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Abstract

Packet Classification as a Fundamental Network Primitive

by

Dilip Antony Joseph

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Ion Stoica, Chair

Packet classification is an ubiquitous and key building block of many critical network func-

tions like routing, firewalling, and load balancing. However, classification is currently im-

plemented, deployed and configured in an ad-hoc manner. Reliance on ad-hoc mechanisms

make classification hard to configure, inefficient and inflexible.

In this thesis, we address the above limitations by elevating packet classification as a

fundamental network primitive. We do so by introducing a new classification layer in the

network protocol stack, and by defining two control plane protocols – policy-based clas-

sifier deployment and generic classification offload. In policy-based classifier deployment,

packets are explicitly redirected through the classifiers specified by network policy. Generic

classification offload provides a signaling mechanism that enables different entities to col-

laboratively implement classification. Through prototype implementations, testbed exper-

iments and formal analysis, we demonstrate that our solution simplifies deployment and

configuration, and improves flexibility, efficiency and performance of packet classification.

Professor Ion Stoica
Dissertation Committee Chair
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Chapter 1

Introduction

Packet classification is a key building block of many critical network functions. Every

packet in a network encounters classification at one or more entities. In Figure 1.1, forward-

ing elements like layer-2 switches and layer-3 routers, as well as special-purpose classifiers

like a firewall and a load balancer, classify a packet as they forward it from endhost A to

web server B. A router classifies the packet to determine where it should be forwarded to

and what QoS it should receive. A load balancer classifies the packet to identify the web

server instance to which it must be forwarded. A firewall classifies the packet based on its

security policies to decide whether to drop the packet or not.

Classification in today’s networks faces three main limitations – configuration hardness,

inflexibility, and inefficiency. These limitations are results of the following four charac-

teristics of packet classification: (i) Complexity of classification operations, (ii) Topology

Mismatch between network administrators and forwarding mechanisms, (iii) Semantic Gap

between entities on the packet path, and (iv) Resource Mismatch between entities on the

packet path.

Complexity : Classification remains a complex operation, in spite of significant improve-

ments in classification speed over the last two decades [63, 82, 91]. It creates performance

and scalability bottlenecks, especially in the face of rapidly swelling traffic volumes and
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Figure 1.1. Packet classification is ubiquitous in networks.

bandwidth. Classification involving multiple packet header fields exhibits a fundamental

trade-off between computational complexity and memory requirements [63]. Classification

involving deep packet inspection and application payload parsing is even more complex. In

a benchmark of commercial application delivery controllers [12] (i.e., enhanced load bal-

ancers), classification operations involving basic layer-7 HTTP processing attained up to

78% fewer connections/second and up to 30% lower throughput than those that used simple

layer-4 processing.

Topology Mismatch : A network administrator requires different types of traffic to

be processed by different sequences of classifiers in order to satisfy application needs and

network policy. These classifier sequences constitute the desired logical network topology.

In today’s networks, there is a mismatch between the desired logical topology and classifier

deployment mechanisms. Classifiers are currently deployed by placing them on the network

path taken by packets. A packet’s path thus implicitly determines the sequence of classifiers

that process it. In Figure 1.1, a packet from A to B is processed by the firewall F and

the load balancer L because they lie on its path. The path taken by a packet is jointly

determined by a wide variety of interacting factors – physical network topology, layer-3

routing protocols like BGP [1] and OSPF [31], layer-2 spanning tree construction [10],

VLAN [16] configuration and traffic engineering [32]. These factors are unaware of the

logical topology intended by the network administrator.

2



Semantic Gap : Different entities on a packet’s path, including the source and destina-

tion, have different amounts of semantic and local context related to a particular classifica-

tion application. For instance, a web load balancer must forward all packets in an HTTP

‘session’ to the same web server instance for semantic correctness or improved performance

through caching. The web browser at a client has more local semantic context to identify

the multiple HTTP connections in a user’s HTTP session than the load balancer. Similarly,

an edge router is in a better position to determine a packet’s QoS than a core router. The

edge router’s closeness to traffic sources provides access to finer-grained local QoS policies

and higher precision traffic accounting than a far away core router.

Resource Mismatch : Similar to the semantic gap, different entities on a packet’s path

have different amounts of processing resources (e.g., CPU, memory) to spend on classifying

each packet. For example, a core router can process more packets per second than an

edge router. However, the substantially higher traffic load at a core router allows it lesser

processing time per packet than an edge router. Thus, there is a resource mismatch between

an edge router and a core router.

Classifiers use classification offload to bridge the semantic gap in placement of classifi-

cation operations, and to leverage the resource mismatch in overcoming performance and

scalability bottlenecks caused by classification complexity. Classifiers push classification

tasks to entities with more semantic context or more per-flow/packet processing resources.

For instance, a load balancer bridges the semantic gap by pushing HTTP session identi-

fication to endhosts using HTTP cookies [15]. An endhost uses local context to identify

the various HTTP connections in a particular HTTP session. It embeds the same ‘session’

cookie value in all connections in the session. The load balancer uses the cookie value in an

HTTP connection to identify its session, and thereby select the correct webserver instance.

Although many solutions have been proposed for classification offload, they are point,

and often ad-hoc, solutions that work only in the context of a single layer (e.g., network,

transport, or application) and a single application (e.g., QoS, HTTP load balancing). For

example, unlike a layer-7 load balancer, a core router uses MPLS [25] at layer 2.5 to offload

route lookup to less-loaded upstream edge routers. An edge router performs expensive
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route lookup operations on behalf of the core router and conveys the lookup results to it

by tagging packets with different labels.

1.1 Limitations of Current Classification Solutions

Implicit on-path classifier deployment, ad-hoc classification offload solutions, and the

non-availability of clear information about classifier behavior make classification in today’s

networks hard to configure, inflexible and inefficient. We briefly describe these limitations

in this section.

1.1.1 Configuration Hardness

The sequence of classifiers traversed by a packet implicitly depends on the network path

it takes. This makes deployment and configuration of classifiers complex and error-prone.

A classifier deployment requires careful and coordinated configuration of all factors that

affect network paths – cabling, spanning tree link weights, IP routing, VLAN configuration,

traffic engineering, and failover protocols. Complex and often unpredictable interactions

between these factors makes it challenging to guarantee that a packet traverses all the

required classifiers in the correct sequence under all network scenarios. For instance, a

crucial classifier like a firewall may be bypassed when network paths change as a result

of link/router failure, new link addition, traffic engineering, or activation of a new ingress

point triggered by Internet routing changes.

The lack of a generic classification offload solution results in the proliferation of differ-

ent, often ad-hoc, mechanisms for different applications at different protocol layers : for

example, MPLS at layer-2.5 for offloading route lookup, and HTTP cookies at layer-7 for

HTTP session identification. A network administrator must carefully implement and con-

figure all these different mechanisms for correct network operation. This increases network

configuration complexity and the probability for error.

Current classification offload solutions do not enable explicit coordination between dif-
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Figure 1.2. Coordinating multiple classifiers for firewall load balancing.

ferent entities involved in packet classification. This further increases configuration and

operational complexity. Consider the pair of firewall load balancers, L and M , in Fig-

ure 1.2. The classification decision at a firewall instance (say, F ) uses stored information

about packets previously seen (if any) in the opposite flow direction. Hence, the load bal-

ancers must select the same firewall instance for both forward and reverse directions of a

TCP flow. They currently coordinate their decisions implicitly based on the physical wiring

configuration and by remembering the 5-tuples of packets that arrived on each network

interface [74]. Correctly wiring the various entities and configuring such coordination are

complex and error-prone tasks.

The non-availability of clear information about the varied configuration requirements

and operational behavior of different classifiers further complicates network configuration.

For instance, a load balancer often rewrites some of the fields in packets received by it.

This rewriting must be taken into consideration while configuring the filtering rules at a

downstream firewall. Detailed information about the packet transformations performed

by classifiers is often buried deep inside technical manuals or simply absent. Network

deployment and configuration complexity is aggravated by the lack of easy access to such

information.

1.1.2 Inflexibility

Evolving network functionality and applications require changes in the logical network

topology, i.e., the sequence of classifiers which process different types of traffic. For instance,

increased security threats may necessitate the addition of an intrusion detection box (IDS)
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that scans all existing network traffic. A new application may require that a new load

balancer be deployed, and that all traffic of the application traverse it.

Current classifier deployment mechanisms tightly couple a network’s logical topology

with its physical topology. This makes the network inflexible and restricts evolvability. For

instance, adding an IDS often requires identifying a choke point through which all traffic

flows and physical re-cabling to insert the IDS there. Alternatively, the IDS is placed at a

non-choke point, and forwarding configuration parameters and VLAN settings are tweaked

to force all traffic through it. Such tweaking interacts with other network factors like

traffic engineering, fault tolerance and traffic isolation, often in unpredictable ways. Hence,

indirect mechanisms to change the logical network topology are complex, error-prone and

hard to deploy.

Current classification offload mechanisms are also inflexible as they are tailored to spe-

cific applications and specific layers. Many existing classification applications like firewalling

are deprived of the benefits of classification offload. A future classification application may

require designing and implementing yet another offload mechanism.

1.1.3 Inefficiency

Current classifier deployment solutions gratuitously spend classifier resources by forcing

classifiers to process irrelevant traffic or by preventing them from processing relevant traffic.

All traffic on a particular network path is forced to traverse the same sequence of classifiers,

irrespective of application requirements. For instance, a web load balancer wastes valuable

processing resources if it must unnecessarily process non-HTTP traffic flowing on the net-

work path on which it is deployed. On the other hand, classifier resources are also wasted

if they are deployed on an inactive network path. For instance, even if the load balancer

on the active path is reeling under heavy load, the equally capable (and expensive!) load

balancer on the backup path remains unutilized.

Current classification offload solutions also waste classifier resources by relying on expen-

sive packet processing. To read the session information in the HTTP cookie [15] embedded
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by an endhost, a load balancer reconstructs the transport stream, performs SSL decryption

(if encrypted) and parses HTTP headers. Such heavy-weight layer-7 processing can incur

high performance penalties – up to 78% reduction in connections/second and up to 30%

reduction in throughput, as per the benchmark mentioned earlier in this chapter. This ex-

pensive packet processing is not a critical component of classification offload, but is simply

an inefficiency of current mechanisms.

The limited scope of existing classification offload mechanisms deprives many appli-

cations of the benefits of classification offload. In addition to inflexibility, this leads to

inefficiency. Many applications experience inefficiencies that could have been alleviated by

classification offload. For instance, correct firewall operation in Figure 1.2 requires that the

control and data connections in an FTP session be processed by the same firewall instance.

Currently, the firewall load balancers implement FTP protocol analysis on the received

packets to identify the control and data connections. If an offload mechanism for firewall

load balancing existed, they could have simply relied on hints from the endhosts to perform

such classification.

1.2 Our Contributions

This thesis attempts to address the limitations of current classification solutions de-

scribed in the previous section, i.e., simplify classifier deployment and configuration, and

improve efficiency and flexibility. We argue that the root cause for these limitations is

that packet classification is treated in an ad-hoc manner, in spite of its ubiquity in today’s

networks.

The main contribution of this thesis is to elevate packet classification as a fundamental

primitive in the protocol stack. We do so by defining a new classification layer, or CLayer,

in the protocol stack, and a pair of associated control plane mechanisms – policy-based

classifier deployment and generic classification offload. Together with these mechanisms,

the CLayer provides a holistic approach to overcome the topology, semantic and resource
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mismatches inherent in today’s classification solutions, thereby simplifying configuration,

and improving efficiency and flexibility.

In a nutshell, our proposal works as follow: The CLayer in a packet’s header carries

information used by forwarding elements and classifiers to efficiently classify packets or to

forward them to the required classifiers. In policy-based classifier deployment, forwarding

elements explicitly redirect different types of traffic through the sequence of classifiers spec-

ified by administrative policy. Once the desired logical classifier sequence has been enforced

on the data path, generic classification offload configures on-path entities to efficiently and

collaboratively implement the various classification operations required on the path. Our

proposal is agnostic of the underlying classification operations, and benefits from the large

body of research aimed at speeding up individual classification tasks like longest prefix

matching [91].

Policy-based classifier deployment and generic classification offload form the two main

components of this thesis’ contribution. We have designed and prototyped the Policy-aware

Switching Layer [67], or PLayer, as an instantiation of policy-based classifier deployment.

We have also designed and prototyped GOff as an instantiation of a classification offload

protocol. The design, implementation and deployment of classifier-related mechanisms like

PLayer and GOff require a clear understanding about the diverse configuration and op-

erational modes of classifiers. As a third component of this thesis’ contribution, we have

developed a model [66] to understand how different classifiers operate.

Next, we briefly describe these three components of our thesis’ contributions, and high-

light their benefits.

1.2.1 PLayer - Policy-aware Switching Layer

The PLayer is a new layer-2 that explicitly supports classifiers and is tailored for data

center and enterprise networks. Network administrators specify the sequence of classifiers

that must process different types of traffic by configuring ‘policies’ at a centralized controller.

For instance, a policy may specify that all HTTP traffic entering the data center must be
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processed by a firewall and then by a load balancer. The controller disseminates these

policies to the individual policy-aware switches, or pswitches, that are inter-connected to

form the PLayer. On receiving a frame, a pswitch looks up the policy associated with the

frame, identifies the classifiers already traversed by it and explicitly forwards it to the next

classifier specified by policy. Our PLayer design and prototype implementation require no

changes to classifiers and endhosts, and only minor changes to network switches.

Centralized policy specification and explicit redirection employed by the PLayer bridges

the topology mismatch between administrator intent regarding the sequence of classifiers

to be traversed by different traffic types and their actual network implementation. Net-

work configuration is simplified as an administrator no longer needs to rely on ad-hoc and

intricate configuration hacks to deploy classifiers in the desired sequence. Explicit redirec-

tion of packets to classifiers guarantees correct classifier traversal under all network churn

conditions. A crucial firewall is never bypassed. The PLayer enables efficient utilization

of classifiers since packets are redirected only through classifiers specified by policy, and

no classifier is stuck unutilized on an inactive network path. PLayer enhances data center

network flexibility by decoupling the physical and logical topologies. Changing the logical

topology in the PLayer simply requires a policy change.

1.2.2 GOff - Generic Offload Protocol

GOff is a generic signaling protocol that leverages the CLayer to simultaneously support

offload for multiple classification applications. In GOff terminology, entities like firewalls

and load balancers which classify a packet and act based on the results of classification

are called classifiers. Entities like endhosts that aid classifiers by performing classification

tasks on their behalf are called helpers. Through GOff, helpers advertise their capabilities

and classifiers notify helpers about the classification support they desire. A helper on a

packet’s path performs the requested classification and embeds the results of classification

in the packet’s easily accessible CLayer header. A downstream classifier uses these results

in speeding up its classification activity.
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GOff bridges the semantic gap between the various entities on a packet’s path. For

instance, the firewall load balancers in Figure 1.2 can rely on endhosts to identify the

control and data connections in an FTP session, rather than implementing complex FTP

analysis operations themselves. GOff also bridges the resource mismatch. For example,

GOff enables core routers to offload expensive route lookup operations to edge routers, as

in MPLS.

GOff avoids the deep-packet inspection inefficiencies of current offload mechanisms by

using the CLayer. This results in significant performance gains. A GOff-enabled layer-4

load balancer achieved 60% more connections/second and throughput than a regular layer-

7 load balancer, while supporting similar session semantics. Furthermore, avoiding deep

packet inspection simplifies the internal implementation of classifier boxes and lowers cost.

GOff is generic and flexible enough to simultaneously support a variety of classification

applications. Moreover, GOff enables traditionally centralized classification applications

like firewalling to easily and securely offload classification to endhosts, and subsequently

improve performance. In our experiments, a firewall implementing GOff scalably sustained

twice the throughput of a regular firewall as the rule set size increased.

GOff reduces overall network configuration complexity. An administrator no longer

needs to separately implement and configure MPLS, HTTP cookies, Diffserv [2], and other

point solutions for classification offload. The explicit coordination between classifiers en-

abled by GOff further reduces network configuration complexity. For instance, the firewall

load balancers in Figure 1.2 explicitly coordinate with each other using GOff, rather than

implicitly through ad-hoc mechanisms.

1.2.3 Classifier Model

Our classifier model provides a standard language to succinctly express classifier func-

tionality, configuration and operations. Through sets of pre-conditions and processing rules,

the model describes the types of packets expected by a classifier and how it transforms them.

We have developed a tool that partially auto-infers a classifier’s model through blackbox
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testing. Another tool validates the operations performed by a deployed classifier against its

pre-specified model.

The succinct and clear description of classifiers helps network administrators plan new

network topologies, as well as monitor and debug deployed networks. The model also guides

networking researchers. It helps them better understand how their research proposals can

work with or fail to work with the wide variety of existing classifiers.

1.3 Thesis Organization

The next chapter provides background information on packet classification – how clas-

sifiers are deployed and how classification offload is configured today. We also illustrate the

limitations of current approaches in detail.

In Chapter 3, we present a model to represent classifier operations. We illustrate the

model using multiple commonly used classifier boxes, and develop semi-automated model

inference and validation tools.

In Chapter 4, we introduce the classification layer. We briefly describe its semantics

and structure, and provide an overview of the associated protocols – policy-based classifier

deployment and generic classification offload.

Chapter 5 describes the design and implementation of the PLayer. We demonstrate the

PLayer’s benefits using experiments on a small testbed, and compare it to related work.

Chapter 6 describes the design and implementation of GOff. Through qualitative and

quantitative experiments, we demonstrate how GOff improves the performance, efficiency,

and flexibility of classification. We also describe how GOff differs from related efforts aimed

at simplifying classification offload.

We summarize our contributions and present future research directions in Chapter 7.
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Chapter 2

Background

A classifier is any network element that performs classification as part of its packet

processing operations. Classifiers can be broadly categorized into two types – forwarding

classifiers and special-purpose classifiers. Forwarding classifiers, as suggested by their name,

are classifiers whose main functionality is to forward packets to their destination. For

example, a layer-3 router classifies a packet based on its destination IP address to determine

the next hop to its final destination. Special-purpose classifiers, on the other hand, are

classifiers whose main functionality is not plain packet forwarding. Instead, they implement

special-purpose functionality like firewalling and load balancing.

Forwarding classifiers constitute the backbone of networks and determine the network

path taken by packets. Special-purpose classifiers are deployed by placing them on these

network paths using a variety of mechanisms such as physical wiring, VLANs and tweaking

layer-2 and layer-3 forwarding mechanisms. These mechanisms are inefficient, inflexible,

and hard to configure. Moreover, they do not guarantee that packets traverse classifiers in

the correct sequence under all network conditions. For instance, a critical firewall may be

bypassed on adding a new network link.

After the deployment mechanisms determine the sequence of classifiers, the next issue

is the placement of classification operations. Does a classifier fully implement classification
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operations all by itself, or does it share the classification load with other entities in the

network? Classifiers may implement classification in-place, or may offload it to other en-

tities in the network that have more semantic context or per-packet processing resources.

Classifiers like firewalls traditionally implement the entire classification operations in-place.

On the other hand, a load balancer pushes HTTP session identification to endhosts as they

have more semantic context to identify HTTP sessions.

The complexity of classification operations and increasing traffic load limits the scalabil-

ity of in-place classification. Classification offload can alleviate such scalability bottlenecks.

Many mechanisms such as HTTP cookies [15], MPLS [25] and Diffserv [2] exist for classi-

fication offload. However, the ad-hoc nature and narrow scope of these mechanisms makes

them inefficient, inflexible and hard to configure.

Different classifiers process packets differently, and have varied deployment and config-

uration requirements. Network designers and administrators often have little knowledge

about what a specific classifier requires and how it behaves for different traffic types. This

lack of knowledge hinders the planning and deployment of new networks, and the monitor-

ing and troubleshooting of existing ones. In addition, the lack of knowledge also hinders

networking research activities, especially those concerned with classifiers.

In the rest of this chapter, we first describe current classifier deployment mechanisms

in detail. We illustrate their limitations using multiple examples. Secondly, we describe

the limitations of in-place classification. Thirdly, we describe current classification offload

solutions and their limitations. Fourthly, we explain the problems resulting from the lack

of clear knowledge about classifiers.

Before moving on to the description of current classifier deployment mechanisms, we list

what we do not cover in this chapter. Firstly, we do not discuss how existing deployment

and offload mechanisms compare with the approach proposed by this thesis. Secondly, we do

not compare our approach with new proposals like Internet Indirection Infrastructure [88],

Delegation Oriented Architecture [94], and Ethane [51]. We defer such comparisons to

the Related Work sections of the chapters explaining our approach (Chapters 3, 5 and
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6). Thirdly, we do not discuss the large body of research targeted at speeding up low-

level classification operations like longest prefix matching. Our approach is agnostic of the

algorithms and data structures underlying individual classification operations. For more

information about such work, please refer [91].

2.1 Classifier Deployment

In current networks, special-purpose classifiers are implicitly deployed by placing them

on the network path traversed by packets. Forwarding classifiers like routers and switches

form the backbone of the network and are naturally on the packet paths. Special-purpose

classifiers like firewalls and load balancers are deployed by physically wiring them on the

network paths taken by the relevant traffic or by overloading existing path selection mech-

anisms to forward traffic through paths containing them.

In this section, we explain in detail how special-purpose classifiers are deployed within

a local area or enterprise network. We use a typical data center network topology as an ex-

ample. Wide area classifier deployments use mechanisms similar to local area deployments.

In most cases, wide area deployments are simply formed by smaller local area deployments

that use the mechanisms we describe here.

We first describe the typical data center network topology. We then explain how clas-

sifiers are deployed and point out their limitations.

2.1.1 Data Center Network Topology

The physical network topology in a data center is typically organized as a three layer

hierarchy [44], as shown in Figure 2.1:

1. Access Layer provides physical connectivity to the servers in the data centers. It is

implemented at the data link layer (i.e., layer-2), as clustering, failover and virtual

server movement protocols deployed in data centers require layer-2 adjacency [3, 46].
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Figure 2.1. Prevalent 3-layer data center network topology.

2. Aggregation Layer connects together access layer switches. It commonly operates at

both layers 2 and 3. Classifiers like firewalls and load balancers are usually deployed

at the aggregation layer to ensure that traffic traverses them before reaching data

center applications and services.

3. Core Layer interfaces the data center to external networks and connects together

the various aggregation layer switches. It operates at layer-3.

Multiple redundant links connect together pairs of switches at all layers, enabling high

availability at the risk of forwarding loops. Mechanisms like spanning tree construction [10]

are used to break loops (like loop XYZ in Figure 2.1) in the layer-2 topology.

2.1.2 Deployment Mechanisms

In today’s data centers, there is a strong coupling between the physical network topology

and the logical topology. The logical topology refers to the sequences of special-purpose

classifiers to be traversed by different types of traffic, as specified by data center policies.

Current classifier deployment practices hard code these policies into the physical network
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Figure 2.2. (a) On-path classifier deployment at the aggregation layer ,(b) Layer-2 path
between servers S1 and S2 including a firewall.

topology by placing classifiers in sequence at choke points on the physical network paths.

In Figure 2.2(a), a firewall and a load balancer are placed at the aggregation layer. Thus,

they are on the path of all traffic entering the data center. Alternatively, classifiers can be

deployed at non-chokepoints. In such cases, path selection mechanisms like spanning tree

construction and other network configuration parameters like VLANs are tweaked to send

traffic through the paths containing the classifiers.

The coupling between logical and physical topologies leads to classifier deployments that

are hard to configure and fail to achieve three desirable properties – correctness, flexibility

and efficiency. Next, we explain different classifier deployment strategies in finer detail, and

illustrate how they suffer from these limitations.

2.1.3 Hard to Configure and Ensure Correctness

The process of deploying classifiers in today’s data center networks is prone to miscon-

figuration. While literature on the practical impact and prevalence of classifier deployment

issues in current data centers is scant, there is growing evidence of these problems. Accord-
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ing to [7], 78% of data center downtime is caused by misconfiguration. The sheer number

of misconfiguration issues cited by industry manuals [44,10], reports of large-scale network

misconfigurations [6], and anecdotal evidence from network equipment vendors and data

center architects [33] complete a gloomy picture.

Configuring layer-2 switches and layer-3 routers to enforce the correct sequence of

classifiers involves tweaking hundreds of knobs, a highly complex and error-prone pro-

cess [7,44,81,50]. Misconfiguration is exacerbated by the abundance of redundant network

paths in a data center, and the unpredictability of network path selection under network

churn [54, 44]. For example, the failure or addition of a network link may result in traffic

being routed around the network path containing a mandatory firewall, thus violating data

center security policy.

Reliance on overloading path selection mechanisms to send traffic through classifiers

makes it hard to ensure that traffic traverses the correct sequence of classifiers under all

network conditions. Suppose we want traffic between servers S1 and S2 in Figure 2.2(b)

to always traverse a firewall, so that S1 and S2 are protected from each other when one of

them gets compromised. Currently, there are three ways to achieve this:

1. Use the existing aggregation layer firewalls.

2. Deploy new firewalls.

3. Incorporate firewall functionality into the switches themselves.

All three options above are hard to implement and configure, as well as suffer from the

many limitations we explain below.

Option 1: Use existing firewalls

The first option of using the existing aggregation layer firewalls requires all traffic be-

tween S1 and S2 to traverse the path (S1, A1, G1, L1, F1, G3, G4, F2, L2, G2, A2, S2),

marked in Figure 2.2(b). An immediately obvious problem with this approach is that it
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wastes resources by causing frames to gratuitously traverse two firewalls instead of one, and

two load-balancers. An even more important problem is that there is no good mechanism

to enforce this path between S1 and S2. The following are three widely used mechanisms:

• Remove physical connectivity:

By removing links (A1, G2), (A1, A2), (G1, G2) and (A2, G1), the network adminis-

trator can ensure that there is no physical layer-2 connectivity between S1 and S2

except via the desired path. The link (A3, G1) must also be removed by the adminis-

trator or blocked out by the spanning tree protocol in order to break forwarding loops.

The main drawback of this mechanism is that we lose the fault-tolerance property of

the original topology, where traffic from/to S1 can fail over to path (G2, L2, F2, G4)

when a classifier or a switch on the primary path (e.g., L1, F1 or G1) fails. Identifying

the subset of links to be removed from the large number of redundant links in a data

center, while simultaneously satisfying different policies, fault-tolerance requirements,

spanning tree convergence and classifier failover configurations, is a very complex and

possibly infeasible problem.

