
PTIDES on Flexible Task Graph: Real-Time Embedded
System Building from Theory to Practice

Jia Zou
Joshua Auerbach
David F. Bacon
Edward A. Lee

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2009-31

http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-31.html

February 19, 2009

Copyright 2009, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

PTIDES on Flexible Task Graph: Real-Time Embedded System
Building from Theory to Practice

Abstract
The Flexotask system claims to enable implementation of both real-
time applications and real-time schedulers in a Java Virtual Ma-
chine using an actors-like model. The PTIDES model is an actors-
like model that claims to deliver precise control over end-to-end la-
tencies in a complex real-time system. The present work jointly in-
vestigates both claims by (1) implementing several PTIDES-based
schedulers as Flexotask scheduler plugins, and (2) using the result-
ing system to implement a new reactive control program for a sim-
ulation of the JAviator (previously used to evaluate Exotasks, a pre-
cursor to Flexotask). We present results from the realistic JAviator
control application and also from synthetic benchmarks designed
to shed light on the differences between the several PTIDES sched-
ulers we implemented.

1. Introduction
This work explores the interaction of two possibly contradictory
trends in cyber-physical systems. First, as such systems become
more complex, the use of high level languages like Java to write
them becomes more attractive. Second, the entire programming
stack at all levels of abstraction requires re-examination to ensure
timing predictability and repeatability. Of course, the interposition
of a Java VM in the programming stack might compromise the
second goal.

Previous work falling within the first trend has led to the publi-
cation of the Flexible Task Graphs (or Flexotask) system (3), which
unifies a number of previous efforts (19; 4; 20; 21). Fortunately for
our purposes, Flexotask is now available as an open-source offer-
ing (17). Flexotask provides two interesting capabilities. First, it
allows a real-time application to be written in a restricted subset of
Java and executed in a Java virtual machine with high timing pre-
cision. Second, Flexotask provides a plugin interface to add new
schedulers and the associated time annotations that those sched-
ulers need to do their work.

A noteworthy example of the second trend is provided by the
PTIDES model (26). The focus of PTIDES is on distributed sys-
tems, although the insights can be applied to any complex system
with bounded sources of timing variability. PTIDES makes time
semantics an integral part of the system scheduler by basing itself
on the discrete-event (DE) (13) model of computation. PTIDES en-
ables the scheduling of output events in terms of the observed time
of input events with provable bounds on variability. This requires

[Copyright notice will appear here once ’preprint’ option is removed.]

only that there be bounds on various sources of variability such as
communication delay, clock drift, and computation time.

To evaluate how a model aimed at increasing predictability and
repeatability interacts with a system for real-time Java program-
ming, we conducted a case study in which we first implemented
PTIDES as a plugin for Flexotask and then evaluated the result-
ing system on a realistic application. In implementing PTIDES as a
Flexotask plugin, we were guided by the analysis in (10). That work
provides a general execution strategy encompassing all feasible ex-
ecution strategies, but leaves numerous practical details open. Con-
sequently, we implemented not just one but three PTIDES sched-
ulers that conform to the general execution strategy but that have
different pragmatic design points.

The ideal application for our purposes would be one that bene-
fited from the PTIDES model and had some previous history. The
JAviator application (23) as been used to evaluate Exotasks (4),
which is a precursor to the Flexotask model. Previous controllers
written for the JAviator focused on closed loop feedback between
sensors and motors. Time-based controllers are adequate for this
problem because the information from the sensors arrives at regu-
lar intervals. However, there is second aspect to JAviator control,
involving a human operator moving a joystick at a remote machine
and observing the JAviator’s responses. Variations in the end-to-
end delay of this process (due to imperfect communication) was
not subject to any regulation in earlier JAviator software, and ex-
isting controls cannot dampen such variability because the arrival
pattern is irregular.

A PTIDES-based control was written with the goal of reducing
the variability in the time between when the human pilot moves
a joystick at the operator console and the time when the JAviator
notices the new information and responds. We do not claim that
regulation of this variability is necessarily important to the flight
experience; indeed, the observed variability with existing controls
was in the tens of milliseconds, probably within human tolerance.
However, existing literature (25; 18) establishes that all forms of jit-
ter in real-time systems are potentially problematic, and the ability
to control end-to-end jitter in the responses to non-periodic events
is therefore an important addition to the overall repertoire of tech-
niques. The joystick/response sequence in the JAviator application
demonstrates exactly that.

Since JAviator hardware is hard to come by, we used a sim-
ulation in this study. Only the JAviator itself was simulated. The
control program and the human operator console operated in real-
time, and the simulation’s responses were delivered in real-time to
make the evaluation realistic.

Since our three differing realizations of the PTIDES model
as Flexotask schedulers had implications that were not likely to
be visible in the JAviator control, we also wrote some artificial
benchmarks to showcase these differences.

In the next section we briefly summarize related work, dis-
cussing previous works to eliminate jitter in real-time control sys-
tem, and how our approach relates to them. We follow by sum-

1 2009/2/17

marizing PTIDES semantics, its uses and its implications for this
experiment. In the subsequent section, we describe how we imple-
mented our PTIDES schedulers for Flexotask, touching on charac-
teristics of Flexotask, some of limitations that we found, and how
these were overcome. Next, we describe and evaluate synthetic
applications that were used to compare and contrast the PTIDES
schedulers with each other. Then we describe the new JAviator
control and compare its behavior using PTIDES and using two
different non-PTIDES schedulers, one time-based, the other event-
based.

2. Related Work
Timing problems in real-time control systems have been exten-
sively studied (8; 22; 15). Among the problems, methods to elim-
inate the effects of jitter on the control system has been addressed
through mainly two different approaches. Some recent research has
tried to solve the jitter problem using specific scheduling-based so-
lutions (7; 5; 1), while others have stated it is impossible to elimi-
nate jitter, and have tried to compensate for it at runtime in the con-
troller design (14). In the later approach, the overhead associated
with the compensation may be too big when the system runs on em-
bedded platforms. Also, we believe by building a jitter-eliminating
scheduler on a real-time supported platform, jitter could be effec-
tively reduced to such an extend that the system control would no
longer be affected, thus we take an approach that is similar to the
first set of solutions. However we also differ from them signifi-
cantly. First, unlike work such as (5), PTIDES take an event trig-
gered approach instead of only focusing on periodic tasks. Also, to
our best knowledge, by using PTIDES, our scheduling method is
the first to incorporates timed semantics into scheduler, and subse-
quently reduce the jitter.

3. PTIDES
3.1 Review of PTIDES Model
PTIDES, or Programming Temporally Integrated Distributed Em-
bedded System, is a programming model based on the discrete-
event (DE) model of computation. DE is used for hardware sim-
ulation in languages such as VHDL (11). It has the advantages
of simplicity, time-awareness, and determinism. The PTIDES au-
thors (26; 10) note that this set of advantages are missing in cur-
rent real-time schedulers, which motivated them to base PTIDES
on DE.

Within a PTIDES system, just as in DE, each event can be
thought of as a pair of data value and time stamp. DE specifies that
each actor in the system must process events in time stamp order.
As a simplifying assumption in the present work, we also assume
that actors produce events in time stamp order, although this is not
a necessary assumption of PTIDES.

