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Abstract

Compact Implementation of Distributed Inference Algorithms for Network

Monitoring

by

Ashima Atul

Master of Science in Computer Science

University of California, Berkeley

Professor Joseph M. Hellerstein, Chair

In this thesis we present the compact implementation of distributed inference algo-

rithms using a declarative programming framework. This framework provides a declara-

tive query language for specifying and implementing distributed protocols. We show the

practicality of distributed inference algorithms by applying them to network monitoring

applications.

There has been a growing trend towards automated generation of massive amounts of

data at multiple distributed locations. These systems can take advantage of learning and

inference algorithms to assemble local observations and reach global conclusions. This

requires performing probabilistic inference in a distributed fashion. Distributed inference

algorithms eliminate single points of failure, distribute the computation across several

nodes and avoid the need to share sensitive data.

The design and implementation of distributed algorithms is very challenging. Our

work involves using a combination of overlays and declarative programming to simplify

the design of distributed inference algorithms. Our main contribution involves using

a declarative language, Overlog, to implement a set of existing probabilistic inference
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algorithms and evaluating their performance. We also present the conciseness of our

declarative implementation. For example, we could implement Junction Tree Running

Intersection Property in just 7 rules in the Overlog.

We then use the distributed inference architecture for collaborative spam detection.

This work is a first step towards applying distributed inference techniques for network

monitoring. During the design of the application we learned that multiple factors like

algorithm selection, data partitioning and aggregation play an important role when solving

network monitoring problems using distributed inference. Future work in this direction

involves solving the issues faced to make the spam detection application scalable and

practical to provide real-time detection.

Professor Joseph M. Hellerstein, Chair Date
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Chapter 1

Introduction

1.1 Motivation

In recent years, there has been a growing trend towards automated generation of

massive amounts of data at multiple distributed locations. The distributed nature of

automatically-generated information is present in both the physical world (monitoring

temperature through sensors) and in computer networks (network firewall logs, traffic

monitoring and spam feature extraction). However, the information gathered by nodes at

different locations is typically too restricted to be of direct interest; it must be computation-

ally assembled. For example, domain mail servers in a network may assemble their local

observations of the extracted features from received emails in order to identify spammers.

Such systems can take advantage of learning and inference algorithms to combine local

measurements and provide a globally consistent view. This raises the need for performing

probabilistic inference in a distributed fashion. Distributed inference algorithms eliminate

single points of failure, distribute the computation across several nodes and avoid the need

to share sensitive data [22].

Distributed inference is a challenging task and requires addressing a lot of design

issues. First, it is difficult to design a distributed inference algorithm since each node needs

to coordinate and distribute the computation across the network, and can only access a
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portion of the data at any point of time. Second, the algorithm has to be network aware.

It should monitor changes in link quality, node failure and addition, as well as network

partitioning. Third, programming distributed systems is itself not an easy task. For

example, implementing the system in low-level languages is very error-prone and difficult

to debug. Addressing these challenges is key to designing robust and efficient distributed

inference algorithms.

1.2 Contribution

In this thesis we evaluate declarative networking [26] techniques for implementing

distributed inference algorithms. A declarative language provides ease of programming

and allows the user to specify at a high level what to do, rather than how to do it. We

believe that declarative programming will help accelerate the development of distributed

inference algorithms.

Distributed inference requires nodes in multiple locations to communicate with each

other by sending messages. In order to send messages each node needs to know about

other nodes and their network address in the underlying network. Instead of using existing

network and its addresses we can use an overlay network to form a virtual network of

nodes and have logical links between the nodes. Overlay networks route and address

messages via an application-specific naming scheme rather than using Internet addressing

(for example, distributed hash tables for content based routing [45, 35, 12]) and also provide

specific network communication patterns like multicast [20]. Declarative programming

languages such as Overlog have been used in the past to express overlays [25]. Overlog

provides concise implementation of overlays compared to their low-level implementation

and also aids in ease of development and deployment.

To realize our vision of distributed inference using the P2 declarative programming

framework, and its language Overlog, we make the following contributions in this thesis:

• We demonstrate the use of declarative programming for implementing distributed
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versions of existing inference algorithms, such as Junction Tree Inference [31] and

Loopy Belief Propagation [29, 46]. We show that Overlog programs are a natural and

compact way of expressing a variety of well-known inference algorithms, typically

in a handful of lines of program code. Overlog also allows ease of customization,

where higher-level concepts such as message scheduling can be achieved via simple

modifications to the Overlog programs. For example, we customize the naive loopy

belief propagation algorithm by adding a randomized message scheduling scheme

to achieve faster convergence.

• We evaluate our declarative implementation of junction tree inference on the sensor

calibration dataset used by Paskin et al. [31]. Our working implementation of

junction tree inference is specified in 37 Overlog rules versus thousands of lines of

Lisp code of the distributed implementation by Paskin et al [31].

• To explore applications of distributed inference in the context of network monitoring

we take a centralized, offline scheme from the work of Feamster et al. [34] and eval-

uate whether a distributed implementation of this scheme can be easily built using

declarative networking framework. We are able to demonstrate that our distributed

implementation can achieve similar results as the centralized scheme, although our

implementation is less scalable due to the limitations in the P2 declarative framework

and issues faced with the selected inference algorithm. During the course of this ex-

ercise the lessons learned include exploiting data partitioning to reduce aggregation,

sharing summary statistics instead of data to reduce communication bandwidth and

selecting inference algorithms that do not have a high cost of communication to

achieve global consistency.

The evaluation of our distributed inference implementations is done on Emulab [47], a

large testbed that simulates realistic network conditions such as communication delays.
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1.3 Organization

This thesis is organized as follows. In Chapter 2, we provide an introduction to

distributed inference and the architecture for designing distributed inference algorithms,

and give an overview of Overlog, the declarative language of P2 framework. Chapter

3 presents declarative distributed implementation of well-known inference algorithms.

Chapter 4 demonstrates how distributed inference can be used for network monitoring. We

take the collaborative spam detection application and use a distributed inference technique

to detect spammers. Chapter 5 discusses future directions in terms of using distributed

inference for building a scalable spam detection application.
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Chapter 2

Distributed Inference

Having discussed the need for distributed inference algorithms, this chapter focuses on

the architecture needed to design inference algorithms for performing distributed computa-

tion. The layered graph architecture presented in this chapter separates the communication

graph from the reasoning graph. A communication graph represents the communication

links between nodes while a reasoning graph represents correlations and independencies

in data residing at different nodes and facilitates designing efficient distributed inference

algorithms. Separating the communication and reasoning graph aids in optimizing the

communication and the reasoning components, to effectively make tradeoffs between re-

source usage and information quality.

In Section 2.1 we give an overview of probabilistic graphical models. We then present

the layered graph architecture for modeling distributed inference in Section 2.2. In sec-

tion 2.3, we explain the reasoning graph layer, present its usefulness by applying it to

a network monitoring problem and discuss the challenges in implementing distributed

inference over the reasoning graph. We give an overview of the declarative language,

Overlog, used for implementing the algorithms in Section 2.4.
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2.1 Probabilistic Graphical Models Overview

In this section, we provide a short overview of probabilistic graphical models, a machine

learning technique, that uses graphs to represent correlations and independencies in data

and facilitates in designing efficient inference algorithms. We call this graph the reasoning

graph in our architecture. We explain the reasoning graph in detail in Section 2.2.

A graphical model is a family of probability distributions defined in terms of a graph.

The nodes in the graph represent random variables that can be discrete, continuous or a

binary event. The joint probability distribution is obtained by taking a product over func-

tions defined on the connected subset of nodes. The graph can be directed or undirected;

we explain the undirected case of graphical models here.

Given an undirected graph G(V,E), we have Xv : v ∈ V as a collection of random vari-

ables indexed by nodes in the graph. Let C be the maximal cliques in the graph. Each

clique xc of XC is associated with a non-negative potential function ψc(xc). An undirected

graphical model represents the joint distribution of xv that can be factored into the product

of functions over the variables in each clique:

p(xv) =
1

ZC

∏
c∈C

ψc(xc). (2.1)

where Z is the normalization factor, obtained by integrating and summing the product

with respect to xv (Equation 2.2).

ZC =
∑
xv

{∏
c∈C ψc(xc)

}
. (2.2)

Figure 2.1 gives an example of undirected probabilistic model 1.

2.2 Graphs Upon Graphs

Our approach to model distributed inference algorithms uses a layered graph architec-

ture. The layered architecture has two types of graphs (shown in Figure 2.2):

1This example has been taken from An Introduction to Probabilistic Graphical Models by M. I. Jordan
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X1

X4

X2

X6

X5X3

Figure 2.1. An example of an undirected graphical model. The prob-

ability distribution associated with this graph can be factorized as p(xv) =

1
ZC
ψ(x1, x2)ψ(x1, x3)ψ(x2, x4)ψ(x3, x5)ψ(x2, x5, x6).

1. A communication overlay graph that handles the communication between nodes

distributed at multiple locations.

2. A reasoning graph that probabilistically characterizes how locally observed infor-

mation is combined to reach global conclusions.

In this architecture, the information resides in nodes at multiple locations. These

nodes can be sensors monitoring temperature in a sensor network or domain mail servers

extracting received email features. The nodes observe local information and need to share

information (completely or incompletely) amongst themselves, but this requires knowing

the address of other nodes for sending messages. To facilitate this, the communication

graph layer allows the nodes to communicate by layering an overlay network on top of

the underlying network topology. This has several benefits - for example, the edges in

the overlay network can encode the costs and constraints of the underlying network.

Furthermore, the overlays can be used for data aggregation and resiliency.

The second layer, called the reasoning graph, aids in designing distributed inference algo-

rithms for reasoning about data from separate information sources. Probabilistic methods

have been used to deal with situations where local observation at nodes need to be shared

7



1.1 Graphs Upon Graphs
The systems we describe above for information generation can be characterized by nodes with varying computational
capabilities that generate local information, through sensors or probes, e.g., thermistors in a sensor network, rules in
a firewall, or probes in an autonomic computing setting. These nodes can communicate with each other by sending
messages over a network, but a node must know of the presence and underlying network address of another node to
send it a message. This “neighbor” relationship among communicating nodes can be characterized as an communi-
cation graph that is an overlay on the underlying network. Edges in the overlay communication graph encode the
costs and constraints given by the underlying network and its routing, such as bandwidth, latencies, and link qualities.
These properties – and the overlay and underlying network graphs themselves – typically change over time, e.g., as
traffic loads and routing change in the underlying network, as nodes move in a mobile ad-hoc network, or as nodes
enter and leave the computation due due to failures and/or a shifting population of participating sources.

Uncertainty is inherent in these systems: local, noisy information available from each node must be combined
in order to obtain the global, consistent conclusions required to answer complex queries about the current state of
the world, or to predict future states. The rise of probabilistic methods for dealing with uncertainty is evidenced
both in the growing interest in these techniques outside their traditional disciplines (e.g., in systems and database
research [8, 12]) and in their use in data-intensive industrial applications, notably web search infrastructure and cor-
porate data mining. Graphs are also a key aspect here: probabilistic graphical models, a machine learning technique
that is widely used for reasoning with uncertainty in large-scale systems, uses graphs to represent correlations and
independencies in data, and appropriate “sparsity” in these graphs enables efficient algorithms for answering com-
plex queries about huge real-world systems where uncertainty abounds. Algorithms for answering these queries, also
known as inference algorithms, can often be viewed as logical message passing over some graph [10]; we call these
graphs used for inference the reasoning graphs.

The information-rich, distributed and uncertain world

{lfg} {clm}

{fgh} {dxy}

{dqr}

{lmn}

{bd}

{rst}

{abc} {bce} {bef}

reasoning 
graph

overlay
communication
graph

underlying
network
graph

Figure 1: Layered graphs for distributed inference. The top
two layers are implemented by a distributed inference algo-
rithm; the lower layer is a commodity network. (Section 4.)

we describe above requires us to design two types of graphs:
the reasoning graph probabilistically characterizes how lo-
cally observed information is combined to reach global con-
clusions, and the communication overlay graph captures the
desired communication connnectivity between computers
distributed throughout the network. These two graphs are
usually not the same. For example, nodes that have highly
correlated information would be connected in the reasoning
graph, but may not be able to communicate directly. As an-
other example, the message complexity required for an in-
ference algorithm on some reasoning graphs may overbur-
den transmission capabilities at the communication graph.
Finally, these two graphs – both of which are part of the
algorithmic design – must manage the physical properties
presened by some underlying network fabric, e.g. the Inter-
net, or wireless radio broadcast.

The work in this proposal is targeted at designing the
systems, algorithms, and optimization techniques necessary
to enable efficient management of the uncertainty in distributed information sources. Our approach can be viewed as
providing synergistic contributions in three fronts:

• bottom up: designing a declarative software infrastructure that enables the easy implementation of existing
centralized reasoning graphs over custom overlay communication graphs that we call Inference Overlay Net-
works (IONs);

• top down: the development of new Network-Aware Inference Algorithms (NAIAs) over reasoning graphs –
these new algorithms will help steer the requirements of the declarative software infrastructure over IONs;

• co-optimization: the ability to automatically choose both the overlay communication graph and the choice of
reasoning graph in order to optimize two classes of objectives: underlying network efficiency, and the quality
of the inference results.

