
Architectural Synthesis Techniques for Distributed
Automotive System

Wei Zheng

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2009-73

http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-73.html

May 20, 2009

Copyright 2009, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Acknowledgement

This research was supported by GSRC, CHESS and GM. I would like to
first thank my advisor Alberto Sangiovanni-Vincentelli from Electrical
Engineering and Computer Science at UC, Berkeley. He guided me into
automotive domain and provided almost unlimited resources and supports
for the research. The inspiration of this research comes mainly from the
discussion with Marco Di Natale from Computer Science and Computer
Engineering Department at Scuola Superiore S. Anna, Pisa. His
tremendous guidance, feedback, and support are gratefully appreciated by
the author. Finally, I would like to thank my family and friends, especially
my wife Jing Yang from BWRC here at Berkeley , for their contributions in
making my life in graduate school beautiful. The life in Berkeley will always

be good memories.

Architectural Synthesis Techniques for Distributed Automotive System

by

Wei Zheng

B.E. (Tsinghua University, Beijing, China) 2000
M.S. (University of California, Berkeley) 2004

A dissertation submitted in partial satisfaction of the
requirements for the degree of

Doctor of Philosophy

in

Engineering-Electrical Engineering and Computer Sciences

in the

GRADUATE DIVISION
of the

UNIVERSITY OF CALIFORNIA, BERKELEY

Committee in charge:
Professor Alberto Sangiovanni-Vincentelli, Chair

Professor Sanjit Seshia
Professor Robert Leachman

Spring 2009

The dissertation of Wei Zheng is approved:

Chair Date

Date

Date

University of California, Berkeley

Spring 2009

Architectural Synthesis Techniques for Distributed Automotive System

Copyright 2009

by

Wei Zheng

1

Abstract

Architectural Synthesis Techniques for Distributed Automotive System

by

Wei Zheng

Doctor of Philosophy in Engineering-Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Alberto Sangiovanni-Vincentelli, Chair

Automotive electronic subsystems support the execution of distributed safety- and time-critical

functions on a complex networked system with several buses and tens of ECUs (Electrical Con-

trol Units). Complex functions, which are designed as networks of function blocks exchanging

signal information, are deployed onto the physical HW and implemented in a SW architecture con-

sisting of a set of tasks and messages. For example, an advanced braking system, implemented on

a set of four ECUs, will take responsibility of applying brakes and tightening seat belts within 80

milliseconds when it senses danger.

The objectives of this thesis are to develop analysis and synthesis techniques for vehicle

electronic system designers i) to analyze worse case situations, ii) to select appropriate mapping

of functionality to architectural elements and iii) to set corresponding design parameters; mak-

ing sure key functionalities finish before appropriate deadlines for safety-critical applications. The

design of communication subsystems is essential in guaranteeing that timing constraints are satis-

2

fied. They can be either time-triggered (TimeTriggeredArchitecture (TTA) and FlexRay) or event-

triggered such as CAN. Being able to accommodate incremental design changes while preserving

a legacy design may reduce design and verification times substantially. For CAN systems, schedu-

lability theory allows the analysis of the worst case end-to-end latencies and the evaluation of the

possible architecture configurations options with respect to timing constraints, but it can also be

used in the exploration of the software architecture configurations what can best support the target

application. The optimization techniques presented in this thesis are based on ILP (integer lin-

ear programming) formulation combined with search algorithms and can derive implementations

of both time-triggered and event triggered system that fulfill the design constraints. The tech-

niques proposed are evaluated using industrial examples to prove the effectiveness of the work.

Professor Alberto Sangiovanni-Vincentelli
Dissertation Committee Chair

i

To my dear parents

ii

Contents

List of Figures iv

List of Tables vi

1 Introduction 1
1.1 Research Contribution . 2
1.2 Research Motivation . 3

1.2.1 Research motivation from System Level Design methodology 3
1.2.2 Research motivation from automotive applications 4

1.3 Modern System and Standard Overview . 6
1.3.1 Modern Systems . 6
1.3.2 Automotive Standards . 9

1.4 A Real Life Example . 15

2 A Design Methodology and Flow with Emphasis on Scheduling for Automotive Systems 19
2.1 Platform Based Design Methodology Introduction 20
2.2 A Design Flow with Emphasis on Scheduling for Automotive Systems 22

2.2.1 Functional Models . 24
2.2.2 Architecture Models . 26
2.2.3 System Platform Model . 27
2.2.4 Mapping . 28
2.2.5 Scheduling . 30

3 Scheduling for Time-Triggered Communication System 33
3.1 Preliminaries and Definitions for Time-Triggered Communication System 34

3.1.1 Time-Triggered Protocols Overview . 34
3.1.2 Previous Work on Time-Triggered Protocols 39
3.1.3 System Modeling . 41

3.2 Scheduling Synthesis for a FlexRay based communication network 47
3.2.1 A Two-Steps Approach and Synchronization Mode 48
3.2.2 Synthesis FlexRay Scheduler in An Optimization Framework 52

3.3 Incremental Design for Time-Triggered System 64

iii

3.3.1 Extensibility and Scalability Design Metrics in a general Time-Triggered
Protocol . 66

3.3.2 Time-Triggered Incremental Design in an Optimization Framework 74
3.3.3 Experimental Results . 81

4 Scheduling based Synthesis for Event Triggered Automotive System 92
4.1 Preliminaries and Definitions for Event Triggered System 93

4.1.1 Controller Area Network Background . 93
4.1.2 CAN based System Modeling . 94

4.2 Design Analysis of CAN based Communication System 98
4.2.1 Response Time for Tasks: Processor Scheduling 98
4.2.2 Response Time for Messages: Bus Scheduling 99
4.2.3 End to End Latencies . 100

4.3 System Activation Model . 101
4.3.1 Periodic Activation Model . 101
4.3.2 Data-driven Activation Model . 102

4.4 Parameter Synthesis of CAN based Communication System 103
4.4.1 Parameter Synthesis Overview . 103
4.4.2 A Simple Example . 105
4.4.3 Optimization Framework for Synthesizing Activation Model 109
4.4.4 Heuristic Framework for Synthesizing Activation Model 114
4.4.5 An Industrial Example . 122

5 Mapping with Scheduling for Automotive System 128
5.1 Design Flow Revisited . 130
5.2 System Modeling and Notations . 131
5.3 Optimization on Task Placement and Signal Mapping 133

5.3.1 Previous Work . 133
5.3.2 Objective and Formulation . 135
5.3.3 Task to ECU mapping . 140
5.3.4 Signal to message mapping . 141
5.3.5 Two Steps Synthesis Procedure . 150

5.4 Experimental Result . 151

6 Conclusions and Future Work 154

Bibliography 157

A Alphabetic Notations 167

iv

List of Figures

1.1 A Real-life Example: Part of Functionality for EVC. 16
1.2 A Real-life Example: Part of Architecture for EVC. 16

2.1 Platform Based Design. 21
2.2 System design flow. 24

3.1 the four segments in a FlexRay cycle . 36
3.2 FlexRay Timing Hierarchy. 36
3.3 System model with tasks, links and delays. 42
3.4 Mapping and task graph expansion. 43
3.5 Instance graph, Application cycle and FlexRay cycle. 44
3.6 Time-triggered node architecture. 45
3.7 FlexRay Message Passing Mechanism. 47
3.8 Application cycle and FlexRay cycle . 48
3.9 A two-step approach in scheduling FlexRay communication 49
3.10 Schedulers synchronized and not synchronized 51
3.11 Extent and constraints in the definition of the scheduling domain 60
3.12 FlexRay Schedule Overall Optimization Flow. 67
3.13 Properties for Task T3. 69
3.14 Extensibility metric illustration. 72
3.15 Scalability metric illustration. 73
3.16 Case study functionality graph. 82
3.17 Case study architecture graph. 82
3.18 Extensibility metric evaluation. 84
3.19 Scalability metric evaluation. 85
3.20 Incremental design scenarios. 87

4.1 Example of link groups. 96
4.2 Periodic activation model. 101
4.3 Data driven activation model. 102
4.4 Example graph. 106
4.5 End-to-end latencies for the lowest priority path of the example. 108

v

4.6 Search tree. 117
4.7 Steps of the search algorithm for the example. 122
4.8 Activation options for one of the tasks in the case study. 124

5.1 Design flow stages and optimization objectives (in bold) 130
5.2 Mapping of tasks to ECUs and signals to messages. 132
5.3 Periodic activation model. 138
5.4 Multicast signals and their representation. 142
5.5 Two Step Synthesis Approach . 150

vi

List of Tables

3.1 Protocol comparison . 39
3.2 Tasks for the X-by-wire example . 64
3.3 Signals for X-by-wire example . 90
3.4 Results on the X-by-wire Example . 91
3.5 Incremental design change evaluation . 91

4.1 Simple Example Data . 107

vii

List of Algorithms

1 Search Algorithm . 115

viii

Acknowledgments

This research was supported by the Gigascale Systems Research Center (GSRC), Center for Hybrid

and Embedded Software Systems (CHESS), and General Motors (GM). I would like to first thank

my advisor Alberto Sangiovanni-Vincentelli from Electrical Engineering and Computer Science at

UC, Berkeley. He guided me into automotive domain and provided almost unlimited resources

and supports for the research. The inspiration of this research comes mainly from the discussion

with Marco Di Natale from Computer Science and Computer Engineering Department at Scuola

Superiore S. Anna, Pisa. His tremendous guidance, feedback, and support are gratefully appreciated

by the author. The author would like to thank many researchers and engineers from GM Warren

technical center, and GM Bay Area Lab in Palo Alto; more specifically, Paolo Giusto and Thomas

Fuhrman, for providing intensive discussion for the industrial case study. The author would also

like to appreciate Claudio Pinello from Cadence Berkeley Lab for his guidance and discussion

on the project; Haibo Zeng, Jike Chong and Qi Zhu from Department of Electrical Engineering

and Computer Sciences, University of California at Berkeley for their discussion and work which

help me understand mapping process and design methodology. Professors Shankar Sastry, Sanjit

Seshia, Candace Yano and Alberto Sangiovanni-Vincentelli, my advisor, served on the qualifying

committee and/or provided invaluable feedback and guidance in the dissertation writing process.

Finally, I would like to thank my family and friends, especially my wife Jing Yang from BWRC

here at Berkeley , for their contributions in making my life in graduate school beautiful. Without

their support, I won’t be able to smoothly get to this point and I’d like to owe all of my success here

in Berkeley to my wife. The life in Berkeley will always be good memories.

1

Chapter 1

Introduction

Function development in Electronics, Controls, and Software-based (ECS) vehicle archi-

tectures has traditionally been component or sub-system focused. In recent years, there has been

a shift from the single ECU approach towards an increased networking of control modules. The

implications are an increased number of distributed time-critical functions and multiple tasks in

execution on each ECU.

The starting point for the definition of a car electronic software system is the specification

of the set of features that the system is expected to provide. A feature is a very high level description

of a system capability (e.g. Cruise Control). Functional models are created from the decomposition

of the feature in a hierarchical network of component blocks. The physical architecture model cap-

tures the topology of the car network, including the communication buses (e.g. FlexRay or CAN),

the CPUs and the management policies (e.g. time-driven scheduling or priority-driven scheduling)

that control the shared resources.

Hence, two levels of representation of the system are defined: the functional view and

2

the physical architecture view. The system designer must find a mapping of the functional architec-

ture onto the physical architecture that satisfies the timing requirements (sensor-actuator deadlines).

The mapping is performed at the time the SW implementation is defined, when the functions are

implemented by a set of concurrent tasks and the communication signals are transferred in the pay-

load content of messages. To provide design-time guarantees on timing constraints, different design

and scheduling methodologies can be used. Avionics controls, for example, are often built based on

static, time-driven schedules, examples of standards supporting this scheduling model are the OSEK

Time system standard and the FlexRay bus arbitration model. Because of resource efficiency and

ultimately price, many automotive controls are designed based on run-time priority-based schedul-

ing of tasks and messages. Examples of standards supporting this scheduling model are the OSEK

operating system standard and the Controller Area Network (CAN) bus arbitration model.

This thesis presents an integrated framework for design space exploration that leverages

powerful mathematical programming to solve complex scheduling problem in a platform based

design context.

This introduction is structured in three parts. In the first part, Section 1.1 presents the

research contribution of the thesis. The second part, Section 1.2 describes the motivation of the

work. The last part, Section 1.3 contains an overview of modern system followed by a real life

automotive system example which will be extensively explained throughout the thesis.

1.1 Research Contribution

The thesis is performed in the context of the design of distributed software architectures

for next-generation automotive controls, where the application performance requirements impose

3

constraints on end-to-end latencies in the execution of the control functions.

The thesis/research goal and effort center around Platform-Based Design (an approach

to the new system theory) based system analysis and synthesis for distributed systems, and are

embodied in: (1) Modeling of functionality and architecture (2) Mapping from functional model to

architectural model (3) Scheduling of the mapped functionality units within the architecture units

according to the performance constraints specified by the system designers.

Automated architecture exploration is necessary to improve design productivity for dis-

tributed (hard) real time systems especially for Analysis and Synthesis of Design Parameters. The

scheduling/schedulability analysis centered system parameter synthesis techniques within a mathe-

matical programming optimization framework could actually solve many problems efficiently where

used appropriately. However, the synthesis framework that could facilitates automated architecture

exploration applied to automotive systems is the main research contribution of this thesis.

1.2 Research Motivation

1.2.1 Research motivation from System Level Design methodology

Over the past several decades, embedded systems have evolved to a level of maturity and

sophistication and appeared everywhere in our everyday life. The complexity of these systems is,

however, reaching levels that were not even conceivable a few years ago: There are more than 80

processors in a new generation car that control its function and implement its entertainment and

communication subsystems. The problem is how to systematically conduct the design, analysis and

synthesis in this new regime. Stated in another way, is it possible to quickly and effectively provide

a new system design methodology with the capability of handling the distributed embedded system

4

design? Is there a general and flexible design flow embedded in the methodology for a large va-

riety of application domains? Towards this objective, I believe that the recent system level design

methodology advances in Platform-Based Design (PBD) offer a unique and attractive solution. The

idea for PBD is to call for a successive refinement approach where functionality (what the system

is supposed to do) of the design is captured at the highest level of abstraction possible and mapped

to a set of predefined solutions. Specifying a design includes identifying constraints such as la-

tency, throughput, reliability, cost, and power consumption. The architecture is an interconnection

of elements that are characterized by performance indexes coming from the abstraction of their im-

plementation. The mapping process can be automated if both function and the architecture elements

that form the platform are projected to a common semantic domain. The process repeats itself by

interpreting the mapped design as a function at the next layer of abstraction and new architectural

elements are introduced. Here at the Berkeley Center for Hybrid and Embedded Software Systems

(CHESS) and the Gigascale System Research Center (GSRC), I have proposed and developed the

common semantic domain for automotive systems with an emphasis on scheduling for PBD, which

provides the system designers with the flexibility of performance analysis and parameter synthesis

based on the schedulability analysis theory. Furthermore, I have explored the generality and limita-

tions of this methodology, with respect to both bottom up and top down design flows widely used

in embedded system design, and provide a practical guidance on meet in the middle design scheme

with an emphasis on scheduling.

1.2.2 Research motivation from automotive applications

Platform Based Design was used in a variety of industrial applications: from automotive

electronic design to communication systems and semiconductor chips. The promising case stud-

5

ies in vehicle design demonstrate the effectiveness of PBD in all dimensions. Today’s vehicles are

becoming increasingly more complex as consumers demand more and better features in their auto-

mobiles. Most new features are requiring additional electronic components and control software,

constantly pushing the limits of existing architectures and design methodologies. The problems

with traditional design methodologies are numerous, resulting in intermittent feature failures, sig-

nificant testing effort, production delays, increased warranty costs, and consumer dissatisfaction.

The solution to all of these problems starts with the adoption of a system level PBD. My research

focuses on one of the important system performance, timing, which is impacted by a lot of factors

but most in the mapping and scheduling phase during the system design. Based on the system-level

PBD, I believe that recent mathematical advances in correlated formulations and solvers offer an at-

tractive solution. The idea is to use a mathematical programming based optimization framework to

handle system communication and synchronization models, tasks to Electronic Control Unit (ECU)

placement, signals to message mapping and the assignment of priorities to tasks and messages in

order to meet end-to-end deadline constraints and minimize latencies. At Berkeley, I collaborated

with General Motors Advanced Technology Research Group and I have proposed an ILP based

optimization framework to automate the above process: set up the activation model (Synchronous

VS. Asynchronous) and leverage the trade-offs between the purely periodic and the data-driven ac-

tivation models to meet the latency requirements of distributed vehicle functions. Additionally, it

is not difficult to find out that the same approach could be leveraged to tasks placement, signals to

messages mapping and priorities assignment to expand the automation process of the whole sys-

tem design. At the same time, the framework is working well for time-triggered protocols which

are used by safety critical applications by most of major automotive companies especially in the

6

consideration of incremental design. General Motors has adopted the methodology and the opti-

mization framework for its electronic system design. The effectiveness of all of above approaches

has been verified by a real case study from GM.

1.3 Modern System and Standard Overview

1.3.1 Modern Systems

Modern system development is getting more and more complicated and usually goes

through phases from system analysis, system design and system implementation to system test-

ing. System analysis (also called system specifications) requires the designer understand applica-

tion requirements in both functional and non-functional aspects, namely they need to know what

the system need to provide to the end users. System design goes through the definition of the de-

sign solutions (among all possible ones) that can solve the specifications problem. This part also

includes selection of the HW/SW platform, including the operating systems and the resource man-

agement policies. The system implementation (coding) phase will focus on translating the design

into packages or program modules, developed in a programming language. This part can be manu-

ally performed or the result of automatic model translations (provided the design model is formal).

Finally the system testing is necessary for checking that the application satisfies all functional and

non-functional requirements. The definition of several systems will be introduced to better under-

stand the complication of modern design world.

7

1.3.1.1 Embedded Systems

According to Wikipedia [2], an embedded system is a special-purpose computer system

designed to perform one or a few dedicated functions, often with timing constraints, that means

embedded system is usually a real time system. It is often embedded as part of a complete de-

vice including hardware and mechanical parts. In contrast, a general-purpose computer, such as a

personal computer, can do many different tasks depending on programming. Embedded systems

control many of the common devices in use today.

Physically, embedded systems range from portable devices such as digital watches and

MP3 players, to large stationary installations like traffic lights, vehicle controllers, or the systems

controlling nuclear power plants. Complexity varies from low, with a single micro-controller chip,

to very high with multiple units, peripherals and networks mounted inside a large chassis or enclo-

sure.

In general, ”embedded system” is not an exactly defined term, as many systems have

some element of programmability. For example, hand-held computers share some elements with

embedded systems - such as the operating systems and microprocessors which power them - but are

not truly embedded systems, because they allow different applications to be loaded and peripherals

to be connected. Almost all of the ECUs in cars are embedded systems which usually have special

purpose on processing or sensing/actuating.

1.3.1.2 Real Time Systems

There are many definitions for real time systems:

1. A real-time system is an interactive system that maintains an ongoing relationship

8

with an asynchronous environment i.e. an environment that progresses irrespective of the real time

system.

2. (IEEE) Pertaining a system or mode of operation in which computation is performed

during the actual time that an external process occurs, in order that the computation results may be

used to control, monitor or respond in a timely manner to the external process.

3. A real-time system responds in a (timely) predictable way to (un)predictable external

stimuli arrival.

4. Open, Modular, Architecture Control user group - (OMAC) defines a hard real-time

system as a system that would fail if its timing requirements were not met, and a soft real-time

system can tolerate significant variations in the delivery of operating system services like interrupts,

timers, and scheduling.

Overall, a real-time computing correctness depends not only on the correctness of the

logical result of the computation but also on the result delivery time. Real-time applications are

characterized by timing constraints which are mostly non functional requirements comes from sys-

tem specification. This applies to almost all the case studies in this thesis.

1.3.1.3 Distributed Systems

Distributed system or distributed computing deals with hardware and software systems

containing more than one processing element (such as ECUs in automotive electronics) or storage

element, concurrent processes, or multiple programs, running under a loosely or tightly controlled

regime.

In distributed computing a program is split up into parts that run simultaneously on mul-

tiple computers communicating over a network. Parallel computing is most commonly used to

9

describe program parts running simultaneously on multiple processors in the same computer. Both

types of processing require dividing a program into parts that can run simultaneously, but distributed

programs often must deal with heterogeneous environments, network links of varying latencies, and

unpredictable failures in the network or the computers. Recent development of automotive elec-

tronics has the trend from single ECU application to networked ECU application, for example,

automatic windows function in a car could be deployed across as many as four ECUs so that the

control signal to the windows won’t go through long distance transmission.

1.3.1.4 Modern Automotive System

As mentioned above, the complexity and physical distribution of modern active safety,

chassis and powertrain automotive applications requires the use of distributed architectures. Com-

plex functions designed as networks of function blocks exchanging signal information are deployed

onto the physical hardware (HW) and implemented in a software (SW) architecture consisting of a

set of tasks and messages. ECUs are special purpose computer systems used performing computa-

tion of tasks, recent development of safety critical applications addresses stringent timing require-

ments on the system.

Overall, a complex, safety critical automotive system is an embedded, real-time, dis-

tributed system. The thesis will emphasis the design space exploration of such a complicated sys-

tem.

1.3.2 Automotive Standards

Most applications in automotive electronic designs are getting more and more communi-

cation intensive. Design reuse is also being highly considered by major auto-makers. A number

10

of standards are currently addressing the need for reuse of automotive components at different lev-

els of abstraction. The following is a list, far from exhaustive, of the main initiatives. This thesis

focuses on two communication protocols in automotive electronic system design: the time- trig-

gered (mainly for the static segment) FlexRay communication system and the event-triggered CAN

communication system.

1.3.2.1 AUTOSAR

AUTOSAR [1] has been established by original equipment manufacturers (OEM) and

Tier 1 automotive suppliers to develop an open industry standard for automotive electronic architec-

ture which will serve as a basic infrastructure for the management of functions within both future

applications and standard software modules. Members include GM, BMW, Bosch, Continental,

DaimlerChrysler, Volkswagen, Siemens VDO, Ford, PSA, and Toyota.

The AUTOSAR basic infrastructure objectives are:

1. Implementation and standardization of basic system functions as an industry wide ”Standard

Core” solution

2. Scalability to different vehicle and platform variants

3. Transferability of functions throughout network

4. Integration of functional modules from multiple suppliers

5. Consideration of availability and safety requirements

6. Redundancy activation

7. Maintainability throughout the whole ”Product Life Cycle”

11

8. Increased use of ”Commercial off the shelf hardware”

9. Software updates and upgrades over vehicle lifetime

The AUTOSAR software component implementation is independent from the infrastruc-

ture. A fundamental design concept of AUTOSAR is the separation between application and infras-

tructure. The approach is quite similar to central ideas of the platform based design methodology

used throughout the thesis, namely the orthogonalization of functionality with architecture.

1.3.2.2 FlexRay

FLEXRAY [24] is a communication standard created by an industry consortium founded

in 2000 by BMW, DaimlerChrysler, General Motors, Motorola, Philips, Volkswagen, and Robert

Bosch. FlexRay is a high-speed serial communication system for in-vehicle networks using bus or

point-to-point (star topology) links, at 10Mbps over un-shielded Twisted Pair or Shielded Twisted

Pair cable. More introduction will be discussed in 3.1.1.1 for FlexRay system.

In FlexRay, the bus time is divided in cycles. Each cycle is partitioned into a static time-

triggered portion, and a dynamic event-triggered portion. The communication cycle length is de-

fined by the application up to a maximum of 16ms. The division between the two portions is set at

design time and loaded into the controllers and bus guardians. Flexray’s intended use is for highly

dependable and fast safety critical applications. Protection from timing faults should be provided

by the bus guardian that prevents frames sent in the time-triggered segment to overlap in time with

each other and with the dynamic segment. The full schedule for the time-triggered portion is not

known by each controller. Instead, this segment is divided at compile time into a number of slots of

fixed size, and each controller and its bus guardians are informed of which slots are allocated to their

12

transmissions. Nodes requiring greater bandwidth are assigned more slots than those that require

less. Each controller learns the full schedule only when the bus starts up. Each node includes its

identity in the messages that it sends. During startup, nodes use these identifiers to label their input

buffers as the schedule reveals itself.

The Static Segment is typically used for critical messages with the following constraints:

1. All static slots are the same length in microticks

2. All static slots are repeated in order every communication cycle

3. All static slot times are assigned for use in a cycle whether they are actually used or not

4. The number of the static slots is configurable but only up to a maximum of 1023 slots

1.3.2.3 CAN

Controller Area Network (CAN) is a multicast shared serial bus standard, originally de-

veloped in the 1980s by Robert Bosch GmbH, to connect electronic control units (ECUs). CAN was

specifically designed to be robust in electromagnetic noisy environments. Bit rates up to 1 Mbit/s

are possible with networks long less than 40 m. Decreasing the bit rate allows longer network

distances (e.g. 125 kbit/s at 500 m).

The CAN data link layer protocol is standardized in ISO 11898-1 (2003). The standard

describes mainly the data link layer - composed of the Logical Link Control (LLC) and the Media

Access Control (MAC) sub-layers - and some aspects of the physical layer of the ISO/OSI Ref-

erence Model. All the other protocol layers are left to the network designer’s choice. CAN is an

attractive solution for embedded control systems because of its low cost, light protocol manage-

ment and the deterministic resolution of the contention. The protocol adopts a collision detection

13

and resolution scheme, where the message to be transmitted is chosen according to its identifier.

The lowest identifier message is transmitted. This makes possible to encode the message prior-

ity into the identifier field and to implement priority-based real-time scheduling of periodic and

a-periodic messages. However, its major limitation is in the maximum available bandwidth, which

is a consequence of the adoption of a multi-master digital bus. The available bandwidth may easily

become scarce given the current trend in the automotive field towards an increased number of inter-

connected devices, particularly intelligent sensors, and an increased amount of data to be shared. In

order to overcome the speed limitation of the CAN bus, other standards are being proposed, like the

Flexray. However, because of its low cost and widespread use, the CAN bus is still the dominant

communication medium in the automotive industry.

1.3.2.4 OSEK

OSEK [52] stands for Offene Systeme und deren Schnittstellen fr die Elektronik in Kraft-

fahrzeugen (eng., ”Open Systems and their interfaces for the Electronics in Motor vehicles”). The

OSEK specifications have been produced for an embedded operating system, a communications

stack, and a network management protocol for automotive embedded systems. The most important

characteristics of an OSEK-compliant operating system are

1. The flexibility on the kernel configuration with increasing service capabilities and memory

requirements

2. The possibility of configuring the kernel by means of a file in a standard configuration lan-

guage (OIL)

3. The static generation of most operating system and application objects, with a very efficient

14

implementation and minimum kernel footprint

4. The support for real-time scheduling and resource management algorithms, allowing a pre-

dictable timing behavior

OSEK is widely used in automotive electronics today. Understanding the operation sys-

tem’s capability is essential for designers.

