
On-time Network On-Chip: Analysis and Architecture

Dai Bui
Alessandro Pinto
Edward A. Lee

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2009-59

http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-59.html

May 8, 2009

Copyright 2009, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Acknowledgement

This work was supported in part by the Center for Hybrid and Embedded
Software Systems (CHESS) at UC Berkeley, which receives support from
the National Science Foundation (NSF awards #0720882 (CSR-EHS:
PRET) and #0720841 (CSR-CPS)), the U. S. Army Research Office (ARO
#W911NF-07-2-0019), the U. S. Air Force Office of Scientific Research
(MURI #FA9550-06-0312), the Air Force Research Lab (AFRL), the State
of California Micro Program, and the following companies: Agilent, Bosch,
Lockheed-Martin, National Instruments, and Toyota.

This work is also supported by Vietnam Education Foundation (VEF).

On-time Network On-Chip: Analysis and
Architecture

Dai Bui, Alessandro Pinto, Edward A. Lee
Electrical Engineering & Computer Sciences

University of California, Berkeley
{daib, apinto, eal}@eecs.berkeley.edu

Abstract— Game, multimedia, consumer and control ap-
plications demand low power and high performance com-
puting platforms capable of providing real-time services.
Multi-core architectures, supported by on-chip networks,
are emerging as scalable solutions to fulfill these require-
ments. However, the increasing number of concurrent ap-
plications running on these platforms, and the time-varying
nature of their communications give rise to unpredictable
delays.

We propose simple and flexible on-chip protocol and ar-
chitecture that provide application level communication ser-
vices with end-to-end timing guarantees. We prove the cor-
rectness of our protocol using analytical models and we val-
idate our implementation using detailed simulations.

I. INTRODUCTION

Multi-core and possibly heterogeneous architectures al-
low to reduce power consumption and memory access la-
tency by distributing workload on several cores, provided
that a certain level of concurrency and data locality is
present in the software applications. The communication
protocol and architecture among cores is a critical param-
eter that affects the overall performance of these complex
architectures. The Network-on-Chip (NoC) [6, 21] de-
sign paradigm defines the criteria to provide a high per-
formance, scalable and silicon-optimized interconnection
fabric for multi-core architectures.

The class of applications that could potentially lever-
age the availability of multiple cores on a chip spans from
consumer products, such as gaming consoles and mobile
devices, to safety critical systems, such as flight control.
Common to these applications, especially for safety crit-
ical systems, are the dynamic nature of the computation
and communication workloads, and the need for real-time
and deterministic execution. Because in multi-core archi-
tectures, communications account for a considerable part
of the system-level delays, real-time requirements have a
strong impact on the design of the NoC, and on the interac-
tion between the software applications and the communi-
cation primitives. One may attempt to provide a zero-time
communication abstraction to the application software by

increasing network throughput. However, not only is this
solution not scalable, but most importantly, congestion can
still occur, resulting in non-deterministic delays which ul-
timately translate into jitter values that may be as harmful
as large delays. Therefore, if real-time communications
cannot be provided, the benefits promised by the NoC de-
sign paradigm may be rendered uninteresting for real-time
applications.

This problem has sparked the interest of the research
community in Quality-of-Service for NoC [9, 12, 18, 28].
The Æthereal network [12], developed by NXP, uses a
Time Division Multi Access (TDMA) scheme for packets
that are subject to guaranteed throughput constraints. Con-
tention is avoided in two ways: by globally scheduling the
packet injection [22] from network nodes at network in-
terfaces, and by using contention-free routing that solves
contention by delaying packets at source nodes. Global
scheduling limits the scalability of this approach. TDMA
slot allocation is done at design time [22] resulting in a
number of router configuration tables that, even after opti-
mization, may be very large. Moreover, static allocation is
unable to exploit path diversity to avoid congestion.

In the SoCBUS architecture [28], exclusive communi-
cation paths can be reserved between a source and a desti-
nation core to provide real-time guarantees. The network
resources on a reserved path cannot be used by any other
communication flow until they are released by the send-
ing core. This solution has the drawback that the resources
reserved by a low throughput real-time connection are un-
derutilized. In principle, those resources could be used by
other flows during the inactivity periods of the one that
originally reserved them (as we will do in our approach.)

The QNoC architecture [9] supports multiple service
levels (from lower priority to highest priority): signal-
ing, real-time, short memory read and write operations and
block transfers. The QNoC architecture is a valid approach
for soft real-time applications, such as video streaming,
but it does not seem to be suitable for hard real-time appli-
cations. For instance, signaling packets have the highest
priority and could block real-time packets. Because the

number of signaling packets traveling the network is ap-
plication dependent, a precise bound on the maximum in-
terference between signaling packets and real-time packets
is hard to compute.
Summary of the On-time NoC Technology. The On-
time NoC solution addresses the drawbacks identified in
these previous approaches by using four techniques: real-
time packet scheduling, admission control, run-time con-
figuration and spatial diversity. The implementation of
these techniques need to be simple yet efficient and flexi-
ble enough to fulfill the needs of a large set of applications.

The first technique deals with the scheduling of pack-
ets at a node. It has been shown [11, 29] that real-time
flows can be multiplexed on the same links without violat-
ing real-time requirements. In the On-time NoC, we use
a fixed priority scheduling policy [2, 20] to achieve this
goal. Moreover, we reallocate unused bandwidth of re-
served links to best-effort traffic. The second technique is
admission control for which we adopt the resource reser-
vation [30] idea. When a source core needs to send packets
with real-time guarantees to a destination core, it issues a
request to reserve enough communication resources first.
The request can be accepted or rejected depending on the
current state of the NoC, i.e. if there are enough resources
to satisfy real-time requirements. The last two techniques
handle the dynamic nature of application traffic. Requests
for real-time flows at run-time are followed by the estab-
lishment of routing paths for packets. The path establish-
ment algorithm, once executed, reconfigures the compo-
nents of the NoC by updating the local state of the nodes on
the new paths. This technique avoids design time config-
uration and it can be seen as a dynamic routing algorithm.
However, to best leverage path diversity and increase the
chances for a request to be accepted, we run the path es-
tablishment algorithm using global network information.

