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Abstract—It was shown recently that CSMA (Carrier Sense
Multiple Access)-like distributed algorithms can achieve the
maximal throughput in wireless networks (and task processing
networks) under certain assumptions. One key assumption is
that the sensing time is negligible, so that there is no collision.
In this paper, we remove this idealized assumption by studying
CSMA-based scheduling algorithms with collisions. First, we
provide a model and give an explicit throughput formula which
takes into account the cost of contention resolution. The formula
has a simple form due to the quasi-reversibility structure of
the model. Second, we show that the algorithms in [15] can
be extended to approach throughput optimality in this case.
Finally, sufficient conditions are given to ensure the convergence
and stability of the proposed algorithms.

Index Terms—Distributed scheduling, CSMA, Markov chain,
convex optimization

I. INTRODUCTION

Efficient resource allocation is essential to achieve high

utilization of a class of networks with resource-sharing con-

straints, such as wireless networks and stochastic processing

networks (SPN [3]). In wireless networks, certain links

can not transmit at the same time due to the interference

constraints among them. In a task processing problem in

SPN, two tasks can not be processed simultaneously if they

both require monopolizing a common resource. A scheduling

algorithm determines which link to activate (or which task

to process) at a given time without violating these con-

straints. Designing efficient distributed scheduling algorithms

to achieve high throughput is especially a challenging task

[1].

It is well known that maximal-weight scheduling (MWS)

[6] is throughput-optimal. That is, MWS can stabilize all

queues in the network as long as the incoming rates are

within the capacity region. In MWS, time is assumed to be

slotted. In each slot, a set of non-conflicting links (called an

“Independent Set”, or “IS”) that have the maximal weight

are scheduled, where the “weight” of a set of links is

the summation of their queue lengths. However, finding

such a maximal-weighted IS is NP-complete in general and

is hard even for centralized algorithms. So its distributed

implementation is not easy in wireless networks.

Acknowledgement: This research was supported in part by MURI grant
BAA 07-036.18.

On the other hand, there has been active research on

low-complexity but suboptimal scheduling algorithms. For

example, reference [2] shows that a distributed greedy pro-

tocol similar to IEEE 802.11 (which is related to Maxi-

mal Scheduling [4]) can only guarantee a fraction of the

network capacity (after ignoring collisions). Longest-Queue-

First (LQF) algorithm (see, for example, [7], [8]), which

greedily schedules queues in the descending order of the

queue lengths, often performs better than Maximal Schedul-

ing, although it is not throughput-optimal in general [8].

Reference [5] proposed random-access-based algorithms that

can achieve performance comparable to that of maximal-size

scheduling.

Recently, we proposed a distributed adaptive CSMA

(Carrier Sensing Multiple Access) algorithm [15] that is

throughput-optimal for a general interference model, under

certain assumptions (further explained below). The algorithm

has a few desirable features. It is distributed (i.e., each

node only uses its own backlog information), asynchronous

(i.e., nodes do not need to synchronize their transmission

to avoid collisions) and requires no control message. (In

[20], Rajagopalan and Shah independently proposed a similar

randomized algorithm in the context of optical networks.) We

have also developed a joint algorithm in [15] that combined

the adaptive CSMA scheduling with end-to-end flow control

to approach the maximal total utility of competing data flows.

In [16], the optimality of these algorithms is proved formally.

However, the algorithms in [15], [16] have assumed perfect

CSMA in the sense that the sensing is immediate such that

two or more links cannot try to transmit at the same time

(i.e., collisions are avoided). In many situations, however,

this is an idealized assumption. For example, in CSMA/CA

wireless networks, due to the propagation delay, sensing is

not immediate. Instead, time can viewed as divided into

discrete minislots, and collisions happen if multiple links try

to transmit at the same minislot. When a collision occurs, all

links that are involved lose their packets, and they will try

again later. As another example, in a task processing network,

if the requests for resources are initiated in discrete slots, then

there is also an issue of collision and contention resolution.

In this paper, we study this important practical issue

when designing high-performance CSMA-based scheduling

algorithms. First, we present a model and give an explicit

throughput formula which takes into account the cost of
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contention resolution (in section II). The formula has a

simple form due to the quasi-reversible structure of the

model. Second, we show that the algorithms in [15], [16]

can be extended to approach throughput optimality even with

collisions (section III). Finally, sufficient conditions are given

to ensure the convergence of the proposed algorithms.

In a related work [21], Ni and Srikant proposed a CSMA-

like algorithm to achieve near-optimal throughput with colli-

sions taken into account. The algorithm in [21] uses syn-

chronized and alternate control phase and data phase. In

the control phase, the nodes (or links) in the network send

control packets in a randomized way, and then the schedule

in the following data phase is decided by the result of the

control phase and the schedule of the previous data phase.

Comparably speaking, the algorithm we will study here is

quite different in that it is asynchronous, and has more

resemblance to the RTS/CTS mode in IEEE 802.11.

II. BASIC MODEL AND THE THROUGHPUT FORMULA

A. Basic Model

In this section we present a model for CSMA/CA-based

scheduling with contention resolution. Note that the goal

of the paper is not to propose a comprehensive model for

IEEE 802.11 networks and predict the performance of such

networks (The literature in that area has been very rich.

See, for example, [10], [12] and the references therein.)

Instead, at a more abstract level, we are interested in a dis-

tributed scheduling algorithm that is inspired by CSMA/CA,

and designing adaptive algorithms to approach throughput-

optimality. Such algorithms have applications not only in

wireless networks, but also in a general task processing

problem. (Some simplifying assumptions will be made in the

next subsection compared to IEEE 802.11 networks.)

1) A model in the context of CSMA/CA wireless networks:

Consider a (single-channel) wireless network. Define a “link”

as an (ordered) transmitter-receiver pair. Assume that there

are K links, and denote the set of links by N (then,

K = |N |). Without loss of generality, assume that each

link has a capacity of 1. We say that two links conflict

if they cannot transmit (or, “be active”) at the same time

due to interference. (The conflict relationship is assumed to

be symmetric.) Accordingly, define G as the conflict graph.

Each vertex in G represents a link, and there is an edge

between two vertexes if the corresponding links conflict.

Denote e(i, j) = 1 if there is an edge between link i and

j. (Note that this simple conflict model may not reflect all

possible interference that could occur in wireless networks.

However, it does provide a useful abstraction and has been

used widely in literature. See, for example, [12], [1] and the

references therein. Also, it is general enough to be used in

other resource sharing problems. An example is provided in

the next section.) Further assume that there is no loss of

packets due to channel fading.

