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Figure 1: Illustration of filter spreading. Left: an all-in-focus image. Right: The result of applying depth of field postprocessing via fast filter
spreading. Center: A 2D (matrix) slice of the 4D (tensor) representation of the filter spreading operator. This particular slice corresponds to
the column of the image indicated in red. The top and bottom green dotted lines show the correspondence between depth discontinuities in
the image and discontinuities in the matrix. The center green dotted line shows how a discontinuity in the derivative of the depth map impacts
the matrix. Observe that each column of the matrix is very simple. Our method achieves constant-time-per-pixel filtering by exploiting this
column structure.

Abstract

In this paper, we introduce a technique called filter spreading,
which provides a novel mechanism for filtering signals such as
images. By using the repeated-integration technique of Heckbert,
and the fast summed-area table construction technique of Hensley,
we can implement fast filter spreading in real-time using current
graphics processors. Our fast implementation of filter spreading is
achieved by running the operations of the standard summed-area
technique in reverse - e.g. instead of computing a summed-area ta-
ble and then sampling from a table to generate the output, data is
first placed in the table, and then an image is computed by taking
the summed-area table of the generated table. While filter spread-
ing with a spatially invariant kernel results in the same image as one
produced using a traditional filter, by using a spatially varying fil-
ter kernel, our technique enables numerous interesting possibilities.
(For example, filter spreading more naturally mimics the effects of
real lenses, such as a limited depth of field.)
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1 Introduction

Image filtering is a pervasive operation in computer graphics. In
this paper, we describe a technique which we refer to as filter
spreading. Filter spreading can be thought of as a dual of stan-
dard image filtering. In standard image filtering, the output value
of a pixel is determined by all the pixels that are spatially nearby.
Conceptually, this is a gathering operation. This work introduces a
method where each pixel spreads its value to nearby pixels. In the
special situation where the filter kernel is constant over the entire
image, the gather and spreading formulations are identical.

The paper is organized as follows: Section 2 introduces the concept
of filter spreading using a linear algebraic approach. Next, in Sec-
tion 3, we provide background information and discuss previous
work. Then, in Section 4 we present the mathematical derivation
of fast filter spreading via repeated integration. In Section 5 we de-
scribe how to translate the mathematics into an implementation of
our algorithm. Section 6 presents the details of an example GPU
implementation that provides real time performance. Section 7 de-
scribes separable spreading, a variation on our basic method that



Figure 2: A spreading matrix for blurring a one dimensional im-
age with a sinusoidally varying Gaussian kernel. Observe that the
matrix is not symmetric, i.e. the columns are simply Gaussians,
whereas the rows are more complex, containing bits and pieces of
various sized Gaussians.

provides increased speed at the expense of a slight loss in visual
quality. Section 8 presents several example applications of filter
spreading. Finally, future work and conclusions are presented Sec-
tion 9.

2 Spreading vs. Gathering

In this section, we use linear algebra to illustrate the relation be-
tween traditional image filtering (gathering) and filter spreading.
In the texture mapping literature, gathering is known as reverse-
mapping, and spreading is known as forward-mapping. Spreading
is sometimes known as scattering, although we avoid this term be-
cause it implies randomness.

If an image is considered to be a column vector of pixels I , then a
linear image filter can be considered to be a linear operator A acting
on that vector to produce a filtered image O via matrix vector mul-
tiply: O = A∗I . Usually we think of image filters as being defined
by the filter kernel, but an image filter can instead be defined by a
matrix that transforms an input image vector into a filtered image
vector. This linear algebra approach is complicated by the fact that
vectors are one dimensional arrays of numbers, whereas images are
two dimensional arrays of pixels. Two dimensional images can be
represented as vectors by unraveling the image in either row major
or column major order. Alternatively, the image can be kept as a two
dimensional entity, in which case the linear operator corresponding
to the filter becomes an order-4 tensor. Our purpose in discussing
the matrix viewpoint is conceptual, rather than algorithmic, so we
simplify the discussion by restricting ourselves to one dimensional
images, which lend themselves naturally to vector representation.

Consider a filter with a Gaussian kernel whose standard deviation
varies from pixel to pixel. Such a filter might be used, for example,
for-depth-of-field postprocessing. The variation in standard devia-
tion depends on the particular scene being blurred, but for purposes
of this example we use a simple sinusoidal variation. The corre-
sponding matrix clearly contains one Gaussian of appropriate stan-
dard deviation, for each pixel. Conventionally filters are designed
to compute the output by taking weighted averages of the input, so
the Gaussians should be placed in the rows of the matrix.

