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ABSTRACT
In-network aggregation can save significant bandwidth in a
distributed query systems, but is subject to attack by adver-
saries. Prior work addressed settings where data sources are
trusted, but the aggregation infrastructure needs to be se-
cured. We study extensions that also make aggregate queries
robust to adversarial data sources, which can inject spurious
values into the data stream to be aggregated. Wagner [31]
observed that the field of robust statistics can provide tools
here, since robust estimators (medians, trimmed means, me-
dian absolute deviations, etc.) provide formal guarantees on
the degree to which perturbed data can have an effect on ag-
gregate results. This raises the challenge of developing veri-
fiable in-network algorithms for robust estimators. Many of
the natural robust estimators are built on order statistics, so
we focus here on verifiable techniques for in-network com-
putation of order statistics. To our knowledge, there is no
mechanism guarantees both the efficiency and verifiability of
the order statistics computation. In this work, we present
the FM3 Proof Sketch aggregation protocol, which efficiently
and securely computes various approximate order statistics
including medians, median absolute deviations, quantiles,
ranks, and frequent items). We derive robustness and ap-
proximation guarantees for those queries in adversarial en-
vironments, and demonstrate empirically that our scheme
is practically useful via experiments on real and synthetic
data.

Keywords
Secure Aggregation, Order Statistics, Distributed Query Pro-
cessing

1. INTRODUCTION
In-network aggregation protocols have gained increasing at-
tention in large-scale distributed systems, such as sensor
networks [21], distributed databases [18], and peer-to-peer
systems [32]. By pushing computation into the network,
in-network aggregation eliminates the need to transmit all

raw data to a single computing center, and thus signifi-
cantly reduces overall communication overhead for aggre-
gation queries such as counts, averages, medians, minima,
and maxima.

Although in-network aggregation results in significantly lower
bandwidth usage than centralized computation, it introduces
opportunities for adversaries to perturb the results of aggre-
gation queries by either manipulating the computation of
the aggregate function, or by inserting bogus data. A chal-
lenge in this context is to obtain robust, verifiable aggregate
query results in untrusted environments.

A number of verifiable aggregation protocols for counts and
averages have been proposed [4,12,27,33]. They address the
threat of misbehaving aggregators, but assume that sources
are trustworthy. Unfortunately, aggregate functions like av-
erage and standard deviation are sensitive to extreme values
(outliers), so attackers who are able to “pollute” the input
with even a single bad data item can perturb the aggregation
result by an arbitrary amount. Verifiable aggregation does
not address this issue of data pollution. On the other hand,
a number of techniques address data pollution by misbehav-
ing data sources [19,29–31], but rely on trusted aggregators
to detect the outliers. To our knowledge, there is no ef-
ficient distributed aggregation mechanism in the literature
that guarantees the robustness of results in the face of ei-
ther misbehaving aggregators, misbehaving data sources, or
both.

1.1 Robust Estimators
Many aggregation functions used in query processing are
easily perturbed with minimal pollution. For example, con-
sider computing the average value of a set of n readings
reported by a network of distributed nodes. An adversary
can arbitrarily shift the computed average value via the in-
jection of a single spurious input value. In the terminology
of the field of Robust Statistics, the average function has
a breakdown point of 1/n: only 1/n values need to be per-
turbed to cause the function’s accuracy to “break down”
arbitrarily [17].

Wagner [31] observed that aggregation functions from Ro-
bust Statistics (so-called robust estimators) can be used to
mitigate the effects of data pollution in distributed aggre-
gation. A common, intuitive class of robust estimators cor-
respond to order statistics, which are based on the rank of
an item in order. Median is a widely used robust statis-
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tic of a distribution’s “center” that is often used in place
of the easily-perturbed mean, while median absolute devia-
tion (MAD) (median(|X −median(X)|) is an estimator of
a distribution’s “spread” that is often used in place of stan-
dard deviation1. Both Median and MAD have a breakdown
point of 0.5, because an adversary must alter at least 50%
of the data points before they can perturb the median and
MAD estimators by an arbitrary value. 50% is the highest
possible value of a breakdown point [28], so these aggrega-
tion functions are in that sense optimally robust. Another
popular robust estimator based on order statistics is the k%
trimmed mean, which drops the lowest and highest k% of
values before computing the mean. This aggregate has a
k% breakdown point.

1.2 Design Goals
Robust estimators make it difficult for adversaries to con-
trol the outcomes of aggregation via poisoning. But this is
not sufficient: adversaries can still compromise the nodes
involved in performing steps in the in-network aggregation
protocol. To provide a complete solution, we need a verifi-
able aggregation protocol for robust estimators. In addition
to verifiability, an effective solution should be based in the
following three design goals:

Logarithmic Communication. To ensure scalability,
we want to match the logarithmic communication complex-
ity offered by standard, insecure in-network aggregation [21],
rather than the linear-cost complexity that results from back-
hauling all the data to a centralized data warehouse.

Approximate Results with Guaranteed Error Bounds.
One can compute order statistic queries exactly via a loga-
rithmic number of sequential count queries [4]. However, in
an environment where sources may contain polluted data,
exact results over that polluted data are more trouble than
they are worth; it is reasonable to tolerate a bounded degree
of aggregation error in order to gain performance efficiency.