• Manipulate link costs:

Instead of physically removing links, administrators can coerce the spanning tree

construction algorithm to avoid these links by assigning them high link costs. This

mechanism is hindered by the difficulty in predicting the behavior of the spanning tree

construction algorithm across different failure conditions in a complex highly redun-

dant network topology [54,44]. Similar to identifying the subset of links to be removed,

tweaking distributed link costs to simultaneously carve out the different layer-2 paths

needed by different policy, fault-tolerance and traffic engineering requirements is hard,

if not impossible.

• Separate VLANs:

Placing S1 and S2 on separate VLANs that are inter-connected only at the

aggregation-layer firewalls ensures that traffic between them always traverses a fire-

wall. One immediate drawback of this mechanism is that it disallows applications,
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clustering protocols and virtual server mobility mechanisms requiring layer-2 adja-

cency [3, 46]. It also forces all applications on a server to traverse the same classifier

sequence, irrespective of policy. Guaranteeing classifier traversal requires all desired

classifiers to be placed at all VLAN inter-connection points. Similar to the cases

of removing links and manipulating link costs, overloading VLAN configuration to

simultaneously satisfy many different classifier traversal policies and traffic isolation

(the original purpose of VLANs) requirements is hard.

Option 2: Deploy new firewalls

The second option of using additional firewalls is also implemented through the mech-

anisms described above, and hence suffer the same limitations. Firewall traversal can be

guaranteed by placing firewalls on every possible network path between S1 and S2. How-

ever, this incurs high hardware, power, configuration and management costs. Moreover, it

increases the risk of traffic traversing undesired classifiers. Apart from wasting resources,

packets traversing an undesired classifier can hinder application functionality. For example,

unforeseen routing changes in the Internet, external to the data center, may shift traffic to a

backup ingress point with an on-path firewall that filters all non-web traffic, thus crippling

other applications.

Option 3: Incorporate functionality into switches

The third option of incorporating firewall functionality into switches is in line with

the industry trend of consolidating more and more classifier functionality into switches.

Currently, only high-end switches [9] incorporate classifier functionality and often replace

the sequence of classifiers and switches at the aggregation layer (for example, F1, L1,

G1 and G3). This option suffers the same limitations as the first two, as it uses similar

mechanisms to coerce S1-S2 traffic through the high-end aggregation switches incorporating

the required classifier functionality. These high end switches are already oversubscribed by

multiple access layer switches. Sending S1-S2 traffic through these switches even when a
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direct path exists further strains their resources. They also become concentrated points

of failure. This problem goes away if all switches in the data center incorporate all the

required classifier functionality. Though not impossible, this is impractical from a cost

(both hardware and management) and efficiency perspective.

2.1.4 Network Inflexibility

While data centers are typically well-planned, changes are unavoidable. For example, to

ensure compliance with future regulation like Sarbanes Oxley [36], new accounting classifiers

may be needed for email traffic. The dFence [76] DDOS attack mitigation classifier is

dynamically deployed on the path of external network traffic during DDOS attacks. New

instances of classifiers are also deployed to handle increased loads, a possibly more frequent

event with the advent of on-demand instantiated virtual classifiers.

Adding a new special-purpose classifier, whether as part of a logical topology update

or to reduce load on existing classifiers, currently requires significant re-engineering and

configuration changes, physical rewiring of the backup traffic path(s), shifting of traffic to

this path, and finally rewiring the original path. Plugging in a new classifier ‘service’ module

into a single high-end switch is easier. However, it still involves significant re-engineering

and configuration, especially if all expansion slots in the switch are filled up.

Network inflexibility also manifests as fate-sharing between classifiers and traffic flow.

All traffic on a particular network path is forced to traverse the same classifier sequence,

irrespective of policy requirements. Moreover, the failure of any classifier instance on the

physical path breaks the traffic flow on that path. This can be disastrous for the data

center if no backup paths exist, especially when availability is more important than classifier

traversal.
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2.1.5 Inefficient Resource Usage

Ideally, traffic should only traverse the required classifiers, and be load balanced across

multiple instances of the same classifier type, if available. However, configuration inflexi-

bility and on-path classifier placement make it difficult to achieve these goals using exist-

ing classifier deployment mechanisms. Suppose, path (G4, F2, L2, G2) in Figure 2.2(b) is

blocked out by spanning tree construction or explicitly blocked out by traffic engineering.

All traffic entering the data center, irrespective of policy, flows through the remaining path

(G3, F1, L1, G1), forcing classifiers F1 and L1 to process unnecessary traffic and waste their

resources. Moreover, classifiers F2 and L2 on the blocked out path remain unutilized even

when F1 and L1 are struggling with overload.

2.2 In-place Classification

Many classifiers fully implement the classification operations in-place, i.e., all by them-

selves. For example, a firewall implements firewall functionality all by itself. It looks up

matching rules, records per-flow state, and forwards or drops the packet without consulting

any other entity in the network.

Increasing classification complexity and traffic loads restrict the scalability of in-place

classification. An in-place classifier is often unable to keep up with the load. Additionally,

in-place classification is inefficient and hard to configure, since it does not leverage semantic

context and processing resources that may be available at other network entities. In this

section, we illustrate the configuration hardness and inefficiency of in-place classification

using the example of a firewall load balancer.

Let us revisit the firewall load balancing scenario from Section 1.1.1, illustrated in

Figure 2.3. Current firewalls are typically stateful, i.e., the accept/drop decision for a

packet may depend on earlier packets. For example, a firewall will accept a packet in the

data TCP connection of an FTP session, only if it earlier accepted packets in the associated

control connection. Packets in the reverse flow direction must also be processed by the same

21



Figure 2.3. Current firewall load balancer deployment.

firewall instance. Thus, for correct firewall operations, the load balancers in Figure 2.3 must

send all packets in both control and data connections of an FTP session to the same firewall

instance in both flow directions.

To implement such firewall ‘stickiness’ for the control and data connections of an FTP

session, current firewall load balancers are forced to decipher the application semantics of

their traffic. This increases the complexity of load balancer design and implementation, as

well as incurs additional performance overheads of gratuitous layer-7 processing.

Some load balancers rely on wiring configuration to select the same firewall instance

for both traffic directions [74]. When load balancer M in Figure 2.3 receives a packet from

firewall F , it stores a mapping between the packet’s 5-tuple and the network interface (in

this case, interface 1) on which the packet arrived. On receiving a packet in the reverse

direction, it looks up the stored mapping and forwards the packet on the recorded interface.

This mechanism is often ad-hoc and increases network configuration complexity.

2.3 Classification Offload

Classification offload is used to overcome the scalability limitations of in-place classifi-

cation. These offload mechanisms push classification-related processing from classifiers to

other entities with more semantic context or available processing resources per packet.

Different classification applications employ different application-specific offload solutions

– for example, MPLS, Diffserv, and HTTP cookies. The lack of a generic classification
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offload solution and the ad-hoc nature of existing solutions increases configuration hardness,

and hampers network flexibility and efficiency.

In this section, we first describe various application-specific offload solutions. We then

describe their limitations.

2.3.1 MPLS

Core routers typically have more total processing power than edge routers. However,

a core router encounters substantially greater volumes of traffic per second than an edge

router. As a result, a core router can afford to spend lesser time processing each packet

than an edge router, inspite of having greater processing capabilities in aggregate.

Route lookup is the main classification activity of a router. Increasing number of

autonomous systems and multi-homing have greatly increased routing table sizes at core

routers [65, 77, 78, 80]. Consequently, the complexity of route lookup has significantly in-

creased. Additionally, traffic engineering policies often add more complexity to a router’s

classification operations.

Core routers use MPLS [25] at layer 2.5 to offload expensive route lookup and traf-

fic engineering decisions to edge routers. Using a label distribution protocol [21], network

administrators configure edge routers to add different labels to packets based on their des-

tination IP address and the traffic engineering policies they match. The label distribution

protocol also establishes next hop tables mapping labels to output interfaces at core routers.

A downstream core router can thus easily determine a packet’s next hop by looking up its

label in its next hop table. Exact matching based label lookup is much simpler than longest

prefix matching based route and traffic policy lookup. In this way, a core router improves

its scalability by shedding some of its classification load to edge routers.

23



2.3.2 Diffserv

Most routers can provide different qualities of service (QoS) to different types of traffic.

For example, a router may accord high forwarding priority to VoIP traffic and low priority

to data backup traffic. To provide different QoS to a packet, a router must first classify

its traffic type and retrieve the appropriate QoS policy. Routers commonly identify traffic

types by looking at packet transport port numbers or by looking deep into packet payloads.

These are complex operations that hinder the router’s scalability.

Routers use Diffserv [2] to push the identification of a packet’s QoS requirements to

endhosts and ingress routers. Endhosts and ingress routers use local application context,

QoS policies and traffic statistics to determine a packet’s QoS requirements. They convey

the packet’s QoS class to downstream routers by setting the DSCP bits in its layer-3 (IP)

header. A downstream router simply uses the DSCP bits to determine how the packet

should be forwarded. As in the case of MPLS, it improves scalability by avoiding complex

rule matching.

2.3.3 HTTP Cookies

An HTTP session may consist of multiple HTTP and HTTPS connections. For ex-

ample, an HTTP session involving an online shopping experience includes multiple HTTP

connections for browsing and adding items to the shopping cart, and HTTPS connections

for payment and shipping information. If the application servers are stateful, then a load

balancer must send all connections in a session to the same server instance for semantic

correctness. Otherwise, shopping cart contents may be corrupted, or the server may lack

the correct SSL connection parameters. Even if application servers are stateless, sending all

connections to the same instance facilitates performance improvements through caching.

One simple strategy for the load balancer is to send all packets with the same source

IP address to the same application server instance. This strategy has two limitations:

1. Different connections within an HTTP session may not have the same source IP
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address. TCP connections from hosts in a home ISP network are often load balanced

across multiple proxies or NATs. A proxy or NAT rewrites a packet’s source IP

address with its globally routable IP address. Hence, the simple of strategy of relying

on source IP addresses does not ensure that the same server instance is selected

for all connections in a session. This problem is often called the AOL Mega Proxy

problem [40, 11].

2. Relying solely on source IP addresses may result in coarse-grained load balancing and

cause load skew. Connections from a large number of hosts behind a NAT or proxy

will have the same source IP address. Sending all these connections to the same server

may overload it.

Since source IP addresses are insufficient, load balancers currently rely on direct endhost

support. A load balancer uses HTTP cookies [15] to offload HTTP session identification to

the endhosts. When the load balancer sees an HTTP request without a cookie, it inserts a

new cookie into the HTTP response. The cookie identifies the webserver instance selected

for this session. The application, say web browser, at the endhost has local and semantic

context to identify the multiple HTTP/HTTPS connections in an HTTP session. It includes

the same cookie value in subsequent connections of the session. The load balancer reads

the cookie value by reconstructing the transport stream and parsing the application, i.e.,

layer-7 headers. From the cookie value, it determines the server instance to be used for the

connection.

2.3.4 Limitations

Each of the classification offload mechanisms described above is a point solution tailored

to a particular application and operating at a single layer. The following are their three

main limitations:

1. Configuration Hardness

A network administrator must separately implement and configure the different clas-
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sification offload mechanisms corresponding to different applications. This increases

network configuration complexity, and increases the probability for errors arising from

the interactions between different mechanisms.

2. Inefficiency

Some offload solutions rely on expensive deep packet inspection. For instance, a load

balancer must reconstruct the transport stream and parse layer-7 HTTP headers to

simply read the HTTP cookie value. Such expensive operations are not a funda-

mental component of classification offload, but are simply inefficiencies of the current

mechanisms.

3. Inflexibility

Current offload mechanisms are inflexible since they are tailored to a specific applica-

tion and protocol layer. A new classification application will require re-inventing and

deploying similar offload mechanisms. Due to the difficulty and costs of such re-design

efforts, many applications are deprived of the benefits of classification offload.

2.4 Limited Understanding of Classifier Operations

Current packet classifiers are complex devices that implement a wide range of function-

ality at different layers - from simple layer-3 router lookup to complex layer-7 HTTP session

identification. Different classifiers interact with the network in different ways. They have

different expectations about the type of packets reaching it. For example, a load balancer

often requires packets to be explicitly IP addressed to it. A classifier may change the packet

header and contents as part of its operation. For example, load balancers often rewrite

the destination IP address and port number of a packet to those of the selected webserver.

Moreover, a classifier often has multiple operation modes, each with its own configuration

and requirements. For example, a load balancer can be deployed in two-legged or single-

legged mode as shown in Figure 2.4. In the two-legged mode, it often rewrites the source

IP address and port number to its own IP address and a local port number. On the other

26



Figure 2.4. Different load balancer deployment configurations: (a) Single-legged, (b) Two-
legged

hand, in the single-legged Direct Server Return (DSR) [74] mode, packets from the web

server directly flow to the clients, bypassing the load balancer. Thus the load balancer does

not rewrite the source IP address and port number in this mode.

Information about such classifier requirements and behavior is not readily available.

Such information is often buried inside big configuration manuals. There is currently no

standard way to succinctly describe classifiers. In many cases, the information is simply

not available.

The non-availability of this information makes network planning, deployment and con-

figuration hard. For example, a network administrator cannot easily determine how two

classifiers placed in sequence will interact – Do the packets forwarded by the upstream clas-

sifier satisfy the packet header expectations of the downstream classifier? Without clear

information about classifier behavior, it is difficult to correctly configure the network, as

well as to detect anomalous behavior and troubleshoot the network.
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The lack of a concise and standard language to describe different classifiers also hinders

classifier-related research. In our own research experience designing and implementing the

policy-aware switching layer (Section 5), the non-availability of clear information about how

some classifiers processed packets led to some initial wrong design decisions which later

manifested as hard-to-debug errors. We describe our experience in detail in Section 3.2.3.

2.5 Summary

In this chapter, we described the current classifier deployment and classification offload

mechanisms. These mechanisms, as well as in-place classification, suffer from three com-

mon limitations – configuration hardness, inefficiency and inflexibility. The lack of clear

knowledge about classifier functionality and configuration requirements hinders network

deployments as well as networking research.

In the next chapter, we present a classifier model that helps us better understand clas-

sifiers. The model sets the stage for our solutions that tackle the limitations, in subsequent

chapters.
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Chapter 3

Modeling Classifiers

There is great diversity in how today’s classifiers process and transform packets, and

in how they are configured and deployed. For example, a firewall is commonly connected

inline on the physical network path, and transparently forwards packets unmodified or drops

them. A load balancer, on the other hand, rewrites packet headers and contents, and often

requires packets to be explicitly IP addressed and forwarded to it.

Correctly deploying and configuring classifiers is a challenging task by itself. Without a

clear understanding of how different classifiers process packets and interact with the network

and with other classifiers, network planning, verification of operational correctness and

troubleshooting become even more complicated. As we described in the previous chapter,

the lack of a concise standard language to describe classifier operations and configurations

hinders existing network deployments as well as classifier-related research.

In this chapter, we present a general model to describe classifier functionality and de-

ployment configurations. We envision an online repository containing models of commonly

used classifiers. Network administrators can use models downloaded from this repository

to plan network topologies and to validate if the observed network traffic matches the pat-

terns described by the model. The standard and concise language offered by our model

helps researchers quickly understand diverse classifier functionality, and how it affects their

29



research. To ease model construction, we have prototyped a tool that infers hints about a

particular classifier’s operations through blackbox testing. We have also prototyped a tool

that validates a classifier’s operations against its model, and thus helps detect unexpected

behavior.

Next, we describe our model and illustrate its details using three common classifiers –

firewall, layer-4 load balancer, and SSL-enabled layer-7 load balancer; and using different

kinds of Network Address Translator (NAT) [39] boxes. We then demonstrate the utility of

our model using multiple examples in Section 3.2. Section 3.3 describes the limitations of

our model, while section 3.4 compares our model to related work.

3.1 The Model

A classifier in our model consists of zones, input pre-conditions, state databases, pro-

cessing rules, auxiliary traffic, and the interest and state fields deduced from the processing

rules. In this section, we describe and illustrate our model using three common classifiers –

firewall, layer-4 load balancer and SSL-offload capable layer-7 load balancer, and using dif-

ferent kinds of NATs. Although NATs do not themselves classify packets, they implement

packet transformations similar to classifiers, as well have similar deployment requirements.

Table 3.1 describes the notations used in our model.

3.1.1 Interfaces and Zones

A classifier has one or more physical network interfaces. Packets enter and exit a

classifier through one or more of these interfaces. Each physical interface is associated with

one or more logical network zones. A zone represents a packet entry and exit point from

the perspective of classifier functionality. A classifier processes packets differently based on

their ingress and egress zones.

For example, the firewall shown in Figure 3.1(a) has two physical interfaces, one belong-

ing to the red zone that represents the insecure external network, and the other belonging
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Table 3.1. Notations used in our model
∧ logical AND operation
! logical NOT operation
sm source MAC (layer-2) address
dm destination MAC (layer-2) address
si source IP (layer-3) address
di destination IP (layer-3) address
sp source TCP/UDP (layer-4) port
dp destination TCP/UDP (layer-4) port
p packet

[hd] packet with header h and payload d

5tpl packet 5-tuple, i.e., si,di, sp, dp, proto
Xrev Swaps any source-destination IP, MAC or port number pairs in X

Z(A, p) true if packet p arrived at or departed zone A

I(P, p) Input pre-condition; true if packet p matches pattern P
C(p) condition specific to classifier functionality

newflow?(p) true if packet p indicates a new flow, e.g., TCP SYN
set(A, key → val) Stores the specified key-value pair in zone A’s state database
S : get?(A, key) Returns true and assigns val to S if key → val is present in zone

A’s state database

to the green zone representing the secure internal network. Packets entering through the

red zone are more stringently checked than those entering through the green zone.

Similarly, the NAT in Figure 3.1(b) has two different physical network interfaces, one

belonging to the internal network (zone int) and the other belonging to the external network

(zone ext). The source IP and port number are rewritten for packets received at zone int,

while the destination IP and port number are rewritten for packets received at zone ext.

Figure 3.1(c) shows a load balancer with a single physical network interface that belongs

to two different zones. Zone inet represents the Internet and zone srvr represents the

web server farm. The load balancer forwards packets received at zone inet to webserver

instances in zone srvr.

The mapping between interfaces and zones is pre-determined by the classifier vendor

or configured during classifier initialization. The zone of a frame reaching an interface

belonging to multiple zones is identified by its VLAN tags, IP addresses and/or transport

port numbers.
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Figure 3.1. Zones of different classifiers: (a) firewall (b) NAT (c) load balancer in single-
legged configuration

3.1.2 Input Pre-conditions

A classifier may only process certain types of packets. Input pre-conditions record the

types of packets which are accepted by a classifier for processing. For example, a transparent

firewall processes all packets received by it, whereas a load balancer in a single-legged

configuration processes a packet arriving at its inet zone only if the packet is explicitly

addressed to it at layers 2, 3 and 4. Similarly, a NAT processes all packets received at its

int zone, but requires those received at its ext zone to be addressed to it at layers 2 and 3.

We represent input pre-conditions using a clause of the form I(P, p), which is true

if the headers and contents of packet p match the pattern P. For example, the firewall

has the input pre-condition I(< ∗ >, p) and the load balancer has I(< dm = MACLB, di =

IPLB, dp = 80 >, p) for its inet zone, where MACLB and IPLB are the load balancer’s layer-2

and layer-3 addresses. Although I(< ∗ >, p) is a tautology, we explicitly specify it in order

to enhance model clarity.
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3.1.3 State Database

Many classifiers maintain state associated with the flows and sessions they process.

We represent state in our model using key-value pairs stored in zone-independent or zone-

specific state databases. Processing rules (described next) use the set and get? primitives

to manipulate state.

Accurately tracking state removal is hard, unless explicitly specified by the del primitive

in a processing rule. We use special processing rules to flag discrepancies that may result

from state expiration, instead of using state expiration timeouts. State expiration timeouts

are ineffective due to inaccuracies in timeout values or in their fine-grained measurement.

3.1.4 Processing Rules

We model the functionality of a classifier using Processing Rules. A processing rule

specifies what a classifier does on receiving a packet or when a condition becomes true. For

example, the processing of an incoming packet is represented by a rule of the general form:

Z(A, p) ∧ I(P, p) ∧ C(p) =⇒ Z(B, T (p)) ∧ state ops

The above rule indicates that a packet p reaching zone A of the classifier is transformed to

T (p) and emitted out through zone B. The packet is emitted out only if it satisfies the input

pre-condition I(P, p) and a classifier-specific condition C(p). The rule also indicates that

the classifier may manipulate state associated with the TCP flow or application session

to which the packet belongs. We now present concrete examples of processing rules for

common classifiers.

Firewall

We start with a simple stateless layer-4 firewall. The firewall either drops a packet

received on its red zone or relays it unmodified to the green zone. Our model captures this

behavior using the following two rules:
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Z(red, p)∧ I(< ∗ >, p) ∧ Caccept(p) =⇒ Z(green, p)
Z(red, p)∧ I(< ∗ >, p) ∧ Cdrop(p) =⇒ DROP(p)

Since I(< ∗ >, p) is a tautology, whether a packet is dropped or accepted by the firewall

is solely determined by the Caccept and Cdrop. These clauses represent the firewall’s basic

filtering functionality. Common filtering rules can be easily represented using simple boolean

expressions – e.g., Caccept(p) : p.di = 80 || p.si = 128.34.45.6. We leverage external models

like the Unified Firewall Model [79] to construct C clauses for more complex rules. Rules

for packets in the green→ red direction are similar.

NAT

Next, we show how different types of NATs can be represented in our model. Although

NATs are not classifiers themselves, they are similar to classifiers in terms of packet trans-

formations and deployment configurations. Unlike the firewall in the previous example, a

NAT rewrites packet headers and maintains per-flow state. We first describe the processing

rules for a full cone NAT below. We then change it to represent a symmetric NAT.
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Full Cone NAT

(i)

Z(int, [hd])
∧I(< ∗ >, [hd])
∧!S :
get?(int, [h.si, h.sp])

=⇒
Z(ext, [SNATfwd(h, newport)d])
∧set(int, [h.si, h.sp] → newport)
∧set(ext, newport→ [h.si, h.sp])

SNATfwd([sm, dm,
si, di, sp, dp], PORT)

= [MACNAT, MACgw, IPNAT, di, PORT, dp]

(ii)
Z(int, [hd])
∧I(< ∗ >, [hd])
∧S : get?(int, [h.si, h.sp])

=⇒ Z(ext, [SNATfwd(h,S)d])

(iii)

Z(ext, [hd])
∧I(< di = IPNAT,
dm = MACNAT >, [hd])
∧S : get?(ext, h.dp)

=⇒ Z(int, [SNATrev(h,S.si,S.sp)d])

SNATrev([sm, dm, si, di,
sp, dp], IP, PORT)

= [MACNAT, MACIP, si, IP, sp, PORT]

(iv)
Z(int, [hd])
∧I(< ∗ >, [hd])
∧S : get?(int, [h.si, h.sp])

=⇒ DROP([hd])
∧WARN(inconsistent state)

(v)

Z(ext, [hd])
∧I(< di = IPNAT,
dm = MACNAT >, [hd])
∧S : get?(ext, h.dp)

=⇒ DROP([hd])
∧WARN(inconsistent state)

• Rule (i) describes how a full cone NAT processes a packet [hd] with a previously

unseen [si, sp] pair received at its int zone. It allocates a new port number using a

standard mechanism like random or sequential selection, or using a custom mechanism

beyond the scope of our model. It stores [si, sp] → newport and newport→ [si, sp] in

zone int’s and zone ext’s state databases, respectively. It rewrites the packet header

h by applying the source NAT (SNATfwd) transformation function – the source MAC

and IP addresses are replaced with the NAT’s own publicly visible addresses, the

source port with the newly allocated port number, and the destination MAC with the

NAT’s next hop IP gateway. It then emits the packet with the rewritten header and

unmodified payload through its ext zone.

• Rule (ii) specifies that the NAT emits a packet with a previously seen [si, sp] pair

through zone ext, after applying SNATfwd with the port number recorded in rule (i).
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• Rule (iii) describes how the NAT processes a packet reaching the ext zone. It

first retrieves the newport → [si, sp] state recorded in rule (i) using the packet’s

destination port number. It then applies the reverse source NAT transformation

function(SNATrev) and emits the modified packet through zone int.

• Rule (iv) and Rule (v) flag discrepancies resulting from the model’s inaccuracy in

tracking state expiration. The NAT may drop a packet arriving at its int or ext zone

if the state associated with the packet has expired without the model’s knowledge.

Unlike a full cone NAT, a symmetric NAT allocates a separate port for each

[si, sp, di, dp] tuple seen at its int zone, rather than for each [si, sp] pair. Thus, for a

symmetric NAT, the zone int state set in rule (i) and retrieved in rules (ii) and (iv), is keyed

by [h.si, h.sp, h.di, h.dp] rather than by just [h.si, h.sp]. A symmetric NAT is also more

restrictive than a full cone NAT. It relays a packet with header [IPs, IPNAT, PORTs, PORTd]

from the ext zone only if it had earlier received a packet destined to IPs : PORTs at the

int zone and had rewritten its source port to PORTd. This restrictive behavior is cap-

tured by keying the zone ext state set in rule (i) and retrieved in rules (iii) and (v) with

[h.di, h.dp, newport] rather than with just newport. Other NAT types like restricted cone

and port restricted cone can be easily represented with similar minor modifications.

Restricted Cone NAT
Z(int, [hd])
∧I(< ∗ >, [hd])
∧!get?(int, [h.si, h.sp])

=⇒
Z(ext, [SNATfwd(h, newport)d])
∧set(int, [h.si, h.sp] → newport)
∧set(ext, [h.di, newport] → [h.si, h.sp])

Z(int, [hd])
∧I(< ∗ >, [hd])
∧S : get?(int, [h.si, h.sp])

=⇒Z(ext, [SNATfwd(h,S.PORT)d])
∧set(ext, [h.di,S.PORT] → [h.si, h.sp])

Z(ext, [hd])
∧I(< di = IPN ,
dm = MACN >, [hd])
∧S : get?(ext, [h.si, h.dp])

=⇒Z(int, [SNATrev(h,S.si,S.sp)d])
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Port Restricted Cone NAT

Z(int, [hd])
∧I(< ∗ >, [hd])
∧!get?(int, [h.si, h.sp])

=⇒

Z(ext, [SNATfwd(h, newport)d])
∧set(int, [h.si, h.sp] → newport)
∧set(ext, [h.di, h.dp, newport]
→ [h.si, h.sp])

Z(int, [hd])
∧I(< ∗ >, [hd])
∧S : get?(int, [h.si, h.sp])

=⇒
Z(ext, [SNATfwd(h,S.PORT)d])
∧set(ext, [h.di, h.dp,S.PORT]
→ [h.si, h.sp])

Z(ext, [hd])
∧I(< di = IPN ,
dm = MACN >, [hd])
∧S : get?(ext, [h.si, h.sp, h.dp])

=⇒Z(int, [SNATrev(h,S.si,S.sp)d])

Layer-4 load balancer

Here, we present a layer-4 load balancer. The load balancer rewrites a packet’s desti-

nation IP address to that of an available server.