Unlike in DE, however, instead of a simulation running entirely
in “model-time”, a PTIDES scheduler relates model time to real
time at points where inputs are consumed from the environment or
outputs must be produced to the environment. While model time
is abstracted by the timestamp of the event being executed by the
scheduler, real time is the time in the physical world. Thus while
real time has a total order, model time does not have to observe
that total order. The scheduler may schedule an event of bigger
time stamp before processing one of smaller time stamp, as long
as no actor observes any violation of causality. The model time of
an actor always has to be causal, but this imposes no ordering on
events at actors that are not connected to each other.

To relate model time to real time, sensors and actuators as
defined in (10) are used. A sensor senses information from the
environment, and when data is received, it timestamps the data
with current real time, then produces the event to the system. This

implies that, at output ports of the sensor, real time and model
time are bounded by the relationship t > τ . That is, the real
time (t) when an event is produced at the output of a sensor is
always greater than the timestamp (τ) of this event. PTIDES also
requires a real time delay upper bound do for each sensor. This
statically determined value is used to specify another relationship
at the output port of the sensor, namely t < τ + do. Intuitively, this
means an event of time stamp τ will be sent to the system at real
time no later than τ + do.

Actuators, on the other hand, act upon timestamped events at
real time exactly equal to the timestamp. Thus PTIDES imposes the
requirement t < τ at the input ports of actuators. As Fig. 1 shows,
since the output port of the sensor has the relationship t > τ ,
and the input port of the actuator has the relationship t < τ , the
model would never be schedulable, unless some model time delay
is inserted. In PTIDES, delay is expressed using delay actors. These
“actors” need not be explicit in the actor graph but are inserted
based on delay bound information. Each delay actor consumes an
event at its input, and produces another at its output consisting of
the same event with the timestamp increased by the value δdelay .
Like user-written actors, delay actors are assumed to be causal in
this study, so δdelay ≥ 0. Of course, user-written actors (which
can change the data portion of events as well as increasing the
timestamp) are similarly constrained.

To determine what value δ should be is not always easy, involv-
ing determination of worst-case-execution-time (WCET), issues of
resource contention, communication delay, etc. We do not consider
these issues in this study, but used what we judged to be reasonable
heuristic values. Although it may be difficult to obtain tight lower
bounds on the model time delay values, in realistic systems with
reasonable amounts of slack, conservative estimates are possible
that still allow real time goals to be met.

Finally, PTIDES assumes a global notion of time when applied
on distributed systems. This is usually achieved with some kind
of precision time protocol such as NTP, IEEE1588, or the GPS
system. With a bound on the clock error on different system, as
well as bound on inter-platform communication delay, the need for
”null messages” as described in (11) across computing platforms is
no longer needed. In the present study, we sometimes exploited the
multiple processors on an 8-way MP to achieve a common clock.
In future work we hope to eliminate this expedient by deploying
some of the more advanced time synchronization protocols.

3.2 Schedulers that Implement the PTIDES Model
This section describes the assumptions that were made in imple-
menting Flexotask schedulers for PTIDES semantics, and contrasts
the three different implementations. These are compared empiri-
cally in Section 5.

Ref. (10) defines the general semantics of PTIDES. The imple-
mentations described in this paper conform to the general seman-
tics, but make more limiting assumptions about the system. First,
we assume all network communications are one-to-one, and that
network packets are received in the order they are sent. This, along
with the further assumption that all actors produce events in in-
creasing timestamp order, implies that all events in the system are
sent and received in timestamp order. To realize this assumption, we
introduce super-dense time, where the timestamp of an event also
includes a microstep, in order to differentiate multiple events of the
same timestamp. These assumptions, which are not requirements of
PTIDES semantics, were adopted in the interest of providing more
optimal scheduler implementations.

Since DE and PTIDES require actors to process events in times-
tamp order, the scheduler must determine when events can be safely
processed before presenting them to actors. Consider the example
in Fig. 1. For an actor such as the delay actor, which only has one

2 2009/2/17

Sensor

δdelay

Delay Actuator

Source
δ1
δ2

Computation
o

i1

i2
i3

G(i2)

Figure 1. Simple PTIDES Example

input port, the answer is simple: since all actors produce events in
time stamp order, any actor with only one input port will be able
to process events as they appear on that input port. However the
question is more complex for actors such as the Computation ac-
tor, which has multiple input ports. The scheduler could potentially
wait for events to appear at both of its input ports before running it.
However, in this case one of the inputs is connected to a sensor ac-
tor, which only produces an event when something interesting hap-
pens in the environment. If nothing happens for a long time, then
whatever inputs that are available on the source actor are blocked
and cannot be safely processed. PTIDES solves this in (10; 2), by
relating model time to real time at sensors and actuators, and using
a global notion of time across different platforms to try to achieve
better scheduling schemes as well as better utilization of the proces-
sor. The cited PTIDES work defined a dependency cut, or simply
cut, that defines which upstream actors the scheduler should exam-
ine to determine whether a given event is safe to process. A sched-
uler implementation defines how the dependency cut is determined,
and the cut allows an implementor to break up the safe-to-process
analysis into two parts, as follows.

1. For all events outside of the cut, as (2) defines, the timestamp
of the e is checked against the current real time of the system,
as well as a statically determined offset value based on where
the cut was made.

2. For all events residing inside of the cut, a dynamic check is
made whether there can be an event of timestamp smaller than
e in the future. The cut allows this check to be limited to local
data structures, such as an event queue.

Since sharing event queue information across different compu-
tation platforms incurs communication expense, as (10) suggested,
an intuitive cut is made at the boundary of the platform, such that
each platform would only need to hold its own event queue. Also
due to this choice of the cut, our Flexotask implementation requires
the user to implement a separate actor graph for each platform in
the system. This has the advantage that makes each platform very
modular, but has the disadvantage that it does not give a big picture
of the whole system in one graph.

We constructed three Flexotask schedulers that implement the
PTIDES programming model. The schedulers differ in their imple-
mentation of the second part of the safe-to-process analysis. That
is, all schedulers check whether events from outside of the platform
can render an event unsafe by checking against real time. But they
use different mechanisms to determine whether events inside of the
platform can cause an event to be unsafe. Another major difference
between the schedulers is the set of events that are examined in this
analysis. The Flexotask-specific details about the implementation
are discussed in the next section. Here we discuss key algorithm
differences.

Our first scheduler (SimplePTIDES) tries to simplify the algo-
rithm by employing an event queue sorted by timestamps of events
in each platform. This scheduler only examines the event of small-
est time stamp. Since we assume all actors to be causal, it follows
that no events inside of the platform could render the event of small-

est timestamp unsafe to process, so the scheduler merely waits for
a point in real time at which no more events can come from outside
the platform, and the event is safe to process at that instance. The
advantage of such a scheme is that it is extremely simple and there-
fore can be implemented very efficiently. However, SimplePTIDES
does not exploit parallelism either in the system model or the com-
pute platform, since only one event is ever under consideration. To
address this issue, we implemented the ParallelPTIDES scheduler.