1.3.2.5 LIN

Most sensor systems are based on architectures using point to point analog communica-

tions from sensors to ECUs. In these cases, signal integrity is at risk in very noisy environments

such as that of an automobile. LIN [51] was originally developed for body electronics, however, it

has been increasingly used to tackle the integrity issue for sensor interfaces. Its low-cost, bidirec-

tional, single-wire physical-layer implementation reduces wiring and wiring harness requirements.

It is possible to build a sensor module that has only three wires (battery, ground and LIN), even if

there are multiple sensors inside the module. This reduction in wiring and wiring harness allows

for a reduction in the sensor housing size, better sensor placement and less sensitivity to wire place-

ment. This is especially true if more than one sensor is included in the module and all the outputs

are multiplexed into a single LIN bus. LIN allows for two-way communication over a single wire

so that the master has the capability to request diagnostic information from the sensor, or the sensor

can provide system-failure information when needed. The LIN protocol is based on a master/slave

architecture - all bus communication is controlled and scheduled by the master node. This fea-

ture enables guaranteed latencies for signal transmission, as no arbitration is utilized, which is a

necessary property for most sensor signals. The LIN bus architecture is scalable to 16 nodes.

15

1.4 A Real Life Example

A real-life case study presented in this part will be used in the following chapters for

evaluating the research approaches.

Auto-makers are constantly evaluating and developing new features that bring value to

the customer. One important recent example is the integration of active and passive safety features,

based on a set of ranging sensors that cover a 360 degree area around the vehicle. Examples are

the Virtual Bumper and Anti-theft Systems. Some of these features have been demonstrated on a

prototype research vehicle, called V1 in this thesis. The electrical architecture of V1 was developed

integrating required sensors, actuators, CAN networks and processing units (ECUs) supporting the

execution of the features in a prototype vehicle called mule. The architecture was developed by

extension from the mule vehicle in an ad-hoc fashion, without considering extensibility or compat-

ibility with current and future production architectures.

The following version V2 program consisted of the development of a production vehicle

where some of the features from V1 and the experience gained in V1 were integrated and extended

with new safety-relevant features, some of which coming from Tier-1 suppliers.

In V2, the control engineers provided the deadlines for the end-to-end latencies of selected

paths in the architecture. Furthermore, the utilization of the ECUs and the CAN buses of the system

had to be controlled to ensure future extensibility.

For this thesis, one example modified from a specific version of V2, called Experimental

Vehicle (EV), will be used for evaluation purpose. Figure 1.1 shows a part of the entire functionality

graph and Figure 1.2 shows a part of the entire architecture graph of the experimented EV.

In Figure 1.1, all the left most rectangles represent sensors, all the right most rectangles

16

Figure 1.1: A Real-life Example: Part of Functionality for EVC.

Figure 1.2: A Real-life Example: Part of Architecture for EVC.

17

represent actuators, and all the remaining ones denote the network of computing blocks decomposed

from high level features. There is a timing constraint, required by the feature that the system is

expected to provide, associated with one specific path on the functionality graph. This path may

start from a sensor module S3 through computing modules C1, C2, C3 and finally reached an

actuating module A1. A potential scenario is: sensor S3 runs in a non-stop mode to sense the

change of the environment around the vehicle, the signal captured by sensor S3 goes through a

series of intermediate computations and then the computed decision is propagated to the actuator

A1 which acts on the environment. Consider a safety critical feature: lane keeping. In this example,

the series of computation finally makes a decision whether the vehicle should keep the current lane

or not, then the functional computation and signal propagation are expected to complete at most in

a very short time, say around 100ms. Such an application is typical safety critical and has a high

requirement on the path (maybe selected) latencies.

The above network of functionalities will be executed in the physical architecture which

can be described in Figure 1.2. It consists of a number of ECUs connected by different types of

communication buses, say either FlexRay (for safety critical messages) bus or CAN bus.

Mapping of functionality to architecture as well as scheduling of a set of functionalities to

the same architectural unit is a crucial part of the design process. The process, called design space

exploration, is the focus of this thesis.

Chapter 2 presents the design methodology combined with a design flow for the auto-

motive domain where scheduling plays a fundamental role. Chapter 3 explains the scheduling

synthesis problem in a FlexRay based communication system and then presents a scheduling strat-

egy in an incremental design scenario to reduce design cost. CAN based communication system is

18

discussed in Chapter 4. The trade-off for the periodic activation model and the data-driven model is

extensively explored using both a mathematical programming and a heuristic based approach. The

effectiveness of the proposed approaches is illustrated by the EV case study. At the end of Chapter

4, the issues of integrated period synthesis is addressed. Chapter 5 investigates mapping policies

together with schedulability analysis. The typical configuration features priority based scheduling

of tasks and messages and imposes end-to-end deadlines. The proposed approach optimizes task

placement and signal-to-message mapping, and automates the assignment of priorities to tasks and

messages in order to meet end-to-end deadline constraints and minimize latencies. The effective-

ness of the solution is proven again by the EVC example. Chapter 6 is the final chapter of the thesis

and presents conclusion and future work.

19

Chapter 2

A Design Methodology and Flow with

Emphasis on Scheduling for Automotive

Systems

The definition of a car electronic/software system starts from the specification of the set of

features, a very high level description of a system capability, that the system is expected to provide.

Functional models are created from the decomposition of the features in a hierarchical

network of component blocks. The physical architecture model captures the topology of the car

network, including the communication buses, the CPUs and the management policies that control

the shared resources.

The design evolution led to the development of a system design methodology, Platform

Based Design (PBD) that was proven successful in several automotive industrial problems. Section

2.1 presents the PBD methodology, and then Section 2.2 discusses a design flow under the PBD.

20

In Section 2.2, functional models, architectural models and system models are introduced first, and

then a full discussion over mapping and scheduling is conducted.

2.1 Platform Based Design Methodology Introduction

According to the principles of PBD, system-level architecture design is neither a top-down

nor a bottom-up design methodology. Rather, it is a meet-in-the-middle approach [35]. In a pure

top-down design process, the specification of the application functionality is the starting point for

the design process. The sequence of design decisions drives the designer toward a solution that

minimizes the cost of the architecture. The design process selects the most attractive solution as

defined by a cost function. In a bottom-up approach, a given execution architecture is designed to

support a set of different applications and is, in general, developed based on designers intuition and

marketing inputs.

The two main concerns of functional and architectural specification are connected by

mapping a high level specification, defining an abstract model of the system, to a particular software

and hardware architecture or platform. This match between function and architecture is a key aspect

of the design of embedded systems and the founding principle of many design methodologies such

as the platform-based design [4] and tools such as the former VCC/Sysdesign Sysdesign [54]

product by Cadence, the Ptolemy and Metropolis frameworks [5].

The use of the conceptual framework of the platform-based design methodology and the

meet-in-the-middle approach are advocated as key enablers for the exploration of design alternatives

and architecture level solutions. Platform-based design requires the identification of clear abstrac-

tion layers and a design interface that allows for the separation of concerns between the refine-

21

Figure 2.1: Platform Based Design.

ment of the functional architecture specification and the abstractions of possible implementations.

Thus in automotive electronic design the application-layer software components are decoupled from

changes in micro-controller hardware, ECU hardware, I/O devices, sensors, actuators, communica-

tion links, and from the partitioning of the software to the computing nodes. What specific layers

should be used depends largely on the application space. For example, in typical automotive elec-

tronic applications, it may be sufficient to identify the architecture that one wants to target, then, the

source code may be recompiled on various hardware architectures.

The basic idea of the PBD is captured in Figure 2.1 . The vertex of the two cones

represents the combination of the functional model and the architecture platform. System designers

map their applications into the abstract representation that includes a family of architectures that can

be chosen to optimize cost, efficiency, energy consumption, reliability and flexibility (timing in this

thesis). Decoupling the application-layer logic from dependencies on infrastructure-layer hardware

or software enables the application-layer software components to be reused without changes across

22

multiple vehicle programs over a period of years.

Design space exploration consists of seeking the optimal mapping of the system plat22

form model into the candidate execution platform instances, the mapping must be driven by a set of

methods and tools providing an objective and quantitative measure of the fitness of the architecture

solutions with respect to a set of constraints and metric functions. The bigger is the gap between

two neighboring abstraction levels, the larger is the potential for design optimization and explo-

ration and the greater is the effort that is required to explore the mapping options. Ideally, there

could be the possibility for automatic selection of the platform by appropriate software tools. In

reality, the technology is not mature for a full synthesis of the mapping and the platform attributes

and the approach that is currently viable is a what-if analysis where different options are selected

as representatives of the principal platform options and evaluated according to measurable metric

functions. Complex automotive systems are also implemented by integrating components provided

(implemented) by suppliers. Today, the integration of a subsystem provided by a supplier relies on a

black-box specification of the interface messages, including the priorities and possibly the execution

rates.

2.2 A Design Flow with Emphasis on Scheduling for Automotive Sys-

tems

Section 2.1 introduced the concept on design space exploration which is a process of

seeking an ”optimal” mapping from functionalities to architectures. The mapping is driven by a

set of optimization metric functions to evaluate the fitness of the architecture solutions. Through

this thesis, the optimization metrics chosen to evaluate the mapping result are timing, in another

23

word, different timing metrics are used as a guidance to the whole design flow when marrying

functionalities to architectures.

Giving the mapping of software modules to hardware components, the design flow turns

to focus on the scheduling of functionalities within the chosen architectures.Separating the ideas of

mapping and scheduling is a critical assumption as for the cost function that decides the software

mapping is orthogonal from the cost function that determines the task and bus message schedule

by many auto-designers. [81] describes a methodology that optimizes this mapping by minimizing

bus bandwidth and interconnect cost, hence validating this assumption. However, in an idealistic

scenario these concerns cannot be separated in order to achieve a global optimal solution and must

be accounted for through a multidimensional optimization problem. Nevertheless, in practice the

industrial experience is that managing complexity is a key requirement and the approach of orthog-

onalizing the concern of software to hardware mapping and scheduling is a realistic assumption

within the automotive domain. In this thesis, the texts focus on the scheduling part of the whole

design flow.

Aside from the orthogonalization of mapping and scheduling, orthogonalizing functions

and architectures[36] is also expected by the designers. In such a system development process,

a functional description is defined first, then it is mapped onto some set of virtual architectural

components. Generally, the above mapping obtains two or three potential solutions. The metrics

related to timing such as end-to-end latency, among other performance analysis metrics, are used

to obtain an optimized schedule or post-mapping system parameters, and select a potential solution

(see figure 2.2).

Functional model, architecture model, system platform model, and the mapping, schedul-

24

Figure 2.2: System design flow.

ing design phases are introduced one by one in the following sub-sections.

2.2.1 Functional Models

The starting point for the definition of a car electronic system is the specification of the

set of features that the system is expected to provide. A feature is a very high level description of

a system capability. The brake pedal force emulator in a brake-by-wire system is an example of a

feature, consisting of mechanical, electronic and software parts that together emulate the feel of the

conventional hydraulic brake pedal.

The software components of each feature are further developed by control engineers who

devise control algorithms fulfilling the design goals. Typically, these algorithms consist of complex

mathematical operations that are captured by a hierarchical set of block diagrams produced with

tools such as Matlab Simulink.

The functional models are created from the decomposition of the feature in a network

25

of component blocks by abstracting the information that is relevant for the purpose of architecture

exploration. The resulting model of the functionality is a hierarchical network of components en-

capsulating the system behaviors, with provided and required interfaces expressed by a set of ports.

In the definition of the vehicle functionality, there is a need to work with a system view that abstracts

from the details of the functional behavior and models only the interface and the communication

semantics.

To give an example, some of the definitions that apply to the entities of the functional

models are: 1. The activation mode of the functional blocks, synchronized on some clock or ac-

tivated by the arrival event of a signal on one of the incoming ports. 2. The possible precedence

constraints in the execution of the functional blocks. Whenever specified, the precedence constraints

can be of type AND (all input signals must arrive before a block can execute) or of type OR (the

block execution is triggered by the arrival of any of its input signals) 3. The semantics of the signal

variables can be of type sticky with overwriting, meaning that the variable preserves the last value

that has been written into it and the value of the signal variable is overwritten by a new output, or

a signal link can represent a queue of tokens that are produced by the sender block and consumed

by the receiver block. An example of the implications of a choice of an activation/communication

model, the data communication between any two blocks activated periodically according to local,

non synchronized clocks, is assumed to be nondeterministic in time and lossy, meaning that output

values may be overwritten before having been read.

Timing constraints are expressed in the context of the functional graph by adding end-to-

end deadlines to the computation paths, maximum jitter requirements to any signal and time corre-

lation constraints between any signal pair originating from the same functional block or providing

26

input (possibly after further processing) to a common block, that is, having a common ancestor or

successor block. A more detailed description of the fundamental concepts of end-to-end latency on

a given computation path, and the corresponding deadline is however required for understanding

the analysis procedures and the trade-offs in the design.

A path in the functional model is a set of functional blocks. Informally, the end-to-end

latency is the largest possible time interval that is required for the change of the environment to be

captured as input by the first block and propagated to the end of the chain, whatever is the state of the

blocks in the path and regardless of the fact that some intermediate result may be overwritten before

it is read. To understand the significance of this definition, please think of a feature like advanced

collision preparation (ACP) where the environment variable models the existence of a target object

on a collision route and the ending value which is the braking torque that is applied on the brake

actuators.

Overall, the functional model considered in this thesis is usually represented by a directed

acyclic graph (DAG) which has a network of components/tasks communicating with each other by

exchanging messages.

2.2.2 Architecture Models

The model of the architecture is hierarchical and captures the logical topology of the

car network, including the communication busses such as CAN and FlexRay links, the number

of processors for each ECU and the resource management policies that control the allocation of

each ECU and bus, but also the physical and geometric relationships, including abstractions for

modeling wiring harnesses and connectors. At this stage, the hardware and software resources that

are available for the execution of the application tasks and the resource allocation and scheduling

27

policies must also be specified. Each RTOS provides a set of services and logical resources and has

a set of parameters related to the provided scheduling policy for the ECUs.

The physical model also defines entities of the physical architecture that determine its

cost, including connectors and harnesses and their connectivity, ECU and ECU multiplexed buses

with the associated controllers and ASICs memory, and the pin-out information for each ECU.

2.2.3 System Platform Model

If specification of functionality aims at producing a logically correct representation of sys-

tem behavior, the system platform model is where physical concurrency and resource requirements

are expressed. At this level, rather than applying the term process or thread - although widely used

in the literature - to describe a unit of computation processed concurrently in response to environ-

ment stimuli or prompted by an internal clock, the term task will be used in adherence with OSEK.

Tasks cooperate by exchanging messages and synchronization or activation signals and contend for

use of the execution resources (the processors) as well as for the other resources in the system. The

system platform model entities must, on one hand, be the implementation of the functional model

entities and are, on the other hand, mapped onto the target hardware.

The system platform models are a synthesis of the mapping process and can be of different

types for different analysis purposes, hiding unnecessary details and exporting only the necessary

amount of information. Throughout the thesis, two models are investigated:

The first model is simple. In this model, all tasks and messages are activated periodically

and communicate according to a semantics where the communication channel holds the last value

that is written into it and it is implemented as a shared variable protected against concurrent ac-

cess. This model, called periodic activation model, has many advantages, including the separation

28

of concerns when evaluating the schedulability of the individual resources and also allows for a very

simple specification at the interface of each subsystem or component, thereby simplifying the inter-

action with the suppliers. The drawback is a non-deterministic time behavior and a possibly very

large worst-case end-to-end delay in all computations that are performed according to this model.

The next model includes the possibility of activating messages and tasks based on some

event, typically the completion of a task or the change in the value of a signal. The corresponding

models, are called on-demand activation and on-event activation. In this case, the completion of a

task always results in the immediate enqueuing (or activation) of all the messages that send infor-

mation produced by the task and the arrival of a message results in the activation of the receiver

task.

This model corresponds to an implementation in which, for example, the middleware

software layers enqueue a new message whenever a task completes its execution and produced a

value for one of its outgoing signals (not necessarily different from the value produced in its previous

execution instance) and where the arrival of a message results in the execution of an interrupt handler

activating the software task that processes the message data. In the terminology in use among

operating system developers and programmers, this model is commonly defined as interrupt driven.

Finally, the most general platform models allow for an arbitrary combination of the pre-

vious message and task activation semantics, subject to a few coherency rules. Chapter 4 discusses

this in a detailed manner.

2.2.4 Mapping

The mapping of the blocks defined in the functional model into system platform entities

and the subsequent placement of those onto the physical architecture objects are the critical design

29

activities. In practice, the blocks defined in the functional part must be executed in the context of

one or more system tasks with their attributes. The mapping of the threads and message model into

the corresponding architecture model and the selection of resource management policies allows the

subsequent validation of the mapped model against functional and non-functional constraints.

The mapping phase consists of allocating each functional block to a software task and

each communication signal variable to a virtual communication object. The task activation rates

must be entered as parameters of the architectural models and compliance checks are performed

with the functional blocks activation rates. If more than one functional block is mapped to a task,

the order of the execution must be provided during the mapping phase.

As a result of the mapping of the platform model into the execution architecture, the enti-

ties in the functional models are put in relation with timing execution information derived by worst

(best) case execution time analysis (not provided directly by the environment) or back-annotations

extracted from physical or virtual implementation. In the latter case, several execution timing infor-

mation are maintained such as best, worst, mean, and distribution.

Given the deployment, it is possible to determine which signals are local (because the

source and destination functions are deployed onto the same ECU) and which are remote, hence

need to be packed into messages and go over the network. Each communication signal variable is

therefore mapped to a communication resource of the implementation, that is, a message, or a tasks

private variable or a protected shared variable. Each message, in turn, is mapped to a serial data link,

and the mapping relation can be extended by mapping serial data links to harnesses, and harnesses

to physical locations in the car.

When mapping a functional model into a platform model, the semantics of the functional

30

description should be preserved. Therefore, not all the mappings are allowed or should be made

legal. For example, a non-deterministic communication among two functional blocks can be made

deterministic, and a global execution order for all the functional blocks can be defined, after map-

ping them into the task set, in accordance with the partial order defined by the semantics of the

functional model. However, a mapping of a communication signal with an attached precedence

relation to a communication variable shared among two periodic asynchronously activated tasks

should not be possible.

2.2.5 Scheduling

When the mapping is done, tasks executing on a computing resource like a ECU with

a necessarily finite execution time, additional definitions must be provided, and the same to the

messages transmitted on the bus. Each instance of a periodic functional tasks or a message, the

release time, start time and finish time associated with each of them are defined. Also the worst case

response time for each scheduling entity is needed to calculate clearly.

To obtain a better (less pessimistic) estimate of the timing and reliability properties, the

modeling allows the capturing of different configurations in terms of functional, architectural, map-

ping and timing information of the system: these different configurations are captured as system

modes. This analysis only focus on identifying the system modes that result in significant differ-

ences in the timing behavior of the system. For example, some engine control functions may be

executed at a rate that depends on the engine rotation speed and at high rates, the definition of

the function can change (to a simplified implementation) in order to ease the schedulability of the

system.

Classification of real time system scheduling could be based on:

31

1. Input

2. Criticality of timing constraints

3. The nature of the real time load

Scheduling based on input could be either time-driven or event-driven. If the input is

continuous (synchronous), it is time-driven while if the input is discontinuous (asynchronous), then

it is event-driven.

Scheduling based on criticality of timing constrains could be hard real time scheduling if

the response of the system within the timing constraints is crucial for correct behavior or could be

soft real time scheduling if the response of the system within the timing constraints increases the

value of the system.

Scheduling based on the nature of the real time load could be static scheduling when

the load is predefined, constant and deterministic or could be dynamic when the load is variable

(non-deterministic).

A real world system exhibits a combination of these characteristics, for instance, the ex-

ample in Section 1.4 could be an event-driven, hard real time and static scheduling case.

The scheduling also must be driven by a set of methods and tools providing an objective

and quantitative measure of the fitness of the architecture solutions with respect to a set of con-

straints and metric functions. End to end latencies on selected paths provide us a good metric for

evaluating a scheduling result.

Modern automotive architectures support the execution of distributed safety- and time-

critical, or at least time-sensitive functions on complex networked systems with several buses and

tens of ECUs. Schedulability theory provides support for the analysis of the worst case latencies

32

in distributed computations when the architecture of the system is known and the communication

and synchronization mechanisms have been defined. In the design of complex automotive systems,

however, a great benefit of schedulability analysis may come from its use as an aid in the exploration

of the software architecture configurations that can best support the target application.

The thesis presents several optimization frameworks to select the communication and

synchronization model that leverages the trade-offs between the purely periodic and the precedence

constrained data-driven activation models in the scheduling phase of the design flow. The problem

is amenable to an ILP formulation and to solution based on a standard solver. Formalization of

the problem is provided at different levels of approximation and shows what is the result of the

optimization on a case study consisting of a complex automotive architecture. The complexity in

terms of running time is estimated by evaluating derivatives of the case study with different levels

of concurrency and resource utilization.

In addition to the introduction and review for distributed embedded system, this chapter

presented the design methodology (Platform Based Design methodology) the thesis based on and

discussed the research focus, the scheduling part, within the design flow in automotive electronic

system design.

33

Chapter 3

Scheduling for Time-Triggered

Communication System

In automotive systems, computation and communication functions can be time- or event-

triggered. In the first case, task activations and message transmissions are bound to happen at

predefined points in time. Considering that the development of a modern automotive system is most

of time communication intensive, this chapter is dedicated to talking about scheduling synthesis

for time-triggered automotive communication system. The structure of this chapter is as follows:

all preliminaries and definitions related to Time-Triggered Communication System are presented

in Section 3.1, followed by Section 3.2 where scheduling synthesis for a FlexRay based com-

munication system in an optimization framework is described, finally scheduling synthesis in an

incremental design framework for a general time-triggered system is discussed in Section 3.3.

34

3.1 Preliminaries and Definitions for Time-Triggered Communication

System

Time-triggered communication system is supported by protocols that schedule the mes-

sages statically based on tables that define the time points when messages need to be transmit-

ted. This section gives an overview about time-triggered communication protocols with a focus

on FlexRay, Section 3.1.2 then provides previous related work especially on FlexRay. System

modeling and description are introduced in Section 3.1.3.

3.1.1 Time-Triggered Protocols Overview

Supporting for time-triggered communication is provided by protocols that schedule the

messages statically based on local scheduling tables that define the messages transmission time.

SAFEbus [31], SPIDER [61], TTCAN [3], and the Time-Triggered Protocol (TTP) [40] are

examples. TTP uses a generalized time-division multiple-access (GTDMA) scheme with variable

sized slots, in which each node has only one opportunity to transmit for each cycle. In FlexRay,

slots have the same size, but a node can have more than one transmission opportunity for each

cycle. Scheduling techniques for the static segment have been developed by extending the work for

scheduling messages in a TDMA bus [59] [29]. In [21], the authors consider the case of a hard

real-time application implemented on a system with a FlexRay bus. Messages are scheduled in the

static segment, and the method in practice reuses scheduling techniques developed for the TDMA

bus.

35

3.1.1.1 FlexRay Introduction

The development of new by-wire functions with stringent requirements for determinism

and short latencies, and the upcoming active safety functions, characterized by large volumes of data

traffic, generated by 3600 sensors positioned around the vehicles, are among the motivations for the

definition of the FlexRay standard. FlexRay is being developed by a consortium (www.flexray.org)

that includes a few core members, namely, BMW, Daimler-Benz, General Motors, Freescale, NXP,

Bosch and Volkswagen/Audi, as a new communication standard for highly deterministic and high

speed communication. The stated objective is to support cost-effective deployment of distributed

by-wire controls.

At the core of the FlexRay system is the FlexRay communications protocol. The protocol

provides flexibility and determinism by combining a scalable static and dynamic message trans-

mission, incorporating the advantages of familiar synchronous and asynchronous protocols. The

communication channel is a broadcast channel. A message sent to the channel by a ECU is received

by all the other ECUs. Application messages are usually scheduled through the static segment of

FlexRay bus in order to ensure the timing constraints are satisfied.

In FlexRay, the communication speed is defined at 10 Mb/s, although determination of

the minimum bit-time that is necessary to ensure correct detection of the bit value in spite of delay

jitter might suggest additional versions at lower speeds. The bus bandwidth is assigned according

to a time-triggered pattern. The available bandwidth is divided into communication cycles and each

communication cycle contains up to four segments (Static, Dynamic, Symbol and Network idle

time - Nit, as in Figure 3.1). Figure 3.2 shows more details of the timing hierarchy of a FlexRay

system. Clock synchronization for the purpose of communication is embedded in the standard

36

12

Static segment Dynamic segment

FlexRay cycle

N1−1

N1−1

N2−2 N3−3

N3−3

N1−4

N1−4

N4−5

unused

unused 2 3 8 14

4 6

Symbol Nit

11

Figure 3.1: the four segments in a FlexRay cycle

Figure 3.2: FlexRay Timing Hierarchy.

using part of the Nit segment, and therefore comes at no additional cost. This ensures deterministic

communications at least from the theoretical standpoint.

The static part of the communication cycle enables the transmission of time critical mes-

sages according to a periodic cycle, in which a time slot, of fixed length and in a given position

in the cycle, is always reserved to the same node. The dynamic segment allows for flexible com-

munications. Transmission of messages in the dynamic part is arbitrated by identifier priority (the

lowest identifier messages are transmitted first, somewhat like in CAN but in a slightly different

37

way). FlexRay includes a dual channel bus specification (for increased reliability) and will include

(in its upcoming specification) bus guardians at the node and star level for increased reliability and

timing protection. In a dual channel configuration, messages can be replicated on both channels for

safety critical communications that leverage the physical redundancy, or the slots can be assigned

independently. In the latter case, the communication bandwidth is doubled.

The time-triggered model of FlexRay, not only allows for time determinism, but is also

considered as a paradigm for composability and extensibility. Each node only needs to know the

time slots for its outgoing and incoming communications. The specification of these time slots is

kept in local scheduling tables. No global description exists and each node executes with respect to

its own (synchronized) clock. As long as the local tables are kept consistent, no timing conflicts or

interferences arise.

Slots that are left free in the (virtual) global table resulting from the composition of the

local tables can be used for future extensions. Time protection and isolation from timing faults are

guaranteed by the reservation of time slots and guardians that avoid that node transmit outside the

allocated time window as stated in the original specification.

The bus cycle time and the transmission slot time are design parameters that should be

carefully selected. Fundamental issues related to the composition of subsystems, but also to future

extensibility and reuse of components require careful planning and possibly standardization of the

approach.

Clock synchronization and time determinism on the communication channel allow the

implementation of end-to-end computations in which the data generation, data consumption and

communication processes are temporally aligned, avoiding sampling delays, and therefore removing

38

the worst drawback of composable periodic activation semantics, that is lateness, in exchange of

determinism.