Layer-4 Load Balancer

(i)

Z(inet, [hd])∧
I(< dm = MACLB, di = IPLB,
dp = 80 >, [hd])
∧newflow?([hd])

=⇒
Z(srvr, [DNATfwd(h, Wi)d])
∧set(inet, h.5tpl → Wi)
∧set(srvr,DNATfwd(h, Wi)rev.5tpl → true)

DNATfwd([sm, dm, si, di,
sp, dp],W )

= [sm, MACW , si, IPW , sp, dp]

(ii)

Z(inet, [hd])∧
I(< dm = MACLB, di = IPLB,
dp = 80 >, [hd])
∧!newflow?([hd])
∧S : get?(inet, h.5tpl)

=⇒Z(srvr, [DNATfwd(h,S)d])

(iii)

Z(srvr, [hd])∧
I(< sm = MACWi , si = IPWi ,
sp = 80 >, [hd])
∧S : get?(srvr, h.5tpl)

=⇒Z(inet, [DNATrev(h)d])

DNATrev([sm, dm, si, di, sp, dp]) = [MACLB, MACgw, IPLB, di, sp, dp]

• Rule (i) describes how the load balancer processes the first packet of a new flow

received at its inet zone. The load balancer selects a webserver instance Wi for the

flow and records it in the inet zone’s state database. It rewrites the destination
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IP and MAC addresses of the packet to Wi using the destination NAT (DNATfwd)

transformation function. It then emits the packet out through the srvr zone. It also

records this flow in the srvr zone’s state database, keyed by the 5-tuple of the packet

expected in the reverse flow direction.

• Rule (ii) specifies that subsequent packets of the flow will simply be emitted out after

rewriting the destination IP and MAC addresses to those of the recorded webserver

instance.

• Rule (iii) describes the processing of a packet received from a webserver. The load

balancer verifies the existence of flow state for the packet and then emits it out through

the inet zone after applying the reverse DNAT transformation – i.e., rewriting the

source IP and MAC addresses to those of the load balancer and the destination MAC

to the next hop IP gateway.

The webserver instance selection mechanism is beyond the scope of our general model.

However, the load balancer model can be augmented with primitives to represent common

selection mechanisms like least loaded and round-robin. In the example above, we assumed

that the load balancer was set as the default IP gateway at each webserver. Other de-

ployment configurations (e.g., direct server return or source NAT) can be represented with

minor modifications.

Layer-7 load balancer

We illustrate how our model describes a classifier whose processing spans both packet

headers and contents, and is not restricted to one-to-one packet transformations. We use

a layer-7 SSL-offload capable load balancer as an example. The layer-7 load balancer acts

as the end point of the TCP connection from a client (the CL connection). Since modeling

TCP behavior is very hard, we abstract it using a blackbox TCP state machine tcpCL. We

buffer the data received from the client in a byte queue DCL. The I clauses are similar to

those of the layer-4 load balancer and hence not repeated below:

38



Layer-7 Load Balancer

(i)
Z(inet, [hd])
∧I(· · · )
∧newflow?([hd])

=⇒set(inet, h.5tpl →
[tcpCL = TCP.new, DCL = Data.new, hCL = h])

(ii)

Z(inet, [hd])
∧I(· · · )
∧!newflow?([hd])
∧S : get?(inet, h.5tpl)

=⇒S.tcpCL.recv(h)
∧S.DCL + d

(iii)S.tcpCL.ready? =⇒Z(inet,
S.tcpCL.send(S.hrev

CL,S.DLS .read))

(iv)S.DCL.url? =⇒

S.hLS = DNATfwd(S.hCL,Wi)
∧set(srvr,S.hrev

LS .5tpl → S)
∧S.DLS = Data.new
∧S.tcpLS = TCP.new

(v)
Z(srvr, [hd])
∧I(· · · )
∧S : get?(srvr, h.5tpl)

=⇒S.tcpLS .recv(h)
∧S.DLS + d

(vi)S.tcpLS .ready? =⇒Z(srvr,
S.tcpLS .send(S.hLS ,S.DCL.read))

• Rule (i) specifies that the load balancer creates tcpCL and DCL and records them

along with the packet header, on receiving the first packet of a new flow from a client

at the inet zone.

• Rule (ii) specifies how the TCP state and data queue of the CL connection are

updated as packets of an existing flow arrive from the client.

• Rule (iii), triggered when tcpCL has data or acks to send, specifies that packets

from the load balancer to the client will have header hrev
CL (with appropriate sequence

numbers filled in by tcpCL) and payload read from the DLS queue, if it was already

created by the firing of rule (iv).

• Rule (iv), triggered when the data collected in DCL is sufficient to parse the HTTP

request URL and/or cookies, specifies that the load balancer selects a webserver in-

stance Wi and opens a TCP connection to it, i.e., creates tcpLS and DLS . It also
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installs a pointer to the state indexed by the DNATed header hLS in the srvr zone’s

state database.

• Rule (v) shows how this state is retrieved, and its tcpLS and DLS updated, on receipt

of a packet from a webserver.

• Rule (vi) specifies the header and payload of packets sent by the load balancer to a

webserver instance – hLS and data read from DCL.

The rules listed above represent a plain layer-7 load balancer. We can represent an

SSL-offload capable load balancer by replacing the + and read data queue operations with

+ssl and readssl operations that perform SSL encryption and decryption on the data. Such

a change does not disturb other rules. Similar to the TCP blackbox, we abstract out SSL

protocol details.

3.1.5 Auxiliary Traffic

A classifier may generate additional traffic, apart from its core packet transformation

and forwarding functionality. For example, a load balancer periodically checks the liveness

of its target servers by making TCP connections to each server. It may also send out an

ARP requests on receiving packet. Such packets which are not part of the classifier’s core

functionality, but support it, are referred to as auxiliary traffic in our model.

Our model represents auxiliary traffic using processing rules. For example, the auxiliary

traffic associated with the load balancer is:

Load Balancer Auxiliary Traffic
PERIODIC =⇒Z(srvr,PROBE(IPWi))

Z(inet, [hd])
∧S : get?(inet, h.5tpl)
∧!S ′ : get?(−, IPS)

=⇒Z(srvr,ARPREQ(IPS))

Z(srvr,ARPRPLY(IP, MAC)) =⇒set(−, IP→ MAC)

The PROBE function returns a set of packets to check the liveness of server Wi. In the
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simple case, these are just TCP hand-shake packets with the appropriate sm, dm, si, di, sp

and dp.

3.1.6 Interest and State fields

The interest fields of a classifier denote the packet fields it reads or modifies. The

state fields include the interest fields used by the classifier in storing and retrieving state.

These fields can be easily deduced from the processing rules. However, they are explicitly

presented in the model as they can highlight unexpected classifier behavior (Section 3.2.3).

3.2 Utility of a Classifier Model

In this section, we first explain how we constructed models for many real-world clas-

sifiers. We then describe how our model helps in planning and troubleshooting existing

classifier deployments, and in guiding the development of new network architectures.

3.2.1 Model Instances

The models for the firewall, NAT, and layer-4 and layer-7 load balancers illustrated

in the previous section were constructed by analyzing generic classifier descriptions and

taxonomies(like RFC 3234 [24]), by referring vendor manuals, and by observing the following

real-world classifiers and NATs in deployment:

• Linux Netfilter/iptables software firewall [41]

• Netgear home NAT [28]

• BalanceNg layer-4 software load balancer [4]

• HAProxy layer-7 load balancer Vmware appliance [14]

We have prototyped a blackbox testing based model inference tool to aid model con-

struction. The tool infers hints about a classifier’s operations by carefully sending different
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kinds of packets on one zone and observing the packets emerging from other zones, as

illustrated in Figure 3.2. The following are some of the inferences generated by it:

1. The layer-4 load balancer remembers source MAC addresses of packets processed by

it in the inet → srvr direction and uses them in packets in the reverse direction.

The tool made this inference by correlating rewritten packet header fields with values

in earlier packets.

2. The firewall does not modify packets. All packets sent by the tool emerge unmodified

or are dropped.

3. The load balancers only process packets addressed to them at layers 2, 3 and 4.

4. The layer-4 load balancer rewrites the destination IP and MAC addresses of packets

in the inet→ srvr direction, and the source addresses in the reverse direction. The

tool made this inference by analyzing packets with identical payloads at the two zones

of the load balancer. The tool can partially infer the header rewriting rules for even

a layer-7 load balancer, by using a relaxed payload similarity metric.

Figure 3.2. Classifier model inference tool analyzing a load balancer.

Our inference tool only offers very basic functionality. It is not fully automated. For

instance, in order to avoid an exhaustive IP address search, the tool requires the load

balancer’s IP address and TCP port as input. Inferred packet header transformation rules

and state fields only serve as a guide for further analysis, as they may not be completely
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accurate. The tool cannot infer the processing rules for classifiers like SSL offload boxes

that completely transform packet payloads.

Completely inferring classifier models through blackbox testing alone is not feasible.

Automatic whitebox software test generation tools like DART [58] may aid model construc-

tion, if classifier source code is available. Parsing configuration manuals to produce model

construction hints is another interesting research direction.

We have also prototyped a model validation tool that checks if a classifier’s operations

are consistent with its model. The validation tool does so by analyzing traffic traces from the

different zones of a classifier. It can flag errors and incompleteness in the models themselves.

It can also detect unexpected classifier behavior, as we describe next.

3.2.2 Network Planning and Troubleshooting

Our classifier model clearly and concisely describes how various classifiers interact with

the network and with each other, under different network configurations. A network ad-

ministrator can use this information to plan new classifier deployments and to monitor and

troubleshoot existing ones.

The input pre-conditions of a classifier specify the types of packets expected by it. A

network architect uses this information to plan the network topology and classifier placement

so that all classifiers receive the desired packets. A network architect can use the input

pre-conditions and processing rules to analyze the feasibility of placing different classifiers

in sequence. For example, the firewall can be placed in front of the load balancer with

little scrutiny, since the right hand sides of the firewall processing rules (Section 3.1.4) do

not interfere with the conditions on the left hand sides of the load balancer processing

rules(Section 3.1.4). However, placing the load balancer before the firewall may interfere

with the the firewall’s Caccept and Cdrop clauses, as the load balancer rewrites packet headers.

Classifier processing rules indicate the packets present in different parts of a network. A

network administrator can use this information to detect problems with a classifier deploy-

ment before actual network rollout. Such information also aids in troubleshooting existing
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classifier deployments. In addition, it enhances automated traffic monitoring and anomaly

detection.

For example, the model validation tool helped us detect a misbehaving NAT in a home

network. The home NAT was not rewriting the source port numbers of packets sent by

internal hosts. This behavior was automatically flagged as a violation of rules (i) and (ii)

of our NAT model (Section 3.1.4). We had expected the multi-interface home NAT to use

source port translation to support simultaneous TCP connections to the same destination

from the same source port on multiple internal hosts. We confirmed the anomaly by opening

simultaneous TCP connections from separate machines. This experience reaffirmed our

model’s practical utility in detecting unexpected classifier behavior.

3.2.3 Guide Networking Research

Our classifier model provides clear and concise descriptions of how various classifiers

operate. Such information is very useful for networking researchers as well as companies

involved in developing new network architectures. The model provides hints about how to

make a new architecture compatible with existing classifiers. It also helps identify classifiers

that cannot be supported.

The model influenced some key decisions in our design and implementation of the policy-

aware switching layer (or PLayer). The PLayer will be presented in detail in Chapter 5.

For the purpose of this discussion, the PLayer consists of layer-2 switches (pswitches) which

explicitly redirect packets to the classifiers specified by administrative policy.

During our initial design phase, we did not have a load balancer model available. We

assumed that a load balancer does not care about the source MAC addresses of packets

received by it. We expected it to use ARP to determine the MAC address for packets in the

reverse flow direction. Hence, we decided to record the last classifier traversed by a packet

by rewriting its source MAC address with a dummy address. Contrary to our expectation,

the load balancer cached the dummy source MAC addresses of packets in the forward flow
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direction and used them to address packets in the reverse direction. Such packets never

reached their intended destinations.

We constructed a load balancer model to help us debug this problem. The presence

of the source MAC address in the interest fields of the load balancer made the problem

obvious – we must not rewrite packet source MAC addresses. Hence, guided by our model,

we decided to use packet encapsulation to record the previous hop of a packet, instead of

rewriting source MAC addresses. Section 5.2.1 provides the details of our encapsulation

scheme.

3.3 Limitations

The model presented in this thesis is only a first step towards modeling classifiers. Its

three main limitations are:

1. the inability to describe highly classifier-specific operations in detail,

2. the lack of formal coverage proofs, and

3. the complexity of model specification.

Our goal of building a classifier model that can describe a wide variety of classifiers

trades off specificity for generality. Our model can be extended using specific models like

the Unified Firewall Model as described in Section 3.1.4, although at the expense of reducing

model simplicity and conciseness. We do not capture accurate timing and causality between

triggering of different processing rules, in order to keep the model simple and concise.

On the other hand, our model may not be general enough to represent all possible

current and future classifiers. We have represented many common classifiers in our model

and are not aware of any existing classifiers that cannot be represented. However, we are

unable to formally prove our model’s coverage.

Although models usually consist of a small number (typically < 10) of processing rules,

constructing models is not a simple task, even with support from our model inference and
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validation tools. We hope that models will be constructed by experts and shared through

an online repository. Thus, models can be used by a wider audience who lack model

construction skills.

3.4 Related Work

An axiomatic basis for communication [70] presents a general network communications

model that axiomatically formulates packet forwarding, naming and addressing. This thesis

presents a model tailored to represent classifier functionality and operations. The processing

rules and state database in our model are similar to the forwarding primitives and local

switching table in [70]. Integration of the two models may combine the practical benefits of

our classifier model (e.g., classifier model inference and validation tools, model repository)

and the theoretical benefits of the general communications model (e.g., formal validation

of packet forwarding correctness through chains of classifiers).

Predicate routing [85] attempts to unify security and routing by declaratively specifying

network state as a set of boolean expressions dictating the packets that can appear on

various links connecting together end nodes and routers. This approach can be extended

to represent a subset of our classifier model. For example, boolean expressions on the ports

and links (as defined by predicate routing) of a classifier can specify the input pre-conditions

of our model and indirectly hint the processing rules and transformation functions. From

a different perspective, classifier models from our repository can aid the definition of the

boolean expressions in a network implementing predicate routing.

[68] uses statistical rule mining to automatically group together commonly occurring

flows and learn the underlying communication rules in a network. Our work has a narrower

and more detailed focus on how classifiers operate. [45] describes detailed measurement

techniques to evaluate production middlebox deployments.

RFC 3234 [24] presents a taxonomy of middleboxes, most of which are classifiers. Our

model is more detailed than a taxonomy – it describes classifier packet processing via a

46



succinct and standard language. Moreover, our model induces a more fine-grained taxonomy

on classifiers and middleboxes. For example, our model can represent ‘classifiers that rewrite

the destination IP and port number’ instead of just ‘classifiers operating at the transport

layer’. Our model does not capture the middlebox failover modes and functional versus

optimizing roles identified by RFC 3234.

The Unified Firewall Model [79] and IETF BEHAVE [5] working group characterize

the functionality and behavior of specific classifiers and middleboxes – firewalls and NATs

in this case. Our generic model enables us to compare different classifiers and study their

interactions. Our generic models can be enhanced by plugging in specific models.

3.5 Summary

In this chapter, we presented a simple classifier model and illustrated how various com-

monly used classifiers can be described by it. The model guides classifier-related research

and aids classifier deployments. Our work is only an initial step in this direction and calls

for the support of the classifier research and user communities to further refine the model

and to contribute model instances for the many different kinds of classifiers that exist today.
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Chapter 4

Packet Classification as a

Fundamental Primitive

As described in Chapter 2, packet classification in current networks suffers from three

main limitations – configuration complexity, inflexibility, and inefficiency. We argue that

the root cause of these limitations is that packet classification is implemented and deployed

in an ad-hoc manner, in spite of its ubiquity in today’s networks.

In this chapter, we advocate that packet classification should be a fundamental primitive

in the network stack. Towards this goal, we define a new classification layer (or CLayer)

in the protocol stack, and two associated control plane protocols – policy-based classifier

deployment and generic classification offload. Policy-based classifier deployment enables

network administrators to explicitly deploy special-purpose classifiers in the sequence they

desire. Generic classification offload enables classifiers and other entities in the network to

negotiate and share the classification load for different applications amongst themselves. A

packet’s CLayer header carries information that is used by these two control plane protocols.

Our proposal addresses the configuration complexity, inflexibility and inefficiency of

current classification solutions, as follows:
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• In Policy-based classifier deployment, network administrators configure the se-

quence of classifiers to be traversed by different kinds of traffic by simply specifying

policies at a centralized policy controller. The underlying forwarding mechanisms

explicitly redirect traffic to the required classifiers. This way, these mechanisms guar-

antee that traffic will traverse the required sequence of classifiers under all network

churn conditions. The centralized point of control simplifies configuration and en-

hances flexibility. A network administrator is no longer forced to rely on ad-hoc and

inflexible mechanisms like physical re-wiring and tweaking spanning tree link weights

to change policies. Explicit redirection improves network efficiency by utilizing all

available classifiers, and by sending traffic only through necessary ones.

• Generic classification offload enables network administrators to implement classi-

fication offload for multiple classification applications using a single mechanism. This

simplifies network configuration by avoiding the hassle of separately implementing and

configuring diverse mechanisms at different protocol layers. Generic classification of-

fload improves network efficiency by enabling explicit co-ordination between different

network entities, and by leveraging CLayer headers to avoid deep packet inspection.

Its generic nature allows it to provide classification offload to new applications, and

thereby enhances network flexibility.

In the rest of this chapter, we first present the CLayer, and then provide an overview

of policy-based classifier deployment and generic classification offload. Chapters 5 and 6

describe the ideas introduced here in more detail.

4.1 Classification Layer

The main contribution of this thesis is a new classification layer in the network stack.

The classification layer, in short the CLayer, provides a well-defined and easily accessible

location within a packet to carry the signaling messages of policy-based classifier deployment

and generic classification offload.
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Figure 4.1. (a) Logical CLayer location in protocol stack, (b) A practical implementation
choice.

The CLayer logically spans the link layer to the application layer, as shown in Fig-

ure 4.1(a). This enables it to simultaneously support classification applications at different

layers and those that span multiple layers. Respecting the wide prevalence of packet clas-

sification in today’s networks, we advocate a separate layer for semantic clarity.

In practice, we advocate implementing the CLayer as a new layer between the network

and transport layers, as shown in Figure 4.1(b). In order to avoid extensive changes to

current forwarding infrastructures, the CLayer should be implemented at or above the

network layer. If the CLayer is below the network layer, routers must be upgraded to

understand CLayer headers, at least to the extent that they can be safely ignored. Network

layering guidelines dictate that a protocol layer should only use the services of layers below

itself. To minimize violation of this architectural guideline, we place the CLayer immediately

above the network layer, i.e., below the transport layer. Another option is to implement

the CLayer as a sub-layer within the network layer; for instance, as an IP option. However,

implementing the CLayer at or above the network layer still violates the layering guideline

for layer-2 only applications.

Implementing the CLayer at or above the network layer ensures that CLayer headers

are preserved end-to-end in the absence of layer-7 ‘proxies’ on the path. A layer-7 proxy

(for example, layer-7 load balancer) acts as a TCP endpoint for the client connection and
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opens a new TCP connection to its final destination. We assume that such layer-7 proxies

are CLayer-aware enough at least to blindly forward along any CLayer headers they receive.

A standardized location of the CLayer within a packet header provides easy access to

the classification information contained in it. In Section 2.3.3, we saw that a web load

balancer gratuitously implements complex layer-7 processing in order to read HTTP cookie

values. When using the CLayer, the load balancer avoids such layer-7 processing overheads

by simply reading the cookie value from the packet’s CLayer header.

Ideally, the CLayer header has a flexible format consisting of key-value pairs. For

practical high-speed implementations, a more rigid fixed-field header structure may be used.

We provide more details about the header structure in Chapter 6 where we describe GOff,

an instantiation of the generic classification offload protocol.

4.2 Policy-based Classifier Deployment

In Chapter 2, we saw that current classifier deployment solutions implicitly place clas-

sifiers on the network path traversed by traffic. This introduces a tight coupling between

the network’s logical topology, i.e., classifier traversal sequences for different traffic types,

and the physical topology. Network administrators indirectly tweak network path selec-

tion mechanisms like spanning tree construction, routing and VLANs to coerce traffic to

flow through paths containing the desired classifiers. Such ad-hoc mechanisms are hard to

configure, cannot guarantee correct traversal, and are inefficient and inflexible.

Policy-based classifier deployment is a classifier deployment solution that avoids the

problems of current mechanisms. It is based on the following two design principles:

1. Take special-purpose classifiers off the network path.

Special-purpose classifiers should not be placed on the physical network paths as

shown in Figure 4.2(a). Instead, they are plugged into routers and switches just like

regular endhosts, as shown in Figure 4.2(b).
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Figure 4.2. (a) Firewall deployed on network path, (b) Firewall deployed off path.

2. Separate policy from reachability.

The sequence of classifiers traversed by different types of traffic should not be implic-

itly dictated by the physical network topology or the interactions between unrelated

network configuration knobs like forwarding protocols, VLAN configuration and traffic

engineering. Instead, network administrators explicitly specify the classifier sequence

for different traffic types, which must then be explicitly enforced by the network.

We provide an overview of policy-based classifier deployment using the simple example

in Figure 4.3. Endhost A and web server W are plugged into switch S. Firewall F is

also plugged into switch S, just like A and W . The network administrator specifies the

classifier traversal policies for different traffic types at the centralized policy controller C.

In this basic example, the policy simply states that all HTTP traffic to W should traverse a

firewall. The policy controller disseminates this policy to switch S. When switch S receives

a packet from A, it looks up the matching policy from its policy database. As specified by

the policy, S explicitly forwards the packet to firewall F . If F does not drop the packet,

it arrives back at S. S again looks up the matching policy and determines that the packet
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Figure 4.3. Basic packet forwarding in a policy-based deployment.

has traversed all required classifiers. Hence, it explicitly forwards the packet to its final

destination, W .

In this example, switch S looked up the policy for a packet twice – first on arrival from

A and second on arrival from F . Switch S can avoid the second policy lookup by recording

the sequence of classifiers that must process the packet in its CLayer header. Each classifier

that processes the packet advances a pointer in the CLayer header to point to the next hop.

A switch receiving the packet can simply use this information to identify a packet’s next

hop and forward it there.

In this simple example, we had only one switch and one classifier. In practice, there are

multiple switches and routers, many different classifiers, multiple instances of each classifier

type, and a larger number of policies. The switches and routers correctly redirect packets to

all the classifiers specified by policy. They also load balance traffic across different instances

of the same classifier. We describe these scenarios in detail when we present the policy-aware

switching layer in Chapter 5.

Separating policy from reachability and centralized control of networks have been pro-

posed in previous work [60, 51]. Explicitly redirecting network packets to pass through
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off-path middleboxes is based on the well-known principle of indirection [88, 94, 59]. We

combine these two general principles to revise the ad-hoc manner in which classifiers are

deployed today. We discuss related work in more detail in Section 5.8.

4.3 Generic Classification Offload

As mentioned in Chapter 2, classification offload improves the scalability of classifica-

tion. Currently, there exists no standard mechanisms to implement classification offload.

Various point solutions tailored to specific applications and protocol layers exist. These

solutions are inefficient and inflexible to support new applications.

Generic Classification Offload enables classification offload across different applications

and protocol layers. By avoiding the need to implement and configure separate offload

mechanisms, it simplifies network configuration. Generic classification offload efficiently

uses CLayer headers to carry signaling messages, and flexibly supports new applications.

The main idea behind Generic Classification Offload is to enable explicit coordination

between two types of entities in the network – classifiers and helpers. Classifiers classify a

packet and take action depending on the results of the classification. Examples of classifiers

are load balancers, firewalls, and routers. Helpers aid classifiers by performing classification

tasks on their behalf. Examples of helpers are endhosts that provide HTTP cookies to web

load balancers to aid them in session identification, and edge routers in a Diffserv domain

which set code points in packet headers for use by core routers. Note that in the latter

example, an edge router is both a helper and a classifier, as it also classifies packets to

determine their next hop, in addition to helping core routers.

Helpers and classifiers coordinate using a signaling protocol. Helpers advertise their clas-

sification capabilities to classifiers. Classifiers request classification support from helpers.

An upstream helper classifies a packet and embeds the ‘results’ of classification for use by

a downstream classifier. A classification result is an opaque bag of bits that is interpreted

by the classifier to which it is addressed. The classifier reads the results and appropriately
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processes the packet. The signaling messages and classification results are all embedded

inside a packet’s CLayer headers.

Figure 4.4. Basic operations in generic classification offload.

To illustrate the basic functionality of generic classification offload, consider the example

in Figure 4.4. Server 1 and 2 each host an online shopping application. Clients communicate

with the load balancer L. L spreads the load across the two servers while maintaining HTTP

session ‘stickiness’, i.e., all HTTP connections in the same HTTP session are forwarded to

the same server instance. Client A can easily identify the HTTP session of the different

HTTP connections originated by it. It advertises this ability when it first communicates

with L, as illustrated in Figure 4.4(a). On receiving the advertisement, L requests A to tag

all packets in the same HTTP session with the label W1 denoting server 1. A adds the tag

to the CLayer headers of all packets in the same session, as requested. L easily reads this

tag without layer-7 processing, and forwards the packet to the correct server instance.

In the above example, there was only one helper and one classifier. In practice, there

will be multiple helpers and classifiers on the path of a packet. We present such complex
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scenarios in more detail in Chapter 6 where we describe GOff, a robust signaling protocol

implementation for Generic Classification Offload.