Figure 2.2. Layered graphs for distributed inference. The top two layers are implemented

by a distributed inference algorithm; the lower layer is the underlying physical network.

(completely or incompletely) in order to obtain global conclusions. Probabilistic graphical

models, a machine learning technique, use graphs to represent correlations and indepen-

dencies in data which facilitates designing efficient algorithms for answering complex

queries about real-world systems. Algorithms for answering these queries are also known

as inference algorithms and can often be viewed as logical message passing over some

graph [9]. We call this graph the reasoning graph.

The two graphs described above are usually not the same. For example, nodes that

have highly correlated information would be connected in the reasoning graph, but they

may not have a direct communication link between them in the communication graph.

Moreover, some algorithms may not use a separate communication overlay graph. For

example, in Section 3.1.1 junction tree inference algorithm uses a spanning tree overlay

communication graph, while loopy belief propagation algorithm in Section 3.1.2 omits

using a communication overlay graph.
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Our approach to design distributed inference algorithms with the architecture described

above (Figure 2.2), involves implementing a distributed version of existing inference al-

gorithms over reasoning graphs. We use the P2 declarative infrastructure [24, 26] for

implementing distributed versions of existing centralized algorithms over overlay com-

munication graphs.

There have been a few distributed inference algorithms that utilize overlays. For ex-

ample, Schmidt and Aberer [38] proposed using distributed hash tables (DHTs) to perform

content-based addressing in loopy belief propagation. Paskin, Guestrin, and Mcfadden

[31] described a robust architecture for distributed junction tree inference in sensor net-

works. However, each of these approaches were a point solution that were specific to

the data and problem they were being used for. We propose to use the P2 declarative

distributed programming framework for designing well-known inference algorithms that

can be applied to a wide range of problems. We implement a declarative implementa-

tion of the distributed junction tree architecture proposed by Paskin et al. [31]. We have

not implemented the scheme proposed by Schmidt et al. to use DHTs for content-based

addressing and believe that this is an important application for future investigation.

2.3 Reasoning Graph

In this section, we discuss implementing distributed inference algorithms over the

reasoning graph and present an application of distributed inference. Section 2.3.1 shows

how an existing inference algorithm can be modeled on the reasoning graph. In Section 2.3.2

we present collaborative spam filtering as an application of distributed inference. We

discuss the challenges related to distributed inference in Section 2.3.3.

2.3.1 Distributed Inference

Many probabilistic inference algorithms can be viewed as message-passing algorithms

over the reasoning graph (Figure 2.2) and can be implemented in a distributed fashion
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(for example, junction tree inference2 [31]). In a naive distributed implementation, each

variable can be a node in the network which sends messages across the network edges.

Inference algorithms like Junction Tree Inference provide exact solutions. Junction tree

uses an overlay that has a tree structure. Unfortunately, there exist problems where junction

tree inference is not feasible due to its computational complexity. For such problems

Loopy Belief Propagation3 [29, 46] is one of the algorithms that is used to approximate

the marginals
{
p(yi; x)

}
instead of providing exact solutions. Loopy belief propagation is

an iterative method that can be viewed as passing messages on the reasoning graph. A

message from variable s to variable t is computed as

µs,t(yt)←
∑

ys

ψs × ψs,t ×
∏

r∈NG(s)\t

µr,s(ys), (2.3)

where ψs is the local potential of variable s and ψs,t is the edge potential between variable

s and t. µr,s(ys) is the message s receives from neighbor r except t. The product is taken

over messages of all neighbors r of variable s in the graph, other than t. At convergence,

the node marginals can be approximated as

p(ys) ≈
1
Zi
ψs(ys; xs) ×

∏
r∈NG(s)

µr,s(ys). (2.4)

While conceptually, we could collect all the features x to a centralized location, a distributed

version of the inference algorithm (2.3) has several advantages: it eliminates single points

of failure, distributes the computation across several nodes and avoids the need to send a

lot of data.

In general, each network node is assigned a portion of the probabilistic model (Equa-

tion 2.3) and the nodes collaborate to compute the marginal distribution over one or more

variables. In our approach we assume a networking model where each node can commu-

nicate to a subset of other nodes, but the communication costs between nodes can vary

based on different cost metrics like hop-count and round-trip time.

2Junction tree inference is explained in detail in Section 3.1.1
3Loopy belief propagation is discussed further in Section 3.1.2.
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2.3.2 Application

One application of distributed inference is collaborative spam detection [11, 5]. In

collaborative spam filtering, domains wish to perform early detection of spammer IP

addresses based on the emails they receive. A single domain receives only a subset of

the spam from any single IP address. This hinders the domain from blacklisting the IP

address since its activity can be well below the threshold for triggering an alarm at any one

node [33]. Incomplete local information at a particular node raises the need for nodes to

collaborate and share their information.

Domain mail servers aggregate information about senders in order to identify IP ad-

dresses that may be spammers. To classify a sender one may include several sources of

information including blacklisting, local features of individual email messages and be-

havioral features [34] that align clusters of nodes with similar sending patterns. The

collaborative spam filtering problem can be formulated as a graphical model where each

variable yi represents the class of the IP address (spam or ham), and it has some features xi

associated with it, like the frequency of emails sent to a set of monitoring domains. Given

a set of observed features x of all domains, the marginal distribution P(yi; x) represents the

likelihood that IP address i is sending spam.

2.3.3 Challenges

Having modeled an existing inference algorithm on the reasoning graph and discussed

an application of distributed inference, in this section, we discuss the challenges involved

in implementing distributed algorithms. In the context of distributed inference, this dif-

ficulty arises due to the following two facts: The algorithms need to use a decentralized

representation of the probabilistic model (Equation 2.3) and perform global coordination

to distribute the computation across several nodes. The algorithms need to be network-

aware and should be able to perform robustly in the presence of communication delays.

A core challenge in distributed algorithms is that programming distributed systems is

itself difficult. Conventionally, the high-level and compact description of these algorithms
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needs to be translated manually into a set of low-level communication protocols which

then needs to be executed in a low-level programming language. Such translation is often

time-consuming and error-prone, and results in programs that are very difficult to debug.

Adding optimizations to distributed algorithms is also a difficult task. Simple imple-

mentations of these algorithms tend to be fairly straightforward, but for example, while

effective message scheduling has been proposed in the centralized literature (to speed up

the convergence of loopy belief propagation) very few papers have attempted to attain

similar results in a distributed setting [37].

In this thesis, we examine how declarative languages simplify the implementation of

distributed inference algorithms and customize these algorithms for optimizations.

2.4 Declarative Specification of Overlays

We use the P2 [24, 26] declarative framework in our work to implement the inference

algorithms and the communication overlay network in our work. P2 takes specifications in

a declarative query language, and uses database query optimization techniques to compile

them into dataflow programs that resemble a mixture of traditional relational query plans

and network routers.

To explain declarative networking we start with an example of specifying shortest-path

routing among a set of nodes. In Figure 2.3 we present this protocol in the traditional recur-

sive query language Datalog enhanced with aggregation functions [16]. Datalog programs

consist of a set of declarative rules, terminated by periods. The right-hand-side of the

rule represents a conjunctive predicate over relations in a database, and the left-hand side

represents the deduction from that predicate. For example, rule D1 can be read as “if there

is a tuple (Src, Root) in the intree relation, and there is a tuple (Src, Root, Cost) in

the link relation (where the Src and Root variables of the two tuples match), then there is

a tuple (Src, Root, Root, Cost) in the path relation”. This rule identifies paths to the

root of each tree from that root’s children; those paths have the cost of the corresponding
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/* if there is a tuple (Src, Root) in the intree relation, and a tuple (Src, Root, Cost)

in the link relation, then there is a tuple (Src, Root, Root, Cost) in the path relation

which states that Src can reach Root through Root */

D1: path(Src,Root,Root,Cost) :-

. . intree(Src,Root),

. . #link(Src,Root,Cost).

/* if Src has a link to NextHop node which has a path to the Root, then the Src has a

path to the Root via NextHop */

D2: path(Src,Root,Nexthop,Cost) :-

. . intree(Src,Root),

. . #link(Src,NextHop,C1),

. . path(NextHop,Root,Hop2,C2),

. . Cost = C1 + C2.

/* From all the learnt paths to the Root find the minimum cost path and set the Nexthop of

the minimum cost path as the parent */

D3: minCost(Src,Dst,min<Cost>) :-

. . path(Src,Dst,NextHop,Cost).

D4: parent(Src,Root,NextHop,Cost) :-

. . minCost(Src,Root,Cost),

. . path(Src,Root,NextHop,Cost).

Query: parent(Src,Root,NextHop,Cost).

Figure 2.3. Shortest-Path Routing in Datalog.

one-hop link from child to root, and the path’s “next hop” for routing (the third field of

the path relation) is, the root itself. This is the base case of a recursive path-finding speci-

fication. The recursive case is captured in rule D2: if a source node has a link to another

“NextHop” node, and that node in turn has a path to the tree’s root, then the src node has

a path to the root via that “NextHop” node, with the appropriate cost.

These two rules are sufficient to find all possible source–root paths. The next two rules

prune this set: D3 uses the aggregation function min to identify the cost of the shortest

(least-cost) path from each source to each root. D4 sets parent of each source in each tree
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ND1: path(@Src,Root,Root,Cost) :-

. . intree(@Src, Root),

. . link(@Src,Root,Cost).

ND2: path(@Src,Root,Nexthop,Cost) :-

. . intree(@Src, Root),

. . link(@Src,NextHop,C1),

. . path(@NextHop,Root,Hop2,C2),

. . Cost = C1 + C2.

ND3: minCost(@Src,Dst,min<Cost>) :-

. . path(@Src,Dst,NextHop,Cost).

ND4: . parent(@Src,Root,NextHop,Cost) :-

. . minCost(@Src,Root,Cost), path(@Src,Root,NextHop,Cost).

Query: parent(@Src,Root,NextHop,Cost).

Figure 2.4. Shortest-Path Routing in Overlog (Network Datalog).

to be the NextHop in the shortest path. Finally, the query specifies that all such parents

should be returned as output.

The Datalog program of Figure 2.3 is sufficient to specify shortest paths routing be-

tween a set of nodes. However, this requires a network protocol since Datalog assumes

that the relevant data, and the query processing computation, are centralized on a single

computer. Figure 2.4 shows a variant of the program expressed in the Overlog language,

which specifies a workable, distributed network protocol based on that logic. The Overlog

code in Figure 2.4 has one field prepended with the “@” symbol; this field is called the

location specifier of the relation. The location specifier specifies physical data distribution:

each tuple is to be stored at the address in its location specifier field. For example, the

path relation is partitioned by the first (source) field; each partition corresponds to the

networking notion of a local routing table.

The link relations have names that contain two fields of type address representing

source and destination nodes in the network. These predicates capture edges in the un-

derlying network graph and correspond to the networking concept of a local neighbor

table.
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Loo et al. [26] show how location specifiers and link relations enable an Overlog com-

piler to generate a distributed protocol guaranteed to be executable over the underlying

network topology captured by the link relation.

2.5 Summary

In this chapter, we gave an overview of the layered graph architecture for implementing

distributed inference algorithms and presented how to model a distributed version of an

existing inference algorithm using this architecture. We then discussed an application of

distributed inference and also discussed the challenges in designing distributed algorithms.

We also gave an overview of the P2 declarative language, Overlog. In the next chapter, we

will present declarative distributed implementation of existing inference algorithms like

junction tree inference and loopy belief propagation.
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Chapter 3

Declarative Implementation of

Existing Inference Algorithms

Having given an overview of the declarative programming language Overlog, and

the architecture to implement distributed inference algorithms, this chapter presents the

distributed implementation of existing inference algorithms like junction tree inference and

loopy belief propagation. We show in this chapter that declarative programming aids in

concise and easy implementation of these algorithms. Moreover, we could easily customize

our Overlog implementation of loopy belief propagation to obtain faster convergence.

Section 3.1 explains junction tree inference and loopy belief propagation, and their

declarative distributed implementation. We evaluate Overlog implementations of junction

tree inference and loopy belief propagation, and compare them with existing distributed

implementations in Section 3.2.

3.1 Inference Algorithms

Many existing inference algorithms can be viewed as message passing algorithms over

the reasoning graph. For example, the junction tree algorithm [9] uses a reasoning graph

that takes the form of a tree. The nodes in the tree pass local information in terms of
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messages and provide exact solution. Computational complexity of junction tree inference

grows exponentially with the size of the maximal clique in the tree. We discuss junction

tree inference algorithm in detail in Section 3.1.1.

Many practical problems that do not have large maximal cliques can be modeled by

the junction tree algorithm and solved efficiently. In a distributed setting nodes at multiple

locations can connect in the form of a tree and pass messages. For trees that have large

cliques, instead of using methods that provide exact solutions approximate methods are

preferred. These methods also have interesting reasoning graphs. For example, loopy

belief propagation [32, 10] is often used for graphs with loops. This algorithm does

not give an exact answer, but can provide reasonable solutions in practice. Section 3.1.2

discusses the declarative implementation of loopy belief propagation.