Consider what would happen if we had constructed the matrix by
arranging the Gaussians down the columns, rather than the rows,
as illustrated in Figures 1 and 2. Our filter now has the effect of
spreading input pixels into Gaussians, rather than taking weighted

averages using Gaussian weights. If the matrix happened to be sym-
metric, then the rows would be the same as the columns, and the
distinction between spreading and gathering would vanish. How-
ever, in many cases, such as the ones illustrated in Figures 1 and 2,
the matrix is not symmetric, and so spreading and gathering pro-
duce different filters. The spreading approach to filtering is the
topic of the current paper. For some applications, such as depth-of-
field postprocessing, the use of gathering leads to artifacts, because
spreading is a more appropriate model to the underlying optical pro-
cess.

The highlighted row in Figure 2 shows that rows in a spreading ma-
trix are not simply the filter kernel, but instead can contain arbitrary
slices of different sized filter kernels. Even for a simple kernel such
as a Gaussian, rows in the matrix can be arbitrarily complex. There-
fore fast gather methods are not applicable, because the rows cannot
be compactly expressed. The highlighted column, and indeed any
column, is simply a Gaussian and can thus be encoded compactly.

The matrix view of image filtering illustrates the following impor-
tant facets of the image filtering problem: 1. Image filtering in
general has O(N2) time complexity, because the matrix has N2

entries. Note that N is the number of pixels in the image. If the
filter kernels are small, most matrix entries are zero, meaning the
matrix is sparse. This is why naive filtering is sufficiently fast for
small filters. 2. We can equivalently describe any linear filter as
spreading or gathering, by building the matrix and then taking ei-
ther the rows or the columns; however, only the rows or the columns
will be simple to describe (not both). 3. Fast gather filters oper-
ate by compactly representing the rows. 4. The columns of the
spreading matrix are the same as the rows of the more traditional
gather matrix, so the columns of the spreading matrix can be rep-
resented compactly. This suggests the possibility of fast spreading
algorithms that operate on similar underlying principles as the fast
gather filters.

Both spreading and gathering are straightforward to implement in
software and on graphics hardware. Spreading simply involves ac-
cumulating filter kernels of various intensities. Spreading can be
implemented on graphics hardware by rendering a vast quantity of
point sprites, with alpha blending turned on and configured as ad-
ditive blending. Gathering, on the other hand, simply involves it-
erating and accumulating over each pixel within the support of the
filter kernel. Gathering can be implemented on graphics hardware
by sampling the input image using texture units. Unfortunately,
these straightforward implementations are O(N2), as they inher-
ently must be if they correspond to multiplication by an N by N
matrix. When the blur is small, the matrix is sparse, so the pro-
portionality constant is significantly less than 1. Naive spreading
or gathering is thus acceptable when blur is small. When blur is
large, the matrix is not sparse, and the proportionality constant ap-
proaches 1. Large blur therefore necessitates accelerated filters that
operate in constant-time with respect to blur size.

The literature contains a variety of constant-time image filters, such
as [Williams 1983] and [Crow 1984]. These filters were intended
for texture map downsampling, an application which clearly re-
quires filters to be of this gathering type, taking weighted averages
of the texture over the region that falls under a given pixel. These
methods can be thought of as utilizing a compressed representation
of the blur matrix, where each row is encoded very compactly as a
position and size.

In this paper, we describe how to construct fast spreading filters, i.e.
methods that compactly represent the columns, rather than the rows
of the matrix.



3 Background

Several researchers have described research related to our work.
Perlin [Perlin 1985] describes the benefits of using repeated box
filters for image filtering, and Heckbert [Heckbert 1986] describes
a technique that uses the idea of spreading to implement spatially
invariant filtering with a limited-memory footprint. Although these
both have the notion of reversing the filtering operation (spread-
ing versus gathering), neither discuss the superiority of spreading
for certain applications such as depth of field and motion blur, and
neither develop the reduced precision requirements in any detail.

To implement filter spreading as a constant-time filter we use
summed-area tables, introduced by Crow [Crow 1984]. Once gen-
erated, a summed-area table provides a means to evaluate a spatially
varying box filter in a constant number of texture reads. Addition-
ally, we use the work of Heckbert [Heckbert 1986], who extended
Crow’s work to handle complex filter functions via repeated inte-
gration. As part of our implementation, we use the technique intro-
duced by Hensley et al. [Hensley et al. 2005] to compute summed-
area tables using GPUs. There have been other constant time filters
before ours, beside Crow’s and Heckbert’s – these are all gather fil-
ters.