One Pass Protocol. Some of the prior techniques for
verifiable aggregation are multi-pass solutions, requiring mul-
tiple traversals of a spanning tree of the network. In partic-
ular, the aggregate-commit-proof model [4] requires at least
three passes to complete aggregation and verification proce-
dures. These solutions are undesirable in large scale systems
because of their communication overhead, but more impor-
tantly because network dynamics may make it difficult or
impossible to maintain a fixed spanning tree communication
structure across the required number of passes.

1.3 Contribution
We present a novel aggregation protocol for robust estima-
tors based in order statistics, including the median, MAD,
and trimmed mean mentioned above, as well as quantile,
rank, frequent value, and other order-statistics-based aggre-
gation functions. Our technique is based on the notion of a
Proof Sketch [12]: a small summary structure that can be
computed in-network, providing both approximate answers

1In practice, a threshold of x standard deviations is typically
replaced by 1.4826x MADs, also known as the Hampel X84
measure [16].

and verifiability guarantees at the query site. The protocol
provides two security guarantees: verifiability against mis-
behaving aggregators and robustness to misbehaving data
sources. Furthermore, the protocol satisfies the three design
goals mentioned in Section 1.2.

Our solution consists of three components:

• We introduce a new sketch technique, the FM3 Proof
Sketch, which summarizes a data set into a sublinear
structure based on the Flajolet-Martin (FM) sketch [10]
augmented with (authenticated) Minimum and Maxi-
mum (MM) “witness” values for each bit.

• Based on the FM3, we present a suite of approximate
query algorithms for order statistics (quantiles, rank,
and frequent items) with their error bound analysis.
We also introduce the MADAM estimator – the Me-
dian Absolute Deviation from an Approximate Median
– and provide bounds on its computation, and on its
estimation of the true MAD.

• Using the verifiable order statistic algorithms and the
FM3, we design a secure aggregation protocol for order
statistics.

1.4 Outline
In Section 2, we define our network model and threat model.
We then describe the preliminary problem of verifiable count-
ing. Section 3 introduces our FM3 Proof Sketch and its
methods. Section 4 uses the abstract FM3 for building a
verifiable multiparty aggregation protocol. In section 5, we
evaluate experimentally the security properties and perfor-
mance of FM3. Section 6 contains discussion and related
work.

2. PRELIMINARIES
We proceed to describe the network model and the threat
model. We also give a brief introduction of a verifiable
counting algorithm, which serves as a basis for our approach
to order statistics.

2.1 Network Model
There are three different roles in the aggregation network.
The data generators (or data sources) generate raw data
that will be aggregated by the aggregators. The aggre-
gators can form multiple tiers, where the top one is the
querier. The querier can be different in different query ses-
sions, but in one session we only consider one querier. We
support multi-path aggregation, where a data generator can
have multiple routes to the querier. Figure 1 illustrates the
data flow of the distributed aggregation. We assume that a
network-wide public key infrastructure exists. Source i can
sign its value vi with its private key ski. The signature then
can be verified by other parties using the public key pki. The
querier does not require knowledge of the network topology,
but for secure verification, we do assume the querier knows
the approximate network population size [12].

Since we target order statistics, the data should be from an
ordered domain. It is possible to have ordered text strings
as the raw data, but without loss of generality, we assume
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Figure 1: Data flow in distributed aggregation net-
work

the sources generate numerical data, which can be integers
or floating point values.

Note that the high breakdown point of median means that
we need not impose constraints on the range of values that
may be injected. By contrast, the aggregation protocols for
non-robust statistics (e.g, averages) usually enforce range
checking to confine the range of values in order to obtain a
nonzero breakdown point. Such constraints not only limit
the usability of the system, but are hard to enforce — un-
trusted aggregators are given the responsibility of perform-
ing range checks.

2.2 Threat Model
We consider three types of misbehavior: deflation, inflation,
and pollution. The first two types are data manipulation
during aggregation. The aggregators can omit messages,
insert bogus messages, or modify the content of messages for
arbitrary data forgery. These manipulation results in value
deflation or inflation in the final aggregate. The third type
of misbehavior is data pollution (sometime called a direct
data injection attack [4]) performed by the compromised
data sources. The two grey zones in Figure 1 indicate where
the misbehavior may occur.

The attacker can also be a coalition of several aggregators
and sources, who share private information and attempt to
alter the final result collaboratively (collusion attack). The
attacker’s goal is to perform stealthy attacks [27], perturbing
the aggregation result without being detected.

We consider computationally-bounded attackers, who are
unable to break cryptographic functions such as forging sig-
natures or finding collisions for hash functions in any rea-
sonable timeframe.

2.3 Verifiable Counting using AM-FM Sketches
Before we discuss the problem of verifiable order statistics,
we look at the preliminary problem of verifiable counting,
which serves as a basis for our technique.

Garofalakis et al. [12] presented AM-FM Proof Sketches for
verifiable counting in adversarial aggregator settings. The

AM-FM sketch combines an FM sketch [10] with an Au-
thentication Manifest (a set of cryptographically signed val-
ues) to secure the counting result. The protocol produces a
public verifiable result of size O(lnn) without the need for
trusted third parties. If x out of n sources satisfy a predi-
cate (i.e., answer “YES” to a question), the protocol guar-
antees a bounded output x′, Pr[|x′ − x| < εn] > 1− δ with

space requirement O( log(2/δ)

ε2
). Ideally, the protocol works

for any ε and δ. In practice, extreme parameters result in an
unreasonably large number of sketches, thus offering advan-
tage to backhauling, which forwards all the source data to
the queries. Based on our experiment (see Section 5), rea-
sonable communication performance can be achieved with
ε = 0.16 and δ = 0.05.