Also, system-level time-triggered schedules allow the semantics-preserving implementa-

tion of distributed control models (including models with a synchronous reactive semantics, like

those produced by popular commercial tools like Simulink from Mathworks [44]).

Time determinism requires that the time-triggered model of communication is propagated

to the computation layers, using a time-triggered scheduler and a careful coordination of the com-

munication and computation schedules, so that the schedule becomes global. If the schedulers are

not coordinated, then not only guaranteeing time determinism is more difficult and probably al-

together impossible, but the performance of the system in terms of latency is significantly worse.

The synchronization of the communication and RTOS layers is only scantly addressed by current

standards.

3.1.1.2 Time-Triggered Protocol (TTP) Introduction

According to [22] TTP is a real-time protocol of the Time-Triggered Architecture (TTA).

The protocol uses a Time-Division Multiple Access (TDMA) scheme to enable collision-free bus

allocation. TTP focuses on the interconnection of components in order to form a highly dependable

realtime system that is sufficient for critical applications such as X-by-wire in the automotive and

avionics domains. TTP implements a replicated bus system and a guardian that prevents babbling

idiot failures.

TTP aims at an easy and economically integration of sensors and actuators into a network.

TTP can be implemented on low-cost micro-controllers, which suggests each transducer having a

TTP interface. The interface concept of TTP supports a modular design and an easy integration and

39

management of transducers.

3.1.1.3 A Comparison for Time-triggered Protocol

Three of the most viable automotive protocols: TTCAN, Flexray and TTP are analyzed

and compared in this paragraph (see Table 3.1 for the summary of the analysis). FlexRay is chosen

for this chapter’s communication protocol as it clearly supports the requirements for a scalable and

extensible scheduling scheme which is discussed in Section 3.3.1 but also provides the necessary

bandwidth and fault tolerance mechanism.

Table 3.1: Protocol comparison

Requirements 1 TTP TTCAN Flexray
Multiple transmissions2 No Yes Yes

Global sync. time3 Yes Yes Yes
Bandwidth (Mbbs) 825 1 10

Identity Transparency4 No Yes Yes
Variable slot length Yes Yes No5

1: Scalable and extensible scheduling requirements on the TDMA protocol

2: Supports multiple transmissions from the same node within a single round of communication

3: Provides a global synchronized time

4: The identity of the sender node is transparent to the receiver node (for nodes that don’t participate in

startup)

5: No variable sized slot length, but can be achieved if a number of slots are concatenated logically

3.1.2 Previous Work on Time-Triggered Protocols

There are several communication protocols for time-triggered based network.Evaluation

of the worst case response time is possible, and timing analysis techniques have been provided for

CAN [77], TDMA [76] and TTP [59]. These analysis techniques are however subject to conditions

40

that are seldom verified in practice [41]. Furthermore, in event-driven and priority arbitrated buses,

message response times are still subject to a possibly large jitter. Another major problem of these

protocols is that they offer little or no protection against timing faults caused by nodes flooding the

network with high priority messages. In conclusion, time predictability can only be achieved to a

limited degree and none of them is suitable for safety-critical applications [32].

In order to accommodate a fraction of traffic that is dynamically activated, flexibility

can be added with an additional transmission window reserved to this type of traffic. This is the

case of hybrid protocols like Byteflight [9], introduced by BMW for automotive applications and

later superseded by the FlexRay, and of the FTT-CAN protocol [23]. The dynamic segment of the

FlexRay protocol is similar to Byteflight and uses a priority-based arbitration for outgoing messages

based on a virtual token concept. Cena and Valenzano [17] discuss schedulability of the Byteflight

protocol, which is similar to the dynamic segment of FlexRay. In order to allow time guarantees,

the authors assume a quasi-periodic transmission scheme for time-critical messages, which means

that the dynamic segment scheduling does not differ much from TDMA.

In [59], the authors presented an approach to timing analysis of applications communi-

cating over a FlexRay bus, which considered the specific aspects of this protocol, including the

dynamic segment. Techniques were proposed for determining the timing properties of messages

transmitted in the static and the dynamic segments of a FlexRay communication cycle. The authors

first presented a static cyclic scheduling technique for TT messages transmitted in the ST segment,

which extended the previous work on the TTP [60]. Then, they developed a worst-case response

time analysis for event-based transmissions in the dynamic segment. Message analysis techniques

were integrated in a holistic schedulability analysis algorithm that computes the worst-case response

41

times of all the tasks and messages in the system.

In [47], an end-to-end model based development process for building a complex FlexRay

based distributed control system is described if the context of safety critical x-by-wire systems

for a realistic automotive application. However, the authors relied on manual scheduling for the

scheduling of software and communication tasks on the bus because of lack of mature scheduling

tools targeted for FlexRay based applications.

A FlexRay scheduling algorithm is given in [33]. After decoupling the ECU scheduling

and FlexRay bus scheduling using time slicing technique to assign transmission time windows for

messages on the bus so that the precedence relations between different processors are enforced by

those time windows assignment, a uni-processor scheduling technique is applied to the messages

on the bus. An extensible scheduling concept is introduced in [33] which is achieved through

minimizing the peak processor utilization based on mathematical programming approach. Integer

variables may limit the problem scale that the approach can handle. For FlexRay configuration, a

fixed slot size is assumed while this is a very important bus parameter subjects to optimize in this

thesis.

3.1.3 System Modeling

Both functionalities and architectures could be described by a model that would be used by

the synthesis framework in the thesis. Application model is set of task graphs, a very simple model

of computation which could capture the corresponding timing information of the design. System

architecture is FlexRay based system, several ECUs are connected to the FlexRay bus through

FlexRay controllers.

An automotive electronics architecture generally is a multi-cluster system. In this work,

42

only the FlexRay cluster scheduling design is presented. Activation of tasks on ECUs and of mes-

sages on FlexRay are purely based on progression of time.

3.1.3.1 System Functionality

In this section, a model of the system computations as a dataflow is considered. The

vertices represent the tasks and the edges represent the data signals communicated among tasks.

A task τi is characterized by (ei, Ti, Φi, Ci), where ei is the ECU resource it needs to

execute, Ti its period, Φi its initial phase, Ci its execution time.

The edges L = {l1, l2..., lm} represent the input/output connections between tasks. A

directed edge li,j between tasks τi and τj will carry a data signal with a given bit width produced by

τi and available to τj .

Each periodic task reads its input at its activation time and writes its results at the end of its

execution. A task pair τi, τj may communicate by exchanging a signal information σij characterized

by a bit width bij . Each signal may optionally be delivered with a unit delay, modeled with a binary

variable δij associated to it (Figure 3.3).

4

3

τ

4 ms 4 ms1 ms

6 7 8 95

1

5

7

2

4

8

3

9

6

−1

FlexRay bus

N1 N2 N3 N4

τ 9τ 8τ 6
τ 7τ 5

8 ms

1 2 3

4

−1

τ 1 τ 2

τ

Figure 3.3: System model with tasks, links and delays.

Each task will run an infinite sequence of instances or jobs. The Application cycle or

43

Figure 3.4: Mapping and task graph expansion.

hyperperiod or superperiod H is defined as the least common multiple of the periods of all tasks.

Inside the hyperperiod, each job instance is considered as an individual scheduling entity and de-

noted as ti. The scheduling problem consists of planning the execution of jobs and the transmission

of signals into the available slots inside H . Job instances can also be denoted with reference to their

task. In this case, tkj denotes the j-th job of task τk. In another word, each task has a periodicity.

The period specifies how often a task should be executed. From the above definition, a super period

is the least common multiple of all task periods. All tasks in a task graph are scheduled within one

super period. Time is expressed relative to the beginning of the super period.

The arrival time of a job instance ti is denoted as ai or, using the instance index notation

as akj , with akj = Φk + (j − 1) × Tk. The release time of a job is Ai, the time at which it is

scheduled for execution is si and its finishing time fi. The response timeRi of a job ti is defined as

the time interval from its arrival to its termination, i.e. Ri = fi − ai. The worst case task response

time Rτi is defined as the maximum of the response times Rij of its jobs tij .

The set of all the task instances transmitted in the application cycle defines the Application

44

instance graph, as in Figure 3.5. Signals transmitted by tasks allocated to the same node may be

transmitted in the data content of a message mi in a communication slot.

Similar to tasks, slot instances are also considered. The j-th slot inside cycle k is denoted

as λkj . Similar to jobs, its start time is ss
kj , and its finishing time fs

kj .

A functional chain or path from τi to τj , or Pi,j , is an ordered sequence P = [τi, . . . , τj]

of n + 1 (n=j-i) tasks such that there is a link between any two consecutive tasks. For example, in

Figure 3.3 a path exists between the tasks τ1 and τ9. Latencies are defined for paths by extending

the meaning of a task latency. The latency of a path instance Pi,j,k is defined as Li,j,k = fkj − aki

t

0 1ms 2ms 3ms 4ms 6ms 7ms 8ms5ms

Application cycle

Flexray cycle = 8ms

Flexray cycle = 4ms

Flexray cycle = 2ms

Flexray cycle = 1ms

5 6 7 8

4

1 2 3

97 86876

6,2 7,2 8,2

6 7 8

5,2

7 85 6 6 7 8 6 7 8 6 7 8 9

6,8 7,86,6 7,6 8,6 6,7 7,7 8,7 9,25,1 6,1 7,1 8,1 6,3 7,3 8,3 6,4 7,4 8,4 9,1 6,5 7,5 8,5 8,8t t

Figure 3.5: Instance graph, Application cycle and FlexRay cycle.

3.1.3.2 System Architecture

A distributed architecture comprises of a set of possibly heterogeneous nodes intercon-

nected with one or more broadcast based bus with a time-triggered semantic. Every node would be

comprised of the basic architecture as indicated in Figure 3.6.

With regards to the software architecture, the same semantics of the time-triggered oper-

ating system standard, used within the automotive industry, are implemented. This standard can be

referred in [27]. The main highlight of this OS is the fact that preemption is done of the stack rather

45

Figure 3.6: Time-triggered node architecture.

than through a dynamic scheduler. Since the designer has release time control over the execution

of the tasks, any worst-case preemption scenario that could occur in a static priority system can be

modeled using this semantic.

The architecture is represented by an architecture graph, which contains services that

could implement processes and communications specified in the task graph. Specifically, it repre-

sents processing elements (PE) that implement processes, and bus structures that implement inter-

PE communications. In the automotive domain, these PEs are electronic control units (ECUs). The

architecture structures are assumed to be any number of ECUs connected to one shared bus.

The bus is implemented with a time-division multiple-access (TDMA) scheme. Each

ECU is allocated a predetermined time segment on the bus, called a TDMA slot. A sequence of slots

that can be repeated periodically is called a TDMA round. Assuming a slot can not have arbitrary

sizes in the FlexRay scheduler which corresponds to the communication protocol smoothly and then

relaxing this assumption for a slot can take arbitrary size, and a node is powered to control multiple

slots in a round. From these assumptions, a TDMA round that corresponds to a super period can

46

exploit optimization exposed by task graph expansion in a multi-rate system. These abstractions are

consistent with the capabilities of the FlexRay standard.

Every ECU has a bus controller (Figure 3.6) that contains the schedule of when messages

(relevant to itself) should be sent or received. The schedule of a message consists of the start time

and finish time of the message. An ECU can only send messages within its own TDMA slot, which

starts from the message start time, and ends at the start time of the next message on the bus (or the

end of the super period, if it is the last message to be transmitted in a super period). The TDMA slot

allocation is statically scheduled and programmed into each ECU’s bus controller.

The mapping is a refinement process where the elements in the task graph are bound to

the services in the architecture graph. In the limited scope of this chapter, the mapping is the process

of task allocation onto ECUs.

3.1.3.3 FlexRay Message Passing Mechanism Example

Figure 3.7 demonstrates the message passing mechanism for a functionality graph on a

FlexRay bus.

Task τ1 sends a signal σ12 to task τ2 who is located on the same ECU, and the signal σ12

becomes a local variable and won’t show up on the FlexRay bus, so σ12 goes through the middle-

ware and is handled by the OSEK Kernel to task τ2. Task τ1 sends another signal σ13 to a remote

task τ3 who lives on another ECU, at this time σ13 first goes through middle-ware and is sent to

the out-going buffer on the FlexRay controller who waits for slot owned by the controller/ECU and

puts the σ13 on the specific slot number within a communication cycle. The FlexRay controller on

the receiving side knows exactly when to pull messages from the FlexRay bus, and then translates

the message back to signal σ13, directs the signal σ13 to its destination task τ3 through the OSEK

47

Figure 3.7: FlexRay Message Passing Mechanism.

kernel. This message passing mechanisms apply to all the tasks communicated with each other.

Understanding this in detail, a FlexRay scheduler synthesis can be introduced in the following

section.

3.2 Scheduling Synthesis for a FlexRay based communication network

FlexRay based communication system provides support for the transmission of time-

critical periodic messages in a static segment and priority-based scheduling of event-triggered mes-

sages in a dynamic segment, for this thesis, only the static segment is considered. The design of a

FlexRay schedule is not an easy task because of protocol constraints and demand for extensibility

and flexibility. Studying the problem of FlexRay bus scheduling from the perspective of the appli-

cation designer, a focus is given to optimizing the performance of application related (end-to-end)

timing metrics. The solution is based on an MILP optimization framework and allows optimization

48

subject to a number of possible design metrics.

3.2.1 A Two-Steps Approach and Synchronization Mode

The method allows to optimize the scheduling configuration with respect to a number of

metric functions. According to the system design approach, mapping from functionality to architec-

ture is separated from scheduling the mapped functionality on different architectural components is

generally consistent with the typical design flows in use by the auto industry.

3.2.1.1 A Two-Step Approach

The scheduling of FlexRay communication consists of the mapping of the tasks and sig-

nals defined in the application cycle into a set of communication cycle instances (Figure 3.8). This

mapping can be performed in different ways, according to the selection of the communication cycle

length, of the size of the static segment, of the slot size and correspondingly of the number of static

slots for each communication cycle.

Application cycle

FlexRay cycle

Dynamic segmentStatic segment Symbol Nit

Scheduling

Table

Figure 3.8: Application cycle and FlexRay cycle

It is practically impossible to encode all the above into an integrated problem formula-

tion to be solved by an optimization framework. The resulting problem formulation would very

likely suffer from issues related to the size of the search space. Hence, in this work, a two step

approach (Figure 3.9) is investigated to avoid the above computational limitation. Starting from

49

Slot to ECU assignment

Definition of bus cycle
and slot size

Task and signal description

Signal packing
Message to Slot assignment

Task Scheduling

Figure 3.9: A two-step approach in scheduling FlexRay communication

the design specification, first a heuristics is designed to select a FlexRay bus configuration <

lapp, lcomm, nslot, lslot >. Then, based on this configuration out of the first step, a mathematical

programming framework is applied to encode the problem and synthesize other variables such as

slot ownership, signal to slot mapping, message and task scheduling.

The two step approach is generally consistent with the typical design flows in use by the

auto industry. The application cycle is clearly based on the application on hand, and FlexRay de-

signers define the communication cycle and the slot size based on past experience, but especially on

the need to reuse legacy components, which is likely to induce carmakers to a future standardization

of these parameters, at least for their product lines.

Another option is to evaluate several possible FlexRay configurations in an initial branch-

ing of the search procedure. If the number of possible configuration is not very large, it should be

possible to explore them and run the optimization framework as an inner loop, comparing the results

50

at the end and choosing the best one with respect to the objective function.

3.2.1.2 Synchronization modes

There are two possible synchronization patterns between tasks and messages.

• Asynchronous scheduling This model does not require that the job and message schedulers

ares synchronized. Jobs post data values for the output signals in shared variables. The

communication drivers have the responsibility, at the beginning of each cycle or before each

slot, to fill the registers for the outgoing communication slot and, at the receiving side, the

data are written into output registers and asynchronously read by the reader tasks.

• Synchronized scheduling In this case, job executions and message transmissions are syn-

chronized in such a way that a job must complete before the beginning of the slot that trans-

mits its output signal (with a margin determined by the necessary copy time). When sched-

ulers are synchronized, it is possible to know what job produces the data that is transmitted

by a message and the jobs that reads the data delivered by the message. Scheduling can be

arranged to achieve very tight end-to-end latencies and small jitter between the best and the

worst case response times.

Figure 3.10 shows two examples of scheduling without task and message start and finish

time synchronization and with synchronized instances respectively. When schedulers are synchro-

nized sampling delays can be controlled and worst case latencies can be reduced.

Also, within each synchronization pattern, there are two possible scheduling models for

tasks in a FlexRay environment. In the first model tasks are scheduled according to the OSEKTime

framework. In OSEKTime tasks are executed according to a time table, which defines their start

51

task 2

task 2

task 1

message

task 1

message

System with periodic sampling

small
latency very large latency

Time−triggered system

latency can be controlled at scheduling time

variable scheduling delays

variable sampling times

task 1 task 2message

Figure 3.10: Schedulers synchronized and not synchronized

52

times, and can optionally preempt each other. The other option is to schedule tasks in an OSEK

framework in which tasks are periodically activated, each task has a fixed priority and the scheduler

is preemptive with the option of preventing preemption inside selected task groups. In this chapter,

a problem formalization and an MILP solution for all the possible options are provided.

3.2.2 Synthesis FlexRay Scheduler in An Optimization Framework

For this FlexRay Scheduler, two options are explored, based on the two existing standards

for RTOS and the consequent task scheduling. In one, the time-triggered OSEKTime standard is

used. The other option is based on the fully-preemptive, priority-based scheduling of the OSEK

standard.

The main focus of this work is the development of a methodology, based on an MILP

formulation of the FlexRay scheduling problem that can

• accomodate legacy components with pre-existing task and message schedules,

• deal with end-to-end deadline constraints on the computations as well as a general type of

timing constraint, including jitter constraints and output coherency constraints and

• accomodate different task scheduling options.

The method in this section allows to optimize the scheduling configuration with respect

to a number of metric functions.

3.2.2.1 Mixed Integer Programming Solution

The approach is to formulate the problem in the general framework of mathematical pro-

gramming (MP), where the system is represented with parameters, decision variables, and con-

53

straints over the parameters and decision variables. An objective function, defined over the same

set of variables, characterizes the optimal solution. This problem allows a mixed integer linear

programming (MILP) formulation that is amenable to automatic processing. After [15], a MILP

program in standard form is:

minimize cT x (3.1)

subject to Ax = b (3.2)

x ≥ 0 (3.3)

where x = (x1, ..., xn) is a vector of positive real or integer-valued decision variables. A

is an m × n full-rank constant matrix, with m < n, b and c are constant vectors with dimension

n*1. Constraints of the type Ax ≤ b can be handled by adding a suitable set of variables, and

then transforming such inequalities in the standard form. MILPs can be solved very efficiently by

a variety of solvers. The CPLEX solver is used in this work and most of the similar approaches

throughout the thesis.

3.2.2.2 Problem formulation

Mixed integer programming formulation is used to find a solution to the FlexRay schedul-

ing problem with respect to a cost function that accounts for latencies on paths. A short summary

of the notations used in the ILP formulation is provided in the following

Activation, release and deadline constraints Φi, ai, si, fi,di denote the initial phase, arrival

time, start time, finish time and deadline for periodic task τi respectively. The periods Ti and the

54

deadlines di are the given parameters as problem inputs, while Φi, and consequently ai, si (for

OSEKTime scheduling only) and fi are variables for the formulation framework. Given that all

tasks are periodic with an initial phase, their activation time must be constrained accordingly

ai,k − ai,k−1 = Ti (3.4)

ai,o = Φi (3.5)

0 ≤ Φi ≤ Ti (3.6)

A hard real time system requires all tasks to finish before their deadlines.

fi ≤ di (3.7)

OSEKTime scheduling

In OSEKTime, jobs are scheduled according to the following model. Jobs are executed

according to a time table. The job start times si must be constrained to be larger than the corre-

sponding activation times.

ai ≤ si (3.8)

OSEK scheduling

In OSEK, tasks are activated periodically, by an internal dispatcher or by an alarm and

scheduled according to their priorities. The response time of the scheduler or the dispatcher task,

introduces jitter (constant) in the activation time.

55

0 ≤ ai,k −Ai,k ≤ Ji

Start times and preemption A binary variable is used to define the order of execution of tasks.

yi,j =





0 if start time of τi precedes start time of τj ,

1 otherwise.

and the values of the y variables need to be kept consistent with the starting times according to the

definition. M is a large constant used to facilitate the mutually exclusive constraints formulation.

si < sj + yi,j ×M (3.9)

sj < si + (1− yi,j)×M (3.10)

Similarly, a binary variable is used to encode preemption

pi,j =





0 if task τi is not preempted by task τj ,

1 otherwise.

clearly, mutual preemption is not allowed.

pi,j + pj,i ≤ 1

If τi starts later than τj , τj doesn’t need to preempt τi. This leads to an additional con-

straint between y and p

56

pi,j ≤ 1− yi,j

Finally, the next inequality pair encodes additional properties of preemption with respect

to starting and finishing times. If task τi starts before task τj and it is not preempted by it, then its

finishing time should less than or equal to the starting time of τj . However, if τi is preempted by τj ,

then it needs to finish after the execution of τj , as defined by the second constraint.

fi ≤ sj + yi,j ×M + pi,j ×M (3.11)

fj < fi + yi,j ×M + (1− pi,j)×M (3.12)

Feasibility Constraints The feasibility constraints are modeled according to the rules for com-

puting the starting, finishing times and deadlines of all the jobs and signals (messages) scheduled or

transmitted on the bus.

OSEKTime scheduling

In OSEKTime, tasks are scheduled according to the following model. Tasks are activated

according to a time table. After activation, a task can be preempted by other tasks running on

the same resource. Define θ as a set which contains all the task pairs (τi, τj) where τi and τj are

tasks mapped to the same ECU but without any data dependency between them. The first equation

calculates the response time of tasks,

fi = si + Ci +
∑

(i,j)∈θ

pi,j × Cj (3.13)

OSEK model

57

Approximation can be used again here for the tasks response time according to 4.2.1.

But this requires the priority associated with the tasks. In this section, ri is used to denote the worst

case response time of task τi, and hp(i) denotes a set which has all scheduling objects with a higher

priority than τi.

ri = Ci +
∑

j∈hp(i)

dri + Jj

Tj
eCj (3.14)

The above equation can be approximated by a linear combination with coefficient α ∈

[0, 1] of linear upper and lower bounds as follows

ri = Ci +
∑

j∈hp(i)

(
ri + Jj

Tj
+ α)Cj (3.15)

The following equation for the finishing time of tasks:

fi ≥ Ai + ri (3.16)

FlexRay protocol rules FlexRay has its own specific bus access scheme. Define lcomm,lslot as

the length of communication cycle, and the slot size respectively. ss
j,k is used as an input parameter

which denotes the starting time of the kth slot from the jth communication cycle. ss
j,k is easily

calculated as ss
j,k = lcomm × j + lslot × k.

Signal to slot mapping The mapping of signals to slots is encoded in another set of binary vari-

ables

58

Ai,j,k =





0 if signal mi is NOT mapped to com cycle j, slot k,

1 otherwise.

When a signal mi is mapped to a specific slot from a specific communication cycle, the

start time and finish time for the signal will be automatically constrained to the time frame of the

slot.

ss
j,k ≤ si + (1−Ai,j,k)×M (3.17)

si ≤ ss
j,k + (1−Ai,j,k)×M (3.18)

fi ≤ ss
j,k + lslot + (1−Ai,j,k)×M (3.19)

ss
j,k ≤ fi − lslot + (1−Ai,j,k)×M (3.20)

Finally, one signal could only be mapped to one slot and the sum of the transmission time

over all mapped signals with one specific slot will be upper bounded by the slot size.

∑

j<ncomm,k<nslot

Ai,j,k = 1 (3.21)

∑

i∈φ

Ci ×Ai,j,k ≤ lslot (3.22)

Slot ownership Each slot is owned by a CPU or it is free. A set of binary variable encodes the

status of each slot

Aei,j =





1 if slot j is owned by ECU ei,

0 otherwise.

59

FlexRay has its requirement for the slot ownership. If a slot is owned by one specific

ECU, then the ownership applies to every communication cycle. The first constraint of following

ones means if signal mi is mapped to communication cycle j and slot number k, then mi’s source

ECU must own slot k. The second one corresponds any slot couldn’t be owned by more than one

ECU. But if no signal is mapped to slot k in any communication cycle, then the last constraint will

set the slot ownership to null.

Ai,j,k ≤ Aei,k (3.23)

∑
ep∈ε

Aep,k ≤ 1 (3.24)

Aep,k ≤
∑

i∈φ,j<ncomm

Ai,j,k (3.25)

Data dependencies If there is a data dependency between two jobs or between a job and a mes-

sage, there is a need to guarantee the successors start later than the predecessors. For example, if a

task τi sends a signal σj to some other tasks, then we need to make sure the sender tasks finishes its

execution before the signal is scheduled for transmission on the bus. Following constraints are used

to all these pairs, where γj represents the worst case copy time for the outputs data to be written

into the input variable for the receiving task or the data transmit register for the appropriate slot in

the FlexRay adapter. The following constraint is needed if τj depends on a signal from τi.

fi ≤ sj − γj (3.26)

60

3.2.2.3 Scheduling domain

If Φi is the initial phase of a generic task τi, the scheduling of the tasks and of the FlexRay

bus must be performed until an entire application cycle of computations has been computed. This

means, that the schedule must continue until time H + maxi(Φi) (where H is the hyper-period).

Since the initial phase values are computed as a result of the optimization, we will use an upper

bound for the previous formula

tmax = H + max
i

(Ti)

In the interval [0, tmax] (see Figure 3.11) we need to schedule for each task τi a number

of instances

nti =
⌊

tmax

Ti

⌋

1 t2,1 t2,2 t2,3 t2,4

t1,7t1,6t1,5t1,4t1,3t1,2t1,1

t3,1

τ

τ

τ

2

3

1

t2,5

t3,2 t3,3

max(T)jH

Φ

Φ

Φ
2

3

Figure 3.11: Extent and constraints in the definition of the scheduling domain

However, not all of those instances can be scheduled freely. In the example in the figure,

this is true for t3,3, but not for t1,7, which must be scheduled in the same way as t1,1 given that the

two are actually the same instance in the scheduling tables. This translates into the constraint on the

61

finish times for both types of schedulers.

fi,q = fi,k + H where q = nci + k

for a time-triggered (OsekTime) scheduler, it must also be

si,q = si,k + H where q = nci + k.

where, for each task it is

nci =
H

Ti

Similar constraints exist on the scheduling of the FlexRay slots. There is a need to schedule beyond

the application cycle, up to an additional number of cycles.

na =
⌈

maxi(Ti)
lcomm

⌉

in the last cycle, however, only

nl =
⌊

maxi(Ti)− (na − 1)lcomm

lslot

⌋

slots need to be scheduled. Suppose that naf is the number of communication cycles in

an application cycle, then slot ownership must correspond. This is automatically guaranteed by

constraints 3.23 to 3.25, provided that the index of the communication cycles j spans from 1 to

H/lcomm + na and for j = H/lcomm + na the slot index goes from 1 to nl.