Mipmapping [Williams 1983] is a ubiquitous constant-time filter
used in computer graphics. Several researchers [Ashikhmin and
Ghosh 2002; Yang and Pollefeys 2003] have used a technique that
combines multiple samples from mipmaps to approximate various
generic filters. Using mipmaps in this fashion suffers from artifacts
that are introduced since a small step does not necessarily introduce
new data to the filter; it only changes the weights of the input val-
ues. These artifacts are compounded by the fact that small steps in
another direction can introduce a large amount of new data. Both
of these issues with mipmaps create noticeable artifacts when they
are used to implement generic filters. As an example, the authors
of [Demers 2004] jitter the sample position in an attempt to make
the artifacts in implementation less noticeable, which resulted in a
loss of visual fidelity. Most recently, [Lee et al. 2009] show how
the quality of blurring using mipmaps can be improved by using
3x3, rather than 2x2 filters during mipmap construction, and circu-
lar sampling, rather than simple bilinear interpolation, while read-
ing from the mipmap. This solution produces smooth blur in typical
cases, though they don’t describe any way of selecting alternative
filter kernels.

Kraus and Strengert [Kraus and Strengert 2007] show that the MIP-
mapping hardware in GPUs can be cleverly used to achieve pyra-
midal image filters that do not suffer from the aforementioned ar-
tifacts. By carefully controlling the downsampling (analysis) fil-
ter, and by also using an appropriate pyramidal upsampling (syn-
thesis) filter, bilinear, biquadratic, and even bicubic filters can be
achieved in constant time. They describe a GPU implementation
that achieves realtime frame rates. However, Kraus and Strengert’s
method provides only Gaussian-like filters, with no choice over
point spread function.

Fournier and Fiume [Fournier and Fiume 1988] describe a constant
time filter that operates by pre-convolving the input image with a
cleverly-arranged hierarchy of polynomial basis functions. The im-
age is divided uniformly into a coarse grid of boxes. Each box is
considered as a vector, of which the dot product is computed with
each polynomial basis function. The resulting scalars are stored in a
table. This process is repeated for variously scaled boxes, resulting
in a pyramidal table. This table contains all the information neces-
sary to filter the image with arbitrary piecewise-polynomial filters
in constant time. To compute a pixel of the output image, an appro-
priate level of the pyramid is first selected. Then, the desired filter
kernel is approximated in a piecewise-polynomial fashion, aligned

with the grid of table cells centered at the output pixel. Finally, the
color of the output pixel is simply the linear combination of poly-
nomial coefficients weighted by the pre-computed scalars.

Gotsman described in [Gotsman 1994] a constant time filter that
also operates by pre-convolving the input image with a collection
of basis functions. These basis functions are derived from the sin-
gular value decomposition (SVD) of the desired filter kernel family.
The SVD ensures that the basis will be optimal in a least-squares
sense. To find the color of an output pixel, all that is required is
an appropriate linear combination of corresponding pixels from the
pre-convolved image set.

While fast Fourier transforms, including highly optimized imple-
mentations such as FFTW [Frigo and Johnson 2005] are a standard
signal processing tool for performing fast convolution, they are not
applicable, because we desire filters that have a spatially varying
filter kernel and are thus not convolutions.

Kass, Lefohn, and Owens [Kass et al. 2006] describe a constant
time filter based on simulated heat diffusion. Color intensities are
treated as heat, and desired blur is treated as thermal conductivity.
An implicit integrator enables arbitrary blur size in constant time.
Heat diffusion inherently produces Gaussian PSFs. Interestingly,
heat diffusion is a form of blur that is neither gathering nor spread-
ing.

Constant time filters generally have the same general structure:
build a table of precomputed averages, then read sparsely from the
table to determine blurred pixel colors. While constant time fil-
ters generally operate as gather filters, in principle they could all be
turned into constant time spreading filters by reversing the order of
operations. Specifically, constant time spreading involves first writ-
ing sparsely to a table, then constructing the blurred colors implied
by the table.

We build our constant time spreading filter on the principles of
Heckbert’s repeated integration method, rather than one of the oth-
ers, because only repeated integration enables arbitrary piecewise-
polynomial kernels that do not need to be aligned with a grid. Fur-
thermore, repeated integration is itself a simple and efficient pro-
cess and can be implemented on the GPU, and so can be performed
online rather than ahead of time.

Kosloff, Tao, and Barsky described a variety of fast image filters
[Kosloff et al. 2009]. One of their filters spreads rectangles of con-
stant intensity. The method described in the present paper spreads
arbitrary polynomial PSFs. It should be noted that a rectangle of
constant intensity is the simplest example of a polynomial PSF.
Therefore the present method can emulate the method of [Kosloff
et al. 2009] as a special case.

4 The Mathematics of Fast Filter Spreading

This section describes the mathematics underlying our method.
These mathematics are similar to those used by Heckbert, but we
present them here in the context of spreading.