3.1.1 Junction Tree Inference

As mentioned before, the junction tree inference algorithm is used to provide exact

solutions and uses a reasoning graph takes the form of a tree. Each node in the tree corre-

sponds to a set (or clique) of random variables. To guarantee the correctness of the message

passing algorithm on the junction tree, the cliques must satisfy a structural constraint called

the running intersection property: Specifically, for each pair of nodes m, n:

X ∈ Cm,X ∈ Cn =⇒ X ∈ Ck (3.1)

for all nodes k on the (unique) path between m and n. Intuitively, since both clique m and

n have information about X then all nodes in between the two nodes along the path in the

tree must have observed information about X. A tree that satisfies this property is called

a junction tree. The complexity of the junction tree message passing algorithm grows

exponentially with the size of the maximal clique.

Distributed junction tree inference has been used by Paskin et al. [31] in sensor networks

for sensor calibration. The architecture proposed by Paskin et al. requires two graphs:

spanning tree and junction tree. We can easily model the reasoning graph as a spanning

tree, where each node is associated with a random variable. Junction tree is layered on
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top of the reasoning graph. Junction tree satisfies the running intersection property by

performing clique calculations based on the neighbor relationship between nodes in the

spanning tree. Inference is performed by sending messages between neighboring nodes to

find exact solutions.

We examine the distributed junction tree problem in [31] and show that the architecture

in the paper can be naturally expressed in a declarative framework. The architecture [31]

computes the running intersection property as follows: Each node n begins with a set of

local variables Ln. The network nodes form a network junction tree, that is, a spanning

tree over the network communication graph such that each node is associated with a clique

Cn ⊇ Ln, and the cliques {Cn} satisfy the running intersection property (3.1).

The distributed algorithm of Paskin et al. [31] consists of three layers:

1. Spanning tree formation: The nodes form a spanning tree. The spanning tree

responds to changes in network connectivity and node failures.

2. Junction tree formation: The nodes compute a set of minimal cliques {Cn} that satisfy

the running intersection property (3.1).

3. Inference: The inference layer allows nodes to transfer messages between themselves

to calculate the probabilistic inference at a particular node. For example, in proba-

bilistic inference, each node starts with a potential ψCi
1 over (a subset of) its clique

Ci. Each node i then computes the inference message µi j to its neighbor node j based

on the messages received from its other neighbors k.

µi j =
∑

Ci\Si j

ψCi

∏
k,i

µki (3.2)

Once the node i has received messages from all of its neighbors, we compute the

marginal probability update for i:

p(Ci) ∝ ψCi

∏
k

µki (3.3)

1A potential is a non-negative function associated with each clique (Section 2.1)
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These layers are executed in parallel: for example, if an edge in the spanning tree is added

or removed, the junction tree layer updates the clique at each node and the inference layer

recomputes the inference messages.

In the original implementation of Paskin et al. [31], the three layers had to explicitly

handle changes in the underlying network, listening to local events indicating the change

such as edge addition and deletion. Such complex interleaving of the inference and net-

working layers can be naturally expressed in a declarative language. For example, to

implement the running intersection property the clique at node n of the network junction tree

is computed as

Cn = Ln

⋃ {
i : i ∈ Rn,m ∩ Rn,k,m , k

}
, (3.4)

where Rn,m is the set of all variables in the subtree rooted at node n, with leaf as node

m and Ln are the local variables at node n. This equation directly maps to rule C1 and C2

in the declarative implementation in Figure 3.1 2. The reachable variables relation Rm,n is

naturally expressed recursively with R1 (the base case) and R2 (the recursive case). The P2

runtime responds to any changes to the preconditions, and recomputes the reachable sets

and cliques as necessary.

In a distributed environment we cannot assume that the physical nodes are stable or

that we can know when the communication graph has stabilized. There can be node

failures as well as additions which cause the spanning tree to detect the event and update

the tree to remove or add the node. Additions or removals of nodes cause updates to the

junction tree cliques. This requires the need to have the three layers run simultaneously in

order to respond to changes between the layers.

Our Overlog implementation of the junction tree inference has separate modules for

the three layers. To give a feel of the declarative rules and their conciseness we briefly

explain the important rules of these layers:

• Spanning tree rules: Our distributed spanning tree algorithm is similar to that

2The declarative specification of running intersection property in Figure 3.1 does not specify the @ location
specifiers. It lists the pseudo datalog code for the algorithm. Refer to Figure A.1 in Appendix A for the Overlog
specification of running intersection property
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/* if node n has a local variable i, then neighboring node m can reach variable i through

node n. This information is stored in reachable relation */

R1: reachable(m,n,i) :-

. . localvar(n,i),

. . neighbor(n,m).

/* if node n can reach variable i through neighboring node k, then neighbor node m (m

!= k) can reach variable i through node n. */

R2: reachable(m,n,i) :-

. . reachable(n,k,i),

. . neighbor(n,m),

. . m != k.

/* if variable i can be reached through neighbors m and k, then the clique at node n

should have variable i*/

C1: clique(n,i) :-

. . reachable(n,m,i),

. . reachable(n,k,i),

. . m != k.

C2: clique(n,i) :-

. . localvar(n,i).

Figure 3.1. Implementing distributed triangulation in Overlog. The statement reach-

able(n,k,i) represents the fact that the variable i is in the subtree (spanning tree) rooted

at node n, with leaf k.

of Paskin et al. [31]. We give here a brief overview of the spanning tree Overlog

that contains 20 rules. Refer to Appendix A.3 and A.4 for the complete Overlog

specification. For spanning tree root election, each node is assigned an identifier

and the node with the smallest identifier becomes the root of the spanning tree.

Two important base relations at each node are pulse and config. To coordinate with

other nodes, rule c1 and c2 periodically broadcast a configuration message from each
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node to its neighbors, which conveys each node’s current choice of root and parent.

The configuration messages received by a node are stored in the config relation.

Periodically each node executes rule r1, r2, r3, r4 and r5 to select a parent that has

the lowest root amongst all potential parents learnt through the tuples in the config

relation; this ensures that all nodes agree on the root. In order to ensure that stale

configuration messages are not considered while determining the parent of a node,

each node adds pulse information in the configuration messages. The pulse relation

at each node is updated through rules p1, p2, p3 and p4 to store the latest pulse heard

from a node.

• Junction tree rules: Our junction tree Overlog implements the running intersection

property and contains 7 rules. Refer to Appendix A.1 for the complete Overlog of

running intersection property. Each node has a partition of the localVars base relation

that stores the local variables associated with each node. The reachVars base relation

stores information regarding the reachable variables associated with the subtrees of

each node. The equation for the running intersection property (Equation 3.4) directly

maps to rule C. The reachable variables relation Rm,n is naturally expressed recursively

with rule R1 (the base case) and rule R2 (the recursive case). The clique relation

represents the clique associated with each node. At each node it stores its local

variables and other variables that are added from rule C. This is the clique associated

with each node in the junction tree. The separator relation stores the common variables

between each node and each of its neighbors.

• Inference rules: The inference Overlog contains 10 rules. Refer to Appendix A.2

for the complete specification. Periodically message updates are fired by rule m1.

The incoming relation stores all the messages a node receives from its neighbors,

µki in Equation 3.2 and local potential ψCi associated with clique at each node is

stored in localFactor relation. Rule m5 takes the list of all potentials and generates

µi j message that is sent from each node i to its neighbor j. Functions f product and

f marginal encapsulate the operations to be performed for generating messages µi j

21



in Equation 3.2. Belief calculations in rule m8, m9 and m10 calculate the marginal

probability in Equation 3.3.

We provide an evaluation of the declarative specification of the junction tree algorithm

with respect to the Lisp implementation of Paskin et al. [31] in Section 3.2.1.

3.1.2 Loopy Belief Propagation

The computational complexity of junction tree makes it infeasible for graphs with large

cliques. As mentioned in Section 3.1, in such situations loopy belief propagation [32, 10] is

often used to provide approximate solutions. Intuitively, the algorithm only requires nodes

to agree locally about neighboring variables in the graph, and since the graph may have

loops this local consistency does not lead to a globally consistent solution. In a junction

tree, there is only one path between nodes (since it is a tree), but the nodes must agree on

entire cliques of variables.

Recall that loopy belief propagation is an iterative method and can be viewed as passing

messages on the reasoning graph. A message from variable s to variable t is computed as

µs,t(yt)←
∑

ys

ψs × ψs,t ×
∏

r∈NG(s)\t

µr,s(ys), (3.5)

where ψs is the local potential of variable s and ψs,t is the edge potential between variable

s and t. µr,s(ys) is the message s receives from neighbor r except t. The product is taken

over messages of all neighbors r of variable s in the graph, other than t. At convergence,

the node marginals can be approximated as

p(ys) ≈
1
Zi
ψs(ys; xs) ×

∏
r∈NG(s)

µr,s(ys). (3.6)

All nodes calculate outgoing messages based on the incoming messages from their

neighbors. In a centralized implementation, this is performed iteratively at each node in a

synchronous fashion. The messages are said to converge if none of the messages in the later

successive iterations cause any changes or the changes are below a particular threshold.
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The distributed implementation of the above naive loopy belief propagation scheme

has two problems. First, all nodes need to coordinate to have synchronous execution of each

iteration of updates. Achieving synchronization is difficult in a distributed implementation.

Second, the algorithm sends all messages to the neighbors without focusing on messages

that aid in faster convergence. In a distributed setting, where bandwidth and power

consumption are often the limiting factors, updating the messages indiscriminately can be

especially costly. A paper by Elidan et al. [13] proposed an effective centralized solution

that updates messages in the order given by a lower-bound on the difference between the

current message and the previous computed message. This scheme requires implementing

a global priority queue which is difficult to implement as well as manage in a distributed

setting. In this section, we describe a simple randomized approximation of this algorithm.

Our algorithm is similar in spirit to [37], but uses a spanning tree to compute an implicit

normalization constant in the algorithm.

A simple strategy, proposed by [37] is to delay messages with smaller residuals. This

strategy can be implemented by performing a sequence of independent Bernoulli trials. At

each iteration, the message µ′s,t is transmitted with probability given by

ps,t =
∥∥∥µ′s,t − µs,t

∥∥∥ρ (3.7)

for a suitably chosen constant ρ ≥ 0 (here, µs,t is the last transmitted message). Effec-

tively, the messages with larger residuals rs,t = ‖µ′s,t − µs,t‖ will be less likely to wait for

transmission.3

The algorithm, as described so far, has a drawback. As the iterations are performed

and the messages get closer to the fixed point, the transmission probabilities
{
ps,t

}
decrease

throughout the network. Therefore, the algorithm will eventually stop making progress

and will never converge. In order to ensure convergence, we need to multiply the update

probability in Equation 3.7 with a suitably chosen normalization term λ. In a distributed

setting, we can use a spanning tree to compute the sum [27] of the norms (3.7), and

normalize the probabilities
{
ps,t

}
to some pre-determined update rate u. The normalization

3Here, it is assumed that the residual rs,t ≤ 1.
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constant is computed as:

N = (
∑
s,t

rρs,t)/u (3.8)

N is computed periodically, which ensures that the algorithm continues to make

progress. As we demonstrate in Section 3.2.2, the resulting randomized loopy belief

propagation algorithm offers substantial improvement over the naive synchronous itera-

tive algorithm.

Our Overlog implementation of the above proposed randomized scheme reuses the

spanning tree implementation of junction tree inference discussed in Section 3.1.1. We use

spanning tree to aggregate the sum of the norms and share them to calculate the normal-

ization constant in Equation 3.8. The Overlog specification of normalization calculation

is listed in Appendix B.5. Rule N updates the constant based on the received residuals.

Overlog rules for message, residual and belief calculations are similar to that of naive

loopy belief propagation. We modify rule l1 and add two predicates that read normal-

ization constant from the normalizer table and include the logic of Equation 3.7 by using

function f coinFlip that performs Bernoulli trails. For the complete Overlog specification

refer Appendix B.3, B.4.

3.2 Evaluation

In this section, we evaluate the distributed declarative implementation of the junction

tree inference and loopy belief propagation. All experiments have been performed on the

Emulab testbed [47].

The first set of experiments evaluate our declarative junction tree inference algorithm.

The goal of these experiments is threefold. First, we aim to compare the conciseness of

our declarative distributed implementation with the distributed Lisp implementation of

Paskin et al. [31]. Second, we examine the bandwidth consumption of our implementation

in case of network partitions. Third, we compare our implementation with that of Paskin

et al.’s Lisp implementation in terms of message complexity. We do not expect our overall
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performance to be as good as the hand-coded Lisp implementation, but we would like to

show that our implementation can be used for sensor calibration in sensor networks.