Similarly, signal to slot mapping must correspond. The matching set of signals can be identified as

follows. If the sender and receiver task instances of signals mi and mj are as follows.

62

(src(mi) = tjk) ∧ (dst(mi) = tlm) ∧ (src(mj) = tjp) ∧ (dst(mj) = tlq)

where p = k + ncj

and q = m + ncl

Then the two signals are actually the same signal and must be allocated to the correspond-

ing slots (with a distance of H). This can be denoted as mi = mj . This means that for all cycle and

slot indexes k,l, for each pair mi = mj , it must be

Ajml = 1 if and only if Aikl = 1 ∧m = k +
H

lcomm
(3.27)

3.2.2.4 Objective Functions

Based on the above constraints, in addition to get a feasible solution, which satisfies the

deadline constraints, we have the flexibility to get the optimal solution with respect to different cost

functions. EP is the set of end objects on the selected paths.

minimize
∑

o∈EP
fo (3.28)

The above cost function would be meaning to minimize the end to end latencies over

selected paths.

3.2.2.5 Case study: an automotive x-by-wire system

Table 3.2 and 3.3 describe a prototypical X-by-Wire application from General Motors.

The application has 10 ECUs interconnected by a FlexRay bus. There are 47 tasks, with periods of

63

1ms, 4ms and 8ms, and 132 signals. The table shows the periods and worst case execution times in

microseconds.

No end-to-end delay constraints are defined for this case, and the objective is to find the

schedule with the minimum number of assigned slots. Two FlexRay configurations are tried. In

both cases, H = 8000µs. For configuration 1, the FlexRay cycle lcomm = 1000µs with nslot = 22,

and the slot size lslot = 200 bits, or 35µs. In configuration 2 it is lcomm = H = 8000µs. The slot

size is unchanged and there are nslot = 222 slots in the cycle. Also, three scheduling policies are

tried: OSEK, and OSEKTime with and without preemption (all pi,j = 0).

The problem is modeled in AMPL and solved using CPLEX with a time limit of one hour.

If the problem formulation in Section 3.2.2.2 is applied “as is” to the case studies, the solver can

find a feasible solution, but not the optimal one within a hour of run time (Method (1) in Table 3.4).

For example, for the OSEK scheduling with bus configuration 1 (top left of Table 3.4), there are

32672 binary variables after the AMPL pre-solve phase. CPLEX finds a feasible solution with 13

assigned slots, but cannot guarantee optimality (with an optimality gap = 1.903%).

Additional knowledge on the problem can be used to further restrict the search space.

First, leveraging the definition of a (tight) lower bound on the number of slots ki =
∑

k Aei,k

that are needed by each ECU ei, and then iteratively fixing the slot assignment for the ECUs that

reached their lower bound on the number of used slots, and optimizing the signal to slot assignments

for other ECUs (Method (2) in Table 3.4). A more aggressive reduction of the search space can be

obtained at the expense of optimality by restricting the time window assigned for scheduling to tasks

and messages (Method (3) in Table 3.4).

Basically, Section 3.2.1 and 3.2.2 provide solutions for different task-to-message syn-

64

Task name ECU Period Ci

τ8 e9 8000 810
τ9 e9 8000 550
τ11 e9 8000 100
τ12 e9 8000 770
τ13 e9 8000 200
τ14 e9 8000 110
τ15 e9 8000 550
τ16 e10 8000 780
τ10 e10 8000 510
τ17 e10 8000 190
τ18 e10 8000 260
τ19 e10 8000 100
τ20 e10 8000 230
τ21 e5 1000 25
τ22/τ26/τ30/τ34 e5/e6/e7/e8 1000 60
τ25/τ29/τ33 e6/e7/e8 1000 30
τ24/τ28/τ32/τ36 e5/e6/e7/e8 1000 20
τ23/τ27/τ31/τ35 e5/e6/e7/e8 1000 40
τ37/τ42/τ47/τ52 e1/e2/e3/e4 8000 1000
τ38/τ43/τ48/τ53 e1/e2/e3/e4 8000 500
τ39/τ44/τ49/τ54 e1/e2/e3/e4 8000 1500
τ40/τ45/τ50/τ55 e1/e2/e3/e4 4000 1300
τ41/τ46/τ51/τ56 e1/e2/e3/e4 8000 350

Table 3.2: Tasks for the X-by-wire example

chronization scenarios and different task scheduling policies, based on existing industry standards.

The solution is based on the above MILP optimization framework and allows optimization with

respect to a number of possible design metrics not limited to objective function 3.28.

3.3 Incremental Design for Time-Triggered System

Being able to accommodate incremental design changes while preserving a legacy design

may reduce design and verification times substantially [55]. This aspect is of special interest in

automotive electronics as system architecture is designed before the complete set of functionalities

65

is known. The ultimate objective is to design an architecture that is extensible and scalable, i.e., that

can accommodate additional functionality with either no change to the design or with the addition of

architectural models to support the incremental modification without changing the implementation

of the legacy functionality. These concepts are quantified by the use of two metrics, extensibility

and scalability. For this section, the thesis again focuses on the important aspect of the design

on automotive systems, the scheduling problem for hard real time distributed embedded systems.

Static priority preemption is considered provided release time control on the set of ECU’s. The

metrics are evaluated by placing them into a cost function within a mathematical programming

framework. The cost of modifying a legacy system is characterized at an ECU and bus component

level. Extensive case studies in the automotive domain are used to evaluate the metrics and the cost

function. Results show that the optimization framework is effective in reducing development and

re-verification efforts after incremental design changes.

Automotive manufactures such as General Motors (GM) have adopted a product line de-

sign approach in order to manage complexity and reduce cost. The central theme of this type of

design paradigm is component reuse. The product line approach also follows an incremental de-

sign methodology, which entails incremental addition or modification to a legacy implementation

versus a single new design for each generation of the product. This condition brings about very

interesting implications to system design, as the change induced ripple-effect or the ”coordinated

change” across the entire system must be reduced. Given this, different aspects of the design can

be optimized with respect to the cost of this ”coordinate change”. One such aspect studied in this

section is with regards to the bus and task scheduling for a time-triggered distributed system.

Briefly summary from previous sections, the following input can be assumed:

66

1. A directed acyclic graph (DAG) denotes task graph and the temporal attributes of the func-

tionality

2. The physical architecture of the system

3. The mapping of software to hardware of the functionality

As a note, this input can be characterized within two separate design generations:

1. Current implementation that needs to be scheduled

2. Future additions to the current implementation

Step 1 could either be a fresh new implementation or itself an addition to an existing

legacy implementation. In a hard real-time embedded system, all computations must complete

before their respective deadlines. Such stringent system property is essential in safety critical ap-

plications. Verification of these system properties is time and resource intensive. In 2001, Magneti-

Marelli [64] reported that a power-train unit of only 50,000 lines of code took 30 months to develop,

5 of which was used to verify the system. The demand for faster time-to-market cycles requires an

exploration of various approaches to relieve this verification bottleneck.

3.3.1 Extensibility and Scalability Design Metrics in a general Time-Triggered Pro-

tocol

A mathematical programming optimization framework is presented from Section 3.3.1

through Section 3.3.3 to illustrate more scenarios in incremental design consideration for a general

time-triggered communication system.

67

Figure 3.12: FlexRay Schedule Overall Optimization Flow.

3.3.1.1 Scheduling Implications in An Extensible and Scalable Scenario

Traditional scheduling result gives the order of the tasks to be executed, tasks are expected

to execute consecutively as soon as all data and control dependencies are met. In a time-triggered

schedule derived this way, small incremental changes often lead to a total rescheduling and re-

verification. There is significant room to exploit the scheduling objective to help reduce necessary

verification procedures in an incremental design scenarios as mentioned in previous sub-section.

In this section, a set of metrics are identified to capture the extensibility and scalability

of a hard real-time embedded system, a method is developed to apply the metrics to a design, and

the effectiveness of the metrics is evaluated. Specifically, I study a hard real-time embedded system

in the automotive domain, and focus on the scheduling aspect of system design. Extensibility and

scalability are characterized in the scheduling step of a design flow, and the set of metrics are applied

68

in a scheduling cost function using integer linear programming (ILP) and mixed integer quadratic

program (MIQP). The analysis of scheduling results show the effectiveness of the set of metrics

proposed for extensibility and scalability.

3.3.1.2 Extensible and Scalable Metrics

The motivation for selecting an extensible and scalable schedule is to allow flexibility in

a schedule to tolerate incremental changes. An incremental change could be a change of worst case

execution time (WCET) for a task, a change of worst case transmission time (WCTT) for a message,

or the addition of new elements.

A schedule is a list of starting time for tasks and starting/finishing time for messages that

satisfies all constraints of the system. If an incremental design change has not changed the schedule,

it shows the schedule has tolerated the incremental change, and the original set of verified system

properties should still hold.

An extensible schedule must tolerate changes in task WCET and message WCTT. The

first priority is to maintain the bus schedule. The bus is a shared resource, shifting a message

in rescheduling a bus schedule could lead to expensive re-verification operations. An extensible

schedule should also reduce interference of schedule changes across ECUs. If the schedule of one

ECU must change, the change should minimally affect other ECUs in the system.

A scalable schedule must accommodate new tasks and messages by statically schedul-

ing them on an existing system with as little effect on the legacy tasks and message schedules as

possible. This involves providing blocks of idle times on the ECUs for computationally intensive

tasks, and providing porosity in the schedule to accommodate tasks with tight deadlines. Stack

based preemption is allowed in executing tasks on the ECUs. This provides a new task all the idle

69

Figure 3.13: Properties for Task T3.

time on an ECU from the task release time to its deadline. The ability of accommodating a new

computationally intensive task is limited only by the amount of idle time on an ECU.

It is common to assume the deadline of a task is the end of its period, subject to data

dependency constraints. A task with tight deadline is a task that has a short period. This type of task

is expanded into several iterations in a super period through task graph expansion, so there must

be enough idle time in each of the period to accommodate it. This would require distributing idle

times on an ECU, such that the new task with a tight deadline could find opportunities in each of its

iterations to execute.

To accommodate new messages, similar to that of new tasks, distributing idle times on the

bus is needed such that a new message would affect as few other messages as possible.

3.3.1.3 Previous Work on Extensibility and Scalability Metrics

There is a wide body of previous work in static cyclic scheduling. Classical scheduling

theory typically uses metrics such as minimizing the sum of completion times, minimizing schedul-

ing length, minimizing resources or minimizing the maximum lateness [34]. As the constraint of

70

deadlines is added for real time systems, the emphasis is shifted to finding a feasible solution while

minimizing some metrics such as end-to-end delay, overall execution time, overall processor cost,

or overall communication cost [7].

This section is concerned with the extensibility and scalability metric of schedules for

hard real time embedded systems. The closest previous work is [55], where the concept of incre-

mental design flow is first discussed. [55] uses an improved list scheduling approach to obtain a

valid schedule, and then uses an algorithm to distribute task slacks on the processing elements to

accommodate future tasks. However, because they only consider priority based preemption in their

approach, and not our schedulability based preemption, the resulting schedule may not be suitable

for accommodating future tasks with urgent deadlines. Also, mapping of software and hardware in

[55] is assumed to be a degree of freedom for their extensibility and scalability considerations. Such

assumptions may not be realistic, as significantly different cost functions, such as fault-tolerant cost

functions, may be dominant at the mapping stage.

In the thesis, mathematical programming is chosen as a vehicle to describe and optimize

for the extensibility and scalability metric. There is an extensive array of commercial solvers avail-

able, and we can obtain global optimal solution with respect to an objective function. Mathematical

programming has been used in [7] for mapping and scheduling of homogeneous multi-processor

real time systems. Their work is motivated by software/hardware co-design, and the objective is to

obtain schedule feasibility while maximizing performance and minimizing cost.

The formulation in this part assumes statically scheduled tasks with data dependencies, in

a distributed and heterogeneous multi-processor architecture. The bus is time triggered. Preemption

is allowed in the ECUs, and multi-rate tasks are accommodated by using task graph expansion. All

71

tasks are allocated a-priori, and task migration is not permitted.

The amount of idle time on an ECU is determined by the amount of tasks allocated, the

WCET of each of the tasks on the ECU, and the super period of the system. The super period of a

task is least common multiple of all the periods of the tasks. The designer controls the amount of

idle time on an ECU by defining a set of task allocation, and determining ECU performance (and

therefore WCET of tasks on the ECU). The amount of idle time on the bus is determined by the

total number of messages on the bus and the bus performance. The focuses on optimally utilizing

these redundancies for maximal extensibility and scalability.

3.3.1.4 Mathematical Representation of Metrics

A metric is a standard of measurement used to compare results with repect to a property.

The extensibility and scalability metrics provide an upper bound to the design changes a schedule

can accommodate.

The extensibility metric for a task describes the maximum task WCET extension a sched-

ule can accommodate without rescheduling.

The extensibility metric for a message describes the maximum task WCET extension a

schedule can accommodate by only rescheduling the finish time of the message on the source ECU

and the destination ECU.

The scalability metric is defined with respect to an architectural resource, i.e. an ECUs or a

bus. It describes the maximum WCET(WCTT) a schedule can accommodate for a new independent

task(message) with certain period.

Extensibility Metric for Tasks: As part of an incremental design change, a task ti on

ECU uk may increases its WCET. As preemption is allowed, ti may extend its finish time beyond

72

a) start time of next dependent task on uk b) start time of next dependent message c) deadline of task ti

Real slack for T11 is the idle time on ECU1 between T11 finish time and time (b)

Figure 3.14: Extensibility metric illustration.

the start time of the next task tj on uk without changing the schedule on ti. Execution of ti can

resume after tj finishes.

Numerically, the slack for task ti is sum of all idle time on uk between finish time of ti

and ιi, where ιi is the earliest of the three times below: (see Figure 3.14)

a) start time of next dependent task on uk

b) start time of next dependent message

c) deadline of task ti

Intuitively, ti is allowed to extend through all idle times on uk as long as it doesn’t violate

data dependency constraints and finishes before its deadline.

Extensibility Metric for Messages: Preemption is not allowed on the bus. The slack for

message mti,tj is the bus idle time between mti,tj finish time and start time of the next massage.

Scalability Metric for Tasks: An incremental design change may introduce new tasks

in the system. When a task tk is added to the schedule, we would like to accommodate it without

73

Figure 3.15: Scalability metric illustration.

changing the existing schedule, i.e. maintaining all existing task start times. The new task must be

executed before its deadline, which is equal to its period. As preemption is allowed, all idle time in a

period can be used by a new task. If the task period is less than the super period, the task is repeated

through task graph expansion until the length of periods equals the super period. Each repetition

must contain enough idle time to accommodate the new task. (see Figure 3.15)

Numerically, the maximum WCET of a new task tk that could be accommodated in the

existing schedule is defined as the minimum all idle time across all repetitions of the period.

Intuitively, all repetitions of the new task must fit into their respective period. The period

with the least amount of idle time limits the size of the new task that can be accommodated.

Scalability Metric for Messages: Preemption is not allowed on the bus, so new messages

must fit into existing contiguous bus idle time blocks. For a new message with a specific period, the

maximum WCTT that could be accommodated is the largest contiguous block of idle time within

that period. If the period is smaller than the super period, the period is repeated through task graph

expansion.

Numerically, the metric is defined as the minimum of such largest contiguous idle time

74

blocks across all repetitions of the period.

Intuitively, all repetitions of the new message must fit into their respective period. The

largest contiguous idle time in each period limits the size of messages they can accommodate.

3.3.2 Time-Triggered Incremental Design in an Optimization Framework

3.3.2.1 Mathematical Programming Formulation

Mathematical programming has a concise semantics for describing optimization prob-

lems. The thesis first develops a set of notations, parameters, and variables to describe the problem

(in this sub-section, the notations are slightly different from other part of the thesis for encoding

purpose), then applies feasibility constraints afterwards. The extensibility, scalability and multi-

objective cost functions are finally presented.

Notations A short summary of the notations used in the formulation is given first.

Sets

τ a set of tasks τ = {ti|i = 1, ..., n}

ε a set of ECUs ε = {ui|i = 1, ..., m}

λ a set of task allocation for ECUs

{κu
k
|uk ∈ ε} (κu

k
= {ti|ati,uj = 1}) ∗1

π a set of task pairs running on the same ECU

{(ti, tj)|ti, tj ∈ κu
k
, ti 6= tj , uk ∈ ε}

σ a set of task pairs with DD* on the same ECU

{(ti, tj)|ti, tj ∈ κu
k
, ti ≺ tj , uk ∈ ε}

θ a set of task pairs with no DD* on the same ECU

75

{(ti, tj)|ti, tj ∈ κu
k
, ti ≺Â tk, uk ∈ ε}

$ a set of task pairs with DD* on different ECU

{(ti, tj)|ti ∈ τ, tj ∈ τ, ti ≺ tj , ati,uk
+ atj ,uk

≤ 1}

∗1 ati,uj : denotes task ti is allocated in ECU uj ,

one task could only be allocated on one ECU

DD*: data-dependency

ti ≺ tj denotes task ti precedes task tj , and ti ≺Â tj denotes task ti do not have data

dependency between them, while ti 6= tj means that task ti and task tj do not reference the same

task.

Parameters and Variables: A task ti with period pi, deadline di released at ri, with

WCET Ci, starts to execute at si and finishes at time fi. During execution, it may be preempted by

another task tj . A message sent from task ti to task tj starts to transmit on the bus at time sm
ti ,tj

,

with WCTT tmti ,tj
, and finishes transmission at time fm

ti ,tj
.

Following is the binary variables used in the formulation:

yti ,tj
=





0 if start time of ti precedes start time of tj ,

1 otherwise.

pti ,tj
=





0 if task ti is not preempted by task tj ,

1 otherwise.

76

zti ,tj ,t
k
,t

l
=





0 if message transmitted between ti,tj precedes message between tk,tl,

1 otherwise.

3.3.2.2 Feasibility Constraints

A schedule is feasible if it satisfies the constraints of the architecture. Each ECU cannot

process more than one task concurrently, although a task could be suspended to allow another task

to execute, i.e. preemption. The bus can only transmit one message at a time. The is no preemption

for the messages. Collision of messages implies infeasible schedule.

Release and Deadline Constraints: A hard real-time system required all tasks to start

after their release time, and finish before their deadlines.

rti
≤ sti

, ti ∈ τ (3.29)

fti
≤ dti

, ti ∈ τ (3.30)

Task and Message Constraints: A task ti in execution may be preempted by another

task tj , which may again be preempted by some other tasks. Task ti resumes its execution after task

tj finishes. A message is not allowed to be preempted by another message during its transmission.

Its finish time is trivially calculated.

fti
= sti

+ Cti
+ Σ(ti ,tj)∈θ(pti ,tj

× Ctj
) (3.31)

sm
ti ,tj

+ tmti ,tj
= fm

ti ,tj
(ti, tj) ∈ $ (3.32)

Data Dependency Constraints: Consider a task pair with data dependency between

them, if they are running on the same ECU, then there is no communication between them through

77

bus, this corresponds to Equation 3.33. There will be a message transmitted on the bus if the task

pair running on different ECU, then this will lead to constraints 3.34 and 3.35.

fti
≤ stj

(ti , tj) ∈ σ (3.33)

fti
≤ sm

ti ,tj
(ti , tj) ∈ $ (3.34)

sm
ti ,tj

+ tmti ,tj
≤ stj

(ti , tj) ∈ $ (3.35)

Task Mutually Exclusive Constraints: Scheduling tasks on an ECU implies selecting

an order to execute the tasks. yti ,tj
describes the order for a pair of tasks on the same ECU. Order is

implied for task pairs in σ, the set of task pairs, with data dependency, allocated to the same ECU.

This constraint only applies to task pair set θ, pairs with no data dependencies, and are allocated to

the same ECU. M is a large constant used to facilitate the mutually exclusive constraints formula-

tion. Task mutual exclusivity is defined only on the task start time. Preemption constraints must be

used to define task finish time.

sti
< stj

+ yti ,tj
×M (ti, tj) ∈ θ (3.36)

stj
< sti

+ (1− yti ,tj
)×M (ti, tj) ∈ θ (3.37)

yti ,tj
+ ytj ,ti

= 1 (ti, tj) ∈ θ, (tj , ti) ∈ θ (3.38)

Preemption Constraints: Based on the mutually exclusive constraints, there is a need

to have more constraints as follows to finish modeling the preemption constraints:

fti
≤ stj

+ yti ,tj
×M + pti ,tj

×M (ti, tj) ∈ θ (3.39)

ftj
< fti

+ yti ,tj
×M + (1− pti ,tj

)×M (ti, tj) ∈ θ (3.40)

78

pti ,tj
+ ptj ,ti

≤ 1 (ti , tj) ∈ θ, (tj , ti) ∈ θ (3.41)

pti ,tj
≤ 1− yti ,tj

(ti , tj) ∈ θ (3.42)

Equation 3.39 just make sure that if task ti precedes task tj and is also preempted by it, the finish

time of task tj should be earlier than the finish time of task ti. Both task ti and tj can not be

preempted by each other leads to equation 3.41. It is very clear that if task ti does not precede task

tj , then ti can not be preempted by tj , this corresponds to Equation 3.42.

Message Mutually Exclusive Constraints: Similarly, for the message transmitted on

the bus, the corresponding mutually exclusive constraints apply as follows:

sm
ti ,tj

+ tmti ,tj
≤ sm

t
k
,t

l
+ zti ,tj ,t

k
,t

l
×M (3.43)

sm
t
k
,t

l
+ tmt

k
,t

l
≤ sm

ti ,tj
+ (1− zti ,tj ,t

k
,t

l
)×M (3.44)

Where (ti, tj) ∈ $, (tk, tl) ∈ $, i 6= k, or, j 6= l.

3.3.2.3 Extensibility, Scalability, and Multi-Objective Cost Function

In order to define the cost function exactly in terms of the extensibility and scalability

metric the resulting formulation becomes a Mixed Integer Non-linear Programming problem, there

is not an efficient way to solve even a small scale problem due to the computing ability of non-linear

integer problem solver. A good approximation to the cost function is needed so that the formulation

becomes a practically solved problem in a reasonable time. The approximated cost functions are:

Max E =
∑

(ti,tj)∈$

wti,tj × ((sm
ti,tj − fti) + (stj − fm

ti,tj)) (3.45)

Min S =
∑
uj∈ε

∑
ti∈τ

ati,uj × (ιti − αuj)
2 +

∑

(ti,tj)∈$

(ιbfti,tj − αbus)2 (3.46)

79

Max ES = k1 × E − k2 × S (3.47)

αuj is the average idle time on ECU uj , while αbus is the average time on the bus. In equation

3.45, wti,tj is the a weight parameter to the task pair in $, which might denote the correspondence

critical level for the task pair. The function try to maximize the sum over all the slacks associated

with each task and each message. Generally, it is a good idea to put a big weight to make more room

in time for the task pair which has higher probability to increase their WECT. By this summation,

approximation of the extensibility metric is achieved. Equation 3.46 evenly distributes all the idle

time as much as possible by minimizing the variance of idle time over all the ECUs. Based on these

extensible and scalable approximation cost function, it is simple to consider them jointly to make

a more suitable schedule for some specific incremental design requirement. Coefficient k1 and k2

are used to tune the cost function to see the fitness of resulting schedule for different application

instances.

To better understand the above objective function and finish the formulation, constraints

for the idle time on tasks ιti and ιbfuk , idle time on bus ιti,tj and ιbfbus go as follows,

ιti ≤ (stj − fti) + yti,tj ×M + pti,tj ×M, (ti, tj) ∈ π (3.48)

ιti ≤ P − fti , ti ∈ τ (3.49)

ιtj ≤ 0 + yti,tj ×M + (1− pti,tj)×M, (ti, tj) ∈ π (3.50)

ιbfuk
≤ sti , uk ∈ ε, ti ∈ κuk

(3.51)

∑
tj∈κuk

ιtj + ιbfuk
= P −

∑
tj∈κuk

Ctj , uk ∈ ε (3.52)

Equation 3.48 basically sets a constraint for the idle time after each task on a specific ECU. For

example, consider task ti and its consecutive task tj on the same ECU, the idle time after task ti on

80

this ECU should be less than or equal to the difference of start time of task tj and the finish time of

task ti if tj does not preempt ti. ιbfuk is the first idle time on each ECU, and similar to equation 3.48,

it is easy to get the meaning of constraints 3.49- 3.52

ιti,tj ≤ (sm
tk,l

− fm
ti,tj) + zti,tj ,k,l ×M (3.53)

ιti,tj ≤ P − fm
ti,j (3.54)

Where (ti, tj) ∈ $, (tk, tl) ∈ $, i 6= k, or, j 6= l

ιbfti,tj ≤ sm
ti,tj , (ti, tj) ∈ $ (3.55)

∑

(ti,tj)∈$

ιti,tj + ιbfbus = P −
∑

(ti,tj)∈$

Cti,tj (3.56)

Similar to equation 3.48- 3.52, equations 3.53- 3.56 are the idle time constraints set on

the message transmitted on the bus, the implication of these equations are straight forward.

3.3.2.4 Cost Function Evaluation based on Metrics

The extensibility and scalability metrics described in Section 3.3.1 is abstracted into a

multi-objective cost function in Section 3.3.2.3. To evaluate the effectiveness of this abstraction, I

need to describe a real industrial problem to be solved in the mathematical programming framework,

apply the multi-objective cost function, and extract extensibility and scalability metrics from the

resulting schedule. The extraction is applied to the scheduling result for the solver, outside the

mathematical programming framework. It follows exactly the metrics described in Section 3.3.1.

Therefore it is an objective monitor of the effectiveness of objective functions in abstracting the

metrics.

81

3.3.3 Experimental Results

The formulation is described using AMPL, the mathematical programming modeling lan-

guage. ILOG CPLEX 9.0.0 mathematical programming solver is used on i686 or equivalent server

running Linux. Data from results generated are plotted and extracted with our own interpreters.

3.3.3.1 System Description

The thesis presents a set of advanced automotive control application case used by Nagara-

jan et al [48]. The system contains three threads of control: adaptive cruise control (ACC), electric

power steering (EPS), and traction control (TC). Data is collected from sensors and processed in

one or more ECUs. The ECUs then control actuators to respond to the sensed environment. ACC

maintains safe distance between two cars. EPS provides assistance to help steer. TC actively sta-

bilizes the vehicle under slippery road conditions. These functions are mapped to an architecture

with 10 sensors, 3 processor ECUs, and 4 actuators. The scheduling problem contains 24 tasks, of

which 6 are expanded using task expansion. During the task graph expansion, a task Tn is renamed

to Tni, where n is the task ID shown in the Function Graph, and i is natural number representing

the instance it appears in. As these are safety critical functions in a vehicle, all deadlines must be

met.

3.3.3.2 Results

A typical scheduling heuristic for distributed embedded system is to minimize schedule

end-to-end delay. I compare such a heuristic with the results optimized with respect of to extensi-

bility and scalability cost functions.