Finally, we make very little assumptions on the NoC ar-
chitecture. We assume that packets are divided into flits [7]
that can be head, body or tail depending on their position
in the packet. Only head flits contain routing information,
while body and tail flits follow head flits on the same path
from source to destination. We also assume that the net-
work uses worm-hole flow control.

II. PRELIMINARIES

The topology of an NoC is a directed graph G(V,E)
where the set of vertexes V is partitioned into two disjoint
sets, the set of cores C and the set of routers R, and E ⊆
V × V is the set of links. A real-time flow is a tuple f =
(Cs, Cd, t, l, d) where Cs ∈ C is the source core, Cd ∈ C
is the destination core, t ∈ N is the minimum packet inter-
arrival time in clock cycles, l ∈ N is the maximum length

of a packet in number of flits, and d ∈ N is the maximum
end-to-end delay. We will refer to the elements of the tuple
directly as Cs,f , Cs,f , tf , lf , df . A path is an alternating
sequence of vertexes and links π = (v0, e0, . . . , en−1, vn),
such that ei = (vi, vi+1). The length of a path π is the
number of links in the path. With abuse of notation, by
e ∈ π we mean that path π contains link e, and by π1 ∩ π2

we denote the set of links and vertexes in common between
two paths. The path followed by a flow f is denoted by
πf . A configuration of the On-Time NoC is a pair (F,Π)
of a set of flows and a set of paths, one for each flow, i.e.
F = {f1, . . . , fk} and Π = {πf1 , . . . , πfk

}.
To be valid, a configuration must satisfy a num-

ber of constraints. The simplest one is the connec-
tivity constraint. For a flows f and path πf =
(v0, e0, . . . , en−1, vn), the following must hold: v0 =
Cs,f ∧ vn = Cd,f . The second constraint is the capac-
ity constraint defined as follows. Given a node u sending a
packet of a flow f on a link e = (u, v), we denote the ser-
vice time for that packet sf,e, which includes header pro-
cessing, transmission time, and any other operation. The
service time is often a function of the packet length. We
assume that it takes one cycle for a router to process and
send one flit over a link1, therefore sf,e = lf . When multi-
ple real-time flows share the same link, its total link capac-
ity should not exceeded. Thus, a valid configuration must
satisfy the following constraint [11, 27]:∑

f∈F :e∈πf

sf,e
tf

=
∑

f∈F :e∈πf

lf
tf
≤ 1, ∀e ∈ E (1)

The last constraint is the end-to-end delay constraint.
Notice that the service time is different from the delay in-
curred by a packet when traversing a router. Depending on
the scheduling policy implemented by the router, packets
can wait in the input queues for a certain number of cycles.
As for the service time, we associate the delay experienced
by the packets of a flow f at u, and waiting to be forwarded
to the output link e, with the output link itself, and we de-
note the delay by df,e. The end-to-end delay constraint can
be written as follows:∑

e∈πf

df,e ≤ df , ∀f ∈ F (2)

The computation of df,e is in general non-trivial and it is
the subject of Section III-A. In Section IV, we derive a cri-
terion for preserving the validity of a configuration when a
new flow if added to F and its routing path is added to Π.

1This value can vary depending on the transmission scheme. We
make this assumption to simplify the explanation of our idea.

III. REAL-TIME PACKET SCHEDULING

The delay df,e experienced by a packet at a node of the
NoC depends on the packet scheduling algorithm. Sev-
eral packet scheduling algorithms have been proposed in
literature [1, 4, 8, 23, 29]. We use a fixed priority non-
preemptive scheduling policy and we follow the method-
ology described in [11, 27]. However, this model is for
store-and-forward flow control while we use worm-hole
flow control, which has better throughput characteristics.
Therefore, we will modify the computation of the delay
bound accordingly.

A. Computation of the delay bound.

Priorities among packets are defined by a function Oe :
F → N that induces a total ordering on the flows. The
ordering function may be different for each link e ∈ E
and does not have to be globally defined. Consider two
packets p1 and p2 belonging to two real-time flows f1 and
f2, respectively, and competing at u for the output link
e(u, v). Then, packet pi will be forwarded before pj if and
only if Oe(fi) < Oe(fj), for i, j = 1, 2.

The delay df,e experienced by a packet is the sum of
a propagation delay pf,e, and a queuing delay qf,e, both
measured in cycles. The propagation delay is the amount
of time that elapses from the selection of a packet to be
forwarded, to the arrival of the same packet at the next
node. We assume that pf,e = 1∀e ∈ E2. Since real-time
packets cannot be preempted, the propagation delay of a
flit is also the propagation delay of a packet:

df,e = qf,e + pf,e = qf,e + 1 (3)

The upper bound on the queuing delay, denoted by q̂f,e,
is intuitively computed as the sum of the service times of
all higher priority packets that may be present in the in-
put queues of the router. The computation is simplified
by assuming that, for each higher priority flow, at most
one packet is waiting in the queues. This condition can be
written as follows:

q̂g,e + q̂f,e < tf , ∀f, g ∈ F s.t. e ∈ πf ∩ πg (4)