The ParallelPTIDES scheduler resembles SimplePTIDES but
avoids a key limitation: when only the event with the small-
est timestamp is examined, other safe-to-process events may be
“blocked” and overlooked. This scheduler exploits parallelism in
the system model, but is not yet capable of exploiting hardware
parallelism, though it could be augmented. In ParallelPTIDES all
events are considered and the ordered queue is just an optimization,
since events with smaller timestamps are usually more likely to be
safe-to-process than ones with bigger time stamps. Again, checking
the timestamp of an event against real time and a statically deter-
mined offset value is used for events outside of the platform. To
check for possible events from inside of the platform, the scheduler
tracks a model time frontier for each input port of each actor. When
an actor executes and produce a number of events, the model time
frontiers on all reachable input ports downstream from this actor
(but within the same platform) are updated to the time stamp of cur-
rent events plus the minimum model time delay between the output
port of the task that has produced the events and the input port
where the model time resides. Now when an event is checked for
safe to process, it only needs to check the model time of all input
ports in the same actor, and if the model times are larger than the
timestamp of the event of interest, then the event is safe to process.
These propagated model times are similar to ”null messages” de-
scribed in (9). However, ParallelPTIDES only uses these messages
within a platform. The use of these in-platform null messages are
possible because all actors are required to not only process, but also
to produce, events in timestamp order. The SimplePTIDES sched-
uler can be thought of as a subset of the ParallelPTIDES scheduler
that can be implemented much more simply but with resulting lim-
itations.

In addition to the first two PTIDES schedulers, the third sched-
uler tries to combine PTIDES semantics with previous work in real-
time scheduling methods. Note that, at a particular instant, there
might be multiple events in the event queue that are safe to pro-
cess. Since the ParallelPTIDES scheduler still uses an event queue
ordered by the timestamps of the events, it always selects the event
of smallest timestamp to process first from among those that are
safe. This, however, may not be what the application wants. In ad-
dition to PTIDES semantics, it is possible to consider other factors
in the scheduling, imposing a “priority” (of whatever kind needed)
that is different from timestamp order. This inspired the implemen-
tation of the EDFPTIDES scheduler, based on previous work on
earliest-deadline-first (EDF) scheduling (6). Here the “priority” is
the deadline of each event. Its logic to check whether an event is
safe to process is identical to that of the ParallelPTIDES sched-
uler, but unlike the other two schedulers, EDFPTIDES organizes its
event queue by deadline instead of by timestamp. The deadline of
an event is generated by summing the timstamp of the event and the
minimum model time delay from the current position of the event
to its nearest actuator, where the smaller the delay, the “nearer” it is.
The scheduler now executes safe-to-process events in the order of
their deadline. If more than one event exists with the same deadline,
these events are then ordered by the time stamps. If the event of the
smallest deadline is safe-to-process, it is immediately processed. If
not, the next event in the queue is analyzed.

We discuss the implementation of each of these schedulers on
the Flexotask platform in the next section.

3 2009/2/17

PTIDES on Flexotask for Real-time Systems

• Programming stack Strengths and weaknesses of this
approach:

Application

Flexotask Graph

• Builds on simple, intuitive timed
semantics

• Do not need to re engineer the
PTIDES Scheduler

Flexotask Runtime

• Do not need to re‐engineer the
whole programming stack

• Retain advantages of programming
in Java

Real Time Java VM
in Java

• More difficult to interact with low
level components.

RT Kernel OS

Architecture
p

• Rely on system calls
• Timing is not provable, yet.Figure 2. Programming Stack

4. Flexotask
As described in (3), Flexible Task Graphs unify a number of ear-
lier models for doing real-time programming in Java that its de-
velopers call “restricted thread programming models.” These mod-
els impose Java language restrictions that are checked by the sys-
tem. Threads that will provably execute only the restricted code
are then exempted from interference from garbage collection, a
major source of non-determinism in Java. Like its precursor Ex-
otask (4) and StreamFlex (21) models, Flexotask organizes the re-
stricted computation as a graph of actors. Like the precursor Ex-
otask system, a Flexotask system has pluggable scheduling. The
GC-exempt threads are provided by the system, but exactly how
they are used to execute individual actors is up to the scheduler.

Rehashing the Flexotask model is beyond the scope of this paper
but for understanding we summarize some critical aspects here.

1. Each actor (or “task” or Flexotask) is written in a restricted
subset of Java (most notably restricting how static fields may
be used). It has an execute method that does some computation,
during which it reads inputs from input ports and writes outputs
to output ports.

2. Each actor has a private heap memory area.

3. The output ports of each actor are connected to the input ports
of other actors. There are few constraints on the topology, but
schedulers may impose their own constraints. Connections are
not buffered, and the values sent across them are Java objects.
Flexotask offers both deep-copy semantics and by-reference se-
mantics on connections, but the latter imposes constraints on
where objects can reside. We only used the deep-copy seman-
tics in our experiments.

4. Pluggable schedulers have great flexibility but they must ob-
serve some restrictions unique to them.

(a) They must preallocate all data structures (these go on a pri-
vate scheduler heap) and they may not do further allocations
while running tasks.

(b) They have limited access to the private memory areas of
actors. They cannot copy objects found there freely but can
only cause them to be copied by executing methods on the
connections.

Fig. 2 shows the programming stack of an application imple-
mented on the Flexotask framework using a PTIDES scheduler.
The many layers of abstraction between the hardware and the appli-
cation provide many possible sources of non-determinism, and the
purpose of this study is to see whether we can nevertheless solve
real-time problems with bounds on variability. The kernel in this
case is the real-time version of Linux, the Java VM is IBM’s Web-
Sphere Real Time product (12), and the Flexotask system further
constrains unwanted variation by eliminating the effects of garbage

Flexotask Heap Memory Spacep y p

A 1
GC Other Programs

• Guarantees real-time behavior through constraining memory space and GC behaviors.

Runnable Runner

Actor 1

output Scheduled
GC

Other Programs

Public
Heap

Actor 1
Heapcloning

Runnable
Actor 2

Connection
Driver 1

Scheduler Actor 2

Controller 1

Controller 2
input

No GC

Scheduled
GC

Scheduler
Heap Heap

Figure 3. Flexotask Memory Space

collection entirely (even the relatively low-impact collector in Web-
Sphere Real Time). The Flexotask system’s pluggable scheduling
capability was used to implement our PTIDES schedulers.

4.1 PTIDES Scheduler Implementations on Flexotask
A graphical presentation of the various memory spaces in a Flex-
otask system and their interrelationships is shown in Fig. 3. We
use this picture to help explain how schedulers are implemented in
Flexotask.

As shown, there is a public heap where normal Java applications
allocate their objects. A Flexotask application is started by the main
Java application and contains the portion of the larger application
requiring real-time characteristics. The Flexotask system then cre-
ates the remaining memory areas. The scheduler is given its own
heap, and is asked to provide one or more Runnables containing
scheduler logic; these are cloned into the scheduler heap. Each ac-
tor is given its own heap and the scheduler heap is provided with
controlling objects for both actors and connections. The scheduler
then provides a Runner which the main Java application can use to
start and stop the graph. All actors must be initialized at the ini-
tialization phase, so the scheduler may not dynamically create ac-
tors while processing. In addition, all scheduler data structures must
be created before the graph starts running; once the graph is run-
ning the scheduler is prohibited from allocating. Although only one
Runnable is shown in the picture, the scheduler may have multiple
Runnables and multiple threads running those Runnables. How-
ever, the number of threads must also be calculated before the graph
begins executing and all such threads must be requested from the
Flexotask system as the Flexotask graph is constructed and before
it starts executing. Restrictions on memory space usage is common
in programming real-time systems. Dynamic allocation of memory
adds complexity to the analysis of bounding system execution time,
thus we consider this restriction to be reasonable. The actors are al-
lowed to allocate, and their heaps are garbage collected only when
the scheduler requests this; the scheduler ensures that the actor is
not running while being collected.