82

Figure 3.16: Case study functionality graph.

Figure 3.17: Case study architecture graph.

83

• Traditional result: minimize end-to-end delay

• Optimized result: maximize extensibility and scalability

When scheduled for minimum end-to-end delay, the function consumes approximately 3/4

of the available super period. This implies a 33% margin for future incremental developments. The

cost function abstracted from extensibility and scalability metrics utilizes this margin to enhance the

scheduling result.

Extensibility is captured by quantifying the maximum slack of a task in a schedule. It

is the upper bound of task WCET extension the schedule could accommodate. The task slacks, as

defined in Section 3.3.1, are extracted from the two scheduling results.

The y-axis shows task slack for each task, and the x-axis is ordered with respect to task

start times. The lighter bars are the optimized results, and the darker bars are the traditional result.

Compared to the traditional result, the total slack in the optimized result increased significantly from

170.3 to 189.6 units of time. Slacks accumulated at the actuator nodes in the traditional result are

more distributed among the sensors and tasks on processors in the optimized results. This shows

that the multi-objective function is effective in optimizing for extensibility as we defined it.

Scalability is captured by quantifying the maximum new task size the schedule can ac-

commodate with certain periods. The ECU scalability is defined in Section 3.3.1. The vertical axis

represents the period of the new tasks to be added, and the horizontal axis represent the cumulative

idle time in one period from on all processor ECUs. Darker bars show the traditional result, and

lighter bars show the optimized result. At each period, the optimized result can accommodate larger

new tasks than the traditional result. This shows the effectiveness in the multi-objective function for

optimizing scalability.

84

Dark bars: Real task slack from traditional results

Light bars: Real task slack from optimized results

Graph shows redistribution of slacks

Figure 3.18: Extensibility metric evaluation.

85

Light bars: Upper bound of new task size in optimized results

Dark bars: Upper bound of new task size in traditional results

Graph shows potential for new task to be inserted at different periods

Figure 3.19: Scalability metric evaluation.

86

I use three incremental design scenario to illustrate the effectiveness of our metrics in

handling design changes. The EPS unit has a period of 30 units of time. It is duplicated through

task graph expansion to be scheduled in a 60 unit super period. The EPS tasks represent a critical

section in the schedule. The first 2 scenarios contain changes to the EPS unit. The third one concerns

changes to the ACC unit.

Scenario one: A Hand Wheel Effort upgrade allows different drivers to select profiles of

desired force feedback on the steering wheel based on road conditions. The upgrade causes the

WCET of Hand Wheel Effort to be extended by one unit of time.

Scenario two: Enhanced steering uses Road-Wheel Force as input. The enhancement

requires a new task Tnew to be added between T2 and T5 on P2. There will be two new messages,

T2 to Tnew and Tnew to T5.

Scenario three: Basic ACC is upgraded to a Stop-N-Go ACC. The feature would predict

a desired speed based on digital map information and forward looking sensor. To implement these

design changes, we add a new task to the ECU, P1, extend the existing task T10, and add in two

messages, one between T7 and T11, and another between T19 and T10.

The baseline results are defined as the traditional and optimized result. Changes to a

task would infer an ECU reprogramming. Changes to message start or finish time implies repro-

gramming both the message source and destination ECU. Minimum number of ECUs that must be

re-programmed to achieve a feasible schedule is calculated. New tasks and messages are scheduled

under the same cost functions as the legacy tasks. The ECU count is confirmed with a rescheduling

of only the reprogrammed ECU and keeping all other ECU schedules fixed. This ECU reschedule

is an indicator of the amount of re-verification that is required. The result is shown in Table 3.5.

87

Figure 3.20: Incremental design scenarios.

88

Scenario one is a simple illustration of the effectiveness of our approach. A tightly cou-

pled schedule as in the traditional result responds poorly to small incremental changes. A small

increase in one task execution time requires 15 out of 17 ECUs in the system. As messages in the

bus are forced to shift according to task start and finish time changes, the change is propagated to

almost all other ECUs. In the optimized result, T4 has enough slack to accommodate this scenario,

and the change is accommodated by only reprogramming T4 on the ECU being upgraded.

Scenario two describes a larger incremental change on EPS. This change involves tasks on

3 ECUs, and does not affect the most critical section of the schedules. The traditional result requires

changes to 8 ECUs. The ECU accommodating the new task needs to shift legacy tasks to reach a

feasible solution, which affects other messages. The bus also lack idle time slots to accommodate

the new messages. The new messages and new task induced message shifts, which would aggregate

the effects of the changes. One important observation is that since EPS duplicated through task

graph expansion, there are two instances of T4 to change. T41 in the first half of the schedule

required the most amount of reprogramming. T42 in the second half of the cycle utilizes the slacks

at the end of the cycle and required the minimal amount of reprogramming.

In the optimized result, scalability cost function is effective in spreading out tasks on the

ECUs and the messages on the bus such that idle time slots are available to accommodate the new

task and messages. Only the minimal of 3 involved ECUs are reprogrammed.

Scenario three is the largest incremental change we analyzed. It involves one new task,

one task extension and two new messages. Five ECUs are used to implement the changes. In

the traditional result, similar change propagation mechanisms affected a total of 8 ECUs. In the

optimized result, only the necessary five ECUs required reprogramming.

89

These three scenarios represent a variety in the sizes of incremental changes. The op-

timized result is shown to reduce the necessary reprogramming of the system. Evaluation and

re-verification of the system could be simplified.

The multiple ECU (processor) scheduling problem is an NP-hard problem [73]. The

mathematical programming approach is computationally intensive, and suitable only for moderately

sized problems. The case study shown here required one hour of run-time for the full extensibility

and scalability cost functions. The complexity mainly resides in solving for the precedence binary

variable yti,tj and zti,tj ,tk,tl . To deal with larger problem sizes, a heuristic could be used to obtain

a feasible solution first, lock down all precedence binary variables, then use the cost function to

optimize. However, there is a risk of being locked into a bad task ordering. Algorithms to perturb a

feasible ordering need to be developed in order to move toward a more optimal solution.

This chapter presented an optimization framework based on MILP for the scheduling of

real-time applications on FlexRay-based systems. The work provided solutions for task scheduling

policies based on existing industry standards and optimality with respect to an extensibility metric.

Additionally, I captured extensibility and scalability metrics in scheduling a hard real time embed-

ded system, and recognized its implications in accelerating time-to-market of a system development

process by reducing development and re-verification burden in an incremental design flow. The ap-

proaches are shown to be effective for industrial problems.

90

Signal Send Size Recv Signal Send Size Recv
σ1 τ15 32 τ22/τ26/τ30/τ34 σ67 τ44 16 τ12

σ2 τ15 32 τ22/τ26/τ30/τ34 σ68 τ44 16 τ12

σ3 τ15 32 τ22/τ26/τ30/τ34 σ69 τ44 16 τ12

σ4 τ15 32 τ22/τ26/τ30/τ34 σ70 τ44 16 τ12

σ5 τ20 32 τ22/τ26/τ30/τ34 σ71 τ44 16 τ12

σ6 τ20 32 τ22/τ26/τ30/τ34 σ72 τ44 16 τ12

σ7 τ20 32 τ22/τ26/τ30/τ34 σ73 τ44 16 τ12

σ8 τ20 32 τ22/τ26/τ30/τ34 σ74 τ44 16 τ12

σ37 τ29 32 τ22/τ26/τ30/τ34 σ103 τ12 16 τ17

σ38 τ30 16 τ8/τ16 σ104 τ12 16 τ17

σ39 τ30 16 τ8/τ16 σ105 τ12 16 τ17

σ40 τ30 1 τ8/τ16 σ106 τ12 16 τ17

σ41 τ35 32 τ23/τ27/τ31 σ107 τ12 16 τ17

σ42 τ35 32 τ23/τ27/τ31 σ108 τ12 16 τ17

σ43 τ35 32 τ23/τ27/τ31 σ109 τ12 16 τ17

σ44 τ33 32 τ22/τ26/τ30/τ34 σ110 τ12 16 τ17

σ45 τ33 32 τ22/τ26/τ30/τ34 σ111 τ12 16 τ17

σ46 τ33 32 τ22/τ26/τ30/τ34 σ112 τ12 16 τ17

σ47 τ34 16 τ8/τ16 σ113 τ12 16 τ17

σ48 τ35 8 τ8/τ16 σ114 τ12 16 τ17

σ49 τ35 8 τ8/τ16 σ115 τ12 16 τ17/τ18

σ50 τ34 16 τ8/τ16 σ116 τ12 16 τ18/τ17

σ51 τ34 16 τ8/τ16 σ117 τ12 16 τ18/τ17

σ52 τ37 16 τ12 σ118 τ12 16 τ18/τ17

σ53 τ37 16 τ12 σ119 τ12 16 τ18/τ17

σ54 τ39 16 τ12 σ120 τ12 16 τ18/τ17

σ55 τ39 16 τ12 σ121 τ12 16 τ18/τ17

σ56 τ39 16 τ12 σ122 τ12 16 τ18/τ17

σ57 τ39 16 τ12 σ123 τ12 16 τ17

σ58 τ39 16 τ12 σ124 τ12 16 τ17

σ59 τ39 16 τ12 σ125 τ12 16 τ39/τ44/τ49/τ54

σ60 τ39 16 τ12 σ126 τ12 16 τ39/τ44/τ49/τ54

σ61 τ39 16 τ12 σ127 τ12 16 τ39/τ44/τ49/τ54

σ62 τ39 16 τ12 σ128 τ12 16 τ39/τ44/τ49/τ54

σ63 τ39 16 τ12 σ129 τ12 16 τ39/τ44/τ49/τ54

σ64 τ42 16 τ12 σ130 τ12 16 τ39/τ44/τ49/τ54

σ65 τ42 16 τ12 σ131 τ12 8 τ39/τ44/τ49/τ54

σ66 τ44 16 τ12 σ132 τ12 16 τ39/τ44/τ49/τ54

Table 3.3: Signals for X-by-wire example

91

OSEK+confg1 OSEK+confg2
Method Iter # Binary Time(s) result Opt # Binary Time(s) result Opt

(1) 32672 3600 13 No 42916 3600 44 No
(2) 1 32672 719.9 13 Yes 42916 3600 53 No

2 - - - - 5848 18.8 44 Yes
(3) 1 25886 631.0 13 Yes 34412 887.4 44 Yes

OSEKTime+confg1 OSEKTime+confg2
Method Iter # Binary Time(s) result Opt # Binary Time(s) result Opt

(1) 48447 3600 13 No 63195 3600 45 No
(2) 1 47943 627.0 13 Yes 62537 3600 45 No

2 - - - - 6953 129.0 44 Yes
(3) 1 33391 606.3 13 Yes 43657 3298.2 44 Yes

OSEKTime+Preem+confg1 OSEKTime+Preem+confg2
Method Iter # Binary Time(s) result Opt # Binary Time(s) result Opt

(1) 51079 3600 N/A No 65863 3600 N/A No
(2) 1 50460 3600 16 No 65054 3600 47 No

2 7787 439.5 14 Yes 8559 2404.7 47 Yes
(3) 1 35729 3600 14 No 45995 3600 46 No

2 4266 1.3 13 Yes 7329 357.2 44 Yes

Table 3.4: Results on the X-by-wire Example

Scenario Traditional Result Optimized Result
Scenario one 15 1
Scenario two 8 3

Scenario three 8 5

Table 3.5: Incremental design change evaluation

*Value in table shows number of ECU requiring reprogramming

92

Chapter 4

Scheduling based Synthesis for Event

Triggered Automotive System

Modern automotive architectures support the execution of distributed safety- and time-

critical functions on a complex networked system with several buses and tens of ECUs. Schedu-

lability theory provides support for analyzing the worst case end-to-end latencies when the archi-

tecture of the system is deployed and the communication and synchronization mechanisms have

been defined among all tasks in the system. Schedulability theory not only allows the analysis of

the worst case end-to-end latencies and the evaluation of the possible architecture configurations

options with respect to timing constraints, but it can also be used in an optimization framework

to synthesize design parameters such as selecting the communication and synchronization model

that exploits the trade-offs between the purely periodic and the precedence constrained data-driven

activation models to meet the latency and jitter requirements of the application, at the same time,

period synthesis could be included to the procedure.

93

For FlexRay based communication system discussed in previous chapter, the starting time

of messages transmission on the bus is usually pre-determined during design time. For periodic

driven activation of messages transmission on CAN based communication system, the starting time

is not pre-determined at design time. The thesis attempts at locking down the worst case response

time of tasks/messages and finally compute the end to end latency even for a mixed activation model

on the selected path.

In this chapter, preliminaries and definitions are first introduced on event-triggered com-

munication system in Section 4.1, then in Section 4.2 the worst case response time for tasks and

messages in CAN is discussed, after the explanation of system activation model in Section 4.3, an

optimization framework, based on an ILP formulation of the problem, is presented in Section 4.4

and its effectiveness is demonstrated by applying it to the optimization of a complex real-life GM

architecture.

4.1 Preliminaries and Definitions for Event Triggered System

4.1.1 Controller Area Network Background

CAN as discussed in Section 1.3.2.3, is a multicast shared serial bus standard, originally

developed in the 1980s by Robert Bosch GmbH, to connect electronic control units (ECUs). CAN

was specifically designed to be robust in electromagnetic noisy environments.

This chapter presents the transmission of messages on CAN buses, and shows that the

arbitration of messages is based on their ID or simply called priority. The system architecture is

usually composed of a number of ECUs inter-connected by a CAN bus.

94

4.1.2 CAN based System Modeling

The model of distributed end-to-end real-time computations is a dataflow of tasks, repre-

sented with a Directed Acyclic Graph. The model is a tuple {V, E ,R}, where V is the set of vertices,

E is the set of edges, andR = {R1, . . . , Rz} is the set of shared resources supporting the execution

of the tasks (on CPUs) and the transmission of the messages (on buses).

V = {o1, . . . , on} is the set of objects implementing the computation and communication

functions of the system. oi can be a task or a message and is characterized by a maximum time

requirement Ci and a resource Roi that it needs to execute or for its transmission. The minimum

time requirement is always assumed to be 0. While inaccurate (especially for message objects),

this simplification in most cases does not affect in a significant way the quality of the end-to-end

latency analysis. All objects are scheduled according to their priority; πi is the priority of oi and

indexes are assigned by decreasing priority levels; ri is the worst case response time of oi, from the

activation of the object to its completion in case it is a task, or its arrival at the destination node in

case it is a message. wi is defined as the worst case time spent from the instant the job is released

with maximum jitter Ji to its completion or arrival. An object oi has conceptually one or more input

ports and one or more output ports that are used to exchange data and optionally activation signals

or events. Each object runs at a base period Ti (and optionally, jitter Ji). It reads its inputs at the

time it starts executing, if it is a task, or it samples the incoming signal values and it is enqueued at

the activation time in case it is a message. An object may receive its activation signal from one or

more of its input ports or from a timer sending periodic activation signals. If an object is activated

by a signal on an incoming link, then it must have the same period to the predecessor object sending

the activation signal. At the end of its execution or transmission, it delivers its results (task) or its

95

data content (message) and, where required, activation signals on its output ports.

E = {l1, . . . , lm} is the set of links. A link li = (oh, ok) connects the output port of object

oh (the source) to the input port of object ok (the sink). Alternatively, a link may be labeled with the

indexes of the source and destination task as in lh,k = (oh, ok). A link li may carry the activation

signal produced when the source object completes its execution or transmission and instantaneously

received on the input port of the sink. However, a different communication and synchronization

model is possible, where the sink is activated by a periodic timer and, when it executes, reads the

latest value that was transmitted over the link (and stored into a buffer). The source and the sink of

link li are also denoted by src(li) and snk(li), respectively.

When an object is activated by the completion of a predecessor an event-driven activation

model can be defined. In this case, I need to find a model for the activation semantics that can

be expressed in terms of a periodic event stream with jitter. If an object is activated by a single

completion event, then the only condition is that its period must be an integer multiple of the pre-

decessor object period. In this case, the activation semantics is of one every k signals. I define a

less restrictive activation semantics by allowing an object to be activated by multiple completion

events. In this case, the activation is of type AND, meaning that all the predecessor objects on the

selected links must be completed in order for the object to be activated. The only allowed case

for multiple activation events from multiple incoming links is when the links are connected to pre-

decessor objects having periods that are integer dividers of the target object period, have a unique

common predecessor, and are scheduled on the same resource. In this case, I define a set of link

groups G = {lg1, . . . , lgk} where each link group lgi = {li0 , . . . liki
} has the following properties,

snk(lij) = snk(lil) and Rsrc(lij) = Rsrc(lil)
for any link pair lij , lil ∈ lgi. If τj1 = src(lij) and

96

τj2 = snk(lij) then kTj1 = Tj2 for some integer k. Finally, ∀lgi, ∃!op such that ∀lj,k ∈ lgi there

exists a link lp,j ∈ E . and there is no other incoming link to oj . If all the links in a group carry

an activation signal, then the source objects must be activated at the same time or they must all be

activated by a completion event. These last conditions do not apply to singleton groups. G(ok) is

the set of link groups that are incoming to ok. For example, in Figure 4.1, l1, l2, l3 belong to group

lg1, l4, l5 to lg2 and l6 to lg3 consisting of only one link. Hence, an object can be activated by a

periodic trigger, by a signal coming from a single predecessor object or by the AND composition

of signals coming from a single link group. In this last case, the object is actually activated by the

completion of the lowest priority object or in the group lgi, which is called group representative

or = rep(lgi).

R

3

lg
1

lg
2

l2

l1

l4

l5

l6

lg
3

l

Figure 4.1: Example of link groups.

97

An external event results from the execution of a virtual object oi with no input links, rep-

resenting the environment. External events can beperiodic with period Ti and jitter Ji, or sporadic

with a minimum interarrival time, equally denoted by Ti.

An output object oj represents data consumption by the environment, e.g. when the sys-

tem updates an actuator.

A functional chain or Path from oi to oj , or Pi,j , is an ordered sequence P = [l1, . . . , ln]

of links that, starting from oi = src(l1), reach oj = snk(ln) crossing a unique sequence of n + 1

objects such that snk(lk) = src(lk+1). oi is the chain’s source and oj its sink.

When tasks and messages are activated periodically and communicate on a freshest value

semantics, several definitions of end-to-end latency (and the associated deadline) are possible. In

the work, the end-to-end latency Li,j associated to a path Pi,j is defined as the largest possible time

interval that is required for the change of the input at one end of the chain to be propagated to the

last task at the other end of the chain, whatever is the state of the tasks in the path and regardless of

the fact that some intermediate result may be overwritten before it is read. di,j is the corresponding

path deadline.

I assume in this chapter that the application can tolerate the semantic variation when

changing from one synchronization model to the other. In many control applications, the non-

determinism in time introduced by the periodic activation model and the jitter introduced by the

event-driven activation can both be tolerated within acceptable ranges.

98

4.2 Design Analysis of CAN based Communication System

In order to characterize the end to end latency for a path, there is a need to calculate the

response time for tasks and messages on the selected path.

4.2.1 Response Time for Tasks: Processor Scheduling

The worst case response time for a periodic task τi, activated with maximum jitter Ji in a

generic preemptive and priority based scheduled system, when the response time can be larger than

Ti, is given by the following formula.

wi(q) = (q + 1)Ci +
∑

j∈hp(i)

⌈
wi(q) + Jj

Tj

⌉
Cj

wi = maxq{wi(q)− qTi}

ri = Ji + wi

for all q = 0 . . . q∗ until ri(q∗) ≤ Ti

(4.1)

Where j ∈ hp(i) means all the object indexes such that πj ≥ πi and Roi = Roj . The

need of evaluating the first q instances inside the busy period is caused by the uncertainty about

the instance which causes the worst case response time. However, a lower bound on the worst case

response time can be obtained by restricting the computation to the first instance, see 4.2. This

bound is tight in case the response time is lower than the period.

wi = Ci +
∑

j∈hp(i)

⌈
wi + Jj

Tj

⌉
Cj

ri = Ji + wi

(4.2)

Linear upper and lower bounds for the solution to the previous fixed point problem can be

obtained from

99

w↑i = Ci +
∑

oj∈hp(oi)

(
w↑i + Jj

Tj
+ 1)Cj (4.3)

w↓i = Ci +
∑

oj∈hp(oi)

(
w↓i + Jj

Tj
)Cj (4.4)

w↓i =
Ci +

∑ Cj

Tj
Jj

1−∑ Cj

Tj

r↓i = w↓i + Ji (4.5)

w↑i =
Ci +

∑ Cj

Tj
(Jj + 1)

1−∑ Cj

Tj

r↑i = w↑i + Ji (4.6)

if ui = Ci/Ti then the previous formula can be solved, and a linear combination of the

upper and lower bounds, with coefficient α, yields the following

r̃i(α) = αr↑i + (1− α)r↓i (4.7)

r̃i(α) = Ji +

Ci + α
∑

j∈hp(i)

Cj +
∑

j∈hp(i)

Jjuj

1−
∑

j∈hp(i)

uj

(4.8)

4.2.2 Response Time for Messages: Bus Scheduling

In this chapter I assume that message objects are transmitted over CAN buses. The CAN

bus provides a channel arbitration policy that gives at each round the transmission rights to the mes-

sage with the lowest identifier, therefore allowing (fixed) priority based scheduling. The evaluation

of the worst case latencies for the messages sent over the CAN bus follows the same principles

that are used for evaluating the worst case response time of the tasks, with the exception that an

additional blocking term Bi must be included in the formula in order to account for the non pre-

emptability of CAN frames and the transmission time of the message must also be considered as

100

non preemptable. The blocking term Bi for a generic message oi can be computed as the worst case

transmission time of any frame having a priority lower than πi and sharing the same bus resource.

wqi(q) = Bi + qCi +
∑

j∈hp(i)

⌈
wqi(q) + Jj

Tj

⌉
Cj (wqi > 0)

wi = maxq{Ci + wqi(q)− qTi}

ri = wi + Ji

for all q = 0 . . . q∗ until ri(q∗) ≤ Ti

(4.9)

again, a lower bound on wi and ri can be computed by only considering the first instance

(q = 0).

wqi = Bi +
∑

j∈hp(i)

⌈
wqi + Jj

Tj

⌉
Cj (wqi > 0)

wi = wqi + Ci

ri = wi + Ji

(4.10)

Similar to processor scheduling, the response times of messages can be approximated by

linear functions of the jitter variables, and the linear combination with coefficient α is

r̃i(α) = Ji + Ci +

Bi + α
∑

j∈hp(i)

Cj +
∑

j∈hp(i)

Jjuj

1−
∑

j∈hp(i)

uj

(4.11)

4.2.3 End to End Latencies

The end to end latencies should be clear after identifying all the worst case response

time of tasks on ECUs and messages on buses. However, there is another aspect related to the

computation of the end to end latencies on paths, which is activation model of tasks/messages, it

101

could be either periodic activation model or data-driven. I will illustrate the end to end latency

starting from next section given the activation of computing objects.

4.3 System Activation Model

4.3.1 Periodic Activation Model

In the periodic activation model (an example in Figure 4.2), the release jitter is zero and

the worst case end-to-end latency (denoted as Li,j for a path Pi,j) can be computed for each path by

adding the worst case response times and the periods of all the objects in the path (rk = wk).

L(i,j) =
∑

k:ok∈P (i,j)

(Tk + rk) (4.12)

4

o1

R3

o7o5
o4 R4

o6o2

o2

ro 3

ro 4

ro 2
2

T3

T

l 1

o3

o4

o3

T

Figure 4.2: Periodic activation model.

In the worst case, as shown in Figure 4.2, the external event arrives right after the com-

pletion of the first instance of task o2 with minimum (negligible) response time. The event data will

be read by the task on its next instance and the result will be produced after its worst case response

time, that is, T2 + r2 time units after the arrival of the external event. The same reasoning applies

to the execution of the following objects.

102

4.3.2 Data-driven Activation Model

In the data driven activation model (an example in Figure 4.3), if I assume the same acti-

vation period for all the nodes that are activated in a computation chain, then for all the intermediate

neighboring nodes oi → oj it is clearly ri = Jj . The worst case end-to-end latency can be computed

for each path by adding the worst case queuing and execution/transmission times of all the objects

in the path.

L(i,j) =
∑

k:ok∈P (i,j)

wk (4.13)

3

o1

R1

R3

o7o5
o4R2 R4

o6

o3

o2

o4

ro 2

ro 4

ro 3J3

J4

l 1

T J1 1
o2

o

Figure 4.3: Data driven activation model.

However, in this case, as shown in the figure, the worst case jitter of the activation events

grows larger as the computations propagate along the chain. The latency along the path is typically

lower if compared with the previous case, but the large jitter in the activation of the intermediate

tasks and messages means that tasks and messages may be activated according to bursty pattern

of events. These bursts of high priority tasks and messages may increase the response time of the

lower priority objects that share resources with them.

103

4.4 Parameter Synthesis of CAN based Communication System

4.4.1 Parameter Synthesis Overview

Both static and dynamic priority, distributed as well as centralized scheduling methods

have been proposed in the past for distributed systems. Static and centralized scheduling is typical

of time triggered design methodologies, like the Time-Triggered Architecture (TTA) [39] and its

network protocol TTP and of implementations of synchronous reactive models, including Esterel

and Lustre [8]. The recent Flexray standard [25] for high speed communication in automotive

systems, provides two transmission windows, one dedicated to time-driven periodic streams with

static, design-time assignment of transmission slots, and the other for asynchronous, event-driven

communication.

Event-based priority scheduling is also very popular in control applications. Priority based

scheduling of single processor systems has been thoroughly analyzed with respect to worst case

response time and feasibility conditions [30, 42]. The assignment of the transmission channel on

the basis of priorities is also supported by the native CAN network arbitration protocol [12], and

the worst case transmission latency of real-time CAN messages (with timing constraints) has been

analyzed and discussed in past research works [74]. Also, the OSEK operating system standard

for automotive applications [52], supports not only priority scheduling, but also an implementation

of the immediate priority ceiling protocol [72] for sharing resource with predictable worst case

blocking time, and of preemption threshold and non-preemptive groups [79].

End-to-end deadlines have been discussed in research works in the context of single-

processor as well as in distributed architectures. The synthesis of the task parameters (activation

rates and offsets) and (partly) of the task configuration itself in order to guarantee end-to-end dead-

104

lines in single processor applications is discussed in [26]. Later, the work has been tentatively

extended to distributed systems [66].

Similarly, other research works have been dedicated to finding a slotted allocation model

that can provide a non-overlapping execution window to all the tasks that are involved in a dis-

tributed end-to-end computation with precedence constraints [20]. All these models require clock

synchronization among all nodes.