Under this assumption, the following expression for the
queuing delay upper bound holds:

q̂f,e =
∑

g∈F :e∈πg

Oe(g)<Oe(f)

sg,e + sup
h∈F :e∈πh

Oe(h)>Oe(f)

{
sh,e

lh − 1
lh

}
(5)

2In pipeline routers [15, 24, 25], some extra cycles should be added
to this delay

Where we define sup {∅} = 0. This equation shows that
the worst case queuing delay that a packet may experi-
ence is the time required to send all higher priority pack-
ets (one packet for each higher priority flow as for con-
dition 4), plus the maximum time required to send the
flits of a lower priority packet of a real-time flow that
may be already in service. This time is sh,e lh−1

lh
since at

least one flit must have been already sent. For example,
in Figure 1, if we suppose pi is a packet of flow fi, and
Oe(f3) < Oe(f2) < Oe(f1), then we can easily see that
the queuing delay upper bounds for packets p1, p2 and p3

are 5, 6, 4, respectively, as computed by Equation 5.

Fig. 1
AN EXAMPLE OF QUEUING DELAY EXPERIENCED BY THE

PACKET OF THREE FLOWS ARRIVING AT A NODE AND

COMPETING FOR THE SAME OUTPUT EDGE

The total delay on a path can now be computed by sum-
ming up the delays on each edge. To make our model pre-
cise, we also consider the time that is needed by the des-
tination node to read an entire packet. Let e be the last
edge of a path of a flow f . The service time at destination
is sf,r = sf,e

lf−1
lf

, which corresponds to reading all the
remaining flits of the packet. Using the assumption that
sf,e = lf , ∀e ∈ E, Equation 2 becomes:

∑
e∈πf

 ∑
g∈F :e∈πg

Oe(g)<Oe(f)

lg + sup
h∈F :e∈πh

Oe(h)>Oe(f)

{(lh − 1)}+ 1

 ≤
≤ df − lf + 1, ∀f ∈ F (6)

B. Packet Scheduling Algorithm

To satisfy the delay bound of Equation 6, the condition
in Equation 4 must hold at all nodes in the network. The

scheduling algorithm presented in this section ensures that
such condition is satisfied.

Let the maturation time of a packet be the latest time
a packet is expected to arrive at a node. Also, let d̂f,e =
q̂f,e + 1 be the upper bound of the delay on link e(u, v).
This delay is a parameter that is stored locally at u and
that is used to estimate the maturation time of a packet.
The maturation time of a packet p of flow f at node vk
(along path πf = (v0, . . . , vk, . . . , vn)) can be computed
as follows:

m
(p)
f,k = tp +

k−1∑
i=1

d̂f,(vi−1,vi) (7)

where tp is the departure time of the head flit of p at the
source v0. Packets of real-time flows that have maturation
time smaller or equal to the current time are called mature
packets.

Fig. 2
TIMING DIAGRAM OF PACKET FORWARDING

Figure 2 shows the timing diagram of the events in-
volved in forwarding a packet. A packet is ready when its
head flit has been received. This is called the packet’s ar-
rival time. It becomes mature at the maturation time, and it
must be forwarded before its deadline, which is the sum of
the maturation time plus the upper bound on the queuing
delay. A packet departs a node when its head flit is for-
warded. Algorithm 1, implemented at each node, sched-
ules competing mature packets according to the ordering
function Oe.

Theorem 1: For a valid configuration (F,Π), if each
source Cs,f satisfies Equation 4 for each flow f ∈ F , then
Algorithm 1 guarantees the queuing delay bound q̂f,e for
each edge e ∈ E and each flow f ∈ F .

Proof: Suppose that packet p of flow f is the first packet
that fails to be forwarded within its queuing delay bound.
Also, let m0 be its maturation time at node with outgo-
ing edge e. From Equation 4, we can see that any previous

Algorithm 1 Packet Scheduling Algorithm at node u
Require: current time t

for all e(u, v) ∈ E do
if e is idle then
P ← ∅
for all f ∈ F s.t. e ∈ πf with a packet p in queue
do

if mp
f,u ≤ t then

insert p in P
end if

end for
forward p ∈ P with highest priority according to Oe
[Optional step (for work-conservation)]
if p does not exist then

pick any immature packet to forward
end if

end if
end for

packets of the flow f have been forwarded beforem0 since
tf > q̂f,e, which means that the interval between any pre-
vious packet and p is greater than the previous packet’s
maximum queuing delay. By definition of q̂f,e the inter-
val of time [m0,m0 + q̂f,e] is sufficient to forward one
packet of each flow thas has higher priority than f and the
remaining flits of one lower priority packet plus the head
flit of p since the length of the interval is q̂f,e + 1 cycles.
Therefore, there must be some other flow that has higher
priority than f with two mature packets forwarded within
[m0,m0 + q̂f,e], otherwise, the head flit of p must have
been forwarded before or at m0 + q̂f,e and the packet p
does not miss its deadline. Let g ∈ F be that flow and
p1 and p2 are the two mature packets forwarded during in
the interval [m0,m0 + q̂f,e]. Let m1 and m2 be the mat-
uration time of p1 and p2, respectively, and t1 and t2 their
departure time from the source of the flow, respectively.
According to Equation 7, the following holds:

m2 −m1 = t2 − t1 ≥ tg
⇒ m2 ≥ m1 + tg (8)

Since p1 is forwarded within the interval [m0,m0+ q̂f,e]
and it does not miss its delay bound, it cannot become ma-
ture before m0 − q̂g,e, thus:

m0 − q̂g,e ≤ m1

⇒ m0 ≤ m1 + q̂g,e (9)

Furthermore, p2 is also mature in the interval [m0,m0 +
q̂f,e], meaning that the packet must have become mature

before or at m0 + q̂f,e, thus:

m0 + q̂f,e ≥ m2 (10)

From Equation 4, 8 and 10 we have: m0 + q̂f,e ≥ m2 ≥
m1 + tg > m1 + q̂g,e + q̂f,e ⇒ m0 > m1 + q̂g,e, which
contradicts the hypothesis expressed by Equation 9. 2

To compute the maturation time of a packet, the
scheduling algorithm uses the delay upper bound of each
link of the path followed by the packet. These values are
global information that we want to avoid storing at each
node. We use the jitter as a proxy to compute the matura-
tion time (see Figure 2).