The connections are not shown as direct edges in the picture,
but, as the figure suggests, each connection driver controls one con-
nection which has one source (the output port of some actor) and
one sink (the input port of some actor). The connection driver may
be instructed to move data (destroying the source copy) or to copy
it. The Flexotask model permits both multiple outgoing connec-
tions from an output port and multiple incoming connections to an
input port. For our PTIDES implementations we assumed the for-
mer were allowed but we prohibited multiple connections terminat-
ing on the same input port. With the exception of sensors, an actor
can only be executed (or “fired”) when there is at least one event at

4 2009/2/17

one of its input. But all actors are not obligated to produce events
on any or all of its outputs.

We now highlight two design points in implementing PTIDES
schedulers on Flexotask. One is associated with how events are
stored and referenced by the scheduler, while the other discuss the
need for multiple scheduling threads.

Since PTIDES require events to be held until they are safe to
process, each connection may logically hold more than one event
at a time, i.e., buffering is required between tasks. This was an
area characterized as “future work” in the published Flexotask pa-
per, and it turns out that the Flexotask system as provided in open
source (17) solves this problem differently than the paper predicted.
There are no buffer tasks as described in the paper. Rather, buffer-
ing is an optional property of both input ports and output ports,
and the connection has a (destructive) move operation and a (non-
destructive) copy operation, both available to the scheduler. While
the PTIDES scheduler makes use of this facility, it is also neces-
sary for it to peek at values on port queues in order to observe
the timestamps recorded in the values. A small modification of
the Flexotask base code was needed to support this. In the case
of PTIDES schedulers, buffering was required only on output port
buffers, as will be explained. Finally, to make sure the scheduler
behavior is application-independent, PTIDES programming on a
Flexotask base requires that every value sent between tasks must
inherit from a TimedData class (basically a timestamp value pair
as called for by the DE model). The PTIDES schedulers only ex-
amines the timestamp stored in TimedData, but does not consider
the data value or the application purpose associated with it.

The limitation on the scheduler’s ability to allocate in its own
heap is not very difficult to overcome in general. However, since
the PTIDES scheduler make use of an event queue to manage
all events in the system, the size of the event queue needs to be
fixed at compile time. It is a rather difficult problem to bound the
size of the queue, which is related to the schedulability analysis
of the system, and the algorithm is not considered in this paper.
At present we are simply making a highly conservative heuristic
guess at initialization time, which works when resources are not
very constrained.

The inability of the scheduler to freely move objects across dif-
ferent memory area boundaries, essential for the Flexotask model’s
correct operation, requires all data to be left at the output port of
the task that created it. It must remain until all tasks immediately
downstream that will need this data have executed. The scheduler
transfers data to a task’s input port immediately before executing
the task.

However, to ensure the scheduler can keep track of where the
available data resides, creativity is required in the scheduler’s rep-
resentation of event queues. The scheduler can neither copy the ap-
plication’s TimedData to its own memory nor maintain a pointer
from its memory to the TimedData object in application memory.
The restriction against pointers is due to the fact that task mem-
ory areas are subject to a moving garbage collection. Thus, events
in the event queue must consist of pairs each of which contains a
time stamp and a connection driver, which functions as an implicit
reference to the output port that constituted the driver’s source. Be-
fore and after each task executes, the scheduler records the number
of values on each of the task’s output ports. If this count increases
due to the execution, that means data has been written, and a cor-
responding number of events is then created in the event queue
with the appropriate time stamp. To ensure that the correct data
values are selected for processing, given that the queue only gives
the driver and not the specific event, we rely on the assumption all
events are produced in timestamp order, and the fact the buffer is in
FIFO order. Thus when downstream tasks are ready to execute, the
scheduler only needs to take out the first data at an output port and

move it to the downstream input port, and it is guaranteed that this
is the data linked to the particular event in question. Note storing all
events in the output port buffer, and only moving the event of small-
est timestamp to downstream input ports also provides the guard
against another situation: if multiple events of different timestamps
are available for processing at an actor, PTIDES or DE semantics
in general says we should only process the event of smallest times-
tamp, instead of processing all events within one firing of the actor.
Thus only the event that is ready to process is moved from the out-
put port buffer to the input buffer of the downstream actor, and the
actor will only consume the event at its input when firing.

For all PTIDES schedulers, each of the sensors and actuators
in the system needs to run on a separate thread to avoid block-
ing scheduler threads in I/O waits. This is made possible by Flex-
otask system allowing the scheduler to have multiple threads and
to give those threads specialized roles. However, previous Flexo-
task schedulers were based on periodic execution and so the plu-
gin interface provided to schedulers enabled clock-based waiting
(or “sleeping”) but not the ability to react to external I/O events.
Meaningful exploitation of PTIDES requires a reactive scheduler,
and so the limitation to clock-based waiting was inadequate. The
problem was solved without making a fundamental change to the
Flexotask system by adding a WaitSet utility that is of general use
to other scheduler writers. The WaitSet allows generalized waiting
by schedulers for events of interest, both the passage of time and
the arrival of inputs. With this utility, the sensors can communicate
with the environment by listening on some file descriptor. After ex-
ecuting a sensor with ready data, the sensor thread notifies the main
scheduling thread. If the main thread is executing, it would finishes
the current event execution. After which, the main thread polls all
sensor threads to see if any of them has updated its output ports.
The WaitSet facility is not used for actuators, but a similar notifica-
tion logic is employed; in that case, the actuator would consumes
its input(s) only when the main scheduler thread wakes up the ac-
tuator thread. All modifications of the Flexotask system, including
the addition of the WaitSet have been or will be contributed to the
open source effort.

To ensure actuation and trigger actions happen as soon as pos-
sible, we give all actuation threads the highest priority, the trigger
threads the second highest priority, and the main scheduler thread
has the lowest priority. It should be noted all the threads in Flexo-
task should have higher priority than any other thread in the system
to avoid pre-emption of the real-time application.

In order to correctly synchronize the scheduler threads, monitor
locks are used. A single monitor lock can be shared by all sensor
threads, since when the main thread is waiting, it needs to wake
up upon any action from any sensor thread. On the other hand,
one lock is needed for each actuator thread, since when the main
thread decides one actuator should execute, it needs to notify only
that actuator. Monitor locks between scheduler threads are specially
managed by the Flexotask system but schedulers are permitted to
separately request the number of threads and the number of locks
they need.

Finally, it should be noted that the EDFPTIDES scheduler can-
not achieve true EDF semantics due to the Flexotask system’s
thread management being limited to what the underlying OS pro-
vides. The combination of Flexotask and RT Linux provides no
way to programmatically preempt a running task due to a deadline
recalculation. Priority manipulation is an inadequate mechanism,
especially on a uniprocessor, since any thread the scheduler might
dedicate to observing execution and manipulating priorities would
itself not be guaranteed to run promptly and non-disruptively. Only
the kernel can deliver the precise semantics required, and the RT
Linux base on which the Flexotask system runs does not deliver
them. The direct implication is that other than sensors or actuators,

5 2009/2/17

Figure 4. First PTIDES Example

all of our other actors are fired within the main scheduler thread,
and the minimal context switch time from executing one actor to
another is essentially the longest worst-case-execution-time of all
actors.