Our second set of experiments evaluate randomized loopy belief propagation algorithm

proposed in Section 3.1.2. Our goal for these experiments is threefold. First, we want to

verify whether randomized belief propagation converges much faster compared to naive

loopy belief propagation. Second, we want to illustrate that the convergence rate of

our randomized loopy belief propagation algorithm (Section 3.1.2) is comparable to the

centralized residual belief propagation algorithm [13]. Third, we evaluate the bandwidth

of different components of the randomized scheme and see the tradeoff between increase

in bandwidth and faster convergence.

3.2.1 Junction Tree Inference

We use the sensor calibration dataset used by Paskin et al. [31] to evaluate our declara-

tive junction tree inference algorithm with the hand-coded Lisp implementation of Paskin

et al. [31]. In our Overlog implementation, the link quality information is provided

externally rather than being estimated explicitly from the configuration messages.

In our first experiment we compare the conciseness of our declarative junction tree

implementation with the Lisp implementation. Table 3.1 illustrates that we achieve roughly

4 times reduction in terms of lines of code.

Protocol Lisp Overlog
Spanning Tree 848 lines (9452) 274 lines (2589)
Triangulation 457 lines (5812) 105 lines (1092)
Inference 574 lines (6040) 131 lines (1144)

Table 3.1. Number of lines and the program size (in gzip-bytes) of different modules in

Overlog and Lisp.

Our second experiment evaluates our implementation of junction tree inference in

terms of bandwidth consumed in maintaining the three layers: spanning tree, junction

tree (running intersection property) and inference. We emulate network dynamics by
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Figure 3.2. Distributed Junction Tree Inference evaluation: An example run for a network

with 54 nodes. Partition occurs at time 45, and the communication is restored at time 70.

Each bandwidth curve is a cumulative of the curves plotted under it.

partitioning the graph at time-step 45 and then re-connecting the partitions at time-step 70.

Partitioning of the network is performed by emulating dead links.

Figure 3.2 shows that our implementation is robust and recovers from failures involving

extreme conditions like network partitioning. The bandwidth usage peaks up to 475 KBps

in case of network partitioning. Soon after links go down or come up, communication

increases as messages are sent to recalculate the spanning tree and restore the running

intersection property. Note that the communication cost of repairing a partitioned network

is higher compared to building the initial tree or joining a partitioned network.

In Figure 3.3, we evaluate the message complexity of different components of the

architecture in [31], in the P2 and Lisp implementation respectively. Since the two codebases

use a different serialization mechanism, we show the results as a function of the total

number of tuples transmitted. We can see that the spanning tree message counts of both

implementations are comparable. The reason why our declarative implementation of
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Figure 3.3. Distributed Junction Tree Inference Message Count Comparison: The com-

munication requirements of two implementations of the architecture in [31].

junction tree and inference has higher message count is because the Lisp implementation

performs periodic updates to propagate the changes while our Overlog implementation

propagates changes as soon as they happen. Periodic updates reduce the message count

because multiple changes between each epoch are combined and optimized. Message

complexity of junction tree and inference can be reduced by adopting the periodic update

model.

Instead of implementing the periodic update model we propagate all changes as they

happen because it was more easy to implement in our declarative language, Overlog. Since

our main goal was to see whether Overlog provides a concise implementation of junction

tree inference, we did not update the implementation to incorporate periodic updates.

Although, we feel that periodic update scheme is an important aspect of the application

and should be implemented to assess the tradeoff between code size and performance.
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3.2.2 Loopy Belief Propagation

In this section, we evaluate our proposed randomized loopy belief propagation scheme

with respect to other variations of loopy belief propagation discussed in Section 3.1.2.

In order to evaluate different variations of loopy belief propagation we begin by consid-

ering random grids, parameterized by the ising model4. A random grid with NxN binary

variables is generated. An ising model is used for each edge potential where an edge has

the potential f (xi, x j) = exp(βi, j) when xi = x j, and f (xi, x j) = exp(−βi, j) when xi , x j. We

sampled the βi, j uniformly in the range [−C; C] with C = 5. Similar models have been

employed for testing loopy belief propagation algorithms in the past [13].
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Figure 3.4. The convergence of two distributed loopy BP algorithms as a function of the

bandwidth used. Both algorithms are run for a fixed number of iterations.

In our first experiment we show the comparison of the convergence of our randomized

algorithm with the distributed naive iterative loopy belief propagation. In naive loopy

belief propagation, we set the epoch of each iteration such that messages from all nodes

have been received by their neighbors. This is done to achieve parallel synchronized it-

eration at each node. We evaluate the convergence in terms of the residual between the

4Ising model has two properties: First, each vertex is assigned one of the two states (+1 or -1). Second, each
edge has an assigned constant usually written as Ji j, where i and j are the two vertices.
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current and the old message received at a node. As we can see in Figure 3.4, random-

ized belief propagation converges faster than the iterative algorithm that propagates all

messages equally. This verifies our intuition of achieving faster convergence and lower

communication cost by transmitting messages with larger residuals and normalizing the

probability of transmission to ensure convergence.

In our second experiment, we evaluate the convergence of our randomized belief

propagation algorithm with different ρ values (ρ represents the convergence factor in

Equation 3.7) and compare it with centralized residual belief propagation algorithm [13].

Figure 3.5 shows the residual as a function of the number of updates performed by the

algorithm. As seen in figure 3.5, our randomized scheme performs nearly as well as the

centralized residual algorithm by Elidan et al., in terms of convergence. We see that the

distributed algorithms converge faster as ρ is increased. This is because as ρ increases the

messages with high residuals are more likely to come first while messages with low resid-

uals are ignored. Thus, as ρ increases the algorithm behaves similarly as the centralized

residual belief propagation algorithm [13].

Figure 3.6 shows bandwidth requirements of different components of randomized be-

lief propagation compared to the synchronous belief propagation. We see that the global

coordination of the normalization constant (Equation 3.8) (achieved by spanning tree and

aggregation), required by the randomized scheme, increases the communication complex-

ity of the solution only mildly. Synchronous belief propagation has only the inference

component and this is the reason why the total communication cost of the algorithm is

equal to the inference component.

3.3 Summary

In this chapter, we presented our distributed implementation of existing inference algo-

rithms using the declarative framework. In summary, we made the following observations

from our evaluation results:
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Figure 3.5. The effect of ρ parameter in the randomized belief propagation algorithm. As ρ

increases, the algorithm converges to the centralized residual belief propagation algorithm.

• Our declarative implementation of the existing junction tree algorithm is concise

and easy to implement. Our implementation has 4 times less code compared to the

existing distributed Lisp implementation of junction tree by Paskin et al. [31].

• The Overlog declarative program for junction tree inference robustly handles extreme

conditions like network partitioning. All three layers: spanning tree, junction tree

and inference, run in parallel and get updated as links go down and come up.

• The declarative programming language, Overlog, helped us in customizing existing

algorithms and reusing code. We could easily customize the naive iterative loopy

belief propagation algorithm to add a randomized message scheduling scheme, to

achieve faster convergence and reduction in consumed bandwidth. Moreover, we
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rithm compared to naive synchronous loopy belief propagation algorithm. Both algorithms

are run until convergence.

could reuse the declarative implementation of spanning tree (used in the junction

tree inference) for aggregation to estimate the normalization constant.

• Global coordination of the normalization constant (achieved by spanning tree and

aggregation), required by the randomized scheme, increased the communication

complexity of the solution only mildly.

The observations discussed above show that declarative programming framework ac-

celerates the implementation of distributed inference algorithms by providing conciseness

of code, concentrating on the high-level concept of what has to be implemented than wor-

rying about low-level implementation, code reusability and ease of customization.

In the next chapter, we apply our declarative distributed inference architecture to a

network monitoring application for spam detection.
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Chapter 4

Collaborative Spam Filtering

Having shown that distributed implementation of existing inference algorithms can be

easily implemented using the P2 declarative programming framework, we now explore

applications of distributed inference in the context of network monitoring. We take a

centralized and offline scheme of spam detection from the work of Feamster et al. [34] and

see whether declarative programming makes it easy to build a distributed implementation

of the same.

This chapter is organized as follows. In Section 4.1, we discuss the need for collab-

orative spam filtering. Section 4.2 explains the clustering and classification scheme used

by the spam filtering application, along with the clustering algorithm chosen for our dis-

tributed implementation. We explain the architecture of our distributed implementation

in Section 4.3. We evaluate our distributed implementation with the Feamster et al. imple-

mentation [34] in Section 4.4. In the course of designing the system, we faced issues related

to choice of applicability of clustering algorithms, partitioning of data, aggregation and

scalability. We discuss these issues in Section 4.5 and propose how they may be addressed.

Section 4.6 discusses related work in the area of spam detection.
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4.1 Introduction

Today, a large fraction of spam comes from botnets, large groups of compromised ma-

chines controlled by a single entity. Spammers distribut the job of sending spam across the

compromised machines. Detecting such coordinated attacks require the ability to combine

observed data collected from multiple vantage points. This raises the need of collabora-

tive spam filtering, where multiple entities, which can be ISPs, domains or enterprises, to

collaborate in order to share their observations with each other.

We take the collaborative spam filtering [11, 5] application as a first step towards using

distributed inference for network monitoring problems. In collaborative spam filtering,

email servers aggregate received email information in order to identify machines that are

spammers. To classify a machine, one may include several sources of information including

blacklisting, local features of individual email messages and behavioral features [34] that

cluster nodes with similar sending patterns.

In collaborative spam filtering, domains wish to perform early detection of spammer

IP addresses based on the emails they receive. A single domain receives only a subset of

the spam from any single IP address. This hinders the domain from blacklisting the IP

address since its activity can be well below the threshold for triggering an alarm at any one

node [33]. Incomplete local information at a particular node raises the need for nodes to

collaborate and share their information.

A key challenge in collaborative spam filtering involves spammers changing their IP

addresses, which make blacklisting on the basis of IP address ineffective [33]. Recently,

Ramachandran et al. [34] proposed a behavioral blacklisting technique that classifies email

senders based solely on their sending behavior. For each sending IP address, the method

computes the frequency of emails sent from the IP address to a set of recipient domains.

They apply spectral clustering to identify clusters of IP addresses with a similar pattern of

targeted domains. They find that benign senders have diverse sending patterns and unlike

spammers do not form large clusters.

The SpamTracker system developed in [34] is centralized, and our aim here is to develop
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a distributed version of this system. Conveniently, clustering of sender IP addresses can

very easily be implemented by a distributed inference algorithm. Currently, our work

leverages the declarative programming environment provided by P2 to implement the

distributed implementation of SpamTracker [34]. Our implementation uses the affinity

propagation [14] clustering algorithm that is a message passing algorithm [9] and can be

implemented on a reasoning graph (Figure 2.2).

In the course of designing the system we faced issues related to choice of applicability

of clustering algorithms, partitioning of data, aggregation and scalability. We discuss these

issues in Section 4.5 and propose how they may be addressed. As a result of these issues,

we could not run large experiments even though our preliminary experimental results

indicate that our distributed affinity propagation clustering method gives similar results

to the centralized spectral clustering method used by SpamTracker [34].

4.2 Clustering and Classification

In this section we explain two phases involved in the SpamTracker implementation:

clustering and classification. We discuss clustering in Section 4.2.1 and classification in

Section 4.2.2. These phases are similar to the SpamTracker implementation [34], except

that we use a different clustering algorithm called affinity propagation. We give a brief

overview of affinity propagation in Section 4.2.3.

4.2.1 Clustering

In SpamTracker [34] the clustering algorithm is used for clustering sender IP addresses

based on their sending pattern, and obtaining the sending pattern of spammers. We

use a different clustering algorithm than used by SpamTracker. Instead of using spectral

clustering, we use affinity propagation [14] for clustering IP addresses.

Affinity propagation by Frey et al. [14] is a message passing algorithm that clusters

similar data points. The algorithm applies the max-product algorithm (a variant of the
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sum-product algorithm used in belief propagation) on a graph, and can be easily modeled

on the reasoning graph. It computes a set of exemplars that represent the center of each

cluster.

The clustering algorithm is used to cluster spammers that have similar sending behav-

ior, where the behavior is determined by finding the domains a spammer targets. Email

contents are not taken into consideration. To gather data concerning a spammer’s sending

behavior, we collect data from over two hundred distinct email domains. In the clustering

phase, we generate a matrix N nxd, where n is the number of IP addresses that sent email

to any of d domains within any of t particular time windows. M(i, j, k) denotes the number

of times IP address i sent email to domain j in time slot k.

N(i, j)←
t∑

k=1

M(i, j, k) (4.1)

In order to get the similarity matrix S nxn, which is used in the affinity propagation

algorithm, the dot product between two IP addresses is calculated. When calculating the

similarity that data point i shares with data point j, the dot product is normalized.

S(i, j)←
N(i, k) •N( j, k)′∑d

k=1 N( j, k)
(4.2)

The clusters generated in the clustering phase do not have common IP addresses

between them. Each cluster represents a spammer traffic pattern. The cluster center is

computed by averaging the traffic pattern of the IP addresses present in the cluster. The

cluster average is a 1xd vector.

cavg( j)←

∑
|C|
i=1 Nc(i, j)

|C|
(4.3)

4.2.2 Classification

In the classification phase, the sending pattern of an IP address T, a 1xd vector, is

determined, and then a score is calculated to determine the similarity of its traffic pattern

with one of the clusters. This score is the maximum of the normalized dot product between
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Figure 4.1. Count of domains that a benign IP address sent email to in a duration of 6

hours

the sending pattern of the IP address being tested and the set of cluster averages found in

Equation 4.3.