Our proposal borrows ideas from label switching [25], Diffserv [2], IPv6 flowid [19],

HTTP cookies [15] and ECN [38]. Our main contribution here is the generic offload mech-

anism that works across different applications. We describe related work in Section 6.5.

4.4 Summary

In this chapter, we introduced a new classification layer in the network stack, and

provided an overview of its control plane protocols – policy-based classifier deployment

and generic classification offload. In the next two chapters, we describe the policy-aware

switching layer and GOff, two specific instantiations of these control plane protocols.
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Chapter 5

Policy-aware Switching Layer

The previous chapter presented an overview of policy-based classifier deployment. In

this chapter, we describe it in greater detail using the policy-aware switching layer. The

policy-aware switching layer, or PLayer in short, is a practical instantiation of policy-based

classifier deployment targeted at data centers and enterprise networks.

In recent years, data centers have rapidly grown to become an integral part of the

Internet fabric [22]. These data centers typically host tens or even thousands of differ-

ent applications [46], ranging from simple web servers providing static content to complex

e-commerce applications. To protect, manage and improve the performance of these appli-

cations, data centers deploy a large variety of special-purpose classifiers such as firewalls,

load balancers, SSL offloaders and intrusion prevention boxes, and middleboxes such as web

caches.

As we have already seen in Chapter 2, current classifier deployment mechanisms in data

centers are inflexible, inefficient and hard to configure. The PLayer is a new layer-2 for

data center networks that addresses these limitations. To ease deployment in existing data

centers, the PLayer aims to support existing classifiers, application servers and external

clients without any modifications, and to minimize changes required in switches.

In brief, the PLayer consists of policy-aware switches, or pswitches, which maintain
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the classifier traversal requirements of all applications in the form of policy specifications.

Pswitches explicitly redirect incoming traffic to the required classifiers. This explicit redi-

rection guarantees classifier traversal in the policy-mandated sequence. The low-latency

links in a typical data center network enable off-path placement of classifiers with minimal

performance overheads. Off-path classifier placement simplifies topology modifications and

enables efficient usage of existing classifiers. For example, adding an SSL offload box in

front of HTTPS traffic simply involves plugging in the SSL offload box into a pswitch and

configuring the appropriate HTTPS traffic policy at a centralized policy controller. The

system automatically ensures that the SSL box is only traversed by HTTPS traffic while

the firewall and the load balancer are shared with HTTP traffic.

Keeping existing classifiers and servers unmodified, supporting classifiers that modify

frames, and guaranteeing correct classifier traversal under all conditions of policy, classi-

fier and network churn make the design and implementation of the PLayer a challenging

problem. We have prototyped pswitches in software using Click [72] and evaluated its

functionality on a small testbed.

The rest of this chapter is organized as follows. The next section provides an overview

of the PLayer design and its associated challenges. Sections 5.2 to 5.4 present the details of

how our solution addresses these challenges. Section 5.5 presents our implementation and

evaluation results. Section 5.6 analyzes PLayer operations using a formal model. Section 5.7

lists the limitations of the PLayer, and Section 5.8 describes related work. We conclude

this chapter with a brief discussion of clean slate and stateful designs in Section 5.9. Ap-

pendix A.1 presents detailed algorithms explaining how pswitches process frames.

5.1 Design Overview

The policy-aware switching layer (PLayer) adheres to the two design principles of policy-

based classifier deployment, introduced in Section 4.2:

1. Separate policy from reachability.
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The sequence of classifiers traversed by application traffic is explicitly dictated by data

center policy, and not implicitly by network path selection mechanisms like layer-2

spanning tree construction and layer-3 routing.

2. Take classifiers off the physical network path.

Rather than placing classifiers on the physical network path at choke points in the

network, classifiers are plugged in off the physical network data path and traffic is

explicitly forwarded to them.

Explicitly redirecting traffic through off-path classifiers is based on the well-known prin-

ciple of indirection [88, 94, 59]. A data center network is a more apt environment for indi-

rection than the wide area Internet due to its very low inter-node latencies.

The PLayer consists of enhanced layer-2 switches called policy-aware switches or

pswitches. Unmodified classifiers are plugged into a pswitch just like servers are plugged

into a regular layer-2 switch. However, unlike regular layer-2 switches, pswitches forward

frames according to the policies specified by the network administrator.

Policies define the sequence of classifiers to be traversed by different traffic types. A

policy is of the form: [Start Location, Traffic Selector]→Sequence. The left hand side defines

the applicable traffic – frames with 5-tuples (i.e., source and destination IP addresses and

port numbers, and protocol type) matching the Traffic Selector arriving from the Start

Location. The right hand side specifies the sequence of classifier types (not instances) to be

traversed by this traffic 1 . We use frame 5-tuple to refer to the 5-tuple of the packet within

the frame.

Policies are automatically translated by the PLayer into rules that are stored at

pswitches in rule tables. A rule is of the form [Previous Hop, Traffic Selector] : Next

Hop. Each rule determines the classifier or server to which traffic of a particular type, ar-

riving from the specified previous hop, should be forwarded next. Upon receiving a frame,
1 Classifier interface information can also be incorporated into a policy. For example, frames from an

external client to an internal server must enter a firewall via its red interface, while frames in the reverse
direction should enter through the green interface.
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the pswitch matches it to a rule in its table, if any, and then forwards it to the next hop

specified by the matching rule.

The PLayer relies on centralized policy and classifier controllers to set up and maintain

the rule tables at the various pswitches. Network administrators specify policies at the policy

controller, which then reliably disseminates them to each pswitch. The centralized classifier

controller monitors the liveness of classifiers and informs pswitches about the addition or

failure of classifiers.

Figure 5.1. A simple PLayer consisting of only one pswitch.

To better understand how the PLayer works, we next present three examples of increas-

ing complexity that demonstrate its key functionality. In practice, the PLayer consists of

multiple pswitches inter-connected together in complex topologies. For example, in a typical

data center topology (Section 2.1.1), pswitches would replace layer-2 switches at the aggre-

gation layer. However, for ease of exposition, we start with a simple example containing

only a single pswitch.
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Figure 5.2. A simplified snippet of the data center topology in Figure 2.2, highlighting the
on-path classifier placement.

5.1.1 Single Pswitch

Figure 5.1 shows how the PLayer implements the policy induced by the physical topology

in Figure 5.2, where all frames entering the data center are required to traverse a firewall

and then a load balancer before reaching the servers.

When the pswitch receives a frame, it performs the following three operations:

1. Identify the previous hop traversed by the frame.

2. Determine the next hop to be traversed by the frame.

3. Forward the frame to its next hop.

The pswitch identifies frames arriving from the core router and the load balancer based

on their source MAC addresses (R and L, respectively). Since the firewall does not modify

the MAC addresses of frames passing through it, the pswitch identifies frames coming from

it based on the ingress interface (IfaceF) they arrive on. The pswitch determines the next

hop for the frame by matching its previous hop information and 5-tuple against the rules

in the rule table. In this example, the policy translates into the following three rules:

1. [R, ∗] : F

2. [IfaceF, ∗] : L

3. [L, ∗] : FinalDest

The first rule specifies that every frame entering the data center (i.e., every frame arriving

from core router R) should be forwarded to the firewall (F). The second rule specifies that

every frame arriving from the firewall should be forwarded to the load balancer (L). The
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third rule specifies that frames arriving from the load balancer should be sent to the final

destination, i.e., the server identified by the frame’s destination MAC address. The pswitch

forwards the frame to the next hop determined by the matching rule, encapsulated in a

frame explicitly addressed to the next hop. It is easy to see that the pswitch correctly

implements the original policy through these rules, i.e., every incoming frame traverses the

firewall followed by the load balancer.

5.1.2 Multiple Classifier Instances

Figure 5.3. Load balancing traffic across two equivalent classifier instances.

Multiple equivalent instances of classifiers are often deployed for scalability and fault-

tolerance. Figure 5.3 shows how the PLayer can load balance incoming traffic across two

equivalent firewalls, F1 and F2. The first rule in the table specifies that incoming frames

can be sent either to firewall F1 or to firewall F2. Since the firewall maintains per-flow

state, the pswitch uses a flow- direction-agnostic consistent hash on a frame’s 5-tuple to

select the same firewall instance for all frames in both forward and reverse directions of a

flow.
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5.1.3 Multiple Policies and Pswitches

The more complex example in Figure 5.4 illustrates how the PLayer supports differ-

ent policies for different applications and how forwarding load is spread across multiple

pswitches. Web traffic has the same policy as before, while Enterprise Resource Planning

(ERP) traffic is to be scrubbed by a dedicated custom firewall (W ) followed by an Intru-

sion Prevention Box (IPB). The classifiers are distributed across the two pswitches A and

B. The rule table at each pswitch has rules that match frames coming from the entities

connected to it. For example, rules at pswitch A match frames coming from classifiers F1

and L, and the core router R. For sake of simplicity, we assume that all frames with TCP

port 80 are part of web traffic and all others are part of ERP traffic.

A frame (say, an ERP frame) entering the data center first reaches pswitch A. Pswitch

A looks up the most specific rule for the frame ([R, ∗] : W ) and forwards it to the next

hop (W ). The PLayer uses existing layer-2 mechanisms (e.g., spanning tree based Ethernet

forwarding) to forward the frame to its next hop, instead of inventing a new forwarding

mechanism. Pswitch B receives the frame after it is processed by W . It looks up the most

specific rule from its rule table ([IfaceW, ∗] : IPB) and forwards the frame to the next hop

(IPB). An HTTP frame entering the data center matches different rules and thus follows

a different path.

5.1.4 Discussion

The three examples discussed in this section provide a high level illustration of how the

PLayer achieves the three desirable properties of correctness, flexibility and efficiency. The

explicit separation between policy and the physical network topology simplifies configura-

tion. The desired logical topologies can be easily implemented by specifying appropriate

policies at the centralized policy controller, without tweaking spanning tree link costs and

IP gateway settings distributed across various switches and servers. By explicitly redi-

recting frames only through the classifiers specified by policy, the PLayer guarantees that

classifiers are neither skipped nor unnecessarily traversed. Placing classifiers off the physical

63



Figure 5.4. Different policies for web and ERP applications.

network path prevents large scale traffic shifts on classifier failures and ensures that clas-

sifier resources are not wasted serving unnecessary traffic or get stuck on inactive network

paths.

The PLayer operates at layer-2 since data centers are pre-dominantly layer-2 [46]. It

re-uses existing tried and tested layer-2 mechanisms to forward packets between two points

in the network rather than inventing a custom forwarding mechanism. Furthermore, since

classifiers like firewalls are often not explicitly addressable, the PLayer relies on simple

layer-2 mechanisms described in Section 5.2.2 to forward frames to these classifiers, rather

than more heavy-weight layer-3 or higher mechanisms.

In the next three sections, we discuss how the PLayer addresses the three main challenges

listed below:

• (i) Minimal Infrastructure Changes: Support existing classifiers and servers

without any modifications and minimize changes to network infrastructure like

switches.

• (ii) Non-transparent Classifiers : Handle classifiers that modify frames while
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specifying policies and while ensuring that all frames in both forward and reverse

directions of a flow traverse the same classifier instances.

• (iii) Correct Traversal Under Churn : Guarantee correct classifier traversal

during classifier churn and conflicting policy updates.

5.2 Minimal Infrastructure Changes

Minimizing changes to existing network forwarding infrastructure and supporting un-

modified classifiers and servers is crucial for PLayer adoption in current data centers. In

this section, we describe how we meet this challenge. In addition, we explain a pswitch’s

internal structure and operations, and thus set the stage for describing how we solve other

challenges in subsequent sections.

5.2.1 Forwarding Infrastructure

The modular design of pswitches, reliance on standard data center path selection mech-

anisms to forward frames, and encapsulation of forwarded frames in new Ethernet-II frames

help meet the challenge of minimizing changes to the existing data center network forward-

ing infrastructure.

Pswitch Design & Standard Forwarding

Figure 5.5 shows the internal structure of a pswitch with N interfaces. For ease of

explanation, each physical interface is shown to comprise of two separate logical interfaces

– an input interface and an output interface. A pswitch consists of two independent parts

– the Switch Core and the Policy Core, described below:

1. Switch Core

The Switch Core provides the forwarding functionality of a standard Ethernet switch.

It forwards Ethernet frames received at its interfaces based on their destination MAC
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Figure 5.5. Internal components of a pswitch.

addresses. If the destination MAC address of a frame received at an interface, say X,

was previously learned by the Switch Core, then the frame is forwarded only on the

interface associated with the learned MAC address. Else, the frame is flooded on all

Switch Core interfaces other than X. The Switch Core coordinates with Switch Cores

in other pswitches through existing protocols like the Spanning Tree Protocol [10] to

construct a loop-free forwarding topology.

2. Policy Core

The Policy Core redirects frames 2 to the classifiers dictated by policy. It consists of

multiple modules: The RuleTable stores the rules used for matching and forwarding

frames. Each pswitch interface has an inP, an outP and a FailDetect module

associated with it. An inP module processes a frame as it enters a pswitch interface –

it identifies the frame’s previous hop, looks up the matching rule and emits it out to the

corresponding Switch Core interface for regular forwarding to the next hop specified

by the rule. An outP module processes a frame as it exits a pswitch interface,

decapsulating or dropping it as explained later in the section. The FailDetect

module of a pswitch interface monitors the liveness of the connected classifier (if any)

using standard mechanisms like ICMP pings, layer-7 content snooping, SNMP polling,
2Only frames containing IP packets are considered. Non-IP frames like ARP requests are forwarded by

the Switch Core as in regular Ethernet switches.
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and TCP health checks. It reports the collected status information to the classifier

controller.

The Switch Core appears like a regular Ethernet switch to the Policy Core, while the

Policy Core appears like a multi-interface device to the Switch Core. This clean separation

allows us to re-use existing Ethernet switch functionality in constructing a pswitch with

minimal changes, thus simplifying deployment. The Switch Core can also be easily replaced

with an existing non-Ethernet forwarding mechanism, if required by the existing data center

network infrastructure.

Encapsulation

A frame redirected by the Policy Core is encapsulated in a new Ethernet-II frame, iden-

tified by a new EtherType code from the IEEE EtherType Field Registration Authority [17],

as shown in Figure 5.6. The outer frame’s destination MAC address is set to that of the

next hop classifier or server, and the source MAC is set to that of the original frame (or

of the last classifier instance traversed, if any) in order to enable MAC address learning

by Switch Cores. An encapsulated frame also includes a 1-byte Info field that tracks the

version number of the policy used to redirect it.

Figure 5.6. Cisco ISL [20] style frame encapsulation.

We encapsulate, rather than overwrite the original frame headers, as preserving the

MAC addresses of the original frame is often required for correctness. For example, firewalls

may filter based on source MAC addresses , and load-balancers set the destination MAC

address to that of a server chosen based on dynamic load conditions. Although the 15-byte
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encapsulation overhead may increase frame size beyond the 1500 byte MTU, an encapsulated

frame is below the size limit accepted by most layer-2 switches. For example, Cisco switches

allow 1600 byte ‘baby giants’.

Incremental Deployment

Incorporating the PLayer into an existing data center does not require a fork-lift up-

grade of the entire network. Only switches which connect to the external network and

those into which servers requiring classifier traversal guarantees are plugged in, need to be

converted to pswitches. Other switches need not be converted if they can be configured or

modified to treat encapsulated frames with the new EtherType as regular Ethernet frames.

Classifiers can also be plugged into a regular switch. However, transparent classifiers must

be accompanied by the inline SrcMacRewriter device (described in Section 5.2.2). If

the data center contains backup switches and redundant paths, pswitches can be smoothly

introduced without network downtime by first converting the backup switches to pswitches.

5.2.2 Unmodified Classifiers and Servers

Pswitches address the challenge of supporting unmodified classifiers and servers in three

ways:

1. Ensure that only relevant frames in standard Ethernet format reach classifiers and

servers.

2. Use only non-intrusive techniques to identify a frame’s previous hop.

3. Support varied classifier addressing requirements.

Frames reaching Classifiers and Servers

The outP module of a pswitch interface directly connected to a classifier or server

emits out a unicast frame only if it is MAC addressed to the connected classifier or server.
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Dropping other frames, which may have reached the pswitch through standard Ethernet

broadcast forwarding, avoids undesirable classifier behavior (e.g., a firewall can terminate

a flow by sending TCP RSTs if it receives an unexpected frame). The outP module also

decapsulates the frames it emits and thus the classifier or server receives standard Ethernet

frames it can understand.

Previous Hop Identification

A pswitch does not rely on explicit classifier support or modifications for identifying a

frame’s previous hop. The previous hop of a frame can be identified in three possible ways:

1. source MAC address if the previous hop is a classifier that changes the source MAC

address,

2. pswitch interface on which the frame arrives if the classifier is directly attached to the

pswitch, or

3. VLAN tag if the data center network has been divided into different functional zones

using VLANs (i.e., external web servers, firewalls, etc.).

If none of the above three conditions hold (for example, in a partial pswitch deployment

where classifiers are plugged into regular Ethernet switches), then we install a simple state-

less in-line device, SrcMacRewriter, in between the classifier and the regular Ethernet

switch to which it is connected. SrcMacRewriter inserts a special source MAC address

that can uniquely identify the classifier into frames emitted by the classifier, as in option 1

above.

The previous hop identification options described above make the following two assump-

tions:

1. Classifiers and servers of interest are all part of the same layer-2 network, as in common

data center deployments today. Classifiers in a different layer-2 network cannot be

identified as the connecting routers overwrite the source MAC address of frames.
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2. The data center network is secure enough to prevent source MAC address and VLAN

spoofing.

Classifier Addressing

Many classifiers like firewalls transparently operate inline with traffic and do not require

traffic to be explicitly addressed to them at layer-2 or layer-3. Moreover, for many such

classifiers, traffic cannot be explicitly addressed to them, as they lack a MAC address. We

solve this problem by assigning a fake MAC address to such a classifier instance when it is

registered with the classifier controller. The fake MAC address is used as the destination

MAC of encapsulated frames forwarded to it. If the classifier is directly connected to a

pswitch, the pswitch also fills in this MAC address in the source MAC field of encapsulated

frames forwarded to the next hop. If it is not directly attached to a pswitch, this MAC

address is used by the SrcMacRewriter element described in the previous section. In

all cases, the classifier remains unmodified.

In contrast, some classifiers like load balancers often require traffic to be explicitly

addressed to them at layer-2, layer-3 or both. The characteristics of each classifier type

are obtained from technical specifications or from our classifier model (Chapter 3). We

support classifiers that require layer-3 addressing using per-segment policies to be described

in Section 5.3. We support classifiers that require layer-2 addressing by having the outP

module rewrite the destination MAC address of a frame to the required value before emitting

it out to such a classifier.

5.3 Non-Transparent Classifiers

Non-transparent classifiers, i.e., classifiers that modify frame headers or content (for

e.g., load balancers), make end-to-end policy specification and consistent classifier instance

selection challenging. By using per-segment policies, we support non-transparent classifiers

in policy specification. By enhancing policy specifications with hints that indicate which
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frame header fields are left untouched by non-transparent classifiers, we enable the classifier

instance selection mechanism at a pswitch to select the same classifier instances for all

packets in both forward and reverse directions of a flow, as required by stateful classifiers

like firewalls and load balancers.

Classifiers may modify frames reaching them in different ways. MAC-address modi-

fication aids previous hop identification but does not affect traffic classification or classi-

fier instance selection since they are independent of layer-2 headers. Similarly, payload

modification does not affect policy specification or classifier instance selection, unless deep

packet inspection is used for traffic classification. Traffic classification and flow identifica-

tion mainly rely on a frame’s 5-tuple. Classifiers that fragment frames do not affect policy

specification or classifier instance selection as long as the frame 5-tuple is the same for all

fragments. In the remainder of this section, we describe how we support classifiers that

modify frame 5-tuples. We also provide the details of our basic classifier instance selection

mechanism in order to provide the context for how non-transparent classifiers and classifier

churn (Section 5.4.3) affect it.

5.3.1 Policy Specification

Classifiers that modify frame 5-tuples are supported in policy specification by using

per-segment policies. We define the bi-directional end-to-end traffic between two nodes,

e.g., A and B, as a flow. Figure 5.7 depicts a flow passing through a firewall unmodified,

and then a load balancer that rewrites the destination IP address IPB to the address IPW

of an available web server. Frame modifications by the load balancer preclude the use of a

single concise Selector.

Per-segment policies 1 and 2 shown in Figure 5.7 together define the complete policy.

Each per-segment policy matches frames during a portion of its end-to-end flow. Per-

segment policies also enable the definition of policies that include classifiers which require

traffic to be explicitly addressed to them at the IP layer.
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Figure 5.7. Policies for different segments of the logical classifier sequence traversed by
traffic between A and B.

5.3.2 Classifier Instance Selection

The basic classifier instance selection mechanism uses consistent hashing to select the

same classifier instance for all frames in both forward and reverse directions of a flow. A

frame’s 5-tuple identifies the flow to which it belongs. A hash value h is calculated over

the frame’s 5-tuple, taking care to ensure that it is flow direction agnostic, i.e., source and

destination fields in the 5-tuple are not distinguished in the calculation of h. The ids 3 of all

live instances of the specified classifier type are arranged in a ring as shown in Figure 5.8,

and the instance whose id is closest to h in the counter-clockwise direction is selected [89].

5.3.3 Policy Hints for Classifier Instance Selection

We first consider the case where classifiers do not change all the fields of the 5-tuple.

Based on classifier semantics and functionality, network administrators indicate the frame

5-tuple fields to be used in classifier instance selection along with the policy. For classifiers
3Classifier instance ids are randomly assigned by the classifier controller when the network administrator

registers the instance.

72



Figure 5.8. Choosing a classifier instance for a flow from among four instances M1 −M4
using consistent hashing.

that do not modify frames, the entire frame 5-tuple is used to identify a flow and select the

classifier instance for it, as described in the previous section.

When classifiers modify the frame 5-tuple, instance selection can no longer be based

on the entire 5-tuple. For example, in the A→B flow direction in Figure 5.7, the load

balancer instance is selected when the frame 5-tuple is (IPA, IPB, PortA, PortB, tcp). On

the B→A reverse direction, the load balancer instance is to be selected when the frame

5-tuple is (IPW , IPA, PortB, PortA, tcp). The policy hints that a load balancer instance

should be selected only based on frame 5-tuple fields unmodified by the load balancer, viz.,

IPA, PortA, PortB and tcp (although source and destination fields are interchanged).

Next, we consider the case where a classifier changes all the fields of the 5-tuple. Here,

we assume that the classifier always changes the frame’s source IP address to its own IP

address, so that regular layer-3 routing can be used to ensure that reverse traffic reaches

the same classifier instance. In practice, we are not aware of any classifiers that violate this

assumption. However, for the sake of completeness, we discuss below how pswitches can be

enhanced with per-flow state to support these classifiers, if they exist.

Stateful Pswitches

A regular pswitch, i.e., a stateless pswitch, is enhanced with two hash tables, FwdTable

and RevTable, to create a stateful pswitch. The FwdTable and the RevTable record

the next hop of a flow indexed by its complete 5-tuple and previous hop. The inP module of
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the pswitch records the classifier instance selected while processing the first frame of a flow

in the FwdTable. While processing a frame that is to be emitted out to a directly attached

classifier/server, the outP module of the pswitch records the previous hop traversed by the

frame as the next hop for frames in the reverse flow direction, in the RevTable. The

inP uses the RevTable entry if both FwdTable and rule lookup yield no matches, thus

providing a default reverse path containing the same classifier instances as in the forward

path. Please see Appendix A.1 for more details.

5.4 Guarantees under Churn

In this section, we argue that the PLayer guarantees correct classifier traversal under

different kinds of churn – network, policy and classifier churn. Section 5.6 presents a formal

analysis of PLayer operations and churn guarantees.

5.4.1 Network Churn

The failure or addition of pswitches and links constitute network churn. The separation

between policy and reachability in the PLayer ensures that network churn does not cause

policy violations. Every pswitch has a copy of the rules encoding the classifiers to be

traversed by different traffic, and forwarding of frames is solely done based on these rules.

Although frames forwarded to classifiers or servers rendered unreachable by pswitch or link

failures may be dropped, a classifier will never be bypassed.

Network partitions caused by link or pswitch failures concurrent with policy or classifier

churn can lead to inconsistencies in the policy and classifier information established at

different pswitches. We address this problem by employing a 2-stage, versioned policy and

classifier information dissemination mechanism, described later in this section.
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5.4.2 Policy Churn

Network administrators update policies at a centralized policy controller when the logi-

cal topology of the data center network needs to be changed. In this section, we first briefly

describe our policy dissemination mechanism. We then discuss possible classifier traversal

violations and how we successfully prevent them.

Policy Dissemination

The policy controller reliably disseminates policy information over separate TCP con-

nections to each pswitch. If this step fails due to a network partition between the policy

controller and some pswitch, then the update is canceled and the administrator is noti-

fied. After all pswitches have received the complete policy information, the policy controller

sends a signal that triggers each pswitch to adopt the latest update. The signal, which is

conveyed in a single packet, has a better chance of synchronously reaching the different

pswitches than the multiple packets carrying the policy information. Similar to network

map dissemination [75], the policy version number recorded inside encapsulated frames is

used to further improve synchronization – a pswitch that has not yet adopted the latest pol-

icy update will immediately adopt it upon receiving a frame stamped with the latest policy

version number. This also makes the dissemination process robust to transient network

partitions that cause the trigger signal to be lost.

Policy dissemination over separate TCP connections to each pswitch scales well if the

number of pswitches in the data center is small (a few 100s), assuming infrequent policy

updates (a few times a week). If the number of pswitches is very large, then the distributed

reliable broadcast mechanism suggested by RCP [49] is used for policy dissemination –

The policy controller sends policy updates over TCP connections to the pswitches directly

connected to it. These pswitches in turn send the policy information over separate TCP

connections to each of the pswitches directly connected to them, and so on.
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Policy Violations

Frames may be forwarded to classifiers in an incorrect order that violates policy during

policy churn, even if policy dissemination is perfectly synchronized. In this section, we illus-

trate potential violations using some example topologies. In the next section, we describe

how we use intermediate classifier types to prevent these violations.

Figure 5.9. Network topology to illustrate policy violations during policy churn. Rule tables
correspond to Scenario A.