End-to-end latencies in a distributed system can be analyzed quite easily in the worst case

in the case of a periodic activation model with asynchronous communication, because the end-to-

end schedulability problem can easily be decomposed in local instances of the problem, one for each

resource (CPU or network). This is not true in the case of event-driven activation models, where

local schedulers have cross dependencies because of the propagation of the activation signals. In

this case, the problem of distributed hard real-time analysis has been first addressed by the holistic

model [75] based on the propagation of the release jitter along the computation path. The holistic

analysis has been later adapted to different types of networks, such as TDMA [57]. The response

time analysis of distributed end-to-end transactions with offsets among the activation instants of the

tasks in the transaction chains is discussed in [53]. The authors demonstrated that exact analysis

is of exponential complexity and provided a solution for finding an upper bound to the worst case

response time.

The two competing models of periodic activation with asynchronous communication and

data-driven activation are reconciled by a new conceptual framework for the analysis of distributed

chains of computations, based on network calculus [13] and its application for evaluating the prop-

agation of event models [18]. In [28] this model is used for distributed schedulability analysis,

105

where the system can be described as an arbitrary mix of data-driven and periodic asynchronous

interaction models.

Other works, such as [68], focused on providing lock-free and wait-free communication

mechanisms that ensure deterministic delays in the implementation of models integrating both event

and time triggered subsystems. Later, the mechanism has not only been extended to EDF scheduled

systems, but the authors also provided optimal (tight) bounds for buffer allocation in the implemen-

tation of Rate Transition blocks for many-to-one communication channels [78]. Optimization of

buffer implementation is also the objective of [6].

Finally, the trade offs between a purely periodic activation model and an event-driven

activation semantics are explored in [45] with respect to the composability of subsystems scheduled

according to the two models.

While these works provide analysis procedures with increasing speed and precision, the

synthesis problem is today largely open, except for [62], where the authors discuss the use of genetic

algorithms for optimizing priority and period assignments with respect to a number of constraints,

including end-to-end deadlines and jitter.

4.4.2 A Simple Example

Figure 4.4 represents a sample system consisting of 3 ECUs, one CAN bus, 8 tasks and

5 messages. Three computation paths are defined, ending respectively in tasks τ5, τ8 and τ13. In

the example, the task and messages have priorities, worst case execution times and periods as in the

following table.

The last four columns of Table 4.1 explain the tradeoffs in the analysis between the two

discussed activation models. In the case all the tasks and messages are activated periodically and

106

6

ECU2

4 4

4

4

4

14

1 2 3

8 4

4

40 ms

5 1515 ms

30 ms

17
16

68 7

11 129 10 13

1819
8 4 6 9

ECU1 ECU3
CAN

12

Figure 4.4: Example graph.

communicate by means of asynchronous buffers, the latencies for the three paths, assuming no sam-

pling delay on the first task are, respectively, 100, 130, 260, as shown in the fourth to last column. If,

however, the activation of the objects is always driven by the completion of their predecessor, with

the exception of the first tasks in the paths (in our case τ1, τ6 and τ9), then the latencies are much

better for the highest priority paths, that is, 40 and 88, respectively, but are significantly larger for

the lowest priority path ending in o18, 312 time units from the triggering event. Although the jitter

analysis is characterized by pessimism (relative offset information and best case response times are

not considered in the analysis), the results clearly show the tradeoff between the two models and the

opportunity for design optimization.

If the deadlines are defined as d14,15 = 80, d16,17 = 120 and d18,19 = 280, then in neither

of the two cases, the deadlines can be guaranteed. However, if the activation model is defined in

such a way that messages m2, m4 and m7 are activated periodically and all the other objects on

the paths are activated by the completion of their predecessors, then the worst case latencies are

l14,15 = 70, l16,17 = 100 and l18,19 = 208, with all the deadline constraints satisfied.

107

Object πi Ti Ci ri li Ji wi ri

τ1 1 15 4 4 4 0 4 4

m2 2 15 4 8 27 4 8 12

τ3 3 15 8 8 50 12 8 20

m4 4 15 4 12 77 20 12 32

τ5 5 15 4 8 100 32 8 40

τ6 6 40 6 14 14 0 30 30

m7 7 40 4 16 66 30 28 58

τ8 8 40 12 20 130 58 30 88

τ9 9 30 8 28 28 0 60 60

m10 10 30 4 28 82 60 44 104

τ11 11 30 6 28 140 104 60 164

m12 12 30 4 28 198 164 88 252

τ13 13 30 9 28 260 252 60 312

Table 4.1: Simple Example Data

Calculating the worst case response time of tasks and messages from equations (4.1),

(4.2), (4.9), and (4.10) means solving a least fixed point equation. In some cases, the use of the

exact formula is not practical and the problem may be tentatively approached by using linear upper

and lower bounds for the response time of the first object instance in the critical instant hypothesis,

(which is itself a lower bound of the real value) as in (4.6, 4.5.)

The question is of course to determine the amount of pessimism (and optimism) intro-

duced by the previous linear approximations. The data of the example show that the linear ap-

proximations become progressively less accurate when the priority of the objects in the chain is

108

0

100

200

300

400

500

600

0 128 256 384 512 640 768 896 1024

exact latency

linear upper bound

linear lower bound

Figure 4.5: End-to-end latencies for the lowest priority path of the example.

lowered. For example, for the event-driven activation mode, the upper and lower bound latencies

for the three paths are, respectively, {44.36, 130.86, 507.03} and {38.91, 79.43, 294.96}. However,

a linear combination of the linear upper and lower bounds can be sufficiently accurate to be used as

an estimator of the actual end-to-end latencies on the paths.

The following Figure 4.5 shows the latencies on the lowest priority path in non-decreasing

order, computed for all the possible configurations of the activation modes on the 10 links of the

example. In the example, the worst case latency based on the exact analysis could be approximated

fairly well by a linear combination of the pessimistic and optimistic linear bounds. The effectiveness

of the linear approximation is illustrated in the following real design case of an automotive system

architecture.

109

4.4.3 Optimization Framework for Synthesizing Activation Model

4.4.3.1 Mixed Integer Linear Programming

A mixed integer programming formulation can be used to find a solution to the synthesis

problem with respect to a suitable cost function that accounts for deadline constraints on the paths.

A short summary of the notations used in the ILP formulation is provided in the following.

Sets : (V , E , P)

Variables: in addition to ri, Ji, wi, Ls,t we define yh,k as

yh,k =





0 if the activation of ok is periodic,

1 if the activation of ok is event-driven by oh.

4.4.3.2 Feasibility Constraints

The feasibility constraints are modeled according to the rules for computing the jitter, the

response times and the latencies at all nodes in the graph.

The jitter inheritance rule is encoded as follows. Consider a scheduled object ok with

multiple incoming link groups. I am only interested in those groups (links) that can possibly carry

an activation signal (for all the other links lj,k it is clearly yj,k = 0).

I enforce the condition that all the links in one group assume the same activation model.

This means that

yr,k = ys,k (4.14)

for all the pairs lr,k, ls,k belonging to the same group lgh.

110

If ok has more than one incoming link group, only one of the group representatives can

provide its activation signal. For each object ok it must be (rep(lgh) denotes the group representative

defined in Section 4.1.2)

∑

lgh∈G(ok)

yr,k ≤ 1 where or = rep(lgh).

If all group links have a periodic activation mode (all yr,k = 0) then ok is activated periodically and

Jk = 0. Otherwise, Jk will be equal to the response time of the representative object in the group

from which it gets the activation signal. The two alternative ways of computing Jk can be encoded

in a pair of constraint sets leveraging a typical formulation in use in integer linear programming.

A very large constant value M is used to nullify one or more constraints by making them

always true depending on the value of a set of binary variables (yr,k in our case).

Jk ≤
∑

lgh∈G(ok)

yr,k ×M where or = rep(lgh) (4.15)

0 ≤ Jk (4.16)

If all yr,k = 0, then the first and the last inequality constrain the value of Jk to 0. If

yr,k = 1 for one of the incoming link groups, then the first inequality is redundant and the following

two set of constraints (a pair for each group lgh ∈ G(ok)) make Jk equal to the worst case response

time rr of the predecessor object or that is the representative of the activating group.

Jk ≤ rr + (1− yr,k)×M where or = rep(lgh) (4.17)

rr − (1− yr,k)×M ≤ Jk where or = rep(lgh) (4.18)

111

If ok has only one incoming link from object oh that can possibly provide an activation

signal, then a simpler set of constraints apply

rh + (yh,k − 1)×M ≤ Jk (4.19)

Jk ≤ rh (4.20)

Jk ≤ yh,k ×M (4.21)

0 ≤ Jk (4.22)

The worst case response time rh for object oh can be computed as

rh = wh + Jh

Because of the non-linearity and even non convexity of the fixed point formula that pro-

vides the exact value of wh, a linear combination of the linear upper (4.6) and lower bounds (4.5) is

used.

wh = Ch + α ∗
∑

ok∈hp(oh)

(
wh + Jk

Tk
+ 1)Ck +

(1− α) ∗
∑

ok∈hp(oh)

(
wh + Jk

Tk
)Ck (4.23)

where α is chosen as to minimize the following mean square fit function, computed for

all y = 0 and assuming α does not depend significantly on the value of the y variables, as suggested

by Figure 4.5.

112

∑

Pr∈P
(α ∗ L↑Pr

+ (1− α) ∗ L↓Pr
− LPr)

2 (4.24)

where L↑Pr
and L↓Pr

are the latencies computed on the path Pr using the upper and the

lower linear bound respectively.

Finally, for computing the end-to-end latencies, a variable zi,j is defined for each link li,j

to express the link contribution to the end-to-end latencies of all the paths containing it. The variable

zi,j is equal to wj if the link li,j carries an activation event (first two of the above constraints.)

Otherwise, zi,j will be equal to wj + Jj + Tj , considering the fact that oj may be activated by some

other signal with release jitter Jj . Hence, the contribution to the latency depends on the value of yi,j

and the usual formulation is used to express the alternative.

wj ≤ zi,j (4.25)

zi,j ≤ wj + (1− yi,j)×M (4.26)

zi,j ≤ wj + Jj + Tj (4.27)

wj + Jj + Tj − yi,j ×M ≤ zi,j (4.28)

The end-to-end latency Ls,t associated with path Ps,t is computed as

Ls,t =
∑

lu,v∈Eps,t

zu,v

and should not exceeds its deadline.

Ls,t ≤ ds,t.

113

4.4.3.3 Objective Functions

Based on the above constraints, in addition to get a feasible solution, which satisfies the

deadline constraints, there is a flexibility to get the optimal solution with respect to different cost

functions. The minimization of the number of buffers could be used for reducing cost through the

following objective function.

maximize
∑

(oh,ok)∈E
yoh,ok

Other interesting cost functions are the sum of the end-to-end latencies, or the sum of

difference between the end-to-end latency of each path and the corresponding deadline over all

the paths in the system. The second objective function may be defined to assign a penalty for the

violation of a specific path deadline through a weight wpr .

∑
pr∈P Lpr

∑
pr∈P wpr ∗Max(Lpr − dpr , 0)

4.4.3.4 Optimization of the example graph

For the example in Figure 4.4, I used the objective functions defined in the previous

section. The results are shown in the following table where P1 = o14 → o15, P2 = o16 → o17,

P3 = o18 → o19 and the objective functions are F1 = minimization of the number of event buffers,

F2 = minimization of the sum of the path latencies, F3 = minimization of the sum of weighted

lateness for all the paths exceeding the deadline and F4 = minimization of the lowest priority path

latency.

114

Objective P1 P2 P3 periodic objects event objects

F1 55 84 304 m4 remainings

F2 70 58 266 τ3, m4, τ10 remainings

F3 55 112 236 m2, m7 remainings

F4 70 98 168 τ3, m4, τ8 m2, τ5, m7, τ10,

τ11, m12, τ13

4.4.4 Heuristic Framework for Synthesizing Activation Model

4.4.4.1 Heuristics

The example in 4.4.2 shows how the application of the two activation models, that is,

all objects are activated periodically, or all objects are activated based on an event-driven activa-

tion model, results in a system that may be infeasible for a given problem. To find a schedulable

solution, a search procedure can be defined that starts from the endpoint in which all objects are

executed periodically, and tries to construct a feasible model by selectively changing at each step

the activation model of one of the objects to be event-driven (see Figure 4.6).

At first, any incoming link to the lowest priority object on each resource can be set to carry

an activation event, in case it is the only incoming link (l10,11, l11,12 and l12,13 in the example). Given

that the activated objects have the lowest priority, this change can only improve the latencies on the

system paths.

Then, the search procedure is defined as in Algorithm 1.

The search algorithm mainly operates on two lists containing, respectively, the objects in

the system and the paths for which a deadline is defined. At each step, the algorithm identifies the

115

Algorithm 1 Search Algorithm
1: procedure MainSearch

2: OL ← Object List, PL ← Path List

3: InitDataStructures(OL, PL, A, BM, Bm)

4: α← ComputeAlpha(OL, A, BM, Bm)

5: optval ← EvalSolution(OL, PL, A, BM, Bm, α)

6: RecursivePart(OL, PL, A, BM, Bm, α, optval)

7: end procedure

8:

9: procedure RecursivePart(OL, PL, A, BM, Bm, α, optval) . recursive part

10: curval ← EvalSolution(OL, PL, A, BM, Bm, alpha)

11: if curval ¡ optval then

12: optval ← curval

13: end if

14: if FeasibleSolution(OL, PL) then

15: SolutionFound(OL, PL)

16: end if

17: Children ← ListChildren(PL)

18: for each link in Children do

19: link.SetActivation(EVENT, A, BM, Bm)

20: val ← EvalSolution(OL, PL, A, BM, Bm, α)

21: SortedChildren.Insert(link, val)

22: link.SetActivation(PERIODIC, A, BM, Bm)

23: end for

24: for each link in SortedChildren do

25: link.SetActivation(EVENT, A, BM, Bm)

26: RecursivePart(OL, PL, A, BM, Bm, α, optval)

27: link.SetActivation(PERIODIC, A, BM, Bm)

28: end for

29: end procedure

116

list of the candidate children of the current node (line 17 in the recursive part). This list consists

of a set of links that do not carry an activation event but may be changed to define an event-driven

activation of their sink node. These links are selected in turn. For each of them, the result of the

change to event-driven activation is estimated (lines 18 to 23) and based on the estimated value of

a cost function, they are sorted in a list. Finally, the children are visited depth-first, in order of the

metric function, until a solution is found (lines 24 to 28 and line 15). When a solution is found, the

algorithm can simply store the result and exit, or it can try to continue the search looking for further

improvements. In the latter case, if the function call at line 15 does not terminate the program, the

algorithm results in an exhaustive search of the tree. The exact definition of the search algorithm

depends on the method for generating and evaluating new children solutions and, especially, on the

metric function that is used to evaluate the children and define their search order.

Selection of the children nodes The first policy that may be used for the selection of the children

nodes is a very simple greedy policy: at each stage the algorithm computes the critical path, that is

the path with the largest lateness (difference between the end-to-end latency and the deadline). The

children nodes are all the links in the critical path for which a change to event-driven activation is

possible. The second option consists of considering as children all the links in the system graph and

not only those belonging to the critical path.

Evaluation of the children nodes Two main cost functions have been considered for the evalu-

ation of the children nodes. The first cost function is the maximum lateness among all the system

paths. The child with minimum cost is evaluated first.

117

Set link l

Periodic activation

...
Set link l
to event−driven

n

... Latency evaluation
feasibility test

Towards event−driven activation

1
activation event
Set link l to carry

to event−driven
2

Figure 4.6: Search tree.

max
Pi,j∈P

(Li,j − di,j)

The second function consists of computing the sum of all the path latencies or, as a variant,

the weighted sum of all the positive differences between latencies and deadlines.

Node solutions can be evaluated by computing the solution to the fixed point formula for

the worst case response times and by propagating the response time as the jitter of the following

object, in case this is driven by the completion of the predecessor (as in [75]). Similarly, the children

nodes are evaluated by setting the corresponding link to carry an activation event and then evaluating

the corresponding solution.

As shown in the case study, the system complexity can easily reach the point in which

there are hundreds of objects and the links subject to optimization are approximately two hundred.

In this case, the breadth and width of the search tree may be too large to compute the end-to-end

latencies by calculating the worst case response time of tasks and messages from equations (4.1) and

(4.9), that require solving a least fixed point equation and then by repeating these computations in the

jitter propagation cycle, waiting for the jitter values to converge to a fixed point solution. In this case,

118

a simpler approximate method is required to evaluate the effect of changing the activation model of

one link on the end-to-end latencies, and possibly also an approximate formula for speeding up the

computation of the end-to-end latencies at intermediate nodes.

Previous equations (4.8, 4.11) express ri as a linear combination of the activation jitter of

oi and of the higher priority objects oj . If oi provides the activation signal for oj , then Jj = ri and,

therefore, the following linear function expresses the dependencies among the activation jitters with

a data driven activation model.




J1

J2

. . .

Jn




=




a1,1 . . . a1,n

a2,1 . . . a2,n

.

an,1 . . . an,n







J1

J2

. . .

Jn




+




b1

b2

. . .

bn




where





ai,j = 1 oj → oi

ai,j = uj

1−
∑

l∈hp(k)

ul

ok → oi ∧ πj ≥ πk ∧Roj = Rok

0 otherwise

and

119





bi =

Cj + α
∑

k∈hp(j)

Ck

1−
∑

k∈hp(j)

uk

oj → oi ∧ πk ≥ πj

∧Roj = Rok

∧oj is a task

bi = Cj +

Bj + α
∑

k∈hp(j)

Ck

1−
∑

k∈hp(j)

uk

oj → oi ∧ πk ≥ πj

∧Roj = Rok

∧oj is a message

0 otherwise

With link groups, only the representative object must be considered in the definition of

the values ai,j , bi of the matrices.

Hence, the problem can be formalized as a fixed point problem

J = AJ + B

and has solution

J = (I−A)−1B (4.29)

The value of α is computed as the coefficient which makes the linear combination of the

upper and lower bound linear approximations equal to the exact latency value for the path with the

maximum lateness.

The condition
∑

i ui < 1 for all the resources in the system is provably sufficient for the

existence of a valid jitter solution to the previous set of linear dependencies. When this is not true,

either (I−A)−1 does not exist or negative jitter values will result from (4.29).

120

The complexity of the exact response time analysis, and the following jitter propagation

is pseudo-polynomial (exponential in the number of tasks and messages in the worst case), while

the approximate computation allows computing the activation jitter of all the tasks with matrix

operations (difference, inversion and multiplication) on A and B of complexity O(n3). In reality,

considering that A is a sparse matrix, there are numeric packages capable of performing these

operations in a much shorter time. Following the evaluation of J, the computation of the end-to-

end latencies on the paths can be obtained by applying equation (4.3) where the wk terms can be

computed for each object by using a linear approximation of the interference from high priority

objects (from (4.8) and (4.11)).

In the algorithm, three matrices are used: A (which is independent of α), BM, that is B

computed for α = 1, and Bm, that is B for α = 0. α can be computed only once, at the beginning

of the search, or it can be updated before expanding a child node. Since the branching factor is

expected to be large, the exact evaluation of the child to be expanded is not affecting significantly

the speed of the algorithm.

At the beginning of our search algorithm, all objects are activated periodically, meaning

that no link carries an activation signal. Therefore, the initial definition of A, BM and Bm consists

of all zeros. As the search progresses, and new links are defined as carrying activation signals, the

definition of the matrices is updated accordingly.

Visiting a new child A visit to a new child consists in setting an event-driven activation signal

associated to the selected link. This means that the activation of the sink object changes to event-

driven and new values for the path latencies can be computed or estimated. The child solution

becomes the new expansion point for generating new children and continuing the search, until a

121

feasible solution is possibly found or there is no further possible improvement.

In the data structures, the definition of a link as the carrier of an activation event means

that the method for propagating the release times to jitters changes in the exact analysis and the

definition of the matrices A, BM and Bm needs to be updated by setting all the values that are

affected by the new definition of the activation event on the selected link.

4.4.4.2 Optimization of the example graph

The texts show the result of the application of the search algorithm on the example pre-

sented in the previous Section 4.4.2 when children nodes are extracted from the critical path and the

lateness of the critical path is used as the cost function. At initialization, all objects are defined as

periodically activated, except for those singleton links that are incoming to lowest priority objects,

which carry an activation event. After the evaluation of the root node, the path ending in o17 is

found to be the critical path, with a maximum lateness of 32 units (Figure 4.7 shows the steps in the

optimization of the sample graph.)

There are two possible children for the root node, corresponding to the two links in the

critical path. After the evaluation of the children cost, the lowest lateness for the critical path is 22

units, when the activation of message m7 is set to event driven (if τ8 were to be activated by l7,8,

then the path ending in o19 would become the critical path, with a maximum lateness of 42 units).

A child node is generated by setting m7 to be activated by the completion of τ6, with latencies for

the three paths computed at, respectively, 92, 92 and 134.

After the second step, the search algorithm selects message m2 to be activated by an event

on the link l1,2. The new latencies become 77, 92 and 138, with the third one exceeding the deadline

by 18 units. The next two possible activation events are selected on node m10, and m4 respectively,

122

with new latencies values {77,92,110} and, finally, {62,92,114}, which is a feasible solution.

110

6
mτ

7

132
92

134

92
77

138

1
mτ

2

92
77

110

9
mτ

10

7 8
τm

92
92

134

92
92

162

100
77

142

92
77

138

92
77

140

3
mτ

4
92
62

114
92
77

Figure 4.7: Steps of the search algorithm for the example.

4.4.5 An Industrial Example

The proposed approaches in Section 4.4.3 and 4.4.4 to the synthesis of the task activa-

tion model have been applied to the architecture configuration of an experimental vehicle under

development at General Motors.

For the approach in Section 4.4.3:

The architecture consists of 38 nodes connected by 6 CAN buses. A total number of 100

tasks are executed on the ECU nodes and 322 messages are exchanged over the six buses. Ten pairs

of endpoints have been identified in the graph as sources and destinations of computation paths with

deadlines. An analysis of the graph found 184 paths between these 10 pairs of nodes and deadlines

ranging from 100 ms to 300 ms have been defined for them.

The analysis of the graph with a periodic activation of all the tasks and messages found

123

end-to-end latencies largely exceeding (in the worst case) the desired deadlines. For example, a

worst case latency of 627ms was found for paths with deadline 300 and 302.83 for paths with

deadline 100.

After the application of the optimization the results were much closer to the desired dead-

lines, but still not feasible for 12 of the 148 paths. It was necessary to change the period of one more

task (from 12.5 to 10) and one more message (from 100 to 80), making it shorter so that an event

driven activation mode could be defined on the corresponding incoming and outgoing links.

After another optimization round, all the latencies became lower than the deadlines, with

the largest value of 265 for paths with deadline 300, 190 for paths with deadline 200 and 97 for

paths with deadline 100.

The value of alpha changed from 0.239 to 0.224 and when repeating the optimization with

the new value, the same result was obtained.

For the approach in Section 4.4.4:

The architecture consists of 38 nodes connected by 6 CAN buses, with speeds from 25kb/s

to 500kb/s. The vehicle supports advanced distributed functions with end-to-end computations

collecting data from 360◦ sensors to the actuators, consisting of the throttle, brake and steering

subsystems and of advanced HMI (Human-Machine Interface) devices. A total number of 100

tasks are executed on the ECU nodes, supporting from 1 to 22 tasks each, and 322 messages are

exchanged over the six buses, with a minimum and maximum number of messages of, respectively,

32 and 145 for each bus. Worst case execution time estimates have been obtained for all the tasks.

The number of links in the dataflow graph is 507. Bus utilizations are between 30% and 50% and

CPU utilizations are estimated between 5% and 60%. Unfortunately, because of IP protection, the

124

exact layout of the architecture cannot be shown.

Ten pairs of endpoints have been identified in the graph as sources and destinations of

computation paths with deadlines. An analysis of the graph found 184 paths between these 10 pairs

of nodes. Deadlines ranging from 100 ms to 300 ms have been defined for them.

27

Task27

T = 100

Figure 4.8: Activation options for one of the tasks in the case study.

Figure 4.8 shows a snapshot of one of the system tasks with some of its connections and

gives an idea of the connectivity of the graph for the case study and also of the possible options for

the activation of one of the graph tasks. In this case, the task receives nine messages that satisfy the

conditions for an event-driven activation. These messages come from four of the system buses and

eight possible link groups originate from them. The search algorithm must select which of the eight

groups (if any) should carry the activation signal for the task in the optimal configuration.

If all tasks and messages are activated periodically, the end-to-end latencies in the system

125

largely exceed (in the worst case) the desired deadlines. A worst-case latency of 577ms is found for

paths with deadline 300, 255.5 for paths with deadline 200, and 145.38 for paths with deadline 100.

Of the 507 links, 313 are subject to optimization, including the link groups.

In its original formulation, the problem does not have a solution, because of a path in

which most of the links are constrained to be periodic. After reducing the period of one of the

messages in the path from 100 to 50 ms, the problem admits a solution.

The first algorithm option, which generates children nodes from the path with the largest

lateness, was able to find the solution after changing 24 link groups to event-driven activation, with

the largest latency being 294.802 ms for paths with a 300 ms deadline, 158.091 ms for paths with

a 200 ms deadline and 95.46 for the only path with a 100ms deadline. The sum of the differences

between latencies and deadlines is -11329.6 at this stage (-61.57 on average on all paths). After

finding a feasible solution, the sum of the latencies was used as a metric to further increase the

quality of the solution and the algorithm found, after 5 extra branches, a new solution with cost

-14129.6 (-76.79 for the average difference between latencies and deadlines).

The time required to solve the problem using the exact computation of the latencies was

approximately 2.6 seconds (1.4 GHz PC). In all cases, the program was stopped whenever a feasible

solution was found or no solution was found after 2 hours of computation.

When trying different options for the selection of the children nodes and for the cost

function it is not difficult to find out that the quality of the results obtained for the case study

depends heavily on the selection of the cost metric function, but not on the possible use of the

linear approximation in the evaluation of the latencies. The use of the cost function consisting of

the sum of the latencies (or even the weighted sum of the positive differences between latencies

126

and deadlines) did not allow finding a feasible solution, but the program ended in a local optimum

after 29 iteration steps. Backtracking could not solve the problem in a reasonable time, given the

extremely high branching factor.

When the approximate linear evaluation was used in place of the exact computation of the

response times, with a value of α = 0.465 computed for the initial configuration, a feasible solution

was obtained in the case the largest lateness was used as a metric (regardless of the children selection

method). When repeating the optimization procedure by recomputing the value of α at each step,

the same result was obtained. Of course, a solution was not found when using the weighted sum

of the path latencies as the cost metric function. However, while the linear approximation proved

to be a quite accurate estimator for the fitness of the children solutions, it did not result in any

savings in the running time of the algorithm, but actually in a larger computation time (approx. 7

seconds). The cause for this (partly) unexpected behavior for our case study are the relatively short

number of tasks and messages in each path (always less than 10) and especially the limited degree

of concurrency at the nodes, which make the solution of the fixed point equations and the evaluation

of the jitter propagation quite fast in practice. However, a higher degree of concurrency and even

higher complexity is expected for future architectures, for which the linear approximation may be

significantly faster than the exact fixed point analysis.