5. PTIDES Scheduler Comparisons
To compare our schedulers and jointly validate the Flexotask sys-
tem’s ability to support real time scheduling, we implemented two
illustrative benchmarks. These benchmarks permit a comparison
of the three PTIDES schedulers and were specifically designed to
highlight their differences. We also implemented a control applica-
tion for a simulation of the JAviator aircraft (23), which is used to
compare the PTIDES scheduler with two non-PTIDES schedulers.
We first present the comparison of the three PTIDES schedulers in
this section. We present the control application implementation, as
well as results obtained in the next two sections.

The results from this section were collected using a 8-way Intel
machine (two quadcore CPUs) with 8GB of memory. The Flexo-
task framework requires a cooperating VM to achieve real-time be-
havior. We used IBM’s WebSphere Real Time VM (12). This VM,
in turn, requires an RT Linux kernel. We used the RHEL5.0 kernel,
version 2.6.24.7-65.el5rt.

Our first benchmark closely resembles the example in Fig. 1.
It is shown in Fig. 4. We use it to compare SimplePTIDES and
ParallelPTIDES schedulers.

In this example, two trigger actors output events to the comp1
actor downstream. The trigger actors each has a do1 = .5ms
and do2 = 3ms associated with them. Recall do’s are the real
time delay upper bounds, where if the actor produces an event of
timestamp τ , that event will appear at its output port at real time no
later than τ +do. Both of the trigger actors have a model time delay
of 0. Employing the analysis in Sec. 3 and (10), we see that events
at the each input port of comp1 will only become safe to process
after real time exceeds τ +dx, where dx is the do on the other input
port of the comp1. Thus if two events from different trigger actors
were to arrive at the comp1 at close intervals, only one event will
be considered for processing. If one of them is not safe to process
due to a large dx, then all event executions are blocked and we
cannot make any progress, even if the other event with a bigger
timestamp τ has a much smaller dx associated with it. This results
in the SimplePTIDES scheduler providing an event execution that
stalls for a long period of time, even though there might be other
events that are safe to process. On the contrary, the ParallelPTIDES
scheduler looks at all events to find ones that are safe to process.

The difference is highlighted when we have two events e1, e2

that reside on each input of comp1. These events are of timestamps
of τ1 and τ2, respectively, if τ1 < τ2 then the SimplePTIDES
would process them at real time τ1 + dx1, but if at the same time
τ1 +dx1 > τ2 +dx2, then the ParallelPTIDES scheduler would ex-
ecute event no later than τ2 + dx2. In addition, the ParallelPTIDES
implementation provides another mechanism to execute events at
a earlier time. Recall that all actors are assumed to produce events
in timestamp order, and events commnicated across networks are
assumed to be received in the order they are sent. These assump-

tions jointly imply that, when events are received at an input port,
no event of smaller timestamp will arrive at the same input. Thus
when all inputs of an actor have events present, it is safe to process
the event of the smallest timestamp, instead of waiting for a specific
physical time.

Comparing Fig. 5 and 6, this is exactly the behavior we observe.
Fig. 5 shows the model run with the SimplePTIDES scheduler.
The red bars indicate the real time interval between when trigger1
senses an event and when actuator1 receives an event, while the
green bars indicate the interval between the sensing of an event at
trigger2 and when the actuator2 receives a corresponding event.
Notice there is an important distinction between when actuators
receive an event, and when it actuates. An actuator always actuates
at real time equal to the timestamp of its input event, but may
receive such event at much earlier times. As we said, an event
from trigger1 would be safe to process at real time τ1 + 3ms,
where dx1 = do2 = 3ms, while an event from trigger2 would
be safe to process at real time τ2 + .5ms. From Fig. 5, we see time
delays from trigger1 to the output (red bars) is deterministically
3ms + ε, where ε ∼ .12ms is the time to fire the comp1 actor.
On the other hand, we see the time delay from trigger1 to the
output (green bars) is around .5ms + ε, except at some points it
becomes even larger than that. The zoomed in picture shows these
points happen when the trigger1 and trigger2 sense events at close
intervals (indicated by the blue and yellow dots just above the bars).
Particularly, when trigger1 senses first, we are forced to wait until
real time is τ1 + 3ms. But since the event from trigger2 arrived
just a bit later than trigger1, that event is stalled because only the
smaller event in the queue is checked for safe to process.

The results from the ParallelPTIDES scheduler are shown in
Fig. 6. Here, we see that the green bars are deterministically .5ms+
ε, meaning that an event from trigger2 is always safe to process at
real time τ2+.5ms. But the red bars are no longer deterministically
3ms+ ε. In fact, at some points, it is much much smaller than that.
These points again occur when the two trigger events occur very
closely together, which is when both inputs have events available
at the input of comp1 at the same time. Since we assume all events
arrive at a port in timestamp order, we can safely process the event
of smaller timestamp without having to wait until the real time.

Using these figures we can also determine the scheduling over-
head. The figures show the same application running on different
schedulers. If the trigger events do not arrive close to each other,
then the safety analysis of both schedulers will return the same re-
sult. The data collected shows an average delay of 3.145ms for the
ParallelPTIDES scheduler, and 3.117ms for the SimplePTIDES
scheduler. This means the difference in scheduling time between
the two schedulers for a single event is (3.145ms−3.117ms)/2 =
14µs. Depending on the application, 14µs of overhead may or may
not be small enough, but for our purposes, it is negligible. Note
however we are running on workstations whose processing cores
run at 2GHz. If the scheduler is deployed on some embedded sys-
tem, generally not as much computational power is available, and
would result in a larger overhead. It does, however, appear that the
added simplicity of the simple scheduler is not a big win.

The second benchmark is shown in Fig. 7. It is used to compare
the ParallelPTIDES and the EDFPTIDES schedulers. This exam-
ple is aimed at showing the superiority of the EDF scheduler in
choosing the event of earliest deadline to process over the Parallel
scheduler, which chooses the event of smallest timestamp to pro-
cess. In this example, two independent paths of actors process and
produce events. Here, the computation2 actor is much more com-
putationally intensive than computation1. In order to satisfy the re-
quirement of τ > t at the input of the actuators, the model delay at
computation2 is set to 7ms, as opposed to 1ms for computation1,
Recall from Sec. 3 that the deadline is the sum of the timestamp

6 2009/2/17

3.
14

 m
s

3.
12

 m
s

3.
12

 m
s

3.
12

 m
s

1.
25

 m
s

2.
26

 m
s

3.
23

 m
s

0 2 4 6 8 10 12 14 16 18 20 22 24 26
Time (msec after 4.009'728)

1.25E18

1.3E18

1.35E18

1.4E18

1.45E18

1.5E18

1.55E18

1.6E18

P
ur

e
T

rig
ge

r1
S

en
se

d/
P

oi
nt

:
A

ct
ua

tio
n1

T
rig

ge
r2

S
en

se
d/

P
oi

nt
:

A
ct

ua
tio

n2

Point: Trigger1 Sensed/Point: Actuation1 Interval
Point: Trigger2 Sensed/Point: Actuation2 Interval
Trigger1 Sensed
Trigger2 Sensed

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280
Time (msec after 3.874'539)

1.24E18

1.26E18

1.28E18

1.3E18

1.32E18

1.34E18

1.36E18

1.38E18

1.4E18

1.42E18

1.44E18

1.46E18

1.48E18

P
ur

e
T

rig
ge

r1
S

en
se

d/
P

oi
nt

:
A

ct
ua

tio
n1

T
rig

ge
r2

S
en

se
d/

P
oi

nt
:

A
ct

ua
tio

n2

Point: Trigger1 Sensed/Point: Actuation1 Interval
Point: Trigger2 Sensed/Point: Actuation2 Interval
Trigger1 Sensed
Trigger2 Sensed

Figure 5. Execution Trace of the SimplePTIDES Scheduler for
Example 1.