C. Jitter and buffering size.

Consider a flow f along a path πf and let en(vn, vn+1)
be an edge on the path. The deadline of a packet p of flow
f at node vn is defined as follows:

T
(p)
f,n = m

(p)
f,n + q̂f,en (11)

The actual sending time of the packet is denoted by D(p)
f,n

and the jitter for each packet is computed as follows:

j
(p)
f,n = T

(p)
f,n −D

(p)
f,n (12)

The jitter measures the length of time from the departure
of a packet to its deadline. Denoting by r

(p)
f,n+1 the ar-

rival time of packet p at node vn+1, the following holds:
m

(p)
f,n+1 = r

(p)
f,n+1 + j

(p)
f,n. Combining this last equation

with Equation 11 and 12, we obtain:

j
(p)
f,n+1 = r

(p)
f,n+1 + j

(p)
f,n + q̂f,en+1 −D

(p)
f,n+1 (13)

This equation suggests that the maturation time of a packet
can be computed using only two local parameters: the jitter
from the previous node, and the upper bound on the queu-
ing delay. Moreover, these parameters are used to com-
pute the jitter value to be sent to the next node on the path.
Using the jitter information allows to have a completely
distributed scheduling algorithm.

The buffer requirement at a node is the maximum num-
ber of immature packets that may be forwarded to the node
earlier than the deadline plus the maximum number of ma-
ture packets. The buffer requirement for a flow f at node
vn, denoted by Bf,n, can be lower bounded as follows:

Bf,n ≥ d
ĵf,n−1 + q̂f,en

tf
e (14)

If the optional step of Algorithm 1 is not executed, mean-
ing that immature packets are never forwarded, then Algo-
rithm 1 guarantees that for any packet p of flows f and any

node n on the path πf the following upper bound holds
true:

j
(p)
f,n ≤ q̂f,en (15)

Using this jitter upper bound, a safe value for the buffer
size at node vn is:

Bf,n ≥ d
q̂f,en−1 + q̂f,en

tf
e (16)

From Equation 4 we have that tf > q̂f,e, ∀e ∈ E, there-
fore a safe upper bound for the buffer size is:

d
q̂f,en−1 + q̂f,en

tf
e ≤ d

tf + tf
tf

e = 2 (17)

meaning that the minimum buffer requirement is 2 pack-
ets (or 2 · lf flits.) This upper bound is conservative. As
we will see in Section VI, in some cases the buffer require-
ment can be lowered to lf , which leads to an inexpensive
router implementation.

D. Communication mechanism.

Based on the analysis presented in Section III, we can
bound the buffer requirements at each node. Therefore,
real-time packets can be sent asynchronously, without any
need for back-pressure, resulting in high bandwidth uti-
lization. Instead, best-effort packets require the use of ac-
knowledgments from the receiving node. Figure 3 shows
an example of mixed best-effort and real-time traffic com-
munication. The Ack signal is needed for the best-effort
traffic while a special signal is used to distinguish between
best-effort and real-time. Moreover, notice that real-time
packets are non-preemptible whereas best-effort ones can
be preempted. Since real-time flits do not need acknowl-
edgments they can be sent twice as fast as best-effort ones.

Fig. 3
EXAMPLE OF MIXED REAL-TIME AND BEST-EFFORT

COMMUNICATION.

IV. ADMISSION CONTROL AND NEW PATH

ESTABLISHMENT

Consider a network in a valid configuration (F,Π). A
new request from a source core to establish a real-time
connection to a destination core entails answering the fol-
lowing question: given a flow f ′ is there a path πf ′ such
that (F ∪ {f ′},Π ∪ {πf ′}) is still a valid configuration?

According to Equation 6, we define the slack associated
with a flow f as follows:

slackf = df − sf,r −
∑
e∈πf

(q̂f,e + 1) (18)

The slack of a flow is the difference between the maximum
admissible delay and the actual delay resulting from the
configuration, i.e. the amount of time that a flow can be
delayed for, without violating its real-time requirements.
Consider a new flow f ′ and a path πf ′ such that the con-
nectivity constraint is satisfied. Flow f will suffer the in-
terference from flow f ′ at all those links that are in com-
mon between the two paths and for which f ′ has higher
priority. The total interference must be smaller than the
slack of flow f , i.e. :∑

e∈πf∩πf ′
Oe(f ′)<Oe(f)

sf ′,e ≤ slackf (19)

If this condition is satisfied by the new configuration, and
if path πf ′ also satisfies the delay constraint in Equation 6,
then the new configuration is valid. If such path cannot be
found, then the request is rejected and must be re-issued
by the application at a later time. It is interesting to notice
that there is room for a joint optimization of the priority
assignment of each flow at each link and the routing al-
gorithm. Once the new flow and path pair is added to the
configuration, the nodes belonging to the new path must
be updated with their new queuing delays.