The FM algorithm digests a data set into a bitvector rep-
resentation (FM sketch) as an estimator of the number of
distinct elements in the set. The FM sketch is initialized
to zeros, and a zero bit is turned on when an element is
mapped to the zero bit. A deterministic mapping from el-
ements to bit positions is constructed, such that elements
are mapped to bth-bit with probability 1/2b. Let lsb0(·)
be the function returning the lowest-order 0-bit position of
a bit vector (the LSB bit is indexed with 0). For exam-
ple, lsb0(01010111) = 3. Given a random variable X over
{0, 1}∗, Pr[lsb0(X) = b] = 1/2b. Therefore, the random
variable can provide the desired probability distribution. In
practice, the randomness can be modeled by cryptographic
hash functions, such as MD5 or SHA-1.

It is shown in [10] that the FM sketch provides a good es-
timate of counting distinct elements by a single scan and
logarithmic storage. Suppose we are interested in the size
of a set C, a set contains the sources satisfying a predicate.

|C| ≈ 2lsb0(S)

0.77351
.

However, a single sketch provides an approximate count with
high standard deviation. Fortunately, using multiple inde-
pendent sketches in parallel decreases the deviation by loga-
rithmic order. If K independent sketches are used and each
element is mapped randomly into a sketch, the equation can
be refined as:

|C| = K
2

∑
lsb0(Sk)/K

0.77351
(1)

In the AM-FM scheme, the cryptographic signatures protect
the FM sketch from one type of bit modification, i.e. flip-
ping zero to one (inflation attack), because each 1-bit in the
AM-FM sketch is accompanied by a “witness” value crypto-
graphically signed by the party who flipped the bit to one.
The witness value contains the bit position and/or other
fields based on the application scenario. Since each signa-
ture is unforgeable and tractable, only signatures linked to
correct bit positions and generated by privileged users can
pass the verification.

To detect deflation on C, a complementary sketch is applied
to count the complementary set C̄. Since inflation on C̄ is
also impossible for a computationally bounded attacker, the
deflation attack will decrease the approximate population,
i.e. the summation of the estimating counts for C and C̄.
Therefore, assume a known population n, we can detect both
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Table 1: Symbols and basic functions

Notation Explanation
n the size of the data set
IDi a unique identity of source i, 1 ≤ i ≤ n

(pki, ski) the public/private key pair of IDi
S = {Sk}1≤k≤K a set of K sketches

Sk[b] the b-th slot in the sketch Sk
H(·) a cryptographic hash function

sign(H(msg), sk) sign msg by the private key sk
verify(msg, sig, pk) verify sig on msg by the public key pk

lsb0({0, 1}∗) the lowest 0-bit position of a bit string
element(S) the set of elements represented by S

fm est(bitsk,K) count distinct estimation by Eq. 1

inflation and deflation attacks on the aggregation protocol.

The verifiable counting algorithm provides a direct construc-
tion of a verifiable order statistic algorithm. We can con-
struct a (fixed-bin-width) histogram structure where each
bin is secured by the verifiable counting technique. How-
ever, this approach imposes O(a lnn) communication over-
head, where a is the number of bins in the histogram.

2.4 Proof Sketches
Garofalakis et al. outlined a generalized template for a proof
sketch: a proof sketch for an aggregation function should
support a compact authentication manifest and deflation
bounds [12]. The AM-FM sketch is a proof sketch special-
ized for count-based aggregation functions.

In the following sections, we give an abstract presentation
of our (FM3 Proof Sketch) data structure, and its methods
for construction. FM3 is a new example of a proof sketch,
focusing on – but not limited to – the order statistic func-
tions. In Section 4, we use the FM3 object for developing
O(ln a lnn) verifiable aggregation protocols.

3. THE FM3 PROOF SKETCH
Having explained the verifiable counting of YES/NO votes,
we now focus our attention on order statistics over an or-
dered domain.

We introduce the FM3 Proof Sketch, a new synopsis data
structure with sublinear space requirements and built-in func-
tionality for manipulation detection. We show that the FM3
allows various approximate queries (quantiles, MADs, fre-
quent items) with guaranteed error bounds. In the follow-
ing sections, based on the FM3 and the approximate order
statistic queries, we design and evaluate a secure in-network
aggregation scheme for handling both misbehaving aggrega-
tors and data sources.

3.1 FM3 Overview
The FM3 Proof Sketch is based on the AM-FM sketch [12],
with a small change that we will leverage extensively in
our query algorithms. Rather than keeping a single wit-
ness for each bit turned on in an FM sketch, the FM3 Proof
Sketch keeps the maximum and minimum values that have
been mapped to the position. These extreme values per

bit, accompanied with their signatures, are calculated dur-
ing construction of the sketch. As in all FM sketch variants,
this compares favorably with naive hash-based counting: the
cost is reduced from O(a) to O(ln a), where a is the number
of distinct elements.

Our efficient solution comes from an observation on the na-
ture of FM sketches. Consider two sets of values A and
B, and their corresponding FM sketches SA and SB respec-
tively. If A ⊆ B, then (SA&SB) = SA – i.e., the 1-bits of SA
are a subset of the 1-bits of SB . Therefore, instead of keep-
ing just the FM bit array for each subset, the FM3 sketch
stores two values, the maximum and minimum, correspond-
ing to each bit. After computing the FM3 over all the data,
it can be used to answer predicates of the form “how many
values were larger than (smaller than) x” for any value x.
This can be done by simply setting to 0 those bits in the
FM sketch where the maximum (minimum) is not greater
than (less than) x.