For each input pixel, we want to spread a filter kernel into the output
image. The kernel can vary in shape and size for each input pixel.
In the general case, this implies that filtering requires O(n) time per
pixel, where n is the area of the filter. In terms of the matrix, fil-
ter spreading involves accumulating the columns of the blur matrix
into the output image. The columns have size O(n), leading to the
aforementioned O(n) time per pixel. This corresponds to filtering
a signal f with filter g, i.e. f ∗ g. By working only with piecewise-
polynomial kernels, we can reduce this to O(1) time. Consider, for
example, a filter that is a constant-intensity rectangle. We can de-
scribe a rectangle by merely specifying its four corners, which takes



O(1) time to do, independent of the size of the rectangle. Likewise
we can describe polynomial filters by specifying the coefficients,
which again are O(1) with respect to filter size, though in this case
the constant is proportional to the degree of the polynomial. Com-
pactly describing the filter corresponds to compactly describing the
columns of the blur matrix. We describe the mathematics primarily
for a 1D signal, but application to a 2D image is straightforward.

Rather than spreading the filter kernel itself, we spread the deriva-
tive of the kernel. Observe that the derivative of a (discrete) 1D
box filter is simply two deltas, one at the left end of the box and
one at the right. The result of filtering with deltas is a signal that
is the derivative of the signal we want. Therefore we integrate to
generate our final signal. If instead we wish to spread Nth order
polynomials, we spread the Nth derivative of the kernel, and in-
tegrate N times. This entire process can be expressed compactly
as f ∗ g =

∫ n
(f ∗ dng

dxn ) (see [Heckbert 1986] for a proof). Even
though a direct computation of f ∗g requires O(n) time per sample,
computing

∫ n
(f ∗ dng

dxn ) is equivalent and only requires O(1) time
per sample, because dng

dxn is sparse and integration is a constant-time
per sample operation. For an illustration of repeated integration by
filter spreading, see Figure 3.

Equivalently, we can describe our spreading technique in terms of a
matrix factorization. Our original matrix, which is large and dense,
is factored into two simpler matrices. One of these simpler matri-
ces is sparse, as it contains only the derivatives of the filter kernels.
The second simple matrix is triangular and contains values of 1.0,
corresponding to the integration step. We mention this explicit fac-
torization as it may be of theoretical use in the future and is useful
for understanding our technique, but we will not rely on it in build-
ing our algorithm.

To apply this process to 2D images, we first construct our filters in
1D. We then create 2D filters as a tensor product of 1D filters. The
2D filter is spread, and integration proceeds first by rows, then by
columns. Integrating by rows and then by columns works because
summed area table construction is separable. The tensor-product
nature of our filters is a restriction imposed by the separable nature
of summed area tables. Although our filters are composed of arbi-
trary polynomials, these polynomials are defined by a rectangular
parameterization. This precludes, for example, radially symmetric
polynomials. The tensor-product restriction is less limiting than it
may seem, however, because it is possible to construct filter kernels
by placing separable polynomials adjacent to each other, leading to
a piecewise-separable filter kernel. It may appear that introducing
additional polynomial pieces will degrade performance. In prac-
tice, this is not the case; when more blocks are used, the order
of the polynomials can be decreased, keeping costs approximately
constant.

5 The Fast Filter Spreading via Repeated In-
tegration Algorithm

The mathematics described in the previous section imply a straight-
forward, easy-to-implement algorithm. This section describes that
algorithm and shows how to use it with a variety of filter kernels.

5.1 Algorithm

To blur an image using our method, we iterate over each pixel in
the input image. A filter kernel is selected for that pixel, in an
application-dependent manner. For example, in the case of depth-
of-field postprocessing, the filter kernel is the point spread func-
tion of that pixel for the desired lens model. Deltas for that filter
kernel are determined, using one of the methods described section

Figure 3: Visualization of cubic repeated integration in 1D, for a
single filter kernel. Top: the five deltas that constitute the fourth
derivative of the filter kernel. Moving downwards, each image
shows the results of successive rounds of integration, culminating in
the filter kernel itself. Observe that each round of integration leads
to a higher order polynomial, from dirac deltas to piecewise con-
stant, through piecewise linear and piecewise quadratic, and finally
piecewise cubic.

5.2. These deltas are accumulated into a buffer at locations centered
around the pixel in question. After each pixel has been spread, the
buffer is integrated to yield the final, blurred image.