V. ON-TIME NOC PROTOCOL AND ARCHITECTURE

A. Transport layer protocol.

In the On-Time NoC, the transport layer is in charge of
accepting or rejecting requests to establish new real-time
connections. The transport layer implements the following
SETPATH primitive:

From Application From Transport
SETPATH.request { SETPATH.indication {
source, flowID,
dest, accept }
flowID
t, l, d }

The application software issues a request to route a new
real-time flow to the transport layer. The request contains
the addresses of the source and destination nodes, an iden-
tifier associated with the flow3, the minimum inter-arrival
time t, the maximum packet length l and the maximum
end-to-end delay d that the flow can tolerate. The trans-
port layer, together with the dynamic path establishment
service provided by the network layer, checks whether the
flow can be added to the network and responds with an
indication that contains two fields: accept is a Boolean
field that is true if the request has been accepted and false
otherwise, and flowID is the identifier of the flow the in-
dication refers to. Table I and III show the structure of the
request and indication messages, respectively, while Ta-
ble II shows the structure of a data packet sent by the ap-
plication after the real-time connection has been success-
fully established. In the tables, the head flit is tagged with
CTRL for control packets, and HEAD for all the others.

We consider a flit-width of 32 bits (which is a common
size for the data-path of an NoC). We use 8 bits for each
node ID, 2 bits for the CTRL and SETUP fields, 5 bits for
the identification of the gate, 7 bits for the priority field,
and 10 bits for the jitter.

B. Network architecture and protocol.

The implementation of On-Time NoC could in princi-
ple be done in a distributed or centralized manner. In a
distributed implementation, when a new request is issued,
the routing algorithm starts flooding the network with mes-
sages to find a route for the incoming flow. The number of
messages to be exchanged may be very large due to the
necessity of updating the slacks associated with each flow.
Moreover, the concurrent execution of the distributed rout-
ing algorithm requires synchronization among the requests
to decide the order in which they are going to be satisfied.

We choose to adopt a centralized architecture shown in
Figure 4. One of the nodes of the network is appointed
the special role of a master node. The master node is
the only one receiving requests and responding to them.
The requests are sent to the master node by the transport
layer upon receiving the SETPATH.request call from
the application software (as shown in Figure 4 by the red
arrow from PE1 to PE6). The master node implements
the admission control and routing algorithm to find suit-
able paths for new flows. When a path exists, the master
node sends a path setup command message to each router
on the path. The structure of the message is shown in Ta-
ble IV. Each router will update its internal state with the

3In our implementation the flowID field is computed from the
source and destination addresses and it is guaranteed to be unique

CTRL Req Node ID Master Node ID REQ
BODY Source ID Destination ID tmin

TAIL Flow ID lmax dmax

TABLE I
REQUEST FOR A NEW REAL-TIME FLOW

HEAD Flow ID Jitter Data
BODY Data flit
BODY ...
TAIL Data flit

TABLE II
REAL-TIME DATA MESSAGE

CTRL Source ID Destination ID (ACK or ACCEPT)
TAIL Flow ID

TABLE III
INDICATION MESSAGE

CTRL Master ID Router ID SETUP Output gate Priority
TAIL Flow ID Input gate Delay

TABLE IV
PATH SETUP COMMANDS TO ROUTER

Fig. 4
EXAMPLE OF IMPLEMENTATION OF THE ON-TIME NOC ON

A 2D MESH TOPOLOGY: MASTER NODE AND PATH SETUP

PROCEDURE.

following information: the input and output ports for the
flow, the flow priority and a delay field that is needed to
compute the maturation time of the packets belonging to
the flow. After finishing setting up its internal configura-
tion, each router sends back an acknowledgment message
to the master node. The master node waits for the acknowl-
edgment messages from all of the routers involved in the
path setup procedure, and finally sends an accept or re-
ject message to the node that issued the request. The node
can start sending data packets after receiving the indication
from the transport layer that the path has been successfully
established. When a path is no longer needed, it can be re-
leased using a path-tear-up protocol.

The centralized architecture requires very little network
overhead. In fact, the master node need only to commu-
nicate with a limited number of routers that are the ones

needed by the new path. In principle, multiple master
nodes may be present in an On-Time NoC.

Fig. 5
A SAMPLE ROUTER ARCHITECTURE.

C. Proposed Router Architecture

The router architecture that we use is shown in Figure 5.
It is similar to the one presented in [14] where each input
port has a number of virtual channel queues [5]. When
a real-time flow is assigned to an input port, one of the
queues is reserved for the flow. When not reserved, the
queues can be used as regular virtual channels for best-
effort traffic that can benefit from higher router’s perfor-
mance. We do need changes in the control logic to support
the packet scheduling algorithm, but these changes have
minimal impact on the area and power overhead. Given the
similarity of the On-Time NoC router micro-architecture
with standard routers, it is easy to incorporate some of the
extensions presented in [15, 24, 25] to improve routers’
performance.

D. Routing algorithm

Several routing algorithms can be implemented to op-
timize and balance the load of the On-Time NoC. The
routing algorithm for On-Time NoC is always deadlock

free since sending nodes do not need to wait to send a
packet. The protocol that we defined is in fact independent
from the routing algorithm. In our experiments, we im-
plemented an exhaustive modified depth-first search (DFS)
routing algorithm. The skeleton of the algorithm is the one
of a classical DFS with some extra conditions inserted in
the code to maintain a network configuration valid.

Flow From To Max Packet Length Min Interval
1 PE 7 PE 23 5 11
2 PE 6 PE 3 3 10
3 PE 5 PE 19 4 9

TABLE V
REAL-TIME FLOWS FOR THE FIRST TEST

Figure 6(a) shows an example of how the routing algo-
rithm would operate under an XY routing strategy (try X
direction first). The first request is for Flow 1 that is routed
as indicated by the long-dashed path. The second request
is for Flow 2 that is routed as indicated by the short-dashed
path. When Flow 2 is routed through the link from node 7
to node 8, the delay bound of flow 1 on that edge is modi-
fied. However, the total delay bound of that flow still does
not exceed the requested delay bound.