The FM3 sketch provides three types of methods: basic
methods, verification methods, and query methods.

• The basic methods are used for sketch construction,
such as initialization, adding a new element, and com-
bining multiple sketches.

• The verification methods verify whether the witnesses
have genuine signatures and are placed in correct posi-
tions. The verification functionality also checks if the
sum of “larger than or equal to x” and “smaller than
x” approximately equals the population size n. (Com-
pared with the two complementary sketches used in
AM-FM, here we have < and ≥ complementing each
other in a single sketch.)

• The query methods answer queries using the final sketches
to compute approximate answers. They utilize the
verification methods to ensure error bounds on the
approximate answers. The details of the query algo-
rithms will be discussed in the next section.

Formally, let S represents a set ofK sketches, Sk, 1 ≤ k ≤ K.
Each sketch has B bit positions, and each position contains
at most two signed values corresponding to Sk[b].max and
Sk[b].min. Sk[b] represents the b-th bit of Sk. Recall that
lsb0(·) is the function returning the lowest 0-bit position of
a bitvector indexed from zero.

Table 1 summarizes the symbols and basic functions used in
the following sections.

3.2 Basic Methods
There are four methods for FM3 construction and basic op-
eration. Init, Add, Aggregate, and Estimate. We describe
each of them by its algorithmic construction.

Init The Init method initializes a set of K sketches Sk,
1 ≤ k ≤ K. Each sketch has B bit positions.

Add The Add method adds a new element v to the FM3.
The IDi is used in computing b and k to ensure the unique-
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Method 1 Init
Require: input K and B
Ensure: output S = {Sk}1≤k≤K . element(S) = ∅

for k = 1 to K do
for b = 1 to B do
Sk[b].max← ∅
Sk[b].min← ∅

end for
end for

Method 2 Add
Require: input S = {Sk}1≤k≤K , v, pk, sk
Ensure: element(Sout) =element(S) ∪ {v}.
k ← H(nonce||pk) mod K
b← lsb0(H(nonce||k||pk))
if !CheckSig(Sk[b].max.sig)∨!CheckSig(Sk[b].max.sig)
then

delete failed signatures
end if
if (Sk[b].max = ∅) ∨ (v > Sk[b].max.v) then
Sk[b].max.v ← v
Sk[b].max.id← pk
Sk[b].max.sig ← sign(H(nonce||k||pk||v), sk)

end if
if (Sk[b].min = ∅) ∨ (v < Sk[b].min.v) then
Sk[b].min.v ← v
Sk[b].min.id← pk
Sk[b].min.sig ← sign(H(nonce||k||pk||v), sk)

end if

Method 3 Aggregate

Require: input L sketch sets, S1,..., SL
Ensure: element(Sout) =

⋃
l element(Sl)

for all b and k do
i = arg maxl S

l
k[b].max.v

j = arg minl S
l
k[b].min.v

Soutk [b].max← Sik[b].max
Soutk [b].min← Sjk[b].min

end for

ness of the hash input. Without loss of generality, here we
use pki as the unique IDi. Note that the value vi is only
used when storing signed minima and maxima; the FM bits
are set to 1 based on node identities, not data values.

Aggregate Suppose the incoming sets are Sl, 1 ≤ l ≤
L. The Aggregate method maintains the invariant that the
min/max values associated with the b-th bit position are the
smallest/largest witnesses respectively seen so far.

Estimate Given a value v, the Estimate method answers
the number of elements smaller than v, and number of ele-
ments larger or equal to v.

3.3 Verification Methods
There are two methods for verifying the sketch content.
CheckSig validates a signature and its position in the sketch.
CheckSum detects inflation and deflation attacks, where the

Method 4 Estimate
Require: input v, a sketch set S
Ensure: two estimate counts c> and c≤

∀k, b, bits>k ← {0}
B and bits≤ ← {0}B

for all k, b do
if v > Sk[b].min.v then
array>k [b]← 1

end if
if v ≤ Sk[b].max.v then

array≤k [b]← 1
end if

end for
c> ←fm est(bits>)
c≤ ← fm est(bits≤)

Method 5 CheckSig

Require: input sig and the position indicators k and b
if k 6= H(nonce||pk) mod K then

return FAIL
end if
if b 6= lsb0(H(nonce||k||pk)) then

return FAIL
end if
get corresponded pk and v for the signed message
return verify(H(nonce||k||pk||v), sig, pk)

Method 6 CheckSum
Require: input S, v
Ensure: decide if the summation regarding v is close to n

(c>, c≤)← Estimate(v, S)
return (1− εc)n ≤ (c> + c≤)

min/max witnesses are dropped or replaced by the other
elements that do not have the min/max values.

CheckSig Given a signature and its position k and b in
the FM3, the CheckSig method verifies the signature and
also checks if it is placed in the correct position.

CheckSum Given a value v, the CheckSum method com-
putes the FM sketches for predicate “smaller than v” and
“larger than or equal to v”. Finally, by equation 1 it checks
if

(1− εc)n ≤ c> + c≤ (2)

3.4 Query Methods
In this subsection, we show that the FM3 allows various
approximate queries, including ranks, quantiles, MADs, and
frequent items. In addition, we derive error bounds for each
algorithm in the adversarial settings.