The pseudocode in Figure 4 implements our algorithm. In this pseu-
docode, input is the input image, buffer is the buffer into which we
accumulate, and output is the final, blurred image. The aforemen-
tioned images and buffer are two dimensional floating point arrays
of size width by height. delta is a struct containing pixel coordi-
nates x and y, and a floating point number intensity. For clarity of
exposition, this code operates on monochromatic images. RGB im-
ages are easily and efficiently handled by slightly modifying this
code to use RGB vectors and SIMD operations.

5.2 Filter Design

Our method is widely applicable to a range of image-processing
operations because our method can apply a variety of different filter
kernels. In this section, we describe how to construct deltas for
those kernels, in order of increasing complexity.

5.2.1 Constant Intensity Rectangles

The simplest possible kernel for our method is a box filter. This is
a first order method with deltas located at the four corners of the
desired box. The intensity of all four corners is the same, and is



//Initialization:
//Clear all entries in buffer and output to 0.
//Phase I.
for(int i=0; i<width; i++)
for(int j=0; j<height;j++)
{

//The filter size can vary per pixel
//according to the application’s needs.
int filter_size = get_filter_size(i,j);
//The deltas are a collection of
//points centered about pixel location i,j.
//Their positions are scaled to represent
//filters of the requested size.
//The positions and intensities
//of the deltas are created
//by differentiating the
//desired kernel n times.

delta d[] = make_deltas(i,j,filter_size);
for k = 0:d.length
{
buffer[d[k].x][d[k].y] += d[k].intensity;
}

}

//Phase II.
for(int i=0; i < order; i++)
for(int y=1; y < height;y++)
{

accum = 0;
for(int x=0; x<width; x++)
{
accum += buffer[x][y];
output[x][y] = accum + output[x][y-1];
}

}

Figure 4: Pseudocode Implementation of Repeated Integration
Spreading

determined by the color of the pixel. At the top left, top right, bot-
tom right, and bottom left corners, the signs are positive, negative,
negative, and positive, respectively.

This filter is extremely fast and simple, but box filters are rarely the
ideal choice of filter.

5.2.2 Repeated Box Filters

By convolving a box filter with itself N times, we achieve an Nth
order B-spline basis function, which approximates a Gaussian. Nth
order box filters are useful, for example, for image smoothing and
depth-of-field postprocessing. See Figure 5 to see the effect of first,
second, and third order repeated box filtering.

Instead of four corners, there will be a grid of (order + 1) ×
(order + 1) deltas distributed uniformly across the filter support.
First, we evaluate (−1)i

(
order

i

)
to determine the signed intensities

for a one dimensional filter, where i ranges from 0 to order. Next,
we expand the vector of signed intensities into two dimensions by
taking the outer product of the vector with itself.

A simple way to use Nth order box filters to approximate an arbi-

trary low-frequency filter kernel is to subsample the desired kernel
onto, say, an m × m grid. We will then use an m × m grid of re-
peated box filters as our approximate filter kernel. Effectively, our
repeated box filter is a reconstruction kernel, used to upsample the
low-resolution kernel to the desired, possibly large size. This works
well, because Gaussians make good reconstruction kernels.

5.2.3 Arbitrary Piecewise-Polynomials

In general, we can spread Nth order piecewise polynomials, us-
ing Nth order repeated integration. To generate the deltas, we dif-
ferentiate the kernel N times. For well-behaved kernels that can
be described by controlling only the Nth derivative, the process
works smoothly. However, degenerate scenarios can occur, requir-
ing lower order derivatives to be directly controlled as well. In
such cases we must split our filter into lower order components and
higher order components, filter each separately, and then combine.

5.3 Normalization

After delta spreading and integration, a normalization step is neces-
sary to ensure that no unwanted brightening or dimming occurs. In
a gather filter, normalization is simply a matter of dividing through
by the integral of the kernel. In spreading, however, each pixel
receives contributions from other pixels via an unknown and po-
tentially complex set of kernels with various size and shape. To
normalize, we apply our filter to an all-white normalization image
(intensities 1.0 everywhere). We then divide the filtered input image
by the filtered normalization image.

5.4 Precision Requirements

Unlike Heckbert’s method, our method’s precision requirements do
not increase with image size. Rather, our precision requirements
increase with filter size. The filter is generally much smaller than
the image, so our method will generally require much less preci-
sion than Heckbert’s method. To determine how much precision
our method needs, consider integrating the accumulated delta im-
age N times. After each round of integration, the values will have
an increasingly large magnitude. We must have enough precision
to represent the largest magnitude encountered. The largest value
depends on the particular filter kernel being used and on the partic-
ular image being filtered, but here we will show the requirements
for the repeated box filter on an all-white image (the worst case).
Assuming 8 bits per channel, for the repeated box filter, we have
value = 255 ∗ ((width − 1)/(n))n in one dimension, and the
square of that in two dimensions, where width is the width of the
filter, and n is the order.