When the request for Flow 3 arrives last, it is routed to
node 7. However, it cannot travel on the link from node 7
to 8 since the link utilization would exceed 1. Therefore,
Flow 3 is routed to node 12 and finally reaches its destina-
tion.

VI. EXPERIMENTAL RESULTS

To validate our analytical models and the implementa-
tion of the routing algorithm, we implemented the 5×5
mesh-based On-Time NoC shown in Figure 6(a). We used
the Noxim simulator [10] that is based on SystemC. We
simulated the network with the scenarios shown in Fig-
ure 6(a) and 6(b), and defined in Table V and VI, respec-
tively. This scenarios comprise three real-time flows shar-
ing several network resources.

In this experiment, we choose a scheduling priority
assignment that forwards packets of flows with smallest
maximum packet length first. For two real-time flows f, g
sharing an edge e, we assign priority as follows:

Oe(f) < Oe(g) =


true if lf < lg

true if
{
lf = lg
f is set up before g

false otherwise

The first set of results with traffic characteristics in Ta-
ble V that we report are shown in Figure 6(d), 6(e) and

6(f) when the optional step in the packet scheduling algo-
rithm is executed. The results compare the delay of packets
measured at the destinations of the flow with the delay es-
timated by our analysis (Section III). The measured delay
is never greater than the estimated one. Moreover, since
there are packets whose delay equals the estimated bound,
the analysis is not too conservative. As an example, we
will compute the delay upper bound for flow 2 from PE6
to PE3 using Equations 3 and 5 as follows: the maximum
delay on the edge from PE6 to its router is 1, i.e. the prop-
agation delay only, since there is no other flow competing
for that link; the maximum delay on the edge from the
router of node 6 to the router of node 7 is (l3− 1) + 1 = 4
as computed by Equation 3 and 5, since flow 3 has lower
priority; the maximum delay on the edge from node 7 to
the router of node 8 is (l1 − 1) + 1 = 5; the maximum
delay on the edge from the router of node 8 to the router of
node 3 is 1; the maximum delay on the edge from router of
node 3 to PE3 is 1. The time to receive the remaining flits
of a packet of flow 2 is l2 − 1 = 2. Summing up, we have
that the delay bound is 1 + 4 + 5 + 1 + 1 + 2 = 14 = d2,
which matches the required delay as shown by the simula-
tion results in Figure 6(e).

Figure 6(g), 6(h) and 6(i) show the buffer utilization at
the routers where the flows contend for the output links
without executing the optional step in the packet schedul-
ing algorithm. We observe that the number of packets in
the buffers is never greater than 1. This is due to the con-
straint expressed by Equation 16: q̂f,en−1 + q̂f,en ≤ tf for
all flows at these nodes. Therefore the maximum buffer
utilization in flits is never greater than lf for all the three
tested flows as predicted by the Equation 16.

Flow From To Max Packet Length Min Interval
1 PE 7 PE 23 5 21
2 PE 6 PE 3 3 19
3 PE 5 PE 19 4 17

TABLE VI
REAL-TIME FLOWS FOR THE SECOND TEST

Now we change the configuration of the three flows so
that they share the link from node 7 to node 8. We in-
crease the interval between packets of each flows as in Ta-
ble VI so that the total utilization of that link is not greater
than 1. The three flows are then routed as in Figure 6(b).
The result in Figure 6(c) shows that the packets of each of
the three real-time flows reach their destinations at the ex-
act estimated end-to-end delay bounds since all jitters are
absorbed when the optional step in the packet scheduling
algorithm is not executed. These packets are sent at maxi-

(a)Example of three flows scheduled to
share links.

(b)Example of three flows scheduled to
share one link.

 12

 14

 16

 18

 20

 22

 24

 26

 50 100 150 200 250 300 350 400 450 500

Cl

oc
k

Cy
cle

s

Packet Number

Delay of packets when three flows sharing one edge

Real Delay at PE 19
Real Delay at PE 23

Real Delay at PE 3

(c)Delays of packets when three flows share one
link.

 9

 10

 11

 12

 13

 14

 20 40 60 80 100 120 140 160 180 200

Cl

oc
k

Cy
cle

s

Packet Number

Delay of Packets from node 7 --> node 23

Real Delay at PE 23
Estimated Delay Bound at PE 23

(d)Real delay and estimated delay of real-
time flow from node 7 to node 23

 6

 8

 10

 12

 14

 16

 20 40 60 80 100 120 140 160 180 200

Cl

oc
k

Cy
cle

s

Packet Number

Delay of Packets from node 6 --> node 3

Real Delay at PE 3
Estimated Delay Bound at PE 3

(e)Real delay and estimated delay of real-
time flow from node 6 to node 3

 10

 11

 12

 13

 14

 15

 20 40 60 80 100 120 140 160 180 200

Cl

oc
k

Cy
cle

s

Packet Number

Delay of Packets from node 5 --> node 19

Real Delay at PE 19
Estimated Delay Bound at PE 19

(f)Real delay and estimated delay of real-
time flow from node 5 to node 19

 0

 1

 2

 3

 4

 5

 2000 2050 2100 2150 2200 2250 2300 2350 2400

Va
lu

e

Clock Cycle

Buffer of flow 1 at router 7

Buffer in # of flits
Buffer in # of packets

(g)Buffer usage of flow 1 at router 7

 0

 1

 2

 3

 4

 5

 2000 2050 2100 2150 2200 2250 2300 2350 2400

Va
lu

e

Clock Cycle

Buffer of flow 2 at router 7

Buffer in # of flits
Buffer in # of packets

(h)Buffer usage of flow 2 at router 7

 0

 1

 2

 3

 4

 5

 2000 2050 2100 2150 2200 2250 2300 2350 2400

Va
lu

e

Clock Cycle

Buffer of flow 3 at router 6

Buffer in # of flits
Buffer in # of packets

(i)Buffer usage of flow 3 at router 6

Fig. 6
EVALUATION RESULTS

mum packet lengths.