For example, Fig. 1 (a) shows a wireless LAN with 6

links. Assume that all links can sense the transmissions of

each other, then the network’s conflict graph is a full graph

(Fig. 1 (b)). (We use circles to represent nodes and squares
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to represent links.) Fig. 2 (a) shows an ad-hoc network with

3 links. Assume that link 1, 2 conflict, and link 2, 3 conflict.

Then the network’s conflict graph is Fig. 2 (b).

Basic Protocol

Next, we describe the basic CSMA/CA protocol with

fixed transmission probabilities. (Using fixed transmission

probabilities suffices for our later development.) Let σ be

the length of each idle slot (or “minislot”). (In 802.11a, for

example, σ = 9µs.) In the following we will simply use

“slot” to refer to the minislot.

Assume that all links are saturated (i.e., always have

packets to transmit). In each slot, if (the transmitter of) link

i is not already transmitting and if the medium is idle, the

transmitter of link i starts transmission with probability pi

(also denote qi := 1 − pi). If at a certain slot, link i did not

choose to transmit but a conflicting link starts transmitting,

then link i keeps silent until that transmission ends. If they

transmit at the same time, then a collision happens.

In this paper, we focus on networks without hidden nodes,

i.e., a link can sense the transmission from any other link that

can collide with its transmission. So if a collision occurs, it

must be that multiple conflicting links starting transmitting

at the same slot. (In [19], we further discuss the case with

hidden nodes.)

Assume that each link transmits a short probe packet with

length γ before the data is transmitted. This is similar to

the RTS/CTS mode in 802.11. Sending a short probe packet

before the actual data can avoid collisions of long data

packets. (RTS/CTS in 802.11, however, is originally designed

to reduce the hidden-node and exposed-node problems [13].)

On the other hand, the probe packet increases the overhead

of successful transmissions. When a collision happens, only

the probe packets collide, so each collision lasts a length

of γ (we also call γ the “collision length”). Assume that

a successful transmission of link i lasts τi (which includes
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a constant overhead τ ′ and the data payload τp
i which is a

random variable). Clearly τi ≥ τ ′. Let the p.m.f. (probability

mass function) of τi be Pr{τi = bi} = Pi(bi), bi ∈ Z++,

and the mean of τi be Ti =
∑

bi
biPi(bi). Fig. 3 illustrates

the timeline of the example 3-link network in Fig. 2.1

The above model possesses a quasi-reversibility property

that leads to a particularly simple throughput formula, as will

be shown later. A process is “time-reversible” if the process

and its time-reversed process is statistically indistinguishable

[14]. Our model, in Fig. 3, reversed in time follows the

same protocol as described above, except for the order of the

overhead and the payload which are reversed. A key reason

for this property is that the collisions start and finish at the

same time.

2) A similar model for the task processing problem: The

above model can also be applied to a general task processing

problem. Assume that there are K different types of tasks

and a finite set of resources B. To perform a type-k task, one

needs a subset Bk ⊆ B of resources and these resources are

then monopolized by the task while it is being performed.

Note that two tasks cannot be performed simultaneously iff

they require some common resource. Clearly, this conflict

relationship can be represented by a conflict graph as in the

last section. That is, e(i, j) = 1 iff Bi ∩ Bj 6= ∅.

The relationship between tasks and resources can be illus-

trated by a bipartite graph (for example, Fig. 4. Here, each

circle is a task type, and each hexagon is a resource. There

is an edge that connects a task type and each resource it

requires. In Fig. 4, for example, task 2 requires resource 1,

2 and 3. So when task 2 is ongoing, task 1, 3 cannot be

performed.

Associate a “link” to each type of tasks. Type i tasks arrive

at link i with a certain rate, and are queued before being

1In [22], a similar model for CSMA/CA network is formulated with
analogy to a loss network [11]. However, unlike this paper, reference [22]
did not give an expression of the stationary distribution, partly because of a
complex arrival process assumed there. In this paper, however, considering
saturated arrivals suffices for our purpose in approaching the maximal
throughput (section III), since we will let a link transmit dummy packets
even if its queue is empty.
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Fig. 5: Example: conflict graph and on-off states. Links 1, 2,

5 are on.

processed. Assume that the links access the resources in the

same way as the above CSMA/CA protocol: if link i finds

that the resources in the subset Bi are idle, then it sends a

request (or a probe packet) in the current slot with probability

pi. If any other conflicting link sends the request in the same

slot, then it is considered as a collision (possibly indicated by

NACKs, i.e., negative acknowledgements, sent back by the

resources where the conflicts occur) and they will try again

later. Otherwise, link i proceeds to perform the task using

the resources in subset Bi.

We shall use the language of wireless networks in the rest

of the paper. But it is important to note that all results below

apply to the more general task processing problem.

B. Notation

Let the “on-off state” be x ∈ {0, 1}K , and xk be the

k’th element of x. Define xk = 1 if the k’th link is active

(transmitting) in state x, and xk = 0 otherwise. Then x is a

vector indicating which links are active at a given time.

Let G(x) be the subgraph of G after removing all vertexes

(each representing a link) with state 0 (i.e., any link j with

xj = 0) and their associated edges. In general, G(x) is

composed of a number of connected components (or simply

called “components”) Cm(x),m = 1, 2, . . . ,M(x) where

M(x) is the total number of components in G(x). If a

component Cm(x) has only one active link (i.e., |Cm(x)| =
1), then this link is having a successful transmission; if

|Cm(x)| > 1, then all the links in the component are

experiencing a collision. Let the set of “success” links in state

x be S(x) := {k|k ∈ Cm(x) with |Cm(x)| = 1}. And define

the “collision number” h(x) as the number of components

in G(x) with size larger than 1. That is, h(x) := |N (x)|
where the index set N (x) := {m | |Cm(x)| > 1}. De-

note the set of links which are experiencing collisions as

φ(x) := ∪m∈N (x)Cm(x).

For example, Fig. 5 shows a conflict graph. The set of

links N = {1, 2, . . . , 7}. At state x, assume that link 1, 2

and 5 are active. Then there are two connected component

in G(x): C1(x) = {1, 2}, C2(x) = {5}. Since |C1(x)| = 2,

link 1 and 2 are experiencing a collision. Since |C2(x)| = 1,

link 5 is having a successful transmission. So S(x) = {5},

φ(x) = {1, 2} and the collision number h(x) = 1.
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C. Stationary distribution and throughput computation with

random packet sizes

Define the state

w := {x, ((bk, ak),∀k : xk = 1)} (1)

where bk is the total length of the current packet link k
is transmitting, ak is the remaining time (including the

current slot) before the transmission of link k ends. Note that

ak ≤ bk. If k ∈ φ(x), then bk = γ and ak ∈ {1, 2, . . . , γ}.