For example, consider using our method with 32 bit two’s
complement integers, which can represent numbers as large as
2,147,483,647. In 1D, we can have filters as large as 611 pixels
for 3rd order filtering, 216 pixels for 4th order, and 122 pixels for
5th order. This precision requirement is independent of image size.
By comparison, Heckbert’s repeated integration method requires 35
bits of precision for a 3rd order filter, 44 bits for 4th order, and 53
bits for 5th order, on a 1D image of size 512, regardless of filter
size.

6 GPU Implementation Details

We have implemented repeated integration spreading on the GPU
using DirectX 10.

We perform delta spreading via bufferless vertex rendering with al-
pha blending. To accumulate deltas, each delta is rendered as a



(a) Input Image (b) First-order spreading filter

(c) Second-order spreading filter (d) Third-order spreading filter

Figure 5: An example of image blurring using filter spreading. Im-
age (b) shows the effect using a first-order filter. Blocky artifacts
can clearly be seen since a first order is simply a box filter. Im-
age (c) shows the effect using a second-order filter. The amount of
blockyness is greatly reduced since the spreading filter is a Bartlett
filter. Image (d) shows the effect of using a third-order filter (a
quadratic function). The third order filter dramatically reduces the
artifacts of the first and second order filters.

point primitive. To avoid transferring large amounts of geometry,
the points are generated without the use of vertex buffers, via the
vertex id feature of DirectX 10. A vertex shader maps the vertex id
to pixel coordinates and appropriate signed intensities. To cause the
signed intensities to accumulate rather than overwrite one another,
alpha blending is used, configured to act as additive blending.

Any GPU implementation of SAT generation could be used for the
repeated integration step. Currently we are using the recursive dou-
bling approach [Hensley et al. 2005]. To repeat the integration,
we can simply run the SAT generation routine iteratively, using the
output of the previous iteration as the input to the next.

Roundoff error can accumulate quite significantly during the course
of accumulating signed intensities, and during repeated integration.
As the integration scan traverses the image, contributions from any
given filter kernel should go to zero outside the region of support.
Unfortunately, roundoff errors sometimes lead to leakage, as the
signal does not quite return to zero in the least significant digits.
One solution is to use integers rather than floating point numbers,
because integers do not suffer from roundoff error. Unfortunately,
the alpha blending hardware in today’s GPUs only operates on
floating point numbers. While this will be fixed in the next gen-
eration of GPUs, we use a workaround in the meantime.

Our workaround is to multiply the floating point numbers by a
power of two (e.g. 28), to reduce the impact of roundoff. Mul-
tiplying by a power of 2 shifts zeros into the least significant bits,
moving the important information into more significant bits that are

less susceptible to roundoff. As a postprocess, we divide through
by the same power of 2, removing the insignificant bits that were
corrupted by roundoff error. A side effect of this workaround is that
it wastes bits. Our method can potentially require many bits of pre-
cison when used for high order polynomials, so double precision
computation is preferable. While GPUs support doubles, doubles
are not currently available through DirectX. We find single preci-
sion to be enough at least through third order for the filter kernels
we are interested in.

Our current implementation performs second order blurring on a
2.6ghz dual core Athlon with an ATI Radeon HD4870 GPU at 45
frames per second at a resolution of 800x600 . During a single
frame, 8ms is spent spreading deltas, and 12ms is spent integrating.

7 Separable Spreading

It is well known that images can be blurred more efficiently if the
blurring is performed in a separable manner. That is, it takes less
time to blur a 2D image by first blurring the rows in 1D and then
the columns in 1D, rather than blurring the image directly in 2D
[Riguer et al. 2003][Zhou et al. 2007]. Our fast spreading filter
can be made even faster by using it in a separable context. The
resulting algorithm is faster than direct separable blurring and faster
than our non-separable fast filter spreading method. Perhaps more
importantly, because separable filtering operates in 1D, precision
requirements are dramatically reduced. The largest number that
must be representable is now only the square root of the largest
number required for 2D filter spreading. This enables the use of
large, higher order filters, without excessive precision requirements.

Unfortunately, during the second (vertical) step of separable spread-
ing, colors from numerous pixels have already been combined. This
means that no matter what filter size we use during the vertical step,
some colors will be blurred either too much or too little. In prac-
tice, this only poses a problem when the amount of blur changes
very rapidly from one pixel to the next. For applications where
there is rapid spatial variation in blur, we must decide whether to
use the more efficient separable blur, or the more accurate 2D blur.
We feel that this is an interesting and useful tradeoff.