A. Comparison with other NoC protocols

We compared the On-Time NoC with existing architec-
tures. The results are shown in Table VII with values ex-
pressed in number of cycles. For this experiment, we use
two different network configurations: a 5x5 mesh network
with transpose traffic pattern and a 8x8 mesh network with
butterfly traffic pattern. We assume that packets are 5 flits
long and that they are periodically injected in the network.
We vary the period to change the packet injection rate. We
define the saturation rate as the maximum packet injection
rate after which we observe no delays higher than 1000 cy-

cles. We run simulations for 200000 cycles and we mea-
sure the maximum and average delay of all flows in the
network. We also note that while validation of standard
NoC can only be done empirically by processing simula-
tion traces, results for the On-time NoC can be derived
analytically.

To make the comparison fair, we use the same total
buffer size of 10 flits (i.e. 2 packets) for each input port of
each router in all cases. For the On-Time NoC, this buffer
size corresponds to a maximum of two real-time flows for
each link. We compare the performance of the On-Time
NoC against two other architectures. The centralized one
is an NoC with standard routers in Noxim [10], but with

Traffic Protocol Saturation
Rate

Max de-
lay

Average
delay

Transpose OT NoC 0.1 34 19.64

(5x5) Centralized 0.033 61 23.48
DyAd 0.022 150 22.47

Butterfly OT NoC 0.1 60 21.03

(8x8) Centralized 0.025 76 28.70
DyAd 0.01 314 37.80

TABLE VII
COMPARISON WITH OTHER ARCHITECTURES.

a centralized routing algorithm that routes flows trying to
avoid congestion 4. This architecture can be seen as the
On-Time NoC without the mechanisms that we develop to
guarantee real-time packet delivery. The other architecture
used DyAd [13] as a dynamic routing algorithm. The re-
sults show that the On-Time NoC is able to handle higher
injection rate (three to five times for transpose traffic and
four to ten times for butterfly traffic). The maximum delay
is two to five time smaller while the average delay is 12 %
to 45 % smaller than the other two architectures.

VII. CONCLUSION AND FUTURE WORK

We presented the On-Time NoC, a Network-on-Chip for
real-time applications suitable for multi-core platforms.
The protocol and the network architecture of our On-Time
NoC are based on a cycle accurate analytical model of the
end-to-end delay of packets with priorities and worm-hole
flow-control. The delay model is general with respect to
packet scheduling and routing algorithm, and can be eas-
ily extended to pipeline routers. Because synchronization
between processing cores can be enforced by the appli-
cation software, we believe that the On-Time NoC is a
good candidate to serve as the underlining communica-
tion infrastructure for some programming models such as
PTIDES [31]. The communication time predictability of-
fered by the On-Time NoC will allow the implementation
of safety critical applications such as aircraft control, on
multi-core platforms [16, 17, 26].

Our next steps include identifying distributed routing
algorithms that will optimize and balance a network of
PRET processors [19], thus providing a real-time multi-
core system. This work includes evaluating effective uses
of the properties of PRET machines to enhance packet
scheduling and an optimization procedure to define the
number and position of master nodes. We also plan to eval-
uate the buffer bound in detail for worm-hole flow control.
Finally we plan to design a hardware router and evaluate

4We use the method of forbidden turns in [3] to avoid deadlocks.

power and area costs.

REFERENCES

[1] Jon C. R. Bennett and Hui Zhang. Wf 2 q: Worst-case fair
weighted fair queueing. In INFOCOM ’96: Proceedings of IEEE
Conference on Computer Communications, 1996.

[2] Enrico Bini. Schedulability analysis of periodic fixed priority sys-
tems. IEEE Trans. Comput., 53(11):1462–1473, 2004. Member-
Buttazzo,, Giorgio C.

[3] Ge-Ming Chiu. The odd-even turn model for adaptive routing.
IEEE Trans. Parallel Distrib. Syst., 11(7):729–738, 2000.

[4] David D. Clark, Scott Shenker, and Lixia Zhang. Supporting real-
time applications in an integrated services packet network: archi-
tecture and mechanism. In SIGCOMM ’92: Conference proceed-
ings on Communications architectures & protocols, pages 14–26,
New York, NY, USA, 1992. ACM.

[5] William J. Dally. Virtual-channel flow control. SIGARCH Com-
put. Archit. News, 18(3a):60–68, 1990.

[6] William J. Dally and Brian Towles. Route packets, not wires:
on-chip interconnection networks. In DAC ’01: Proceedings of
the 38th conference on Design automation, pages 684–689, New
York, NY, USA, 2001. ACM.

[7] William James Dally and Brian Patrick Towles. Principles and
Practices of Interconnection Networks. Morgan Kaufmann, San
Francisco, CA, USA, 2004.

[8] A. Demers, S. Keshav, and S. Shenker. Analysis and simulation
of a fair queueing algorithm. In SIGCOMM ’89: Symposium pro-
ceedings on Communications architectures & protocols, pages 1–
12, New York, NY, USA, 1989. ACM.

[9] Rostislav (Reuven) Dobkin, Ran Ginosar, and Israel Cidon. Qnoc
asynchronous router with dynamic virtual channel allocation. In
NOCS ’07: Proceedings of the First International Symposium on
Networks-on-Chip, page 218, Washington, DC, USA, 2007. IEEE
Computer Society.