An important observation here is that the transmissions in a

collision component Cm(x) is “synchronized”, i.e., the links

in Cm(x) must have started transmitting at the same time,

and will end transmitting at the same time, so all links in

the component Cm(x) have the same remaining time. That

is, ak = a(m) for any k ∈ Cm(x) where |Cm(x)| > 1, and

a(m) denotes the remaining time of the component Cm(x).
(To see this, any two links i and j in this component with an

edge between them must have started transmitting at the same

time. Otherwise, if i starts earlier, j would not transmit since

it already hears i’s transmission; and vice versa. By induction,

all links in the component must have started transmitting at

the same time.)

The transitions among the set of states defined in (1) form

a discrete-time Markov chain. Its stationary distribution is

expressed in the following theorem.

Theorem 1: In the stationary distribution, the probability

of the state w as defined by (1) is

p(w) =
1

E

∏

i:xi=0

qi

∏

j:xj=1

[pj · f(bj , j, x)] (2)

where

f(bj , j, x) =

{

I(bj = γ) if j ∈ φ(x)

Pj(bj) if j ∈ S(x)
, (3)

and E is a normalizing term such that
∑

w p(w) = 1, i.e., all

probabilities sum up to 1. Note that p(w) does not depend

on the remaining time ak’s.

Proof: For a given state w = {x, ((bk, ak),∀k : xk =
1)}, define the set of active links whose remaining time is

larger than 1 as

A1(w) = {k|xk = 1, ak > 1}.

Links in A1(w) will continue their transmissions (either with

success or a collision) in the next slot.

Define the set of inactive links “blocked” by links in A1(w)
as

∂A1(w) = {j|e(j, k) = 1 for some k ∈ A1(w)}.

Links in ∂A1(w) will remain inactive in the next slot. Write

Ā1(w) := A1(w)∪ ∂A1(w). Define the set of all other links

as

A2(w) = N\Ā1(w).

These links can change their on-off states xk’s in the next

slot. On the other hand, links in Ā1(w) will have the same

on-off states xk’s in the next slot.

State w can transit in the next slot to another state

w′ = {x′, ((b′k, a′
k),∀k : x′

k = 1)}, i.e., Q(w,w′) > 0, if

and only if w′ satisfies that (i) x′
k = xk,∀k ∈ Ā1(w); (ii)

b′k = bk, a′
k = ak − 1,∀k ∈ Ā1(w) such that xk = 1; (iii)

a′
k = b′k,∀k ∈ A2(w) such that x′

k = 1, and b′k = γ,∀k ∈
A2(w)∩φ(x′). (If A2(w) is an empty set, then condition (iii)

is trivially true.) The transition probability is

Q(w,w′) =
∏

i∈A2(w)

[pi · f(b′i, i, x
′)]x

′

iq
1−x′

i

i .

Define

Q̃(w′, w) :=
∏

i∈A2(w)

[pi · f(bi, i, x)]xiq1−xi

i .

(If A2(w) is an empty set, then Q(w,w′) = 1 and

Q̃(w′, w) := 1.) If w and w′ does not satisfy conditions (i),

(ii), (iii), then Q(w,w′) = 0, and also define Q̃(w′, w) =
0. (Q̃(w′, w) can be viewed as the transition probability

of the time-reversed process: notice the similarity between

Q(w,w′) and Q̃(w′, w).)

Then, if Q(w,w′) > 0 (and Q̃(w′, w) > 0),

p(w)/Q̃(w′, w) = 1
E

∏

i/∈A2(w)[pi · f(bi, i, x)]xiq1−xi

i . And

p(w′)/Q(w,w′) = 1
E

∏

i/∈A2(w)[pi · f(b′i, i, x
′)]x

′

iq
1−x′

i

i . But

for any i /∈ A2(w), i.e., i ∈ Ā1(w), we have x′
i = xi, b

′
i = bi

by condition (i), (ii) above. Therefore, the two expressions

are equal. Thus

p(w)Q(w,w′) = p(w′)Q̃(w′, w),∀w,w′.

Therefore,

∑

w

p(w) · Q(w,w′) =
∑

w

p(w′) · Q̃(w′, w) = p(w′).

That is, the distribution (2) is invariant (or “stationary”).

Using Theorem 1, the probability of any on-off state x can

be computed by summing up the probabilities of all states

w’s with the same on-off state x, using (2).

Theorem 2: With the stationary distribution, the probabil-

ity of x ∈ {0, 1}K is

p(x) =
1

E
(γh(x)

∏

k∈S(x)

Tk)
∏

i:xi=0

(1 − pi)
∏

j:xj=1

pj

=
1

E
(γh(x)

∏

k∈S(x)

Tk)
∏

i∈N

pxi

i q1−xi

i (4)

where Ti =
∑

bk
[bk ·Pk(bk)] is the mean transmission time of

link k, and E is a normalizing term such that
∑

x p(x) = 1.

Proof: Define the set of states B(x) :=
{w| the on-off state is x in the state w}. By Theorem
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1, we have

p(x) =
∑

w∈B(x)

p(w)

=
1

E

∑

w∈B(x)

{
∏

i:xi=0

qi

∏

j:xj=1

[pj · f(bj , j, x)]}

=
1

E
(

∏

i:xi=0

qi

∏

j:xj=1

pj)
∑

w∈B(x)

∏

j:xj=1

f(bj , j, x)

=
1

E
(

∏

i:xi=0

qi

∏

j:xj=1

pj) ·

∑

w∈B(x)

[
∏

j∈S(x)

Pj(bj)
∏

j∈φ(x)

I(bj = γ)] (5)

In a valid state w, if j ∈ φ(x), then bj = γ. Therefore if w
is valid,

∏

j∈φ(x) I(bj = γ) = 1. Recall the notation N (x)

as the index set of the collision components, and a(m) as the

remaining time of the collision component Cm(x). Then
∑

w∈B(x)

[
∏

j∈S(x)

Pj(bj)
∏

j∈φ(x)

I(bj = γ)]

=
∑

w∈B(x)

[
∏

j∈S(x)

Pj(bj)
∏

m∈N (x)

1]

=
∏

j∈S(x)

[
∑

bj

∑

1≤aj≤bj

Pj(bj)]
∏

m∈N (x)

(
∑

1≤a(m)≤γ

1)

=
∏

j∈S(x)

[
∑

bj

bjPj(bj)] · γ
h(x)

= (
∏

k∈S(x)

Tk)γh(x) (6)

Combining (5) and (6) completes the proof.

After p(x) is computed, the probability that link k is

transmitting payload in a given slot is

sk = (1 −
τ ′

Tk
)

∑

x:k∈S(x)

p(x) (7)

where τ ′ is the overhead of a successful transmission (e.g.,

RTS, CTS, ACK packets). Without loss of generality, assume

that the capacity of each link is 1. So sk ∈ [0, 1] is also the

throughput of link k (normalized by the link capacity).

