Date In Out: < 10 TB Out: 10-50 TB Out: 50-150 TB Out: >150 TB
3/13/06 $0.20 $0.20 $0.20 $0.20 $0.20

10/31/07 $0.10 $0.18 $0.16 $0.13 $0.13
5/1/08 $0.10 $0.17 $0.13 $0.11 $0.10

% Original Price 50% 85% 65% 55% 50%

8 Table 9 shows the new services and support options AWS added during 2008, and the date of each introduction. Table 10 shows the different
types of AWS compute instances and the date each type was introduced.

Table 9: New AWS Services.
Date New Service

3-Dec-08 Public Data Sets on AWS Now Available
18-Nov-08 Announcing Amazon CloudFront (Content Distribution Network)
23-Oct-08 Amazon EC2 Running Windows Server Now Available
23-Oct-08 Amazon EC2 Exits Beta and Now Offers a Service Level Agreement
22-Sep-08 Oracle Products Licensed for Amazon Web Services
20-Aug-08 Amazon Elastic Block Store Now Available
5-May-08 OpenSolaris and MySQL Enterprise on Amazon EC2
16-Apr-08 Announcing AWS Premium Support
26-Mar-08 Announcing Elastic IP Addresses and Availability Zones for Amazon EC2

Table 10: Diversity of EC2 instances over time.
Date Type Cost/

Hour
Compute
Units

DRAM
(GB)

Disk (GB) Compute/$ GB DRAM/$ GB Disk/$

8/24/06 Small $0.10 1 1.7 160 10 17.0 1600
10/22/07 Large $0.40 4 7.5 850 10 18.8 2130
10/22/07 Extra Large $0.80 8 15.0 1690 10 18.8 2110

5/29/08 High-CPU Medium $0.20 5 1.7 350 25 8.5 1750
5/29/08 High-CPU Extra Large $0.80 20 7.0 1690 25 8.8 2110

9While such standardization can occur for the full spectrum of utility computing, the ability of the leading cloud providers to distribute software
to match standardized APIs varies. Microsoft is in the software distribution business, so it would seem to be a small step for Azure to publish all the
APIs and offer software to run in the datacenter. Interestingly for AWS and Google AppEngine, the best examples of standardizing APIs come from
open sources efforts from outside these companies. Hadoop and Hypertable are efforts to recreate the Google infrastructure [11], and Eucalyptus
recreates important aspects of the EC2 API [34].

10Indeed, harking back to Section 2, “surge chip fabrication” is one of the common uses of “chip-les” fabrication companies like TSMC.
11A 1TB 3.5” disk weighs 1.4 pounds. If we assume that packaging material adds about 20% to the weight, the shipping weight of 10 disks is 17

pounds. FedEx charges about $100 to deliver such a package by 10:30 AM the next day and about $50 to deliver it in 2 days. Similar to Netflix,
Amazon might let you have one “disk boat” on loan to use when you need it. Thus, the round-trip shipping cost for Amazon to ship you a set of
disks and for you to ship it back is $150, assuming 2-day delivery from Amazon and overnight delivery to send it to Amazon. It would then take
Amazon about 2.4 hours to “dump” the disk contents into their datacenter (a 1 TB disk can transfer at 115 Mbytes/sec). If each disk contains whole
files (e.g. a Linux ext3 or Windows NTFS filesystem), all disks could be read or written in parallel. While it’s hard to put a cost of internal data
center LAN bandwidth, it is surely at least 100x less expensive than WAN bandwidth. Let’s assume the labor costs to unpack disks, load them so
that they can be read, repackage them, and so on is $20 per disk.

The total latency is then less than a day (2.4 hours to write, 14-18 hours for overnight shipping, 2.4 hours to read) at a cost about $400 ($50 to
receive from Amazon, $100 to send to Amazon, $200 for labor costs, and $40 charge for internal Amazon LAN bandwidth and labor charges).

Rather than ship disks, another option would be to ship a whole disk array including sheet metal, fans, power suppliers, and network interfaces.
The extra components would increase the shipping weight, but it would simplify connection of storage to the Cloud and to the local device and
reduce labor. Note that you would want a lot more network bandwidth than is typically provided in conventional disk arrays, since you don’t want
to stretch the time load or unload the data.

12 The relatively new company Data Domain uses specialized compression algorithms tailored to incremental backups, they can reduce the size
of these backups by a factor of 20. Note that compression can also reduce the cost to utility computing providers of their standard storage products.
Lossless compression can reduce data demands by factors for two to three for many data types, and much higher for some. The Cloud Computing

21



provider likely has spare computation cycles at many times that could be used to compress data that has not been used recently. Thus, the actual
storage costs could be two to three times less than customers believe they are storing. Although customers could do compression as well, they have
to pay the computing cycles to compress and decompress the data, and do not have the luxury of “free” computation.

A second advantage that customers cannot have is to “de-dupe” files across multiple customers. This approach to storage calculates a signature
for each file and then only stores a single copy of it on disk. Examples of files that could be identical across many customers include binaries for
popular programs and popular images and other media.

13For example, to simplify parallel programming its common to have phases where all the threads compute and then all the threads communicate.
Computation and communication phases are separated by a barrier synchronization, where every thread must wait until the last thread is finishing
computing or communicating. If some threads of the gang are not running, that slows down these phases until they all have run. Although we
could ask high-performance computing programmers to rewrite their programs using more relaxed synchronization, such as that found in Google’s
Map Reduce, a shorter term option would just be for the Cloud Computing provider to offer simultaneous gang scheduling of virtual machines as a
Utility Computing option.

14Among Amazon’s earliest offering was S3, a primary-key-only store for large binary objects. While S3 manages its own replication, failure
masking and provisioning, the programmatic API is that of a key-value store (i.e., a hash table), the response time is not adequate for interactive
client-server applications, and the data stored in S3 is opaque from the storage system’s point of view (i.e., one cannot query or manage data based
on any property other than its arbitrary primary key). Amazon’s Elastic Block Store service allows customers to create a file system on a virtualized
block device, but resource management and long-term redundancy are left to the programmer of each application; this represents an “impedance
mismatch” with application developers, who now routinely rely on storage systems that perform additional resource management and provide an
API that exposes the structure of the stored data. Amazon S3 and Google BigTable do this automatically, but their programmatic APIs do not expose
much of the structure of the stored data, in contrast to relational databases such as Amazon SimpleDB or Microsoft SQL Data Services.

15The AWS announcement of Oracle product licensing only applies to users who are already Oracle customers on their local computers.
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