Consider the topology shown in Figure 5.9. Policy version 1 specifies that all traffic

entering the data center should first traverse a load balancer followed by a firewall. Policy

version 2 reverses the order of classifiers specified in policy version 1, i.e., traffic should

first traverse a firewall and then a load balancer. Scenarios A and B, described below,

demonstrate how the lack of perfect time synchronization of policy updates across different

pswitches causes policy violations. Scenario C demonstrates how our support for unmodified

classifiers causes policy violations even with perfect time synchronization of policy updates.

• Scenario A

Pswitch P is at policy version 1; pswitch Q is at policy version 2, as shown by the
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rule tables in Figure 5.9. A frame arriving at pswitch P from outside the data center

will be forwarded to the load balancer L, as per policy version 1. When pswitch Q

receives the frame after processing by L, it forwards it to the final destination, as per

policy version 2. The frame does not traverse the firewall, thus violating data center

security policy. To avoid this violation, pswitch Q drops the frame without handing

it to L, as the policy version number embedded in it (i.e., 1) is less than Q’s current

policy version number (i.e., 2).

• Scenario B

Pswitch P is at policy version 2; pswitch Q is at policy version 1. A frame arriving

at pswitch P from outside the data center will be forwarded to the firewall F , as per

policy version 2. When pswitch Q receives the frame after processing by F , it forwards

it to the final destination, as per policy version 1. Although a potentially less crucial

classifier L is bypassed in this scenario, the policy violation may still be unacceptable

(for example, if L were an intrusion prevention box).

To avoid the violation, pswitch Q updates its current policy (1) to the latest version

embedded in the frame (2), before handing it off to F . Now when it receives the frame

after processing by F , it correctly forwards it to L, as per policy version 2. If pswitch

Q had not completely received policy version 2 through the dissemination mechanism

before receiving the frame, then it is dropped and not sent to F .

This mechanism to prevent policy violation will not work if the red and green interfaces

of F are connected to two different pswitches Q and T , as shown in Figure 5.10. This

is because only pswitch Q updates to policy version 2 on seeing the frame with version

2. Pswitch T , which receives the frame after processing by F , may remain at policy

version 1 and thus incorrectly forwards the frame to the final destination, bypassing

L.

• Scenario C

Pswitches P and Q are both at policy version 1. A frame arriving at P from outside

the data center is forwarded to L, as per policy version 1. While the frame is being
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Figure 5.10. Policy violation during churn when the two interfaces of a firewall are connected
to different pswitches.

processed by L, pswitches P and Q both adopt policy version 2 at exactly the same

time instant. When the frame arrives at Q after processing by L, it is forwarded to

the final destination based on policy 2, bypassing the firewall as in Scenario A. Thus,

even perfect synchronization of policy updates will not prevent policy violations.

Irrespective of the policy violations described above, frames will never become stuck

in a forwarding loop. Loops in policy specifications are detected and prevented by static

analysis during the specification phase itself. The policy version number stamped in frames

ensures that each pswitch processing a frame uses the latest policy version.

Our mechanisms to prevent policy violations during churn are greatly limited by our

support for existing unmodified classifiers. Unmodified classifiers do not preserve the policy

version numbers associated with frames they process. If they did (for example, using anno-

tations like in [56]), we can use the policy version number embedded in a frame’s CLayer to

ensure that it is forwarded only based on a single policy during its lifetime. Since classifiers

may drop frames or generate new ones, counting the number of frames sent to a classifier
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cannot be used to infer the policy version associated with frames output by it. In the next

section, we describe how intermediate classifier types are used to prevent policy violations.

Intermediate Classifier Types

Specifying conflicting policy updates in terms of intermediate classifier types avoids

policy violations during policy churn. To avoid the violations discussed in the previous

section, we specify the classifier sequence for policy version 2 as firewall’ followed by load

balancer’. firewall’ and load balancer’ are new classifier types temporarily used during

the policy transition period. Although functionally identical to the original classifier types

firewall and load balancer, these intermediate classifier types have separate instances, as

shown in Figure 5.11. Frames forwarded under policy version 2 traverse these separate

classifier instances. Hence, a pswitch will never confuse these frames with those forwarded

under policy 1, i.e., a frame emitted by L is identified with policy version 1, and a frame

emitted by L′ is identified with policy version 2. This prevents incorrect forwarding that

leads to policy violations. In order to avoid dropping in-flight frames forwarded under policy

version 1, rules corresponding to policy version 1, except the one matching new packets

entering the data center, are preserved during the policy transition period, as shown in the

rule table of Figure 5.11.

Specifying a policy update in terms of intermediate classifier types requires a spare

instance of each classifier type affected by the update to be available during the policy

transition period. These classifier instances are required only until all frames in flight

prior to the policy transition have reached their final destinations, i.e., they are not under

processing inside a classifier 4. After this, the new policy can be re-expressed using the

original classifier types firewall and load balancer. This is equivalent to adding new classifier

instances of the intermediate classifier type, a classifier churn scenario that can drop frames.

We discuss classifier churn in the next section.

Performing policy updates during off-peak traffic hours reduces the network availability
4We assume that a classifier processes a frame in a bounded amount of time.
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Figure 5.11. Using intermediate classifier types to avoid policy violation.

impact of dropped frames. Obtaining instances of intermediate classifier types is also easier.

In our example, a second load balancer instance of type load balancer, L2, can be slowly

drained of traffic associated with policy version 1, and then reclassified as type load balancer’.

In order to avoid disturbing flows unrelated to the policy update that traverse the same load

balancer instances, reclassification is flagged such that it applies only to policies affected by

the update.

Using intermediate classifier types only ensures that a particular frame in a flow is not

forwarded in a manner that violates policy. It does not ensure that all frames in a flow

will be forwarded based on the same policy version. For example, frames entering the data

center before pswitch P ’s transition from policy version 1 to 2 will traverse the classifier

sequence specified by policy version 1, while frames arriving after the transition traverse

the sequence specified by policy version 2.
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If we require all frames in a flow to be forwarded based on the same policy version, we

use per-flow state in pswitches, as described in Section 5.3.3. Intermediate classifier types

are still required when per-flow state is used, in order to prevent policy violations when state

expires. However, the policy transition period will be longer when per-flow state is used.

This is because the new policy should be re-expressed based on the original classifier types

only after all per-flow state created based on the original policy has expired. Otherwise,

policy violations are possible when per-flow state is recalculated on state expiration at some

intermediate pswitch along the flow’s path.

Intermediate classifier types and spare classifier instances are not required for non-

conflicting updates – e.g., updates that deal with a new traffic type or contain only new

classifier types. If classifier traversal inconsistencies during the infrequent and pre-planned

policy transition periods are acceptable, then the loose synchronization provided by the

policy dissemination mechanisms will alone suffice.

5.4.3 Classifier Churn

Classifier churn, i.e., the failure of existing classifier instances or the addition of new

ones, will never cause a policy violation as frames are explicitly forwarded based on policy.

However, it affects network availability as some frames may be dropped in certain churn

scenarios.

The consistent hashing based classifier instance selection mechanism (Section 5.3.2)

ensures that the same classifier instances are selected for all frames in a flow, when no new

classifier instances are added. When a running classifier instance fails, all flows served by

it are automatically shifted to an active standby, if available, or are shifted to some other

instance determined by consistent hashing. If flows are shifted to a classifier instance that

does not have state about the flow, it may be dropped, thus affecting availability. However,

this is unavoidable even in existing network infrastructures and is not a limitation of the

PLayer.

Adding a new classifier instance changes the number of instances (n) serving as targets
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for consistent hashing. As a result, 1
2n of the flows are shifted to the newly added instance,

on average. Stateful classifier instances like firewalls may drop the reassigned flow and

briefly impede network availability. If n is large (say 5), only a small fraction of flows (10%)

are affected. If these relatively small and infrequent pre-planned disruptions are deemed

significant for the data center, they can be avoided by enhancing pswitches with per-flow

state as described in Section 5.3.3.

A stateful pswitch uses the next hop entry recorded in the FwdTable for all frames of

the flow, thus pinning them to the classifier instance selected for the first frame. However,

this mechanism will not work in scenarios when a new classifier instance is added at around

the same time as one of the following two events: (i) The next hop entry of an active flow is

flushed out, (ii) A switch/router failure reroutes packets of the flow to a new pswitch which

does not have state for the flow.

Figure 5.12. Inconsistent classifier information at pswitches due to network churn.

Network churn concurrent with classifier churn may lead to differing classifier status

information at different pswitches, as shown in Figure 5.12. Pswitch P did not receive
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the information that firewall instance F2 has become alive because the classifier controller

could not reach P due to a network partition. Thus pswitch P selects the firewall instance

F1 for all frames entering the data center. For the reverse flow direction (web server →

external client), pswitch Q selects the firewall instance F2 for approximately half of the

flows. F2 will drop these frames as it did not process the corresponding frames in the

forward flow direction and hence lacks the required state. Although this inconsistency in

classifier information does not cause policy violations, we can reduce the number of dropped

frames by employing a 2-stage classifier information dissemination mechanism similar to the

policy dissemination mechanism described in Section 5.4.2 – Classifier status updates are

versioned and a pswitch adopts the latest version on receiving a signal from the classifier

controller or on receiving a frame with an embedded classifier status version number greater

than its current version.

5.5 Implementation and Evaluation

In this section, we briefly describe our prototype implementation of the PLayer. We

then demonstrate its functionality and flexibility under different network scenarios, as well

as provide preliminary performance benchmarks.

5.5.1 Implementation

We have prototyped pswitches in software using Click [72]. An unmodified Click Ether-

switch element formed the Switch Core, while the Policy Core (Click elements) was imple-

mented in 5500 lines of C++. Each interface of the Policy Core plugs into the corresponding

interface of the Etherswitch element, maintaining the modular switch design described in

Section 5.2.

Due to our inability to procure expensive hardware classifiers for testing, we used the

following commercial quality software classifiers running on standard Linux PCs:

1. Netfilter/iptables [41] based firewall
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2. Bro [83] intrusion detection system

3. BalanceNG [4] load balancer

We used the Net-SNMP [26] package for implementing SNMP-based classifier liveness

monitoring. Instead of inventing a custom policy language, we leveraged the flexibility of

XML to express policies in a simple human-readable format. The classifier controller, policy

controller, and web-based configuration GUI were implemented using Ruby-On-Rails [35].

5.5.2 Validation of Functionality

We validated the functionality and flexibility of the PLayer using computers on the

DETER [47] testbed, connected together as shown in Figure 5.13. The physical topology

was constrained by the maximum number of Ethernet interfaces (4) available on individual

testbed computers. Using simple policy changes to the PLayer, we implemented the different

logical network topologies shown in Figure 5.14, without rewiring the physical topology or

taking the system offline. Not all devices were used in every logical topology.

Figure 5.13. Physical topology on the DETER testbed for functionality validation.

Topology A→B:

Logical topology A represents our starting point and the most basic topology –

a client directly communicates with a web server. By configuring the policy [Client,

(*,IPweb1,*,80,tcp)] → firewall at the policy controller, we implemented logical topology

B, in which a firewall is inserted in between the client and the web server. We validated

that all client-web server traffic flowed through the firewall by monitoring the links. We

also observed that all flows were dropped when the firewall failed (was turned off).
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Topology B→C:

Adding a second firewall, Firewall 2, in parallel with Firewall 1, in order to split the

processing load resulted in logical topology C. Implementing logical topology C required no

policy changes. The new firewall instance was simply registered at the classifier controller,

which then immediately informed all four pswitches. Approximately half of the existing

flows shifted from Firewall 1 to Firewall 2 upon its introduction. However, no flows were

dropped as the filtering rules at Firewall 2 were configured to temporarily allow the pre-

existing flows. Configuring firewall filtering behavior is orthogonal to PLayer configuration.

Topology C→B→C:

To validate the correctness of PLayer operations when classifiers fail, we took down one

of the forwarding interfaces of Firewall 1, thus reverting to logical topology B. The SNMP

daemon detected the failure on Firewall 1 in under 3 seconds and immediately reported it

to all pswitches via the classifier controller. All existing and new flows shifted to Firewall 2

as soon as the failure report was received. After Firewall 1 was brought back alive, the

pswitches restarted balancing traffic across the two firewall instances in under 3 seconds.

Topology C→D:

We next inserted a load balancer in between the firewalls and web server 1, and added

a second web server, yielding logical topology D. Clients send HTTP packets to the load

balancer’s IP address IPLB, instead of a web server IP address (as required by the load

balancer operation mode). The load balancer rewrites the destination IP address to that of

one of the web servers, selected in a round-robin fashion. To implement this logical topol-

ogy, we specified the policy [Client, (*,IPLB,*,80,tcp)] → firewall and the corresponding

reverse policy for the client-load balancer segment of the path. The load balancer, which

automatically forwards packets to a web server instance, is not explicitly listed in the clas-

sifier sequence because it is the end point to which packets are addressed. We also specified

the policy [Web, (IPweb1/2,*,80,*,tcp)]→load balancer. This policy enabled us to force the

web servers’ response traffic to pass through the load balancer without reconfiguring the

default IP gateway on the web servers, as done in current best practices. We verified that
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Figure 5.14. Logical topologies used to demonstrate PLayer functionality.
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the client-web server traffic was balanced across the two firewalls and the two web servers.

We also verified the correctness of PLayer operations under firewall, load balancer and web

server failure.

Topology D→E:

In order to demonstrate the PLayer ’s flexibility, we flipped the order of the firewalls

and the load balancer in logical topology D, yielding topology E. Implementing this change

simply involves updating the policies to [LB, (*,IPweb1/2,*,80,tcp)] → firewall and [Web,

(IPweb1/2,*,80,*,tcp)] → firewall, load balancer. We do not specify a policy to include the

load balancer on the client to web server path, as the HTTP packets sent by the client are

addressed to the load balancer, as before.

Topology E→F:

To further demonstrate the PLayer’s flexibility, we updated the policies to implement

logical topology F, in which Firewall 1 solely serves web server 1 and Firewall 2 solely

serves web server 2. This topology is relevant when the load balancer intelligently redirects

different types of content requests (for example, static versus dynamic) to different web

servers, thus requiring different types of protection from the firewalls. To implement this

topology, we changed the classifier type of Firewall 2 to a new type firewall2, at the classifier

controller. We then updated the forward direction policies to [LB, (*,IPweb1,*,80,tcp)]

→ firewall and [LB, (*,IPweb2,*,80,tcp)] → firewall2, and modified the reverse policies

accordingly.

Although the experiments described above are limited to simple logical topologies and

policies on a small testbed, the logical topology modifications and failure scenarios studied

here are orthogonal to the complexity of the system. We further validated the functionality

and correctness of the PLayer in a larger and more complex network topology similar to the

popular data center topology shown in Figure 2.1. Due to the limited number of physical

network interfaces on our test computers, we emulated the desired layer-2 topology using

UDP tunnels. We created tap [93] interfaces on each computer to represent virtual layer-2

interfaces, with their own virtual MAC and IP addresses. The frames sent by an unmodified
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application to a virtual IP address reaches the host computer’s tap interface, from where it

is tunneled over UDP to the pswitch to which the host is connected in the virtual layer-2

topology. Similarly, frames sent to a computer from its virtual pswitch are passed on to

unmodified applications through the tap interface. Pswitches are also inter-connected using

UDP tunnels.

For a more formal analysis of PLayer functionality and properties, please see Section 5.6.

5.5.3 Benchmarks

In this section, we provide throughput and latency benchmarks for our prototype pswitch

implementation, relative to standard software Ethernet switches and on-path classifier de-

ployment. Our prototype implementation focuses on feasibility and functionality, rather

than optimized performance. While the performance of a software pswitch may be im-

proved by code optimization, achieving line speeds is unlikely. The 50x speedup obtained

when moving from a software to hardware switch prototype in [51] offers hope that a fu-

ture hardware-based pswitch implementation [27] will achieve line rates. We believe that

the hardware pswitch implementation will have sufficient switching bandwidth to support

frames traversing the switch multiple times due to classifiers and will be able to operate at

line speeds.

Figure 5.15. Topologies used in benchmarking pswitch performance.

Our prototype pswitch achieved 82% of the TCP throughput of a regular software Eth-

ernet switch, with a 16% increase in latency. Figure 5.15(a) shows the simple topology used
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in this comparison experiment, with each component instantiated on a separate 3GHz Linux

PC. We used nuttcp [29] and ping for measuring TCP throughput and latency, respectively.

The pswitch and the standalone Click Etherswitch, devoid of any pswitch functionality, sat-

urated their PC CPUs at throughputs of 750 Mbps and 912 Mbps, respectively, incurring

latencies of 0.3 ms and 0.25 ms.

A classifier deployment using our prototype pswitch achieved only 40% of the through-

put of a traditional on-path classifier deployment, while doubling the latency. Figure 5.15(b)

shows the simple topology used in this comparison experiment. The on-path firewall de-

ployment achieved an end-to-end throughput of 932 Mbps and a latency of 0.3 ms, while the

pswitch-based firewall deployment achieved 350 Mbps with a latency of 0.6 ms. Although la-

tency doubled as a result of multiple pswitch traversals, the sub-millisecond latency increase

is in general much smaller than wide-area Internet latencies. The throughput decrease is

a result of packets traversing the pswitch CPU twice, although they arrived on different

pswitch ports. Hardware-based pswitches with dedicated multi-gigabit switching fabrics

should not suffer this throughput drop.

Microbenchmarking showed that a pswitch takes between 1300 and 7000 CPU ticks 5

to process a frame, based on its destination. A frame entering a pswitch input port from a

classifier or server is processed and emitted out of the appropriate pswitch output ports in

6997 CPU ticks. Approximately 50% of the time is spent in rule lookup (from a 25 policy

database) and classifier instance selection, and 44% on frame encapsulation. Overheads of

packet classification and packet handoff between different Click elements consumed the re-

maining inP processing time. An encapsulated frame reaching the pswitch directly attached

to its destination server/classifier was decapsulated and emitted out to the server/classifier

in 1312 CPU ticks.
5 We counted the CPU ticks consumed by different pswitch operations using the RDTSC x86 instruction

on a 3GHz desktop PC running Linux in single processor mode (3000 ticks = 1 microsecond). Due to
variability in CPU tick count caused by other processes running on the PC, we report the minimum CPU
tick count recorded in our repeated experiment runs as an upper bound on the CPU ticks consumed by
pswitch operations.
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5.6 Formal Analysis

In this section, we validate the functionality of the PLayer and discuss its limitations

using a formal model of policies and pswitch forwarding operations.

5.6.1 Model

Network administrators require different types of traffic to go through different sequences

of classifiers. These requirements can be expressed as a set of policies, of the form:

Traffic Type i : Mi1 ,Mi2 , . . . ,Mij , . . . ,Mini
, F

where Mij is a classifier type (say, firewall), F denotes the final destination, and ni is the

number of classifiers to be traversed by traffic type i. Note that F is only a place-holder for

the final destination; the final destination of a frame is determined by its destination MAC

and/or IP addresses.

The PLayer uses 5-tuple based classification as a simple and fast mechanism to identify

traffic types. Thus, PLayer policies are of the form:

(Si, Ci) : Mi1 ,Mi2 , . . . ,Mij , . . . ,Mini
, F

where Ci is the Traffic Selector, a 5-tuple based classifier that identifies traffic type i, and

Si is the Start Location, denoting where the frame arrived from (e.g., a border router or an

internal server).

5-tuple based traffic type identification is affected by classifiers that modify packet

headers. Hence, a PLayer policy for traffic type i that includes such classifiers is expressed

as a sequence of per-segment policies, as shown below:

(Si, Ci1) : Mi1 , . . . ,Mik1

(Mik1
, Ci2) : Mik1+1

,Mik1+2
, . . . ,Mik2

· · ·

(Miks−1
, Cis) : Miks−1+1

,Miks−1+2
, . . . ,Miks

(Miks
, Ci(s+1)) : Miks+1

,Miks+2
, . . . ,Mini

, F
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where Mik1
. . .Miks

are the classifier types that modify packet headers, and (Mikj−1
, Cij)

matches packets modified by classifier type Mikj−1
.

Each per-segment policy is converted into a series of forwarding rules stored in rule-

tables at each pswitch. A forwarding rule specifies the next hop for a packet arriving from a

particular previous hop that matches a particular classifier. For example, the per-segment

policy with classifier Ci1 above results in the following forwarding rules:

Si, Ci1 : Mi1

Mi1 , Ci1 : Mi2

· · ·

Mik1−1
, Ci1 : Mik1

The path taken by a frame f is denoted by

path(f) = e1, e2, . . . , ei, . . . , el, F/D

where entities e1 . . . el are classifier instances. F/D denotes that the frame reached its final

destination (F ) or was dropped (D).

Each classifier type Mi has Ti instances mi1,mi2, . . . ,miTi . For example, path(f) =

m22,m13, F implies that frame f traversed the instance 2 of classifier type M2, instance 3

of M1, and then reached its final destination. path(f) = m22, D implies that it got dropped

before reaching its final destination. The drop may have been the result of m22’s functional-

ity (e.g., firewalling) or because of lack of network connectivity or non-availability of active

classifier instances. We do not consider frame drops caused by classifier functionality in this

analysis.

Pswitches dictate the path taken by a frame. When a pswitch receives a frame from

a classifier or server, it looks up the forwarding rule that best matches it. Based on the

forwarding rule, it forwards it to an instance of the specified classifier type or to the final
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destination, or drops it. This operation can be represented as follows:

path(f) → path(f).mx

or

path(f) → path(f).F

or

path(f) → path(f).D

where mx is an instance of the classifier type Mx specified by the matching forwarding rule.

‘.’ represents path concatenation.

The previous hop of a frame is identified based on its source MAC address, the pswitch

interface it arrived on, or its VLAN tag. Any rule lookup mechanism can be employed, as

long as all pswitches employ the same one, i.e., two pswitches with the identical rule tables

will output the same matching rule for a frame.

A pswitch selects a classifier instance for a frame by calculating a flow direction agnostic

consistent hash on its 5-tuple fields that are unmodified by the classifier. This information

is also included with the policies and forwarding rules (not shown above for clarity). This

implies that a pswitch will select the same classifier instance for all frames in the same flow,

in either direction. This also implies that the classifier instance selection is independent of

the pswitch on which it is done, if all pswitches have the same classifier database.

5.6.2 Desired Properties

Correctness

path(f) = mr1s1 ,mr2s2 , . . . ,mrlsl
, F is correct , if mrisi ∈ Mri , where Mr1 ,Mr2 , . . . ,Mrl

is the classifier sequence associated with frame f ’s traffic type. path(f) =

mr1s1 ,mr2s2 , . . . ,mrlsl
, D is correct , if Mr1 ,Mr2 , . . . ,Mrl

is a (proper or not proper)

prefix of the classifier sequence associated with f ’s traffic type.

Consistency
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path(f) is consistent if for all frames g in the same flow and same direction as frame f ,

path(g) = path(f).

Availability

The availability of the PLayer is the fraction of frames that reach their final destination,

i.e., |{f |F∈path(f)}|
|{f}| .

Next, we analyze how well the PLayer satisfies the above properties under various

scenarios, using the model developed so far.

5.6.3 Policy Churn

A new policy j conflicts with an existing policy i, if the following conditions are satisfied:

1. Cix ∩ Cjy 6= φ, and

2. Six = Sjy

where (Six, Cix) and (Sjy, Cjy) are the previous hops and traffic classifiers associated

with the forwarding rules of policies i and j. The intersection of two classifiers is the

set of all packets that can match both. For example, the intersection of classifiers

srcip = 128.32.0.0/16 and dstport = 80 includes the packet from 128.32.123.45 destined to

port 80. As another example, the intersection of classifiers dstport = 80 and dstport = 443

is empty.

Conflicting policies, and thus their forwarding rules, are specified in terms of inter-

mediate classifier types M ′
1,M

′
2, . . .. A pswitch will never match an inflight frame f with

path(f) = e1, e2, . . . , ei against a forwarding rule of the new policy, as the previous hop ei

is an instance of one of the original classifier types M1,M2, . . .. In other words, we avoid

conflicting policies by ensuring that the condition Six = Sjy never holds. If the original

policy is no longer present in the pswitch rule table, then f is dropped. Instances of the

original classifier types are re-used only after allowing sufficient time for all in-flight packets

re-directed under the original policy to reach their destinations. Thus, correctness is guar-
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anteed, although availability is reduced. Note that this correctness guarantee is independent

of the policy dissemination mechanism.

5.6.4 Addition or Failure of Network Links

The addition or failure of network links only affects the ability of a pswitch to forward

a frame to its next hop, and not the selection of the next hop. Thus, the path of a frame

may get truncated, but correctness and consistency are unaffected. The availability lost due

to frames not reaching their final destination is attributable to the underlying forwarding

mechanisms used by the PLayer and not to the PLayer itself.

5.6.5 Inaccuracies in Classifier or Previous Hop Identification

Correctness of PLayer operations critically depends on accurate traffic classification

(i.e., well-defined Cis) and previous hop identification (i.e., accurate detection of Sis).

Section 5.7 discusses how the PLayer addresses the limitations caused by inaccuracies in

these operations.

5.6.6 Classifier Churn

The addition of a new classifier type does not affect forwarding rule lookup, classifier

instance selection or packet forwarding. The PLayer allows a classifier type to be deleted

only after all policies including it are deleted. Hence correctness, consistency and availability

are unaffected by the addition or deletion of a classifier type.

The planned removal or failure of an instance of a particular classifier type affects only

the classifier instance selection operation of a pswitch. Flows whose frame 5-tuples hashed

to the removed classifier instance will now be shifted to a different instance of the same

classifier type, or dropped if no instance is available. Thus consistency and availability are

hampered. However, this is inevitable even in today’s mechanisms6.The addition of a new
6Active standby classifier instances can be used, if available. Although consistency as defined here is

violated, in practice the packets do not get dropped.
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classifier instance also impacts the classifier instance selection process only. Some flows will

now hash to the new instance and thus get shifted there. This again impacts consistency

and availability (because stateful classifiers may drop these packets), but correctness is

preserved. We assume that, in the worst case, a classifier receiving an unexpected frame in

the middle of a flow simply drops it and does not violate any classifier functionality.

5.6.7 Forwarding Loops

The PLayer cannot prevent forwarding loops caused by the underlying forwarding mech-

anism it uses. However, it does not introduce any forwarding loops of its own. We assume

that policies themselves do not dictate forwarding loops. Static analysis of the policy defini-

tions can detect and prevent such policies. A pswitch explicitly redirects only those frames

received from a classifier or a server. The path(f) of a frame increases and progresses to-

wards its final destination, each time a pswitch redirects it. It will never get stuck in a

forwarding loop between two pswitches. We assume that pswitches can accurately identify

its interfaces that are connected to other pswitches. Since such identification is crucial to

existing forwarding mechanisms (like spanning tree construction), automated and manual

methods [55] already exist for this purpose.