Score← max
1≤i≤|C|

T(1, j) • cavg(i, j)′∑d
j=1 cavg(i, j)′

(4.4)

Feamster et al. suggest in SpamTracker [34] that, since we are attempting to determine

the sending patterns of spammers across multiple domains, we should ignore clusters that

are dominated by very few domains. Also, spammers that target few domains will give

high scores to benign senders since benign senders tend to send emails to small number of

domains in a short duration (Figure 4.1). We take the same approach and ignore clusters

that are spread across very few domains.

A single round of classification involves classifying the set of IP addresses that send

email within a period of six hour based on the clusters found in the preceding six hour

time interval.
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4.2.3 Affinity Propagation

Affinity propagation is a message passing algorithm that clusters similar data points.

The algorithm takes as input a similarity matrix S of nxn size for n data points (Equation 4.2).

S(i, j) represents the similarity data point i has with data point j. The similarity matrix does

not need to be symmetric, that is the similarity data point j has with data point i does not

need to be the same as data point i’s similarity with data point j. Data point k’s similarity

with itself is referred to as its preference.

Preference of data point k represents a priori suitability of it being an exemplar. In

affinity propagation preference values play an important role in determining the number

of clusters generated. Thus, instead of setting all preferences to a value of one, all preference

values are set to a common value. Good initial choices include setting preference of all data

points to the minimum or median similarity. For our experiments, the preferences were set

to the median similarity of a given IP address.

There are two kind of messages that are sent between data points: Availability messages

a(i,k) are sent from candidate exemplars k (data points) to other data points i, indicating

how appropriate that candidate would be as an exemplar and Responsibility messages r(i,k)

are sent from data points k to candidate exemplars i (data points), signaling how well-suited

the data point k is to serve as the exemplar for point i.

Both these messages are updated iteratively based on each others value. First iteration

starts with initializing availability messages a(i,k) to zero and calculating responsibility message

r(i,k). The responsibility message r(i,k) represents how well suited data point k is as the

exemplar of i.

r(i, k)← s(i, k) − max
k′s.t.k′,k

{a(i, k′) + s(i, k′)} (4.5)

Availability message a(i,k) is updated based on the responsibility messages calculated prior

in Equation 4.5. Availability messages are sent from candidate exemplar k to data point i

suggesting whether k will be a good exemplar for i.

a(i, k)← min
{
0, r(k, k) +

∑
i′s.t.i′<{i,k}max{0, r(i′, k)}

}
(4.6)
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Self-availability is updated using:

a(k, k)←
∑

i′s.t.i′,k

max{0, r(i′, k)} (4.7)

The next iteration uses the new value of availability messages generated in Equation 4.6

to update responsibility messages in Equation 4.5. This procedure is continued iteratively:

responsibilities are first updated given the availabilities (these are initially set to zero), avail-

abilities are updated given the newly calculated responsibilities, and finally the exemplars

for each iteration are calculated.

At any point in time, the exemplar for data point i can be found by combining the

responsibilities and availabilities.

exemplar(i)← argmax
k
{a(i, k) + r(i, k)} (4.8)

Data points that have no similarity (a similarity of zero in our experiments) do not need

to send messages between them. If data points do not share any similarity, these points

should never be exemplars for each other.

Once the exemplars have converged, the affinity propagation algorithm terminates. As

responsibilities and availabilities for each data point are updated, oscillations can occur.

To prevent oscillations, we use a damping factor, λ, with a value between 0 and 1.

µnew = λ ∗ µold + (1 − λ) ∗ (µnew) (4.9)

whereby each message is set to λ times it previous value plus 1 minus λ times its new

value. Here µ is a(i,k) or r(i,k).

4.3 Architecture

In this section, we explain the architecture of our distributed implementation of Spam-

Tracker [34]. This architecture can be used by existing domain mail servers to perform

collaborative spam filtering. Figure 4.2 provides a high level overview of the architecture
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along with the overlay network topology that is used for sharing information. The archi-

tecture diagram shows a logical separation between super-nodes that are connected in a

peer-to-peer fashion to aggregate information for clustering. The super-nodes form the

backend of the system. We can have settings where domain mail servers or nodes at an

enterprise which have relationship with the domains, can act as super nodes. The super-

nodes collectively aggregate the information about the traffic of spammers and perform

clustering. The cluster information is sent back to the domain mail servers. Classification

of new received emails is performed locally at the domain mail servers.

Currently we have implemented the backend of the system that has a set of super-

nodes running the clustering algorithm in a distributed fashion. Section 4.3.1 explains

the backend architecture and gives details on how clustering is performed in the system.

In Section 4.3.2 we explain how the domain mail servers can use the cluster information

to classify spammers. The distributed implementation of the backend is discussed in

section 4.3.3.

4.3.1 Clustering

Our implementation uses affinity propagation [14] to calculate clusters that are refined

iteratively by performing clustering over the information periodically collected from do-

main mail servers. This information for clustering includes details regarding the frequency

of emails a domain rejects from spammers. This can be obtained from domain mail servers

that use conventional filters to filter spam [41] . The list can also be enriched from user

feedback on spam emails.

We use the dataset that SpamTracker [34] used for clustering, which contains the in-

formation regarding the frequency of emails from spammers that a domain receives. The

dataset is from an email hosting provider’s decisions about early mail rejects from hundreds

of domains. This data contains the received time of a given email, anonymized sender of

the email, accept or reject decision and the targeted domain, and lasts for a period of one

month, from March 1st 2007 to March 31st 2007.
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Figure 4.2. High level overview of the Distributed Collaborative Spam Detection System

Architecture. The compression block is not implemented currently.

The spammer’s activity at a particular domain is sent to a super-node that is geograph-

ically close to the domain mail server. We have chosen the Chord lookup protocol[45]

to locate the super-node that corresponds to the location where the data of the sender IP

address is aggregated. Chord maintains the nodes in a ring-based network and uses the

ring geometry for efficient routing. The super-nodes in Chord aggregate the sender IP ad-

dress activity across all domains. The aggregated information for each sender IP address

represents the row in matrix N (Equation 4.1) for the IP address. Section 4.5.1 discusses
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details on how efficient aggregation can be accomplished with domain mail servers acting

as super-nodes connected in a peer-to-peer network.

After the aggregation has been performed, the similarity of a sender IP address’s send-

ing pattern with other IP address is calculated (Equation 4.2). This similarity information

forms the basis for clustering. The clusters, calculated by running distributed affinity prop-

agation, are sent back to the domain mail servers, communicating the sending patterns of

spammers.

The clusters are refined periodically after a time interval 4t. We choose 4t to be six

hours (the same value as chosen in SpamTracker [34]) but this can be made configurable

and changed randomly to overcome evasion 1. Email rejection information for t + 4t is

collected and sent to the super-nodes for updating the clusters.

4.3.2 Classification

Whenever a domain mail server receives an email it creates or appends the sending

information for the IP address to its own logs. The server calculates in real-time the score

of the IP address’ sending pattern with respect to the recent cluster information stored

locally. The magnitude of the score S computed using Equation 4.4 determines how closely

the sending pattern of the IP address matches a spammer’s sending pattern. Each domain

mail server can incorporate its own threshold value for the score and decide actions to be

performed against emails that have a higher score than the threshold.

4.3.3 P2 Distributed Implementation

Our work involves implementation of the backend of the system described in Sec-

tion 4.3. The backend has a set of super-nodes running the affinity propagation clustering

algorithm in a distributed fashion. Affinity propagation is implemented in Overlog and is

run on all super-nodes. Refer to Appendix C for the detailed Overlog.

Each super-node stores information regarding the similarity of a set of IP addresses.
1Refer to Section 4.5 for further discussion on evasion
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The similarity is calculated using Equation 4.2. These super-nodes send messages, locally

or to remote nodes that have IP addresses with similar sending behavior to the local IP

addresses.

To reduce the amount of information aggregated at the super-nodes, we took a greedy

approach for performing cluster compression. This approach reduces the number of IP

addresses that have to be clustered and thus reduces the computation performed for

clustering. Each row in the complete matrix N (Equation 4.1) is classified with previously

computed cluster averages. Rows having high scores (Equation 4.4) are removed from the

matrix and their sending information is incorporated into the previous clusters. This is

computed by averaging the new rows and the previous clusters (Equation 4.3) to get the

new updated clusters. A new matrix is formed, which includes the new clusters along with

a mutually exclusive random sample of IP addresses that sent email during this same 4t

interval. This mxd matrix (subset of nxd matrix) is used for affinity propagation as before.

4.4 Evaluation

In this section, we evaluate our distributed declarative implementation of SpamTracker

[34]. All experiments have been performed on the Emulab testbed [47].

Our main goal here is to examine the conciseness of our distributed clustering imple-

mentation as well as verify whether we get similar score distribution (for accepted and

rejected IP addresses) as the SpamTracker implementation of Feamster et al. [34] after

performing classification (Equation 4.4). This will provide an initial evidence that our

implementation performs similar to the centralized implementation of Feamster et al.

Our second goal is to evaluate the scalability of our distributed implementation. In

order to make the distributed implementation practical it is required to have low band-

width consumption. Due to the limitations of the P2 prototype and issues in selecting

the appropriate clustering algorithm for distributed settings, we are partially successful in

42



achieving our second goal. We discuss issues related to the algorithm selected in Section 4.5

and present how these may be addressed to make the application more scalable.

Due to the limitations mentioned above, we could not perform large experiments. In

order to further verify that affinity propagation performs as well as spectral clustering we

run the centralized implementation of affinity propagation (implemented in MATLAB)2

on the SpamTracker data [34] from March 1st 2007 to March 15st 2007. We then do classi-

fication on the next 15 days data based on the clusters from affinity propagation to find

the percentage of new detected spammers. This exercise helps us to check whether affin-

ity propagation is able to detect spammers similar to the spectral clustering algorithm in

SpamTracker [34].

For all experiments the dataset used to determine the sending pattern of different IP

addresses is the same dataset as used by the SpamTracker application [34]. This data

contains the received time and anonymized sender of a given email, its accept or reject

decision and the targeted domain. This data spans a period of one month from March

1st 2007 to March 31st 2007. The sender IP addresses associated with a rejected email are

considered spammers while accepted email sender IP addresses are considered benign. In

this dataset we see some domains receive less emails in the entire month of March. We

removed domains that receive fewer than fifty emails in the entire month leaving us with

just over two hundred domains.

Section 4.4.1 explains the experiment evaluating the score distribution. In Section 4.4.2

we evaluate the affinity propagation algorithm to see whether it can perform as well as the

spectral clustering algorithm in terms of detecting spammers.

4.4.1 Score Distribution Experiment

The first experiment evaluates our distributed implementation by running P2 on mul-

tiple Emulab [47] nodes. The Emulab nodes emulate super-nodes in our architecture

(Figure 4.2). Currently, the distribution of IP addresses across super-nodes is provided

2This implementation is free to view and download at http://www.psi.toronto.edu/afinitypropagation
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externally rather than assigning a key to each IP address and using Chord lookup protocol

[45] to locate the super-node that corresponds to the location where the data of the sender

IP address is aggregated. Similarly, the similarity calculations are calculated externally and

provided to the super-nodes.

Due to a bug in P2 as well as the scalability issues discussed in Section 4.5, we were

not able to perform experiments on more than 5 nodes that have a total of 30 IP addresses

to cluster. The bug was due to non-optimized implementation of aggregation that became

a bottleneck for our implementation. We discuss this issue in detail in Section 4.5.3 and

propose a fix as well.

In order to overcome this issue, we use the random sampling and greedy approach of

Section 4.3.3 for clustering a subset of the data in a six hour interval. Random sampling

is used to get random samples of 30 IP addresses from a six hour dataset. The sampled

IP addresses are clustered and the greedy approach is used to remove non-clustered IP

addresses in the 6 hour dataset that are similar to the generated clusters (they give high

scores when classified with the clusters). We incorporate these IP addresses in the cluster

and update the cluster average. The cluster averages are used along with the next random

sample to refine the clusters. These steps are performed iteratively to cluster approximately

3500 spammers out of ∼10K IP addresses in the six hour interval.

We picked up the complete N matrix from the next six hour interval and classified (4.4)

it against the clusters calculated from the subset of the data in the previous six hour interval.