For convenience, we define the following notions. Let V =
{vi} be the observed data set, which may differ from the
true data set if a fraction of the data is polluted. Arranged
in non-decreasing order, we have vs1 ≤ vs2 ≤ ... ≤ vsn ,
where (s1, s2, ..., sn) is a permutation of {i}1≤i≤n. Let R(v)
represent the rank of v in set V , i.e. R(vsi) = i. In addition,
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Method 7 RankQuery

Require: input v, S
Ensure: return an approximate rank r with verified/failed

(r ← c>, c≤)← Estimate(v, S)
if CheckSum(v, S) then

return (r, verified)
else

return (r, failed)
end if

we define vs0 ← −∞ and vsn+1 ←∞. We know that:

∀v ∈ R, ∃j such that vsj−1 < v ≤ vsj

so we extend the definition of R(·) to define R(v) = j. We
can interpret R(v) as the number of elements in V that are
smaller than v, so it is possible that v /∈ V . Since R(·) is
the observed rank in the “polluted set” V , if there are ρn
compromised sources and R̂(·) represents the true rank in

the unpolluted set V̂ = {v̂i}, then

|R̂(v)−R(v)| < ρn (3)

Therefore, R(·) is bounded when the fraction of misbehaving
sources is less than a given value.

We quantify the error caused by compromised aggregators
that perform inflation and deflation attacks on the FM3
Proof Sketch. The effect of misbehaving data generators
(attackers who own valid secret keys and can inject bogus
values) is bounded by Equation 3. For clarity, in the follow-
ing we derive the probabilistic bound for R(·), but it is easy

to extend it to similarly bound the error of R̂(·). In general,
an ε-approximation over a polluted set becomes an (ε+ ρ)-
approximation over the original unpolluted set, where ρ is
the compromised proportion of the source set.

Before performing any query methods, we need to validate
each signature via checkSig.

Secure Rank Since the rank of a value vi in a set V
represents the number of values less than vi, we can easily
complete a verifiable rank query by performing the Estimate
Method with the CheckSum Method. RankQuery is outlined
in Method 7.

Theorem 3.1. Assume O( log(2/δr)

ε2r
) sketches are used. If

a value v satisfies equation 2, then v also satisfies

Pr[|r(v)−R(v)| < εrn] > 1− δr (4)

with εr = 2εc in adversarial environments [12]. That is,
for the data point v, the difference between its observed rank
R(v) and the estimate rank r(v) is probabilistically bounded
in the present of malicious aggregators.

Secure Median and Quantile Method 8 demonstrates
how to compute median and other quantiles from S. The
idea is that given a FM3 sketch, we can perform binary
search over the value domain until we find a value v whose

Method 8 QuantileQuery

Require: input S, quantile q, φ
Ensure: return an approximate value v with verified/failed

repeat
get v by binary search over the value domain
(r, ans)← RankQuery(v, S)

until (|r − qn| ≤ φn ∧ ans = verified) ∨ binary search
finished
return (v, ans)

rank is close to qn, where q is the quantile we are interested
in and |r(v)− qn| ≤ φn for a constant φ. Median is a special
case with q = 0.5.

Theorem 3.2. Given a sketch set satisfying Equation 4,
we can construct a function that answers value v to a quan-
tile query q, such that

Pr [|R(v)− qn| < εqn] ≥ 1− δq (5)

Proof. Our quantile query algorithm ensures |r(v)− qn| ≤
φn. Set εq = φ+ εr, and δq = δr.

Pr [|R(v)− qn| < εqn]

≥Pr [|R(v)− r(v)|+ |r(v)− qn| < εqn]

≥Pr [|R(v)− r(v)| < (εq − φ)n]

≥1− δr
=1− δq

Secure MAD The median is a useful robust measure
of the “center” of a distribution. The MAD is a robust
measure of the “spread” of the distribution, analogous to
the standard deviation. Here we show how to retrieve the
MAD from a FM3 S.

The median absolute deviation (MAD) of a set of data points
X = {xi} is defined as

MAD = median(|X −median(X)|)

Similar to computing the median, computing the exact MAD
requires the involvement of all the original data points.

We first analyze the error bound with respect to the Me-
dian Absolute Deviation of Approximate Median (MADAM),
which is a modified notion of the MAD. We also provide an
informal breakdown point analysis showing the difficulty to
perturb the MADAM’s result away from the true MAD.

MADAM = median(|X −medianε(X)|) (6)

The problem of finding the MADAM can be formulated as
follows.

Given a set of data points X = {xi} from the domain
(−∞,∞) and their ε-approximate median xm = medianε(X),
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Method 9 MADQuery

Require: input S, v
Ensure: return an approximate MAD value v with veri-

fied/failed
vm = QuantileQuery(0.5, S)
repeat

get y by binary search over Y domain
(r+, ans+)← RankQuery(vm + y, S)
(r−, ans−)← RankQuery(vm − y, S)

until (|r+ − r− − 0.5n| ≤ εyn ∧ ans+ ∧ ans−) ∨ binary
search finished
return (y, ans+ ∧ ans−)

we can define the folded set of points {yi|yi = |xi − xm|} in
the domain [0,∞).