5.7 Limitations

The following are the main limitations of the PLayer:

1. Indirect Paths

Similar to some existing VLAN-based classifier deployment mechanisms, redirecting

frames to off-path classifiers causes them to follow paths that are less efficient than

direct paths formed by classifiers physically placed in sequence. We believe that the

bandwidth overhead and slight latency increase are insignificant in a bandwidth-rich

low latency data center network.
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2. Policy Specification

Traffic classification and policy specification using frame 5-tuples is not trivial. How-

ever, it is simpler than the current ad-hoc classifier deployment best practices. Net-

work administrators specify policies using a configuration GUI at the centralized pol-

icy controller. Static policy analysis flags policy inconsistencies and misconfiguration

(e.g., policy loops), and policy holes (e.g., absence of policy for SSH traffic). Since

every pswitch has the same policy set, policy specification is also less complex than

configuring a distributed firewall system.

3. Incorrect Packet Classification

5-tuples alone may be insufficient to distinguish different types of traffic if it is ob-

fuscated or uses unexpected transport ports. For example, a pswitch cannot identify

HTTPS traffic unexpectedly sent to port 80 instead of 443, and forward it to an SSL

offload box. Since such unexpected traffic is likely to be dropped by the destinations

themselves, classification inaccuracy is not a show-stopper. However, it implies that

if deep packet inspection capable firewalls are available, then policies must be defined

to forward all traffic to them, rather than allowing traffic to skip firewalls based on

their 5-tuples.

4. Incorrectly Wired Classifiers

The PLayer requires classifiers to be correctly wired for accurate previous hop iden-

tification and next hop forwarding. For example, if a firewall is plugged into pswitch

interface 5 while the pswitch thinks that an intrusion prevention box is plugged in

there, then frames emitted to the intrusion prevention box will reach the firewall.

Even existing classifier deployment mechanisms critically rely on classifiers being cor-

rectly wired. Since classifiers are few in number compared to servers, we expect them

to be carefully wired.

5. Unsupported Policies

The PLayer does not support policies that require traffic to traverse the same type of

classifier multiple times (e.g., [Core Router, (*,*,*,80,tcp)] → firewall, load balancer,
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firewall). The previous hop determination mechanism used by pswitches cannot dis-

tinguish the two firewalls. We believe that such policies are rare, and hence tradeoff

complete policy expressivity for simplicity of design. Note that policies involving

different firewall types (e.g., [Core Router, (*,*,*,80,tcp)] → external firewall, load-

balancer, internal firewall) are supported.

6. More Complex Switches

While we believe that the economical implementation of pswitches is easily possible

given the current state of the art in network equipment, pswitches are more complex

than regular Ethernet switches.

5.8 Related Work

Indirection is a well-known principle in computer networking. The Internet Indirection

Infrastructure [88] and the Delegation Oriented Architecture [94] provide layer-3 and above

mechanisms that enable packets to be explicitly redirected through middleboxes located

anywhere on the Internet. Due to pre-dominantly layer-2 topologies within data centers,

the policy-aware switching layer is optimized to use indirection at layer-2. SelNet [59]

is a general-purpose network architecture that provides indirection support at layer ‘2.5’.

In SelNet, endhosts implement a multi-hop address resolution protocol that establishes

per flow next-hop forwarding state at classifiers. The endhost and classifier modifications

required make SelNet impractical for current data centers. Using per-flow multi-hop address

resolution to determine the classifiers to be imposed is slow and inefficient, especially in a

data center environment where policies are apriori known. The PLayer does not require

endhost or classifier modifications. A pswitch can quickly determine the classifiers to be

traversed by the packets in a flow without performing multi-hop address resolution.

Separating policy from reachability and centralized management of networks are goals

our work shares with many existing proposals like 4D [60] and Ethane [51]. 4D concentrates

on general network management and does not provide mechanisms to impose off-path clas-
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sifiers or to guarantee classifier traversal. Instantiations of 4D like the Routing Control

Platform (RCP) [49] focus on reducing the complexity of iBGP inside an AS and not on

Data Centers. 4D specifies that forwarding tables should be calculated centrally and sent

to switches. The policy-aware switching layer does not mandate centralized computation

of the forwarding table – it works with existing network path selection protocols running

at switches and routers, whether centralized or distributed.

Predicate routing [85] declaratively specifies network state as a set of boolean expressions

dictating the packets that can appear on various links connecting together end nodes and

routers. Although this approach can be used to impose classifiers, it implicitly buries

classifier traversal policies in a set of boolean expressions, as well as requires major changes

to existing forwarding mechanisms.

Ethane [51] is a proposal for centralized management and security of enterprise networks.

An Ethane switch forwards the first packet of a flow to a centralized domain controller.

This controller calculates the path to be taken by the flow, installs per-flow forwarding

state at the Ethane switches on the calculated path and then responds with an encrypted

source route that is enforced at each switch. Although not a focus for Ethane, off-path

classifiers can be imposed by including them in the source routes. In the PLayer, each

pswitch individually determines the next hop of a packet without contacting a centralized

controller, and immediately forwards packets without waiting for flow state to be installed

at pswitches on the packet path. Ethane has been shown to scale well for large enterprise

networks (20000 hosts and 10000 new flows/second). However, even if client authentication

and encryption are disabled, centrally handing out and installing source routes in multiple

switches at the start of each flow may not scale to large data centers with hundreds of

switches, serving 100s of thousands of simultaneous flows7. The distributed approach taken

by the PLayer makes it better suited for scaling to a large number of flows. For short flows

(like single packet heartbeat messages or 2-packet DNS query/response pairs), Ethane’s

signaling and flow setup overhead can be longer than the flow itself. The prevalence of
7We estimate that Google receives over 400k search queries per second, assuming 80% of search traffic is

concentrated in 50 peak hours a week [43]. Multiple flows from each search query and from other services
like GMail are likely to result in each Google data center serving 100s of thousands of new flows/second.
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short flows [99] and single packet DoS attacks hinder the scalability of the flow tables

in Ethane switches. Although Ethane’s centralized controller can be replicated for fault-

tolerance, it constitutes one more component on the critical path of all new flows, thereby

increasing complexity and chances of failure. The PLayer operates unhindered under the

current policies even if the policy controller fails.

Some high-end switches like the Cisco Catalyst 6500 [9] allow various classifiers to be

plugged into the switch chassis. Through appropriate VLAN configurations on switches and

IP gateway settings on end servers, these switches offer limited and indirect control over

the classifier sequence traversed by traffic. Classifier traversal in the PLayer is explicitly

controlled by policies configured at a central location, rather than implicitly dictated by

complex configuration settings spread across different switches and end servers. Crucial

classifiers like firewalls plugged into a high-end switch may be bypassed if traffic is routed

around it during failures. Unlike the PLayer, only specially designed classifiers can be

plugged into the switch chassis. Concentrating all classifiers in a single (or redundant)

switch chassis creates a central point of failure. Increasing the number of classifiers once all

chassis slots are filled up is difficult.

MPLS traffic engineering capabilities can be overloaded to force packets through network

paths with classifiers. This approach not only suffers from the drawbacks of on-path classifier

placement discussed earlier, but also requires classifiers to be modified to relay MPLS labels.

Policy Based Routing (PBR) [34], a feature present in some routers, enables packets

matching pre-specified policies to be assigned different QoS treatment or to be forwarded

out through specified interfaces. Although PBR provides no direct mechanism to impose

classifiers, it can be used along with standard BGP/IGP routing and tunneling to impose

classifiers. dFence [76], a DoS mitigation system which on-demand imposes DoS mitigation

classifiers on the data path to servers under DOS attack, uses this approach. The PLayer

does not rely on configurations spread across different routing and tunneling mechanisms.

It instead provides a simple and direct layer-2 mechanism to impose classifiers on the data

path. A layer-2 mechanism is more suitable for imposing classifiers in a data center, as data
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centers are pre-dominantly layer-2 and many classifiers cannot even be addressed at the IP

layer.

5.9 Discussion

5.9.1 Leveraging the CLayer

The PLayer did not utilize the CLayer headers as we wanted to support unmodified

classifiers for easy deployment in existing data centers. If we have the freedom to modify

classifiers, pswitches can leverage a packet’s CLayer header to avoid multiple policy lookups.

The first pswitch that receives a packet looks up the policy and embeds the sequence of

classifiers that the packet must traverse and a pointer to the next hop in its CLayer header.

Each classifier that processes the packet advances the pointer by one. A pswitch that receives

the packet can now simply forward the packet to its next hop without re-performing policy

lookup and deciphering the previous hop. Since the classifier sequence to be traversed by

a frame can now be permanently embedded in it, guaranteeing correct classifier traversal

under policy churn becomes trivial.

The modifications required in classifiers to support such propagation of CLayer headers

are very similar to that required by tracing frameworks like X-trace [56]. The authors in

X-trace have integrated propagation of an opaque identifier (the X-trace id in this case) into

the TCP/IP processing stack as well as popular libraries like libasync. We hope to leverage

their work as part of future work on a clean-slate data center network implementation with

classifier support.

5.9.2 Stateless versus Stateful pswitches

A stateful pswitch offers the following two advantages over a stateless pswitch:

1. Faster next hop determination.

A stateful pswitch can determine the next hop of a frame faster than a stateless
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pswitch. This is because a stateful pswitch performs an exact match hash lookup on

the FwdTable as against the pattern based rule lookup and subsequent classifier

instance selection performed by a stateless pswitch, on receiving each packet.

2. Higher classifier instance selection consistency

A stateful pswitch provides more consistent classifier instance selection than stateless

pswitches when new instances of an existing classifier type are added to the network.

In a stateless pswitch, a classifier instance is selected using consistent hashing on

a frame’s 5-tuple. As described in Section 5.4.3, when a new classifier instance is

added, a small fraction of existing flows may be shifted to the new instance. Stateful

classifier instances like firewalls may drop reassigned flows and thus briefly impede

network availability. A stateful pswitch avoids this flow reassignment by using next hop

information recorded in the FwdTable to pin a flow to a particular classifier instance.

However, this does not work under the race conditions described in Section 5.4.3.

The main disadvantages of a stateful pswitch are its large fast memory requirements

and the associated state management complexity. We conservatively estimate that 140MB

of fast memory is needed for 1 million flows traversing at most two classifiers in either

direction, assuming each next hop entry to consume 24 bytes (13 bytes for 5-tuple + 4

bytes to identify previous hop + 4 bytes to identify next hop + 1 byte for TTL + rest for

hash overhead).

5.10 Summary

In this chapter, we designed and prototyped the PLayer, an instantiation of policy-

based classifier deployment tailored for data centers and enterprise networks. The PLayer

explicitly redirects traffic to unmodified off-path classifiers specified by policy. The very low

latency, high bandwidth data center network environment makes such indirection feasible.

Unlike current best practices, our approach guarantees classifier traversal under all net-

work conditions and enables more efficient and flexible data center network topologies. We
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demonstrated the functionality and feasibility of the PLayer through a software prototype

deployed on a small testbed.
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Chapter 6

Generic Offload

Classification offload overcomes the scalability limitations of in-place classification. In

Chapter 2, we saw that current classification offload solutions are ad-hoc, inflexible, ineffi-

cient and hard to configure. To overcome these limitations, we proposed a new classification

layer (CLayer) and an associated generic offload protocol in Chapter 4. In this chapter, we

describe GOff, a specific instantiation of generic classification offload, in detail.

Generic classification offload enables classifiers – entities like routers, firewalls and load

balancers that traditionally perform packet classification – to shift a portion of classifica-

tion’s computation and memory requirements to helpers – endhosts, edge routers, applica-

tion proxies and other network entities that can aid classification. Helpers advertise their

capabilities and classifiers notify helpers about the classification support desired from them.

A helper on a packet’s path embeds the results of classifying the packet in its CLayer header.

A downstream classifier easily reads and uses these results in speeding up its classification

operations. For instance, a load balancer implements HTTP session stickiness by request-

ing an endhost to label all packets in a session with the identity of the web server instance

selected for the session. The load balancer easily determines the web server instance for a

packet by reading its label. It avoids the overheads of complex layer-7 processing. Generic

classification offload thus improves efficiency.
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GOff defines a detailed protocol that implements the high-level operations of generic

classification offload described above. It has been carefully engineered to make it robust

to non-symmetric network paths, path changes, and state discrepancies at participating

entities. In addition, it provides mechanisms to detect and deter cheating or malfunctioning

helpers. GOff exposes a BSD sockets-like [87] API that makes it easy to GOff-enable existing

applications.

We have prototyped GOff in software using the Click [72] modular router. We have GOff-

enabled a variety of existing applications with just few minor modifications to their source

code. Our experiments show that GOff improves application scalability and performance.

The rest of this chapter is organized as follows. In the next section, we present an

overview of GOff using multiple examples. Section 6.2 provides additional details about

GOff, and discusses its feasibility and deployability. In Section 6.3, we describe our pro-

totype GOff implementation, and evaluate it both quantitatively and qualitatively in Sec-

tion 6.4. We present related work in Section 6.5 and summarize this chapter in Section 6.6.

6.1 Overview

There are two types of entities in GOff: classifiers and helpers. Classifiers classify a

packet and take action depending on the results of the classification. Examples of classifiers

are load balancers, firewalls, and routers. Helpers aid classifiers by performing classification

tasks on their behalf. Examples of helpers are endhosts that provide HTTP cookies to web

load balancers to aid them in session identification, and edge routers in a Diffserv domain

which set code points in packet headers to aid core routers in QoS processing. Note that

in the latter example, an edge router is both a helper and a classifier, as it also classifies

packets to determine their next hop in addition to helping core routers.

GOff consists of two main components: (i) a signaling protocol and (ii) a new socket

API. The signaling protocol is used to coordinate classifiers and their helpers. It uses the

CLayer header in a packet to carry signaling information, and the classification “results”
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from helpers to classifiers. A classification result is an opaque bag of bits that is interpreted

by the classifier to which it is addressed. For instance, to a load balancer, the result can

be a label denoting a web server instance. To a firewall, it can be a flag indicating the

accept/drop decision for the packet. Application software at endhosts and other helpers

interact with GOff via the new socket API.

6.1.1 Basic Operations with a Single Classifier

We illustrate the basic functionality of GOff using the simple scenario shown in Fig-

ure 6.1. Endhost A wishes to communicate with endhost B. The router E on the data

path between A and B classifies packets based on its QoS policy and assigns them different

forwarding priorities. E is thus the classifier. It uses the GOff signaling protocol to config-

ure helpers A and B. Here, GOff provides benefits similar to Diffserv [2] and CSFQ [90] –

router E does not have to perform expensive packet classification on every packet, nor does

it have to maintain per-flow state.

GOff signaling involves a 4-way handshake – CL SYN - CL SYNACK - CL ACK1 -

CL ACK2 – appropriately named to highlight the similarity with TCP’s three-way SYN-

SYNACK-ACK handshake. When A initiates communication with B, it first sends a

CL SYN to B. Through this CL SYN, helpers on the A → B data-path advertise their ca-

pabilities and classifiers place classification requests (ClassReqs). The ClassReqs are echoed

back to A in the CL SYNACK generated by B. Helpers are notified of the ClassReqs

addressed to them through the CL ACK1 subsequently sent by A. The helpers embed

the requested classification results in the CL ACK1 and subsequent A → B data packets.

Similarly, CL SYNACK and CL ACK2 configure the helpers in the B → A direction.

Figure 6.1 illustrates the GOff signaling messages exchanged between A and B. They

are described in detail below:

• Step 1:

A sends a CL SYN to B, advertising its ability to identify packets in the same TCP

flow and label them.
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Figure 6.1. Example 1: Detailed GOff signaling in a QoS application.

• Step 2:

E forwards the CL SYN after appending a ClassReq of the form [classifier, helper,

classification type, action]. Here, E is requesting A to label all packets in the same

TCPFlow with the label q1 that denotes the assigned QoS class.

• Step 3:

B responds to the CL SYN with a CL SYNACK, that advertises its own classification

capabilities and echoes the ClassReq from the CL SYN.

• Step 4:

E forwards the CL SYNACK after appending a ClassReq for labeling packets with q2,

the QoS class for the B → A TCPFlow.
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• Step 5:

A records the CL SYNACK EchoReqs addressed to it with the current TCP flow. It

then sends a CL ACK1 to B, which includes the requested classification result(i.e.,

Label:q1) and the ClassReq copied from the CL SYNACK.

• Step 6:

E forwards the CL ACK1 with forwarding priority indicated by the embedded label

q1.

• Step 7:

Like A, B records the CL ACK1 EchoReq with the current TCP flow, and responds

with a CL ACK2 that includes the requested classification result Label:q2.

• Step 8:

E simply forwards CL ACK2 with forwarding priority q2, as in Step 6.

Signaling is complete once the CL ACK2 reaches A. A and B embed the classification

results of their respective ClassReqs in every subsequent data packet they exchange.

In this simple scenario, the CL ACK2 is unnecessary; a three-way handshake suffices.

However, as we describe in detail in Section 6.1.3, GOff signaling uses a 4-way handshake

to handle non-endhost helpers in the presence of network path asymmetry.

The signaling in this example was described as a standalone protocol for simplicity of

explanation. In practice, it is piggybacked in the CLayer headers of the TCP handshake and

initial data packets of a connection, thus avoiding extra round trip overheads. The CLayer’s

fixed and easily accessible location enables classifiers to quickly access the classification

results without deep packet inspection, and execute the desired network functionality.

6.1.2 GOff API

Applications at endhosts interact with GOff using the GOff network library. We pro-

pose a socket library very similar to the standard BSD socket library [87] so that existing
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applications can be easily GOff-enabled. However, GOff is not restricted to this particular

API. A new Internet architecture can use its own API [88,53].

Our library consists of functions like clconnect and clbind that have direct seman-

tic correspondence with the standard BSD socket library, and GOff-specific functions like

clsessioncreate. A GOff-aware application has a structure very similar to that of any

common application using the BSD library. Listing 1 shows the outline of a simple TCP

listener and sender program that use the GOff socket library.

Algorithm 1 Using the GOff socket library
1: procedure Listener

2: claddcapability(TCP FLOW, LABEL)

3: s = clsocket(AF INET, SOCK STREAM,0)

4: clbind(s, &my addr, sizeof(struct sockaddr))

5: listen(s, 10)

6: new fd = claccept(s, (struct sockaddr *)&their addr, &their addr size, &new sess handle)

7: recv(new fd, recv buf, recv buflen,0)

8: send(new fd, send buf, send buf len, 0)

9: clclose(new fd)

10: end procedure

11:

12: procedure Sender

13: claddcapability(TCP FLOW, LABEL)

14: s = clsocket(AF INET, SOCK STREAM, 0)

15: clsessioncreate(TCP FLOW, &sess handle)

16: clconnect(s, their addr, sizeof(struct sockaddr), sess type, sess handle)

17: recv(s, recv buf, recv buflen, 0)

18: send(s, send buf, send buflen, 0)

19: clclose(s)

20: end procedure

claddcapability enables an application to advertise its semantic classification capabil-

ities (e.g., ‘I can identify the HTTP session of a packet’). clsessioncreate creates new

session state of the specified type (e.g., TCP FLOW) and returns a handle to the applica-

tion. The application associates a TCP connection with a session, by passing the session
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handle to clconnect(). For the first TCP connection in a session, the GOff signaling pro-

tocol is piggybacked on the standard TCP SYN-SYNACK-ACK exchange. The application

sends and receives data using standard send and recv socket calls. The GOff processing

module in the OS performs the classification tasks configured during GOff signaling on the

packets generated by send() before emitting them out. This module also strips out CLayer

headers from received packets and updates session state before handing them to the OS

network stack.

6.1.3 Multiple Classifiers and Leveraging Helper Context

We now describe how GOff provides a generic mechanism that simultaneously supports

network operations requiring different kinds of classification – IP forwarding, QoS, and load

balancing. This example also demonstrates how application semantic context available at

a helper can simplify the processing load at a classifier, specifically a web load balancer.

A web load balancer implements HTTP session stickiness, i.e., it forwards all TCP

connections in the same HTTP session to the same web server instance. This is necessary

for application correctness when local state (shopping cart contents, SSL session keys) is

involved, and provides performance gains due to caching when state is centralized. Current

solutions rely on HTTP cookies [15]. On receiving an HTTP connection that does not

include a cookie identifying a web server instance, a load balancer carefully injects a ‘set

cookie request’ into the corresponding HTTP response. This cookie contains the id of

the web server instance selected by the load balancer. End hosts include the cookie in

subsequent HTTP connections. The load balancer reads the cookie and selects the same

web server instance.

Current cookie-based solutions leverage semantic context at end hosts for HTTP session

identification. However, they are complex and inefficient. Injecting cookies into an HTTP

connection’s TCP stream is hard. Reading the cookie value requires complex layer-7 pro-

cessing. GOff seamlessly leverages session context available at endhosts to provide the same
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session stickiness without requiring the complex TCP stream reconstruction and application

header parsing required by current solutions.

Figure 6.2 illustrates the scenario we describe next. A web browser (say, Firefox ) at

endhost A sends HTTP requests to httpd running on a webserver in the server farm W .

Load balancer L spreads out HTTP requests from endhosts across the web servers in the

farm. As in HTTP cookies, L leverages the semantic context available at A to send all

its HTTP requests to the same webserver W1. Edge router E performs prioritized traffic

forwarding with help from A and W1, as in Section 6.1.1. To reduce processing and memory

requirements, core router C offloads IP route lookup to less-loaded edge routers E and F ,

as in MPLS. In summary, E, C and L are classifiers and A, W1, E and F are helpers.

Before opening the first HTTP connection to L’s public IP address (IPL), Firefox at A

creates a new GOff session. It includes the session handle in all TCP connections associated

with same HTTP session. We now explain how the various classifiers and helpers participate

in the GOff signaling exchange piggybacked on the first TCP connection.

CL SYN

Figure 6.2(1) shows the CL SYN that reaches W1, after the processing described below:

1. A sends out a CL SYN advertising its HTTPSess and TCPFlow classification capa-

bilities.

2. In addition to inserting a ClassReq as in Section 6.1.1, E also advertises its ability to

group packets based on their destination IP in the CL SYN, before forwarding it on.

3. C looks up the route for the CL SYN and appends a ClassReq directing E to label all

packets destined to IPL with a label x.

4. F also advertises its destination based packet grouping ability like E, but does not

insert a ClassReq as it is not QoS-aware.

5. L selects a webserver W1 based on current load conditions, and forwards the CL SYN
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to it after appending a ClassReq for A to label all packets in the same HTTP session

with W1.

CL SYNACK

Figure 6.2(2) shows the CL SYNACK received by A, after the processing described

below:

1. W1 responds with a CL SYNACK advertising its capability list and echoing the three

ClassReqs from the CL SYN.

2. L forwards on the CL SYNACK unmodified, as it does not classify packets destined

to endhosts.

3. F appends its capability advertisement.

4. C appends a ClassReq for F to label all packets to IPA with y.

5. E appends a ClassReq to label all packets in the same TCP flow with q2.

CL ACK1

Figure 6.2(3) shows the CL ACK1 received by W1, after the processing described below:

1. A records the EchoReqs in the received CL SYNACK that are addressed to it. It copies

the other EchoReqs to the InstallReqs of the CL ACK1 it next sends to IPL. The

CL ACK1 also contains the requested classification results (Label:q1 and Label:W1)

and the EchoReqs from the CL SYNACK.

2. E records the InstallReq addressed to it and appends the specified classification result

(Label:x).

3. C uses the label x to quickly identify the outgoing interface for the CL ACK1, without

re-performing complex route lookup or traffic engineering.
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4. F forwards the CL ACK1 unmodified.

5. L quickly selects the webserver instance W1 based on the label and forwards the packet

there. No TCP stream reconstruction or HTTP parsing is necessary.

CL ACK2

Figure 6.2(4) shows the CL ACK2 received by A, after the processing described below:

1. W1 records the EchoReqs addressed to it by E in the CL ACK1. The remaining

EchoReq, addressed to F , is copied into the InstallReqs of the CL ACK2 generated by

W1. The CL ACK2 also includes the classification result Label:q2.

2. L relays the CL ACK2 unmodified.

3. F records the InstallReq addressed to it and includes the requested classification result

Label:y.

4. C uses this label to quickly forward the packet.

5. E uses the label q2 to forward the packet to A with appropriate QoS. This completes

the CLayer signaling protocol.

The existence of asymmetric network paths (for example, due to Internet path diver-

sity [64] or load balancing Direct Server Return mode [74]) creates the need for the CL ACK2

message and makes GOff signaling 4-way instead of 3-way. A non-endhost helper reads the

ClassReqs addressed to it in the A → B direction from the InstallReqs in a CL ACK1, and

not from the EchoReqs field of a CL SYNACK, as the CL SYNACK may take a different

network path that omits the helper. Thus, we need the fourth signaling message – CL ACK2

– to inform helpers about B → A ClassReqs.
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Figure 6.2. Example 2: Using GOff to offload QoS labeling, IP route lookup and HTTP
session identification to endhosts and edge routers.

6.1.4 Pro-actively helping Classifiers

Instead of waiting for a classifier (like the load balancer in the previous section) to

request classification support, a helper may pro-actively include classification hints in the

CLayer of packets it originates. For example, an endhost originating a packet to a desti-

nation known to use anycast proactively includes hints about its geographic location (say,

GPS coordinates) in its CLayer. These hints aid anycast routers to forward the packet to

the closest service replica. The routers use regular GOff signaling to instruct the endhost

to insert a shorter label identifying the chosen replica in subsequent packets it sends.

As another example, the web browser at an endhost may proactively include a label

identifying the type of content requested in its HTTP request – image, video, HTML or
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just the extension of the requested file. A content-aware load balancer can quickly forward

a request containing such a label to the web server specialized for the requested content

type without reconstructing the TCP stream and parsing HTTP headers to identify the

content type.

When communicating with a particular destination for the first time, a web browser is

unaware of the load balancer’s labeling scheme. It thus sends unlabeled packets. The load

balancer processes these packets on its slow path. It conveys the labeling schema to the

web browser using GOff. The web browser caches this information similar to how it stores

HTTP cookies, and uses it to label subsequent connections.

This approach to pre-classify content types is limited to a small standard set of classifi-

cation schema. Moreover, the rules and their semantics cannot be instantaneously changed

at the load balancers since they are cached by endhosts.