D. A useful “detailed state” and its stationary distribution

By Theorem 2,

p(x) ∝ (
∏

k∈S(x)

Tk)γh(x)
∏

i∈N

pxi

i q1−xi

i = g(x) · (
∏

k∈S(x)

Tk)

where g(x) = γh(x)
∏

i∈N pxi

i q1−xi

i is a constant which does

not depend on the Tx length Tk’s.

Denote Tk := τ ′+T0 ·exp(rk), where τ ′ is the overhead of

a successful transmission, and T p
k := T0 ·exp(rk) is the mean

time used by the payload. T0 > 0 is a “reference payload

length”. Let r be the vector of rk’s. Then

p(x; r) =
1

E(r)
g(x) ·

∏

k∈S(x)

(τ ′ + T0 · exp(rk)) (8)

where

E(r) =
∑

x′

[g(x′) ·
∏

k∈S(x′)

(τ ′ + T0 · exp(rk))]. (9)

If at a state x, k ∈ S(x), it is possible that link k is

transmitting the overhead or the payload. So we define a

more detailed state (x, z), where z ∈ {0, 1}K . Let zk = 1
if k ∈ S(x) (i.e., k is in the “success” state) and link k
is transmitting its payload (instead of overhead). Let zk = 0
otherwise. Then similar to the proof of Theorem 2, and using

equation (8), we have the following product-form distribution

p((x, z); r) =
1

E(r)
g(x, z) · exp(

∑

k

zkrk) (10)

where

g(x, z) = g(x) · (τ ′)|S(x)|−1′zT 1′z
0 . (11)

where 1′z is the number of links that are transmitting the

payload in state (x, z).

III. DISTRIBUTED ALGORITHMS TO APPROACH

THROUGHPUT-OPTIMALITY

In this section we focus on a scheduling problem which

is described below. Recall that the capacity of each link is

assumed to be 1. Assume traffic arrivals at link k with an

average arrival rate λk ≤ 1 (For example, if λk = 0.5, then

link k needs to be active for at least 50% percent of the time,

to serve the arriving traffic). And denote the vector of arrival

rates as λ ∈ RK
+ .

Our objective is to tune the parameters (pk’s or Tk’s) of

the above CSMA protocol, in a distributed way, such that

(almost) any strictly feasible λ (to be defined later) can be

“supported” in some sense. An algorithm is said to be

“throughput-optimal” if it can support any strictly feasible

λ.

It turns out that tuning pk’s is more difficult: it may in-

crease link k’s throughput via more aggressive transmissions,

but may also lead to excessive collisions which harm itself

and other links. However, by fixing pk’s but tuning Tk’s, we

show that for any strictly feasible λ, there exist Tk’s such

that the average service rates are equal to the arrival rates

on all links. We will also present distributed algorithms to

approach the throughput-optimality objective.

An extension of the above scheduling problem is a joint

scheduling and congestion control problem, where in addi-

tional to scheduling, the arrival rate λ is adjusted by the

sources in order to achieve certain fairness (or “maximal

utility”) objective among different links or multi-hop data

flows. The algorithm to be presented later and its conver-

gence/stability can be extended to the joint problem. But due

to the limit of space, more discussion can be found in [19].

A. Using CSMA scheduling to approach throughput-

optimality

We first define the feasible and strictly feasible arrival

rates.
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Definition 1: 1) A vector of arrival rate λ ∈ RK
+ (where K

is the number of links) is feasible if there exists a probability

distribution, p̄((x, z)), over the detailed state (x, z) (i.e.,
∑

(x,z) p̄((x, z)) = 1 and p̄((x, z)) ≥ 0)

λk =
∑

(x,z)

p̄((x, z)) · zk. (12)

This is because if λ can be scheduled by the network, the

fraction of time that the network spent in the detailed states

must be non-negative and sum up to 1. (Note that (12) is

the probability that link k is sending its payload given the

distribution of the detailed states.)

For example, in the Ad-hoc network in Fig. 2, λ =
(0.5, 0.5, 0.5) is feasible, because (12) holds if we let the

probability of the detailed state (x = (1, 0, 1), z = (1, 0, 1))
be 0.5, the probability of the detailed state (x = (0, 1, 0), z =
(0, 1, 0)) be 0.5, and all other detailed states have probability

0.

2) A vector of arrival rate λ ∈ RK
+ is strictly feasible

if it can be written as (12) where
∑

(x,z) p̄((x, z)) = 1 and

p̄((x, z)) > 0 (which is a slightly stronger condition). In other

words, λ ∈ RK is strictly feasible if it is in the interior of the

region of feasible arrival rates. In the previous example, λ =
(0.5, 0.5, 0.5) is not strictly feasible since it cannot be written

as (12) where all p̄((x, z)) > 0. But λ′ = (0.49, 0.49, 0.49)
is strictly feasible.

The following theorem shows that any strictly feasible λ
can be supported by properly choosing the mean payload

lengths T p
k = T0 exp(rk),∀k.

Theorem 3: Assume that the parameters including γ, τ ′ >
0, and transmission probabilities pk ∈ (0, 1),∀k are fixed.

Given any strictly feasible arrival rate vector λ ∈ RK , there

exists r∗ ∈ RK such that the throughput (or “service rate”)

of link k is equal to the arrival rate for all k:

sk(r∗) =
T0 · exp(r∗k)

τ ′ + T0 · exp(r∗k)

∑

x:k∈S(x)

p(x; r∗) = λk,∀k.

(13)

Remark 1: The result seems surprising since it says that

even with collisions, and overhead τ ′ in each successful

packet, the achievable throughput can still support any strictly

feasible arrival rates. An intuitive explanation is as follows:

if the payload size is large enough in each packet, and

the duration of each collision does not increase with the

transmission length, then the overhead and collisions are neg-

ligible compared to the time the system spends on successful

payload transmissions. Roughly speaking, longer packets

lead to higher throughput. (But there is a tradeoff since longer

packets also lead to larger delays for the conflicting links.)

Remark 2: The fact that proper choice of Tx lengths can

approach the maximal throughput in a single-cell network is

easy to recognize, but is not trivial for general topology.

Proof: We start with the following function (the “log

likelihood function” [9] if we estimate the parameter r from

p̄((x, z))’s). We will show that r∗ that maximizes F (r;λ)

over r satisfies (13).

F (r;λ)
=

∑

(x,z) p̄((x, z)) log(p((x, z); r))

=
∑

(x,z) p̄((x, z))[
∑

k zkrk + log(g(x, z)) − log(E(r))]

=
∑

k λkrk +
∑

(x,z)[p̄((x, z)) log(g(x, z))] − log(E(r))

where λk =
∑

(x,z) p̄((x, z)) · zk is the arrival rate at link

k. Note that F (r;λ) is concave in r. This is because (a) the

first term is linear in r; (b) the second term does not involve

r and (c) E(r) as defined in (9) can be expanded to a sum

of exponential terms of r. So log(E(r)) is a log-sum-exp

function which is convex [17]. Therefore F (r;λ) is concave

in r.