To compute the MADAM, first consider the relation between
Rx(·) and Ry(·), functions that return the observed rank in
the X and Y domains respectively. Recall that the rank of a
value v equals to the number of data points that are smaller
than v. We observe that the data points smaller than v in
Y domain, i.e., those points fall into the interval [0, v], are
all mapped from points in the interval [xm − v, xm + v] in
X domain. Therefore, Ry(v) equals the number of points
between xm − v and xm + v in X domain.

Ry(v) = Rx(xm + v)−Rx(xm − v) (7)

In addition, rx(·) and ry(·) are functions that return the
approximate rank in X and Y domains, respectively. We
define

ry(v) = rx(xm + v)− rx(xm − v) (8)

Hence the MADAM of X is the median of the folded set Y .
We perform QuantileQuery (Method 8) on the folded set Y
for the median, whose value is the approximate MADAM of
X.

Theorem 3.3. Given an approximate ranking function
rx(·) in domain X with error bound Pr[|rx(v) − Rx(v)| <
εxn] > 1 − δx, we can construct an approximate MADAM
function such that Pr[|ry(v)−Ry(v)| < εyn] > 1−δy, where
εy = 2εx and δy = 2δx.

Proof. Error bound analysis:

Pr[|ry(v)−Ry(v)| < εyn]

=Pr[|(rx(xm + v)− rx(xm − v))

− (Rx(xm + v)−Rx(xm − v))| < εyn]

=Pr[|(rx(xm + v)−Rx(xm + v))

− (rx(xm − v)−Rx(xm − v))| < εyn]

≥Pr[|rx(xm − v)−R(xm − v)|
+ |rx(xm + v)−Rx(xm + v)| < 2εxn]

≥Pr[|rx(xm − v)−Rx(xm − v)| < εxn]

∗ Pr[|rx(xm + v)−Rx(xm + v)| < εxn]

≥(1− δx)2

u1− 2δx

=1− δy

Method 10 FrequentItemQuery

Require: input S, φ
Ensure: return a frequent item set F
F ← ∅
for all witness values vw in S do

(r, ans)← RankQuery(vw, S)
(r+, ans+)← RankQuery(vw + 1, S)
if r+ − r > φn ∧ ans ∧ ans+ then
F ← F ∪ {vw}

end if
end for

The equation tells us the inaccuracy of the approximate
MADAM algorithm is bounded by the inaccuracy of the
approximate median algorithm.

In addition to the probabilistic guarantee, we evaluate the
approximate MADAM by breakdown point analysis. Com-
puting MAD based on the approximate median xm, where
(0.5− εq)n < Rx(xm) < (0.5 + εq)n, is no worse than com-
puting MAD over a set of εn compromised data sources.
Therefore, we know that our approximate result of MAD is
still robust as long as εq < 50% (the breakdown point of
MAD).

Securely finding frequent items The problem of find-
ing frequent items in streams or distributed data sets is re-
turning a set of items F = {xi | f(xi) > φn}. Observe that
if x is a frequent item, R(x + 1) − R(x) > φn. Without
loss of generality, we assume elements are integers. Find-
ing the exact set of frequent items, similar to finding the
exact median, requires linear amount of space [7]. There-
fore, researchers focus on solving φ′-approximate frequent
items problem, where F = {xi|f(xi) > (φ − φ′)n} and
F̄ = {xi|f(xi) < φn}. Here we define a new notion of δ-
probabilistic ε-approximate frequent items problem, which
requests a set of approximate frequent items Fa over a set
of elements {xi}: {xi | P [f(xi) > εfn] > 1 − δf}, given
constants εf and δf .

The algorithm finds elements x, such that r(x+ 1)− r(x) >
φn.

Theorem 3.4. If element x satisfying r(x + 1) − r(x) >
φn, and the sketches satisfying Equation 4, then P [f(x) >
εfn] > 1− δf , where εf = φ− 2εr and δf = 2δr.

Proof.

Pr[f(x) > εfn]

=Pr[R(x+ 1)−R(x) > (φ− 2εr)n]

≥Pr[r(x+ 1)− r(x) > φn]

∗ Pr[|R(x+ 1)− r(x+ 1)| < εrn]

∗ Pr[|R(x)− r(x)| < εrn]

≥1 ∗ (1− δr)2

u1− 2δr

=1− δf
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4. VERIFIABLE ORDER STATISTICS
FOR SECURE AGGREGATION

Having introduced the FM3 structure and the approximate
order statistic queries, we now present a secure in-network
aggregation protocol for order statistics with three features:
1) single communication pass, 2) logarithmic communica-
tion, and 3) approximate answers with guaranteed error
bound. The first two features come from the nature of the
FM3, and the third feature is proved in Section 3.

We evaluate the order-statistic aggregation protocol in Sec-
tion 5. We study its behavior in the absence of attack, and
quantify the degree of security during different attack sce-
narios.

The distributed aggregation protocol produces a public ver-
ifiable result with size O(ln a lnn). Given a quantile q, our
protocol guarantees an estimate value v, where Pr[|R(v) −
qn| < εn] > 1− δ, and R(v) is the observed rank of v in the
source data set.

4.1 Problem Statement
Each data source i has its own public/private key pair {pki, ski}
and a unique IDi, 1 ≤ i ≤ n. (For example, we can use the
public keys as the unique IDs.) We assume the existence of
PKI and key management schemes handling key issuing, re-
vocation, authentication, etc. In each session, i will generate
a value vi, which either answers a current query, e.g. asking
each monitoring host for the amount of bad packets com-
ing from a suspicious IP address, or emits spontaneously at
scheduled time, e.g. the hosts are configured to report daily
bandwidth usage at 12 am. Note that these observed values
may have already been polluted, so if the true answer to the
query is v̂i, it is possible v̂i 6= vi for some i.