3.
17

 m
s

2.
16

 m
s

1.
16

 m
s

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28
Time (msec after 3.054'005)

1.24E18

1.26E18

1.28E18

1.3E18

1.32E18

1.34E18

1.36E18

1.38E18

1.4E18

1.42E18

1.44E18

1.46E18

P
ur

e
T

rig
ge

r1
S

en
se

d/
P

oi
nt

:
A

ct
ua

tio
n1

T
rig

ge
r2

S
en

se
d/

P
oi

nt
:

A
ct

ua
tio

n2

Point: Trigger1 Sensed/Point: Actuation1 Interval
Point: Trigger2 Sensed/Point: Actuation2 Interval
Trigger1 Sensed
Trigger2 Sensed

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280
Time (msec after 3.084'548)

1.23E18

1.25E18

1.27E18

1.29E18

1.31E18

1.33E18

1.35E18

1.37E18

1.39E18

1.41E18

P
ur

e
T

rig
ge

r1
S

en
se

d/
P

oi
nt

:
A

ct
ua

tio
n1

T
rig

ge
r2

S
en

se
d/

P
oi

nt
:

A
ct

ua
tio

n2

Point: Trigger1 Sensed/Point: Actuation1 Interval
Point: Trigger2 Sensed/Point: Actuation2 Interval
Trigger1 Sensed
Trigger2 Sensed

Figure 6. Execution Trace of the ParallelPTIDES Scheduler for
Example 1.

Figure 7. Second PTIDES Example

of the event and the model time delay towards the nearest down-
stream actuator. Thus events produced by trigger1 would have a
deadline of τ1 + 1ms, while events produced by trigger2 would
have a deadline of τ2 + 7ms, where τ1 and τ2 are the timestamps
of the events, respectively. Thus, if trigger1 and trigger2 executed
within a short time of each other, with trigger2 executing first, we
would have a case of τ2 < τ1. When the ParallelPTIDES sched-
uler is used, computation2 actor is fired first, which means the event
produced by trigger1 has to wait until both computation2 and actu-
ator2 to finish firing before it can be processed. Since computation2
is computationally intensive, this means when the event arrives at
actuator1, it is very likely to have missed the deadline. When the
EDFPTIDES scheduler is used however, we would pick the event
of smaller deadline to process first. Since there are no event depen-
dency between the event at computation1 and the one at compu-
tation2, computation1 and actuator1 will be fired first. Given that
the model time delay associated with computation2 is much larger,
both actuators should be able to actuate before the event deadlines
expire.

Comparing Fig. 8 and Fig. 9, this is exactly the behavior we
observe. Both of these figures show the real time delay between the
event sensed from trigger1 and the actuation at actuator1, while
using different schedulers. We display these delays in histograms.
In Fig. 8, where the ParallelPTIDES scheduler is used, there are
two peaks for delay. One centers around 1ms, while the other is
around 2.7ms. Recall since the model time delay for computation1
is 1ms, the delay should only be around 1ms. The reason we
would miss the deadline is explained above. When both events
arrive at relatively short intervals, and when trigger2 triggers first,
computation2, the actor that’s computationally intensive is fired
first. Since computation1 only fires after computation2 finishes,
the delay is increased, and consequently miss the deadline. Notice
the value 2.7ms is merely a reflexion of how long it took for
computation2 to execution.

We see this is not the case in Fig. 9, where the delay is always
around 1ms. We note this example also depends on the fact we
gave the threads that run the actuator actors higher priority than the
thread that runs the main scheduler. If all threads have the same
priority, and if threads of the same priority cannot pre-empt each
other, then even for the EDFPTIDES scheduler, we would still get
a histogram like the one in 8. This is because when the actuation
occurs at τ + 1ms, it must be able to pre-empt any execution
happening in the main scheduler thread. Otherwise we would have
to wait for the execution of computation2 by the scheduler thread to
finish anyway before the actuator thread can be scheduled to assert
the actuation signal.

6. Application
The results of the previous section suggest that the EDFPTIDES
scheduler is generally superior and the added complexity is not a
serious factor, at least for our chosen hardware. Therefore, we use

7 2009/2/17

1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 2100 2200 2300 2400 2500 2600 2700 2800 2900

50

100

150

200

250

300

350

400

450

500

C
ou

nt

Point: Trigger1 Sensed/Point: Actuation1 Interval

Figure 8. Distribution of End-To-End Delay for Example 2 with
ParallelPTIDES Scheduler.

1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 2100 2200 2300 2400 2500 2600 2700 2800 2900

50

100

150

200

250

300

350

400

450

500

550

600

650

700

750

800

850

900

950

1000

C
ou

nt

Point: Trigger1 Sensed/Point: Actuation1 Interval

Figure 9. Distribution of End-To-End Delay for Example 2 with
EDFPTIDES Scheduler.

the EDFPTIDES scheduler in this section to implement the JAvi-
ator control, and we will compare it with non-PTIDES schedulers
on the same application.

Ideally, we would have collected measurements from the real
JAviator, measuring actual human experience or objective end-to-
end time delays from the standpoint of an external observer. How-
ever, real JAviator hardware is hard to come by and was not avail-
able to us during the time of the study. This caused us to employ
a simulation of the JAviator, which interacted with the control pro-
gram via TCP sockets instead of the RS-232 links that exist within
the real JAviator. Creating enough realism in this simulation to al-
low us to place human subjects in the loop was beyond our means,
hence, the joystick movements were scripted and the measurements
were done within the computer systems by a technique to be de-
scribed.

In the real application, communication with the JAviator is via
wireless, which, depending on local conditions, can introduce com-
munication jitter. For PTIDES to be effective in controlling this
jitter, the clock drift between the machine containing the human
control (the “joystick process”) and the machine controlling the
JAviator (the “control process”) must be substantially less than
this jitter, otherwise the PTIDES model is swamped by compen-

ApplicationApplication

• JAviatorJAviator
– Quadrotor

Has both aspects of low level control (periodic)– Has both aspects of low level control (periodic)
and user inputs (sparse)

Joystick
Triggered

Joystick
Receivergg

Sensor

Gyro Sensor

Control
Algorithm

Motor
Actuator

y

Figure 10. JAviator Control Model

sating for (illusory) clock drift rather than (real) communication
jitter. We know that effective clock synchronization techniques ex-
ist that work across wireless (24) and can achieve precisions in the
microseconds whereas we estimate the practical communications
jitter to be in the milliseconds. Therefore, there is good reason to
believe that the problem is amenable to solution by PTIDES. How-
ever, for reasons purely related to the real-time Linux and Java
frameworks we used, we were unable to deploy an effective dis-
tributed time-synchronization protocol in time to permit a truly dis-
tributed implementation to be used for this submission. Therefore,
we collected data on a single 8-way AMD processor (both the joy-
stick process and the control process executed on a single machine
so as to use a single clock) and we simulated the communication
jitter. We hope to follow up with a distributed evaluation to increase
the level of realism.