To partially mitigate the artifacts introduced by separable blurring,
we blur the blur map, as well as the images, during the horizontal
step. In other words, during horizontal blurring, information about
how much the source pixels were meant to be blurred is propagated
along with the colors. The vertical blurring thus receives a more
accurate view of how much to blur each pixel.

See Figure 8 (e) and (f) for examples.

8 Results and Example Applications

In this section we present several applications that can take advan-
tage of filter spreading.

8.1 Depth of Field

Limited depth of field, i.e. the fact that only a subset of any given
image is typically in focus, is an important effect for realistic com-
puter generated images. The natural formulation for accurately sim-
ulating depth of field is to integrate across the aperture, generally
by sampling at a number of discrete sample locations [Cook et al.
1984] [Haeberli and Akeley 1990]. Sampling the aperture is quite
slow, so post-process methods can be used instead [Potmesil and
Chakravarty 1982].

Our fast spreading filter is ideal for depth-of-field postprocessing.



Figure 6: Lena blurred with a 5th order repeated box filter, a highly
accurate approximation to a Gaussian.

Figure 7: Depth-of-field postprocessing. The top two images use
layers to resolve visibility.

(a) Input Image (b) Blur Map

(c) Spreading (d) Gathering

(e) Separable Spreading Without
Fix

(f) Separable Spreading With Fix

Figure 8: Various algorithms adding depth of field to the same im-
age. Observe that our spreading method has fewer artifacts than
the conventional gathering method (summed area tables). Our sep-
arable spreading method has lower precision requirements than our
non-separable spreading method, but separable spreading intro-
duces artifacts at the corners of objects. Blurring the blur map
largely fixes the artifacts.

At each pixel of the input image, we read depth from the depth
map, and transform the depth value into the radius of the circle of
confusion radius using a thin lens model. A filter kernel of size
equal to the circle of confusion is then spread. This spreading ap-
proach to depth-of-field postprocessing, when combined with layer
compositing as proposed by [Scofield 1994] and improved by [Lee
et al. 2008], eliminates the intensity leakage and depth discontinu-
ity artifacts common to depth of field postprocess methods [Demers
2004]. Results can be seen in Figure 7. The top two images in Fig-
ure 7 handle visibility using layering, and are thus free of artifacts.
The bottom two images in Figure 7 do not use layers, and so do
not strictly respect visibility. Therefore some artifacts can be seen
where overlapping objects have vastly different blur levels.

In addition to reducing artifacts, via spreading, our depth of field
method overcomes the precision requirements of Heckbert’s re-
peated integration method, enabling us to use higher order filters
on a GPU.

It is not always practical to modify a renderer to output layered
images, so it is useful if a depth of field postprocess method can
do a reasonable job in the non-layered case, even though some of
the required pixels are occluded and thus not available. In Figure
8, we compare our spreading method, both in separable and non-
separable form, with gathering via summed area tables. While some
artifacts are unavoidable, spreading produces significantly fewer ar-
tifacts than gathering.



8.2 Motion Blur

Motion blur is another effect that makes computer generated im-
ages appears photorealistic. To accurately simulate motion blur,
the computed image needs to be integrated over a discrete amount
of time. Often, it is not practical to implement physically accurate
motion blur, due to time constraints, so an approximation must be
made. One common technique is to implement motion blur as a
post-process.

While Heckbert proposes using repeated integration to implement
motion blur, which is very similar to our approach, it is important
to realize that our technique requires fewer bits of precision than
his to get accurate results. This is because our technique is only
dependent on the filter order and filter size, and is not dependent on
input image size.

8.3 Edge Detection

Our method can be used to implement edge detection filters, simply
by spreading the appropriate polynomial coefficients. For exam-
ple, we can generate an Nth order approximation to a difference of
Gaussians filter using an Nth order piecewise polynomial, requiring
N integrations.

8.4 Other Blurring

Fast filter spreading can be used for any image blurring task, such as
softening the edges of a photograph to draw attention to the center
(Figure 6). Higher order filters, 5th order in this case, can be used
to generate very high quality Gaussian blur.

9 Conclusions and Future Work

In this paper we have introduced a novel technique for filtering im-
ages that uses a spreading paradigm as opposed to the more com-
monly used gather paradigm. When using spatially invariant fil-
ters, both methodologies result in the same image, although the
spreading implementation reduces the precision required when us-
ing a summed-area tables. When using spatially varying filters, the
spreading paradigm results in a different, in some cases more use-
ful, filtering operation than gathering. A depth of field effect is one
example application where this difference can be exploited to pro-
duce images with high quality.