Figure 4.3(a) shows the distribution of scores for both, the list of accepted and rejected IP

addresses in the next six hour interval. We also performed the same experiment with

the centralized implementation of affinity propagation and instead of clustering the same

subset, we clustered all the IP addresses in the previous six hours. The score distribution

of the centralized experiment is shown in figure 4.3(b).
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Figure 4.3. The distribution of scores for distributed and centralized experiment. The

distributed experiment uses clusters generated from a subset (3500 IP addresses out of

∼10K) of the 6 hour data while the centralized experiment uses clusters generated from

entire data (∼10K IP addresses) in the six hour time. The blue solid line represents the

accepted IP addresses and the green dashed line represents the rejected IP addresses.
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We observe from the graph in Figure 4.3 that the magnitude of the scores in the dis-

tributed experiment (Figure 4.3(a)) is smaller in magnitude compared to the scores in the

centralized experiment (Figure 4.3(b)). This is because the cluster information in the dis-

tributed experiment is not as rich as in the centralized experimental run (due to small

number of IP addresses being clustered in the distributed experiments) and thus have

small weight compared to the centralized experiment cluster (that include information of

all the IP addresses).

In spite of different score magnitudes, the score distribution are similar in both the

experiments and to the results in [34]. The similarity is in terms of the Rejected IP addresses

having larger score magnitude compared to the Accepted IP addresses. This is because

rejected IP addresses have similar sending pattern to the sending pattern of the spammer

IP addresses that were clustered, while the accepted IP addresses sending pattern do not

match with that of the clustered spammers.

4.4.2 Spam Detection Experiment

Since we use a different clustering algorithm than that used by Feamster et al. [34],

we need to verify whether our distributed implementation can detect new spammers. To

perform this evaluation, we run a complete experiment in a centralized manner to avoid

the performance and scalability issue. In this experiment, we first run a single round of

clustering for a six hour time interval. We combined the cluster averages, which were

generated from the six hour interval, with the next six hours to generate a new set of

clusters using affinity propagation. This is repeated until we covered a time period of 15

days, from March 1st 2007 through March 15th 2007.

We then classified the sending pattern of all the IP addresses from March 16th 2007

through March 31st 2007, using the generated clusters. Similar to the implementation of

Feamster et al. [34], we classify all accepted IP addresses with a score of equal to or more

than five as spammers. Figure 4.3(b) shows that a lot of IP addresses get a score above this

threshold.
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Feamster et al. use a blacklist to verify whether the accepted IP addresses that were

classified as spammers (because they received score above five) were really spammers.

Since we do not have access to an IP blacklist, we need a scheme to determine if an

accepted IP address that gets a high score in our implementation, is actually a spammer.

On examining the dataset, we saw that quite a few of the IP addresses that were accepted

between March 1st 2007 to March 15th 2007, were rejected between March 16th 2007 to

March 31st 2007. Intuitively, this can happen because the email from the spammer went

undetected and was detected later because it got added to a blacklist. Morever, Feamter et

al. have discussed in [34] that the data provider estimates that as much as 15% of accepted

email is spam.

We use the technique discussed above to check whether we detected any new spam-

mers. Our results indicate that almost 30% of the accepted IP addresses that get scores of

magnitude greater than five become rejected later in the month. This shows that affinity

propagation works well and is able to cluster spammer sending patterns that aids in detect-

ing new spammers. We cannot compare our results with the centralized implementation

of Feamster et al. because they use an IP blacklist to find the percentage of new spammers

detected.

It is not possible to estimate false positives or negatives because of no ground truth.

It can be the case that the rejected IP addresses may have been misclassified by the email

provider of the data. Also, an IP address is not a permanent identifier because many

machines obtain IP addresses from dynamic address pools. This can cause aliasing issue

where a single machine may be associated with different IP addresses over time or a single

IP address may represent multiple machines.

4.5 Issues and Future Work

In this section we present the issues related to our distributed implementation and how

these issues may be resolved.
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The current implementation and design of our system shows that a declarative frame-

work can be used to implement algorithms that perform distributed spam filtering. As

we see in the evaluation, the results of the distributed implementation of SpamTracker [34]

using P2 show signs of detecting spam and give a similar score distribution to that of the

Feamster et al. SpamTracker implementation. Even though the system proves to have the

capability of being used for spam detection, there are issues that need to be resolved to

make it scalable and practical. We discuss these issues in the following sections.

4.5.1 Clustering Sender Matrix

The Spamtracker system [34] clusters sender IP addresses to find spammer sending pat-

terns. The sending pattern of a sender IP is spread across multiple domain mail servers. In

terms of the reasoning graph, each random variable in the graphical model is the sending

pattern associated with a sender IP and is spread across multiple nodes (domains). We

need to aggregate the value of each random variable, which in turn leads to an extra com-

munication overhead and makes the application less scalable. We discuss some techniques

that can be used to address this issue in Section 5.2.

4.5.2 Algorithm Selection

The affinity propagation algorithm fits very well in our distributed inference model

because it is a message passing algorithm and can be easily modeled on the reasoning graph.

We demonstrate a concise declarative implementation of the algorithm using Overlog 3.

Even though we implemented the algorithm easily in Overlog and it gives similar

results as the spectral clustering algorithm of SpamTracker [34], there lies an inherent

drawback that makes it unsuitable for distributed systems with large data. As mentioned

before in Section 4.2.3, the variables that are clustered using affinity propagation are sender

IP addresses. The algorithm iteratively sends messages between each variable until the

clusters are determined. Thus, in case of n variables (sender IP addresses) we require n2

3Refer Appendix C for Overlog implementation of affinity propagation
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communication and this becomes a major performance concern when n is large. The spam

dataset we used had roughly ∼10K sender IP addresses in a 6 hour time interval.

4.5.3 Aggregation Optimization

Another issue that our implementation faced was the non-optimized implementation

of aggregation. Current implementation of aggregation in P2 scans all the tuples in a table

to calculate the result. This computation is performed every time an aggregation query

is fired, even when the table has not changed. One optimization that can be done is to

store the aggregation results in a cache and mark them dirty if the table gets updated.

In case of no changes the aggregation results can be picked up from the cache instead of

performing aggregation again. This approach can be written as a set of rules in Overlog.

Cache updates can be done eagerly or lazily. The optimization we discussed is a case of

materialized view maintenance [4, 17] in database terms, but the presence of recursive rules

makes the implementation a little complicated.

4.6 Related Work

Multiple applications can benefit from our distributed inference framework. In this

thesis, we considered a spam detection application that uses behavioral blacklisting.

Content-based or IP-based blacklisting techniques are traditional approaches used for

spam filtering. Content-based filtering techniques evaluate the content of the message to

classify spam. The techniques tend to either use Bayesian filtering techniques to classify

email as spam [15, 28, 36] or use a signature or checksum [6] of the message to compare

it against a spam database on the Internet. Both these techniques require training data

that captures the contents in the spam. Moreover, spammers dynamically add textual

polymorphism to their spam to evade such filters.

Blacklists [43, 42, 3, 19] contain IP addresses that are considered to be associated

with spammers. Many spam filters [41, 2] use these lists along with other content-based
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schemes. These lists can be static or dynamic and are stored in databases that can be

queried [19]. Reactive blacklists try to update the list based on tracking whether an IP

address is associated with a spammer and update the list as the IP addresses are altered

[43, 42, 3].

Pure content-based filtering techniques have become ineffective because spammers

change email content frequently by using images in the email, or by sending well crafted

emails that affect the Bayesian learner or classifier [48, 30]. IP address-based blacklists work

for fixed IP addresses, but become outdated quickly, requiring frequent updates. These

issues have led to detecting spam based on an IP address’ sending or traffic pattern [34, 44].

Ramachandran et al. argues that spammers do not change their sending pattern frequently,

thus making it efficient to detect them based on their sending behavior [34]. The sending

behavior of a spammer is determined by the frequency of emails sent by the spammer to

each domain. A similar concept has been used in SpamHINTS [44, 7, 8]. SpamHINTS

uses heuristics related to Simple Mail Transfer Protocol (SMTP) sessions of a sender. These

include measuring delivery failures and analyzing delivery failure messages.

Characterization studies [33] have observed that the local view of malicious spamming

activity remains undetected due to the low volume of activity. This raises the need to

aggregate spammers’ activity across domains. A popular approach uses clustering to

identify groups of spam messages or hosts. Li et al. cluster spammers based on the

URL present in the emails and find huge clusters of spammers having the same URL

[23]. The method proposed by Anderson et al. identifies clusters of web servers that host

graphically similar websites linked from the messages [1]. The graphic similarity between

websites is found using a technique called image shingling. This method is used to find web

servers hosting phishing websites. Both of these methods use email contents for clustering.

Clustering has also been used by Ramachandran et al. [34] to identify spammers based on

their sending pattern.

Most of the approaches discussed above [34, 23, 1] are centralized and exhibit dis-

advantages such as scalability and single point of failure. The schemes established by

Damiani et al. and Brodsky outline a system that collaboratively shares information to
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detect spammers [11, 5] . Damiani et al. propose comparing incoming messages to known

spam messages classified by an automatic mechanism or by final recipients [11]. Tech-

niques like message digests, URLs in the email and originating mail servers can be used

for comparison. Brodsky et al. present an approach that counts the quantity of emails to

determine whether the emails were sent from spamming bots [5].

4.7 Summary

In this chapter, we took spam detection as an application of distributed inference. We

picked the centralized and offline scheme of spam detection from the work of Feamster

et al. [34] to see whether declarative programming makes it easy to build a distributed

implementation of the same. In summary, we made the following observations from this

exercise:

• We implemented a distributed version of the affinity propagation algorithm for clus-

tering the sending pattern of spammers. Our declarative implementation of the

algorithm is concise, with just 14 rules in Overlog4.

• We were able show that our distributed implementation gave similar score distribu-

tion as the centralized implementation of Feamster et al. and was able to detect spam-

mers, although our implementation is less scalable partly due to the non-optimized

implementation of aggregation in the P2 prototype, and partly because affinity prop-

agation does not scale in communication complexity.

Lessons learned from our first attempt towards using distributed inference for collab-

orative spam filtering include exploiting natural data partitioning to reduce aggregation,

selecting inference algorithms that have less communication costs and sharing summaries

instead of data.

4The Overlog code is listed in Appendix C
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Chapter 5

Discussion

In this chapter we present the contributions made in this thesis and also discuss future

work in terms of applying distributed inference for scalable collaborative spam detection.

5.1 Contribution

Our work on the declarative implementation of distributed inference has two high-

level goals: First, through the use of a declarative language we aim to greatly simplify

the process of specifying, implementing and customizing distributed inference algorithms.

Second, we aim to provide ease of development of distributed inference techniques for

network monitoring problems.

We summarize the contributions of our declarative framework for distributed inference

as follows:

1. We define a layered graph architecture that uses a combination of overlays and

declarative programming [25] to design distributed inference algorithms. This ar-

chitecture is used to implement a set of existing inference algorithms like the Junction

Tree Inference, Loopy Belief Propagation and Affinity Propagation in a distributed

fashion. The declarative language Overlog aided in concise implementation of these

algorithms often resulting in 4 times savings in code sizes. In addition to conciseness,
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it also helped in customizing existing algorithms for example, we easily customized

the loopy belief propagation algorithm to introduce randomized message scheduling

scheme for faster convergence.

2. Our first step towards applying distributed inference on a real-world problem in-

volved implementing a declarative version of the sensor calibration problem in sen-

sor networks by Paskin et al. [31]. We easily implemented the two graphs: spanning

tree and junction tree, using our proposed graph architecture (Figure 2.1) for dis-

tributed inference. Our declarative implementation has 4 times less code than the

Lisp implementation of Paskin et al.

3. In order to evaluate the usefulness of distributed inference we applied it to a spam

detection application. Overlog aided in a concise implementation of the affinity

propagation clustering algorithm. This algorithm was used for clustering spammers

with similar behavior. This was our first step towards evaluating the practicality of

distributed inference. We were partly successful on this front since we could show

that our implementation performed similar to the centralized implementation of

Feamster et al. [34] and was able to detect spammers. Some major issues that need to

be resolved include: selection of an inference algorithm that has less communication

overhead and exploiting natural partitioning of data. We discuss future work in the

direction of building a scalable spam detection system in the next section.

5.2 Future Directions

We believe that the distributed inference framework proposed in this thesis can have

an impact in multiple applications, one of them being network monitoring. We applied

our declarative distributed inference architecture to two network monitoring applications:

sensor calibration in sensor networks [31] and behavioral spam detection [34]. This thesis is

a first step towards building a system for distributed inference using declarative networking

and applying it to network monitoring problems. In general we are optimistic that this

framework can provide a basic tool that a diverse set of applications can take benefit from.
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As we discussed in Section 4.5.1, our distributed implementation of the behavioral

spam detection application [34] had random variables (sending pattern of a sender IP)

spread across nodes (domain mail servers) in the network. As a result of this we needed

to collectively aggregate the value of each random variable from multiple domains, which

in turn lead to an extra communication overhead and made the application less scalable.

In the simplest case, distributed inference should be implemented in a context where

each random variable is only observed at a single node. In this case we avoid the ag-

gregation overhead. Our declarative implementation of the sensor networks application

discussed in Section 3.1.1 had each random variable (sensor measurement) observed at a

single node (sensor nodes) in the network. Thus, the application did not have the commu-

nication overhead of aggregating the observed random variables and was scalable enough

to perform as well as the Lisp implementation of Paskin et al.