Schedulability theory provides support for the analysis of the worst case latencies in dis-

tributed computations when the architecture of the system is known and the communication and

synchronization mechanisms have been defined. In the design of complex automotive system, how-

ever, a great benefit of schedulability analysis may come from its use as an aid in the exploration

of the software architecture configurations that can best support the target application. This chapter

127

presented both an ILP formulation and a heuristic based optimization framework that leverages the

trade-offs between the purely periodic and the data-driven activation models to meet the latency

requirements of distributed vehicle functions on a CAN architecture. The effectiveness is demon-

strated on a complex automotive example.

128

Chapter 5

Mapping with Scheduling for

Automotive System

To provide design-time guarantees on timing constraints, different design and scheduling

methodologies can be used. Because of resource efficiency, most automotive controls are designed

based on run-time priority-based scheduling of tasks and messages. Examples of standards support-

ing this scheduling model are the OSEK operating system standard and the CAN bus arbitration

model as mentioned in previous section.

In the typical model that is used for the implementation of distributed computations, peri-

odic tasks and messages communicate according to a semantics in which the communication chan-

nel holds the last value that is written into it and is implemented as a shared variable protected

against concurrent access. This model, called periodic activation model, has some advantages, in-

cluding the separation of concerns when evaluating the schedulability of the individual resources. It

also allows for a very simple specification at the interface of each subsystem or component, thereby

129

simplifying the interaction with the suppliers. The drawback is a non-deterministic time behavior

and a possibly large worst-case end-to-end delay in the computations.

The execution model considered in this chapter is the following. Input data (generated

by a sensor, for instance) are available at one of the system’s ECUs. A periodic activation event

from a local clock triggers an application task on this ECU. The task reads the input data signal,

computes intermediate results as output signals, and writes them to the output buffer from where

they can be read by another task or used for assembling the data content of a message. Messages -

also periodically activated - transfer the data from the output buffer on the current ECU over the bus

to an input buffer on another ECU. Eventually, task outputs are sent to a system output (an actuator,

for instance). The application typically imposes end-to-end latency requirements between a subset

of the source-sink task pairs in the system.

The complexity and physical distribution of modern active safety, chassis and powertrain

automotive applications requires the use of distributed architectures. Complex functions designed

as networks of function blocks exchanging signal information are deployed onto the physical HW

and implemented in a SW architecture consisting of a set of tasks and messages. The typical config-

uration features priority-based scheduling of tasks and messages and imposes end-to-end deadlines.

This chapter optimizes the task placement (task mapping) and the signal to message mapping and

automates the assignment of priorities to tasks and messages in order to meet end-to-end deadline

constraints and minimize latencies. This is again accomplished by leveraging worst case response

time analysis within a mixed integer linear optimization framework. The approach is applied to an

automotive case study to prove its feasibility.

130

Function allocation

Code implementation

ArchitectureFunctional ArchitecturePhysical

ECU selection
topology

period
activ. and synch.

Deployment

Task allocation
Priority assignment

Figure 5.1: Design flow stages and optimization objectives (in bold)

5.1 Design Flow Revisited

The optimization of the placement of tasks, the definition of the mapping of signals into

messages, and the priority assignment to tasks and messages are the design stages addressed in

this work, as part of the larger design flow shown in Figure 5.1. The design flow is based on

the Y-chart approach [37], where the application description and the architectural description are

initially separated, and joined together later in an explicit mapping step. Previously, the step after

the above is that giving the task/signal mapping and conduct the scheduling process, while in this

chapter, I involve the mapping process to have a bigger design space to explore. In the application,

nodes represent function blocks and edges represent data dependencies, which consist of signal

information. The application description is further characterized by end-to-end latency constraints

along selected paths from sources to sinks. The architectural description is a topology consisting

of ECUs connected with buses. In this work, I assume heterogeneous ECUs, which run a priority-

131

based, preemptive OSEK-compliant operating system. Furthermore, I target the case of a single

bus, which uses the standard CAN bus arbitration, featuring non-preemptive priority-based message

scheduling. In reality, automotive architectures feature heterogeneous computation nodes and the

CAN communication standard represents the large majority of the communication links, with LIN

connections being used for a relatively small number of local low speed data communications [19].

Mapping deploys functional blocks to tasks (this problem is not handled in this work) and

tasks to ECUs. Correspondingly, signals can be mapped into local communication or messages that

are exchanged over the buses. The mapping must be performed such that the end-to-end latency

constraints from the application are satisfied. Within the mapping step are the operations of task

allocation, signal to message assignment, and priority assignment.

5.2 System Modeling and Notations

Similar to previous chapters, the system (an example in Figure 5.2) consists of a physical

architecture, in which m heterogeneous ECUs E = {e1, e2, ..., em} are connected through a single

Controller Area Network (CAN) bus, and a logical architecture in which n tasks belonging to the

set T = {τ1, τ2, ..., τn} perform the distributed computations required by the functions. Signals

S = {si,j |τi, τj ∈ T} are exchanged among pairs of tasks. Each signal carries a variable amount of

information (expressed as number of bits). βsi,j is the length of the signal si,j . The signal exchanged

between two tasks τi and τj is also represented as a directed link τi → τj , so that the computation

flow may be expressed as a directed graph. A path P (τi, τj) or P (i, j) is an ordered sequence

P = [τi, . . . , τj] of tasks that, starting from from τi, reaches τj , going through n + 1 tasks such that

each one of them receives a signal from its predecessor and sends information to its successor.

132

message

ECU

task

e
2

e
3

m

signal

1,2
1

τ

τ

τ

e
1

1

2

3τ

τ

ττ 4

6

5

7

2,3
m1

τ 8

s 1,2

Figure 5.2: Mapping of tasks to ECUs and signals to messages.

A path represents one end-to-end execution of the system, from the production of a sig-

nal corresponding to an external event, to the generation of the output. More than one path can be

originated by one initial task. The path deadline for Pi,j , denoted by di,j , is the end-to-end con-

straint for the computation performed in the path. Similarly, the worst case end-to-end latency for a

computation spanning a path Pi,j is denoted as li,j .

Tasks are executed on the ECUs and activated periodically. The placement of a task is

indicated as a relation Ai,c meaning that task τi is executed on ec. The period of τi is indicated as

Ti. At the end of their execution, tasks produce their output signal, which inherits the period of the

sender task. I allow the system ECUs to be of heterogeneous nature, but I assume that the worst

case computation time of each task τi on each ECU ec is known or can be estimated as ci,c.

After the mapping of the tasks to the ECUs, the signals are mapped into messages ex-

changed between ECU pairs. M = {mr
p,q|ep, eq ∈ E, r = 1...umax

p,q } is the message set. All

133

messages are periodic, with period Tmr
p,q

and are scheduled according to their priority pr
p,q on the

CAN bus (as defined by the standard) The mapping rules require that each signal mapped to a mes-

sage must have the same source and destination ECUs (its transmitter and receiver tasks must be

allocated on the source and destination ECU of the message) and the same period of the message.

In CAN, the message size is limited to a maximum of 64 bits. Hence there is the possi-

bility that a signal larger than 64 bits is fragmented and transmitted in multiple messages. In this

approach, I don’t consider signal fragmentation, but I assume that the length of each signal always

allows it to be transmitted in a single message. The designer may perform an a-priori fragmentation

of larger signals to fit this model.

5.3 Optimization on Task Placement and Signal Mapping

5.3.1 Previous Work

[65] Both static and dynamic priority, distributed as well as centralized scheduling meth-

ods have been proposed in the past for distributed systems. Static and centralized scheduling is

typical of time triggered design methodologies, like the Time-Triggered Architecture (TTA) [39]

and its network protocol TTP and of implementations of synchronous reactive models, including

Esterel and Lustre [8]. Also, the recent Flexray standard [25] for high speed communication in

automotive systems, provides two transmission windows, one dedicated to time-driven periodic

streams with static, design-time assignment of transmission slots, and the other for asynchronous,

event-driven communication.

Priority based scheduling is also very popular in control applications. It is supported by

the native CAN network arbitration protocol [12]. The response times of real-time CAN messages

134

(with timing constraints) have been analyzed and discussed in past research work [74] where a

formula for computing the worst case response time was presented. The formula has recently been

found to be flawed and corrected [19]. Also, the OSEK operating system standard for automotive

applications [52], supports not only priority scheduling, but also an implementation of the immedi-

ate priority ceiling protocol [72] for sharing resources with predictable worst case blocking time.

Priority-based scheduling of single processor systems has been thoroughly analyzed with respect to

worst case response time and feasibility conditions [30, 42].

End-to-end deadlines have been discussed in research work in the context of single-

processor as well as in distributed architectures. The synthesis of the task parameters (activation

rates and offsets) and (partly) of the task configuration itself in order to guarantee end-to-end dead-

lines in single processor applications is discussed in [26]. Later, the work has been tentatively

extended to distributed systems [66].

The periodic activation model with asynchronous communication can be analyzed quite

easily in the worst case, because it allows the decomposition of the end-to-end schedulability prob-

lem in local instances of the problem, one for each resource (CPU or network). This is not true in

the case of data-driven activation models, where local schedulers have cross dependencies because

of the propagation of the activation signals. In this case, the problem of distributed hard real-time

analysis has been first addressed by the holistic model [75, 57] based on the propagation of the

release jitter along the computation path. Other methods have been defined for scheduling periodic

tasks and messages in a distributed time-triggered architectures. One early proposal can be found

in [63]

While these works provide analysis procedures with reduced pessimism, increasing speed

135

and precision, the synthesis problem is largely open, except for [62], where the authors discuss the

use of genetic algorithms for optimizing priority and period assignments with respect to a number of

constraints, including end-to-end deadlines and jitter. In [10], the authors describe a procedure for

period assignment on priority-scheduled single-processor systems. In [58] a design optimization

heuristics-based algorithm for mixed time-triggered and event-triggered systems is proposed. The

algorithm, however, assumes that nodes are synchronized and the bus transmission time is allocated

according to the Universal Communication Model.

In [46], a SAT-based approach for task and message placement was proposed. Like

my approach, the method provides optimal solutions to the placement and priority assignment.

However, it did not consider signal packing.

The problem of optimal packing of periodic signals into CAN frames when the transmis-

sion of signals is subject to deadline constraints and the optimization metric is the minimization of

the bus utilization has been proven to be NP-hard in [67]. Commercial (the middleware tool by Vol-

cano [16]) and research solutions [65, 67] exist to this problem. However, they are all based on the

assumption that the designer already allocated the tasks to the ECUs and partitioned the end-to-end

deadlines into task and message deadlines.

5.3.2 Objective and Formulation

5.3.2.1 Preprocessing

Mapping problem involves allocating a finite number of elements from one space to an-

other space which also contains a finite number of containers. The tasks to ECUs mapping problem,

designers know concretely about the ECU entities. However, the signals to messages mapping does

136

not make it clear what the message entities are. I want to set an upper bound number of messages

between every ECU pairs so that I know the concrete containers when conduct the signals packing.

However, how to set priorities to the packed messages could be a hard problem without

knowing the detail information about the signals packed into the message. Two approaches are

presented for conquering this difficulties.

Firstly, a procedure which interleaves priority synthesis and allocation synthesis could be

designed to iteratively solve the problem. For example, the allocation optimization engine takes the

priority value assigned from a previous priority optimization step as input, and generates outputs

for the next round priority optimization. The re-packing of signals for the allocation optimization

step could probably introduce re-work for the following priority optimization engine.

5.3.2.2 Resource scheduling

The worst case response time for a periodic task τi, as discussed in previous chapter, in a

generic preemptive and priority based scheduled system is given by:

ri(q) = (q + 1)Ci +
∑

j∈hp(i)

⌈
ri(q)
Tj

⌉
Cj

ri = maxq{ri(q)− qTi}

for all q = 0 . . . q∗ until ri(q∗) ≤ Ti

(5.1)

where j ∈ hp(i) spans over all the tasks with higher priority executed on the same CPU as τi. The

need of evaluating the first q instances inside the busy period is caused by the uncertainty about

the instance which causes the worst case response time. A lower bound on the worst case response

time can be obtained by restricting the computation to the first instance. This bound is tight in case

137

ri ≤ Ti.

ri = Ci +
∑

j∈hp(i)

⌈
ri

Tj

⌉
Cj (5.2)

Message objects are transmitted over a CAN bus. The evaluation of the worst-case latency for the

messages follows the same rules for the worst-case response time of the tasks, with the exception

that an additional blocking term Bi must be included in the formula in order to account for the non

preemptability of CAN frames and that the transmission time of the message cannot be preempted.

An upper bound of the response time is obtained [19] when the blocking term Bi for a generic

message mi is approximated with the largest possible frame transmission time (wi > 0 is the

queuing delay part of ri, without the transmission time).

wi(q) = Bi + qCi +
∑

j∈hp(i)

⌈
wi(q)
Tj

⌉
Cj

ri = maxq{Ci + wi(q)− qTi}

for all q = 0 . . . q∗ until ri(q∗) ≤ Ti.

(5.3)

A lower bound on wi and ri can be computed by only considering the first instance (q =

0). Once again, the bound is tight if ri ≤ Ti.

5.3.2.3 Periodic activation model

In the periodic activation model, the worst case end-to-end latency is computed for each

path by adding the worst case response times and the periods of all the objects in the path (rk = wk).

L(i,j) =
∑

k:ok∈P (i,j)

(Tk + rk)

Due to unsynchronized timers, in the worst case, at each step, the input signal datum

arrives right after the completion of an instance of the receiving task τi, executed with minimum

138

4

o1

R3

o7o5
o4 R4

o6o2

o2

ro 3

ro 4

ro 2
2

T3

T

l 1

o3

o4

o3

T

Figure 5.3: Periodic activation model.

(negligible) response time. The signal data will be read by the next instance of the task and the

result will be produced after its worst case response time, that is, Ti + ri time units after the arrival

of the input signal. The same reasoning applies to the execution of all the tasks and messages in the

path.

5.3.2.4 Objective and Formulation

The objective of this design problem is to find the best possible

• Placement of tasks onto the CPUs

• Packing of signals to messages

• Assignment of priorities to tasks and messages

Given

• Constraints on (some) end-to-end latencies

• Constraints on the message size

with respect to the

139

• minimization of a set of end-to-end latencies

The problem is formualated in the general framework of mathematical programming

(MP), where the system is represented with parameters, decision variables, and constraints over

the parameters and decision variables. An objective function, defined over the same set of variables,

characterizes the optimal solution. The problem allows a mixed integer linear programming (MILP)

formulation that is amenable to automatic processing. After [15], a MILP program in standard form

is:

minimize cT x (5.4)

subject to Ax = b (5.5)

x ≥ 0 (5.6)

where x = (x1, ..., xn) is a vector of positive real or integer-valued decision variables. A is an m×n

full-rank constant matrix, with m < n, b and c are constant vectors with dimention n*1. Constraints

of the type Ax ≤ b can be handled by adding a suitable set of variables, and then transforming such

inequalities in the standard form. MILPs can be solved very efficiently by a variety of solvers.

The main difficulty of a MILP approach lies in the possible large number of variables and

constraints and the resulting large solution time. The form of the constraints and objective function

must be chosen carefully such that the formulation captures the behavior of the system, and yet

remains amenable to efficient solving.

Preface to the optimization problem definition Task allocation, signal packing and priority op-

timization are managed at the same time by the MILP framework. However, while the tasks are

140

mapped into the ECUs and the number and type of ECUs is known at problem definition time, the

number, period and priority of the messages exchanged by the ECUs is unknown in advance and

results from the number and type of the signals that need to be exchanged among ECUs, which

depend, in turn, from the task allocation. The problem formulation requires representing messages

by a suitable set of variables in order to define the signal to message mapping constraints and the

latency associated to each message (and signal).

Therefore, I bound the number of messages that can be possibly exchanged between any

ECU pair and we define a corresponding number of message placeholders acting as possible signal

containers. umax
p,q is the upper bound for the number of messages mr

p,q between ECU pair ep and eq

(r ∈ 1..umax
p,q). Of course, this means that I need a preprocessing procedure to determine such upper

bound for the number of messages between every ECU pair. Furthermore, one set of such messages

is needed for each possible period.

Because of the large number of sets, variables and constraints and, ultimately, for sake of

clarity, in the following sections I explain the optimization constraints, each section referring to a

specific aspect of the problem.

5.3.3 Task to ECU mapping

Sets and Variables

Based on the problem characterization, the following binary variables are defined

Ai,j =





1 if τi is mapped to ECU ej ,

0 otherwise.

141

ai,j =





1 if τi and τj are mapped to the same ECU,

0 otherwise.

Feasibility Constraints Each task can be mapped to at most one ECU (N constraints)

∑

j∈E

Ai,j = 1 (5.7)

Furthermore, there are dependencies among the Ai,j and the ai,j variables. If tasks τi and τj are

mapped to the same ECU ek, then (5.8) constrains the variable ai,j = 1. However, if task τi and τj

are mapped to different ECUs, then (5.9) will set aτi,τj = 0.

Ai,k + Aj,k − 1 ≤ ai,j (5.8)

2−Ai,p −Aj,q ≥ ai,j (5.9)

5.3.4 Signal to message mapping

Sets and Variables

αsi,j ,mr
p,q

=





1 if si,j is mapped to mr
p,q,

0 otherwise.

γsi,j ,mr
p,q

=





1 if si,j adds to the length of mr
p,q,

0 otherwise.

γsi,j ,mr
p,q

provides additional information with respect to αsi,j ,mr
p,q

in the case of multicast signals,

that is, signals that have multiple receivers (Figure 5.4). In this case, even though the model defines

one signal for each pair sender-receiver, there is no need to copy the signal multiple times into a

message, since CAN messages are broadcast and all remote tasks can read the signal value from the

142

message. γsi,j ,mr
p,q

is used to nullify multiple copies of such multicast signals. Finally, since the

*
τ

jτ

kτ

iτ
jτ

kτ

i,js

i,ks

s
i

Figure 5.4: Multicast signals and their representation.

messages are actually placeholders, and some of them may be empty after the signal mapping stage,

we need an additional set of variables

Ymr
p,q

=





1 if message mr
p,q is non-empty,

0 otherwise.

to avoid considering those messages in the scheduling and response time computation

stage.

Mapping Constraints Each signal must be mapped to at most one message (or not mapped to

any, when communication is local, (5.10))

∑

r≤umax
p,q ,p,q∈E

αsi,j ,mr
p,q
≤ 1 (5.10)

Signal si,j is exchanged between task τi and τj . If tasks τi and τj are mapped to ECUs ep and eq,

respectively, (p 6= q), then the signal must be mapped to one of the messages between ep and eq

(5.11).

Ai,p + Aj,q − 1 ≤
∑

r≤umax
p,q

αsi,j ,mr
p,q

(5.11)

143

If tasks τi and τj are on the same ECU, then all the mapping variables must be 0 for this signal

(5.12).

αsi,j ,mr
p,q
≤ 1− ai,j (5.12)

If the successors of τi are mapped to the same ECU, and this is different from the one hosting τi,

then (5.13) guarantees that only one of the multicast output signals contributes to message mr
p,q.

The set succi includes the successors of τi, which receive the same multicast signal. Information

about these successors sets is available at design time. The message length in bit βmr
p,q

is computed

by adding up the bits of all the signals mapped into it. The linear bound assumes that this length is

always a multiple of 8, as required by the standard.

∑

j∈succi

γsi,j ,mr
p,q

= αsi,j ,mr
p,q

(5.13)

∑

si,j∈S

γsi,j ,mr
p,q

βsi,j = βmr
p,q
≤ 64 (5.14)

Finally, I need to constrain the Ymr
p,q

variables that define if a message has at least one

signal or is empty.

Ymr
p,q
≥ αsi,j ,mr

p,q
∀si,j ∈ S (5.15)

Ymr
p,q
≤ 1 (5.16)

Sets, Variables and Constraints For each pair of tasks (τi, τj), define

pi,j =





1 if task τi has higher priority than τj ,

0 otherwise.

144

For the antisymmetric and transitive properties of the priority order relation, it must be (I assume no

two tasks have the same priority level.)

pi,j + pj,i = 1 (5.17)

pi,j + pj,k − 1 ≤ pi,k (5.18)

The formula that allows to compute the worst case response time of a task τi is

ri = Ci +
∑

j∈hp(i)

Ij,iCj

where hp(i) spans over the set of all the higher priority tasks that are allocated on the same CPU as

τi, and Ij,i is the number of interferences of τj on τi during its response time.

Ij,i =
⌈

ri

tj

⌉

To compute ri in our MILP framework, I start by adding the following variable

yi,j =





n ∈ N number of possible interference of τj on τi,

0 otherwise.

The definition of the possible number of interferences as function of the response times and periods

is captured by

0 ≤ yi,k − rτi/tτk
≤ 1 (5.19)

in addition, I define

xi,j =





n ∈ N number of possible interference of τj on τi if pj,i = 1,

0 otherwise.

145

xi,j can be defined in terms of yi,j and pi,j as follows, using the ”‘big M”’ formulation (M is a large

constant) in use in linear programming to express conditional constraints.

yi,k −M × (1− pk,i) ≤ xi,k ≤ yi,k (5.20)

0 ≤ xi,k ≤ Mpk,i (5.21)

Furthermore, to take into account the placement condition, I need to define also

wi,j =





n ∈ N number of possible interferences of τk on τi if pk,i = 1 when on the same ECU,

0 otherwise.

and

zi,j,k =





n ∈ N number of possible interferences of τk on τi if pk,i = 1 when they are on CPU ej ,

0 otherwise.

Please note that wi,k 6= 0 is the only case in which τk can actually preempt (i.e. interfere with) τi.

An additional variable zi,j,k is used to put this information in the context of a given CPU (ej) These

variables can be computed from the previous ones as

xi,k −M × (1− ai,k) ≤ wi,k ≤ xi,k (5.22)

0 ≤ wi,k ≤ Mai,k (5.23)

for wi,k, and

wi,k −M × (1−Ak,j) ≤ zi,j,k ≤ wi,k (5.24)

0 ≤ zi,j,k ≤ MAk,j (5.25)

146

for zi,j,k.

Finally, the response time of task τi (an additional variable ri ∈ R+) can be computed as

ri =
∑

j

Ai,jci,j +
∑

k

∑

j

zi,j,kck,j . (5.26)

5.3.4.1 Worst case response time of messages

Sets, Variables and Constraints For each pair of messages (mr
p,q, mf

s,t), we define

p
mr

p,q,mf
s,t

=





1 if mr
p,q has higher priority than mf

s,t,

0 otherwise.

For the antisymmetric and transitive properties of the priority order relation, it must be (we assume

no two messages have the same priority level.)

p
mr

p,q,mf
s,t

+ p
mf

s,t,m
r
p,q

= 1 (5.27)

p
mr

p,q,mf
s,t

+ p
mf

s,t,m
z
x,y
− 1 ≤ pmr

p,q,mz
x,y

(5.28)

As a result of the optimization, a priority level is assigned to all messages, including empty place-

holders, and it is possible that a high priority level is assigned to one of the empty messages. An

additional constraint ensures that this never happens. In (5.29) message mr
p,q, when nonempty

(Ymr
p,q

= 1), has higher priority than the empty message mf
s,t (Y

mf
s,t

= 0).

This ensures that empty messages don’t contribute to the interference of non-empty mes-

sages.

Ymr
p,q
− Y

mf
s,t
×M ≤ p

mf
s,t,m

r
p,q

(5.29)

147

The formula that allows to upper bound the worst case response time of a message mr
p,q is

rmr
p,q

= Cmr
p,q

+ qmr
p,q

qmr
p,q

= Bi +
∑

j∈hp(i)

I
mf

s,t,m
r
p,q

Cj

where hp(i) spans over the indexes of all the messages with priority higher than rmr
p,q

and I
mf

s,t,m
r
p,q

is the number of interferences of mf
s,t on mr

p,q during its queuing time. It is

I
mf

s,t,m
r
p,q

=
⌈

qmr
p,q

trp,q

⌉

Furthermore, the transmission times of messages depend upon their length according to

Cmr
p,q

=
∑

si,j∈S

βmr
p,q

+ 46
Bspeed

=
∑

si,j∈S

βmr
p,q

Bspeed
+

∑

si,j∈S

46
Bspeed

where βmr
p,q

is the size of the message (total number of bits mapped into it) and 46 is the number of

protocol bits in a CAN frame.

Similar to the computation of the response times of the tasks, the additional variables

z
mr

p,q,mf
s,t,si,j

, w
mr

p,q,mf
s,t

, x
mr

p,q,mf
s,t

and y
mr

p,q,mf
s,t

are defined.

The possible number of interferences y
mr

p,q,mf
s,t

is obtained from

0 ≤ y
mr

p,q,mf
s,t
− (rmr

p,q
−

∑

si,j∈S

βmr
p,q

+ 46
Bspeed

)/T
mf

s,t
≤ 1 (5.30)

x
mr

p,q,mf
s,t

, the possible number of interferences of a higher priority message mr
p,q on mf

s,t can be

computed from y
mr

p,q,mf
s,t

y
mr

p,q ,mf
s,t
− (1− p

mr
p,q,mf

s,t
)×M ≤ x

mr
p,q,mf

s,t

x
mr

p,q,mf
s,t
≤ y

mr
p,q,mf

s,t

0 ≤ x
mr

p,q,mf
s,t
≤ p

mr
p,q ,mf

s,t
×M

148

w
mr

p,q,mf
s,t

is computed from x
mr

p,q,mf
s,t

and represents the number of interferences from a higher

priority non-empty message mr
p,q (the only ones of practical relevance).

x
mr

p,q,mf
s,t
− (1− Y

mf
s,t

)×M ≤ w
mr

p,q,mf
s,t

w
mr

p,q,mf
s,t
≤ x

mr
p,q,mf

s,t

0 ≤ w
mr

p,q,mf
s,t
≤ Y

mf
s,t
×M

and z
mr

p,q,mf
s,t,si,j

from w
mr

p,q,mf
s,t

and γsi,j ,mr
p,q

w
mr

p,q,mf
s,t
− (1− γsi,j ,mr

p,q
)×M ≤ z

mr
p,q,mf

s,t,si,j

z
mr

p,q,mf
s,t,si,j

≤ w
mr

p,q,mf
s,t

0 ≤ z
mr

p,q ,mf
s,t,si,j

≤ γsi,j ,mr
p,q
×M

Finally, (5.31) computes the bound for the worst case response time rmr
p,q
∈ R+ of message mr

p,q

based on the number of interference from other messages

rmr
p,q
≤

∑

si,j∈S

βmr
p,q

+ 46
Bspeed

+

bmr
p,q

+
1

Bspeed

∑

mf
s,t

∑
si,j

z
mr

p,q,mf
s,t,si,j

βsi,j

+
46

Bspeed

∑

mf
s,t

w
mr

p,q,mf
s,t

(5.31)

and we ensure that rmr
p,q

> 0 only when Ymr
p,q
6= 0.