For future work, we plan to further develop other applications, such
as soft shadow rendering, and develop a methodology to approxi-
mate arbitrary filter functions using constant time techniques such
as repeated summed-area tables. In particular, we plan to bound
the error associated with approximating an arbitrary function with a
spreading filter of a set order. Additionally, we would like to further
explore the relationship between the spreading filters and gathering
filters, and how transformations from one space to the other space
can be made.

Finally, we believe that exploiting the matrix structure of filtering
operations is a fertile area for future work. We intend to examine
other structures that we might find in the filter matrix, aside from
simply rows and columns, as a way of finding new algorithms.

References

ASHIKHMIN, M., AND GHOSH, A. 2002. Simple blurry reflections
with environment maps. J. Graph. Tools 7, 4, 3–8.

COOK, R., PORTER, T., AND CARPENTER, L. 1984. Distributed
ray tracing. In ACM SIGGRAPH 1984 Conference Proceedings,
137–145.

CROW, F. C. 1984. Summed-area tables for texture mapping. In
SIGGRAPH ’84: Proceedings of the 11th annual conference on
Computer graphics and interactive techniques, ACM Press, New
York, NY, USA, 207–212.

DEMERS, J. 2004. GPU Gems. Addison Wesley, ch. ”Depth of
Field: A Survey of Techniques”, 375–390.

FOURNIER, A., AND FIUME, E. 1988. Constant-time filtering with
space-variant kernels. In SIGGRAPH ’88: Proceedings of the
15th annual conference on Computer graphics and interactive
techniques, ACM, New York, NY, USA, 229–238.

FRIGO, M., AND JOHNSON, S. G. 2005. The design and imple-
mentation of fftw3. Proceedings of the IEEE 93 (2) Special Issue
on Program Generation, Optimization, and Platform Adaptation
93, 2 (Feb.), 216–231.

GOTSMAN, C. 1994. Constant-time filtering by singular value
decomposition. In Computer Graphics Forum, 153–163.

HAEBERLI, P., AND AKELEY, K. 1990. The accumulation buffer:
hardware support for high-quality rendering. In SIGGRAPH ’90:
Proceedings of the 17th annual conference on Computer graph-
ics and interactive techniques, ACM, New York, NY, USA, 309–
318.

HECKBERT, P. S. 1986. Filtering by repeated integration. In
SIGGRAPH ’86: Proceedings of the 13th annual conference on
Computer graphics and interactive techniques, ACM Press, New
York, NY, USA, 315–321.

HENSLEY, J., SCHEUERMANN, T., COOMBE, G., SINGH, M.,
AND LASTRA, A. 2005. Fast summed-area table generation and
its applications. In Computer Graphics Forum, vol. 24, 547–555.

KASS, M., LEFOHN, A., AND OWENS, J. 2006. Interactive depth
of field. Pixar Technical Memo 06-01 (January).

KOSLOFF, T. J., TAO, M. W., AND BARSKY, B. A. 2009. Depth
of field postprocessing for layered scenes using constant-time
rectangle spreading. In Graphics Interface 2009.

KRAUS, M., AND STRENGERT, M. 2007. Depth of field rendering
by pyramiadal image processing. In Computer Graphics Forum
26(3).

LEE, S., KIM, G. J., AND CHOI, S. 2008. Real-time depth-of-
field rendering using splatting on per-pixel layers. Computer
Graphics Forum 7, 27, 1955–1962.

LEE, S., KIM, G. J., AND CHOI, S. 2009. Real-time depth-of-
field rendering using anisotropically filtered mipmap interpola-
tion. IEEE Transactions on Visualization and Computer Graph-
ics 3, 15, 453–464.

PERLIN, K., 1985. State of the art in image synthesis. SIGGRAPH
Course Notes.

POTMESIL, M., AND CHAKRAVARTY, I. 1982. Synthetic im-
age generation with a lens and aperture camera model. In ACM
Transactions on Graphics 1(2), 85–108.

RIGUER, G., TATARCHUK, N., AND ISIDORO, J. 2003. ShaderX2:
Shader Programming Tips and Tricks with DirectX 9, W.F. Engel,
ed. Wordware, ch. 4, Real-Time Depth of Field Simulation, 529–
556.



SCOFIELD, C. 1994. 2 1/2-d depth of field simulation for computer
animation. In Graphics Gems III, Morgan Kaufmann.

WILLIAMS, L. 1983. Pyramidal parametrics. SIGGRAPH Comput.
Graph. 17, 3, 1–11.

YANG, R., AND POLLEFEYS, M. 2003. Multi-resolution real-
time stereo on commodity graphics hardware. In Conference on
Computer Vision and Pattern Recognition.

ZHOU, T., CHEN, J. X., AND PULLEN, M. 2007. Accurate depth
of field simulation in real time. In Computer Graphics Forum
26(1), 15–23.