The actor graph of the JAviator application is shown in Fig 10.
The joystick process is intended to run on a different machine (co-
located in these experiments for reasons stated above) and is not
a Flexotask program. However, it generates PTIDES timestamps,
which assign model times to every joystick event. The joystick pro-
cess polls the joystick every 10 ms but only sends a packet when the
value differs from the previous one. To simulate communication jit-
ter expected in a wireless environment, we introduced a uniformly
distributed delay of 0-2ms prior to sending each packet that was
scheduled for sending. As previously noted, this jitter is not likely
to really bother a human operator. The purpose here is to establish
the ability of PTIDES to tightly control end-to-end latencies, and
we do not claim that the JAviator control that we developed is truly
superior to existing ones.

The remaining actors do run in a Flexotask graph on a single
machine. The Joystick Receiver actor receives joystick events. The
Gyro Sensor actor reads attitude information (roll, pitch and yaw).
This version of the JAviator control has no altitude sensor (human
input from the joystick simply adds a constant force to all four mo-
tors to control altitude). The Control Algorithm is a PID controller
which uses the joystick input as a target and the attitude informa-
tion from the gyro sensor to calculate appropriate force values for
each of the four motors.

As previously mentioned, all of our PTIDES schedulers dedi-
cate a thread to each sensor, and the Joystick Receiver functions as
a sensor for this purpose. But, since the purpose is to simulate a dis-
tributed PTIDES model, the incoming event does not have a new
model time assigned by this sensor but retains its original model
time assigned in the joystick process. In contrast, the Gyro Sensor
is a true sensor, which reads data coming from the JAviator simula-
tor. Upon receiving data from the simulator, it timestamps the data
with the current real time, then does some simple scaling of that
data so that it is more meaningful to the control algorithm. Both the
Gyro Sensor and the Joystick Receiver feed data to the Control Al-
gorithm actor, which calculates the speed of each of the four motors
and forwards the result to the Motor Actuator actor, which actuates
the simulated JAviator. The Control Algorithm will calculate new
motor speeds and forward a new motor packet if it has either new
joystick data or new gyro data.

8 2009/2/17

To support our experiments, the Control Algorithm includes a
flag in each message to the Motor Actuator indicating whether
this re-calculation was done with new joystick data or just as a
result of new gyro data. This flag is not necessary for JAviator
control, but exists to support accurate data collection. The simulator
sends new gyro data every 8ms, which is the maximum data rate
of the gyro on the actual JAviator. Existing JAviator controls use
periodic rates between 8ms and 20ms. This frequent arrival of
new gyro data ensures stability. The much slower arrival of new
joystick data is, in a sense, less critical, but in these experiments
we were interested in controlling the end-to-end responsiveness of
re-calculations stimulated by the arrival of human-originated data.

For purposes of evaluation, we used TuningFork (16) to record
events in the Joystick Receiver and in the Motor Actuator. Record-
ing in the Joystick Receiver enabled a measurement of the actual
delay between the joystick process and the Joystick Receiver, ob-
tained by subtracting the model timestamp in the event (which was
the time at origination) from the real time of receipt. In a distributed
implementation, this calculation would include clock drift as well
as communication delay. The events in the Motor Actuator distin-
guished whether the event included a new joystick receipt. In our
evaluation we used these events (only) to measure end-to-end de-
lay by subtracting the model time recorded in the Joystick Receiver
from the real time of actuation recorded in the Motor Actuator.

Now as PTIDES requires, and similar to the model in Fig. 1, we
need to add a model delay into the system to keep it schedulable.
Thus the Control Algorithm actor is parameterized to produce a
model time delay of δ = 7ms. Experimentally, we determined that
7ms was enough as an upper bound to ensure events will arrive
at the Motor Actuator before its deadline. Other than the model
delay, the receiver and the sensor also need to have a real time delay
associated with them as PTIDES requires. This real time delay is
the do as shown in Fig. 1. The Gyro Sensor’s delay is relatively
easy to analyze, which is basically the maximum real time delay
of context switching to the thread that runs this actor, plus the time
to decode and produce the event, assuming the event queue is not
being accessed by any other thread. Though analytically simple,
this value is difficult to determine due to the number of software
layers present. Thus we over-estimate this value to be 1ms. The
story is basically the same with the Joystick Receiver. However,
in addition to the real time delays for a sensor, it also needs to
take into account of the communication delay as well as the clock
error between the two platforms (in this case, since we are running
our experiment on the same platform, the clock error is effectively
0). These delays can be found through extensive testing of the
communication system, and we over-estimate this value to be 6ms.

We compared the behavior of the EDFPTIDES scheduler
against two alternatives. One was the time-triggered (TT) sched-
uler provided with the Flexotask open source implementation. The
TT scheduler, as the name suggests, is time triggered, instead of
event-triggered as in the case of the PTIDES schedulers, and is
thus capable of supporting only periodic behavior. Because of
this, a comparison between PTIDES and TT is not entirely illu-
minating, since it confounds the general issue of reactive versus
time-based scheduling with the unique contributions of PTIDES.
Consequently, we created a third (REACT) scheduler to compare
with. REACT simply forwards information from either sensor as
soon as it is received, and schedules the remaining actors on a data-
dependent basis. Our basic observation is that, in the absence of
model-based reasoning as in the PTIDES model, the scheduler has
no good basis for deciding when to do the actuation, other than “as
soon as possible” (as in REACT) or at a fixed time (as in TT). Thus,
the two alternatives more or less bracket the possibilities. The re-
sults from comparing these three schedulers are shown in the next
section.

Count Min Max Mean Std.Dev
EDFPTIDES 1306 .045 2.05 0.74 0.657
REACT 1350 0.04 2.11 0.74 0.678
TT 960 0.12 10.01 4.72 2.37

Figure 11. Receipt Delays (from origination of joystick event to
Joystick Receiver Processing)

Count Min Max Mean Std.Dev
EDFPTIDES 1302 7.00 7.06 7.01 0.002
REACT 1350 0.11 2.18 0.81 0.678
TT 960 8.06 17.95 12.66 2.37

Figure 12. End-to-End Delays (from origination of joystick event
to Related Actuator Processing)

Figure 13. Distribution of End-to-End Delays when REACT is
used. The X axis is delay in milliseconds. The Y axis is logarithmic

7. Performance and Results
The results from this section were collected on another machine,
however of very similar specs. It is an 8-way AMD machine
(two quadcore CPUs) with 12GB of memory. Again IBM’s Web-
Sphere Real Time VM (12) is used. The operating system is again
of RHEL5.0 kernel with Real-time kernel patch, and of version
2.6.24.7-95.el5rt.

Figure 11 are the differences between the time of joystick event
origination and the processing of that event by the joystick receiver.
Note that a 2ms jitter was artificially induced but we believe this to
be realistic (albeit conservative) in terms of what might be expected
in the field. It can be clearly seen that these delays are basically
the same for EDFPTIDES and REACT but that TT induces an
additional absolute delay plus additional jitter due to the reading
of this information at a fixed time offset within an 8ms period.