∑

si,j∈S

βmr
p,q

+ 46
Bspeed

+ bmr
p,q

+

1
Bspeed

∑

mf
s,t

∑
si,j

z
mr

p,q,mf
s,t,si,j

βsi,j +

46
Bspeed

∑

mf
s,t

w
mr

p,q,mf
s,t

+ (Ymr
p,q
− 1)×M ≤ rmr

p,q

rmr
p,q
≤ Ymr

p,q
×M

149

Paths are defined on the tasks and the communication signals between them. the following

constraints bond the latency of a message to the latency of all the signals that are mapped into it.

The response time of a signal si,j is denoted as rsi,j .

rmr
p,q
− (1− αsi,j ,mr

p,q
)×M ≤ rsi,j (5.32)

rsi,j ≤ rmr
p,q

+ (1− αsi,j ,mr
p,q

)×M (5.33)

rsi,j ≤ (1− ai,j)×M (5.34)

If τi and τj are mapped to different ECUs, (5.32) and (5.33) bonds the signal latency rsi,j to the

latency of message rmr
p,q

. However, inequality (5.34) forces rsi,j to 0 when the signal is local, that

is, when τi and τj are mapped to the same ECU.

5.3.4.2 Worst case end-to-end latency

The end to end latency is computed as:

∑

τi∈Pl,m

(rr + Ti) +
∑

lj,k∈Link(Pl,m)

(rsj,k
+ Tsj,k

) ≤ dl,m (5.35)

where τi is the generic task in the path Pl,m. Latencies on the paths should be no greater than the

deadline (5.35).

Objective Function Given that the performance of the functions is better with small response

time of the actuators, the objective function minimizes the sum of the latencies over all paths

Min
∑

P

(
∑

τionP

rτi +
∑

lj,k∈Link(P)

rsτj ,τk
) (5.36)

150

Synthesize Task Allocation
and Task Priority

Synthesize Signal Packing
and Task, Message Priority

Parameters:
Task worst case execution time

Signal length, bus speed
Task and Signal periods

Constraints:
End-to-end latency on given paths

Objective:
Sum of latencies of given paths

Heuristics

signal priority
Synthesize Task Allocation

and Task Priority

Synthesize Signal Packing
and Task, Message Priority

Parameters:
Task worst case execution time

Signal length, bus speed
Task and Signal periods

Constraints:
End-to-end latency on given paths

Objective:
Sum of latencies of given paths

Heuristics

signal priority

Figure 5.5: Two Step Synthesis Approach

5.3.5 Two Steps Synthesis Procedure

Section 5.3.2.4 describes an integrated formulation for task allocation, signal packing and

task/message priority optimization. This problem formulation provides an optimal solution when

solvable. However, the complexity is typically too high for the sizes of industrial applications.

Therefore, I propose, as an approximation, a two-step synthesis method, as shown in Figure 5.5.

The whole synthesis problem is divided into two sub-problems. At each step, the sub-problem is

formulated as an MILP based on the variables and constraints defined in Section 5.3.2, then solved

by mathematical programming tools. In Step 1, I assume one message is reserved for each signal,

and that the priorities of one-signal messages are given by a preprocessing heuristic that assigns

priorities to signals, based on their period, and according to the Rate Monotonic policy. In the first

sub-problem, I synthesize the task allocation and task priority to optimize the sum of the latencies

of given paths, while also satisfying the deadline constraints on those paths.

151

In Step 2, I use the task allocation result from Step 1, and synthesize signal packing,

message priority and task priority. The objective is still to optimize the sum of the latencies of given

paths, while satisfying the deadline constraints on paths and the constraints on message size.

5.4 Experimental Result

The work demonstrated the applicability and the possible benefits of the approach with a

case study derived from the analysis of a bus subsystem of an experimental vehicle that incorporates

advanced active safety functions.

The architecture platform consists of 9 ECUs connected with a single CAN-bus at speed

500kb/s. The vehicle supports advanced distributed functions with end-to-end computations collect-

ing data from 360◦ sensors to the actuators, consisting of the throttle, brake and steering subsystems

and of advanced HMI(Human-Machine Interface) devices.

The analysis focuses on the subset of tasks and signals that are part of paths with timing

constraints. I assume the remaining tasks and signals are assigned lower priorities and allocated to

ECUs and messages based on other considerations (possibly load balancing) in such a way that they

do not interfere with the latencies of the critical paths.

For the purpose of our experiments, I assumed all ECUs to have the same computation

power (which is not actually true in reality).

The subsystem that is the subject of our study consists of a total of 41 tasks executed

on the ECU nodes, and 83 CAN signals exchanged among the tasks. Worst-case execution time

estimates have been obtained for all tasks, and the bit length of the signals is between 1 (for binary

information) and 64 (full CAN message).

152

End-to-end deadlines are placed over 10 pairs of source-sink tasks in the system. This

corresponds to 171 paths. The deadline is set at 300ms for 8 source-sink pairs and 100ms for the

other two.

The experiments were run on a 1.4-GHz processor with 2GB RAM. CPLEX 10.1 as the

MILP solver is used in this experiment.

For step 1, the total number of variables was 21249, 3430 of them binary variables. The

number of constraints (automatically generated by a purposely written C++ program based on the

system configuration) was 801083. For step 2, the number of variables was 17797, 2582 of them

binary variables. The number of constraints was 136221.

In Step 1, a feasible solution satisfying all path deadline constraints was found in 8.9

seconds. The objective value - sum of the latencies of given paths - was 36486ms for this feasible

solution. Within 20000 seconds, the best solution found by the solver was 13060.3ms. Although

the optimum had not been reached yet, the optimization was stopped with the obtained solution

within 0.07% of the optimum for the formulation of Step 1. The largest latency among all the paths

with deadline at 300ms was 135.82ms and the largest latency for 100ms deadline paths was found

at 63.19ms.

In Step 2, I set the solution of Step 1 as the initial point and further optimized the objective

function by packing the signals and synthesizing the priorities of tasks and messages. Within 20000

seconds, a solution with 12899.9 total latency was found. This was within 1.13% of the optimal for

Step 2 formulation. The result improves the output of Step 1 by 1.22%. After this second step, the

largest latency among all the paths with deadline at 300ms was 133.398ms and the largest latency

for 100ms deadline paths was found at 62.09ms.

153

The improvement is small because message transmission times and response times are

much smaller than task response times and both are small if compared with the task and message

periods that contribute to the end-to-end latency. The majority of the path latencies were not signif-

icantly affected by the steps of signal packing and message priority optimization.

This chapter presented an integrated formulation (ILP based) for optimizing task place-

ment, signal mapping as well as task and message priorities in distributed automotive systems to

meet end-to-end deadline constraints and minimize latencies. I applied this method to an auto-

motive case study, and showed it can affectively reduce the end-to-end latencies in a CAN based

communication system.

154

Chapter 6

Conclusions and Future Work

In this thesis I proposed analysis and synthesis techniquesfor vehicle electronic system

designers to make sure key functionalities finish before appropriate deadlines for safety-critical

applications. . An integrated framework was presented for design space exploration using powerful

mathematical programming to solve scheduling problems in a platform based design process.

System-level architecture design is neither a top-down nor a bottom-up design methodol-

ogy. Rather, it is a ”meet-in-the-middle” approach. Chapter 2 presented a platform-based system-

level design flow with an emphasis on scheduling and then explained the flow in automotive elec-

tronic design scenarios.

In chapter 3, extensibility and scalability metrics were captured in scheduling a hard real

time embedded system, and implications were analyzed in accelerating time-to-market of a sys-

tem development process by reducing development and re-verification burden in an incremental

design flow. This was done by describing scheduling as a mathematical programming optimization

problem, and solving it with respect to appropriate multi-objective cost functions derived from the

155

metrics. The metrics and the method were shown to be effective for industrial problems in a case

study.

Chapter 4 presented two novel synthesis framework procedures (one is mathematical pro-

gramming approach and the other one is a search algorithm) based on approximate timing analysis

to optimize the definition of the activation model in the functional network with respect to latency

constraints. The effectiveness of the approaches were demonstrated in the design of a complex real-

world automotive architecture of a GM product. Besides the assignment of priorities to tasks and

messages, or the definition of task and message periods, another possible objective for the synthesis

of the software architecture is to find the optimal placement of the tasks on the ECUs. Some of

these optimization problems were discussed in chapter 5.

Chapter 5 investigated an integrated formulation for optimizing task placement, signal

mapping as well as task and message priorities in distributed automotive systems to meet end-to-end

deadline constraints and minimize latencies. To make it practical for industrial applications, a two-

step synthesis method approximating the integrated formulation was proposed to reduce complexity.

Applying this method to an automotive case study showed that it can effectively reduce the end-to-

end latencies.

In this thesis, large efforts were dedicated to an optimization framework for synthesizing

scheduling table for time-triggered system, selecting activation models, allocating tasks to ECUs

and mapping signals to messages, and assigning messages priorities for event-triggered system.

There are, however, several other design optimization problems that could be addressed:

For time triggered system, the multiple ECU (processor) scheduling problem is an NP-

hard problem. The mathematical programming approach is computationally intensive, and suitable

156

only for moderately sized problems. The case study required one hour of run time for the full

extensibility and scalability cost functions. To deal with larger problem sizes, a heuristic is needed

to obtain a feasible solution first, locks down all precedence binary variables, then use the same cost

function to optimize. However, risks of being locked into a bad task ordering exist and algorithms to

perturb a feasible ordering can be developed in order to move toward a better solution. In refining the

bus model, one may describe and optimize the bus slot size and slot order with respect to utilization

and buffer usage constraints, and optimize the bus cycle length to allow multiplex tasks in order to

reduce buffer overhead.

For the event triggered system, although the techniques proposed in Chapter 5 targets only

a part of the architecture definition stages, they are flexible enough for the designers to accommodate

many constraints of interest, and effectively find solution of problems with practical size. Their

applicability is however limited to a single bus subsystem at a time. The proposed technique should

be merged with optimization results already devised for the assignment of the periods and the task

and messages activation modes in the future, as detailed in previous chapters. Also, the possible

extension to multi-bus subsystems (including the entire car architecture) and routing/gatewaying

should be explored.

157

Bibliography

[1] Autosar. available at http://www.autosar.org, visited Sep 2007.

[2] Wikipedia. available at http://en.wikipedia.org, visited Sep 2007.

[3] International organization for standardization. Road vehicles-Controller Area Network (CAN)

- Part 4: Time-triggered communication. ISO/DIS 11898-4, 2002.

[4] Sangiovanni Vincentelli A. Defining platform-based design. EEDesign of EETimes, Feb 2002.

[5] Lavagno L. Passerone C. Sangiovanni-Vincentelli A. Balarin F., Hsieh H. and Watanabe Y.

Metropolis: An integrated environment for electronic system design. IEEE Computer, April

2003.

[6] M. Baleani, A. Ferrari, L. Mangeruca, and A. Sangiovanni Vincentelli. Efficient embedded

software design with synchronous models. In Proceedings of the 5th ACM EMSOFT confer-

ence, 2005.

[7] A. Bender. Design of an optimal loosely coupled heterogeneous multiprocessor system. Proc.

Electronic Design and Test Conference.

158

[8] A. Benveniste, P. Caspi, S.A. Edwards, N. Halbwachs, P. Le Guernic, and R. de Simone. The

synchronous languages 12 years later. Proceedings of the IEEE, 91, January 2003.

[9] Griessbach R Berwanger J, Peller M. A new high performance data bus system for safety-

related applications. available at http://www.byteflight.de, 2000, visited Sep 2007.

[10] Enrico Bini, Marco Di Natale, and Giorgio Buttazzo. Sensitivity analysis for fixed-priority

real-time systems. In Euromicro Conference on Real-Time Systems, Dresden, Germany, June

2006.

[11] R. Bosch. Can specification, version 2.0, visited sep 2007. available at http://www.can-cia.org.

[12] R. Bosch. Can specification, version 2.0. Stuttgart, 1991.

[13] J.-Y. Le Boudec and P. Thiran. Network calculus - a theory of deterministic queuing systems

for the internet. In LNCS 2050, Springer, 2001.

[14] S. Boyd and L. Vandenberghe. Convex optimization. Available at

http://www.stanford.edu/ boyd/cvxbook.html.

[15] S. Boyd and L. Vandenberghe. Convex optimizations. Cambridge University Press, 2004.

[16] L. Casparsson, A. Rajnak, K. Tindell, and P. Malmberg. Volcano, a revolution in on-board

communications. Technical report, Volvo Technology report, 1999.

[17] G. Cena and A. Valenzano. Performance analysis of byteflight networks. In Proceedings of

the IEEE International Workshop on Factory Communication Systems, pages 157–166, 2004.

[18] Samarjit Chakraborty and Lothar Thiele. A new task model for streaming applications and

159

its schedulability analysis. In IEEE Design Automation and Test in Europe (DATE), Munich,

Germany, March 2005.

[19] Robert I. Davis, Alan Burns, Reinder J. Bril, and Johan J. Lukkien. Controller area network

(can) schedulability analysis: Refuted, revisited and revised. Real-Time Syst., 35(3):239–272,

2007.

[20] M. DiNatale and J. Stankovic. Dynamic end-toend guarantees in distributed real-time systems.

In Real-Time Systems Symposium, Puerto Rico, 1994.

[21] Tomiyama H Takada H Ding S, Murakami N. A ga-based scheduling method for flexray

systems. In Proceedings of EMSOFT, 2005.

[22] Wilfried Elmenreich. Introduction to ttp/c and ttp/a.

[23] Joaquim Ferreira, Paulo Pedreiras, Luı́s Almeida, and José Alberto Fonseca. The ftt-can pro-

tocol for flexibility in safety-critical systems. IEEE Micro, 22(4):46–55, 2002.

[24] Flexray. www.flexray.com.

[25] Flexray. Protocol specification v2.1 rev. a. available at http://www.flexray.com, 2006, visited

Sep 2007.

[26] Richard Gerber, Seongsoo Hong, and Manas Saksena. Guaranteeing real-time requirements

with resource-based calibration of periodic processes. IEEE Transaction on Software Engi-

neering, 21(7):579–592, July 1995.

[27] OSEK group. Osekvdx: Time-triggered operating system specification 1.0. www.osek-

vdx.orgmirrorttos10.pdf, July 2001.

160

[28] Arne Hamann, Rafik Henia, Marek Jerzak, Razvan Racu, Kai Richter, and Rolf Ernst.

SymTA/S symbolic timing analysis for systems. available at http://www.symta.org, 2004.

[29] Ernst R Hamann A. Tdma time slot and turn optimization with evolutionary search techniques.

In Proceedings of the Design, Automation and Test in Europe Conference, vol 1, pp 312-317,

2005.

[30] M. Gonzalez Harbour, M. Klein, and J. Lehoczky. Timing analysis for fixed-priority schedul-

ing of hard real-time systems. IEEE Transactions on Software Engineering, 20(1), January

1994.

[31] Driscoll K Hoyme K. Safebus. IEEE Aerosp Electron Syst Mag 8(3):34-39.

[32] Rushby J. Bus architectures for safety-critical embedded systems. Lecture notes in computer

science, 2211:306–323, 1.

[33] Shengbin Jiang. Flexray scheduler using window slicing techniques. GM Internal Report,

2005.

[34] K. Ramamritham John A. Stankovic. Advances in real-time systems. IEEE Computer Society

Press, 1993.

[35] R. Newton A. Sangiovanni-Vincentelli K. Keutzer, Sharad Malik. System-level design: Or-

thogonalization of concerns and platform-based design. IEEE Transactions on Computer-

Aided Design of Integrated Circuits and Systems, 19(12), Dec 2000.

[36] R. Newton J. Rabaey K. Keutzer, S. Malik and A. Sangiovanni-Vincentelli. System level

161

design: Orthogonalization of concerns and platform-based design. IEEE Transactions on

Computer-Aided Design of Circuits and Systems, Vol. 19, No. 12, December 2000.

[37] Bart Kienhuis, Ed F. Deprettere, Pieter van der Wolf, and Kees A. Vissers. A methodology to

design programmable embedded systems - the Y-chart approach. In Ed F. Deprettere, Jürgen

Teich, and Stamatis Vassiliadis, editors, Embedded Processor Design Challenges: Systems,

Architectures, Modeling, and Simulation - SAMOS, volume 2268 of Lecture Notes in Computer

Science, pages 18–37. Springer, 2002.

[38] H. Kopetz. Real-time systems-design principles for distributed embedded applications. Kluwer

Academic Publishers, 1997.

[39] H. Kopetz, A. Damm, C. Koza, M. Mulazzani, W. Schwabla, C. Senft, and R. Zainlinger.

Distributed fault-tolerant real-time systems: The mars approach. IEEE Micro, 9(1), February

1989.

[40] Bauer G Kopetz H. The time-triggered architecture. Proc IEEE 91(1):112-126, 2001.

[41] H. Hansson K.W. Tindell and A.J. Wellings. Analysing real-time communications: Controller

area network (can). In Proc. 15 th RealTime Systems Symposium, pages 259–263, 1994.

[42] J. W. S. Liu. Real-Time Systems. Prentice Hall, 2000.

[43] Layland Liu. Scheduling algorithms for multiprogramming in a hard-real-time environment.

J. ACM, 1973.

[44] Mathworks. The Mathworks Simulink and StateFlow User’s Manuals. web page:

http://www.mathworks.com.

162

[45] Slobodan Matic and Tom Henzinger. Trading end-to-end latency for composability. In Pro-

ceedings of the 26th IEEE Real-Time Systems Symposium, 2005.

[46] Alexander Metzner and Christian Herde. Rtsat– an optimal and efficient approach to the task

allocation problem in distributed architectures. In RTSS ’06: Proceedings of the 27th IEEE

International Real-Time Systems Symposium, pages 147–158, Washington, DC, USA, 2006.

IEEE Computer Society.

[47] Pradyumna Mishra and Sanjeev Naik. Distributed control system development for flexray

based systems. In Proceedings of SAE Congress, Paper No. 2005-05AE-329, Detroit, MI,

2004.

[48] B. T. Murray N. Kandasamy, J. P. Hayes. Dependable communication synthesis for distributed

embedded systems. Proc. 22nd Int’l Conf. on Computer Safety, Reliability, Security (SAFE-

COMP), 2003.

[49] Simont-Lion F Wilwert C Navet N, Song Y. Trends in automotive communication systems.

Proc IEEE, 93(6):1204–1223, July 2005.

[50] OSEK. Trends in automotive communication systems, 2005.

[51] OSEK. Local interconnect network protocol specification. available at http://www.lin-

subbus.org, 2005, visited Sep 2007.

[52] OSEK. Osek os version 2.2.3 specification. available at http://www.osek-vdx.org, 2006, vis-

ited Sep 2007.

[53] J.C. Palencia and M. Gonzáles Harbour. Schedulability analysis for tasks with static and

163

dynamic offsets. In 19th IEEE Real-Time Systems Symposium, Madrid, Spain, December

1998.

[54] Thilo Demmeler Paolo Giusto. Rapid design exploration of safety-critical distributed automo-

tive applications via virtual integration platforms. The Journal of Systems and Software, 70(3),

March 2004.

[55] Pop Paul. Analysis and synthesis of communication-intensive heterogeneous real-time sys-

tems. Ph. D. Thesis No. 833, Dept. of Computer and Information Science, Linkping University,

June 2003.

[56] M Plankensteiner. Development of modular electrical systems.

www.tttech.comtechnologydocsprotocol comparisonsTTTech-Comparison TTP-TTCAN-

FlexRay.pdf, 2003.

[57] Traian Pop, Petru Eles, and Zebo Peng. Holistic scheduling and analysis of mixed

time/event-triggered distributed embedded systems. In 10th International Symposium on

Hardware/Software Codesign (CODES 2002), pages 187–192, Estes Park, Colorado, USA,

May 6-8 2002.

[58] Traian Pop, Petru Eles, and Zebo Peng. Design optimization of mixed time/event-triggered

distributed embedded systems. In CODES+ISSS ’03: Proceedings of the 1st IEEE/ACM/IFIP

international conference on Hardware/software codesign and system synthesis, pages 83–89,

New York, NY, USA, 2003. ACM Press.

[59] Peng Z Pop P, Eles P. Schedulability-driven communication synthesis for time-triggered em-

bedded systems. Real-Time Systems Journal, 24:297–325, 2004.

164

[60] Peng Z Doboli A Pop P, Eles P. Scheduling with bus access optimization for distributed

embedded systems. EEE Trans VLSI Syst, 8(5):472–491, 2000.

[61] Miner PS. Safebus. Analysis of the SPIDER fault-tolerance protocols, Proceedings of the 5th

NASA Langley Formal Methods Workshop, 2000.

[62] Razvan Racu, Marek Jersak, and Rolf Ernst. Applying sensitivity analysis in real-time dis-

tributed systems. In Proceedings of the 11th Real Time and Embedded Technology and Appli-

cations Symposium, pages 160–169, San Francisco (CA), U.S.A., March 2005.

[63] Krithi Ramamritham, Gerhard Fohler, and Juan Manuel Adan. Issues in the static allocation

and scheduling of complex periodic tasks. In RTOSS ’93: Proceedings of the tenth IEEE

workshop on Real-time operating systems and software, pages 11–16, Washington, DC, USA,

1993. IEEE Computer Society.

[64] Fabio Romeo. Magneti- marelli. DAC, Las Vegas, June 20th, 2001.

[65] R. Saket and N. Navet. Frame packing algorithms for automotive applications. Journal of

Embedded Computing, vol. 2, n 1, pages 93–102, 2006.

[66] M. Saksena and S. Hong. Resource conscious design of distributed real-time systems – an

end-to-end approach. In Proc. IEEE Int’l Conf on Engineering of Complex Computer Systems,

1996.

[67] K. Sandstrom, C. Norstom, and M. Ahlmark. Frame packing in real-time communication.

Seventh International Conference on Real-Time Computing Systems and Applications, pages

399–403, 2000.

165

[68] N. Scaife and P. Caspi. Integrating model-based design and preemptive scheduling in mixed

time- and event-triggered systems. In 6th Euromicro Conference on Real-Time Systems

(ECRTS’04), July 2004.

[69] Kiran Seth, Aravindh Anantaraman, Frank Mueller, and Eric Rotenberg. FAST: Frequency-

aware static timing analysis. In Proceedings of the 24th IEEE Real-Time Systems Symposium,

pages 40–51, Cancun, Mexico, December 2003.

[70] Danbing Seto, John P. Lehoczky, and Lui Sha. Task period selection and schedulability in

real-time systems. In Proceedings of the 19th IEEE Real-Time Systems Symposium, pages

188–198, Madrid, Spain, December 1998.

[71] Danbing Seto, John P. Lehoczky, Lui Sha, and Kang G. Shin. On task schedulability in real-

time control systems. In Proceedings of the 17th IEEE Real-Time Systems Symposium, pages

13–21, Washington, DC, December 1996.

[72] Lui Sha, Ragunathan Rajkumar, and John P. Lehoczky. Priority inheritance protocols: An

approach to real-time synchronization. IEEE transaction on computers, 39(9), September

1990.

[73] D. B. Shmoys and Tardos. Scheduling unrelated machines with costs. In Proc. 4th Ann.

ACM-SIAM Symp. on Discrete Algorithms, ACM-SIAM, pages 448–454, 1993.

[74] Ken Tindell, Alan Burns, and A. J. Wellings. Calculating controller area network (can) mes-

sage response times. Control Eng. Practice, 3(8):1163–1169, 1995.

[75] Ken W. Tindell. Holistic schedulability analysis for distributed hard real-time systems. Tech-

nical Report YCS 197, Department of Computer Science, University of York, 1993.

166

[76] Clark J Tindell K. Holistic schedulability analysis for distributed hard real-time systems.

Microprocess. Microprogram, 50:2–3, 1994.

[77] Wellings A Tindell K, Burns A. Calculating can message response times. Control Engineering

Practice, 3(8):1163–1169, 1995.

[78] Stavros Tripakis, Christos Sofronis, Norman Scaife, and Paul Caspi. Semantics-preserving

and memory-efficient implementation of inter-task communication on static-priority or edf

schedulers. Proceedings of the 5th ACM EMSOFT conference, 2005.

[79] Y. Wang and M. Saksena. Scheduling fixed priority tasks with preemption threshold. In Pro-

ceedings, IEEE International Conference on Real-Time Computing Systems and Applications,

December 1999.

[80] Niraj Shah William Plishker, Kaushik Ravindran and Kurt Keutzer. Automated task allocation

on single chip, hardware multithreaded, multiprocessor systems. Workshop on Embedded

Parallel Architectures (WEPA-1), February.

[81] G.J. Zakarian, A. Rushton. Development of modular electrical systems. IEEE/ASME Trans-

actions on Mechatronics, December 2001.

167

Appendix A

Alphabetic Notations

Throughout the dissertation, we use unified characters for notations goes as follows:

• τ : tasks running on ECU

• σij : Signals communicated between tasks

• mi: Messages transmitted on the bus

• bij : bit width for signal σij

• δij : unit delay for signal σij

• Ti: The period of task τi

• Φi: The initial phase of task τi

• Ci: The worst case execution time of task τi

• li: The input/output connections between tasks

• ti: An individual scheduling entity, job instance

• tkj: The j-th job of task τk

• ai: The arrival time of a task τi

• Ai: The release time of a task τi

• si: The start execution time of a task τi

• fi: The finish time of a task τi

• di: The deadline of a task τi

• ri: The worst case response time of a task τi

• Ri: The response time of a job instance ti

168

• Rτi : The worst case response time of a task τi

• H: Super period of all tasks in the functionality graph

• λkj : The j-th slot inside cycle k in a FlexRay system

• Pi,j : A functional chain or Path from τi to τj

• EP: The set of end objects on the selected paths

• γj : The worst case copy time for the outputs data to be written into the input variable for the
receiving task or the data trasmit register for the appropriate slot in the FlexRay adapter.

• Γ: The set of task graphs

• Γ′: The set of task graphs after task graph expansion

• Γ′: The set of task graphs after task graph expansion

• C: The communication cycle set

• nslots: number of slots per communication cycle

• lslotmin: minimum slot size, determined by the length of the biggest signal sent by ECUs

• rlmessage: The message ready list

• rltask: The task ready list

• E : The ECU list which is {ei|i = 1...m}
• lcomm: The length of communication cycle of a FlexRay bus configuration

• lslot: The slot size of a FlexRay bus configuration

• ss
j,k: The starting time of the kth slot from the jth communication cycle of a FlexRay bus

configuration

• V : The set of vertices

• E : The set of edges

• R = {R1, . . . , Rz}: The set of shared resources supporting the execution of the tasks (CPUs)
and the transmission of the messages (buses).

• Roi : The resource for a task/message needs to execute or for its transmission

• πi: The priority of oi and indexes are assigned by decreasing priority levels

• wi: The worst case time spent from the instant the job is released with maximum jitter Ji to
its completion or arrival.

• Bi: The blocking term for a message transmission on the bus

169

• S = {si,j |τi, τj ∈ T}: The signals are exchanged among pairs of tasks.

• βsi,j : The length of the signal si,j .