Here we discuss few approaches that can be investigated in the future to reduce or

avoid the communication overhead associated with aggregating random variables:

1. Minimizing communication: Temporal compression [40, 18] heuristics can be used to

reduce the amount of information that has to be shared for computing each random

variable after a time interval 4t. Temporal compression involves sharing informa-

tion related to a variable only if its value at each domain changes beyond a certain

threshold.

2. Active learning: Active learning is a machine learning technique that reduces the

number of random variables (that are labelled in our case as spam or non-spam)

required for training a good classifier. This technique has a natural application in

spam detection since it picks important labeled information to build an effective

classifier. Active machine learning has been used in the past for spam filtering [39].

In our distributed SpamTracker implementation, active learning may help in reduc-

ing the communication costs incurred in computing the random variables by only

aggregating the more important ones.

3. Hierarchical clustering: Instead of computing the random variables and then per-
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forming clustering, we can take a hierarchical approach. As mentioned in Sec-

tion 4.2.1, our data is a matrix N nxd, where n are the random variables (sender

IPs) and d are the nodes (domain mail servers) in the network. Each domain mail

server d observes a column of the matrix N, which means that the data is partitioned

vertically. Hierarchical clustering can be used to generate clusters from these vertical

partitions (a column of the matrix N) residing locally at each domain. These local

clusters from each domain can be combined to get global clusters. Johnson et al. [21]

have proposed hierarchical clustering for clustering vertically partitioned data.

4. Different graphical model: We can use a different graphical model where each ran-

dom variable is only observed at a single node. In this case we incur communication

costs for performing inference and avoid the aggregation overhead. In the context of

SpamTracker [34], we need to identify locally observed features (random variables)

associated with emails received at each domain. Prof. Feamster and his students

have been investigating ideas to look at the local information associated with an

email a domain receives from a sender. This information can be: geodesic distance

between the sender and receiver, AS number of sender, status of the sender’s email

service ports and the received time of the email. Distributed inference techniques

can be used for designing algorithms that can run locally at each domain and can

calculate an approximate summary of the locally observed features, which can then

be combined to reach global conclusions.

5.3 Closing

The distributed nature of automatically-generated information is present both in the

physical world and in computer networks. We believe that inference techniques can be

used to deal with locally observed information and can be used to assemble them to

reach global conclusions. This thesis uses a declarative language that can greatly simplify

the process of specifying, implementing and deploying distributed inference algorithms.

We demonstrate that the Overlog implementations provide a natural and compact way of
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expressing a variety of well known inference algorithms. We take a first step towards using

distributed inference techniques for spam detection. Even though our results are mixed, we

believe that declarative scalable spam detection can be designed with less communication

intensive inference algorithms and exploitation of the natural partitioning of data.
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Appendix A

Junction Tree Inference

Here we provide the full Overlog specification for junction tree inference. The rules
for the running intersection property are described in Figure A.1 while the inference rules
are present in Figure A.2. The Overlog for spanning tree (used by junction tree) is in
Figure A.3, A.4. For a detailed explanation of the distributed spanning tree algorithm
please refer [31]. All the base relations in the Overlogs have been highlighted in italic font.
The three layers: spanning tree, running intersection property (junction tree) and inference
work together and get updated in case of node/link failures and additions.

As per Equation 3.2, Junction Tree Inference message computation includes two factors:
local potential and incoming message factors. The base relations that represent these factors
are: localFactor represents local potentialψCi and incoming represents the received messages
µki.

Functions f product and f marginal encapsulate the operations to be performed for gen-
erating messages µi j.
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jtUpdate(@Node, Time) :-

. periodic(@Node, E, JT EPOCH),

. Time := f timerElapsed().

jtNbrUpdate(@Node, Nbr) :-

. jtUpdate(@Node),

. edge(@Node, Nbr).

/* Incoming message. The message is deleted when the edge gets deleted. */

R1: reachable(@Node, Nbr, Vars) :-
. localVars(@Node, Vars),

. edge(@Node, Nbr).

/* Union of incoming reachvar message. Localvars are included*/

R2: reachvars(@Target, Node, a UNION<Vars>) :-
. jtNbrUpdate(@Node, Target),

. reachable(@Node, Nbr, Vars),

. Nbr != Target.

/* Compute the clique at each node. */

C1: cliqueRIP(@Node, a UNION<Vars>) :-
. jtUpdate(@Node),

. reachvars(@Node, Nbr1, Vars1),

. reachvars(@Node, Nbr2, Vars2),

. Nbr1 != Nbr2,

. Vars := Vars1 & Vars2.

C2: clique(@Node, Vars) :-
. cliqueRIP(@Node, RipVars),

. localVars(@Node, LocalVars),

. Vars := RipVars | LocalVars.

/* Compute the separator. */

separator(@Node, Nbr, Vars) :-

. reachable(@Node, Nbr, NbrVars),

. clique(@Node, MyVars),

. Node != Nbr,

. Vars := MyVars & NbrVars.

Figure A.1. Overlog for Running Intersection Property.
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/************************************

One round of updates

************************************/

m1: jtinfUpdate(@Node, Time) :-

. periodic(@Node, E, JTINF EPOCH),

. Time := f timerElapsed(),

. incoming(@Node, Node, ). /* Each node must have a local factor. */

m2: nbrUpdate(@Node, Nbr) :-

. jtinfUpdate(@Node, ),

. edge(@Node, Nbr).

/* Update the separator set. */

m3: separatorSet(@Node, Nbr, a mkList<Var>) :-

. nbrUpdate(@Node, Nbr),

. separator(@Node, Nbr, Var).

m4: incoming(@Node, Node, Factor) :-

. localFactor(@Node, Factor).

/* Calculate the factors whose product forms the messge. */

m5: msgFactors(@Node, TargetNbr, a mkList<F>) :-

. nbrUpdate(@Node, TargetNbr),

. incoming(@Node, Nbr, F), /* includes the local factor */

. Nbr != TargetNbr.

/* Compute the message. */

m6: message(@Nbr, Node, NewF) :-

. msgFactors(@Node, Nbr, MessageFactors),

. separatorSet(@Node, Nbr, Retain),

. FProd := f product(MessageFactors),

. NewF := f marginal(FProd, Retain).

/* The incoming message. Message is deleted on edge deletion*/

m7: incoming(@Node, Nbr, Factor) :-

. message(@Node, Nbr, Factor),

. edge(@Node, Nbr).

/*********************************

Calculate beliefs

*********************************/

m8: beliefFactors(@Node, a mkList<Factor>) :-

. jtinfUpdate(@Node, Time),

. incoming(@Node, , Factor).

m9: belief(@Node, Factor) :-

. beliefFactors(@Node, BeliefFactors),

. Factor := f product(BeliefFactors).

m10: factorCount(@Node, Count) :-

. beliefFactors(@Node, Factors),

. Count := f size(Factors).

Figure A.2. Overlog for Junction Tree Inference.
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/* Update each node’s own root pulse time. */

p1: pulse(@Node, MYID, Time) :-

. periodic(@Node, E, ROUTING EPOCH),

. Time := f timerElapsed().

/* Insert the default pulse for a root we have never heard. */

p2: pulse(@Node, RootId, Pulse) :-

. config(@Node, , , RootId, Pulse),

. notin pulse(@Node, RootId, ).

/* Update the pulse for the current parent. */

p3: pulse(@Node, RootId, Pulse) :-

. config(@Node, Nbr, , RootId, Pulse),

. parent(@Node, Nbr).

/* Update the root for the current parent. */

root(@Node, RootId) :-

. config(@Node, Nbr, , RootId, Pulse),

. parent(@Node, Nbr).

/***********************************************************************************

Update the internal state and configurations by selecting the new best parent.

************************************************************************************/

/* Run a single update. */

r1: updateparent(@Node) :-

. periodic(@Node, E, ROUTING EPOCH).

/* The cost of changing a parent. */

r2: newparent(@Node, a max<InvCostParent>) :-

. updateparent(@Node),

. config(@Node, Nbr, NbrParent, NbrRootId, NbrPulse),

. pulse(@Node, NbrRootId, OldPulse),

. parent(@Node, OldParent),

. root(@Node, OldRootId),

. NbrRootId <= OldRootId, /* Neighbor has a better root */

. Nbr != OldParent, /* Neighbor is not already my parent */

. NbrPulse > OldPulse, /* Neighbor is not my descendant. */

. NbrParent != Node, /* Neighbor is not my child: avoid cycles */

. link(@Node, Nbr, , PReceive),

. Cost := 1.0 / PReceive + ROUTING SWITCH COST,

. InvCostParent := f cons(1.0 - Cost, Nbr).

/* The cost of keeping the parent */

r3: newOldparent(@Node, NewParent, a max<InvCostParent>) :-

. newparent(@Node, NewParent),

. config(@Node, Nbr, NbrParent, NbrRootId, NbrPulse),

. parent(@Node, Nbr),

. NbrRootId < MYID,

. NbrParent != Node,

. link(@Node, Nbr, , PReceive),

. Cost := 1.0 / PReceive,

. InvCostParent := f cons(1.0 - Cost, Nbr).

Figure A.3. Spanning Tree Overlog (Part I).
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/* Local node is the root since no parent has a lower root. */

r4: bestparent(@Node, Node) :-

. newOldparent(@Node, NewParent, OldParent),

. f size(NewParent) == 0,

. f size(OldParent) == 0.

/* Select the best parent and update parent, root and pulse. */

r5: bestparent(@Node, Parent) :-

. newOldparent(@Node, NewParent, OldParent),

. CostParent := f max(NewParent, OldParent),

. f size(CostParent) > 0,

. Parent := f last(CostParent).

bestParentInfo(@Node, Parent, RootId, Pulse) :-

. bestparent(@Node, Parent),

. config(@Node, Parent, , RootId, Pulse).

bestParentInfo(@Node, Node, MYID, Pulse) :-

. bestparent(@Node, Parent),

. Parent == Node,

. pulse(@Node, MYID, Pulse).

parent(@Node, Parent) :-

. bestParentInfo(@Node, Parent, , ).

root(@Node, RootId) :-

. bestParentInfo(@Node, , RootId, ).

p4: pulse(@Node, RootId, Pulse) :-

. bestParentInfo(@Node, , RootId, Pulse).

/* Send a configuration message describing Node’s state to all neighbors. */

c1: config(@Nbr, Node, Parent, RootId, Pulse) :-

. bestParentInfo(@Node, Parent, RootId, Pulse),

. linkEnabled(@Node, Nbr).

c2: configBroadcast(@Base, Node, Parent, RootId, Pulse) :-

. bestParentInfo(@Node, Parent, RootId, Pulse),

. Base := BASE ADDR.

/* Establish bidirectional edges, used by upper levels. */

edge(@Node, Parent) :-

. parent(@Node, Parent).

edge(@Parent, Node) :-

. parent(@Node, Parent).

config inserted(@Node, Nbr) :-

. config(@Node, Nbr, Parent, RootId, Pulse).

/* Update the link age. */

link(@Node, Nbr, PSend, PReceive, Time) :-

. config inserted(@Node, Nbr),

. link(@Node, Nbr, PSend, PReceive, ),

. Time := f timerElapsed().

Figure A.4. Spanning Tree Overlog (Part II).
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Appendix B

Loopy Belief Propagation

Here we list the Overlog for naive loopy belief propagation in Figure B.1,B.2 and
randomized loopy belief propagation in Figure B.3,B.4,B.5. As per Equation 3.5, message
computation includes three factors: local potential, edge potential and incoming message
factors. The base relations that represent these factors are: nodePotential represents local
potential ψs, edgePotential represents potential of the edge ψs,t and incoming represents the
received messages µr,s(ys).

Functions f combineAll, f collapse and f normalize encapsulate operations to be performed
for generating messages µs,t(yt).

/* Edges of the reasoning graph connected to a variable at this node */

rgEdge(@Node, Source, Target) :-

. localVariable(@Node, Source, ),

. rgEdgeInput(@Node, Source, Target).

/**********************************************************************

Compute the new messages

**********************************************************************/

/* Messages coming into node from nodes OTHER than Nbr */

bpUpdate(@Node, Source, Target) :-

. periodic(@Node, E, BP EPOCH),

. localVariable(@Node, Source, , ),

. rgEdge(@Node, Source, Target).

/* Factors whose product forms the messge. */

messageFactors(@Node, Source, Target, a MKLIST<Factor>) :-

. bpUpdate(@Node, Source, Target),

. incoming(@Node, OtherVar, Source, Factor),

. OtherVar != Target.

/* The result of a single unweighted update */

evalMessage(@Node, Source, Target, NewFactor) :-

. messageFactors(@Node, Source, Target, InFactors),

. nodePotential(@Node, Source, NodeFactor),

. edgePotential(@Node, Source, Target, EdgeFactor),

. F := f combineAll(EdgeFactor, NodeFactor, InFactors),

. NewFactor := f normalize(f collapse(F, Target)).