Consider the following optimization problem

supr F (r;λ) . (14)

Since log(p((x, z); r)) ≤ 0, we have F (r;λ) ≤ 0.

Therefore supr F (r;λ) exists. Since λ is strictly feasible,

supr F (r;λ) can be attained (The proof of this subtle point

is given in Appendix VI-A.) So the problem is the same as

maxr F (r;λ). Hence, the solution of (14), r∗, satisfies

∂F (r∗;λ)

∂rk

= λk −
1

E(r∗)

∑

x:k∈S(x)

[g(x) · T0 · exp(r∗k) ·

∏

j∈S(x),j 6=k

(τ ′ + T0 · exp(r∗j ))]

= λk −
1

E(r∗)

T0 · exp(r∗k)

τ ′ + T0 · exp(r∗k)

∑

x:k∈S(x)

[g(x) ·

∏

j∈S(x)

(τ ′ + T0 · exp(r∗j ))]

= λk −
T0 · exp(r∗k)

τ ′ + T0 · exp(r∗k)

∑

x:k∈S(x)

p(x; r∗)

= λk − sk(r∗) = 0.

In Appendix VI-B, it is further shown that r∗ is unique (for

a given strictly feasible λ).

B. Distributed Algorithm and its convergence/stability

By Theorem 3, we need to design an algorithm to solve

problem (14) in a distributed way. For this purpose, we want

rk to change in the direction of the gradient ∂F (r)/∂rk =
λk − sk(r). However, due to the randomness of the system,

λk and sk(r) cannot be obtained directly.

ALGORITHM 1. TX-LENGTH CONTROL ALGORITHM

The vectors r is updated at time ti, i = 1, 2, . . . . Let t0 = 0
and ti − ti−1 = M (millisecond), i = 1, 2, . . . . Let “period

i” be the time between ti−1 and ti, and r(i) be the value of

r at the end of period i, i.e., at time ti. Initially, link k sets

rk(0) ∈ [rmin, rmax] where rmin, rmax are two parameters

(to be further discussed). Then at time ti, i = 1, 2, . . . , update

rk(i) = rk(i− 1)+α(i)[λ′
k(i)− s′k(i)+h(rk(i− 1))] (15)
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where α(i) > 0 is the step size in period i, λ′
k(i), s′k(i) are

the empirical average arrival rate and service rate2 in period

i (i.e., the actual amount of arrived traffic and served traffic

in period i divided by M . Note that λ′
k(i), s′k(i) are random

variables which are generally not equal to λk and sk(r(i)) in

period i. Assume that the maximal instantaneous arrival rate

is λ̄, so λ′
k(i) ≤ λ̄,∀k, i. And h(·) is a “penalty function”,

defined below, to keep r in a bounded region. (This is a

“softer” approach than directly projecting rk(i) to the set

[rmin, rmax]. The purpose is only to simplify the proof of

Theorem 4 later.)

h(y) =











rmin − y if y < rmin

0 if y ∈ [rmin, rmax]

rmax − y if y > rmax

(16)

Intuitively speaking, Algorithm 1 says that when rk ∈
[rmin, rmax], if the empirical arrival rate of link k is larger

than the service rate, then link k should transmit more

aggressively by using a larger Tx length, and vice versa.

Algorithm 1 is parametrized by rmin, rmax which are

fixed during the execution of the algorithm. Note that the

choice of rmax affects the maximal possible payload length.

Also, as discussed below, the choices of rmax and rmin also

determine the “capacity region” of Algorithm 1.

We define the region of arrival rates

C(rmin, rmax) := {λ|r∗ := arg max
r

F (r;λ) ∈ (rmin, rmax)K}

(recall that r∗ is unique for a given strictly feasible λ).

Later we will show that the algorithm can “support” any

λ ∈ C(rmin, rmax) in some sense under certain conditions

on the step sizes.

Clearly, C([rmin, rmax]) → C as rmin → −∞ and

rmax → ∞, where C is the set of all strictly feasible

λ (by Theorem 3). Therefore, although given rmin, rmax,

the region C(rmin, rmax) is generally smaller than C, one

can choose rmin, rmax to arbitrarily approach the maximal

capacity region C. Also, there is a tradeoff between the

capacity region and the maximal packet length.

Algorithm 1 involves adjusting r, and therefore the mean

payload lengths. To implement the adjustment, a link can

randomize the number of packets to transmit (or the number

of tasks to process) before it releases the medium (or re-

sources). For example, assume that the length of each packet

of payload is i.i.d with mean 100, and the link needs to

achieve a mean payload length of 120. Then, the link can

transmit one packet with probability 0.8, and transmit two

packets with probability 0.2. For convenience, in this paper

we randomize the payload length (in “slots”) over the two

integers closest to the mean, assuming that the packets can

be fragmented and reassembled.

Theorem 4: Assume that the vector of arrival rates λ ∈
C(rmin, rmax). Then

2We let link k send dummy packets when the queue is empty (so each
link is saturated). This ensures that the CSMA Markov chain has the desired
stationary distribution in section II. Note that the transmitted dummy packets
are also included when s′

k
(i) is computed.

(i) If α(i) > 0 is non-increasing and satisfies
∑

i α(i) =
∞,

∑

i α(i)2 < ∞ and α(1) ≤ 1, then the algorithm

converges, i.e., r(i) → r∗ as i → ∞ with probability 1,

where r∗ satisfies sk(r∗) = λk,∀k.

(ii) If α(i) = α (i.e., constant step size), then

for any δ > 0, there exists α > 0 such that

lim infN→∞
∑N

i=1 s′k(i)/N ] ≥ λk − δ,∀k with probability

1. In other words, one can achieve average service rates

arbitrarily close to the arrival rates by choosing small enough

α.

The complete proof is given in Appendix VI-C. But the result

can be intuitively understood as follows. If the step size is

small, rk is “quasi-static” such that roughly, the service rate is

averaged (over multiple periods) to sk(r), and the arrival rate

is averaged to λk. Thus the algorithm solves the optimization

problem (14) by a stochastic approximation [18] argument,

such that r(i) converges to r∗ in part (i), and r(i) is near r∗

with high probability in part (ii).