6.1.5 Explicit Coordination between helpers

Using HTTP cookies to identify HTTP sessions in the previous example does not incur

too much additional overhead if L anyway parses HTTP headers to perform URL-based

content filtering. We now revisit the scenario from Section 2.2 where the extra processing

and state demanded by classification imposes a high overhead over normal operations. This

example also demonstrates how on-path classifiers can explicitly coordinate and signal each

other in order to establish common state at different helpers.

Figure 6.3 illustrates the scenario we describe next. Endhost A wishes to communicate

with FTP server B located behind a firewall farm. Load balancers L and M distribute

traffic across the different firewalls. For correct firewall functionality, packets in forward

and reverse flow directions, as well as in both control and data flows of an FTP session,

must be processed by the same firewall. In current mechanisms [74], M records the link on

which a packet arrived and uses the recorded information to choose the outgoing link for

a packet in the reverse direction. In addition, L and M must be capable of reconstructing

TCP streams and parsing FTP headers in order to identify the control and data connections
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Figure 6.3. Example 3: Coordinating multiple classifiers for firewall load balancing.

of an FTP session. Thus, current firewall load balancing solutions are complex both in terms

of device implementation as well as in configuration.

GOff simplifies the configuration of firewall load balancing by facilitating explicit coordi-

nation between the two load balancers, L and M , in the load balancer pair. It reduces load

balancer implementation complexity by offloading the complex operations required for FTP

session identification from the load balancers to the endhosts, just like web load balancers

offloaded HTTP session identification to endhosts in Section 6.1.3.

Figure 6.3 summarizes the GOff signaling associated with firewall load balancing. L

adds two ClassReqs to A’s CL SYN – (i) ClassReq c that directs endhost A to label all

packets in the FTPSess with label F , denoting firewall instance F , and (ii) ClassReq c′

that directs the final destination to label all packets in the FTPSess with same label F .

Since L and M are deployed together as pair, L is aware of M and specifies it as the

originator of c′. M forwards the CL SYN without adding another ClassReq, since it already
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contains one with source M . The CL SYNACK sent by B includes the classification result

label : F addressed to M , as B acted on the CL SYN’s ClassReq c′ that was addressed

to the final destination. M uses the label to forward the CL SYNACK through the same

firewall instance used in the forward direction. The FTP application software at A and

B remember the label and include it in all data and control connections in the same FTP

session.

A GOff-enabled firewall load balancer thus simply reads the label in a packet’s CLayer

header, and forwards it to the firewall instance denoted by the label. Such operational

simplicity makes it feasible to integrate firewall load balancing functionality into routers and

switches themselves, avoiding the need for expensive special-purpose firewall load balancers.

6.2 Additional Design Issues

This section discusses CLayer header internals, signaling robustness, classification cor-

rectness, offload feasibility and GOff deployability.

6.2.1 Inside the CLayer Header

Ideally, the CLayer has a free-form, flexible length, key-value format as illustrated in

the examples in Section 6.1. However, our proposal is not wedded to any particular header

format. Any format that provides the required forwarding performance at the relevant

network entities can be used. For example, we may impose a more rigid structure on the

CLayer to optimize forwarding performance of entities like routers which work faster on

fixed length fields. One option is to limit the number of classification results to a small

number (say, 3) of fixed length entities. These are placed at the head of the CLayer header,

thus enabling network entities to easily process them. Since ClassReqs and capability lists

are infrequent and often associated with heavy-weight processing (for example, web server

instance selection), we do not optimize their placement in the header. They can be more

loosely encoded – for example, as IP options.
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The presence of multiple classifiers and helpers on a packet’s path requires the ClassReqs

and classification results in a CLayer header to be explicitly addressed to specific helpers

and classifiers. Otherwise, multiple helpers may respond to the same ClassReq, thus wasting

resources, or worse, confusing classifiers with differing results. Similarly, if multiple classi-

fiers request similar classification support, then helpers should address the results to those

specific classifiers to avoid confusion. For example, routers E and C in Figure 6.2 may both

request the endhost to label all packets in a particular TCP flow, but with different labels.

We use existing identifiers like IP addresses and MAC addresses to identify helpers and

classifiers. These ids need not be globally routable. They just need to be unique on the

path of a particular data flow.

A CLayer header contains a unique handle that identifies the GOff session to which it

belongs. The handle is a concatenation of bits randomly proposed by the two endhosts in

the CL SYN and CL SYNACK messages. All GOff-related state at helpers and classifiers

is keyed by this handle. In Section 6.2.3, we describe how this handle plays an important

role in making GOff signaling robust.

6.2.2 Types of Classification Supported

GOff enables standard commonly used classification operations as well as custom ones

to be offloaded to helpers. In the earlier examples, we discussed various commonly used

operations – identifying packets in the same TCP flow or HTTP session and marking them

with a specified label. A standardized vocabulary of such commonly used classification

operations with well-defined semantics are part of GOff specifications and implemented at

all relevant nodes. Custom classification operations can be defined out-of-band between

co-operating classifiers and helpers – for example, those within the same administrative

domain. These can subsequently be used in standard GOff operations. For example, a core

router can instruct an edge router to rate limit all packets matching a particular pattern

by defining a custom classification action. We hope that the flexibility offered by GOff will

enable efficient implementation of currently unforeseen classification applications.
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GOff is most applicable for classification applications that operate on just the first

packet of a flow. Applications that act on collections of packets can still benefit from

the classification offload provided by GOff. However, GOff does not eliminate the packet

caching required before the classification decision can be made.

6.2.3 Signaling Robustness

GOff signaling is robust to lost or retransmitted messages, path changes and unexpected

state expiration.

Path changes

Changes that do not alter the sequence of classifiers and helpers on a packet’s path have

no impact on GOff signaling. For example, common local layer-2 and wide area Internet

path changes do not affect GOff signaling if the switches and routers involved are not

classifiers or helpers.

Path changes involving classifiers and helpers are detected by the absence of expected

classification results, and fixed by re-signaling. Figure 6.4 illustrates path changes in the

example topology described in Section 6.1.3. To summarize, C and L are classifiers; A,

W1 and F are helpers; E is simultaneously a helper and a classifier. In Figure 6.4(a), the

network path between endhost A and web server W1 shifts from edge router F to F ′. In

Figure 6.4(b), the network path shifts from core router C to C ′. In the former case, F ′ does

not insert any classification results addressed to C. In the latter case, classification results

are addressed to C, and not C ′. Thus, in both cases, the core router (C or C ′) detects the

absence of classification results addressed to it, and initiates re-signaling by setting a ReSig

flag in the CLayer header.

On receiving a CLayer header with ReSig flag, the endhosts re-run the GOff 4-way

handshake. The session handle established during original signaling is included in the

CLayer headers. The endhosts and the helpers on the original path use the handle to
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Figure 6.4. Path changes.

retrieve the previously established state, and insert classification results in the re-signaling

messages. Classifiers append ClassReqs only if they do not find the desired classification

results addressed to them.

A classifier limits the rate at which it sets the ReSig flag to avoid re-signaling infinitely

when no appropriate helpers are present on the new path. A new helper that comes online

may also pro-actively trigger re-signaling and thus quickly advertise its capabilities to needy

classifiers. Any duplicate ReSig flags received during signaling are ignored.

Most classifiers operate correctly during re-signaling. If a classifier’s helpers are unaf-

fected by the path change, it operates normally without any performance hit. For example,

load balancer L continues to choose the correct webserver based on the Label:W1 embedded

by helper A, irrespective of the path changes in Figure 6.4. Even some classifiers with

helpers affected by the path change function unhindered during re-signaling. For example,

core router C can forward packets to IPA using more expensive regular route lookup.

Some classifiers like load balancers may operate incorrectly during re-signaling. For

example, if the path changes to include a different load balancer L′ that does not understand

labels intended for L, packets may be forwarded to the wrong webserver. This is inevitable

even in existing load balancer deployments.

119



Unexpected State Expiration

GOff handles unexpected state expiration at helpers and classifiers by re-signaling. For

example, in Figure 6.4, E may forget its responsibility to label all packets destined to IPL

with x due to timeout or reboot. As in the case of a path change, C initiates re-signaling

on receiving a packet without classification results addressed to it. In the common case,

re-signaling is necessary only at the start of a new TCP connection in a long-lived session.

Such re-signaling incurs little overhead as it is piggybacked on the transport protocol’s

handshake messages

Classification inaccuracies arise if the new state established as part of re-signaling differs

from the original state. For example, if Firefox at endhost A forgets the HTTP session label

assigned by the load balancer L, a new web server instance may be chosen by L based on

the load conditions during re-signaling. Such session stickiness violation is no different from

current scenarios where the HTTP cookie at a web browser expires or is cleared.

Classification soft state established at different helpers is often independent of each other

(for example, in Sections 6.1.1 and 6.1.3). However, in some scenarios, they are related.

In Section 6.1.5, endhosts A and B use the same label so that the firewall load balancer

pair can select the same firewall instance in both flow directions. Suppose the state at B

expires before A. If A subsequently sends a packet to B, B will not be able to include the

correct classification results in its response packet to A. The GOff handler at B detects the

absence of state identified by the packet’s session handle. It runs GOff signaling out-of-band

to re-establish the missing state before replying to A. Out-of-band signaling can be avoided

if A pre-emptively includes the shared ClassReqs in the packet if it suspects that B may

have forgotten the state – for instance, when sending a new packet after a long gap, or when

starting a new TCP connection.

We assume that the session handle is wide enough to avoid collisions on network paths

that share common nodes. For example, suppose the handle for an HTTPSess is hA.hB.

If B’s state is lost, we assume that another endhost C will not propose hA and B will not

reselect hB before the state keyed by hA.hB state at A has expired.
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Retransmitted Messages

GOff signaling is naturally resilient to lost packets when piggybacked on reliable trans-

port protocols like TCP. However, special care must be taken to handle retransmissions.

Revisiting the example in Section 6.1.3, load balancer L selected the web server instance

W1 on processing the CL SYN from A. Suppose A retransmits the CL SYN (as part of

the TCP SYN retransmit) because the CL SYNACK got delayed. If L does not maintain

per-flow state, it may assign a different web server instance, say W2, to the second CL SYN.

To prevent confusion, A accepts only the first CL SYNACK. A’s TCP stack must also be

slightly modified to ensure that any TCP ACK containing a CL SYNACK different from the

first one is rejected, as it originated from a different web server instance. To quickly release

TCP state at the unused web server instance, A sends a TCP RST with the appropriate

classification label embedded in the CLayer header.

6.2.4 Correctness of Classification Results

A helper may incorrectly classify packets due to malicious intent, buggy implementation

or misconfiguration. GOff detects and alleviates this problem by imposing structure and

semantics on the classification results. However, if detection has very high computation

and/or memory requirements, GOff is redundant or non-beneficial.

Classifiers like firewalls, which critically depend on the accuracy and integrity of clas-

sification results embedded by helpers, use labels containing cryptographic hashes in their

ClassReqs to prevent spoofing. For example, a GOff-enabled layer-4 firewall injects a Class-

Req with the label H(version, secret, decision, 5-tuple) into the first packet of a

flow (say, TCP SYN). H is a one-way hash like MD5 keyed with a secret known only to

the firewall. Hence, this label unspoofably ties together the accept/drop decision for this

flow calculated by regular rule lookup with its 5-tuple. The endhost includes the label in

all subsequent packets. The firewall uses it to quickly accept or drop the packet, without

performing complex rule lookup [63].

Load balancers also use cryptographically secure labels to prevent a large number of
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colluding malicious endhosts from DOSing a particular webserver by spoofing the webserver

instance specified in the labels assigned to them. The load balancer imposes the follow-

ing structure on the label: [H(src IP prefix/16, server instance, secret), server

instance]. It drops a packet if the hash value H calculated with the packet’s source IP

address prefix does not match the value in the label. However, this approach prevents col-

lusion only between hosts in the same /16. We cannot use the full source IP address in H

calculation due to the Mega Proxy problem [40, 11] – TCP connections from an endhost

may be spread across different NATs in a pool, and thus different TCP connections from

the same endhost within the same HTTP session may have different source IP addresses.

Instead of using cryptographic digests, another option is to impart more semantic mean-

ing to the labels. For example, a firewall may embed the equivalence class associated with

a flow’s first packet in the label assigned to it. The equivalence class is a group of packets,

characterized by a set of identifying conditions, on which the firewall makes the same deci-

sion. Although the total number of equivalence classes can theoretically be exponential in

the number of packet fields used in matching, [63] shows that there are much fewer classes

in practice. The firewall can easily verify if a packet satisfies the rules associated with the

equivalence class in its label, since testing for specific rule matching is much faster than

finding the set of matching rules. If the action associated with a packet’s equivalence class is

accept or drop, it is immediately forwarded or dropped. However, if its action is continue,

the firewall performs further fine-grained rule matching on it. Thus, GOff helps the firewall

quickly jump over a set of rules and narrow down rule matching.

Endhosts are incentivized to co-operate with a classifier since their traffic will receive

better forwarding performance if they include the label. Packets without labels are subject

to regular rule matching or session identification. These packets will be the first to be

dropped when the classifier is overloaded.
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6.2.5 Feasibility of Classification Offload

Classification can be most effectively offloaded to helpers if the classification algorithms

and rules are not secret and can be easily disseminated to the helper. GOff allows application

developers to trade-off the secrecy and portability of classification rules for performance.

If classification rules are public, a helper can perform the whole classification operation

by itself, thus greatly lightening the load on the classifier. For example, classification

associated with HTTP session identification is not secret, and can hence be completely

implemented at endhosts. On the other hand, firewall rules are usually kept secret, especially

from entities in a different administrative domain. This implies that firewalling cannot be

totally offloaded to an end host.

Our GOff-based firewall design overcomes rule secrecy restrictions by relying on first

packet classification locally at the firewall itself. Endhosts simply reflect the label supplied

by the firewall. They are unaware of the filtering rules that derived the label. An additional

benefit of this design is that it maintains no per-flow state at the firewall, unlike traditional

designs which locally cache rule lookup results for fast application on subsequent packets.

Irrespective of secrecy, classification rules must also be easily disseminated to helpers for

maximum effectiveness. Keeping a large set of firewall or QoS rules up-to-date at a large

number of endhosts, especially over large network distances, is a hard problem. On the

other hand, session identification methods in load balancing are mostly standardized and

can be implemented in endhosts by default.

6.2.6 Deployability

Deployability of GOff depends on the incentives offered to participating entities, the

ease with which existing applications can be supported, and the amount of administrative

control over the deployment domain (for instance, open Internet versus tightly controlled

data center).
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Classifiers are incentivized by the new functionality and complexity reduction enabled

by GOff. Similar to incentives for participation in TCP congestion control, helpers are

incentivized by the promise of better performance (i.e., higher throughput, lower latency)

from their local firewalls, first hop routers or load balancers at websites they visit. However,

a helper is less incentivized to participate, irrespective of lower performance, when it has a

conflict of interest with a classifier. For instance, an end host has a conflict of interest with

a remote firewall that wishes to drop its packets. Within a single administrative domain,

GOff adoption may be ‘forcefully incentivized’, i.e., mandated.

GOff deployability also depends on its ease of implementation and integration into exist-

ing networks. GOff requires modifying helpers and classifiers. The close similarity between

the GOff and BSD socket libraries and the small number of lines to port existing applications

demonstrate that GOff can be easily integrated into existing applications. GOff daemon

functionality can be embedded in future OS versions or can be installed as a standalone

system service (as described in Section 6.3).

An Internet-wide GOff deployment does not require a fork-lift upgrade of the entire

network. GOff traffic can co-exist with non-GOff traffic, and only entities wishing to benefit

from the CLayer need to be upgraded. However, a GOff-enabled connection between two

endhosts requires all classifiers and forwarding elements on the path between them to be

GOff-aware or to ignore the CLayer headers and forward packets unmodified. For example,

layer-2 switches and simple layer-3 routers simply forward GOff packets unmodified even

though they are not GOff-aware. However, a non-GOff-aware layer-4 router or firewall may

consider GOff packets as malformed/suspicious and thereby drop them. Such drops are

possible even if the CLayer header is tucked into an IP option [57] rather than implemented

as a separate layer. Hence, an endhost can open a GOff-enabled connection with another

endhost only after running a path discovery protocol to ascertain GOff support.

A data center network is a more ideal candidate for GOff deployment than the wide

area Internet. The single administrative domain enables us to easily modify endhosts, as

advocated by other new data center network architectures like Monsoon [61]. Moreover,

the multiple new data centers being built today [22] offer hope for a cleanslate GOff imple-
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mentation. A proxy at the data center ingress can cleanly separate the data center network

from the Internet, and adds the appropriate CLayer headers. The implementation of such a

proxy that can scale to data center workloads is an open challenge. This approach however

confines GOff functionality and benefits to within the data center. For example, we cannot

offload HTTP session identification to endhosts in the Internet.

6.3 Implementation

We prototyped GOff using Click [72] and GOff-enabled a variety of helper and classifier

applications. Table 6.1 lists the line count for the core GOff code (C++) and extra lines

(C/C++) required to port existing applications.

The GOff implementation at a helper node consists of two parts – a daemon and a

network socket library. The daemon implements the core GOff functionality, i.e., control

plane signaling and data plane classification. Helper applications interact with the daemon

through GOff socket library calls, as described in Section 6.1.2. In an ideal clean slate

implementation, the functionality implemented by the daemon will be part of the OS net-

work stack and the socket library will be direct system calls. However, in our prototype,

the daemon is a userlevel Click router, with which the socket library interacts over a local

TCP connection. The daemon uses the tun [93] device to intercept outgoing packets and to

transfer incoming packets to regular network processing after stripping out CLayer headers.

GOff-enabling an existing helper application often simply involves replacing BSD socket

calls with their GOff equivalents. For example, porting wget required changes in just 10

lines of code. GOff-enabling applications like the elinks web browser, which support richer

semantics like HTTP sessions consisting of multiple TCP flows, requires slightly more work.

The application must remember the session handle for inclusion in clconnect calls for all

TCP connections in the same session. Often, as in the case of elinks, we only need to

augment existing session data structures in the application code with an extra field to store

the GOff session handle.
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Table 6.1. Lines of code of our prototype GOff implementation
Component Lines of code
elinks text-based web browser 40
lighttpd web server 19
httperf HTTP benchmark tool 7
ncftp FTP client 38
oftp FTP server 45
wget command line HTTP client 10
nuttcp TCP throughput benchmark tool 13
haproxy [14] layer-7 load balancer 85
QoS & MPLS router 111
Layer-4 firewall 308
Firewall load balancer 153
Layer-4 lb 190
GOff socket library & daemon 4025

Our prototype GOff implementation also supports unmodified helper applications, since

its core functionality is implemented by the standalone daemon. However, classification

semantics are restricted to those the daemon can infer without application input. For

example, it cannot aggregate TCP connections into HTTP sessions. However, it can classify

all packets originating from the same host. Such information can be used by simple layer-3

load balancers to correctly spread traffic. Unlike using source IP addresses, this method

does not violate HTTP session stickiness nor causes load skew in the presence of NATs or

Mega Proxies.

GOff processing in a layer-4 classifier like a QoS router mainly involves adding Class-

Reqs, extracting CLayer headers from packets and using the embedded classification results

to appropriately forward them. Using libraries from our core GOff code, we GOff-enabled

existing Click modules implementing different classifier functionality in under 200 lines of

code on average. GOff-enabling the haproxy layer-7 load balancer was similar to that of a

helper application, albeit using some additional GOff socket calls to retrieve classification

results from the daemon.

We used Google protobufs [13] to encode/decode CLayer headers, instead of designing

our own header format. Although the dynamic nature of protobufs slightly increases header
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size and encode/decode complexity over a fixed width format, it greatly increased the pace

and ease of prototyping.

6.4 Evaluation

So far, we qualitatively demonstrated the flexibility and reduction in classifier imple-

mentation and configuration complexity provided by GOff. In summary, simultaneously

supporting a variety of applications (such as forwarding, load balancing, firewalling, and

QoS) attests for flexibility and generality. By offloading classification operations to entities

with better semantic context, GOff reduces the implementation complexity of classification

applications. For example, GOff simplifies firewall and web load balancer implementation

by offloading complex operations like FTP and HTTP session identification to endhosts,

thus avoiding expensive deep packet inspection. By providing a single generic mechanism for

classification offload and by enabling explicit coordination between helpers and classifiers,

GOff also simplifies configuration.

In this section, we quantitatively demonstrate how GOff improves the scalability of

classification applications using firewalling and load balancing as examples. The firewalling

example further illustrates how GOff spurs classification offload in traditionally centralized

applications, and thereby improves performance. Before describing the firewalling and load

balancing results, we first micro-benchmark our prototype GOff implementation used for

the experiments. We conclude this section by summarizing GOff’s limitations.

6.4.1 Helpers

GOff introduces a small processing overhead at helpers – under one microsecond/packet

on average in our prototype implementation. We counted the CPU ticks taken by differ-

ent GOff operations using the RDTSC x86 instruction on a 3GHz desktop PC running

Linux (10000 ticks ≈ 3.34 microseconds). Table 6.2 summarizes the results. The FromApp

phase covers the time between packet capture from the application till it is forwarded out
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Table 6.2. GOff processing overheads at helpers
Phase Min Ticks Avg Ticks Std. Dev Count
FromApp 1464 2564 2477 200879
ToApp 2104 2918 2742 200879

of the appropriate network interface. The main operations in this phase are retrieving the

appropriate session state, performing classification and embedding a GOff header with clas-

sification results into the packet. The ToApp phase covers the time between receipt of a

packet from an external network interface till it is handed off to the application through

the tun device [93]. The major operations in this phase are updating session state and

removing CLayer headers.

Our throughput measurement experiments indicate that packet capture using the tun

device is a significant overhead in our userlevel prototype implementation. In the absence

of both packet capture and GOff processing, nuttcp [29] measured a TCP throughput of

941 Mbps between two PCs A and B. The throughput drastically dropped to 635 Mbps

when the experiment was conducted using packet capture, without any GOff processing.

This throughput drop is solely an artifact of our userlevel software prototype implementa-

tion, and not an inherent limitation of GOff. Addition of GOff processing decreased the

throughput to 536 Mbps, an overhead of only 16% over the baseline 635 Mbps.

We believe that a kernel implementation of GOff will avoid the packet capture over-

head. Furthermore, by pre-allocating extra per-packet buffer space for CLayer headers, the

expensive packet copies that currently slow down our userlevel GOff implementation can

be avoided.

6.4.2 Packet Overheads

A CLayer header containing a single classification result with a 16-byte label occupies

47 bytes, in our prototype implementation that uses Google protobuf’s dynamic packet

format. In protobufs, each field is prefixed with a 1-byte tag and some fields with an

additional length field. Moving to a fixed header format saves 10 bytes.
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Figure 6.5. Topology used for firewall throughput measurement.

Smaller labels can be used for applications more tolerant to spoofing by helpers (for

example, QoS and load balancing). The label can be as small as one byte, instead of the

16 bytes needed for storing a cryptographic hash. Further space savings can be achieved

by shrinking the 8-byte session handle to 4 bytes, and the 4-byte source and destination

identifiers (i.e., IP addresses) of a classification result to 2 bytes each. Such reduction in

handle or identifier size is unlikely to result in a collision as uniqueness is required only

within individual data paths. After incorporating the size reductions described above, the

minimum data packet overhead for one classification result is 14 bytes.

6.4.3 Firewalling

The throughput of a regular firewall decreases with increasing rule set size [97]. Our

GOff-enabled firewall scalably maintains constant throughput that is two to four times that

of a regular firewall at large rule sizes

Figure 6.5 shows our experimental topology, created on the DETER [47] testbed. We

used the Click [72] IPFilter module as the base of our regular and GOff-enabled firewalls.

Firewall throughput was calculated as the sum of throughputs achieved by simultaneous

large file transfers between wget clients and lighttpd servers.

We used three different rules sets at the firewall:

1. Snort4 : Port number matches were sampled from the over 600 unique rule headers
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(i.e., involving just packet 5-tuples) in the Snort rule set [37] [98]. Due to lack of

IP diversity in the Snort rule set, source and destination IP matches were randomly

drawn from a pool of 4 prefixes.

2. Snort250 : Same as Snort4, but source and destination IP matches were drawn from

a pool of 250 prefixes.

3. RandomIP : Source and destination IP matches were drawn from a random pool of

100 prefixes. Rules ignored port numbers.

For each rule set, we ensured that the rule matching our file transfer traffic was last.

This enabled us to measure worst case performance, independent of the traffic mix.

Figure 6.6 shows the throughput drop of the regular firewall as the rule set size increases

from 100 to 4000. For the Snort4 and Snort250 sets, the throughput drops more than 80% –

≈77MB/s → ≈12MB/s. For the RandomIP set, it drops 68% – ≈87MB/s to ≈27MB/s. The

GOff-enabled firewall (line Snort4.clayer) maintains a constant throughput of ≈50MB/s,

irrespective of rule set characteristics and size. Only ruleset Snort4 is shown for the GOff

firewall to avoid clutter.

A GOff-enabled firewall thus outperforms a regular firewall when the rule set size is

above an attractiveness threshold. More importantly, it sustains a constant throughput

even as the rule set size increases, thus demonstrating good scalability. In our experiments,

the attractiveness threshold is 500 for the Snort rule sets and 1200 for the RandomIP rule

set. Many firewall deployments already have rule sets that are larger than our thresholds.

A 2004 study [95] found that firewalls have upto 2671 rules. The biggest classifier in [63]

had 1733 rules, while the biggest edge router ACL set in [86] had 4740 rules. We expect

rule set size to continue to grow as the size and complexity of networks increase. Thus,

the attractiveness of a GOff-enabled firewall increases over time, even if the attractiveness

threshold is higher than that in our experiments.

Our experiments indicate opportunity for increasing throughput and lowering the attrac-

tiveness threshold by optimizing the firewall implementation. Line Snort4.clayer.nohash

in Figure 6.6 shows that skipping the hash computation increases throughput by over 30%
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Figure 6.6. Firewall throughput versus number of rules.

and lowers the attractiveness thresholds to 300 and 600 for the Snort and RandomIP rule

sets. Thus, optimizing the cryptographic hash computation (say, with hardware accelera-

tion) offers great potential for improving performance and lowering the threshold.