Figure B.1. Overlog for Naive Loopy Belief Propagation (Part I).
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/**********************************************************************

Send messages to neighbors

**********************************************************************/

l1: messageEvent(@Node, TargetNode, Source, Target, NewFactor, Residual) :-

. evalMessage(@Node, Source, Target, NewFactor),

. variable(@Node, Target, TargetNode, , ),

. message(@Node, Source, Target, OldFactor),

. Residual := f norminf(NewFactor, OldFactor).

l2: messageEvent(@Node, TargetNode, Source, Target, NewFactor, Residual) :-

. evalMessage(@Node, Source, Target, NewFactor),

. variable(@Node, Target, TargetNode, , ),

. notin message(@Node, Source, Target, ),

. Residual := DEFAULT RESIDUAL.

/* The latest residual for each message. */

residual(@Node, Source, Target, Residual) :-

. messageEvent(@Node, , Source, Target, , Residual).

message(@Node, Source, Target, NewFactor) :-

. messageEvent(@Node, , Source, Target, NewFactor, ).

incoming(@TargetNode, Source, Target, NewFactor) :-

. messageEvent(@Node, TargetNode, Source, Target, NewFactor, ).

/**********************************************************************

Calculate the belief

**********************************************************************/

/* Periodically trigger the belief update event.*/

beliefUpdate(@Node, Var) :-

. periodic(@Node, E, BP EPOCH),

. localVariable(@Node, Var, , ).

/* The list of all incoming factors. */

beliefIncoming(@Node, Var, a MKLIST<Factor>) :-

. beliefUpdate(@Node, Var),

. incoming(@Node, , Var, Factor).

belief(@Node, Var, F) :-

. beliefIncoming(@Node, Var, IncomingFactors),

. nodePotential(@Node, Var, NodeFactor),

. F := f normalize(f combineAll(NodeFactor, IncomingFactors)).

beliefValues(@Node, Var, Values, Time) :-

. belief(@Node, Var, Factor),

. Values := f values(Factor),

. Time := f timerElapsed().

Figure B.2. Overlog for Naive Loopy Belief Propagation (Part II).
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/* The edges of reasoning graph connected to a variable at this node: Node, From, To */

mrfEdge(@Node, Source, Target) :-

. localVariable(@Node, Source, ),

. mrfEdgeInput(@Node, Source, Target).

/**********************************************************************

Compute the new messages

**********************************************************************/

/* Messages coming into node from nodes OTHER than Nbr */

bpUpdate(@Node, Source, Target) :-

. periodic(@Node, E, BP EPOCH),

. localVariable(@Node, Source, , ),

. mrfEdge(@Node, Source, Target).

messageFactors(@Node, Source, Target, a MKLIST<Factor>) :-

. bpUpdate(@Node, Source, Target),

. incoming(@Node, IncomingVar, Source, Factor),

. IncomingVar != Target.

evalMessage(@Node, Source, Target, NewFactor) :-

. messageFactors(@Node, Source, Target, IncomingFactors),

. nodePotential(@Node, Source, NodeFactor),

. edgePotential(@Node, Source, Target, EdgeFactor),

. FactorList := f cons(EdgeFactor, f cons(NodeFactor, IncomingFactors)),

. IntermediateFactor := f combineAll(FactorList),

. TargetVars := f cons(Target, f initlist()),

. NewFactor := f normalize(f collapse(IntermediateFactor, TargetVars)).

/**********************************************************************

Perform a weighted update and compute the residuals

**********************************************************************/

/* Compute the weighted sum of the new and previous message */

l1: messageEvent(@Node, TargetNode, Source, Target, MixedFactor, Residual) :-

. evalMessage(@Node, Source, Target, NewFactor),

. message(@Node, Source, Target, OldFactor),

. variable(@Node, Target, TargetNode, , ),

. normalizer(@Node, Normalizer),

. Residual := f norminf(NewFactor, OldFactor),

. f coinFlip(f pow(Residual, BP EXPONENT) / Normalizer) == 1,

. MixedFactor := f weightedUpdate(OldFactor, NewFactor, BP UPDATE RATE).

l2: messageEvent(@Node, TargetNode, Source, Target, NewFactor, Residual) :-

. evalMessage(@Node, Source, Target, NewFactor),

. notin message(@Node, Source, Target, ),

. variable(@Node, Target, TargetNode, , ),

. Residual := DEFAULT RESIDUAL.

/* The latest residual (whether a message was sent or not) */

residual(@Node, Source, Target, Residual) :-

. messageEvent(@Node, TargetNode, Source, Target, MixedFactor, Residual).

Figure B.3. Overlog for Randomized Loopy Belief Propagation (Part I).
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/* A message sent to a neighbor. */

message(@Node, Source, Target, NewFactor) :-

. messageEvent(@Node, , Source, Target, NewFactor, ).

incoming(@TargetNode, Source, Target, NewFactor) :-

. messageEvent(@Node, TargetNode, Source, Target, NewFactor, ).

/**********************************************************************

Calculate the beliefs

**********************************************************************/

/* Periodically trigger the belief update event.

We cannot simply listen on incoming insertions here, since that means

that we may be double-counting the old and the new incoming messages.

*/

beliefUpdate(@Node, Var) :-

. started(@Node),

. periodic(@Node, E, BP EPOCH),

. localVariable(@Node, Var, , ).

/* The list of all incoming factors. */

beliefIncoming(@Node, Var, a MKLIST<Factor>) :-

. beliefUpdate(@Node, Var),

. incoming(@Node, , Var, Factor).

belief(@Node, Var, F) :-

. beliefIncoming(@Node, Var, IncomingFactors),

. nodePotential(@Node, Var, NodeFactor),

. F := f normalize(f combineAll(f cons(NodeFactor, IncomingFactors))).

beliefValues(@Node, Var, Values, Time) :-

. belief(@Node, Var, Factor),

. Values := f values(Factor),

. Time := f timerElapsed().

Figure B.4. Overlog for Randomized Loopy Belief Propagation (Part II).
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/**********************************************************************

Calculate average residual value

**********************************************************************/

/* Compute the sum and count of residuals of messages sent to remote nodes. */

localResidualCount(@Node, a COUNT<Residual>) :-

. periodic(@Node, E, AGG EPOCH),

. residual(@Node, , Target, Residual).

localResidual(@Node, a SUM<Term>, Count) :-

. localResidualCount(@Node, Count),

. residual(@Node, , Target, Residual),

. Term := f pow(Residual, BP EXPONENT).

/* Update the local aggregate. */

receivedResidual(@Node, Node, Sum, Count) :-

. localResidual(@Node, Sum, Count).

incomingResidual(@Node, Node, Sum, Count) :-

. receivedResidual(@Node, From, Sum, Count),

. From == Node.

/* Send an update to each neighbor in the spanning tree */ nbrUpdate(@Node, Nbr) :-

. localResidual(@Node),

. edge(@Node, Nbr). /* the edge in the spanning tree */

receivedResidual1(@Node, Nbr, a SUM<Sum>) :-

. nbrUpdate(@Node, Nbr),

. incomingResidual(@Node, Other, Sum, ),

. Other != Nbr.

receivedResidual(@Nbr, Node, Sum, a SUM<Count>) :-

. receivedResidual1(@Node, Nbr, Sum),

. incomingResidual(@Node, Other, , Count),

. Other != Nbr.

incomingResidual(@Node, Nbr, Sum, Count) :-

. receivedResidual(@Node, Nbr, Sum, Count),

. edge(@Node, Nbr).

estimatedResidual1(@Node, a SUM<Sum>) :-

. localResidual(@Node),

. incomingResidual(@Node, Nbr, Sum, ).

estimatedResidual(@Node, Sum, a SUM<Count>) :-

. estimatedResidual1(@Node, Sum),

. incomingResidual(@Node, Nbr, , Count).

N: normalizer(@Node, Value, Time) :-
. estimatedResidual(@Node, Sum, Count),

. Count > 0,

. Value := Sum / Count,

. Time := f timerElapsed().

Figure B.5. Overlog for Randomized Loopy Belief Propagation (Part III).

70



Appendix C

Affinity Propagation

Here we list the full Overlog specification for Affinity Propagation. All the base relations
in the Overlog have been highlighted with a italic font. The Overlog has three main
relations: similarity, responsibility and availability. The similarity relation stores the similarity
each local IP address has with other IP addresses. Responsibilities and availabilities are
initialized to zero and updated at regular time intervals equal to AP EPOCH. Relation
sentResponsibility is used to store the responsibilities sent by a node. This information saves
us from doing a round-trip while calculating the exemplars.

For brevity, we have not shown the damping factor calculations, initialization messages
and Chord integration for lookup of data location. Materialized table variable stores the
location of the IP address. We have modified the algorithm to work for multiple variables
per node and the localVariable table stores the information of IP addresses associated with
a super-node.

Some abbreviations used in the Overlog are:

• A: Availability

• R: Responsibility

• S: Similarity

• CE: Candidate Exemplar

• AS: Availability + Similarity

• a Max2Details<AS>: Aggregate function that returns the ordered pair of (CE, AS)
with the largest two AS values
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/*Responsibility updates for each local variable at a periodic time interval*/

rUpdate(@N, LocalVar) :-

. periodic(@N,E, AP EPOCH),

. localVariable(@N, LocalVar, ).

/*Ordered set of similarity + availability (AS).*/

asSet(@N, LocalVar, a Max2Details<AS>) :-
. rUpdate(@N, LocalVar),

. availability(@N, LocalVar, CE, A,),

. similarity(@N, LocalVar, CE, S),

. AS := A + S.

/*Responsibility calculations for a given r(i,k), i can be considered the LocalVar and

k is the variable CE. The CE here only relates to the candidate exemplars that do not

produce the maximum AS value for the LocalVar, i. This is detailed in Equation 4.5*/

responsibilityEvent(@N, LocalVar, CE, NR) :-

. asSet(@N, LocalVar, Max2Details),

. similarity(@N, LocalVar, CE, S),

. MaxAS := f removeLast(Max2Details),

. MaxCE := f removeLast(Max2Details),

. NR := Similarity - MaxAS,

. CE != MaxCE.

/*Responsibility calcuations for a given r(i,k), i can be considered the LocalVar and k is

the variable CE. The CE here only relates to the candidate exemplars that does produce the

maximum AS value for the LocalVar, i. This is detailed in Equation 4.5*/
responsibilityEvent(@N, LocalVar, CE, NR) :-

. asSet(@N, LocalVar, Max2Details),

. similarity(@N, LocalVar, CE, S),

. MaxAS := f removeLast(Max2Details),

. MaxCE := f removeLast(Max2Details),

. MaxAS2 := f removeLast(Max2Details),

. MaxCE2 := f removeLast(Max2Details),

. NR := S - MaxAS2,

. CE == MaxCE.

/*This rules sends the responsibilities across the network the variable relation contains

the location (IP address/port) of the candidate exemplar (CE)*/

responsibility(@CEN, LocalVar, CE, R) :-

. responsibilityEvent(@N, LocalVar, CE, NR),

. variable(@N, CE, CEN).

sentResponsibility(@N, LocalVar, CE, R) :-

. responsibilityEvent(@Node, LocalVar, CE, R).

/*Update availabilities for each iteration*/

/*Availabilitiy updates for each local variable at a periodic time interval*/

aUpdate(@Node, CE, Var) :-

. periodic(@N, E, AP EPOCH),

. localVariable(@N, CE, ),

. similarity(@N, CE, Var, ).

Figure C.1. Overlog for Affinity Propagation (Part I).
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/* The summation in Equation 4.6*/
sumRp(@N, Var, CE, a SUM<RP>) :-
. aUpdate(@N, CE, Var),

. rp(@N, OtherVar, CE, RP),

. OtherVar != Var,

. OtherVar != CE.

/*Availability calculations Equation 4.6*/
availabilityCalc(@N, Var, CE, NA) :-

. sumRp(@N, Var, CE, SumRP),

. responsibility(@N, CE, CE, R),

. A := SumRP + R,

. NA := f min(A, 0.0),

. Var != CE.

/*Self-availability calculations Equation 4.7*/
availabilityCalc(@N, CE, CE, NA) :-

. sumRp(@N, Var, CE, SumRP),

. NA := SumRP,

. Var == CE.

/*This rules sends the availabilities across the network the variable relation contains

the location (IP address/port) of the Var variable*/

availability(@VarNode, Var, CE, NA) :-

. availabilityCalc(@N, Var, CE, NA)

. variable(@Node, Var, VarNode).

/*Exemplar calculation*/

/*Exemplar updates for each local variable at a periodic time interval*/

eUpdate(@N, LocalVar) :-

. periodic(@N, E, AP EPOCH),

. localVariable(@N, LocalVar, ).

/*Exemplar calculations from Equation 4.8*/
exemplarCalc(@N, LocalVar, a MAX<Sum>) :-
. eUpdate(@N, LocalVar),

. availability(@N, LocalVar, CE, A),

. sentResponsibility(@N, LocalVar, CE, R),

. Sum := A + R.

exemplar(@N, LocalVar, CE) :-

. exemplarCalc(@N, LocalVar, MaxSum),

. availability(@N, LocalVar, CE, A),

. sentResponsibility(@N, LocalVar, CE, R),

. MaxSum == A + R.

Figure C.2. Overlog for Affinity Propagation (Part II).
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