[10] Fabrizio Fazzino, Maurizio Palesi, and Davide Patti. Noxim:
Network-on-chip simulator.

[11] Domenico Ferrari and Dinesh C. Verma. A scheme for real-time
channel establishment in wide-area networks. IEEE Journal on
Selected Areas in Communications, 8:368–379, 1990.

[12] Kees Goossens, John Dielissen, Jef van Meerbergen, Peter
Poplavko, Andrei Rădulescu, Edwin Rijpkema, Erwin Waterlan-
der, and Paul Wielage. Guaranteeing the quality of services in
networks on chip. pages 61–82, 2003.

[13] Jingcao Hu and Radu Marculescu. Dyad: smart routing for
networks-on-chip. In DAC ’04: Proceedings of the 41st annual
conference on Design automation, pages 260–263, New York,
NY, USA, 2004. ACM.

[14] N.K. Kavaldjiev, Dr.ir. G.J.M. Smit, and Ir. P.G. Jansen. A virtual
channel router for on-chip networks. In IEEE International SOC
Conference, pages 289–293. IEEE Computer Society Press, 2004.

[15] Amit Kumar, Li-Shiuan Peh, Partha Kundu, and Niraj K. Jha. Ex-
press virtual channels: towards the ideal interconnection fabric. In
ISCA ’07: Proceedings of the 34th annual international sympo-
sium on Computer architecture, pages 150–161, New York, NY,
USA, 2007. ACM.

[16] Leslie Lamport. Time, clocks, and the ordering of events in a
distributed system. Commun. ACM, 21(7):558–565, 1978.

[17] Leslie Lamport and P. M. Melliar-Smith. Synchronizing clocks in
the presence of faults. J. ACM, 32(1):52–78, 1985.

[18] Jae W. Lee, Man Cheuk Ng, and Krste Asanovic. Globally-
synchronized frames for guaranteed quality-of-service in on-chip
networks. SIGARCH Comput. Archit. News, 36(3):89–100, 2008.

[19] Ben Lickly, Isaac Liu, Sungjun Kim, Hiren D. Patel, Stephen A.
Edwards, and Edward A. Lee. Predictable programming on a
precision timed architecture. In CASES ’08: Proceedings of the
2008 international conference on Compilers, architectures and
synthesis for embedded systems, pages 137–146, New York, NY,
USA, 2008. ACM.

[20] C. L. Liu and James W. Layland. Scheduling algorithms for multi-
programming in a hard-real-time environment. J. ACM, 20(1):46–
61, 1973.

[21] Giovanni De Micheli and Luca Benini. Networks on Chips: Tech-
nology and Tools. Morgan Kaufmann, 2006.

[22] Arno Moonen, Chris Bartels, Marco Bekooij, René van den
Berg, Harpreet Bhullar, Kees Goossens, Patrick Groeneveld, Jos
Huiskens, and Jef van Meerbergen. Comparison of an Aethereal
network on chip and traditional interconnects - two case studies.
In Giovanni De Micheli, Salvador Mir, and Ricardo Reis, edi-
tors, VLSI-SoC: Research Trends in VLSI and Systems on Chip,
number 249 in IFIP International Federation for Information Pro-
cessing. Springer, 2007.

[23] Abhay K. Parekh and Robert G. Gallager. A generalized proces-
sor sharing approach to flow control in integrated services net-
works: The single-node case. IEEE/ACM Transactions on Net-
working, 1:344–357, 1993.

[24] Li-Shiuan Peh and William J. Dally. A delay model and specula-
tive architecture for pipelined routers. In HPCA ’01: Proceedings
of the 7th International Symposium on High-Performance Com-
puter Architecture, page 255, Washington, DC, USA, 2001. IEEE
Computer Society.

[25] Li-Shiuan Peh and William J. Dally. A delay model for router
microarchitectures. IEEE Micro, 21(1):26–34, 2001.

[26] J. M. Rushby and F. von Henke. Formal verification of algorithms
for critical systems. IEEE Trans. Softw. Eng., 19(1):13–23, 1993.

[27] Dinesh C. Verma, Hui Zhang, and Domenico Ferrari. Delay jitter
control for real-time communication in a packet switching net-
work. In In Proceedings of TriComm ’91, 1991.

[28] Daniel Wiklund and Dake Liu. Socbus: Switched network on chip
for hard real time embedded systems. In IPDPS ’03: Proceedings
of the 17th International Symposium on Parallel and Distributed
Processing, page 78.1, Washington, DC, USA, 2003. IEEE Com-
puter Society.

[29] Hui Zhang. Service disciplines for guaranteed performance ser-
vice in packet-switching networks. Proceedings of the IEEE,
10:1374–1396, 1995.

[30] Lixia Zhang, Steve Deering, Deborah Estrin, and Scott Shenker.
Rsvp: A new resource reservation protocol. IEEE Network, 7:8–
18, 1993.

[31] Yang Zhao, Jie Liu, and Edward A. Lee. A programming model
for time-synchronized distributed real-time systems. In RTAS ’07:
Proceedings of the 13th IEEE Real Time and Embedded Technol-
ogy and Applications Symposium, pages 259–268, Washington,
DC, USA, 2007. IEEE Computer Society.

	Introduction
	Preliminaries
	Real-time packet scheduling
	Computation of the delay bound.
	Packet Scheduling Algorithm
	Jitter and buffering size.
	Communication mechanism.

	Admission control and new path establishment
	On-Time NoC Protocol and Architecture
	Transport layer protocol.
	Network architecture and protocol.
	Proposed Router Architecture
	Routing algorithm

	Experimental Results
	Comparison with other NoC protocols

	Conclusion and Future Work