6.4.4 Load Balancing

Our GOff-enabled layer-4 load balancer prototype attained 68% more connections/sec-

ond and 63% more throughput than the haproxy layer-7 web load balancer, while providing

similar HTTP session stickiness. We used httperf and parallel wget to benchmark the

load balancers. Our layer-4 load balancer supported 4448 connections/second and 59 MB/s
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throughput, while haproxy supported 2646 connections/second and 36 MB/s throughput.

To factor out the overhead due to packet capture used by our prototype GOff implemen-

tation, we employed plain packet capture (i.e., without GOff processing) in our haproxy

experiments.

Unlike our layer-4 load balancer, our GOff-enabled layer-7 haproxy (viz., clhaproxy)

performed worse than a regular haproxy – 2090 connections/second, 32.5 MB/s versus

2646 connections/second, 36 MB/s. The main reason for clhaproxy’s poor performance

compared to haproxy is the packet copy overhead incurred as part of inserting and removing

CLayer headers from each packet. Just like regular haproxy, clhaproxy acts as a TCP

endpoint for client TCP connections and opens new TCP connections to web servers. It

thus does not have the luxury of avoiding expensive TCP processing like in a layer-4 load

balancer.

We believe that a kernel GOff implementation that avoids expensive packet copies will

take clhaproxy performance beyond that of haproxy. However, if a layer-7 load balancer

anyway performs TCP stream reconstruction and HTTP parsing for advanced applications

like URL based content blocking, regular HTTP cookies can be used for session identifica-

tion as well. Although GOff does not offer significant performance improvements in this

particular scenario, it offers the convenience of having a single mechanism to simultaneously

implement and configure all deployed classification applications.

6.4.5 Limitations

In this section, we summarize the limitations of GOff explained in earlier sections:

1. GOff incurs per-packet space and processing overheads. However, performance ben-

efits due to complexity reduction enabled by GOff often mask the impact of these

overheads.

2. All classification applications do not equally benefit from GOff. GOff offers only

limited benefits to:
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(a) applications where classification result accuracy is critical but very expensive to

check,

(b) applications which anyway perform complex operations for some other purpose

but may be overloaded for classification, and

(c) applications where no helpers exist or are all disincentivized to participate.

However, the overall reduction in configuration complexity enabled by GOff still ben-

efits the network.

3. Although GOff is incrementally deployable and offers the familiar BSD sockets API,

it requires modifications to endhosts and other entities that wish to benefit from GOff

functionality.

4. Like in existing mechanisms, drastic path changes or memory losses at helpers may

result in dropped packets or misclassification. For instance, a load balancer may

forward the requests of a client which forgot the HTTP cookie to the wrong webserver

instance.

6.5 Related Work

Many prior works advocate distributing packet classification load across various net-

work entities. Unlike the generic multi-application approach we describe in this paper, the

mechanisms proposed by these works are point, and often ad-hoc, solutions focusing on a

particular type of classification application and a specific layer.

Packet forwarding: In MPLS [25], label switch routers in the network core offload

expensive route lookup to edge label switch routers. Edge routers classify packets based

on their destination IP (i.e., route lookup) and inject labels into them to mark the results.

Downstream routers avoid reclassification by simply using these labels in their forwarding

decisions. Ipsilon [18] flow-switching is more general than its successor MPLS, and supports

packet classification at the network and transport layers. Out-of-band IFMP (Ipsilon Flow

Management Protocol) allows adjacent nodes to configure the labels to be used for different
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flows. GOff supports classification across layers 2 to 7, and uses an in-band signaling

protocol not restricted to adjacent nodes.

QoS: In Diffserv [2], endhosts, or more frequently first hop routers, classify packets and

record the desired QoS in the DS field of the IP header. In CSFQ [90], edge routers label

packets of a flow based on its flow rate. The 20-bit flowid IPv6 header field [19] provides

a mechanism for end-hosts to uniquely identify a flow with any desired semantics. Routers

in the network core can provide differential QoS to packets based on their DS fields, labels

or flow-ids without performing expensive reclassification.

Session Identification: The OSI network stack [100] includes a session layer to cap-

ture application session semantics. Although originally designed for offloading webserver

state to endhosts, HTTP cookies [15] are widely overloaded as a means to identify multiple

TCP flows in an HTTP session. Unlike HTTP cookies and the OSI session layer, GOff is not

restricted to the application layer – it works across layers 2 to 7. In addition, GOff makes

the session id available to a load balancer in an easily readable packet header location, as

opposed to deeply buried inside application headers.

Some prior works adopt an extreme approach of moving the entire application requiring

packet classification to endhosts. In Distributed firewalls [48], an endhost matches a packet

against the firewall rules, and independently decides to accept or drop it. Network Excep-

tion Handlers [69] offload traffic shaping to endhosts by supplying them with the network

topology and notifying them about events like link failures. The endhost classifies packets

and drops or rate limits them as specified by their exception handlers. Our work targets the

more conventional and widely deployed scenario where an in-network entity (like a router

or middlebox) is involved (often in a critical role) in implementing the functionality that

requires packet classification. GOff can be used to communicate the results of network

exception handlers to on-path entities.

In Ethane [51], packet classification is offloaded to a centralized controller. Based on the

initial packets of a transport flow, the controller classifies packets and installs forwarding

table entries at switches on the flow’s network path. Thus, unlike in GOff, classification
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in Ethane operates at the granularity of transport flows. GOff enables packet classification

by endhosts and on-path entities like middleboxes, which may often be better suited for

a particular type of packet classification than the centralized controller. Moreover, GOff’s

distributed approach avoids a classification choke point and a centralized point of failure.

GOff trades off per-packet overhead for the overhead of forwarding table state establishment

at flow startup.

RFC 3697 [19] advocates that the IPv6 flowid header field targeted at QoS routers

can be filled in by endhosts as they are best suited to identify a flow. They can thus

be extended to applications beyond QoS, for example, session identification in web load

balancing. However, unlike GOff, it supports only one application at a time, and does not

provide any signaling mechanism to inform/configure the entities that use the flowid field.

COPS [71] proposes iBoxes that classify a packet using deep packet inspection and then

summarize the results in an annotation layer within the packet. A packet’s annotation

layer influences the forwarding decision (forward, drop, rate limit) at subsequent iBoxes it

traverses. The annotation layer doubles up as an in-band management plane to control the

iBoxes in the network. GOff simultaneously supports a variety of classification applications,

in addition to security. Instead of a management plane, GOff includes a generic protocol

for configuring classification offload.

CLayer headers are similar to X-trace [56] annotations in that their semantics and

purpose can span multiple protocol layers. X-trace annotations contain metadata for re-

constructing an application request’s path through a distributed system to aid network

diagnostics. In contrast, CLayer headers act as a unified scratchpad that carries signaling

messages of our distributed offload protocol, and classification results with varying seman-

tics embedded by different helpers.

Active networking [92] enables endhosts to customize network functionality by embed-

ding code within packets to be executed at routers and programmable network elements.

CLayer headers carry non-executable opaque bags of bits whose semantics depend on the

classification application to which they are directed. This more restrictive nature of GOff
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avoids the security risks of executing untrusted code, while still enabling endhosts to influ-

ence the fate of their packets within the network.

GOff signaling component borrows ideas from protocols used in different applications,

in addition to HTTP cookies. Explicit Congestion Notification [38] is an inband signaling

mechanism used by routers to instruct endhosts to reduce their packet sending rate. MID-

COM [23] is a signaling protocol by which endhosts configure middleboxes – for example,

instruct a NAT to open a specific port. The RSVP [42] resource reservation protocol, com-

monly used in conjunction with Intserv, allows an endhost to set up filter specs at routers

to aid classification and differential treatment of packets it originates. In capabilities based

DOS attack protection mechanisms [96], a destination echoes back markings made on ca-

pability request packets by enroute routers back to the sender. The sender includes these

markings in the subsequent data packets it sends to the destination.

Stateful Distributed Interposition (SDI) [84] and Causeway [52] provide mechanisms to

automatically propagate and share contextual information and metadata across tiers of a

multi-tier system or within different layers in an OS. OS-level support for SDI or Causeway

obviates the need to modify endhosts to maintain session information and embed CLayer

headers. This simplifies GOff implementation and deployability. GOff simply becomes a

‘meta-application’ of SDI and Causeway with the explicit goal of enhancing packet classifi-

cation.

6.6 Summary

In this chapter, we demonstrated how treating packet classification as a fundamental

network primitive via GOff reduces the implementation and configuration complexity of

packet classification, while improving flexibility, performance and scalability. Inspired by

the variety of existing applications we implemented using GOff, we believe that GOff is

flexible enough to support future classification applications, without inventing additional

point solutions.
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Chapter 7

Conclusions & Future Directions

Packet classification is a key component of many different network operations. In spite

of its ubiquity, it is not treated as a fundamental network primitive. The various existing

classifier deployment and classification placement solutions are inflexible, inefficient and

hard to configure. In this thesis, we addressed these three main limitations of today’s

packet classification solutions.

The main contribution of this thesis is to elevate packet classification as a fundamental

network primitive. To do so, we defined a new classification layer (CLayer, in short) in

the protocol stack and a pair of associated control plane protocols – policy-based classifier

deployment and generic classification offload. We also developed a classifier model to better

understand the configuration requirements and operational behaviors of different classifiers.

Together with the CLayer, policy-based classifier deployment, generic classification of-

fload and the classifier model enable us to address today’s packet classification challenges

in a holistic manner. Next, we summarize their functionality and benefits. We then present

future research directions.
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7.1 Policy-based Classifier Deployment

Policy-based classifier deployment simplifies the process of deploying and configuring

classifiers. A network administrator specifies policies dictating the sequence of classifiers

that must process different types of traffic. The underlying policy-aware forwarding layer

enforces these policies by explicitly redirecting traffic to the appropriate classifiers. Such

explicit indirection guarantees correct classifier traversal under all network churn condi-

tions. Policy-based specification simplifies network configuration by avoiding the need to

overload path selection mechanisms to enforce the desired classifier sequence. In addition,

it improves network flexibility – changing the classifier traversal sequence requires a simple

policy change. It also improves efficiency by ensuring that traffic only traverses classifiers

required by policy, and by load balancing traffic across all available classifier boxes.

We have demonstrated the benefits of policy-based classifier deployment using our pro-

totype implementation of the policy-aware switching layer (PLayer, in short). The PLayer is

an instantiation of policy-based classifier deployment tailored to data center and enterprise

networks, that requires no changes to existing endhosts and classifiers.

7.2 Generic Classification Offload

Generic classification offload provides a single mechanism to distribute classification

load across different entities in the network. It reduces network complexity by avoiding

the need to separately implement and configure diverse mechanisms like MPLS, Diffserv

and HTTP cookies for different classification applications. By leveraging CLayer headers

to carry classification hints, it avoids the deep packet inspection efficiencies incurred by

current classification offload solutions like HTTP cookies. Its generic design provides the

flexibility to easily support classification offload in new or traditionally centralized classifi-

cation applications.

We have demonstrated the benefits of generic classification offload using GOff, a specific

instantiation of generic classification offload. Our prototype GOff implementation could
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simultaneously support existing classification applications such as QoS, route lookup, and

HTTP session identification. Our GOff-enabled HTTP layer-4 load balancer achieved 68%

more connections/second and 63% more throughput than a regular layer-7 HTTP load

balancer, while providing similar HTTP session stickiness semantics. We were also easily

able to provide the benefits of classification offload to firewalling, a traditionally centralized

classification application. Our GOff-enabled firewall scalably sustained throughput that

was two to four times higher than that of a regular firewall at large rule sizes.

7.3 Classifier Model

The classifier model provides a succinct and clear language to describe how different

classifiers process packets. We represented many different classifiers like firewalls and load

balancers using the model. The clear understanding of classifier behavior provided by

the model helps network administrators plan and troubleshoot classifier deployments. In

addition, it helps network researchers understand how different classifier behavior interact

with the artifacts of their research. We have developed tools to semi-automatically infer

and validate models by observing classifier operations.

7.4 Future Research Directions

The CLayer opens up a new perspective of thinking about the role of classification

in network architectures. Various network operations are simply specific instantiations

of classification that are configured by different control protocols. For example, layer-3

packet forwarding can be viewed as packet classification configured by protocols like BGP

and OSPF. At a high level, exploring how various network operations can be modeled as

classification and how the CLayer can help support them is an interesting research goal. In

this final section of this thesis, we describe some specific future research directions that can

contribute towards this goal.

139



7.4.1 Integrating with New Internet Architectures

Many recently proposed new Internet architectures such as Internet Indirection Infras-

tructure (i3 ) [88] and Data Oriented Network Architecture [73] provide packet forwarding

and security functionality that is different from the currently deployed IPv4-based Internet

architecture. CLayer functionality is orthogonal to the functionality provided by these ar-

chitectures. Adding CLayer functionality into many diverse new Internet architectures will

be an interesting challenge.

7.4.2 CLayer Deployment

An Internet-wide deployment of CLayer and its associated protocols is very hard to

achieve. However, the many data centers currently under construction provide a good op-

portunity for demonstrating the benefits of the CLayer. Data centers are ideal for deploying

CLayer and its associated policy-based deployment and generic offload because all entities

within it are under a single administrative domain.

Our prototype implementation of the policy-aware switching layer (PLayer) provides a

policy-based classifier deployment solution tailored for layer-2 data center networks. Ex-

panding PLayer support to mixed layer-2/layer-3 or layer-3 data center networks has not

been addressed yet. The current PLayer design and implementation does not require any

modifications to endhosts and classifiers. Another future research direction is to explore the

additional benefits that are possible if endhosts and classifiers are modified. For example,

classifier modifications can simplify PLayer mechanisms to handle policy and middlebox

churn.

Our current GOff implementation relies on GOff support at both endpoints. In a data

center, we have administrative control over the servers and internal network entities, but

not over external clients. This implies that our current GOff prototype is not suitable for a

data center environment. To address this limitation, we need a GOff proxy that sits at the

data center ingress and implements GOff signaling on behalf of external clients. The large
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number of external clients and complex applications served by current data centers make

designing a scalable GOff proxy a challenging research task.

7.4.3 Prototyping in Hardware

We implemented PLayer and GOff in software for ease and speed of prototyping. How-

ever, our software prototypes cannot match the speed of hardware based solutions. For-

tunately, programmable network hardware is gaining popularity. FPGA based network

platforms such as NetFPGA [27], and programmable switch fabrics from chipset vendors

like Broadcom [8] are now available to researchers. Mixed software-hardware platforms

like OpenFlow [30] enable the customization of hardware forwarding functionality through

software.

Prototyping the PLayer and GOff on these platforms and evaluating their performance

will be an interesting research exercise. The main challenges here are the complexity of

hardware programming and the limitations of restrictive software programming interfaces.

7.4.4 Simplifying Policy Specification and Validation

Policy-based classifier deployment simplifies network configuration. However, a network

administrator must still correctly specify the policies. In complex networks containing many

different types of classifiers and traffic, policies can grow very large and complex.

We have developed a basic graphical user interface to construct policies and statically

validate their correctness. Enhancing our interface with the ability to intelligently suggest

policies and flag missing ones based on well-known best practices will be an interesting

activity. Dynamically validating the accuracy and efficacy of policies is another challenging

research direction.
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7.4.5 Dynamic Classification Offload

Our generic classification offload protocol currently enables classification offload only to

entities that are already upstream on the network path. This is not an intrinsic limitation of

generic classification offload. In some scenarios, it may be beneficial to offload classification

to entities off the normal network path. For example, a firewall may temporarily offload

classification decisions on suspicious traffic to a more powerful offpath intrusion detection

box. If the intrusion detection box flags the traffic as normal, the firewall can directly

classify subsequent packets by itself.

Implementing such dynamic classification offload requires close coordination between

policy-based classifier deployment and generic classification offload. Designing a scalable

and time-sensitive protocol that enables such fine-grained coordination is a challenging task.

Exploring how new architectures like NOX [62] may be used to dynamically change the path

of traffic is also an interesting research direction.

7.4.6 A Repository of Classifier Models

We have manually constructed model instances of commonly available software load

balancers and firewalls. We hope that classifier device vendors, network administrators and

researchers will construct model instances for more classifiers, especially hardware ones,

and contribute them to a publicly available model repository. Models downloaded from the

repository can be used to validate observed classifier behavior.

Automated model inference and validation tools will greatly enhance the utility of our

model. Blackbox testing, natural language analysis of classifier documentation and analysis

of classifier source code may aid the development of such tools. The diversity and complexity

of classifier behavior make the development of such tools a challenging research activity.
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Appendix A

PSwitch Internals

A.1 Pswitch frame processing

In this appendix, we provide a detailed description of how stateless and stateful pswitches

process frames.

A.1.1 Stateless Pswitch

inP

The inP module associated with a pswitch interface X redirects incoming frames to ap-

propriate classifiers based on policy. Non-IP frames like ARP are ignored by the inP module

and pushed out to Switch Core interface X unmodified for regular Ethernet forwarding. In

order to avoid forwarding loops, an inP module does not lookup policy and redirect frames

that have already been redirected by another inP module. Such frames, identified by the

presence of encapsulation, are emitted unmodified to Switch Core interface X.

Algorithm 2 lists the processing steps performed by the inP module when a frame f

arrives at pswitch interface X. The following are the two main steps:
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Step 1: Match rule:

The inP module looks up the rule matching f from the RuleTable. f is discarded if

no matching rule is found.

Step 2: Determine next hop:

A successful rule match yields the classifier or server to which f is to be forwarded next.

If the Next Hop of the matching rule specifies FinalDestination, then the server identified by

f ’s destination MAC address is the next hop. If the Next Hop field lists multiple instances

of a classifier, then the inP chooses a particular instance for the flow associated with f , by

using flow direction agnostic consistent hashing on f ’s 5-tuple fields hinted by the policy

(refer Section 5.3.3).

outP

The outP module of pswitch interface X receives the frames emitted by Switch Core

interface X before they exit the pswitch. These frames will be in encapsulated form, having

been processed by an inP module at the same or a different pswitch prior to entering the

Switch Core. If pswitch interface X is connected to another pswitch and not to a server/clas-

sifier, then the outP module emits out the frame unmodified through pswitch interface X.

If pswitch interface X is connected to a server/classifier, and the destination MAC address

of the received encapsulated frame does not match the MAC address of the server/classifier,

then the frame is dropped to avoid undesirable behavior from confused servers/classifiers.

For example, a firewall may terminate a flow by sending a TCP RST if it receives an unex-

pected frame. If the destination MAC address of the encapsulated frame matches the MAC

address of the connected server/classifier, then the frame is decapsulated and emitted out

through pswitch interface X. The server/classifier receives a regular Ethernet II frame and

appropriately processes it.

Algorithm 3 lists the processing steps performed by the outP module when it receives

a frame f emitted by the Switch Core interface X.
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Algorithm 2 inP processing in a stateless pswitch.
1: procedure inPProcess.Stateless(interface X, frame f)

2: if f is not an IP frame then

3: Forward f to Switch Core interface X

4: return

5: end if

6: if f is encapsulated then

7: Forward f to Switch Core interface X

8: return

9: end if

10: prvMbox = GetPrvHop(f)

11: rule = RuleTable.LookUp(prvMbox, f)

12: if rule != nil then

13: if rule.nxtHop != FinalDestination then

14: nxtMboxInst = ChooseInst(rule.nxtHopInsts, f)

15: encF = Encap(f, prvMbox.MAC, nxtMboxInst.MAC)

16: Forward encF to Switch Core interface X

17: else

18: encF = Encap(f, prvMbox.MAC, f.dstMAC)

19: Forward encFrame to Switch Core interface X

20: end if

21: else

22: Drop f

23: end if

24: end procedure

153



Algorithm 3 outP processing in a stateless pswitch.
1: procedure outPProcess.Stateless(interface X, frame f)

2: if interface X is not connected to a server/classifier then

3: Emit f out of pswitch interface X

4: else

5: connMAC = MAC of connected server/classifier

6: if f.dstMAC != connMAC then

7: Drop f

8: else

9: decapF = Decapsulate(f)

10: Emit frame decapF out of pswitch interface X

11: end if

12: end if

13: end procedure

An outP module can detect whether a classifier instance connected to it is dead or

alive, using information from the FailDetect module. When emitting a frame to a dead

classifier instance, the outP module has two options:

1. Drop the frame or,

2. Redirect the frame to a live instance of the same classifier type.

The first option of dropping frames destined to dead classifier instances keeps our design

simple, and is an apt tradeoff when classifier failures are rare. The second option of redi-

recting frames to live classifier instances offers greater resiliency against packet drops. The

pswitch which originally chose the failed classifier instance removes it from consideration

in the classifier instance selection step when the news about failure eventually reaches it.

Since the same selection algorithm is used at both the original pswitch and at the redirecting

pswitch, the same classifier instance is chosen for the flow, hence reducing chances of flows

that traverse stateful classifiers breaking.

Re-selection of classifier instances and redirection of frames by the outP module raise

the specter of forwarding loops. For example, let firewall 1 be attached to pswitch 1 and
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firewall 2 to pswitch 2. Pswitch 1 detects that firewall 1 has failed but pswitch 2 does not

know about the failure yet and vice versa. Pswitch 1 redirects a frame destined to firewall

1 to firewall 2. When the frame reaches pswitch 2, it is redirected back to firewall 1. This

creates a forwarding loop that persists till at least one of the pswitches hears about the

failure of the firewall connected to the other pswitch. In order to prevent forwarding loops,

each redirected frame includes a redirection TTL that limits the number of times a frame

can be redirected by an outP module.

A.1.2 Stateful Pswitch

A stateful pswitch addresses some of the limitations of a stateless pswitch by storing per-

flow state in the NextHopDb. The NextHopDb consists of two tables – FwdTable and

RevTable. The two tables maintain per-flow state for the forward and reverse direction of

flows, respectively.1 Each table is a hash table with entries of the form ( 5-tuple, Previous

hop MAC) → (Next hop MAC, TTL). Unlike classifier instance selection, the entire 5-tuple

is always used in table lookup. Since a frame may traverse a pswitch multiple times during

its journey, the previous hop MAC address is needed to uniquely identify entries. The TTL

field is used to flush out old entries when the table fills up.

inP Processing

inP processing in the stateful pswitch, listed in Algorithm 4, is similar to that in a

stateless pswitch. When the inP module receives an encapsulated IP frame, it looks up

FwdTable for a next hop entry. This exact match-based lookup is faster than a pattern-

based rule lookup. If a next hop entry is found, the frame is encapsulated in a frame

destined to the MAC address specified in the entry and sent to the Switch Core. If a

next hop entry is not found, a rule lookup is performed. If the rule lookup succeeds, the

frame is encapsulated and forwarded to the appropriate server/classifier as in stateless inP

processing. Additionally in stateful inP processing, an entry with the MAC address to which
1Forward is defined as the direction of the first packet of a flow.
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Algorithm 4 inP processing in a stateful pswitch
1: procedure inPProcess.Stateful(interface X, frame f)

2: Processing for non-unicast or non-data frames identical to Algorithm 2.

3: prvMbox = GetPrvHop(f)

4: nh = FwdTable.lookup(f.5tuple, prvMbox.MAC)

5: if nh != nil then

6: encF = Encap(f, prvMbox.MAC, nh.dstMAC)

7: Forward encFrame to Switch Core interface X

8: else

9: rule = RuleTable.LookUp(f)

10: if rule != nil then

11: if rule.nxtHop != FinalDestination then

12: nxtMboxInst = ChooseInst(rule.nxtHopInsts,f)

13: encF = Encap(f, prvMbox.MAC, nxtMboxInst.MAC)

14: Forward encF to Switch Core interface X

15: FwdTable.add([f.5tuple, prvMbox.MAC]→nxtMboxInst.MAC)

16: else

17: encF = Encap(f, prvMbox.MAC, f.dstMAC)

18: Forward encFrame to Switch Core interface X

19: FwdTable.add([f.5tuple, prvMbox.MAC] → f.dstMAC)

20: end if

21: else

22: revnh = RevTable.lookup(f.5tuple, prvMbox.MAC)

23: if revnh != nil then

24: encF = Encap(f, prvMbox.MAC, revnh.dstMAC)

25: Forward encFrame to Switch Core interface X

26: FwdTable.add([f.5tuple, prvMbox.MAC] → revnh.dstMAC)

27: else

28: Error: drop f

29: end if

30: end if

31: end if

32: end procedure
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the encapsulated frame is forwarded is added to the FwdTable. If the rule lookup fails,

RevTable is checked for a next hop entry associated with the flow, created by some prior

frame of the flow in the opposite direction. If an entry is found, the frame is encapsulated

and forwarded to the destination MAC address specified by the entry. For faster lookup on

subsequent frames of the same flow, an entry is added to the FwdTable.

outP Processing

outP processing in the stateful Policy Core is identical to that in the stateless Policy

Core except for the additional processing described here. As listed in Algorithm 5, while

processing a frame destined to a directly attached classifier/server, a stateful outP module

adds a next-hop entry to the RevTable. This entry records the last classifier instance

traversed by the frame and hence determines the next classifier instance to be traversed by

frames in the reverse flow direction arriving from the classifier/server. For example, the

next-hop entry for a frame (IPA : PortA → IPB : PortB) arriving from firewall 1 destined

to server B will be (IPB : PortB → IPA : PortA, prevHop=server B, nextHop=firewall 1 ).

The RevTable next-hop entry is used in inP processing if both FwdTable and policy

lookup fail, and thus provides a default reverse path for the reverse flow direction.

The policy lookup in Step 9 of Algorithm 4 provides the flexibility to explicitly specify a

different classifier sequence for the reverse flow direction. The RevTable lookup in Step 22

enables us to skip specifying the policy for the reverse flow direction. Per-flow state is used

to automatically select the same classifier instances in reverse order. Thus, per-flow state

simplifies policy specification. It also avoids expensive policy lookup and classifier instance

selection operations on every frame by using the next hop classifier MAC address recorded

in the FwdTable.
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Algorithm 5 outP processing in a stateful pswitch
1: procedure outPProcess.Stateful(interface X, frame f)

2: if interface X is not connected to a server/classifier then

3: Emit f out of pswitch interface X

4: else

5: connMAC = MAC of connected server/classifier

6: if f.dstMAC != connMAC then

7: Drop f

8: else

9: decapF = Decapsulate(f)

10: Emit frame decapF out of pswitch interface X

11: prvMbox = GetPrvHop(f)

12: rev5tuple = Reverse(f.5tuple)

13: nh = FwdTable.lookup(rev5tuple, connMAC)

14: if nh == nil then

15: RevTable.add([rev5tuple, connMAC] → prvMbox.MAC)

16: end if

17: end if

18: end if

19: end procedure
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