Protocol Description There are four phases in each
query session: Request Dissemination, Data Initialization,
Aggregation, and Verifiable Query.

Request Dissemination The querier disseminates a re-
quest Q to n data sources. The message body should contain
a description qd and other necessary parameters by which
the data sources can initialize their sketches locally. The
querier assigns an unique taskID for this particular aggre-
gation task. m = {qd, taskID, params}. The querier, who
has a public/private key pair (pkq, skp), signs the message:

Q = {m, sign(H(m), skq)}

We assume the request is transmitted via a reliable protocol.
A packet loss is the same as a inflation attack – from the
querier’s view. Therefore, a reliable routing protocol ensures
a high success rate in a benign environment.

This phase can be omitted when the sources report values
spontaneously at scheduled time. The data sources use a
previous or default setting as their parameter, and use a
synchronized counter as the nonce. The counter is increased
after each session.

Data Initialization Each data generator i performs the

Init Method and Add Method to generate a sketch set con-
taining a value vi.

Aggregation Aggregation requires no secret information.
Any party who receives multiple sets of sketches can be the
aggregator performing the Aggregate Method.

Due to the untrusted aggregators, our protocol does not
require the aggregator to verify the signatures and the cor-
rectness of the bit position. The entire verification process
can be done by the querier. However, it is more bandwidth-
efficient if the benign aggregators detect incorrect signatures
at an earlier stage.

The aggregation process is duplicate-insensitive. The result
remains the same even if a sketch set is aggregated more
than once. This property enables a more flexible aggrega-
tion topology. Rather than an aggregation tree, where each
source has only one route to the root, it allows multi-path
aggregation, where each source can have multiple routes to
the root. The multi-path topology is more robust and easier
to construct than a tree-based topology. [21, 23]

Verifiable Query After the querier receives his aggre-
gation result, a sketch set S, he verifies the signatures and
takes out all invalid signatures by the CheckSig Method. He
can then perform order statistic queries, such as quantiles
and MADs, on the sketch set.

The verifiability aspects of the FM3 can identify aggregation-
level misbehavior. Source-level misbehavior (i.e., poisoning)
causes different degrees of undetectable damage on different
statistics. As we pointed out in Section 1.1, our aggrega-
tion functions are robust against source-level misbehavior:
unless the adversary’s attack rate exceeds the breakdown
point of the estimator, their ability to perturb the result is
constrained by the values of unpoisoned data. We provide
experimental results in Section 5.

5. EVALUATION
To evaluate the efficiency and security properties of the FM3
Proof Sketch, we implemented the FM3 and its query algo-
rithms in C++.

5.1 Setup
In order to study the practical use of FM3 sketches, we need
to tune some parameters: the number of bits per sketch, the
number of sketches to use, and the ε and δ settings that we
can realistically achieve. To explore these parameters, we
ran a series of experiments on both real and synthetic data.

Data Source The synthetic data set contains 100,000
randomly-generated values, uniformly distributed in [0, 99,999].
The real data from Intel Berkeley Research Lab contains
98,884 temperature values from three adjacent sensor motes.
The temperature values form a normal distribution and are
in between 16◦C and 50◦C.

Parameters We study the parameter settings for sketches
and error bounds empirically, using both synthetic and real

8



Figure 2: The relation between the number of
sketches and the false alarm rate

data. We show the mean value of the estimators, along with
variance, based on multiple experiments for each setting of
the parameters. For synthetic data, we randomize the gen-
eration function (i.e. a pseudorandom number generator)
across experiments. For real data, we use a statistical re-
sampling technique known as bootstrapping to simulate the
effect of running many independent experiments, and allow
the derivation of variance estimates [9].

Unless specified, all experiments use 512 sketches, εc = 0.08,
and δ = 0.05 for median estimators. We run 100 times of
simulation for each experiment.

Figure 2 shows the relation between the number of sketches
and the false positive rate for verification. e = εc is the error
factor in Equation 2. In this experiment, we consider that a
sketch “fails” if there exists a witness value which fails the
CheckSum test. The failure testing is conservative because
the FM3 verifiable order statistic queries only require a small
subset of values passing the CheckSum test. As shown in
Figure 2, 512 sketches can achieve a 95% correct rate, i.e.
with only 5% false alarms.

5.2 Security evaluation
In Section 3, we have shown the error bounds of approximate
medians in misbehaving aggregator settings. In this experi-
ment, we show how many sources can perturb an aggregated
order statistic by a significant amount.

First we show that the probabilistic error is small and ir-
relevant to the sizes of population in a benign environment.
The second experiment compares the robustness of medians
and means by varying the proportion of polluted sources.

No attack: control group Figure 3 shows the error
distribution of medians in a benign environment. The error
|r(v)−R(v)|/n is kept less than 4% as the population goes
from 10,000 to 100,000. The result shows that, in a benign
environment, the FM3 performs much better than the worst
case scenario with error bound εq = 0.16 (by Eq. 5).