Corollary 1: Consider a variant of Algorithm 1:

rk(i) = rk(i−1)+α(i)[λ′
k(i)+ǫ−s′k(i)+h(rk(i−1))] (17)

where ǫ > 0. That is, the algorithm “pretends” to serve the

arrival rate λ + ǫ · 1 (where ǫ > 0) which is slightly larger

than the actual λ. Assume that

λ ∈ C′(rmin, rmax, ǫ)

:= {λ|λ + ǫ · 1 ∈ C(rmin, rmax)}.

(i) If α(i) > 0 is non-increasing and satisfies
∑

i α(i) = ∞
and

∑

i α(i)2 < ∞ and α(1) ≤ 1, r(i) → r∗ as i → ∞ with

probability 1, where r∗ satisfies sk(r∗) = λk + ǫ > λk,∀k
(ii) If α(i) = α (i.e., constant step size) where α is small

enough, the all queues are positive recurrent.

Algorithm (17) is parametrized by rmin, rmax and ǫ.

Clearly, as rmin → −∞, rmax → ∞ and ǫ → 0,

C′(rmin, rmax, ǫ) → C, the maximal capacity region.

The proof is in Appendix VI-E. A sketch: Part (i) is similar

to (i) in Theorem 4. Part (ii) holds because if we choose

δ = ǫ/2, then by Theorem 4, lim infN→∞
∑N

i=1 s′k(i)/N ] ≥
λk +ǫ−δ > λk,∀k almost surely if α is small enough. Then

the result follows by showing that the queues have negative

drift.

IV. NUMERICAL EXAMPLES

Consider the conflict graph in Fig. 6. Let the vector

of arrival rates be λ = ρ · λ̂, where ρ ∈ (0, 1) is the

“load”, and λ̂ is a convex combination of several maximal

IS: λ̂ = 0.2 ∗ [1, 0, 1, 0, 1, 0, 0] + 0.2 ∗ [0, 1, 0, 0, 1, 0, 1] +
0.2 ∗ [0, 0, 0, 1, 0, 1, 0] + 0.2 ∗ [0, 1, 0, 0, 0, 1, 0] + 0.2 ∗
[1, 0, 1, 0, 0, 1, 0] = [0.4, 0.4, 0.4, 0.2, 0.4, 0.6, 0.2]. Since ρ ∈
(0, 1), λ is strictly feasible. Fix the Tx probabilities at

pk = 1/16,∀k. The “reference payload length” T0 = 15.

The collision length (e.g., RTS length) is γ = η · 10, and the

overhead of successful transmission is τ ′ = η · 20, where η
is a “relative size” of the overhead for simulation purpose.

Later we will let η ∈ {1, 0.5, 0.2} to illustrate the effects of

overhead size.
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Fig. 7: Required mean payload lengths

Now we vary ρ and η. And in each case we solve

problem (14) to obtain the required mean payload length

T p
k := T0 · exp(r∗k), k = 1, 2, . . . , 7. Fig. 7 (a) shows

how T p
k ’s change as the load ρ changes, where η = 1.

Clearly, as ρ increases, T p
k ’s tend to increase. Also, the rate

of increase becomes faster as ρ approaches 1. Therefore,

there is a tradeoff between the throughput and transmission

lengths (long transmission lengths introduce larger delays

for conflicting links). Fig. 7 (b) shows how T p
k ’s depends

on the relative size η of overhead (with fixed ρ = 0.8 and

η ∈ {1, 0.5, 0.2}). As expected, the smaller the overhead, the

smaller T p
k ’s are required.

Next, we evaluate algorithm (17) (a variant of Algorithm

1) in our C++ simulator. The update in (17) is performed

every M = 5ms. Let the step size α(i) = 0.23/(2 + i/100).
The upper bound rmax = 5, lower bound rmin = 0, and the

“gap” ǫ = 0.005. Assume the initial values of rk’s are 0.

Let the “load” of arrival rates be ρ = 0.8 (i.e., λ = 0.8 ·
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Fig. 8: Simulation of Algorithm (17) (with the conflict graph

in Fig. 6)

λ̂), and the relative size of overhead η = 0.5 (i.e., γ =
5, τ ′ = 10). To show the negative drift of the queue lengths,

assume that initially all queue lengths are 300 (data units).

As expected, Fig. 8 (a) shows the convergence of the mean

payload lengths, and Fig. 8 shows that all queues are stable.

V. CONCLUSION

In this paper, we have studied CSMA-based scheduling

algorithms with collisions and contention resolution. We have

provided a model and given an explicit throughput formula

which takes into account the cost of collisions and overhead.

The formula has a simple product form due to the time-

reversible structure of the model. Next, we showed that for

any strictly feasible vector of arrival rates, there exists a

proper setting of the mean transmission lengths for different

links to support the arrival rates. We then designed distributed

algorithms where each link adaptively updates its mean

transmission time to approach the throughput-optimality. Suf-

ficient conditions have been given to ensure the convergence

of the proposed algorithms. Finally, simulations results were

presented to illustrate and verify the main results.

In the algorithm, the transmission probabilities of the links

are chosen to be fixed at a reasonable level, since we have

shown that adjusting the transmission lengths alone is suffi-

cient to approach throughput-optimality (the main goal of this
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paper). However, the choices of the transmission probabilities

pk’s has an effect on the probability of collisions among the

probe packets. In the future, we would like to further study

whether the adjustment of transmission probabilities can be

combined with the algorithm.
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VI. APPENDICES

A. Proof of the attainability of supr F (r;λ)

Lemma 1: Assume that λ is strictly feasible. Problem (14)

is the dual problem of the following convex optimization

problem, where the vector u can be viewed as a probability

distribution over the detailed state (x, z):

maxu,f {
∑

(x,z)

[−u(x,z) log(u(x,z))] +

∑

(x,z)

[u(x,z) · log(g(x, z))]}

s.t.
∑

(x,z):zk=1

u(x,z) ≥ λk,∀k

u(x,z) ≥ 0,
∑

(x,z)

u(x,z) = 1. (18)

Proof: Since λ is strictly feasible, problem (18) is strictly

feasible and satisfies the Slater condition [17].

Let yk ≥ 0 be the dual variable associated with the

constraint
∑

(x,z):zk=1 u(x,z) ≥ λk, then a partial Lagrangian

is

L(u;y)

=
∑

(x,z)

[−u(x,z) log(u(x,z))] +
∑

(x,z)

[u(x,z) · log(g(x, z))]

+
∑

k

yk[
∑

(x,z):zk=1

u(x,z) − λk]

=
∑

(x,z)

{u(x,z)[− log(u(x,z)) + log(g(x, z)) +
∑

k:zk=1

yk]}

−
∑

k

(ykλk).

So

∂L(u, f ;y)

∂u(x,z)
= − log(u(x,z)) − 1 + log(g(x, z)) +

∑

k:zk=1

yk.