Figure 12 present the differences between the time of joystick
event origination and the actuation of the motors dependent on the
information in the event. The EDFPTIDES controller, by virtue of
using fixed model time delays, induces a longer average delay than
REACT, but shrinks the variance to a negligible amount, whereas
the variance for REACT tracks the original jitter quite closely. The
TT scheduler has a longer average than either (due to the need to
wait for nearly two periods in the worst case for data to be both
read and processed) but this does not buy anything in terms of
reduced jitter; indeed, its jitter is the worst of the three. A sense
of the degree of reduction in variance by using PTIDES can also
be obtained by comparing Figure 13, showing a histogram of end-

9 2009/2/17

Figure 14. Distribution of End-to-End Delays when EDFPTIDES
is used. The X axis is delay in milliseconds. The Y axis is logarith-
mic

to-end delays using the REACT scheduler, with Figure 14 which
shows the corresponding information when EDFPTIDES was used.

These results clearly indicate that using model time to schedule
output events can be a useful technique when minimizing end-to-
end variance in reactive systems. Neither of the other schedulers
had the necessary information to do as well.

8. Summary
We have implemented and evaluated three PTIDES schedulers us-
ing the Flexotask framework. The results show that the Flexotask
framework is a suitable environment for achieving the goals of
PTIDES and that the PTIDES model is amenable to practical im-
plementation on this platform. We demonstrated that the intended
strong point of PTIDES (the ability to minimize variation in end-
to-end delays in a reactive system) holds in a realistic setting.
The work establishes that the use of an EDF concept in conjunc-
tion with PTIDES provides good scheduling characteristics without
adding excessive overhead compared to the simplest implementa-
tion. Compared to both time-based and purely reactive scheduling,
PTIDES provides the most precise control over variance in end-to-
end delay.

Some issues remain as future work. First, the capabilities of
PTIDES in a truly distributed environment require the deployment
of a precision time protocol such as IEEE 1588. We hope to report
on progress on this purely implementation-related issue by the
time of the conference. Second, a strong demonstration of real
application utility requires an application in which the end-to-end
delay variance is a more serious obstacle to correct behavior than
it is in the JAviator application. In the future, we may explore
applications of PTIDES in computer music or other domains where
variance in end-to-end delay has a more serious impact.

References
[1] P. Albertos, A. Crespo, I. Ripoll, M. Valles, and P. Balbastre. RT con-

trol scheduling to reduce control performance degrading. In Decision
and Control, 2000. Proceedings of the 39th IEEE Conference on, vol-
ume 5, 2000.

[2] Anonymous. 2009.

[3] J. Auerbach, D. F. Bacon, R. Guerraoui, J. H. Spring, and J. Vitek.
Flexible task graphs: a unified restricted thread programming model
for java. SIGPLAN Not., 43(7):1–11, 2008.

[4] J. Auerbach, D. F. Bacon, D. T. Iercan, C. M. Kirsch, V. T. Rajan,
H. Roeck, and R. Trummer. Java takes flight: time-portable real-time
programming with exotasks. In LCTES ’07: Proceedings of the 2007

ACM SIGPLAN/SIGBED conference on Languages, compilers, and
tools, pages 51–62, New York, NY, USA, 2007. ACM Press.

[5] S. Baruah, G. Buttazzo, S. Gorinsky, and G. Lipari. Scheduling peri-
odic task systems to minimize output jitter. In The 6th International
Conference on Real-Time Computing Systems and Applications, 1999.

[6] G. Buttazzo and J. Stankovic. Red: A Robust Earliest Deadline
Scheduling Algorithm. In Proceedings of Third International Work-
shop on Responsive Computing Systems, 1993.

[7] A. Cervin. Improved scheduling of control tasks. In Proceedings of the
11th Euromicro Conference on Real-Time Systems, volume 10. IEEE
Computer Society Press, 1999.

[8] A. Cervin, D. Henriksson, B. Lincoln, J. Eker, and K. Arzen. How
does control timing affect performance? Analysis and simulation of
timing using Jitterbug and TrueTime. Control Systems Magazine,
IEEE, 23(3):16–30, 2003.

[9] K. M. Chandy and J. Misra. Distributed simulation: A case study in
design and verification of distributed programs. IEEE Transaction on
Software Engineering, 5(5), 1979.

[10] T. H. Feng and E. A. Lee. Real-time distributed discrete-event execu-
tion with fault tolerance. In Proceedings of the 14th IEEE Real-Time
and Embedded Technology and Applications Symposium (RTAS 08),
St. Louis, MO, USA, April 2008.

[11] R. M. Fujimoto. Parallel discrete event simulation. Commun. ACM,
33(10):30–53, 1990.

[12] IBM Corp. WebSphere Real-Time User’s Guide, first edition, 2006.
[13] E. A. Lee. Discrete event models: Getting the semantics right. In WSC

’06: Proceedings of the 38th conference on Winter simulation, pages
1–1. Winter Simulation Conference, 2006.

[14] P. Marti, J. Fuertes, G. Fohler, and K. Ramamritham. Jitter compensa-
tion for real-time control systems. In Real-Time Systems Symposium,
2001.(RTSS 2001). Proceedings. 22nd IEEE, pages 39–48, 2001.

[15] J. Nilsson. Real-Time Control Systems with Delays. Lund, Sweden:
Lund Institute of Technology, 1998.

[16] Open Source. The TuningFork Visualization Platform.
tuningforkvp.sourceforge.net.

[17] Open Source. Flexible task graphs. flexotask.sourceforge.net, 2008.
[18] D. Seto, J. Lehoczky, L. Sha, and K. Shin. On task schedulability in

real-time control systems. In Real-Time Systems Symposium, 1996.,
17th IEEE, pages 13–21, 1996.

[19] D. Spoonhower, J. Auerbach, D. F. Bacon, P. Cheng, and D. Grove.
Eventrons: a safe programming construct for high-frequency hard real-
time applications. In Proc. PLDI, pages 283–294, Ottawa, Ontario,
Canada, 2006.

[20] J. H. Spring, F. Pizlo, R. Guerraoui, and J. Vitek. Programming
abstractions for highly responsive systems. In Proc. VEE, 2007.

[21] J. H. Spring, J. Privat, R. Guerraoui, and J. Vitek. StreamFlex:
High-throughput stream programming in Java. In Proceedings of the
ACM SIGPLAN Conference on Object-Oriented Programming Sys-
tems, Languages and Applications (OOPSLA), Oct. 2007.

[22] M. Törngren. Fundamentals of Implementing Real-Time Control
Applications in Distributed Computer Systems. Real-Time Systems,
14(3):219–250, 1998.

[23] University of Salzburg. The javiator project. javiator.cs.uni-
salzburg.at, 2008.

[24] H. Wang, L. Yip, D. Maniezzo, J. C. Chen, R. E. Hudson, J. Elson, and
K. Yao. A wireless time-synchronized cots sensor platform part iiap-
plications to beamforming. In In Proceedings of IEEE CAS Workshop
on Wireless Communications and Networking, 2002.

[25] W. Zhang, M. Branicky, and S. Phillips. Stability of networked control
systems. Control Systems Magazine, IEEE, 21(1):84–99, 2001.

[26] Y. Zhao, J. Liu, and E. A. Lee. A programming model for time-
synchronized distributed real-time systems. In Proceedings of RTAS
07), pages 259–268, 2007.

10 2009/2/17