Figure 3: The error distribution of medians

Figure 4: Approximate medians and observed
means under a data pollution attack

Source-level misbehavior For the source-level misbe-
havior, we consider an optimally aggressive attacker who
moves values from one extreme of the order to the other,
e.g. from the bottom k to the top k. In this experiment
we use the sensor temperature data. The attacker raises the
bottom k values to 100. Figure 4 shows the errors in the
value domain. Median performs well before approaching the
breakdown point. There is a huge jump when the propor-
tion of the compromised sources goes beyond 50%. On the
other hand, the average gets worse in a stable pace. Ideally,
averages have 1/n breakdown point. However, since the val-
ues are limited within range [0, 100], the average is bounded
by the value range. However, the range check in practice
may require a run-time enforcement technique, which may
introduce security vulnerabilities as well.

5.3 Performance evaluation
We evaluate the time and space usage of FM3 Proof Sketch
using Intel Core 2 Duo 2GHz workstation with 2G mem-
ory. We tested our default setting with different number
of values, and tested different number of sketches aggregat-
ing 100,000 randomly-generated data. We summarizes the
results in Table 2 and Table 3.
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Table 2: Performance Comparison based on the number of values
Number of values 1k 2k 3k 4k 5k 6k 7k 8k 9k 10k

Stored witness data 4730 5760 6355 6785 7115 7375 7610 7810 7975 8125
Compression ratio 2.11 3.47 4.72 5.9 7.03 8.14 9.2 10.24 11.29 12.31

Total time (s) 1.6 3.1 4.6 6 7.6 9 10.6 12.3 14 15.2

Table 3: Performance comparison based on the num-
ber of sketches

Number of sketches 128 256 512
Stored witness data 2540 4575 8125
Compression ratio 39.37 21.86 12.31

Total time (s) 6 9.2 15.2

6. DISCUSSION
In this section, we discuss a possible generalization of our
problem space. We also propose several alternatives for de-
flation detection instead of knowing the universe size. Fi-
nally, we compare our work to previous work.

6.1 Generalization
Our protocol supports a more general query class of “ex-
clusive multiple choice” counting queries, where each source
says “yes” to one and only one out of a set of a queries.

We index these queries from q1 to qn. Similarly, in each
bit position, we keep two signatures that have the highest
and lowest indexes of the query qi. (In the previous con-
struction, we keep two signatures that have the highest and
lowest values.) To compute the count of

⋃
i≤k≤j qk, the ad-

ministrator retrieves the sketches S(j) for
⋃

1≤k≤j qk and

S(i) for
⋃

1≤k<i qk. |
⋃
i≤k≤j qk| = |S(j)| − |S(i)|. The rea-

son we cannot compute |qi| directly is when a qi event is
aggregated into the sketches, it may be masked by other
queries that have higher/lower index than the qi has. We
can only retrieve the accumulated counting of those pat-
terns with index larger or smaller than i. Compared with
the naive solution that obtains each counting separately, the
accumulative solution requires only O(ln a) times of space
instead of O(a).

6.2 Universe Size
The verifier requires the knowledge of universe size to detect
deflation. It is possible to have other ground truth as the
basis of detection. For example, a message in a high-density
broadcasting network often has many duplication. Attackers
have to find out all the clones in order to terminate the
message.

6.3 Previous Work
Earlier work addresses the secure aggregation problem with
one of two general approaches. The first class consists of
cryptographic solutions [4, 11, 22, 27, 33] that focus on in-
tended attacks. The cryptographic schemes either assume a
rigid aggregation topology in the network, or are specialized
to count and average functions. The other class of solu-
tions involve resilient network or protocol designs [23, 26]
for mitigating unintended failures. Though these schemes

improve resiliency against link/node failures, they are inse-
cure against malicious aggregators.

In addition to compromising data aggregators, attackers can
perturb results by pollution attacks that provide bad data at
the input to the aggregation process. Outlier detection [19,
29,30] can help detect the abnormal data sources. However,
outlier detection schemes rely on trusted intermediators or
servers to detect the anomaly.

Wagner [31] quantified how much damage an attacker can
cause actively under various statistical models, and sug-
gested the use of aggregation functions from robust statistics
to mitigate the impact of this class of attacks.

Approximate query processing improves communication or
space efficiency by giving up a certain degree of accuracy [1–
3,5]. Several approximate counting algorithms are proposed [12,
20, 24]. Of particular note in the context of secure dis-
tributed aggregation, Garofalakis et al. [12] proposed Proof
Sketches, a one-pass verifiable counting scheme based on FM
sketches [10]. Proof Sketches provide a direct solution for
order statistic queries. However, the solution, which counts
elements that fall in different value ranges, requires a prior
knowledge of the data distribution to determine the value
ranges for a better estimation, because the error is bounded
by the maximum number of values that fall into the ranges.
Moreover, the solution requires linear additional space re-
garding the number of value ranges.

Researchers have also worked on summarizing approximate
order statistics over data streams [8, 13, 15, 25] and dis-
tributed data sets [6, 14]. In particular, Greenwald and
Khanna [14] have proposed a one-pass algorithm for track-
ing quantiles in distributed environments. Their algorithm
provides εN bound with only sub-linear communication, but
to date there is no extension of that work to an adversarial
context.

7. CONCLUSION
In this paper, we present the FM3 Proof Sketch, an efficient
distributed aggregation protocol that answers a variety of
approximate queries with guaranteed error bounds, while re-
maining secure against misbehaving aggregators, and robust
to misbehaving data sources. Our protocol only requires a
single communication pass and O(ln a lnn) communication.
To our knowledge, this is the first efficient protocol that can
handle both these types of attacks.
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