If u(x,z) = p((x, z);y) (cf. equation (10)), then the partial

derivative
∂L(u, f ;y)

∂u(x,z)
= log(E(y)) − 1

which is the same for all state (x, z) (Given the dual

variables y, log(E(y)) is a constant). This means that

u(x,z) = p((x, z);y) > 0 maximizes L(u;y) over u subject

to u(x,z) ≥ 0,
∑

(x,z) u(x,z) = 1 (since it is impossible to

increase L(u;y) over u by slightly perturbing u).. Denote

l(y) = maxu L(u;y), and u(x,z)(y) = p((x, z);y) as the

maximizer. Then the dual problem of (18) is miny≥0 l(y).
Plugging the expression of u(x,z)(y) into l(y), it is not

difficult to find that miny≥0 l(y) is equivalent to problem

(14), with r and y interchangeable.

Since problem (18) satisfies the Slater condition, there exist

(finite) optimal dual variable r∗, which is also the solution

of (14). Therefore, supr F (r;λ) is attainable.
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B. Proof of the uniqueness of r∗

Proof: Note that the objective function of (18) is strictly

concave. Therefore u∗, the optimal solution of (18) is unique.

Consider two extended state (ek, ek) and (ek,0), where ek

is the K-dimensional vector whose k’th element is 1 and all

other elements are 0’s. We have u∗
(ek,ek) = p((ek, ek); r∗)

and u∗
(ek,0) = p((ek,0); r∗). Then by (10),

u(ek,ek)(r
∗)/u(ek,0)(r

∗) = exp(r∗k) · (T0/τ ′). (19)

Suppose that r∗ is not unique, that is, there exist r∗I 6= r∗II

but both are optimal r. Then, r∗I,k 6= r∗II,k for some k. This

contradict to (19) and the uniqueness of u∗. Therefore r∗ is

unique.

C. Proof of Theorem 4

We will use results in [24] to prove Theorem 4. Similar

techniques have been used in [23] to analyze the convergence

of an algorithm in [15].

1) Part (i): Decreasing step size: Define the concave

function

H(y) :=











−(rmin − y)2/2 if y < rmin

0 if y ∈ [rmin, rmax]

−(rmax − y)2/2 if y > rmax

(20)

Note that dH(y)/dy = h(y) where h(y) is defined

in (16). Let G(r;λ) = F (r;λ) +
∑

k H(rk). Since λ is

strictly feasible, maxr F (r;λ) has a unique solution r∗ (Ap-

pendix VI-B). That is, F (r∗;λ) > F (r;λ),∀r 6= r∗. Since

r∗ ∈ (rmin, rmax)K by assumption, then ∀r,
∑

k H(r∗k) =
0 ≥

∑

k H(rk). Therefore, G(r∗;λ) > G(r;λ),∀r 6= r∗.

So r∗ is the unique solution of maxr G(r;λ). Because

∂G(r;λ)/∂rk = λk − sk(r) + h(rk), Algorithm 1 tries to

solve maxr G(r;λ) with inaccurate gradients.

Let vs(t) be the solution of the following differential

equation (for t ≥ s)

dvk(t)/dt = λk − sk(v(t)) + h(vk(t)),∀k (21)

with the initial condition that vs(s) = r̄(s). So, vs(t) can

be viewed as the “ideal” trajectory of Algorithm 1 with

the smoothed arrival rate and service rate. And (21) can

be viewed as a continuous-time gradient algorithm to solve

maxr G(r;λ). We have shown above that r∗ is the unique

solution of maxr G(r;λ). Therefore vs(t) converges to the

unique r∗ for any initial condition.

For simplicity, assume that M milliseconds is a multiple of

minislots. (However, the result does not change otherwise.)

Define Y (i−1) := (s′k(i), w0(i)) where w0(i) is the state w
at time ti. Then {Y (i)} is a Markov process. The update in

Algorithm 1 can be written as

rk(i) = rk(i − 1) + α(i) · [f(rk(i − 1), Y (i − 1)) + M(i)]

where f(rk(i − 1), Y (i − 1)) := λk − s′k(i) + h(rk(i − 1)),
and M(i) = λ′

k(i) − λk can be viewed as Martingale noise.

To use Corollary 8 in page 74 of [24] to show Algorithm

1’s almost-sure convergence to r∗, the following conditions

are sufficient:

(i) f(·, ·) is Lipschitz in the first argument, and uniformly

in the second argument. This holds by the construction of

h(·);
(ii) The transition kernel of Y (i) is continuous in r(i);
(iii) (21) has a unique convergent point r∗, which has been

shown above;

(iv) Tightness condition ((†) in [24], page 71): This is

satisfied since Y (i) has a bounded state-space (cf. conditions

(6.4.1) and (6.4.2) in [24], page 76).

(v) With Algorithm 1, rk(i) is bounded ∀k, i almost surely.

This is prove in the following lemma.

Lemma 2: With Algorithm 1, r(i) is always bounded.

Specifically, rk(i) ∈ [rmin − 2, rmax + 2λ̄],∀k, i.
Proof: We first prove the upper bound rmax + 2λ̄ by

induction: (a) rk(0) ≤ rmax ≤ rmax + 2λ̄; (b) For i ≥ 1, if

rk(i− 1) ∈ [rmax + λ̄, rmax + 2λ̄], then h(rk(i− 1)) ≤ −λ̄.

Since λ′
k(i)−s′k(i) ≤ λ̄, we have rk(i) ≤ rk(i−1) ≤ rmax+

2λ̄. If rk(i − 1) ∈ (rmin, rmax + λ̄), then h(rk(i − 1)) ≤ 0.

Also since λ′
k(i) − s′k(i) ≤ λ̄ and α(i) ≤ 1,∀i, we have

rk(i) ≤ rk(i−1)+λ̄ ·α(i) ≤ rmax+2λ̄. If rk(i−1) ≤ rmin,

then

rk(i) = rk(i − 1) + α(i)[λ′
k(i) − s′k(i) + h(rk(i − 1))]

≤ rk(i − 1) + α(i){λ̄ + [rmin − rk(i − 1)]}

≤ λ̄ + rmin ≤ rmax + 2λ̄.

The lower bound rmin − 2 can be proved similarly.

So, by [24], r(i) converges to r∗ almost surely.

D. Part (ii): Constant step size

Let r[i], i = 0, 1, . . . be the sequence of r generated

by Algorithm 1 with constant step size α. Let r̄(t) be the

interpolated trajectory of r[i], defined as follows.

r̄(α · i) = r[i],∀i = 0, 1, . . .

with r̄(t) defined on [α · i, α · (i + 1)] by linear interpolation

of r̄(α · i) and r̄(α · (i + 1)) for all i.
Define vs(t) as the solution of (21), with the initial

condition that vs(s) = r̄(s). It has been shown above that

vs(t) converges to a unique r∗ for any initial condition.

Then, by Theorem 7 in [24] (page 114), for a given initial

value r̄(s), we have for any T > 0,

sup
t∈[s,s+T ]

||r̄(t) − vs(t)|| → 0 in probability as α → 0 (22)

uniformly in s ≥ 0 (and in the initial value). In other

words, when α is very small, then in the time window

[s, s + T ], the trajectory r̄(t) closely approximates v(t) with

high probability.

Let ∆ := d(r∗) where d(y) is defined as the minimum

distance from y to the boundary of the region [rmin, rmax]K

(where y is a dummy variable). ∆ > 0 since r∗ ∈
(rmin, rmax)K by assumption.. Let ǫ1 = ∆/4.



11

Since the differential equation defines a gradient algorithm,

the distance between v(t) and r∗ decreases monotonically

with t.
Denote D := [rmin − 2, rmax + 2λ̄]K . For any η ∈ (0, 1),

one can choose T > 3ǫ1 such that for any initial v(s) ∈ D,

||v(t) − r∗|| ≤ ǫ1,∀t ≥ s + η · T. (23)

That is, from any initial point in D, we can choose T large

enough such that v(t) is close enough to r∗ for at least a

fraction 1 − η of time in a time window of T .

By (22), given the T , ǫ1 chosen above, for any δ1 >
0, α1 > 0, there exists α ≤ α1 such that P (A) ≥ 1 − δ1

where the “event” A := {supt∈[s,s+T ] ||r̄(t) − v(t)|| ≤ ǫ1}.

If A happens, then for all t ∈ [s + η · T, s + T ], we have

(i) ||r̄(t) − r∗|| ≤ 2ǫ1; (ii) r̄(t) ∈ [rmin, rmax]K ; and (iii)

||r̄(t1) − r̄(t2)|| ≤ 3ǫ1 for any t1, t2 ≥ [s + η · T, s + T ].
In Algorithm 1 with constant step size,

rk(i) = rk(i − 1) + α · [λ′
k(i) − s′k(i) + h(rk(i − 1))].

Note that h(rk(i − 1)) = 0 if rk(i − 1) ∈ [rmin, rmax]K .

Summing over the period i’s where , and denote i, ī as the

minimum and maximum of i’s such that α·i ∈ [s+η·T, s+T ].
If A happens, we sum over i + 1 ≤ i ≤ ī (and using (iii)

above),

3ǫ1 ≥ rk (̄i) − rk(i)

= α[
∑

i+1≤i≤ī

λ′
k(i) −

∑

i+1≤i≤ī

s′k(i)]

Let i0 be the initial i, i.e., α · i0 = s.

Then α
∑

i0+1≤i≤ī s′k(i) ≥ α
∑

i+1≤i≤ī s′k(i) ≥
α

∑

i+1≤i≤ī λ′
k(i) − 3ǫ1.

If Ac happens, α
∑

i0+1≤i≤ī s′k(i) ≥ 0 ≥
α

∑

i+1≤i≤ī λ′
k(i) − λ̄ · T . The last inequality is because

∑

i+1≤i≤ī λ′
k(i) ≤ (̄i− i) · λ̄ ≤ λ̄ ·T/α. (Also assume λ̄ ≥ 1

WLOG.) Denote s̄k :=
∑

i0+1≤i≤ī s′k(i)/(̄i − i0). We then

have

T · E(s̄k) ≥

≥ αE[
∑

i0+1≤i≤ī

s′k(i)] (since T ≥ α · (̄i − i0))

= αE[I(A)
∑

i0+1≤i≤ī

s′k(i)] + αE[I(Ac)
∑

i0+1≤i≤ī

s′k(i)]}

≥ E[I(A)(α
∑

i+1≤i≤ī

λ′
k(i) − 3ǫ1)] +

E[I(Ac)(α
∑

i+1≤i≤ī

λ′
k(i) − λ̄ · T )]

≥ α · (̄i − i)λk − (1 − η)3ǫ1 − ηλ̄T (since λ̄T > 3ǫ1)

≥ [T · (1 − η) − 2α1]λk − (1 − η)3ǫ1 − ηλ̄T

(since T · (1 − η) ≤ (̄i − i)α + 2α1)

That is, E(s̄k) ≥ [(1− η)− 2α1/T ]λk − (1− η)3ǫ1/T − ηλ̄.

Since η, ǫ1, α1 can be made arbitrarily close to 0 and

T can be made arbitrarily large, therefore E(s̄k) can be

arbitrarily close to λk. Finally, let N ′ = ⌊T/α⌋, and denote

s̄
(n)
k =

∑

n·N ′+1≤i≤(n+1)·N s′k(i)/N ′ for n = 0, 1, 2, . . . .

We can choose α, T to make En(s̄
(n)
k ) ≥ λk−δ for arbitrarily

small δ, where En(·) means the expectation conditioned

on anything that happened up to period n · N ′. In that

case, lim infN→∞
∑N

i=1 s′k(i)/N ] ≥ λk − δ almost surely

(since the martingale noise s̄
(n)
k − En(s̄

(n)
k ), n = 0, 1, 2, . . .

averaged to 0 almost surely).

E. Proof of Corollary 1

The proof of part (i) is similar to part (i) of Theorem 4.

Part (ii): Similar to the proof of part (ii) in Theo-

rem 4, for any δ > 0, there exists α, T , and N ′ =

⌊T/α⌋, such that En(s̄
(n)
k ) ≥ λk + ǫ − δ, where s̄

(n)
k =

∑

n·N ′+1≤i≤(n+1)·N s′k(i)/N ′ for n = 0, 1, 2, . . . . (Note that

we have replaced λk by λk + ǫ in the above inequality,

since here the algorithm pretends to serve the arrival rates

λ + 1 · ǫ.). Let δ = ǫ/2. Then there exists α, T , and

N ′ = ⌊T/α⌋, such that En(s̄
(n)
k ) ≥ λk + ǫ − δ = λk + ǫ/2.

Denote by Q
(n)
k the queue size of link k at time tn·N ′ . If

Q
(n)
k ≥ (N ′ + 1)M , then from time tn·N ′ to t(n+1)·N ′ ,

the queue length is positive (since it at most decreases by

1 per time unit, i.e., millisecond here), so the amount of

departure is equal to the amount of service. Therefore, if

Q
(n)
k ≥ (N ′ + 1)M , then En(Q

(n+1)
k |Q

(n)
k ) − Q

(n)
k =

[λk − En(s̄
(n)
k )] · M · N ′ ≤ −(ǫ/2)M · N ′, i.e., the queue

has negative drift. By the Foster-Lyapunov stability criterion,

the queue is positive recurrent. The same is true for other

queues.


